Sample records for experimental setup consisting

  1. Status and Prospects of Hirfl Experiments on Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.

    HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.

  2. Multipurpose setup for low-temperature conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Augustyns, V.; Trekels, M.; Gunnlaugsson, H. P.; Masenda, H.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-05-01

    We describe an experimental setup for conversion electron Mössbauer spectroscopy (CEMS) at low temperature. The setup is composed of a continuous flow cryostat (temperature range of 4.2-500 K), detector housing, three channel electron multipliers, and corresponding electronics. We demonstrate the capabilities of the setup with CEMS measurements performed on a sample consisting of a thin enriched 57Fe film, with a thickness of 20 nm, deposited on a silicon substrate. We also describe exchangeable adaptations (lid and sample holder) which extend the applicability of the setup to emission Mössbauer spectroscopy as well as measurements under an applied magnetic field.

  3. Eye-in-Hand Manipulation for Remote Handling: Experimental Setup

    NASA Astrophysics Data System (ADS)

    Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador

    2018-03-01

    A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.

  4. An experimental setup for the simultaneous measurement of thermoelectric power of two samples from 77 K to 500 K.

    PubMed

    Tripathi, T S; Bala, M; Asokan, K

    2014-08-01

    We report on an experimental setup for the simultaneous measurement of the thermoelectric power (TEP) of two samples in the temperature range from 77 K to 500 K using optimum electronic instruments. The setup consists of two rectangular copper bars in a bridge arrangement for sample mounting, two surface mount (SM) chip resistors for creating alternate temperature gradient, and a type E thermocouple in differential geometry for gradient temperature (ΔT) measurement across the samples. In addition, a diode arrangement has been made for the alternate heating of SM resistors using only one DC current source. The measurement accuracy of ΔT increases with the differential thermocouple arrangement. For the calibration of the setup, measurements of TEP on a high purity (99.99%) platinum wire and type K thermocouple wires Chromel and Alumel have been performed from 77 K to 500 K with respect to copper lead wires. Additionally, this setup can be utilized to calibrate an unknown sample against a sample of known absolute TEP.

  5. An experimental setup for the simultaneous measurement of thermoelectric power of two samples from 77 K to 500 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, T. S.; Bala, M.; Asokan, K.

    2014-08-01

    We report on an experimental setup for the simultaneous measurement of the thermoelectric power (TEP) of two samples in the temperature range from 77 K to 500 K using optimum electronic instruments. The setup consists of two rectangular copper bars in a bridge arrangement for sample mounting, two surface mount (SM) chip resistors for creating alternate temperature gradient, and a type E thermocouple in differential geometry for gradient temperature (ΔT) measurement across the samples. In addition, a diode arrangement has been made for the alternate heating of SM resistors using only one DC current source. The measurement accuracy of ΔTmore » increases with the differential thermocouple arrangement. For the calibration of the setup, measurements of TEP on a high purity (99.99%) platinum wire and type K thermocouple wires Chromel and Alumel have been performed from 77 K to 500 K with respect to copper lead wires. Additionally, this setup can be utilized to calibrate an unknown sample against a sample of known absolute TEP.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, Stefan; Lein, Sebastian

    A revised scientific instrument to measure simultaneously kinetic temperatures of different atoms from their optical emission profile is reported. Emission lines are simultaneously detected using one single scanning Fabry-Perot-interferometer (FPI) for a combined spectroscopic setup to acquire different emission lines simultaneously. The setup consists in a commercial Czerny-Turner spectrometer configuration which is combined with a scanning Fabry-Perot interferometer. The fast image acquisition mode of an intensified charge coupled device camera allows the detection of a wavelength interval of interest continuously while acquiring the highly resolved line during the scan of the FPI ramp. Results using this new setup are presentedmore » for the simultaneous detection of atomic nitrogen and oxygen in a high enthalpy air plasma flow as used for atmospheric re-entry research and their respective kinetic temperatures derived from the measured line profiles. The paper presents the experimental setup, the calibration procedure, and an exemplary result. The determined temperatures are different, a finding that has been published so far as due to a drawback of the experimental setup of sequential measurements, and which has now to be investigated in more detail.« less

  7. Detection of fractional solitons in quantum spin Hall systems

    NASA Astrophysics Data System (ADS)

    Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.

    2018-03-01

    We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.

  8. Quantitative impact of small angle forward scatter on whole blood oximetry using a Beer-Lambert absorbance model.

    PubMed

    LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean

    2011-04-21

    It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.

  9. Experimental setup for the study of resonant inelastic X-ray scattering of organometallic complexes in gas phase

    NASA Astrophysics Data System (ADS)

    Ismail, I.; Guillemin, R.; Marchenko, T.; Travnikova, O.; Ablett, J. M.; Rueff, J.-P.; Piancastelli, M.-N.; Simon, M.; Journel, L.

    2018-06-01

    A new setup has been designed and built to study organometallic complexes in gas phase at the third-generation Synchrotron radiation sources. This setup consists of a new homemade computer-controlled gas cell that allows us to sublimate solid samples by accurately controlling the temperature. This cell has been developed to be a part of the high-resolution X-ray emission spectrometer permanently installed at the GALAXIES beamline of the French National Synchrotron Facility SOLEIL. To illustrate the capabilities of the setup, the cell has been successfully used to record high-resolution Kα emission spectra of gas-phase ferrocene F e (C5H5) 2 and to characterize their dependence with the excitation energy. This will allow to extend resonant X-ray emission to different organometallic molecules.

  10. Real-time local experimental monitoring of the bleaching process.

    PubMed

    Rakic, Mario; Klaric, Eva; Sever, Ivan; Rakic, Iva Srut; Pichler, Goran; Tarle, Zrinka

    2015-04-01

    The purpose of this article was to investigate a new setup for tooth bleaching and monitoring of the same process in real time, so to prevent overbleaching and related sideeffects of the bleaching procedure. So far, known bleaching procedures cannot simultaneously monitor and perform the bleaching process or provide any local control over bleaching. The experimental setup was developed at the Institute of Physics, Zagreb. The setup consists of a camera, a controller, and optical fibers. The bleaching was performed with 25% hydrogen peroxide activated by ultraviolet light diodes, and the light for monitoring was emitted by white light diodes. The collected light was analyzed using a red-green-blue (RGB) index. A K-type thermocouple was used for temperature measurements. Pastilles made from hydroxylapatite powder as well as human teeth served as experimental objects. Optimal bleaching time substantially varied among differently stained specimens. To reach reference color (A1, Chromascop shade guide), measured as an RGB index, bleaching time for pastilles ranged from 8 to >20 min, whereas for teeth it ranged from 3.5 to >20 min. The reflected light intensity of each R, G, and B component at the end of bleaching process (after 20 min) had increased up to 56% of the baseline intensity. The presented experimental setup provides essential information about when to stop the bleaching process to achieve the desired optical results so that the bleaching process can be completely responsive to the characteristics of every individual, leading to more satisfying results.

  11. Design and calibration of zero-additional-phase SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Peter; Riedle, Eberhard

    2005-09-01

    Zero-additional-phase spectral phase interferometry for direct electric field reconstruction (ZAP-SPIDER) is a novel technique for measuring the temporal shape and phase of ultrashort optical pulses directly at the interaction point of a spectroscopic experiment. The scheme is suitable for an extremely wide wavelength region from the ultraviolet to the near infrared. We present a comprehensive description of the experimental setup and design guidelines to effectively apply the technique to various wavelengths and pulse durations. The calibration of the setup and procedures to check the consistency of the measurement are discussed in detail. We show experimental data for various center wavelengthsmore » and pulse durations down to 7 fs to verify the applicability to a wide range of pulse parameters.« less

  12. A new mechatronic set-up and technique for investigation of firearms

    NASA Astrophysics Data System (ADS)

    Lesenciuc, Ioan; Suciu, Cornel

    2016-12-01

    Since ancient times, mankind has manifested interest in the development and improvement of weapons, either for military or hunting purposes. Today, in competition with these legal practices, the number of those who commit crimes by non-compliance with the regime of weapons and ammunition has increased exponentially. This is why the technology and methods employed in the area of judicial ballistics, requires constant research and continuous learning. The present paper advances a new experimental set-up and its corresponding methodology, meant to measure the force deployed by the firing pin. The new experimental set-up and procedure consists of a mechatronic structure, based on a piezoelectric force transducer, which allows to measure, in-situ, the force produced by the firing pin when it is deployed. The obtained information can further be used to establish a correspondence between this force and the imprint left on the firing cap. This correspondence furthers the possibility of elaborating a model that would permit ballistic experts to correctly identify a smoothbore weapon.

  13. Optimization and development of solar power system under diffused sunlight condition in rural areas with supercapacitor integration

    NASA Astrophysics Data System (ADS)

    Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.

    2018-04-01

    The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.

  14. Refractive Index Compensation in Over-Determined Interferometric Systems

    PubMed Central

    Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

    2012-01-01

    We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup. PMID:23202037

  15. Refractive index compensation in over-determined interferometric systems.

    PubMed

    Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk

    2012-10-19

    We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

  16. The experimental set-up of the RIB in-flight facility EXOTIC

    NASA Astrophysics Data System (ADS)

    Pierroutsakou, D.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Mazzocco, M.; Nicoletto, M.; Parascandolo, C.; Signorini, C.; Soramel, F.; Strano, E.; Toniolo, N.; Torresi, D.; Tortone, G.; Anastasio, A.; Bettini, M.; Cassese, C.; Castellani, L.; Corti, D.; Costa, L.; De Fazio, B.; Galet, G.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Pontoriere, G.; Rocco, R.; Romoli, M.; Roscilli, L.; Sandoli, M.; Stroe, L.; Tessaro, M.; Zatti, P. G.

    2016-10-01

    We describe the experimental set-up of the Radioactive Ion Beam (RIB) in-flight facility EXOTIC consisting of: (a) two position-sensitive Parallel Plate Avalanche Counters (PPACs), dedicated to the event-by-event tracking of the produced RIBs and to time of flight measurements and (b) the new high-granularity compact telescope array EXPADES (EXotic PArticle DEtection System), designed for nuclear physics and nuclear astrophysics experiments employing low-energy light RIBs. EXPADES consists of eight ΔE -Eres telescopes arranged in a cylindrical configuration around the target. Each telescope is made up of two Double Sided Silicon Strip Detectors (DSSSDs) with a thickness of 40/60 μm and 300 μm for the ΔE and Eres layer, respectively. Additionally, eight ionization chambers were constructed to be used as an alternative ΔE stage or, in conjunction with the entire DSSSD array, to build up more complex triple telescopes. New low-noise multi-channel charge-sensitive preamplifiers and spectroscopy amplifiers, associated with constant fraction discriminators, peak-and-hold and Time to Amplitude Converter circuits were developed for the electronic readout of the ΔE stage. Application Specific Integrated Circuit-based electronics was employed for the treatment of the Eres signals. An 8-channel, 12-bit multi-sampling 50 MHz Analog to Digital Converter, a Trigger Supervisor Board for handling the trigger signals of the whole experimental set-up and an ad hoc data acquisition system were also developed. The performance of the PPACs, EXPADES and of the associated electronics was obtained offline with standard α calibration sources and in-beam by measuring the scattering process for the systems 17O+58Ni and 17O+208Pb at incident energies around their respective Coulomb barriers and, successively, during the first experimental runs with the RIBs of the EXOTIC facility.

  17. Experimental setup for investigation of two-phase (water-air) flows in a tube

    NASA Astrophysics Data System (ADS)

    Kazunin, D. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.

    2018-05-01

    A special setup was designed and built at St. Petersburg State University for providing experimental research in flow dynamics of the of air-water mixtures in a pipeline. The test section of the setup allows simulating a wide range of flow regimes of a gas-liquid mixture. The parameters of the experimental setup are given; the initial test results are discussed.

  18. Cell optoporation with a sub-15 fs and a 250-fs laser

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Batista, Ana; Uchugonova, Aisada; König, Karsten

    2016-06-01

    We employed two commercially available femtosecond lasers, a Ti:sapphire and a ytterbium-based oscillator, to directly compare from a user's practical point-of-view in one common experimental setup the efficiencies of transient laser-induced cell membrane permeabilization, i.e., of so-called optoporation. The experimental setup consisted of a modified multiphoton laser-scanning microscope employing high-NA focusing optics. An automatic cell irradiation procedure was realized with custom-made software that identified cell positions and controlled relevant hardware components. The Ti:sapphire and ytterbium-based oscillators generated broadband sub-15-fs pulses around 800 nm and 250-fs pulses at 1044 nm, respectively. A higher optoporation rate and posttreatment viability were observed for the shorter fs pulses, confirming the importance of multiphoton effects for efficient optoporation.

  19. Investigation of the γ-decay behavior of 52Cr with the γ 3 setup at HIγS

    NASA Astrophysics Data System (ADS)

    Wilhelmy, J.; Erbacher, P.; Gayer, U.; Isaak, J.; Löher, B.; Müscher, M.; Pickstone, S. G.; Pietralla, N.; Ries, P.; Romig, C.; Savran, D.; Spieker, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.

    2018-02-01

    The γ-ray strength function is an important input parameter for the calculation of nucleosynthesis processes. To study the dipole response in more detail, the γ-decay behavior of the fp shell nucleus 52Cr was investigated with the high-efficiency γ 3 setup at the High Intensity γ-ray Source facility at TUNL in Durham, USA. The highly intense quasi mono-energetic γ-ray beam allows for excitations selective in multipolarity (J=1 and J=2) and energy. The γ 3 setup is a multi-detector array consisting of HPGe and LaBr3 detectors with high efficiency and enables the measurement of γ-γ coincidences. Experimental results of 52Cr will be presented and discussed in this contribution.

  20. Introducing an experimental split-cylinder to study flows with geophysical interest: First steps and first results

    NASA Astrophysics Data System (ADS)

    Rodriguez-Garcia, Jesus O.; Burguete, Javier

    2017-11-01

    A new experimental setup has been developed in order to study rotating flows. Our research is derived from the experiments carried out in our group relating to this kind of flows, and the setup is inspired by the simulations performed by Lopez & Gutierrez-Castillo using a split-cylinder flow. In their work they study the different bifurcations taking place into the flow, among others, finding inertial waves in different configurations of the movement of the split-cylinder. Our setup consists in a split-cylinder in which each half can move in co-rotation or in counter-rotation. Moreover, we can set the rotation velocity of each half independently in order to study these different configurations of the flow. The aspect ratio defined as Γ = H / R can be modified, where H is the internal length of the cylinder and R is its radius. With this setup, we study the flow developed inside the split-cylinder depending on the Reynolds number like the different symmetry-breaking that should appear according to Lopez & Gutierrez-Castillo. To obtain the experimental data we use both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques. The firsts results got are in the co-rotation case rotating one half faster than the other. We acknowledge support from Spanish Government Grant FIS 2014-54101-P. Jesús O. Rodríguez-García acknowledge research Grant from Asociación de Amigos de la Universidad de Navarra.

  1. Application of Controlled Shear Stresses on the Erythrocyte Membrane as a New Approach to Promote Molecule Encapsulation.

    PubMed

    Casagrande, Giustina; Arienti, Flavio; Mazzocchi, Arabella; Taverna, Francesca; Ravagnani, Fernando; Costantino, MariaLaura

    2016-10-01

    Human red blood cells (RBCs) have a remarkable capacity to undergo reversible membrane swelling. Resealed erythrocytes have been proposed as carriers and bioreactors to be used in the treatment of various diseases. This work is aimed at developing a setup allowing the encapsulation of test molecules into erythrocytes by inducing reversible pore formation on the RBC membrane through the application of controlled mechanical shear stresses. The designed setup consists of two reservoirs connected by a glass capillary. Each reservoir is connected to a compressor; during the tests, the reservoirs were in turn pressurized to promote erythrocyte flow through the capillary. The setup was filled with a suspension of erythrocytes, phosphate buffer, and FITC-dextran. Dextran was chosen as the diffusive molecule to check membrane pore dimensions. Samples of the suspension were withdrawn at scheduled times while the setup was operating. Flow cytometry and stereo-optical microscopy analyses were used to evaluate the erythrocyte dextran uptake. The setup was shown to be safe, well controlled, and adjustable. The outcomes of the experimental tests showed significant dextran uptake by RBCs up to 8%. Microscopy observations highlighted the formation of echinocytes in the analyzed samples. Erythrocytes from different donors showed different reactions to mechanical stresses. The experimental outcomes proved the possibility to encapsulate test molecules into erythrocytes by applying controlled mechanical shear stresses on the RBC membrane, encouraging further studies. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Proton-proton bremsstrahlung towards the elastic limit

    NASA Astrophysics Data System (ADS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  3. Transport channel of secondary ion beam of experimental setup for selective laser ionization with gas cell GALS

    NASA Astrophysics Data System (ADS)

    Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.

    2017-07-01

    GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.

  4. Experimental study of the robust global synchronization of Brockett oscillators

    NASA Astrophysics Data System (ADS)

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2017-12-01

    This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.

  5. Network complexity and synchronous behavior--an experimental approach.

    PubMed

    Neefs, P J; Steur, E; Nijmeijer, H

    2010-06-01

    We discuss synchronization in networks of Hindmarsh-Rose neurons that are interconnected via gap junctions, also known as electrical synapses. We present theoretical results for interactions without time-delay. These results are supported by experiments with a setup consisting of sixteen electronic equivalents of the Hindmarsh-Rose neuron. We show experimental results of networks where time-delay on the interaction is taken into account. We discuss in particular the influence of the network topology on the synchronization.

  6. The fluid mechanics of channel fracturing flows: experiment

    NASA Astrophysics Data System (ADS)

    Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).

  7. Rock samples analysis with the pyrolysis system of the Mars Organic Molecule Analyzer (MOMA)

    NASA Astrophysics Data System (ADS)

    Steininger, H.; Goetz, W.; Goesmann, F.

    2012-12-01

    The Mars Organic Molecule Analyzer (MOMA) is a combined pyrolysis gas chromatograph mass spectrometer (GC-MS) and laser desorption mass spectrometer (LD-MS). It will be the key instrument of the ESA/Roscosmos ExoMars 2018 mission to search for extinct and extant life. Additionally the instrument will be able to detect the organic background which has possibly been delivered to Mars by meteorites. Several samples containing a wide range of organic molecules have been tested with a flight analog injection system. The results of the tests were compared to results obtained by a commercial pyrolysis system, the Pyrola pyrolysis unit. The first experimental setup (Pyrola unit) consists of a small quartz tube with an electrically heated platinum filament. A constant helium flow transports the volatilized compounds through an injection needle directly into the injector of the GC. The whole system is heated to 175°C. The second experimental setup (flight analog injection system) consists of a 6 mm diameter platinum oven connected to a microvalve plate to route the gas from the oven to the GC. The microvalves can be switched electrically. The volatiles are subsequently trapped in a cold trap consisting of a Tenax filed tube. Heating this tube releases the volatiles and injects them through an injection needle into the GC. A Varian 4000 GC-MS with RTX-5 column was used to separate and analyze the volatiles generated from both experimental setups. During the experiments several natural rock samples with a broad content of organic material have been analyzed. The sample material was crushed and ground. To obtain comparable results the same amount of sample was used in both setups. Lower temperatures were used in the flight analog injection system due to restrictions of the reusable oven. Lower temperatures normally lead to only a slight decrease in the very heavy and non-volatile compounds but do not change the overall appearance of the chromatogram. Significant differences in the amount and composition of organic compounds have been found in the GC traces. In the flight like configuration an increase of the light volatile compounds was observed especially for benzene and toluene. We want to acknowledge the support by DLR (FKZ 50QX1001).

  8. Using smartphones and tablet PCs for β--spectroscopy in an educational experimental setup

    NASA Astrophysics Data System (ADS)

    Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen

    2014-11-01

    A magnetic spectrometer is used to gather the β--spectrum of 90 Sr /Y with a focus on two aspects. (1) The intensity of β--radiation is measured by the camera sensor module of a tablet PC together with the RadioactivityCounter app and by a Geiger-Müller tube. We evaluate the quality of mobile devices as radioactive radiation detectors by using polyenergetic β--radiation as an example and by comparing the spectra measured with the two detector types. (2) For educational purposes we implement a simple experimental setup, which consists of separate devices for measuring the electron’s kinetic energy and intensity, which are available in laboratories in educational settings. Comparison of the measured β--spectra published in the literature should encourage students to think about the energy resolution power of the β--spectrometer. Theoretical considerations show the low, yet sufficient energy resolution power of this spectrometer, especially for low energy levels.

  9. Facility for Heavy Ion Collision Experiment at RAON

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Kim, Do Gyun; Kim, Gi Dong; Kim, Yong Hak; Kim, Young-Jin; Kim, Yong Kyun; Kwon, Young Kwan; Yun, Chong Cheol; Hong, Byungsik; Sei Lee, Kyung; Kim, Eun Joo; Ahn, Jung Keun; Lee, Hyo Sang

    2014-03-01

    The Rare Isotope Science Project (RISP) was established in December 2011 in order to carry out the technical design and the establishment of the accelerator complex (RAON) for the rare isotope science in Korea. The rare isotope accelerator at RAON will provide both stable and rare isotope heavy-ion beams the energy range from a few MeV/nucleon to a few hundreds of MeV/nucleon for researches in fields of basic and applied science. Large Acceptance Multipurpose Spectrometer (LAMPS) at RAON is a heavy-ion collision experimental facility for studying nuclear symmetry energy by using rare isotope beams. Two different experimental setups of LAMPS are designed for covering entire energy range at RAON. One is for low energy (< 18.5 MeV/nucleon) heavy-ion collision experiment for day-1 experiments. This experimental setup consists of an array of ΔE-E Si-CsI detectors, a gamma array to cover backward polar angle, and a forward neutron wall. The other is for completing an event reconstruction by detecting all the particles produced in high energy heavy-ion collisions within a large acceptance angle to measure particle spectrum, yield, ratio and collective flow of pions, protons, neutrons, and intermediate fragments at the same time. The experimental setup consists of a superconducting spectrometer, a dipole spectrometer, and a forward neutron wall. A Time Projection Chamber (TPC) will be placed inside of superconducting solenoid magnet of 0.6 T for charged particle tracking. The dipole spectrometer will be located forward of the superconducting spectrometer and it will be composed of a combination of quadrupole, dipole magnets, focal plane detector, tracking stations, and Time-of-Flight (ToF) detector at the end. The neutron wall will be made of 10 layers of plastic scintillators for neutron tracking. In this presentation, the detail physics and design of LAMPS at RAON will be discussed.

  10. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  11. Design and Analysis of an Experimental Setup for Determining the Burst Strength and Material Properties of Hollow Cylinders

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited DESIGN AND ANALYSIS...2. REPORT DATE December 2015 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF AN EXPERIMENTAL SETUP...Approved for public release; distribution is unlimited DESIGN AND ANALYSIS OF AN EXPERIMENTAL SETUP FOR DETERMINING THE BURST STRENGTH AND MATERIAL

  12. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration

    PubMed Central

    Wei, Xiaoyuan; Yang, Yuan; Yao, Wenqing; Zhang, Lei

    2017-01-01

    Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on. PMID:28973996

  13. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    NASA Astrophysics Data System (ADS)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  14. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration.

    PubMed

    Wei, Xiaoyuan; Yang, Yuan; Yao, Wenqing; Zhang, Lei

    2017-09-30

    Sandwiched piezoelectric transducers are widely used, especially in high power applications. For more convenient analysis and design, a PSpice lossy model of sandwiched piezoelectric ultrasonic transducers in longitudinal vibration is proposed by means of the one-dimensional wave and transmission line theories. With the proposed model, the resonance and antiresonance frequencies are obtained, and it is shown that the simulations and measurements have good consistency. For the purpose of further verification the accuracy and application of the PSpice model, a pitch-catch setup and an experimental platform are built. They include two sandwiched piezoelectric ultrasonic transducers and two aluminum cylinders whose lengths are 20 mm and 100 mm respectively. Based on this pitch-catch setup, the impedance and transient analysis are performed. Compared with the measured results, it is shown that the simulated results have good consistency. In addition, the conclusion can be drawn that the optimal excitation frequency for the pitch-catch setup is not necessarily the resonance frequency of ultrasonic transducers, because the resonance frequency is obtained under no load. The proposed PSpice model of the sandwiched piezoelectric transducer is more conveniently applied to combine with other circuits such as driving circuits, filters, amplifiers, and so on.

  15. Study of Light Neutron-Rich Nuclei Using a Multilayer Semiconductor Setup

    NASA Astrophysics Data System (ADS)

    Gurov, Yu. B.; Lapushkin, S. V.; Sandukovsky, V. G.; Chernyshev, B. A.

    2017-12-01

    The characteristics of two modifications of the semiconductor (s.c.d.) setup consisting of telescopes on the basis of silicon detectors are presented. These settings allow performing a precision measurement of energy in a large dynamic range (from a few to hundreds of MeV) and particle identification in a wide range of masses. The issues of measurement of the characteristics of s.c.d. telescopes and their impact on the quality of the obtained experimental data are considered. Considerable attention is paid to the use of created semiconductor devices for the search for and spectroscopy of light exotic nuclei on the accelerators of PNPI (Gatchina) and LANL (Los Alamos).

  16. Development of a fatigue testing setup for dielectric elastomer membrane actuators

    NASA Astrophysics Data System (ADS)

    Hill, M.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric elastomers (DE's) represent a transduction technology with high potential in many fields, including industries, due to their low weight, flexibility, and small energy consumption. For industrial applications, it is of fundamental importance to quantify the lifetime of DE technology, in terms of electrical and mechanical fatigue, when operating in realistic environmental conditions. This work contributes toward this direction, by presenting the development of an experimental setup which permits systematic fatigue testing of DE membranes. The setup permits to apply both mechanical and electrical stimuli to several membranes simultaneously, while measuring at the same time their mechanical (force, deformation) and electrical response (capacitance, resistance). In its final state, the setup will allow to test up to 15 DE membranes at the same time for several thousands of cycles. Control of the modules, monitoring of the actuators, and data acquisition are realized on a cRio FPGA-system running with LabVIEW. The setup is located in a climate chamber, in order to investigate the fatigue mechanisms at different environmental conditions, i.e., in terms of temperature and humidity. The setup consists of two main parts, namely a fatigue group and a measurement group. The fatigue group stays permanently in the climate chamber, while the measurement group is assembled to the fatigue group and allows to perform measurements at 20°C.

  17. Design and development of radioactive xenon gas purification and analysis system based on molecular sieves.

    PubMed

    Sabzian, M; Nasrabadi, M N; Haji-Hosseini, M

    2018-10-01

    The dynamic adsorption of xenon on molecular sieve packed columns was investigated. The modified Wheeler-Jonas equation was used to describe adsorption parameters such as adsorption capacity and adsorption rate coefficient. Different experimental conditions were accomplished to study their effects and to touch appropriate adsorbing circumstances. Respectable consistency was reached between experimental and modeled values. A purification and analysis setup was developed for radioactive xenon gas determination. Standard sample analysis results approved acceptable quantification accuracy. Copyright © 2018. Published by Elsevier Ltd.

  18. Energy harvesting from torsions of patterned piezoelectrics

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this paper, we investigate the feasibility of energy harvesting from the torsions using a piezoelectric beam. The piezoelectric beam is partially patterned and is tested in an experimental setup to force pure torsional deformation. In particular, the beam consists of two identical piezoelectric parts attached on one side of a supporting substrate. We propose a model for the energy harvesting system through the equations for a slender composite beam with the physical properties and the electromechanical coupling equations of the piezoelectric material. The theoretical predictions are validated by the comparison with the experimental results.

  19. Experimental study of isolas in nonlinear systems featuring modal interactions

    PubMed Central

    Noël, Jean-Philippe; Virgin, Lawrence N.; Kerschen, Gaëtan

    2018-01-01

    The objective of the present paper is to provide experimental evidence of isolated resonances in the frequency response of nonlinear mechanical systems. More specifically, this work explores the presence of isolas, which are periodic solutions detached from the main frequency response, in the case of a nonlinear set-up consisting of two masses sliding on a horizontal guide. A careful experimental investigation of isolas is carried out using responses to swept-sine and stepped-sine excitations. The experimental findings are validated with advanced numerical simulations combining nonlinear modal analysis and bifurcation monitoring. In particular, the interactions between two nonlinear normal modes are shown to be responsible for the creation of the isolas. PMID:29584758

  20. CBP [TASK 12] experimental study of the concrete salstone two-layer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, Eric; Protiere, Yannick

    This report presents the results of a study which intended to study the behavior of concrete samples placed in contact with a wasteform mixture bearing high level of sulfate in its pore solution. A setup was prepared which consisted in a wasteform poured on top of vault concrete mixes (identified as Vault 1/4 and Vault 2 mixes) cured for approximately 6 months.

  1. Snap-through twinkling energy generation through frequency up-conversion

    NASA Astrophysics Data System (ADS)

    Panigrahi, Smruti R.; Bernard, Brian P.; Feeny, Brian F.; Mann, Brian P.; Diaz, Alejandro R.

    2017-07-01

    A novel experimental energy harvester is investigated for its energy harvesting capability by frequency up-conversion using snap-through structures. In particular, a single-degree-of-freedom (SDOF) experimental energy harvester model is built using a snap-through nonlinear element. The snap-through dynamics is facilitated by the experimental setup of a twinkling energy generator (TEG) consisting of linear springs and attracting cylindrical bar magnets. A cylindrical coil of enamel-coated magnet wire is used as the energy generator. The governing equations are formulated mathematically and solved numerically for a direct comparison with the experimental results. The experimental TEG and the numerical simulation results show 25-fold frequency up-conversion and the power harvesting capacity of the SDOF TEG.

  2. Computer Series, 107.

    ERIC Educational Resources Information Center

    Birk, James P., Ed.

    1989-01-01

    Presented is a simple laboratory set-up for teaching microprocessor-controlled data acquisition as a part of an instrumental analysis course. Discussed are the experimental set-up, experimental procedures, and technical considerations for this technique. (CW)

  3. Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, A., E-mail: a.sola@inrim.it; Kuepferling, M.; Basso, V.

    2015-05-07

    In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heatmore » flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck S{sub SSE} coefficient of 2.8×10{sup −7} V K{sup −1}.« less

  4. New laser power sensor using weighing method

    NASA Astrophysics Data System (ADS)

    Pinot, P.; Silvestri, Z.

    2018-01-01

    We present a set-up using a piece of pyrolytic carbon (PyC) to measure laser power in the range from a few milliwatts to a few watts. The experimental configuration consists in measuring the magnetic repulsion force acting between a piece of PyC placed on a weighing pan and in a magnetic induction generated by a magnet array in a fixed position above the PyC sheet. This involves a repulsion force on the PyC piece which is expressed in terms of mass by the balance display. The quantities affecting the measurement results have been identified. An example of metrological characterization in terms of accuracy, linearity and sensitivity is given. A relative uncertainty of optical power measurement for the first experimental set-up is around 1%. The wavelength and power density dependence on power response of this device has been demonstrated. This PyC-based device presented here in weighing configuration and the other one previously studied in levitation configuration offer a new technique for measuring optical power.

  5. X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)

    NASA Astrophysics Data System (ADS)

    Pérez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Sánchez, H. J.; Tolentino, H.

    2002-03-01

    The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Pérez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15°) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 μm spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 μm spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.

  6. Quantitative comparisons of analogue models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments, models accommodated initial shortening by a forward- and a backward-verging thrust. Further shortening was taken up by in-sequence formation of forward-verging thrusts. In all experiments, boundary stresses created significant drag of structures along the sidewalls. We therefore compared the surface slope and the location, dip angle and spacing of thrusts in sections through the central part of the model. All models show very similar cross-sectional evolutions demonstrating reproducibility of first-order experimental observations. Nevertheless, there are significant along-strike variations of structures in map view highlighting the limits of interpretations of analogue model results. These variations may be related to the human factor, differences in model width and/or differences in laboratory temperature and especially humidity affecting the mechanical properties of the granular materials. GeoMod2008 Analogue Team: Susanne Buiter, Caroline Burberry, Jean-Paul Callot, Cristian Cavozzi, Mariano Cerca, Ernesto Cristallini, Alexander Cruden, Jian-Hong Chen, Leonardo Cruz, Jean-Marc Daniel, Victor H. Garcia, Caroline Gomes, Céline Grall, Cecilia Guzmán, Triyani Nur Hidayah, George Hilley, Chia-Yu Lu, Matthias Klinkmüller, Hemin Koyi, Jenny Macauley, Bertrand Maillot, Catherine Meriaux, Faramarz Nilfouroushan, Chang-Chih Pan, Daniel Pillot, Rodrigo Portillo, Matthias Rosenau, Wouter P. Schellart, Roy Schlische, Andy Take, Bruno Vendeville, Matteo Vettori, M. Vergnaud, Shih-Hsien Wang, Martha Withjack, Daniel Yagupsky, Yasuhiro Yamada

  7. Pupil light reflex evoked by light-emitting diode and computer screen: Methodology and association with need for recovery in daily life.

    PubMed

    Wang, Yang; Zekveld, Adriana A; Wendt, Dorothea; Lunner, Thomas; Naylor, Graham; Kramer, Sophia E

    2018-01-01

    Pupil light reflex (PLR) has been widely used as a method for evaluating parasympathetic activity. The first aim of the present study is to develop a PLR measurement using a computer screen set-up and compare its results with the PLR generated by a more conventional setup using light-emitting diode (LED). The parasympathetic nervous system, which is known to control the 'rest and digest' response of the human body, is considered to be associated with daily life fatigue. However, only few studies have attempted to test the relationship between self-reported daily fatigue and physiological measurement of the parasympathetic nervous system. Therefore, the second aim of this study was to investigate the relationship between daily-life fatigue, assessed using the Need for Recovery scale, and parasympathetic activity, as indicated by the PLR parameters. A pilot study was conducted first to develop a PLR measurement set-up using a computer screen. PLRs evoked by light stimuli with different characteristics were recorded to confirm the influence of light intensity, flash duration, and color on the PLRs evoked by the system. In the subsequent experimental study, we recorded the PLR of 25 adult participants to light flashes generated by the screen set-up as well as by a conventional LED set-up. PLR parameters relating to parasympathetic and sympathetic activity were calculated from the pupil responses. We tested the split-half reliability across two consecutive blocks of trials, and the relationships between the parameters of PLRs evoked by the two set-ups. Participants rated their need for recovery prior to the PLR recordings. PLR parameters acquired in the screen and LED set-ups showed good reliability for amplitude related parameters. The PLRs evoked by both set-ups were consistent, but showed systematic differences in absolute values of all parameters. Additionally, higher need for recovery was associated with faster and larger constriction of the PLR. This study assessed the PLR generated by a computer screen and the PLR generated by a LED. The good reliability within set-ups and the consistency between the PLRs evoked by the set-ups indicate that both systems provides a valid way to evoke the PLR. A higher need for recovery was associated with faster and larger constricting PLRs, suggesting increased levels of parasympathetic nervous system activity in people experiencing higher levels of need for recovery on a daily basis.

  8. A novel method for assessment of fragmentation and beam-material interactions in helium ion radiotherapy with a miniaturized setup.

    PubMed

    Gallas, Raya R; Arico, Giulia; Burigo, Lucas N; Gehrke, Tim; Jakůbek, Jan; Granja, Carlos; Tureček, Daniel; Martišíková, Maria

    2017-10-01

    Radiotherapy with protons and carbon ions enables to deliver dose distributions of high conformation to the target. Treatment with helium ions has been suggested due to their physical and biological advantages. A reliable benchmarking of the employed physics models with experimental data is required for treatment planning. However, experimental data for helium interactions is limited, in part due to the complexity and large size of conventional experimental setups. We present a novel method for the investigation of helium interactions with matter using miniaturized instrumentation based on highly integrated pixel detectors. The versatile setup consisted of a monitoring detector in front of the PMMA phantom of varying thickness and a detector stack for investigation of outgoing particles. The ion type downstream from the phantom was determined by high-resolution pattern recognition analysis of the single particle signals in the pixelated detectors. The fractions of helium and hydrogen ions behind the used targets were determined. As expected for the stable helium nucleus, only a minor decrease of the primary ion fluence along the target depth was found. E.g. the detected fraction of hydrogen ions on axis of a 220MeV/u 4 He beam was below 6% behind 24.5cm of PMMA. Monte-Carlo simulations using Geant4 reproduce the experimental data on helium attenuation and yield of helium fragments qualitatively, but significant deviations were found for some combinations of target thickness and beam energy. The presented method is promising to contribute to the reduction of the uncertainty of treatment planning for helium ion radiotherapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. BrainCycles: Experimental Setup for the Combined Measurement of Cortical and Subcortical Activity in Parkinson's Disease Patients during Cycling.

    PubMed

    Gratkowski, Maciej; Storzer, Lena; Butz, Markus; Schnitzler, Alfons; Saupe, Dietmar; Dalal, Sarang S

    2016-01-01

    Recently, it has been demonstrated that bicycling ability remains surprisingly preserved in Parkinson's disease (PD) patients who suffer from freezing of gait. Cycling has been also proposed as a therapeutic means of treating PD symptoms, with some preliminary success. The neural mechanisms behind these phenomena are however not yet understood. One of the reasons is that the investigations of neuronal activity during pedaling have been up to now limited to PET and fMRI studies, which restrict the temporal resolution of analysis, and to scalp EEG focused on cortical activation. However, deeper brain structures like the basal ganglia are also associated with control of voluntary motor movements like cycling and are affected by PD. Deep brain stimulation (DBS) electrodes implanted for therapy in PD patients provide rare and unique access to directly record basal ganglia activity with a very high temporal resolution. In this paper we present an experimental setup allowing combined investigation of basal ganglia local field potentials (LFPs) and scalp EEG underlying bicycling in PD patients. The main part of the setup is a bike simulator consisting of a classic Dutch-style bicycle frame mounted on a commercially available ergometer. The pedal resistance is controllable in real-time by custom software and the pedal position is continuously tracked by custom Arduino-based electronics using optical and magnetic sensors. A portable bioamplifier records the pedal position signal, the angle of the knee, and the foot pressure together with EEG, EMG, and basal ganglia LFPs. A handlebar-mounted display provides additional information for patients riding the bike simulator, including the current and target pedaling rate. In order to demonstrate the utility of the setup, example data from pilot recordings are shown. The presented experimental setup provides means to directly record basal ganglia activity not only during cycling but also during other movement tasks in patients who have undergone DBS treatment. Thus, it can facilitate studies comparing bicycling and walking, to elucidate why PD patients often retain the ability to bicycle despite severe freezing of gait. Moreover it can help clarifying the mechanism through which cycling may have therapeutic benefits.

  10. BrainCycles: Experimental Setup for the Combined Measurement of Cortical and Subcortical Activity in Parkinson's Disease Patients during Cycling

    PubMed Central

    Gratkowski, Maciej; Storzer, Lena; Butz, Markus; Schnitzler, Alfons; Saupe, Dietmar; Dalal, Sarang S.

    2017-01-01

    Recently, it has been demonstrated that bicycling ability remains surprisingly preserved in Parkinson's disease (PD) patients who suffer from freezing of gait. Cycling has been also proposed as a therapeutic means of treating PD symptoms, with some preliminary success. The neural mechanisms behind these phenomena are however not yet understood. One of the reasons is that the investigations of neuronal activity during pedaling have been up to now limited to PET and fMRI studies, which restrict the temporal resolution of analysis, and to scalp EEG focused on cortical activation. However, deeper brain structures like the basal ganglia are also associated with control of voluntary motor movements like cycling and are affected by PD. Deep brain stimulation (DBS) electrodes implanted for therapy in PD patients provide rare and unique access to directly record basal ganglia activity with a very high temporal resolution. In this paper we present an experimental setup allowing combined investigation of basal ganglia local field potentials (LFPs) and scalp EEG underlying bicycling in PD patients. The main part of the setup is a bike simulator consisting of a classic Dutch-style bicycle frame mounted on a commercially available ergometer. The pedal resistance is controllable in real-time by custom software and the pedal position is continuously tracked by custom Arduino-based electronics using optical and magnetic sensors. A portable bioamplifier records the pedal position signal, the angle of the knee, and the foot pressure together with EEG, EMG, and basal ganglia LFPs. A handlebar-mounted display provides additional information for patients riding the bike simulator, including the current and target pedaling rate. In order to demonstrate the utility of the setup, example data from pilot recordings are shown. The presented experimental setup provides means to directly record basal ganglia activity not only during cycling but also during other movement tasks in patients who have undergone DBS treatment. Thus, it can facilitate studies comparing bicycling and walking, to elucidate why PD patients often retain the ability to bicycle despite severe freezing of gait. Moreover it can help clarifying the mechanism through which cycling may have therapeutic benefits. PMID:28119591

  11. Microelectrode for energy and current control of nanotip field electron emitters

    NASA Astrophysics Data System (ADS)

    Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.

    2013-11-01

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10-30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  12. Measurement of the secondary electron emission from CVD diamond films using phosphor screen detectors

    NASA Astrophysics Data System (ADS)

    Vaz, R.; May, P. W.; Fox, N. A.; Harwood, C. J.; Chatterjee, V.; Smith, J. A.; Horsfield, C. J.; Lapington, J. S.; Osbourne, S.

    2015-03-01

    Diamond-based photomultipliers have the potential to provide a significant improvement over existing devices due to diamond's high secondary electron yield and narrow energy distribution of secondary electrons which improves energy resolution creating extremely fast response times. In this paper we describe an experimental apparatus designed to study secondary electron emission from diamond membranes only 400 nm thick, observed in reflection and transmission configurations. The setup consists of a system of calibrated P22 green phosphor screens acting as radiation converters which are used in combination with photomultiplier tubes to acquire secondary emission yield data from the diamond samples. The superior signal voltage sampling of the phosphor screen setup compared with traditional Faraday Cup detection allows the variation in the secondary electron yield across the sample to be visualised, allowing spatial distributions to be obtained. Preliminary reflection and transmission yield data are presented as a function of primary electron energy for selected CVD diamond films and membranes. Reflection data were also obtained from the same sample set using a Faraday Cup detector setup. In general, the curves for secondary electron yield versus primary energy for both measurement setups were comparable. On average a 15-20% lower signal was recorded on our setup compared to the Faraday Cup, which was attributed to the lower photoluminescent efficiency of the P22 phosphor screens when operated at sub-kilovolt bias voltages.

  13. Non-destructive phase and intensity distributed measurements of the nonlinear stage of modulation instability in optical fibers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Naveau, Corentin; Szriftgiser, Pascal; Copie, François; Kudlinski, Alexandre; Conforti, Matteo; Trillo, Stefano

    2018-02-01

    We report a novel experimental setup to perform distributed characterization in intensity and phase of the nonlinear stage of modulation instability by means of a non-invasive experimental setup : a heterodyne time domain reflectometer.

  14. Quasi-one-dimensional modes in strip plates: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arreola, A.; Báez, G.; Méndez-Sánchez, R. A.

    2014-01-14

    Using acoustic resonance spectroscopy we measure the elastic resonances of a strip rectangular plate with all its ends free. The experimental setup consist of a vector network analyzer, a high-fidelity audio amplifier, and electromagnetic-acoustic transducers. The one-dimensional modes are identified from the measured spectra by comparing them with theoretical predictions of compressional and bending modes of the plate modeled as a beam. The agreement between theory and experiment is excellent.

  15. Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes

    NASA Astrophysics Data System (ADS)

    Garcia Ruiz, R. F.; Gorges, C.; Bissell, M.; Blaum, K.; Gins, W.; Heylen, H.; Koenig, K.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Lievens, P.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.; Yang, X. F.

    2017-04-01

    An experimental setup for sensitive high-resolution measurements of hyperfine structure spectra of exotic calcium isotopes has been developed and commissioned at the COLLAPS beam line at ISOLDE, CERN. The technique is based on the radioactive detection of decaying isotopes after optical pumping and state selective neutralization (ROC) (Vermeeren et al 1992 Phys. Rev. Lett. 68 1679). The improvements and developments necessary to extend the applicability of the experimental technique to calcium isotopes produced at rates as low as few ions s-1 are discussed. Numerical calculations of laser-ion interaction and ion-beam simulations were explored to obtain the optimum performance of the experimental setup. Among the implemented features are a multi-step optical pumping region for sensitive measurements of isotopes with hyperfine splitting, a high-voltage platform for adequate control of low-energy ion beams and simultaneous β-detection of neutralized and remaining ions. The commissioning of the experimental setup, and the first online results on neutron-rich calcium isotopes are presented.

  16. A multi-layered active target for the study of neutron-unbound nuclides at NSCL

    NASA Astrophysics Data System (ADS)

    Freeman, Jessica; Gueye, Paul; Redpath, Thomas; MoNA Collaboration

    2017-01-01

    The characteristics of neutron-unbound nuclides were investigated using a multi-layered Si/Be active target designed for use with the MoNA/LISA setup at the National Superconducting Cyclotron (NSCL). The setup consists of the MoNA/LISA arrays (for neutron detection) and a superconducting sweeper magnet (for charged separation) to identify products following the decay of neutron unbound states. The segmented target consisted of three 700 mg/cm2 beryllium targets and four 0.14 mm thick 62x62 mm2 silicon detectors. As a commissioning experiment for the target the decay of two-neutron unbound 26O populated in a one-proton removal reaction from a radioactive 27F beam was performed. The 27F secondary radioactive beam from the NSCL's Coupled Cyclotron Facility was produced from the fragmentation of a 140 MeV/u 48Ca beam incident on a thick beryllium target and then cleanly selected by the A1900 fragment separator. The energy loss and position spectra of the incoming beam and reaction products were used to calibrate the Silicon detectors to within 1.5% in both energy and position. A dedicated Geant4 model of the target was developed to simulate the energy loss within the target. A description of the experimental setup, simulation work, and energy and position calibration will be presented. DoE/NNSA - DE-NA0000979.

  17. Automated qualification and analysis of protective spark gaps for DC accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.

    2014-07-01

    Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification processmore » becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)« less

  18. Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD

    NASA Astrophysics Data System (ADS)

    Viellieber, Mathias; Class, Andreas G.

    2013-11-01

    Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.

  19. Experimental Setup for Evaluation of the Protective Technical Measures Against the Slopes Degradation Along Linear Construction Sites

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Zumr, David; Neumann, Martin; Lidmila, Martin; Dufka, Dušan

    2017-04-01

    Soil erosion of the slopes along the linear construction sites, such as railroads, roads, pipelines or watercourses, is usually underestimated by the construction companies and controlling authorities. But under certain circumstances, when the construction site is not maintained and protected properly, a large amounts of soil may be transported from the sites to the surrounding environment during the intensive rainfall. Transported sediment, often carrying adsorbed pollutants, may reach watercourses and cause water recipient siltation and pollution. Within the applied research project we investigate ways of low cost, quick and easy technical measures that would help to protect the slopes against the splash erosion, rills development and sliding. The methodology is based on testing of various permeable covers, sheets, anchoring and patchy vegetation on a plot and hillslope scales. In this contribution we will present the experimental plot setup, consisting of large soil blocks encapsulated in the monitored steel containers and nozzle rainfall simulator. The presentation is funded by the Technological Agency of the Czech Republic (research project TH02030428) and an internal student CTU grant.

  20. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    PubMed

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  1. A Simple Experimental Setup to Clearly Show that Light Does Not Recombine After Passing Through Two Prisms

    NASA Astrophysics Data System (ADS)

    Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago

    2018-01-01

    We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.

  2. A Simple Experimental Setup to Clearly Show That Light Does Not Recombine after Passing through Two Prisms

    ERIC Educational Resources Information Center

    Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago

    2018-01-01

    We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.

  3. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    NASA Astrophysics Data System (ADS)

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-12-01

    Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  4. Huygens' inspired multi-pendulum setups: Experiments and stability analysis

    NASA Astrophysics Data System (ADS)

    Hoogeboom, F. N.; Pogromsky, A. Y.; Nijmeijer, H.

    2016-11-01

    This paper examines synchronization of a set of metronomes placed on a lightweight foam platform. Two configurations of the set of metronomes are considered: a row setup containing one-dimensional coupling and a cross setup containing two-dimensional coupling. Depending on the configuration and coupling between the metronomes, i.e., the platform parameters, in- and/or anti-phase synchronized behavior is observed in the experiments. To explain this behavior, mathematical models of a metronome and experimental setups have been derived and used in a local stability analysis. It is numerically and experimentally demonstrated that varying the coupling parameters for both configurations has a significant influence on the stability of the synchronized solutions.

  5. An experimental approach to the fundamental principles of hemodynamics.

    PubMed

    Pontiga, Francisco; Gaytán, Susana P

    2005-09-01

    An experimental model has been developed to give students hands-on experience with the fundamental laws of hemodynamics. The proposed experimental setup is of simple construction but permits the precise measurements of physical variables involved in the experience. The model consists in a series of experiments where different basic phenomena are quantitatively investigated, such as the pressure drop in a long straight vessel and in an obstructed vessel, the transition from laminar to turbulent flow, the association of vessels in vascular networks, or the generation of a critical stenosis. Through these experiments, students acquire a direct appreciation of the importance of the parameters involved in the relationship between pressure and flow rate, thus facilitating the comprehension of more complex problems in hemodynamics.

  6. Microelectrode for energy and current control of nanotip field electron emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüneburg, S.; Müller, M., E-mail: m.mueller@fhi-berlin.mpg.de; Paarmann, A., E-mail: alexander.paarmann@fhi-berlin.mpg.de

    2013-11-18

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  7. Accurate and fast creep test for viscoelastic fluids using disk-probe-type and quadrupole-arrangement-type electromagnetically spinning systems

    NASA Astrophysics Data System (ADS)

    Hirano, Taichi; Sakai, Keiji

    2017-07-01

    Viscoelasticity is a unique characteristic of soft materials and describes its dynamic response to mechanical stimulations. A creep test is an experimental method for measuring the strain ratio/rate against an applied stress, thereby assessing the viscoelasticity of the materials. We propose two advanced experimental systems suitable for the creep test, adopting our original electromagnetically spinning (EMS) technique. This technique can apply a constant torque by a noncontact mechanism, thereby allowing more sensitive and rapid measurements. The viscosity and elasticity of a semidilute wormlike micellar solution were determined using two setups, and the consistency between the results was assessed.

  8. Nonlinear dispersive waves in repulsive lattices

    NASA Astrophysics Data System (ADS)

    Mehrem, A.; Jiménez, N.; Salmerón-Contreras, L. J.; García-Andrés, X.; García-Raffi, L. M.; Picó, R.; Sánchez-Morcillo, V. J.

    2017-07-01

    The propagation of nonlinear waves in a lattice of repelling particles is studied theoretically and experimentally. A simple experimental setup is proposed, consisting of an array of coupled magnetic dipoles. By driving harmonically the lattice at one boundary, we excite propagating waves and demonstrate different regimes of mode conversion into higher harmonics, strongly influenced by dispersion and discreteness. The phenomenon of acoustic dilatation of the chain is also predicted and discussed. The results are compared with the theoretical predictions of the α -Fermi-Pasta-Ulam equation, describing a chain of masses connected by nonlinear quadratic springs and numerical simulations. The results can be extrapolated to other systems described by this equation.

  9. Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Aurnou, J.

    2005-12-01

    The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.

  10. Properly used ''aliasing'' can give better resolution from fewer points in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Astous, Y.; Blanchard, M.

    1982-05-01

    In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)

  11. On the experimental prediction of the stability threshold speed caused by rotating damping

    NASA Astrophysics Data System (ADS)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  12. Experimental verification of PSM polarimetry: monitoring polarization at 193nm high-NA with phase shift masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick

    2006-03-01

    The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.

  13. A new concept of a unified parameter management, experiment control, and data analysis in fMRI: application to real-time fMRI at 3T and 7T.

    PubMed

    Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J

    2008-10-30

    In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.

  14. Optimizing Mouse Surgery with Online Rectal Temperature Monitoring and Preoperative Heat Supply. Effects on Post-Ischemic Acute Kidney Injury.

    PubMed

    Marschner, Julian A; Schäfer, Hannah; Holderied, Alexander; Anders, Hans-Joachim

    2016-01-01

    Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes.

  15. X-ray Full Field Microscopy at 30 keV

    NASA Astrophysics Data System (ADS)

    Marschall, F.; Last, A.; Simon, M.; Kluge, M.; Nazmov, V.; Vogt, H.; Ogurreck, M.; Greving, I.; Mohr, J.

    2014-04-01

    In our X-ray full field microscopy experiments, we demonstrated a resolution better than 260 nm over the entire field of view of 80 μm × 80 μm at 30 keV. Our experimental setup at PETRA III, P05, had a length of about 5 m consisting of an illumination optics, an imaging lens and a detector. For imaging, we used a compound refractive lens (CLR) consisting of mr-L negative photo resist, which was fabricated by deep X-ray lithography. As illumination optics, we choose a refractive rolled X-ray prism lens, which was adapted to the numerical aperture of the imaging lens.

  16. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.

    PubMed

    Ortmaier, T; Weiss, H; Döbele, S; Schreiber, U

    2006-12-01

    This article presents experimental results for robot-assisted navigated drilling and milling for pedicle screw placement. The preliminary study was carried out in order to gain first insights into positioning accuracies and machining forces during hands-on robotic spine surgery. Additionally, the results formed the basis for the development of a new robot for surgery. A simplified anatomical model is used to derive the accuracy requirements. The experimental set-up consists of a navigation system and an impedance-controlled light-weight robot holding the surgical instrument. The navigation system is used to position the surgical instrument and to compensate for pose errors during machining. Holes are drilled in artificial bone and bovine spine. A quantitative comparison of the drill-hole diameters was achieved using a computer. The interaction forces and pose errors are discussed with respect to the chosen machining technology and control parameters. Within the technological boundaries of the experimental set-up, it is shown that the accuracy requirements can be met and that milling is superior to drilling. It is expected that robot assisted navigated surgery helps to improve the reliability of surgical procedures. Further experiments are necessary to take the whole workflow into account. Copyright 2006 John Wiley & Sons, Ltd.

  17. Computational fluid dynamics modeling of laboratory flames and an industrial flare.

    PubMed

    Singh, Kanwar Devesh; Gangadharan, Preeti; Chen, Daniel H; Lou, Helen H; Li, Xianchang; Richmond, Peyton

    2014-11-01

    A computational fluid dynamics (CFD) methodology for simulating the combustion process has been validated with experimental results. Three different types of experimental setups were used to validate the CFD model. These setups include an industrial-scale flare setups and two lab-scale flames. The CFD study also involved three different fuels: C3H6/CH/Air/N2, C2H4/O2/Ar and CH4/Air. In the first setup, flare efficiency data from the Texas Commission on Environmental Quality (TCEQ) 2010 field tests were used to validate the CFD model. In the second setup, a McKenna burner with flat flames was simulated. Temperature and mass fractions of important species were compared with the experimental data. Finally, results of an experimental study done at Sandia National Laboratories to generate a lifted jet flame were used for the purpose of validation. The reduced 50 species mechanism, LU 1.1, the realizable k-epsilon turbulence model, and the EDC turbulence-chemistry interaction model were usedfor this work. Flare efficiency, axial profiles of temperature, and mass fractions of various intermediate species obtained in the simulation were compared with experimental data and a good agreement between the profiles was clearly observed. In particular the simulation match with the TCEQ 2010 flare tests has been significantly improved (within 5% of the data) compared to the results reported by Singh et al. in 2012. Validation of the speciated flat flame data supports the view that flares can be a primary source offormaldehyde emission.

  18. Importance of Trimethylaluminum Diffusion in Three-Step ABC Molecular Layer Deposition Using Trimethylaluminum, Ethanolamine, and Maleic Anhydride

    DTIC Science & Technology

    2010-01-01

    Crystal Microbalance Analysis. A detailed description of the in situQCM experimental setup has been given elsewhere.22,23 The QCM sensors were AT-cut...quartz crystals with a polishedAu face and a 6MHz oscillation frequency. These QCM sensors were obtained from Colorado Crystal Corp (Loveland, CO...larger than typical mass gains for surface reactions. The quartz crystal microbalance ( QCM ) mass profiles during the TMA reaction were consistent with

  19. The SMILETRAP facility

    NASA Astrophysics Data System (ADS)

    Carlberg, C.; Borgenstrand, H.; Rouleau, G.; Schuch, R.; Söderberg, F.; Bergström, I.; Jertz, R.; Schwarz, T.; Stein, J.; Bollen, G.; Kluge, H.-J.; Mann, R.

    1995-01-01

    The SMILETRAP experimental set-up, a Penning trap mass spectrometer for highly charged ions, is described. Capture and observation of cyclotron frequencies of externally produced highly charged ions, rapid interchange of investigated and reference ions and measurements of the rotational kinetic energies are demonstrated. Mass measurements utilizing different charge states and species to verify the consistency of the measurements are presented. A relative uncertainty of about 10-9 is attained in comparisons between highly charged carbon, nitrogen, oxygen, neon and the singly charged hydrogen molecule.

  20. NeutronSTARS: A segmented neutron and charged particle detector for low-energy reaction studies

    DOE PAGES

    Akindele, O. A.; Casperson, R. J.; Wang, B. S.; ...

    2017-08-10

    NeutronSTARS (Neutron-S ilicon T elescope A rray for R eaction S tudies) consists of 2.2-tons of gadolinium-doped liquid scintillator for neutron detection and large area silicon detectors for charged particle identification. This detector array is intended for low-energy-nuclear-reaction measurements that result in the emission of neutrons such as and fission. This paper describes the NeutronSTARS experimental setup, calibration, and the array’s response to neutral and charged particles.

  1. Experimental setup for the measurement of induction motor cage currents

    NASA Astrophysics Data System (ADS)

    Bottauscio, Oriano; Chiampi, Mario; Donadio, Lorenzo; Zucca, Mauro

    2005-04-01

    An experimental setup for measurement of the currents flowing in the rotor bars of induction motors during synchronous no-load tests is described in the paper. The experimental verification of the high-frequency phenomena in the rotor cage is fundamental for a deep insight of the additional loss estimation by numerical methods. The attention is mainly focused on the analysis and design of the transducers developed for the cage current measurement.

  2. Length matters: Improved high field EEG-fMRI recordings using shorter EEG cables.

    PubMed

    Assecondi, Sara; Lavallee, Christina; Ferrari, Paolo; Jovicich, Jorge

    2016-08-30

    The use of concurrent EEG-fMRI recordings has increased in recent years, allowing new avenues of medical and cognitive neuroscience research; however, currently used setups present problems with data quality and reproducibility. We propose a compact experimental setup for concurrent EEG-fMRI at 4T and compare it to a more standard reference setup. The compact setup uses short EEG cables connecting to the amplifiers, which are placed right at the back of the head RF coil on a form-fitting extension force-locked to the patient MR bed. We compare the two setups in terms of sensitivity to MR-room environmental noise, interferences between measuring devices (EEG or fMRI), and sensitivity to functional responses in a visual stimulation paradigm. The compact setup reduces the system sensitivity to both external noise and MR-induced artefacts by at least 60%, with negligible EEG noise induced from the mechanical vibrations of the cryogenic cooling compression pump. The compact setup improved EEG data quality and the overall performance of MR-artifact correction techniques. Both setups were similar in terms of the fMRI data, with higher reproducibility for cable placement within the scanner in the compact setup. This improved compact setup may be relevant to MR laboratories interested in reducing the sensitivity of their EEG-fMRI experimental setup to external noise sources, setting up an EEG-fMRI workplace for the first time, or for creating a more reproducible configuration of equipment and cables. Implications for safety and ergonomics are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Optimizing Mouse Surgery with Online Rectal Temperature Monitoring and Preoperative Heat Supply. Effects on Post-Ischemic Acute Kidney Injury

    PubMed Central

    Holderied, Alexander; Anders, Hans-Joachim

    2016-01-01

    Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes. PMID:26890071

  4. Experimental setup for Single Event Effects at the São Paulo 8UD Pelletron Accelerator

    NASA Astrophysics Data System (ADS)

    Aguiar, V. A. P.; Added, N.; Medina, N. H.; Macchione, E. L. A.; Tabacniks, M. H.; Aguirre, F. R.; Silveira, M. A. G.; Santos, R. B. B.; Seixas, L. E.

    2014-08-01

    In this work we present an experimental setup mounted in one of the beam lines at the São Paulo 8UD Pelletron Accelerator in order to study Single Event Effects in electronic devices. The basic idea is to use elastic scattering collisions to achieve a low-flux with a high-uniformity ion beam to irradiate several devices. 12C, 16O, 28Si, 35Cl and 63Cu beams were used to test the experimental setup. In this system it is possible to use efficiently LET values of 17 MeV/mg/cm2 for an external beam arrangement and up to 32 MeV/mg/cm2 for in-vacuum irradiation.

  5. Empirical High-Temperature Calibration for the Carbonate Clumped Isotopes Paleothermometer

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.; Jourdan, A.; Davis, S.; Crawshaw, J.

    2013-12-01

    The clumped isotope paleothermometer is being used in a wide range of applications related to carbonate mineral formation, focusing on temperature and fluid δ18O reconstruction. Whereas the range of typical Earth surface temperatures has been the focus of several studies based on laboratory experiments and biogenic carbonates of known growth temperatures, the clumped isotope-temperature relationship above 70 °C has not been assessed by direct precipitation of carbonates. We investigated the clumped isotope-temperature relationship by precipitating carbonates between 20 and 200°C in the laboratory. The setup consists of a pressurized vessel in which carbonate minerals are precipitated from the mixture of two solutions (CaCl2, NaHCO3). Both solutions are thermally and isotopically equilibrated before injection in the pressure vessel. Minerals precipitated in this setup generally consist of calcite. Samples were reacted with 105% orthophosphoric acid for 10 min at 90°C. The evolved CO2 was continuously collected and subsequently purified with a Porapak trap held at -35°C. Measurements were performed on a MAT 253 using the protocol of Huntington et al. (2009) and Dennis et al. (2011). Clumped isotope values from 20-90°C are consistent with carbonates that were precipitated from a CaCO3 super-saturated solution using the method of McCrea (1950). This demonstrates that the experimental setup does not induce any kinetic fractionation, and can be used for high-temperature carbonate precipitation. The new clumped isotope calibration at high temperature follows the theoretical calculations of Schauble et al. (2006) adjusted for phosphoric acid digestion at 90°C. We gratefully acknowledge funding from Qatar Petroleum, Shell and the Qatar Science and Technology Park.

  6. The Ma_Miss instrument performance, II: Band parameters of rocks powders spectra by Martian VNIR spectrometer

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; De Sanctis, Maria Cristina; Ammannito, Eleonora; Carli, Cristian; Di Iorio, Tatiana; Altieri, Francesca

    2015-11-01

    The Ma_Miss instrument (Mars Multispectral Imager for Subsurface Studies, Coradini et al. (2001)) is a Visible and Near Infrared miniaturized spectrometer that will observe the Martian subsurface in the 0.4-2.2 μm spectral range. The instrument will be entirely hosted within the Drill of the ExoMars-2018 Pasteur Rover: it will allow analyzing the borehole wall excavated by the Drill, at different depths, down to 2 m. The aim will be to investigate and characterize the mineralogy and stratigraphy of the shallow Martian subsurface. A series of spectroscopic measurements have been performed in order to characterize the spectral performances of the laboratory model of the instrument (breadboard). A set of six samples have been analyzed. Each sample (four volcanic rocks, a micritic limestone and a calcite) has been reduced in particulate form, ground, sieved and divided into nine different grain sizes in the range d<0.02÷0.8 mm. Spectroscopic measurements have been performed on all samples using two distinct experimental setup: (a) the Ma_Miss breadboard, and (b) the Spectro-Goniometer setup, both in use in the laboratory at INAF - IAPS. In a previous paper spectral parameters such as the continuum slope and the reflectance level of the spectra have been discussed (De Angelis et al., 2014). In this work we focus our discussion on absorption band parameters (position, depth, area, band slope and asymmetry). We analyzed/investigated the absorption features at 1 μm for the volcanic samples and at 1.4, 1.9 and 2.2 μm for the two carbonate samples. Band parameters have been retrieved from spectra measured with both experimental setup and then compared. The comparison shows that band parameters are mutually consistent: band centers (for carbonate samples) are similar within few percent, and band depth and area values (for carbonates) show consistent trends vs. grain size (decreasing towards coarser grains) for most of samples.

  7. An undergraduate laboratory experiment for measuring ɛ 0, μ 0 and speed of light c with do-it-yourself catastrophe machines: electrostatic and magnetostatic pendula

    NASA Astrophysics Data System (ADS)

    Mishonov, Todor M.; Varonov, Albert M.; Maksimovski, Dejan D.; Manolev, Stojan G.; Gourev, Vassil N.; Yordanov, Vasil G.

    2017-03-01

    An experimental set-up for electrostatic measurement of {\\varepsilon }0, separate magnetostatic measurement of {μ }0 and determination of the speed of light c=1/\\sqrt{{\\varepsilon }0{μ }0} according to Maxwell’s theory with percent accuracy is described. No forces are measured with the experimental set-up, therefore there is no need for a scale, and the experiment cost of less than £20 is mainly due to the batteries used. Multiplied 137 times, this experimental set-up was given at the Fourth Open International Experimental Physics Olympiad (EPO4) and a dozen high school students performed successful experiments. The experimental set-up actually contains two different pendula for electric and magnetic measurements. In the magnetic experiment the pendulum is constituted by a magnetic coil attracted to a fixed one. In the electrostatic pendulum when the distance between the plates becomes shorter than a critical value the suspended plate catastrophically sticks to the fixed one, while in the magnetic pendulum the same occurs when the current in the coils becomes greater than a certain critical value. The basic idea of the methodology is to use the loss of stability as a tool for the determination of fundamental constants.

  8. An experimental study of potential residential and commercial applications of small-scale hybrid power systems

    NASA Astrophysics Data System (ADS)

    Acosta, Michael Anthony

    The research presented in this thesis provides an understanding of small-scale hybrid power systems. Experiments were conducted to identify potential applications of renewable energy in residential and commercial applications in the Rio Grande Valley of Texas. Solar and wind energy converted into electric energy was stored in batteries and inverted to power common household and commercial appliances. Several small to medium size hybrid power systems were setup and utilized to conduct numerous tests to study renewable energy prospects and feasibility for various applications. The experimental results obtained indicate that carefully constructed solar power systems can provide people living in isolated communities with sufficient energy to consistently meet their basic power needs.

  9. Forces between permanent magnets: experiments and model

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  10. Polarization analysis of diamond subwavelength gratings acting as space-variant birefringent elements

    NASA Astrophysics Data System (ADS)

    Piron, P.; Vargas Catalan, E.; Karlsson, M.

    2018-02-01

    Subwavelength gratings are gratings with a period smaller than the incident wavelength. They only allow the zeroth order of diffraction, they possess form birefringence and they can be modeled as birefringent plates. In this paper, we present the first results of an experimental method designed to measure their polarization properties. The method consists in measuring the variation of the light transmitted through two linear polarizers with the subwavelength component between them for several orientations of the polarizers. In this paper, the basic principles of the method are introduced and the experimental setup is presented. Several types of components are numerically studied and the optical measurements of one component are presented.

  11. Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation

    NASA Astrophysics Data System (ADS)

    Kuś, Rafał; Spustek, Tomasz; Zieleniewska, Magdalena; Duszyk, Anna; Rogowski, Piotr; Suffczyński, Piotr

    2017-12-01

    Objective. Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. Approach. We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. Main results. Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. Significance. We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the other hand, the described setup along with the presented methodology is a considerable improvement and an extension of methods constituting the state-of-the-art in the related field. Device flexibility both with developed analysis methodology can lead to further development of diagnostic methods and provide deeper insight into information processing in the human brain.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, Eduardo S., E-mail: emoura@wisc.edu; Micka, John A.; Hammer, Cliff G.

    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. Tomore » compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The TPS relative differences with the Acuros™ algorithm were similar in both experimental and simulated setups. The discrepancy between the BrachyVision™, Acuros™, and TG-43 dose responses in the phantom described by this work exceeded 12% for certain setups. Conclusions: The results derived from the phantom measurements show good agreement with the simulations and TPS calculations, using Acuros™ algorithm. Differences in the dose responses were evident in the experimental results when heterogeneous materials were introduced. These measurements prove the usefulness of the heterogeneous phantom for verification of HDR treatment planning systems based on model-based dose calculation algorithms.« less

  13. Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology

    NASA Astrophysics Data System (ADS)

    Hirth, Michael; Kuhn, Jochen; Müller, Andreas

    2015-02-01

    Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.

  14. Spying on photons with photons: quantum interference and information

    NASA Astrophysics Data System (ADS)

    Ataman, Stefan

    2016-07-01

    The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.

  15. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    NASA Astrophysics Data System (ADS)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  16. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-11-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  17. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  18. A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior.

    PubMed

    Beer, Katharina; Steffan-Dewenter, Ingolf; Härtel, Stephan; Helfrich-Förster, Charlotte

    2016-08-01

    Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.

  19. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    NASA Astrophysics Data System (ADS)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  20. Cross-Section Measurements via the Activation Technique at the Cologne Clover Counting Setup

    NASA Astrophysics Data System (ADS)

    Heim, Felix; Mayer, Jan; Netterdon, Lars; Scholz, Philipp; Zilges, Andreas

    The activation technique is a widely used method for the determination of cross-section values for charged-particle induced reactions at astrophysically relevant energies. Since network calculations of nucleosynthesis processes often depend on reaction rates calculated in the scope of the Hauser-Feshbach statistical model, these cross-sections can be used to improve the nuclear-physics input-parameters like optical-model potentials (OMP), γ-ray strength functions, and nuclear level densities. In order to extend the available experimental database, the 108Cd(α, n)111Sn reaction cross section was investigated at ten energies between 10.2 and 13.5 MeV. As this reaction at these energies is almost only sensitive on the α-decay width, the results were compared to statistical model calculations using different models for the α-OMP. The irradiation as well as the consecutive γ-ray counting were performed at the Institute for Nuclear Physics of the University of Cologne using the 10 MV FN-Tandem accelerator and the Cologne Clover Counting Setup. This setup consists of two clover- type high purity germanium (HPGe) detectors in a close face-to-face geometry to cover a solid angle of almost 4π.

  1. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco

    2013-12-15

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with highmore » productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.« less

  2. A Novel Experimental Setup to Investigate Magnetized Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Romero-Talamas, C. A.; Larocque, P.; Alvarez, J.; Sardin, J.

    2013-10-01

    Progress on the design and construction of a novel experimental setup to investigate dusty plasmas at the University of Maryland, Baltimore County (UMBC) is presented. The setup includes separation adjustability of discharge electrodes and their orientation with respect to gravity without breaking vacuum, and a pair of water-cooled coils to produce magnetic fields with strengths of up to several Tesla. The coils' orientation is also designed to be adjustable with respect to gravity. A pulse-forming network to power the coils with flattop times of several seconds is under design. The setup is mounted inside a large glass bell jar to provide wide optical access to the dusty plasmas, and to minimize interference of chamber walls and mounts with imposed electric or magnetic fields. Planned experiments include crystallization and wave propagation under strong magnetic fields.

  3. Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases

    DTIC Science & Technology

    2016-08-01

    AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the

  4. Center for Hybrid Communications and Networks

    DTIC Science & Technology

    2016-09-08

    Transmission loop experimental setup to study coded modulation and turbo equalization for metro and long-haul networks, 3) Experimental setup for...undertaking fundamental studies of QKD systems that use ( hyper -) entangled photon pairs or weak coherent states (WCS) as the quantum resources...onlinelibrary.wiley.com/doi/10.1002/047134608X.W8291/abstract] The real-time scope and AWG are also used in fiber-optics transmission loop experiment we

  5. Combined experimental and numerical investigation of energy harness utilizing vortex induced vibration over half cylinder using piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Ahmed, Md. Tusher; Hossain, Md. Tanver; Rahman, Md. Ashiqur

    2017-06-01

    Energy harvesting technology has the ability to create self-powered electronic systems that do not rely on battery power for their operation. Wind energy can be converted into electricity via a piezoelectric transducer during the air flow over a cylinder. The vortex-induced vibration over the cylinder causes the piezoelectric beam to vibrate. Thus useful electric energy at the range 0.2-0.3V is found which can be useful for self-powering small electronic devices. In the present study, prototypes of micro-energy harvester with a shape of 65 mm × 37 mm × 0.4 mm are developed and tested for airflow over D-shaped bluff body for diameters of 15, 20 and 28mm in an experimental setup consisting of a long wind tunnel of 57cm × 57cm with variable speeds of the motor for different flow velocities and the experimental setup is connected at the downstream where flow velocity is the maximum. Experimental results show that the velocity and induced voltage follows a regular linear pattern. A maximum electrical potential of 140 mV for velocity of 1.1 ms-1 at a bluff body diameter of 15 mm is observed in the energy harvester that can be applied in many practical cases for self-powering electronic devices. The simulation of this energy harvesting phenomena is then simulated using COMSOLE multi-physics. Diameter of the bluff bodies as well as flow velocity and size of cantilever beam are varied and the experimental findings are found to be in good agreement with the simulated ones. The simulations along with the experimental data show the possibility of generating electricity from vortex induced vibration and can be applied in many practical cases for self-powering electronic devices.

  6. Low-Cost Manufacturing, Usability, and Security: An Analysis of Bluetooth Simple Pairing and Wi-Fi Protected Setup

    NASA Astrophysics Data System (ADS)

    Kuo, Cynthia; Walker, Jesse; Perrig, Adrian

    Bluetooth Simple Pairing and Wi-Fi Protected Setup specify mechanisms for exchanging authentication credentials in wireless networks. Both Simple Pairing and Protected Setup support multiple setup mechanisms, which increases security risks and hurts the user experience. To improve the security and usability of these specifications, we suggest defining a common baseline for hardware features and a consistent, interoperable user experience across devices.

  7. Solar powered automobile automation for heatstroke prevention

    NASA Astrophysics Data System (ADS)

    Singh, Navtej Swaroop; Sharma, Ishan; Jangid, Santosh

    2016-03-01

    Heatstroke inside a car has been critical problem in every part of the world. Non-exertional heat stroke results from exposure to a high environmental temperature. Exertional heat stroke happens from strenuous exercise. This paper presents a solution for this fatal problem and proposes an embedded solution, which is cost effective and shows the feasibility in implementation. The proposed system consists of information sharing platform, interfacing of sensors, Global System Mobile (GSM), real time monitoring system and the system is powered by the solar panel. The system has been simulated and tested with experimental setup.

  8. Out-of-equilibrium body potential measurements in pseudo-MOSFET for sensing applications

    NASA Astrophysics Data System (ADS)

    Benea, Licinius; Bawedin, Maryline; Delacour, Cécile; Ionica, Irina

    2018-05-01

    The aim of this paper is to present the out-of-equilibrium body potential behaviour in the Ψ-MOSFET configuration. Consistent measurements in this experimental setup succeeded in providing a substantial understanding of its characteristics in the depletion region. The final objective of this work is to envision this new measurement technique for biochemical sensor applications. Among its advantages, the most important are its simplicity, the good sensitivity, the measurement of a potential instead of a current and the low bias needed for detection compared to the conventional drain current measurements.

  9. Microbial detection method based on sensing molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.

    1974-01-01

    An approach involving the measurement of hydrogen evolution by test organisms was used to detect and enumerate various members of the Enterobacteriaceae group. The experimental setup for measuring hydrogen evolution consisted of a test tube containing two electrodes plus broth and organisms. The test tube was kept in a water bath at a temperature of 35 C. It is pointed out that the hydrogen-sensing method, coupled with the pressure transducer technique reported by Wilkins (1974) could be used in various experiments in which gas production by microorganisms is being measured.

  10. New measurements of W-values for protons and alpha particles.

    PubMed

    Giesen, U; Beck, J

    2014-10-01

    The increasing importance of ion beams in cancer therapy and the lack of experimental data for W-values for protons and heavy ions in air require new measurements. A new experimental set-up was developed at PTB and consistent measurements of W-values in argon, nitrogen and air for protons and alpha particles with energies from 0.7 to 3.5 MeV u(-1) at PTB, and for carbon ions between 3.6 and 7.0 MeV u(-1) at GSI were carried out. This publication concentrates on the measurements with protons and alpha particles at PTB. The experimental methods and the determination of corrections for recombination effects, beam-induced background radiation and additional effects are presented. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability

    NASA Astrophysics Data System (ADS)

    Bocian, Mateusz; Burn, Jeremy F.; Macdonald, John H. G.; Brownjohn, James M. W.

    2017-03-01

    The subject of this paper pertains to the contentious issue of synchronisation of walking pedestrians to lateral structural motion, which is the mechanism most commonly purported to cause lateral dynamic instability. Tests have been conducted on a custom-built experimental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking table. The experimental setup can accommodate adaptive pedestrian behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the walker. 15 people participated in a total of 137 walking tests during which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping behaviours are identified in the kinematic data obtained using a motion capture system. The most common behaviour is for the timing of footsteps to be essentially unaffected by the structural motion, but a few instances of synchronisation are found. A plausible mechanism comprising an intermediate state between unsynchronised and synchronised pedestrian and structural motion is observed. This mechanism, characterised by a weak form of modulation of the timing of footsteps, could possibly explain the under-estimation of negative damping coefficients in models and laboratory trials compared with previously reported site measurements. The results from tests conducted on the setup for which synchronisation is identified are evaluated in the context of structural stability and related to the predictions of the inverted pendulum model, providing insight into fundamental relations governing pedestrian behaviour on laterally oscillating structures.

  12. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  13. TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.

  14. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  15. Optimization of control gain by operator adjustment

    NASA Technical Reports Server (NTRS)

    Kruse, W.; Rothbauer, G.

    1973-01-01

    An optimal gain was established by measuring errors at 5 discrete control gain settings in an experimental set-up consisting of a 2-dimensional, first-order pursuit tracking task performed by subjects (S's). No significant experience effect on optimum gain setting was found in the first experiment. During the second experiment, in which control gain was continuously adjustable, high experienced S's tended to reach the previously determined optimum gain quite accurately and quickly. Less experienced S's tended to select a marginally optimum gain either below or above the experimentally determined optimum depending on initial control gain setting, although mean settings of both groups were equal. This quick and simple method is recommended for selecting control gains for different control systems and forcing functions.

  16. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough.

    PubMed

    Xie, Qiyuan; Zhang, Heping; Ye, Ruibo

    2009-07-30

    The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be quantitatively analyzed. Experiments are conducted for PP and PE sheets with different thicknesses. The maximum distances of the induced flowing pool flame in the T-shape trough are recorded and analyzed. The typical fire parameters, such as heat release rates (HRRs), CO concentrations are also monitored. The results show that the softening and clinging of the thermoplastic sheets plays a considerable role for their vertical wall burning. It is illustrated that the clinging of burning thermoplastic sheet may be mainly related with the softening temperatures and the ignition temperatures of the thermoplastics, as well as their viscosity coefficients. Through comparing the maximum distances of flowing flame of induced pool fires in the T-shape trough for thermoplastic sheets with different thicknesses, it is indicated that the pool fires induced by PE materials are easier to flow away than that of PP materials. Therefore, PE materials may be more dangerous for their faster pool fire spread on the floor. These experimental results preliminarily illustrate that this new experimental setup is helpful for quantitatively studying the special burning feature of thermoplastics although further modifications is needed for this setup in the future.

  17. A simple Lissajous curves experimental setup

    NASA Astrophysics Data System (ADS)

    Şahin Kızılcık, Hasan; Damlı, Volkan

    2018-05-01

    The aim of this study is to develop an experimental setup to produce Lissajous curves. The setup was made using a smartphone, a powered speaker (computer speaker), a balloon, a laser pointer and a piece of mirror. Lissajous curves are formed as follows: a piece of mirror is attached to a balloon. The balloon is vibrated with the sound signal provided by the speaker that is connected to a smartphone. The laser beam is reflected off the mirror and the reflection is shaped as a Lissajous curve. Because of the intersection of two frequencies (frequency of the sound signal and natural vibration frequency of the balloon), these curves are formed. They can be used to measure the ratio of frequencies.

  18. AC-Induced Bias Potential Effect on Corrosion of Steels

    DTIC Science & Technology

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  19. Development of an experimental setup for analyzing the influence of Magnus effect on the performance of airfoil

    NASA Astrophysics Data System (ADS)

    Aktharuzzaman, Md; Sarker, Md. Samad; Safa, Wasiul; Sharah, Nahreen; Salam, Md. Abdus

    2017-12-01

    Magnus effect is a phenomenon where pressure difference is created according to Bernoulli's effect due to induced velocity changes caused by a rotating object in a fluid. Using this concept, the idea of delaying boundary layer separation on airfoil by providing moving surface boundary layer control has been developed. In order to analyze the influence of Magnus effect on the aerodynamic performance of an airfoil, there is no alternative of developing an experimental setup. This paper aims to develop such an experimental setup which will be capable of analyzing the influence of Magnus effect on both symmetric and asymmetric airfoils by placing a cylinder at the leading edge. To provide arrangements for a rotating cylinder at the leading edge of airfoil, necessary modifications and additions have been done in the test section of an AF100 subsonic wind tunnel.

  20. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    NASA Astrophysics Data System (ADS)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-01

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper. A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  1. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beammore » which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.« less

  2. Experimental testing of impact force on rigid and flexible barriers - A comparison

    NASA Astrophysics Data System (ADS)

    Nagl, Georg; Hübl, Johannes; Chiari, Michael

    2016-04-01

    The Trattenbach endangers the main western railway track of Austria by floods and debris flows. Three check dams for debris retention were built in the proximal fan area several decades ago. With regard to an improvement of the protective function, these structures have to be renewed. The recent concept of the uppermost barrier is a type of an energy dissipation net structure, stopping debris flows with the ability of self-cleaning by subsequent floods or by machinery employment. The access to the basin is achieved through the slit when the net has been removed. This technical structure consists of a rigid open crown dam with a 4m wide slit. This slit is closed with a flexible net. To verify this protective system, 21 small scale experiments were conducted to test and optimize this new type of Slit Net Dam. To determine the forces on the barrier, in a first setup of experiments the impact forces on a rigid wall with 24 load cells were measured. In the second setup the slit barrier with the net was investigated. On four main cables the anchor forces were measured. In a further setup the basal distance between the channel and lowest net was varied. To study the emptying of the basin and the dosing effect on debris flows.

  3. Experimental Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Wave Chaos Team

    An experimental setup consisting of microwave networks is used to simulate quantum graphs. The networks are constructed from coaxial cables connected by T junctions. The networks are built for operation both at room temperature and superconducting versions that operate at cryogenic temperatures. In the experiments, a phase shifter is connected to one of the network bonds to generate an ensemble of quantum graphs by varying the phase delay. The eigenvalue spectrum is found from S-parameter measurements on one-port graphs. With the experimental data, the nearest-neighbor spacing statistics and the impedance statistics of the graphs are examined. It is also demonstrated that time-reversal invariance for microwave propagation in the graphs can be broken without increasing dissipation significantly by making nodes with circulators. Random matrix theory (RMT) successfully describes universal statistical properties of the system. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171.

  4. Experimental violation of local causality in a quantum network.

    PubMed

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-16

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  5. Experimental violation of local causality in a quantum network

    PubMed Central

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-01-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols. PMID:28300068

  6. Experimental violation of local causality in a quantum network

    NASA Astrophysics Data System (ADS)

    Carvacho, Gonzalo; Andreoli, Francesco; Santodonato, Luca; Bentivegna, Marco; Chaves, Rafael; Sciarrino, Fabio

    2017-03-01

    Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

  7. Streaming and particle motion in acoustically-actuated leaky systems

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  8. The LOPES experiment

    NASA Astrophysics Data System (ADS)

    Link, Katrin; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2011-03-01

    Cosmic ray particles hit the Earth's atmosphere and induce extensive air showers (EAS). These EAS mainly consist of electrons and positrons that produce radio emission due to their interaction with the Earth's magnetic field. Measuring this radio emission is the purpose of the LOPES (LOFAR Prototype Station) experiment. LOPES is located at Campus North of the Karlsruhe Institute of Technology at the same site as the EAS particle detector KASCADE-Grande. Since the first measurements in 2003, LOPES was improved by various experimental setups and could establish the radio technique. By now, detailed studies of the measured radio signal are performed, like the behaviour of the lateral distribution or the polarization of the electric field. Furthermore, with LOPES the dependence of the radio pulse on properties of the incoming cosmic ray, like primary energy, primary mass, or incoming direction is investigated. In this article we describe the different LOPES setups, next we explain our standard analysis procedure and then we discuss some highlights of our recent results.

  9. Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup

    2018-02-01

    The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.

  10. Dense cold baryonic matter

    NASA Astrophysics Data System (ADS)

    Stavinskiy, A. V.

    2017-09-01

    A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.

  11. Nano-Ignition Torch Applied to Cryogenic H2/O2 Coaxial Jet

    DTIC Science & Technology

    2016-01-04

    developed and ignition of liquid fuel sprays by the torch has been achieved. In this report, we will describe the experimental procedure for producing...ignition that is induced by a compact Xe-flash, including the results for photoignition of a simple fuel spray in air as well as ignition of a coaxial...window. Experimental Setup for Fuel Spray Ignition Three different setups were utilized for the fuel ignition experiments. The first one was used

  12. Note: Setup for chemical atmospheric control during in situ grazing incidence X-ray scattering of printed thin films

    DOE PAGES

    Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...

    2017-06-01

    In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less

  13. Active Optical Zoom for Tracking

    DTIC Science & Technology

    2008-09-01

    optical system. 2. Current Setup Deformable Flat Two Deformable Flat Figure 1. Zemax lens design layout and experimental layout on the...optical bench. Figure 1 is a ZEMAX design and setup on the optical bench of two Deformable Mirrors (DMs) from OKO technologies. These mirrors have

  14. Commissioning and quality assurance of an integrated system for patient positioning and setup verification in particle therapy.

    PubMed

    Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G

    2014-08-01

    In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.

  15. Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger.

    PubMed

    Haque, A K M Mahmudul; Kim, Sedong; Kim, Junhyo; Noh, Jungpil; Huh, Sunchul; Choi, Byeongkeun; Chung, Hanshik; Jeong, Hyomin

    2018-03-01

    This study presents the forced convective heat transfer of a nanofluid consisting of distilled water and different weight concentrations (1 wt% and 2 wt%) of Al2O3 nanoparticles flowing in a vertical shell and tube heat exchanger under counter flow and laminar flow regime with certain constant heat flaxes (at 20 °C, 30 °C, 40 °C and 50 °C). The Al2O3 nanoparticles of about 50 nm diameter are used in the present study. Stability of aqueous Al2O3 nanofluids, TEM, thermal conductivity, temperature differences, heat transfer rate, T-Q diagrams, LMTD and convective heat transfer coefficient are investigated experimentally. Experimental results emphasize the substantial enhancement of heat transfer due to the Al2O3 nanoparticles presence in the nanofluid. Heat transfer rate for distilled water and aqueous nanofluids are calculated after getting an efficient setup which shows 19.25% and 35.82% enhancement of heat transfer rate of 1 wt% and 2 wt% aqueous Al2O3 nanofluids as compared to that of distilled water. Finally, the analysis shows that though there are 27.33% and 59.08% enhancement of 1 wt% Al2O3 and 2 wt% Al2O3 respectively as compared to that of distilled water at 30 °C, convective heat transfer coefficient decreases with increasing heat flux of heated fluid in this experimental setup.

  16. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  17. The ROSPHERE γ-ray spectroscopy array

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R.; Filipescu, D.; Florea, N.; Ghiţă, D. G.; Glodariu, T.; Ivaşcu, M.; Lică, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Niţă, C. R.; Olăcel, A.; Pascu, S.; Sava, T.; Stroe, L.; Şerban, A.; Şuvăilă, R.; Toma, S.; Zamfir, N. V.; Căta-Danil, G.; Gheorghe, I.; Mitu, I. O.; Suliman, G.; Ur, C. A.; Braunroth, T.; Dewald, A.; Fransen, C.; Bruce, A. M.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.

    2016-11-01

    The ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) has been designed as a multi-detector setup dedicated to γ-ray spectroscopy studies at the Bucharest 9 MV Tandem accelerator. Consisting of up to 25 detectors (either Compton suppressed HPGe detectors or fast LaBr3(Ce) scintillator detectors) together with a state of the art plunger device, ROSPHERE is a powerful tool for lifetime measurements using the Recoil Distance Doppler Shift (RDDS) and the in-beam Fast Electronic Scintillation Timing (FEST) methods. The array's geometry, detectors, electronics and data acquisition system are described. Selected results from the first experimental campaigns are also presented.

  18. Experimental verification of an indefinite causal order

    PubMed Central

    Rubino, Giulia; Rozema, Lee A.; Feix, Adrien; Araújo, Mateus; Zeuner, Jonas M.; Procopio, Lorenzo M.; Brukner, Časlav; Walther, Philip

    2017-01-01

    Investigating the role of causal order in quantum mechanics has recently revealed that the causal relations of events may not be a priori well defined in quantum theory. Although this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. We report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our setup is with a definite causal order by measuring a “causal witness.” This mathematical object incorporates a series of measurements that are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment, we perform a measurement in a superposition of causal orders—without destroying the coherence—to acquire information both inside and outside of a “causally nonordered process.” Using this information, we experimentally determine a causal witness, demonstrating by almost 7 SDs that the experimentally implemented process does not have a definite causal order. PMID:28378018

  19. Acoustic levitation of a large solid sphere

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  20. Harmful Gas Recognition Exploiting a CTL Sensor Array

    PubMed Central

    Wang, Qihui; Xie, Lijun; Zhu, Bo; Zheng, Yao; Cao, Shihua

    2013-01-01

    In this paper, a novel cataluminescence (CTL)-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field. PMID:24113681

  1. Measurements on wave propagation characteristics of spiraling electron beams

    NASA Technical Reports Server (NTRS)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  2. [Testing the efficacy of disinfectants during drinking water treatment. A new experimental set-up at the German EPA (Umweltbundesamt - UBA)].

    PubMed

    Grützmacher, G; Bartel, H; Althoff, H W; Clemen, S

    2007-03-01

    A set-up for experiments in the flow-through mode was constructed in order to test the efficacy of substances used for disinfecting water during drinking water treatment. A flow-through mode - in contrast to experiments under stationary conditions (so-called batch experiments) - was chosen, because this experimental design allows experiments to be carried out under constant conditions for an extended time (up to one week) and because efficacy testing is possible repeatedly, simultaneously and under exactly the same conditions for short (about 0.5 min) and also longer (about 47 min) contact times. With this experimental design the effect of biofilms along the inner pipe surfaces can be included in the observations. The construction of the experimental set-up is based on experience with laboratory flow-through systems that were installed by the UBA's drinking water department (formerly Institute for Water-, Soil- and Air Hygiene (WaBoLu) Institute) for testing disinfection with chlorine. In the first step, a test pipe for the simulation of a water works situation was installed. Water of different qualities can be mixed in large volumes beforehand so that the experimental procedure can be run with constant water quality for a minimum of one week. The kinetics of the disinfection reaction can be observed by extracting samples from eight sampling ports situated along the test pipe. In order to assign exact residence times to each of the sampling ports, tracer experiments were performed prior to testing disinfectant efficacy. This paper gives the technical details of the experimental set-up and presents the results of the tracer experiments to provide an introduction with respect to its potential.

  3. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.

    PubMed

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-15

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  4. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-01

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  5. Test measurement on ion-molecule reactions in a ringelectrode ion trap

    NASA Astrophysics Data System (ADS)

    Savic, I.; Lukic, S. R.; Guth, I.; Gerlich, D.

    2006-05-01

    Very recently a new experimental setup has been developed allowing studies of astrophysically relevant collisions between neutral atoms and small pure carbon molecules from one side and ions from the other side and first results are obtained (Savić et al., 2005). The ions are stored in a radio- frequency (rf) ring-electrode trap and during reaction time exposed to the effusive carbon beam. In this paper, one of the final tests of the experimental setup is presented.

  6. Reconstruction of dynamic structures of experimental setups based on measurable experimental data only

    NASA Astrophysics Data System (ADS)

    Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang

    2018-03-01

    Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.

  7. Preliminary Study of Realistic Blast Impact on Cultured Brain Slices

    DTIC Science & Technology

    2015-04-01

    and/or multiple impacts in water. 3. Experimental Setup 3.1 The Aquarium Setup A 30.5-cm by 34.5- × 65-cm water-filled polymethylmethacrylate ...sodium bicarbonate PAGE polyacrylamide gel electrophoresis PMMA polymethylmethacrylate RDECOM U.S. Army Research Development and Engineering Command

  8. Combination of thermal and electric properties' measurement techniques in a single setup suitable for radioactive materials in controlled environments and based on the 3ω approach

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Gofryk, K.

    2018-04-01

    We have designed and developed a new experimental setup, based on the 3ω method, to measure thermal conductivity, heat capacity, and electrical resistivity of a variety of samples in a broad temperature range (2-550 K) and under magnetic fields up to 9 T. The validity of this method is tested by measuring various types of metallic (copper, platinum, and constantan) and insulating (SiO2) materials, which have a wide range of thermal conductivity values (1-400 W m-1 K-1). We have successfully employed this technique for measuring the thermal conductivity of two actinide single crystals: uranium dioxide and uranium nitride. This new experimental approach for studying nuclear materials will help us to advance reactor fuel development and understanding. We have also shown that this experimental setup can be adapted to the Physical Property Measurement System (Quantum Design) environment and/or other cryocooler systems.

  9. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    DOE PAGES

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less

  10. Experimental setup for evaluating an adaptive user interface for teleoperation control

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.

    2017-05-01

    A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.

  11. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver

    NASA Astrophysics Data System (ADS)

    Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2017-03-01

    This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.

  12. Automatized set-up procedure for transcranial magnetic stimulation protocols.

    PubMed

    Harquel, S; Diard, J; Raffin, E; Passera, B; Dall'Igna, G; Marendaz, C; David, O; Chauvin, A

    2017-06-01

    Transcranial Magnetic Stimulation (TMS) established itself as a powerful technique for probing and treating the human brain. Major technological evolutions, such as neuronavigation and robotized systems, have continuously increased the spatial reliability and reproducibility of TMS, by minimizing the influence of human and experimental factors. However, there is still a lack of efficient set-up procedure, which prevents the automation of TMS protocols. For example, the set-up procedure for defining the stimulation intensity specific to each subject is classically done manually by experienced practitioners, by assessing the motor cortical excitability level over the motor hotspot (HS) of a targeted muscle. This is time-consuming and introduces experimental variability. Therefore, we developed a probabilistic Bayesian model (AutoHS) that automatically identifies the HS position. Using virtual and real experiments, we compared the efficacy of the manual and automated procedures. AutoHS appeared to be more reproducible, faster, and at least as reliable as classical manual procedures. By combining AutoHS with robotized TMS and automated motor threshold estimation methods, our approach constitutes the first fully automated set-up procedure for TMS protocols. The use of this procedure decreases inter-experimenter variability while facilitating the handling of TMS protocols used for research and clinical routine. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantum games with a multi-slit electron diffraction set-up

    NASA Astrophysics Data System (ADS)

    Iqbal, A.

    2003-05-01

    A set-up is proposed to play a quantum version of the famous bimatrix game of Prisoners' Dilemma. Multi-slit electron diffraction with each player's pure strategy consisting of opening one of the two slits at his/her disposal are essential features of the set-up. Instead of entanglement the association of waves with travelling material objects is suggested as another resource to play quantum games.

  14. Super-resolution with an SLM and two intensity images

    NASA Astrophysics Data System (ADS)

    Alcalá Ochoa, Noé; de León, Y. Ponce

    2018-06-01

    It is reported a method which may simplify the optical setups used to achieve super-resolution through the amplitude multiplication of two waves. For this end we decompose a super-resolving pupil into two complex masks and with the aid of a Spatial Light Modulator (LCoS) we obtain two intensity images that are subtracted. With this proposal, the traditional experimental optical setups are considerably simplified, with the additional benefit that different masks can be utilized without needing to perform the setup alignment each time.

  15. Development of a nano-tesla magnetic field shielded chamber and highly precise AC-susceptibility measurement coil at μK temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Prakash, Om; Ramakrishanan, S.

    2014-04-01

    A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.

  16. Experimental feasibility of multistatic holography for breast microwave radar image reconstruction.

    PubMed

    Flores-Tapia, Daniel; Rodriguez, Diego; Solis, Mario; Kopotun, Nikita; Latif, Saeed; Maizlish, Oleksandr; Fu, Lei; Gui, Yonsheng; Hu, Can-Ming; Pistorius, Stephen

    2016-08-01

    The goal of this study was to assess the experimental feasibility of circular multistatic holography, a novel breast microwave radar reconstruction approach, using experimental datasets recorded using a preclinical experimental setup. The performance of this approach was quantitatively evaluated by calculating the signal to clutter ratio (SCR), contrast to clutter ratio (CCR), tumor to fibroglandular response ratio (TFRR), spatial accuracy, and reconstruction time. Five datasets were recorded using synthetic phantoms with the dielectric properties of breast tissue in the 1-6 GHz range using a custom radar system developed by the authors. The datasets contained synthetic structures that mimic the dielectric properties of fibroglandular breast tissues. Four of these datasets the authors covered an 8 mm inclusion that emulated a tumor. A custom microwave radar system developed at the University of Manitoba was used to record the radar responses from the phantoms. The datasets were reconstructed using the proposed multistatic approach as well as with a monostatic holography approach that has been previously shown to yield the images with the highest contrast and focal quality. For all reconstructions, the location of the synthetic tumors in the experimental setup was consistent with the position in the both the monostatic and multistatic reconstructed images. The average spatial error was less than 4 mm, which is half the spatial resolution of the data acquisition system. The average SCR, CCR, and TFRR of the images reconstructed with the multistatic approach were 15.0, 9.4, and 10.0 dB, respectively. In comparison, monostatic images obtained using the datasets from the same experimental setups yielded average SCR, CCR, and TFRR values of 12.8, 4.9, and 5.9 dB. No artifacts, defined as responses generated by the reconstruction method of at least half the energy of the tumor signatures, were noted in the multistatic reconstructions. The average execution time of the images formed using the proposed approach was 4 s, which is one order of magnitude faster than the current state-of-the-art time-domain multistatic breast microwave radar reconstruction algorithms. The images generated by the proposed method show that multistatic holography is capable of forming spatially accurate images in real-time with signal to clutter levels and contrast values higher than other published monostatic and multistatic cylindrical radar reconstruction approaches. In comparison to the monostatic holographic approach, the images generated by the proposed multistatic approach had SCR values that were at least 50% higher. The multistatic images had CCR and TFRR values at least 200% greater than those formed using a monostatic approach.

  17. Cryptographic salting for security enhancement of double random phase encryption schemes

    NASA Astrophysics Data System (ADS)

    Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto

    2017-10-01

    Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.

  18. Sub-barrier fusion cross section measurements with STELLA

    NASA Astrophysics Data System (ADS)

    Heine, M.; Courtin, S.; Fruet, G.; Jenkins, D. G.; Montanari, D.; Adsley, P.; Beck, C.; Della Negra, S.; Dené, P.; Haas, F.; Hammache, F.; Heitz, G.; Kirsebom, O. S.; Krauth, M.; Lesrel, J.; Meyer, A.; Morris, L.; Regan, P. H.; Richer, M.; Rudigier, M.; de Séréville, N.; Stodel, C.

    2018-01-01

    The experimental setup STELLA (STELlar LAboratory) is designed for the measurement of deep sub-barrier light heavy ion fusion cross sections. For background suppression the γ-particle coincidence technique is used. In this project, LaBr3 detectors from the UK FATIMA (FAst TIMing Array) collaboration are combined with annular silicon strip detectors customized at IPHC-CNRS, Strasbourg, and the setup is located at Andromède, IPN, Orsay. The commissioning of the experimental approach as well as a sub-barrier 12C +12C → 24Mg∗ cross section measurement campaign are carried out.

  19. Experimental investigation of environment-induced entanglement using an all-optical setup

    NASA Astrophysics Data System (ADS)

    Passos, M. H. M.; Balthazar, W. F.; Khoury, A. Z.; Hor-Meyll, M.; Davidovich, L.; Huguenin, J. A. O.

    2018-02-01

    We investigate the generation of entanglement between two noninteracting qubits coupled to a common reservoir. An experimental setup was conceived to encode one qubit on the polarization of an optical beam and another qubit on its transverse mode. The action of the reservoir is implemented as conditional operations on these two qubits, controlled by the longitudinal path as an ancillary degree of freedom. An entanglement witness and the two-qubit concurrence are easily evaluated from direct intensity measurements showing an excellent agreement with the theoretical prediction.

  20. Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light.

    PubMed

    Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong

    2016-04-18

    We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.

  1. An experimental investigation of convective heat transfer at evaporation of kerosene and water in the closed volume

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V. I.; Lesnyak, I. Y.; Galfetti, L.

    2017-09-01

    An evaporation of kerosene and water was investigated based on convective heat transfer in the experimental setup simulating a typical volume of the fuel tank of the launch vehicle. Basic criteria of similarity used in choosing the design parameters of the setup, parameters of the coolant and model liquids, were numbers of Reynolds, Prandtl, Biot, and Nusselt. The used coolants were gases, including air and nitrogen; in addition, at the stage of preliminary experiments, products of combustion of hydroxyl-terminated polybutadiene (HTPB) were considered. Boundary conditions were taken for the liquid located on the plate in the form of "drop" and at its uniform film spread in the experimental model setup. On the basis of experimental investigations, the temperature values were obtained for the system "gas-liquid-wall", and areas of mass transfer surface and heat transfer coefficients of "gas-liquid" and "gas-plate" were determined for coolants (air and nitrogen) and for liquids (water and kerosene). The comparative analysis of the obtained results and the known data was carried out. Proposals for experiments using coolants based on HTPB combustion products have been formulated.

  2. The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.

    2017-01-01

    In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less

  3. Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Acounis, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti&cbreve; i'c, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenir, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Charrier, D.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garçon, T.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Messina, S.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stassi, P.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyj, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-11-01

    We describe the experimental setup and the results of RAuger, a small radio-antenna array, consisting of three fully autonomous and self-triggered radio-detection stations, installed close to the center of the Surface Detector (SD) of the Pierre Auger Observatory in Argentina. The setup has been designed for the detection of the electric field strength of air showers initiated by ultra-high energy cosmic rays, without using an auxiliary trigger from another detection system. Installed in December 2006, RAuger was terminated in May 2010 after 65 registered coincidences with the SD. The sky map in local angular coordinates (i.e., zenith and azimuth angles) of these events reveals a strong azimuthal asymmetry which is in agreement with a mechanism dominated by a geomagnetic emission process. The correlation between the electric field and the energy of the primary cosmic ray is presented for the first time, in an energy range covering two orders of magnitude between 0.1 EeV and 10 EeV. It is demonstrated that this setup is relatively more sensitive to inclined showers, with respect to the SD. In addition to these results, which underline the potential of the radio-detection technique, important information about the general behavior of self-triggering radio-detection systems has been obtained. In particular, we will discuss radio self-triggering under varying local electric-field conditions.

  4. The COBRA demonstrator at the LNGS underground laboratory

    NASA Astrophysics Data System (ADS)

    Ebert, J.; Fritts, M.; Gehre, D.; Gößling, C.; Göpfert, T.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Köttig, T.; Kröninger, K.; Michel, T.; Neddermann, T.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Reinecke, O.; Rohatsch, K.; Schulz, O.; Sörensen, A.; Stekl, I.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wester, T.; Wonsak, B.; Zatschler, S.; Zuber, K.

    2016-01-01

    The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380 g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250 kg d of data have been collected. This paper describes the technical details of the experimental setup and the hardware components.

  5. A DNA Melting Exercise for a Large Laboratory Class

    ERIC Educational Resources Information Center

    Levine, Lauren A.; Junker, Matthew; Stark, Myranda; Greenleaf, Dustin

    2015-01-01

    A simple and economical experimental setup is described that enables multiple individuals or groups within a laboratory class to measure the thermal melting of double stranded DNA simultaneously. The setup utilizes a basic spectrophotometer capable of measuring absorbance at 260 nm, UV plastic cuvettes, and a stirring hot plate. Students measure…

  6. Use of microstrip patch antennas in grain permittivity measurement

    USGS Publications Warehouse

    El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.

    2003-01-01

    In this paper, a compact size free-space setup is proposed for the measurement of complex permittivity of granular materials. The horn antennas in the conventional setup are replaced by microstrip patch antennas which is a step toward system miniaturization. The experimental results obtained are in good agreement with those obtained with horn antennas.

  7. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality.

    PubMed

    Romanovsky, Andrej A; Ivanov, Andrei I; Shimansky, Yury P

    2002-06-01

    There is a misbelief that the same animal has the same thermoneutral zone (TNZ) in different experimental setups. In reality, TNZ strongly depends on the physical environment and varies widely across setups. Current methods for determining TNZ require elaborate equipment and can be applied only to a limited set of experimental conditions. A new, broadly applicable approach that rapidly determines whether given conditions are neutral for a given animal is needed. Consistent with the definition of TNZ [the range of ambient temperature (T(a)) at which body core temperature (T(c)) regulation is achieved only by control of sensible heat loss], we propose three criteria of thermoneutrality: 1) the presence of high-magnitude fluctuations in skin temperature (T(sk)) of body parts serving as specialized heat exchangers with the environment (e.g., rat tail), 2) the closeness of T(sk) to the median of its operational range, and 3) a strong negative correlation between T(sk) and T(c). Thermocouple thermometry and liquid crystal thermography were performed in five rat strains at 13 T(a). Under the conditions tested (no bedding or filter tops, no group thermoregulation), the T(a) range of 29.5-30.5 degrees C satisfied all three TNZ criteria in Wistar, BDIX, Long-Evans, and Zucker lean rats; Zucker fatty rats had a slightly lower TNZ (28.0-29.0 degrees C). Skin thermometry or thermography is a definition-based, simple, and inexpensive technique to determine whether experimental or housing conditions are neutral, subneutral, or supraneutral for a given animal.

  8. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH

    PubMed Central

    2009-01-01

    Background Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. Results We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. Conclusion The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies. PMID:19925645

  9. Experimental verification of stopping-power prediction from single- and dual-energy computed tomography in biological tissues

    NASA Astrophysics Data System (ADS)

    Möhler, Christian; Russ, Tom; Wohlfahrt, Patrick; Elter, Alina; Runz, Armin; Richter, Christian; Greilich, Steffen

    2018-01-01

    An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%. A total of 65 porcine and bovine tissue samples were prepared for measurement, comprising five samples each of 13 tissue types representing about 80% of the total body mass (three different muscle and fatty tissues, liver, kidney, brain, heart, blood, lung and bone). Using a standard stoichiometric calibration for single-energy CT (SECT) as well as a state-of-the-art dual-energy CT (DECT) approach, SPR was predicted for all tissues and then compared to the measured reference. With the SECT approach, the SPRs of all tissues were predicted with a mean error of (-0.84  ±  0.12)% and a mean absolute error of (1.27  ±  0.12)%. In contrast, the DECT-based SPR predictions were overall consistent with the measured reference with a mean error of (-0.02  ±  0.15)% and a mean absolute error of (0.10  ±  0.15)%. Thus, in this study, the potential of DECT to decrease range uncertainty could be confirmed in biological tissue.

  10. Spin-charge coupled dynamics driven by a time-dependent magnetization

    NASA Astrophysics Data System (ADS)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  11. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH.

    PubMed

    Allemeersch, Joke; Van Vooren, Steven; Hannes, Femke; De Moor, Bart; Vermeesch, Joris Robert; Moreau, Yves

    2009-11-19

    Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies.

  12. Vector SIMP dark matter

    DOE PAGES

    Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric; ...

    2017-10-24

    Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less

  13. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  14. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography.

    PubMed

    Imbe, Masatoshi

    2018-03-20

    The optical configuration proposed in this paper consists of a 4-f optical setup with the wavefront modulation device on the Fourier plane, such as a concave mirror and a spatial light modulator. The transverse magnification of reconstructed images with the proposed configuration is independent of locations of an object and an image sensor; therefore, reconstructed images of object(s) at different distances can be scaled with a fixed transverse magnification. It is yielded based on Fourier optics and mathematically verified with the optical matrix method. Numerical simulation results and experimental results are also given to confirm the fixity of the reconstructed images.

  15. Femtosecond electron bunches, source and characterization

    NASA Astrophysics Data System (ADS)

    Thongbai, C.; Kusoljariyakul, K.; Rimjaem, S.; Rhodes, M. W.; Saisut, J.; Thamboon, P.; Wichaisirimongkol, P.; Vilaithong, T.

    2008-03-01

    A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as σ z˜180 fs with (1-6)×10 8 electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described.

  16. Pseudomagnetic helicons

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    The existence of pseudomagnetic helicons is predicted for strained Dirac and Weyl materials. The corresponding collective modes are reminiscent of the usual helicons in metals in strong magnetic fields but can exist even without a magnetic field due to a strain-induced background pseudomagnetic field. The properties of both pseudomagnetic and magnetic helicons are investigated in Weyl matter using the formalism of the consistent chiral kinetic theory. It is argued that the helicon dispersion relations are affected by the electric and chiral chemical potentials, the chiral shift, and the energy separation between the Weyl nodes. The effects of multiple pairs of Weyl nodes are also discussed. A simple setup for experimental detection of pseudomagnetic helicons is proposed.

  17. Vector SIMP dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Hochberg, Yonit; Kuflik, Eric; Lee, Hyun Min; Mambrini, Yann; Murayama, Hitoshi; Pierre, Mathias

    2017-10-01

    Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, all while remaining consistent with experimental constraints.

  18. Vector SIMP dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric

    Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less

  19. New method of writing long-period fiber gratings using high-frequency CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Gao-Ran; Song, Ying; Zhang, Wen-Tao; Jiang, Yue; Li, Fang

    2016-11-01

    In the paper, the Long period fiber gratings (LPFG) were fabricated in a single-mode fiber using a high frequency CO2 laser system with the point-to-point technique. The experimental setup consists of a CO2 laser controlling system, a focusing system located at a motorized linear stage, a fiber alignment stage, and an optical spectrum analyzer to monitor the transmission spectrum of the LPFG. The period of the LPFG is precisely inscribed by periodically turning on/off the laser shutter while the motorized linear stage is driven to move at a constant speed. The efficiency of fiber writing process is improved.

  20. Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadavalli, Nataraja Sekhar; Santer, Svetlana, E-mail: santer@uni-potsdam.de; Saphiannikova, Marina

    2014-08-04

    In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behaviormore » of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the trans-cis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings.« less

  1. Unidirectional adaptation in tempo in pairs of chimpanzees during simultaneous tapping movement: an examination under face-to-face setup.

    PubMed

    Yu, Lira; Tomonaga, Masaki

    2016-04-01

    Many studies have reported a spontaneous nature to synchronized movement in humans and in non-human primates. However, it is not yet clear whether individuals mutually adapt their movement to each other or whether one individual significantly changes to synchronize with the other. In the current study, we examined a directionality of the tempo adaptation to understand an introductive process of interactional synchrony in pairs of chimpanzees. Four pairs, consisting of five female chimpanzees, produced a finger-tapping movement under a face-to-face experimental setup where both auditory and visual cues of the partner's movement were available. Two test conditions were prepared: alone and paired. An analysis of the tapping tempo depending on condition showed that only one chimpanzee in each pair significantly changed their tapping tempo in the direction of the partner's tapping tempo in the paired condition compared with the alone condition. The current study demonstrated that unidirectional adaptation in tempo occurs in pairs of chimpanzees when they simultaneously produce the tapping movement under auditory and visual interaction.

  2. Experimental Study of a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  3. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.

    2012-11-20

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H{sub 2} can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H{sub 2} newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H{sub 2} and D{sub 2} formed on the surface of porous amorphous water ice held at 10more » K. We report for the first time the OPR value for newly formed D{sub 2}, consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H{sub 2} formation on surfaces at low temperature.« less

  4. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    DOE PAGES

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; ...

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in compositionmore » of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecularmore » hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.« less

  6. Performance of velocity vector estimation using an improved dynamic beamforming setup

    NASA Astrophysics Data System (ADS)

    Munk, Peter; Jensen, Joergen A.

    2001-05-01

    Estimation of velocity vectors using transverse spatial modulation has previously been presented. Initially, the velocity estimation was improved using an approximated dynamic beamformer setup instead of a static combined with a new velocity estimation scheme. A new beamformer setup for dynamic control of the acoustic field, based on the Pulsed Plane Wave Decomposition (PPWD), is presented. The PPWD gives an unambiguous relation between a given acoustic field and the time functions needed on an array transducer for transmission. Applying this method for the receive beamformation results in a setup of the beamformer with different filters for each channel for each estimation depth. The method of the PPWD is illustrated by analytical expressions of the decomposed acoustic field and these results are used for simulation. Results of velocity estimates using the new setup are given on the basis of simulated and experimental data. The simulation setup is an attempt to approximate the situation present when performing a scanning of the carotid artery with a linear array. Measurement of the flow perpendicular to the emission direction is possible using the approach of transverse spatial modulation. This is most often the case in a scanning of the carotid artery, where the situation is handled by an angled Doppler setup in the present ultrasound scanners. The modulation period of 2 mm is controlled for a range of 20-40 mm which covers the typical range of the carotid artery. A 6 MHz array on a 128-channel system is simulated. The flow setup in the simulation is based on a vessel with a parabolic flow profile for a 60 and 90-degree flow angle. The experimental results are based on the backscattered signal from a sponge mounted in a stepping device. The bias and std. Dev. Of the velocity estimate are calculated for four different flow angles (50,60,75 and 90 degrees). The velocity vector is calculated using the improved 2D estimation approach at a range of depths.

  7. Interoperative efficiency in minimally invasive surgery suites.

    PubMed

    van Det, M J; Meijerink, W J H J; Hoff, C; Pierie, J P E N

    2009-10-01

    Performing minimally invasive surgery (MIS) in a conventional operating room (OR) requires additional specialized equipment otherwise stored outside the OR. Before the procedure, the OR team must collect, prepare, and connect the equipment, then take it away afterward. These extra tasks pose a thread to OR efficiency and may lengthen turnover times. The dedicated MIS suite has permanently installed laparoscopic equipment that is operational on demand. This study presents two experiments that quantify the superior efficiency of the MIS suite in the interoperative period. Preoperative setup and postoperative breakdown times in the conventional OR and the MIS suite in an experimental setting and in daily practice were analyzed. In the experimental setting, randomly chosen OR teams simulated the setup and breakdown for a standard laparoscopic cholecystectomy (LC) and a complex laparoscopic sigmoid resection (LS). In the clinical setting, the interoperative period for 66 LCs randomly assigned to the conventional OR or the MIS suite were analyzed. In the experimental setting, the setup and breakdown times were significantly shorter in the MIS suite. The difference between the two types of OR increased for the complex procedure: 2:41 min for the LC (p < 0.001) and 10:47 min for the LS (p < 0.001). In the clinical setting, the setup and breakdown times as a whole were not reduced in the MIS suite. Laparoscopic setup and breakdown times were significantly shorter in the MIS suite (mean difference, 5:39 min; p < 0.001). Efficiency during the interoperative period is significantly improved in the MIS suite. The OR nurses' tasks are relieved, which may reduce mental and physical workload and improve job satisfaction and patient safety. Due to simultaneous tasks of other disciplines, an overall turnover time reduction could not be achieved.

  8. High speed stereovision setup for position and motion estimation of fertilizer particles leaving a centrifugal spreader.

    PubMed

    Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G

    2014-11-13

    A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.

  9. A novel experimental setup for energy loss and charge state measurements in dense moderately coupled plasma using laser-heated hohlraum targets

    NASA Astrophysics Data System (ADS)

    Ortner, A.; Schumacher, D.; Cayzac, W.; Frank, A.; Basko, M. M.; Bedacht, S.; Blazevic, A.; Faik, S.; Kraus, D.; Rienecker, T.; Schaumann, G.; Tauschwitz, An.; Wagner, F.; Roth, M.

    2016-03-01

    We report on a new experimental setup for ion energy loss measurements in dense moderately coupled plasma which has recently been developed and tested at GSI Darmstadt. A partially ionized, moderately coupled carbon plasma (ne ≤ 0.8• 1022 cm-3, Te = 15 eV, z = 2.5, Γ = 0.5) is generated by volumetrical heating of two thin carbon foils with soft X-rays. This plasma is then probed by a bunched heavy ion beam. For that purpose, a special double gold hohlraum target of sub-millimeter size has been developed which efficiently converts intense laser light into thermal radiation and guarantees a gold-free interaction path for the ion beam traversing the carbon plasma. This setup allows to do precise energy loss measurements in non-ideal plasma at the level of 10 percent solid-state density.

  10. Application of activation methods on the Dubna experimental transmutation set-ups.

    PubMed

    Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M

    2003-02-01

    High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.

  11. Development of an experimental setup for testing the properties of γ/γ' superalloys

    NASA Astrophysics Data System (ADS)

    Christophe, Siret; Bernard, Viguier; Claude, Salabura Jean; Eric, Andrieu; Sandrine, Lesterlin

    2010-07-01

    Certification tests on turboshaft engines for helicopters can expose components as high pressure turbine blades to very high temperature during short time periods. To simulate these complex temperature and mechanical stress loadings and to study dimensional and microstructural stability under severe testing conditions, an experimental set-up has been recently developed. In this paper, we first present this new device and describe its performances. Then, the device is used to study the effect of heating procedure on creep results at 1200°C and rafting during primary creep on the single crystal nickel-based superalloy MC2.

  12. Millimeter- and submillimeter-wave characterization of various fabrics.

    PubMed

    Dunayevskiy, Ilya; Bortnik, Bartosz; Geary, Kevin; Lombardo, Russell; Jack, Michael; Fetterman, Harold

    2007-08-20

    Transmission measurements of 14 fabrics are presented in the millimeter-wave and submillimeter-wave electromagnetic regions from 130 GHz to 1.2 THz. Three independent sources and experimental set-ups were used to obtain accurate results over a wide spectral range. Reflectivity, a useful parameter for imaging applications, was also measured for a subset of samples in the submillimeter-wave regime along with polarization sensitivity of the transmitted beam and transmission through doubled layers. All of the measurements were performed in free space. Details of these experimental set-ups along with their respective challenges are presented.

  13. COSY-11: an Experimental Facility for Studying Meson Production in Free and Quasi-free Nucleon-Nucleon Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaja, P.; Janusz, M.; Jarczyk, L.

    2005-10-26

    The COSY-11 experimental setup is an internal facility installed at the COoler SYnchrotron COSY in Juelich. It allows to investigate meson production in free and quasi-free nucleon-nucleon collisions, eg. pp {yields} pp meson and pd {yields} pspnp meson reactions. Drift chambers and scintillators permit to measure outgoing protons, separated in the magnetic field of the COSY-11 dipole. Neutrons are registered in the neutron modular detector installed downstream from the target. Recently, the experimental setup has been extended with spectator detector, deuteron drift chamber and polarization monitoring system, and since then meson production can be investigated also as a function ofmore » spin and isospin of colliding nucleons.« less

  14. Artificial cochlea and acoustic black hole travelling waves observation: Model and experimental results

    NASA Astrophysics Data System (ADS)

    Foucaud, Simon; Michon, Guilhem; Gourinat, Yves; Pelat, Adrien; Gautier, François

    2014-07-01

    An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel-Kramers-Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plate's thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves.

  15. Investigation of pile setup (freeze) in Alabama : development of a setup prediction method and implementation into LRFD driven pile design.

    DOT National Transportation Integrated Search

    2015-06-01

    The Alabama Department of Transportation (ALDOT) often uses deep foundations : consisting of driven piles, particularly in the southern half of the state, to support bridges or other : highway structures. In the fiscal year 2012, a total of 22 bridge...

  16. GRAPhEME: a setup to measure (n, xn γ) reaction cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Greg; Bacquias, A.; Capdevielle, O.

    2015-07-01

    Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {supmore » nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)« less

  17. Reliable measurement of E. coli single cell fluorescence distribution using a standard microscope set-up.

    PubMed

    Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele

    2017-01-01

    Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).

  18. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  19. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.

  20. Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokshin, Konstantin A.; Zhao Yusheng

    2005-06-15

    We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld,more » and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K.« less

  1. Distributed state machine supervision for long-baseline gravitational-wave detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org

    The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less

  2. Design and development aspects of flexure mechanism for high precision application

    NASA Astrophysics Data System (ADS)

    Sollapur, Shrishail B.; Patil, M. S.; Deshmukh, S. P.

    2018-04-01

    Planer XY Flexurel Mechanisms has various applications in precision motion mechanisms. A flexural mechanism generates relative motion between fixed support and motion stage using flexibility of material. This mechanism offers zero backlash, frictionless motion and high order repeatability. It is relatively compact in design as compared to rigid link mechanism. The merits of using flexure is complete mechanism can be from single monolith. Modelling of flexural mechanism to provide accurate scanning of comparatively larger range at a higher speed. Static Analysis of mechanism is carried out on FEA tool to determine static deflection of motion stage. Further Mechanism is actuated with the help of weight pan and weights. The resultant displacement is measured on Dial Gauge Indicator. Experimental set-up consists of Flexural mechanism, Dial Gauge, Weight Pan and Weights, Pulley, String, Small metal strip, Optical Bread Board etc. Further experimental Results and Analytical Results are compared and minimum deviation is found.

  3. A Wave Chaotic Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan

    Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.

  4. Online games: a novel approach to explore how partial information influences human random searches

    NASA Astrophysics Data System (ADS)

    Martínez-García, Ricardo; Calabrese, Justin M.; López, Cristóbal

    2017-01-01

    Many natural processes rely on optimizing the success ratio of a search process. We use an experimental setup consisting of a simple online game in which players have to find a target hidden on a board, to investigate how the rounds are influenced by the detection of cues. We focus on the search duration and the statistics of the trajectories traced on the board. The experimental data are explained by a family of random-walk-based models and probabilistic analytical approximations. If no initial information is given to the players, the search is optimized for cues that cover an intermediate spatial scale. In addition, initial information about the extension of the cues results, in general, in faster searches. Finally, strategies used by informed players turn into non-stationary processes in which the length of e ach displacement evolves to show a well-defined characteristic scale that is not found in non-informed searches.

  5. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    PubMed

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  6. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  7. Online games: a novel approach to explore how partial information influences human random searches.

    PubMed

    Martínez-García, Ricardo; Calabrese, Justin M; López, Cristóbal

    2017-01-06

    Many natural processes rely on optimizing the success ratio of a search process. We use an experimental setup consisting of a simple online game in which players have to find a target hidden on a board, to investigate how the rounds are influenced by the detection of cues. We focus on the search duration and the statistics of the trajectories traced on the board. The experimental data are explained by a family of random-walk-based models and probabilistic analytical approximations. If no initial information is given to the players, the search is optimized for cues that cover an intermediate spatial scale. In addition, initial information about the extension of the cues results, in general, in faster searches. Finally, strategies used by informed players turn into non-stationary processes in which the length of e ach displacement evolves to show a well-defined characteristic scale that is not found in non-informed searches.

  8. Experimental and numerical analysis of convergent nozzlex

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Rakham, Bhupal

    2017-05-01

    In this paper the main focus was given to convergent nozzle where both the experimental and numerical calculations were carried out with the support of standardized literature. In the recent years the field of air breathing and non-air breathing engine developments significantly increase its performance. To enhance the performance of both the type of engines the nozzle is the one of the component which will play a vital role, especially selecting the type of nozzle depends upon the vehicle speed requirement and aerodynamic behavior at most important in the field of propulsion. The convergent nozzle flow experimental analysis done using scaled apparatus and the similar setup was arranged artificially in the ANSYS software for doing the flow analysis across the convergent nozzle. The consistent calculation analysis are done based on the public literature survey to validate the experimental and numerical simulation results of convergent nozzle. Using these two experimental and numerical simulation approaches the best fit results will bring up to meet the design requirements. However the comparison also made to meet the reliability of the work on design criteria of convergent nozzle which can entrench in the field of propulsion applications.

  9. Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.

    2016-11-01

    Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.

  10. Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Tolosa-Delgado, A.; Agramunt, J.; Ahn, D. S.; Algora, A.; Baba, H.; Bae, S.; Brewer, N. T.; Caballero Folch, R.; Calvino, F.; Coleman-Smith, P. J.; Cortes, G.; Davinson, T.; Dillmann, I.; Domingo-Pardo, C.; Estrade, A.; Fukuda, N.; Go, S.; Griffin, C. J.; Grzywacz, R.; Ha, J.; Hall, O.; Harkness-Brennan, L.; Isobe, T.; Kahl, D.; Kiss, G. G.; Kogimtzis, M.; Kubono, S.; Labiche, M.; Lazarus, I.; Lee, J.; Liu, J.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Moon, B.; Morales, A. I.; Nepal, N.; Nishimura, S.; Page, R. D.; Phong, V. H.; Podolyak, Z.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Riego, A.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Shimizu, Y.; Simpson, J.; Söderström, P.-A.; Stracener, D. W.; Sumikama, T.; Suzuki, H.; Tain, J. L.; Takechi, M.; Takeda, H.; Tarifeño-Saldivia, A.; Thomas, S. L.; Woods, P.

    2018-01-01

    The commissioning of a new setup for β-delayed neutron measurements was carried out successfully in November-2016, at the RIKEN Nishina Center in Japan. The β-decay half-lives and Pn branching ratios of several isotopes in the 78Ni region were measured. Details of the experimental setup and the first results are given.

  11. Flexibility and utility of pre-processing methods in converting STXM setups for ptychography - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, Catherine

    2015-08-20

    Ptychography is an advanced diffraction based imaging technique that can achieve resolution of 5nm and below. It is done by scanning a sample through a beam of focused x-rays using discrete yet overlapping scan steps. Scattering data is collected on a CCD camera, and the phase of the scattered light is reconstructed with sophisticated iterative algorithms. Because the experimental setup is similar, ptychography setups can be created by retrofitting existing STXM beam lines with new hardware. The other challenge comes in the reconstruction of the collected scattering images. Scattering data must be adjusted and packaged with experimental parameters to calibratemore » the reconstruction software. The necessary pre-processing of data prior to reconstruction is unique to each beamline setup, and even the optical alignments used on that particular day. Pre-processing software must be developed to be flexible and efficient in order to allow experiments appropriate control and freedom in the analysis of their hard-won data. This paper will describe the implementation of pre-processing software which successfully connects data collection steps to reconstruction steps, letting the user accomplish accurate and reliable ptychography.« less

  12. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  13. Exposure setup to study potential adverse effects at GSM 1800 and UMTS frequencies on the auditory systems of rats.

    PubMed

    Lopresto, V; Pinto, R; De Vita, A; Mancini, S; Galloni, P; Marino, C; Ravazzani, P; Lovisolo, G A

    2007-01-01

    To investigate possible biological effects of exposure to electromagnetic (EM) fields at the frequencies of global system for mobile communication (GSM) 1800 system and universal mobile telecommunication system (UMTS) on the auditory system of rats, an exposure setup for in vivo experiments is presented. The study was carried out in the framework of two European research projects. The target of the investigation was the cochlea. A dosimetric study was performed, both numerically and through direct measurements, to assess the interaction of the radiated fields and the dose distribution in the biological target. For the local exposure of rats, a loop antenna operating at the frequency bands of interest was designed, realised and characterised through numerical and experimental dosimetric procedures. Moreover, an exposure apparatus was set up, consisting of three arrays of four loop antennas, placed on three levels, thus allowing simultaneous exposure of 12 rats to give statistical power to the experiments. To isolate the exposure arrays, the setup was assembled by a wooden rack with EM field absorbing panels, inserted among the levels and at the four sides of the rack. Isolation was verified by direct measurements. Two exposure arrays were simultaneously supplied, whereas the third one was used for sham exposure. Blind exposure was achieved through a black box, hiding physical connections to the microwave power supply. During exposure sessions, rats were restrained in special plastic jigs for repeatable positioning, thus assuring the fixed level of dose in the target.

  14. Experimental Investigation of the Flow Structure over a Delta Wing Via Flow Visualization Methods.

    PubMed

    Shen, Lu; Chen, Zong-Nan; Wen, Chihyung

    2018-04-23

    It is well known that the flow field over a delta wing is dominated by a pair of counter rotating leading edge vortices (LEV). However, their mechanism is not well understood. The flow visualization technique is a promising non-intrusive method to illustrate the complex flow field spatially and temporally. A basic flow visualization setup consists of a high-powered laser and optic lenses to generate the laser sheet, a camera, a tracer particle generator, and a data processor. The wind tunnel setup, the specifications of devices involved, and the corresponding parameter settings are dependent on the flow features to be obtained. Normal smoke wire flow visualization uses a smoke wire to demonstrate the flow streaklines. However, the performance of this method is limited by poor spatial resolution when it is conducted in a complex flow field. Therefore, an improved smoke flow visualization technique has been developed. This technique illustrates the large-scale global LEV flow field and the small-scale shear layer flow structure at the same time, providing a valuable reference for later detailed particle image velocimetry (PIV) measurement. In this paper, the application of the improved smoke flow visualization and PIV measurement to study the unsteady flow phenomena over a delta wing is demonstrated. The procedure and cautions for conducting the experiment are listed, including wind tunnel setup, data acquisition, and data processing. The representative results show that these two flow visualization methods are effective techniques for investigating the three-dimensional flow field qualitatively and quantitatively.

  15. Electron density and plasma dynamics of a spherical theta pinch

    NASA Astrophysics Data System (ADS)

    Teske, C.; Liu, Y.; Blaes, S.; Jacoby, J.

    2012-03-01

    A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m-3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.

  16. Study of materials for space processing

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1975-01-01

    Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.

  17. Experimental investigation of all-optical packet-level time slot assignment using two optical buffers cascaded.

    PubMed

    Sheng, Xinzhi; Feng, Zhen; Li, Bing

    2013-04-20

    We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.

  18. Experimental demonstration of the anti-maser

    NASA Astrophysics Data System (ADS)

    Mazzocco, Anthony; Aviles, Michael; Andrews, Jim; Dawson, Nathan; Crescimanno, Michael

    2012-10-01

    We denote by ``anti-maser'' a coherent perfect absorption (CPA) process in the radio frequency domain. We demonstrate several experimental realizations of the anti-maser suitable for an advanced undergraduate laboratory. Students designed, assembled and tested these devices, as well as the inexpensive laboratory setup and experimental protocol for displaying various CPA phenomenon.

  19. Control of the coherence behavior in a SFG interferometer through the multipump phases command.

    PubMed

    Darré, P; Lehmann, L; Grossard, L; Delage, L; Reynaud, F

    2018-03-19

    In this paper, we report on a novel method to control the coherence behavior in a sum frequency generation interferometer powered by two independent pump lines. At the output of the interferometer, the two incoherent fringe patterns must be superimposed to maximize the contrast. The first step consists in canceling the differential group delay. The second one uses the phase control on one pump to synchronize the fringe patterns. This innovative method is experimentally demonstrated with a setup involving a 1544 nm signal and two pump lines around 1064 nm leading to a converted signal around 630 nm. It can be easily extended to a greater number of pump lines.

  20. Detection of geometric phases in superconducting nanocircuits

    PubMed

    Falci; Fazio; Palma; Siewert; Vedral

    2000-09-21

    When a quantum-mechanical system undergoes an adiabatic cyclic evolution, it acquires a geometrical phase factor' in addition to the dynamical one; this effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnology should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may be applied to the design of gates for quantum computation.

  1. Sentinel lymph node detection by an optical method using scattered photons

    PubMed Central

    Tellier, Franklin; Ravelo, Rasata; Simon, Hervé; Chabrier, Renée; Steibel, Jérôme; Poulet, Patrick

    2010-01-01

    We present a new near infrared optical probe for the sentinel lymph node detection, based on the recording of scattered photons. A two wavelengths setup was developed to improve the detection threshold of an injected dye: the Patent Blue V dye. The method used consists in modulating each laser diode at a given frequency. A Fast Fourier Transform of the recorded signal separates both components. The signal amplitudes are used to compute relative Patent Blue V concentration. Results on the probe using phantoms model and small animal experimentation exhibit a sensitivity threshold of 3.2 µmol/L, which is thirty fold better than the eye visible threshold. PMID:21258517

  2. Gravity assisted recovery of liquid xenon at large mass flow rates

    NASA Astrophysics Data System (ADS)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  3. Measurement of the transverse polarization of electrons emitted in free-neutron decay.

    PubMed

    Kozela, A; Ban, G; Białek, A; Bodek, K; Gorel, P; Kirch, K; Kistryn, St; Kuźniak, M; Naviliat-Cuncic, O; Pulut, J; Severijns, N; Stephan, E; Zejma, J

    2009-05-01

    Both components of the transverse polarization of electrons (sigmaT1, sigmaT2) emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying sigmaT2, perpendicular to the neutron polarization and electron momentum, was found to be R=0.008+/-0.015+/-0.005. This value is consistent with time reversal invariance and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with sigmaT1, N=0.056+/-0.011+/-0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.

  4. 3D mapping of turbulence: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Dainty, Christopher; Paterson, Carl; Tallon, Michel

    2000-07-01

    In this paper, we present the first experimental results of the 3D mapping method. 3D mapping of turbulence is a method to remove the cone effect with multiple laser guide stars and multiple deformable mirrors. A laboratory experiment was realized to verify the theoretical predictions. The setup consisted of two turbulent phase screens (made with liquid crystal devices) and a Shack-Hartmann wavefront sensor. We describe the interaction matrix involved in reconstructing Zernike commands for multiple deformable mirror from the slope measurements made from laser guide stars. It is shown that mirror commands can indeed be reconstructed with the 3D mapping method. Limiting factors of the method, brought to light by this experiment are discussed.

  5. Experimental tests of coherence and entanglement conservation under unitary evolutions

    NASA Astrophysics Data System (ADS)

    Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan

    2018-04-01

    We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.

  6. Experimental study of the density of the helium-nitrogen gas system at low temperatures.

    NASA Astrophysics Data System (ADS)

    Milyutin, V. A.

    2017-11-01

    At the Department of TOT, an experimental setup was created to measure the density of a binary gas system from 100 to 300 K and pressures up to 16 MPa and with any mixture compositions. Experimental density for the helium-nitrogen system were determined by the piezometer of constant volume method. The amount of substance in the piezometer was measured by volumetric method. In this setup, the mixture of He - N2 was prepared in a special mixer for a series of p-v-T experiments, the concentration was determined by calculation using the equations of state of pure components. In the experiment, mixtures were prepared with molar concentrations, lying close to the range: 0.2, 0.4, 0.6 and 0.8.

  7. Decay of quadrupole-octupole 1- states in 40Ca and 140Ce

    NASA Astrophysics Data System (ADS)

    Derya, V.; Tsoneva, N.; Aumann, T.; Bhike, M.; Endres, J.; Gooden, M.; Hennig, A.; Isaak, J.; Lenske, H.; Löher, B.; Pietralla, N.; Savran, D.; Tornow, W.; Werner, V.; Zilges, A.

    2016-03-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E 1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ -decay behavior of candidates for the (21+⊗31-)1- state in the doubly magic nucleus 40Ca and in the heavier and semimagic nucleus 140Ce is investigated. Methods: (γ ⃗,γ') experiments have been carried out at the High Intensity γ -ray Source (HI γ S ) facility in combination with the high-efficiency γ -ray spectroscopy setup γ3 consisting of HPGe and LaBr3 detectors. The setup enables the acquisition of γ -γ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40Ca the decay into the 31- state was observed, while for 140Ce the direct decays into the 21+ and the 02+ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N =82 isotones. In addition, negative parities for two J =1 states in 44Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11- excitation in the light-to-medium-mass nucleus 40Ca as well as in the stable even-even N =82 nuclei.

  8. Bessel beams with spatial oscillating polarization

    PubMed Central

    Fu, Shiyao; Zhang, Shikun; Gao, Chunqing

    2016-01-01

    Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174

  9. Single-Camera Stereoscopy Setup to Visualize 3D Dusty Plasma Flows

    NASA Astrophysics Data System (ADS)

    Romero-Talamas, C. A.; Lemma, T.; Bates, E. M.; Birmingham, W. J.; Rivera, W. F.

    2016-10-01

    A setup to visualize and track individual particles in multi-layered dusty plasma flows is presented. The setup consists of a single camera with variable frame rate, and a pair of adjustable mirrors that project the same field of view from two different angles to the camera, allowing for three-dimensional tracking of particles. Flows are generated by inclining the plane in which the dust is levitated using a specially designed setup that allows for external motion control without compromising vacuum. Dust illumination is achieved with an optics arrangement that includes a Powell lens that creates a laser fan with adjustable thickness and with approximately constant intensity everywhere. Both the illumination and the stereoscopy setup allow for the camera to be placed at right angles with respect to the levitation plane, in preparation for magnetized dusty plasma experiments in which there will be no direct optical access to the levitation plane. Image data and analysis of unmagnetized dusty plasma flows acquired with this setup are presented.

  10. Real-cinematographic visualization of droplet ejection in thermal ink jets

    NASA Astrophysics Data System (ADS)

    Rembe, Christian; Patzer, Joachim; Hofer, Eberhard P.; Krehl, Peter

    1996-03-01

    Although thermal ink jet printers have gained a high market share there are still open questions left in the understanding of the processes in ink jet firing chambers. The experimental investigation of these processes is difficult due to the extremely short time durations of the different phenomena. For example, the bubble life time amounts to approximately 20 microsecond(s) . A new experimental set-up is presented to record phenomena of very short time duration like the bubble nucleation process and the beginning of droplet ejection. This set-up allows realcinematographic visualization with a local resolution of less than 1 micrometers and a time resolution of 10 ns. This also offers the possibility to investigate transient processes like the droplet ejection at high printing frequencies. The essential part of the set-up is a new high speed camera. With an exact evaluation of the digitized images the locus, velocity, and acceleration distributions of the phase interface from liquid to vapor/air can be measured. In addition the results of a numerical model with realistic geometry of the firing chamber and the nozzle have been compared with the experimental results to draw conclusions for pressure propagation in the vapor bubble.

  11. Quasi-isentropic compressibility of a strongly nonideal deuterium plasma at pressures of up to 5500 GPa: Nonideality and degeneracy effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il’kaev, R. I.; Fortov, V. E.

    We report on the experimental results on the quasi-isentropic compressibility of a strongly nonideal deuterium plasma that have been obtained on setups of cylindrical and spherical geometries in the pressure range of up to P ≈ 5500 GPa. We describe the characteristics of experimental setups, as well as the methods for the diagnostics and interpretation of the experimental results. The trajectory of metal shells that compress the deuterium plasma was detected using powerful pulsed X-ray sources with a maximal electron energy of up to 60 MeV. The values of the plasma density, which varied from ρ ≈ 0.8 g/cm{sup 3}more » to ρ ≈ 6 g/cm{sup 3}, which corresponds to pressure P ≈ 5500 GPa (55 Mbar), were determined from the measured value of the shell radius at the instant that it was stopped. The pressure of the compressed plasma was determined using gasdynamic calculations taking into account the actual characteristics of the experimental setups. We have obtained a strongly compressed deuterium plasma in which electron degeneracy effects under the conditions of strong interparticle interaction are significant. The experimental results have been compared with the theoretical models of a strongly nonideal partly degenerate plasma. We have obtained experimental confirmation of the plasma phase transition in the pressure range near 150 GPa (1.5 Mbar), which is in keeping with the conclusion concerning anomaly in the compressibility of the deuterium plasma drawn in [1].« less

  12. Measurement of high-energy prompt gamma-rays from neutron induced fission of U-235

    NASA Astrophysics Data System (ADS)

    Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Léguillon, Romain; Ogawa, Tatsuhiko; Soldner, Torsten; Hambsch, Franz-Josef; Astier, Alain; Pollitt, Andrew; Petrache, Costel; Tsekhanovich, Igor; Mathieu, Ludovic; Aïche, Mourad; Frost, Robert; Czajkowski, Serge; Guo, Song; Köster, Ulli

    2017-09-01

    We have developed a new setup to measure prompt γ-rays from the 235U(nth,f) reaction. The setup consists of two multi-wire proportional counters (MWPCs) to detect the fission fragments, two LaBr3(Ce) scintillators to measure the γ-rays. The highly efficient setup was installed at the PF1B beam line of the Institut Laue Langevin (ILL). We have successfully measured the γ-ray spectrum up to about 20 MeV for the fist time in neutron-induced fission.

  13. Dosimetric challenges of small animal irradiation with a commercial X-ray unit.

    PubMed

    Kuess, Peter; Bozsaky, Eva; Hopfgartner, Johannes; Seifritz, Gerhard; Dörr, Wolfgang; Georg, Dietmar

    2014-12-01

    A commercial X-ray unit was recently installed at the Medical University Vienna for partial and whole body irradiation of small experimental animals. For 200 kV X-rays the dose deviations with respect to the reference dose measured in the geometrical center of the potential available field size was investigated for various experimental setup plates used for mouse irradiations. Furthermore, the HVL was measured in mm Al and mm Cu at 200 kV for two types of filtration. Three different setup constructions for small animal irradiation were dosimetrically characterized, covering field sizes from 9×20 mm2 to 210×200 mm2. Different types of detectors were investigated. Additionally LiF:MG,Ti TLD chips were used for mouse in-vivo dosimetry. The use of an additional 0.5 mm Cu filter reduced the deviation of the dose between each irradiation position on the setup plates. Multiple animals were irradiated at the same time using an individual setup plate for each experimental purpose. The dose deviations of each irradiation position to the center was measured to be ±4% or better. The depth dose curve measured in a solid water phantom was more pronounced for smaller field sizes. The comparison between estimated dose and measured dose in a PMMA phantom regarding the dose decline yielded in a difference of 3.9% at 20 mm depth. In-vivo measurements in a mouse snouts irradiation model confirmed the reference dosimetry, accomplished in PMMA phantoms, in terms of administered dose and deviation within different points of measurement. The outlined experiments dealt with a wide variety of dosimetric challenges during the installation of a new X-ray unit in the laboratory. The depth dose profiles measured for different field sizes were in good agreement with literature data. Different field sizes and spatial arrangement of the animals (depending on each purpose) provide additional challenges for the dosimetric measurements. Thorough dosimetric commissioning has to be performed before a new experimental setup is approved for biological experiments. Copyright © 2014. Published by Elsevier GmbH.

  14. Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial.

    PubMed

    Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini

    2016-01-01

    To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann-Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion.

  15. Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial

    PubMed Central

    Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini

    2016-01-01

    To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann–Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion. PMID:27386011

  16. Experiments and Cycling at the LHC Prototype Half-Cell

    NASA Astrophysics Data System (ADS)

    Saban, R.; Casas-Cubillos, J.; Coull, L.; Cruikshank, P.; Dahlerup-Petersen, K.; Hilbert, B.; Krainz, G.; Kos, N.; Lebrun, P.; Momal, F.; Misiaen, D.; Parma, V.; Poncet, A.; Riddone, G.; Rijllart, A.; Rodriguez-Mateos, F.; Schmidt, R.; Serio, L.; Wallen, E.; van Weelderen, R.; Williams, L. R.

    1997-05-01

    The first version of the LHC prototype half-cell has been in operation since February 1995. It consists of one quadrupole and three 10-m twin aperture dipole magnets which operate at 1.8 K. This experimental set-up has been used to observe and study phenomena which appear when the systems are assembled in one unit and influence one another. The 18-month long experimental program has validated the cryogenic system and yielded a number of results on cryogenic instrumentation, magnet protection and vacuum in particular under non-standard operating conditions. The program was recently complemented by the cycling experiment: it consisted in powering the magnets following the ramp rates which will be experienced by the magnets during an LHC injection. In order to simulate 10 years of routine operation of LHC, more than 2000 1-hour cycles were performed interleaved with provoked quenches. The objective of this experiment was to reveal eventual flaws in the design of components. The prototype half-cell performed to expectations showing no sign of failure of fatigue of components for more than 2000 cycles until one of the dipoles started exhibiting an erratic quench behavior.

  17. Rainfall estimation using microwave links. Results from an experimental setup in Luxembourg

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Matgen, Patrick; Pfister, Laurent

    2010-05-01

    Microwave links represent a valid alternative to traditional rainfall estimation methods. They are commonly used in mobile phone communication, and they constitute built-in widely distributed networks. Due to their ability of providing high temporal and spatial resolution measurements, their use is particularly suitable in urban settings. We here show results from an experimental setup in Luxembourg City, where two dual frequency links have been installed. The links cover a distance of about 4km, and measure power attenuation at 1 min. timestep. The links have been equipped with several recording raingauges, which measure rainfall in real-time communicating through a wireless connection. This set-up has been used to analyze in detail the mapping between attenuation and rainfall intensity, and gain insights into the potential accuracy of these instruments. In addition, we investigated the relation between rainfall and discharge response of the urban area of Luxembourg, which shows the potential utility of high frequency rainfall measurements for urban environments.

  18. A Simple Experimental Setup for Teaching Additive Colors with Arduino

    NASA Astrophysics Data System (ADS)

    Carvalho, Paulo Simeão; Hahn, Marcelo

    2016-04-01

    The result of additive colors is always fascinating to young students. When we teach this topic to 14- to 16-year-old students, they do not usually notice we use maximum light quantities of red (R), green (G), and blue (B) to obtain yellow, magenta, and cyan colors in order to build the well-known additive color diagram of Fig. 1. But how about using different light intensities for R, G, and B? What colors do we get? This problem of color mixing has been intensively discussed for decades by several authors, as pointed out by Ruiz's "Color Addition and Subtraction Apps" work and the references included therein. An early LED demonstrator for additive color mixing dates back to 1985, and apps to illustrate color mixing are available online. In this work, we describe an experimental setup making use of a microcontroller device: the Arduino Uno. This setup is designed as a game in order to improve students' understanding of color mixing.

  19. Influence of hydride orientation on fracture toughness of CWSR Zr-2.5%Nb pressure tube material between RT and 300 °C

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi K.; Sunil, Saurav; Kumawat, B. K.; Singh, R. N.; Tewari, Asim; Kashyap, B. P.

    2017-05-01

    An experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool. The design of setup was based on ensuring a hoop stress in the spool greater than threshold stress for reorientation of hydrides in this alloy, which was achieved by manipulating the thermal expansion coefficient of the plunger and pressure tube material and diametral interference between them. The experimental setup was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment. The metallographic examination of the hydrogen charged spools subjected to stress re-orientation treatment using this set up revealed formation of predominantly radial hydrides. The variation of fracture toughness of material containing radial hydride with test temperature showed typical 'S' curve behavior with transition temperatures more than that of the material containing circumferential hydride.

  20. Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives.

    PubMed

    Rimboud, M; Pocaznoi, D; Erable, B; Bergel, A

    2014-08-21

    Over about the last ten years, microbial anodes have been the subject of a huge number of fundamental studies dealing with an increasing variety of possible application domains. Out of several thousands of studies, only a minority have used 3-electrode set-ups to ensure well-controlled electroanalysis conditions. The present article reviews these electroanalytical studies with the admitted objective of promoting this type of investigation. A first recall of basics emphasises the advantages of the 3-electrode set-up compared to microbial fuel cell devices if analytical objectives are pursued. Experimental precautions specifically relating to microbial anodes are then noted and the existing experimental set-ups and procedures are reviewed. The state-of-the-art is described through three aspects: the effect of the polarisation potential on the characteristics of microbial anodes, the electroanalytical techniques, and the electrode. We hope that the final outlook will encourage researchers working with microbial anodes to strengthen their engagement along the multiple exciting paths of electroanalysis.

  1. Optical sensor nanoparticles in artificial sediments--a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses.

    PubMed

    Koren, Klaus; Brodersen, Kasper E; Jakobsen, Sofie L; Kühl, Michael

    2015-02-17

    Seagrass communities provide important ecosystems services in coastal environments but are threatened by anthropogenic impacts. Especially the ability of seagrasses to aerate their below-ground tissue and immediate rhizosphere to prevent sulfide intrusion from the surrounding sediment is critical for their resilience to environmental disturbance. There is a need for chemical techniques that can map the O2 distribution and dynamics in the seagrass rhizosphere upon environmental changes and thereby identify critical stress thresholds of e.g. water flow, turbidity, and O2 conditions in the water phase. In a novel experimental approach, we incorporated optical O2 sensor nanoparticles into a transparent artificial sediment matrix consisting of pH-buffered deoxygenated sulfidic agar. Seagrass growth and photosynthesis was not inhibited in the experimental setup when the below-ground biomass was immobilized in the artificial sulfidic sediment with nanoparticles and showed root growth rates (∼ 5 mm day(-1)) and photosynthetic quantum yields (∼ 0.7) comparable to healthy seagrasses in their natural habitat. We mapped the real-time below ground O2 distribution and dynamics in the whole seagrass rhizosphere during experimental manipulation of light exposure and O2 content in the overlaying water. Those manipulations showed that oxygen release from the belowground tissue is much higher in light as compared to darkness and that water column hypoxia leads to diminished oxygen levels around the rhizome/roots. Oxygen release was visualized and analyzed on a whole rhizosphere level, which is a substantial improvement to existing methods relying on point measurements with O2 microsensors or partial mapping of the rhizosphere in close contact with a planar O2 optode. The combined use of optical nanoparticle-based sensors with artificial sediments enables imaging of chemical microenvironments in the rhizosphere of aquatic plants at high spatiotemporal resolution with a relatively simple experimental setup and thus represents a significant methodological advancement for studies of environmental impacts on aquatic plant ecophysiology.

  2. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiberg, Gustav K. H., E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias, E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allowsmore » an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.« less

  3. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  4. Experimental and numerical investigation of the nonlinear dynamics of compliant mechanisms for deployable structures

    NASA Astrophysics Data System (ADS)

    Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier

    2018-02-01

    This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.

  5. High dimensional linear regression models under long memory dependence and measurement error

    NASA Astrophysics Data System (ADS)

    Kaul, Abhishek

    This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.

  6. Prediction and validation of the energy dissipation of a friction damper

    NASA Astrophysics Data System (ADS)

    Lopez, I.; Nijmeijer, H.

    2009-12-01

    Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of mechanical systems. In the present work it is shown that the maximum energy dissipation and corresponding optimum friction force of friction dampers with stiff localized contacts and large relative displacements within the contact, can be determined with sufficient accuracy using a dry (Coulomb) friction model. Both the numerical calculations with more complex friction models and the experimental results in a laboratory test set-up show that these two quantities are relatively robust properties of a system with friction. The numerical calculations are performed with several friction models currently used in the literature. For the stick phase smooth approximations like viscous damping or the arctan function are considered but also the non-smooth switch friction model is used. For the slip phase several models of the Stribeck effect are used. The test set-up for the laboratory experiments consists of a mass sliding on parallel ball-bearings, where additional friction is created by a sledge attached to the mass, which is pre-stressed against a friction plate. The measured energy dissipation is in good agreement with the theoretical results for Coulomb friction.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collisionmore » is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.« less

  8. Tandem ion mobility spectrometry coupled to laser excitation

    NASA Astrophysics Data System (ADS)

    Simon, Anne-Laure; Chirot, Fabien; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe

    2015-09-01

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  9. N values estimation based on photon flux simulation with Geant4 toolkit.

    PubMed

    Sun, Z J; Danjaji, M; Kim, Y

    2018-06-01

    N values are routinely introduced in photon activation analysis (PAA) as the ratio of special activities of product nuclides to compare the relative intensities of different reaction channels. They determine the individual activities of each radioisotope and the total activity of the sample, which are the primary concerns of radiation safety. Traditionally, N values are calculated from the gamma spectroscopy in real measurements by normalizing the activities of individual nuclides to the reference reaction [ 58 Ni(γ, n) 57 Ni] of the nickel monitor simultaneously irradiated in photon activation. Is it possible to use photon flux simulated by Monte Carlo software to calculate N values even before the actual irradiation starts? This study has applied Geant4 toolkit, a popular platform of simulating the passage of particles through matter, to generate photon flux in the samples. Assisted with photonuclear cross section from IAEA database, it is feasible to predict N values in different experimental setups for simulated target material. We have validated of this method and its consistency with Geant4. Results also show that N values are highly correlated with the beam parameters of incoming electrons and the setup of the electron-photon converter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier

    DTIC Science & Technology

    2016-09-01

    perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi -continuous wave regime...laser, amplifier, quasi -continuous wave 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...distribution unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Laser Experimental Setup and Results 2 3. Laser Amplifier Setup 6 4

  11. Fourier Analysis of a Vibrating String through a Low-Cost Experimental Setup and a Smartphone

    ERIC Educational Resources Information Center

    Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.

    2018-01-01

    In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This…

  12. Digital micromirror device as programmable rough particle in interferometric particle imaging.

    PubMed

    Fromager, M; Aït Ameur, K; Brunel, M

    2017-04-20

    The 2D autocorrelation of the projection of an irregular rough particle can be estimated using the analysis of its interferometric out-of-focus image. We report the development of an experimental setup that creates speckle-like patterns generated by "programmable" rough particles of desired-shape. It should become an important tool for the development of new setups, configurations, and algorithms in interferometric particle imaging.

  13. An experimental setup to characterize MR switched gradient-induced potentials.

    PubMed

    Fokapu, Odette; El-Tatar, Aziz

    2013-06-01

    We have developed an experimental setup as an in vitro research tool for studying the contamination of electrophysiological signals (EPS) by MRI environment; particularly, when due to the switched gradient-induced potentials. The system is composed of: 1) a MRI compatible module for the transmission of the EPS into the MRI tunnel, 2) a gelatin-based tissue-mimicking phantom, placed inside the tunnel, in which EPS is injected, 3) a detection module composed of a five input channel MRI compatible transmitter placed inside the tunnel, allowing an on-site pre-amplification of the bio-potentials and their transmission, via an optical fiber cable, to a four filtered output per channel receiver (350 Hz, 160 Hz, 80 Hz, and 40 Hz, for a total of 20 channels) placed in the control room, and 4) a signal processing algorithm used to analyze the generated induced potentials. A set of tests were performed to validate the electronic performances of the setup. We also present in this work an interesting application of the setup, i.e., the acquisition and analysis of the induced potentials with respect of the slice orientation for a given MRI sequence. Significant modifications of the time and frequency characteristics were observed with respect to axial, coronal or sagittal orientations.

  14. Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol

    PubMed Central

    Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2014-01-01

    The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431

  15. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  16. Automated quantum operations in photonic qutrits

    NASA Astrophysics Data System (ADS)

    Borges, G. F.; Baldijão, R. D.; Condé, J. G. L.; Cabral, J. S.; Marques, B.; Terra Cunha, M.; Cabello, A.; Pádua, S.

    2018-02-01

    We report an experimental implementation of automated state transformations on spatial photonic qutrits following the theoretical proposal made by Baldijão et al. [Phys. Rev. A 96, 032329 (2017), 10.1103/PhysRevA.96.032329]. A qutrit state is simulated by using three Gaussian beams, and after some state operations, the transformed state is available in the end in terms of the basis state. The state transformation setup uses a spatial light modulator and a calcite-based interferometer. The results reveal the usefulness of the operation method. The experimental data show a good agreement with theoretical predictions, opening possibilities for explorations in higher dimensions and in a wide range of applications. This is a necessary step in qualifying spatial photonic qudits as a competitive setup for experimental research in the implementation of quantum algorithms which demand a large number of steps.

  17. Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF

    NASA Astrophysics Data System (ADS)

    Barbagallo, M.; Andrzejewski, J.; Mastromarco, M.; Perkowski, J.; Damone, L. A.; Gawlik, A.; Cosentino, L.; Finocchiaro, P.; Maugeri, E. A.; Mazzone, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.; Colonna, N.; Aberle, O.; Amaducci, S.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Furman, V.; Göbel, K.; García, A. R.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Johnston, K.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Lo Meo, S.; Lonsdale, S. J.; Macina, D.; Manna, A.; Marganiec, J.; Martínez, T.; Martins-Correia, J. G.; Masi, A.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Pappalardo, A. D.; Patronis, N.; Pavlik, A.; Piscopo, M.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Robles, M. S.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schell, J.; Schillebeeckx, P.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weiss, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2018-04-01

    Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n, α) α cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.

  18. Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2015-11-01

    Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.

  19. Experimental Study of Quantum Graphs With and Without Time-Reversal Invariance

    NASA Astrophysics Data System (ADS)

    Anlage, Steven Mark; Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward

    An experimental setup consisting of a microwave network is used to simulate quantum graphs. The random coupling model (RCM) is applied to describe the universal statistical properties of the system with and without time-reversal invariance. The networks which are large compared to the wavelength, are constructed from coaxial cables connected by T junctions, and by making nodes with circulators time-reversal invariance for microwave propagation in the networks can be broken. The results of experimental study of microwave networks with and without time-reversal invariance are presented both in frequency domain and time domain. With the measured S-parameter data of two-port networks, the impedance statistics and the nearest-neighbor spacing statistics are examined. Moreover, the experiments of time reversal mirrors for networks demonstrate that the reconstruction quality can be used to quantify the degree of the time-reversal invariance for wave propagation. Numerical models of networks are also presented to verify the time domain experiments. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171 and the ONR Grant N000141512134.

  20. Experimental study of porous media flow using hydro-gel beads and LED based PIV

    NASA Astrophysics Data System (ADS)

    Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.

    2017-01-01

    A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.

  1. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  2. Experimental realization for abnormal reflection caused by an acoustic metasurface with subwavelength apertures

    NASA Astrophysics Data System (ADS)

    Liu, Xuanjun; Zeng, Xinwu; Gao, Dongbao; Shen, Weidong; Wang, Jianli; Wang, Shengchun

    2017-03-01

    The reflection characteristics of the unit cell, consisting of a subwavelength circular hole and a rigid wall, was discussed theoretically, and it was found that the phase shift of the reflected waves could cover almost 2π span by adjusting the hole radius when the acoustic waves normally impinge on it. Based on the analytical formulas, an acoustic metasurface (AMS) sample constructed by an array of unit cells with different radii was designed and fabricated. The sound pressure fields induced by the sample were then measured through the experimental setup and the reflected field pattern was derived after data processing. Experimental results and COMSOL simulations both demonstrated the fact that the designed AMS has the ability to reflect acoustic waves into an unusual yet controllable direction, verifying the correctness of the theory and design about the AMS in this paper. Simulations also show that the designed AMS has a narrow working bandwidth of 50 Hz around 800 Hz and its total thickness is about 1/8 of the incident wavelength, giving it the potential for the miniaturization and integration of acoustic devices.

  3. Geometry-constraint-scan imaging for in-line phase contrast micro-CT.

    PubMed

    Fu, Jian; Yu, Guangyuan; Fan, Dekai

    2014-01-01

    X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.

  4. Ecological Realism of US EPA Experimental Stream Facility ...

    EPA Pesticide Factsheets

    The USEPA’s Experimental Stream Facility (ESF) conducts meso-scale ecotoxicology studies that account for both structural and functional responses of whole stream communities to contaminants or other stressors. The 16 mesocosms of ESF are indoors and consist of a tiled run section (0.152 m W x 4.268 m L x 0.105 m D) that widens to a gravel riffle section (0.305 m W x 4.268 m L x 0.19 m D). They are intermediate size among studies reporting stream mesocosm results. Their set-up is unique for their size, with a high degree of engineering controls for continuous flow-through dose-response designs, yet fixed, chronic exposures to contaminants under conditions that quantifiably mimic real stream riffle/run habitat with consistent upstream renewal. With fifty standard operating procedures serving ESF studies, the background and boundary condition information is collected to determine the realism critical to the field relevance of the results. Parallel ex situ and in situ single species exposure formats including fish survival and fecundity metrics are also included. With this framework studies at ESF provide scientifically defensible evaluation of proposed aquatic life criteria. This presentation discusses the relevance and realism of USEPA's mesocosms studies conducted using the Experimental Stream Facility in Milford, OH within the context of understanding the role meso-scale results can play in validating aquatic life criteria for streams and, more generally, man

  5. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  6. An experimental evaluation of two effective medium theories for ultrasonic wave propagation in concrete.

    PubMed

    Chaix, Jean-François; Rossat, Mathieu; Garnier, Vincent; Corneloup, Gilles

    2012-06-01

    This study compares ultrasonic wave propagation modeling and experimental data in concrete. As a consequence of its composition and manufacturing process, this material has a high elastic scattering (sand and aggregates) and air (microcracks and porosities) content. The behavior of the "Waterman-Truell" and "Generalized Self Consistent Method" dynamic homogenization models are analyzed in the context of an application for strong heterogeneous solid materials, in which the scatterers are of various concentrations and types. The experimental validations of results predicted by the models are carried out by making use of the phase velocity and the attenuation of longitudinal waves, as measured by an immersed transmission setup. The test specimen material has a cement-like matrix containing spherical inclusions of air or glass, with radius close to the ultrasonic wavelength. The models are adapted to the case of materials presenting several types of scattering particle, and allow the propagation of longitudinal waves to be described at the scale of materials such as concrete. The validity limits for frequency and for particle volume ratio can be approached through a comparison with experimental data. The potential of these homogenization models for the prediction of phase velocity and attenuation in strongly heterogeneous solids is demonstrated.

  7. Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material

    NASA Astrophysics Data System (ADS)

    Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz

    2018-02-01

    The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.

  8. Make Your Own Transpiring Tree

    ERIC Educational Resources Information Center

    Martinez Vilalta, Jordi; Sauret, Miquel; Duro, Alicia; Pinol, Josep

    2003-01-01

    In this paper we present a simple set-up that illustrates the mechanism of sap ascent in plants and demonstrates that it can easily draw water up to heights of a few meters. The set-up consists of a tube with the lower end submerged in water and the upper one connected to a filter supported by a standard filter-holder. The evaporation of water…

  9. Potential Damage to Flight Hardware from MIL-STD-462 CS02 Setup

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.; Block, Nathan F.

    2002-01-01

    The MIL-STD-462 CS02 conducted susceptibility test setup, performed during electromagnetic compatibility (EMC) testing, consists of an audio transformer with the secondary used as an inductor and a large capacitor. Together, these two components form an L-type low-pass filter to minimize the injected test signal input into the power source. Some flight hardware power input configurations are not compatible with this setup and break into oscillation when powered up. This can damage flight hardware and caused a catastrophic failure to an item tested in the Goddard Space Flight Center (GSFC) Large EMC Test Facility.

  10. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    NASA Astrophysics Data System (ADS)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.

  11. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    ERIC Educational Resources Information Center

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  12. Plasmoid Propagation.

    DTIC Science & Technology

    1988-02-12

    experimentally , a pulsed power system com- prising separate anode and cathode pulsers was designed and assembled. A double diode was developed to produce...be closed. To initiate this assessment, Mission Research Corporation (MRC) performed a two-year primarily experimental investigation of non - neutral...through from the cathode nad to be designed . Experimentation with several materials and setups produced a workable design , using nylon stocking hose

  13. Development of an automated experimental setup for the study of ionic-exchange kinetics. Application to the ionic adsorption, equilibrium attainment and dissolution of apatite compounds.

    PubMed

    Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P

    1990-02-01

    An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.

  14. Gust wind tunnel study on ballast pick-up by high-speed trains

    NASA Astrophysics Data System (ADS)

    Navarro-Medina, F.; Sanz-Andres, A.; Perez-Grande, I.

    2012-01-01

    This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772-783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel's main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.

  15. Experimental setup for investigation of nanoclusters at cryogenic temperatures by electron spin resonance and optical spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, S., E-mail: maoshunghost@tamu.edu; Meraki, A.; McColgan, P. T.

    2014-07-15

    We present the design and performance of an experimental setup for simultaneous electron spin resonance (ESR) and optical studies of nanoclusters with stabilized free radicals at cryogenic temperatures. A gas mixture of impurities and helium after passing through a RF discharge for dissociation of molecules is directed onto the surface of superfluid helium to form the nanoclusters of impurities. A specially designed ESR cavity operated in the TE{sub 011} mode allows optical access to the sample. The cavity is incorporated into a homemade insert which is placed inside a variable temperature insert of a Janis {sup 4}He cryostat. The temperaturemore » range for sample investigation is 1.25–300 K. A Bruker EPR 300E and Andor 500i optical spectrograph incorporated with a Newton EMCCD camera are used for ESR and optical registration, respectively. The current experimental system makes it possible to study the ESR and optical spectra of impurity-helium condensates simultaneously. The setup allows a broad range of research at low temperatures including optically detected magnetic resonance, studies of chemical processes of the active species produced by photolysis in solid matrices, and investigations of nanoclusters produced by laser ablation in superfluid helium.« less

  16. An experimental study of dependence of hydro turbine vibration parameters on pressure pulsations in the flow path

    NASA Astrophysics Data System (ADS)

    Dekterev, D.; Maslennikova, A.; Abramov, A.

    2017-09-01

    The operation modes of the hydraulic power plant water turbine with the formation of a precessing vortex core were studied on the hydrodynamic set-up with the model of hydraulic unit. The dependence of low-frequency vibrations on flow pressure pulsations in the hydraulic unit was established. The results of the air injection effect on the vibrational parameters of the hydrodynamic set-up were presented.

  17. Experiments and Simulations of Exploding Aluminum Wires: Validation of ALEGRA-MHD

    DTIC Science & Technology

    2010-09-01

    ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) September 2010 2. REPORT TYPE Final...List of Tables vi Acknowledgements vii 1 . Introduction 1 2. Experimental Setup 2 3. Computational Setup 5 3.1 Description of ALEGRA

  18. Numerical modelling of distributed vibration sensor based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Masoudi, A.; Newson, T. P.

    2017-04-01

    A Distributed Vibration Sensor Based on Phase-Sensitive OTDR is numerically modeled. The advantage of modeling the building blocks of the sensor individually and combining the blocks to analyse the behavior of the sensing system is discussed. It is shown that the numerical model can accurately imitate the response of the experimental setup to dynamic perturbations a signal processing procedure similar to that used to extract the phase information from sensing setup.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.A.; Sanz, L., E-mail: lsanz@infis.ufu.br

    This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the pathmore » to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.« less

  20. New beamline optics of the x-ray undulator BW1 at DORIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, U.; Frahm, R.; Guertler, P.

    1996-12-31

    The X-ray undulator BW1 at the storage ring DORIS is a high brightness source for the spectral range from 2 to 20 keV. The undulator beam is used by three experiments with different distances to the source. The new optical elements allow the adaptation of the focal lengths to the needs of the experimental set-ups. The optical concept consists of a premirror with different optical surfaces, a double crystal monochromator and a focusing second mirror. Sagittal focusing is achieved either by using the cylindrical part of the premirror or by a bend crystal for a monochromatic beam, meridional focusing ismore » done with a pneumatic driven mirror bender for the second mirror.« less

  1. Simultaneously exciting two atoms with photon-mediated Raman interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-06-01

    We propose an approach to simultaneously excite two atoms by using a cavity-assisted Raman process in combination with a cavity-photon-mediated interaction. The system consists of a two-level atom and a Λ -type or V -type three-level atom, which are coupled together with a cavity mode. Having derived the effective Hamiltonian, we find that under certain circumstances a single photon can simultaneously excite two atoms. In addition, multiple photons and even a classical field can also simultaneously excite two atoms. As an example, we show a scheme to realize our proposal in a circuit QED setup, which is artificial atoms coupled with a cavity. The dynamics and the quantum-statistical properties of the process are investigated with experimentally feasible parameters.

  2. Batch settling curve registration via image data modeling.

    PubMed

    Derlon, Nicolas; Thürlimann, Christian; Dürrenmatt, David; Villez, Kris

    2017-05-01

    To this day, obtaining reliable characterization of sludge settling properties remains a challenging and time-consuming task. Without such assessments however, optimal design and operation of secondary settling tanks is challenging and conservative approaches will remain necessary. With this study, we show that automated sludge blanket height registration and zone settling velocity estimation is possible thanks to analysis of images taken during batch settling experiments. The experimental setup is particularly interesting for practical applications as it consists of off-the-shelf components only, no moving parts are required, and the software is released publicly. Furthermore, the proposed multivariate shape constrained spline model for image analysis appears to be a promising method for reliable sludge blanket height profile registration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    PubMed Central

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  4. Metamaterial split ring resonator as a sensitive mechanical vibration sensor

    NASA Astrophysics Data System (ADS)

    Sikha Simon, K.; Chakyar, Sreedevi P.; Andrews, Jolly; Joseph V., P.

    2017-06-01

    This paper introduces a sensitive vibration sensor based on microwave metamaterial Split Ring Resonator (SRR) capable of detecting any ground vibration. The experimental setup consists of single Broad-side Coupled SRR (BCSRR) unit fixed on a cantilever capable of sensitive vibrations. It is arranged between transmitting and receiving probes of a microwave measurement system. The absorption level variations at the resonant frequency due to the displacement from the reference plane of SRR, which is a function of the strength of external mechanical vibration, is analyzed. This portable and cost effective sensor working on a single frequency is observed to be capable of detecting even very weak vibrations. This may find potential applications in the field of tamper-proofing, mining, quarrying and earthquake sensing.

  5. High resolution, monochromatic x-ray topography capability at CHESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z.

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities,more » and presents experimental results from several applications.« less

  6. Experimental Study of under-platform Damper Kinematics in Presence of Blade Dynamics

    NASA Astrophysics Data System (ADS)

    Botto, D.; Gastaldi, C.; Gola, M. M.; Umer, M.

    2018-01-01

    Among the different devices used in the aerospace industries under-platform dampers are widely used in turbo engines to mitigate the blade vibration. Nevertheless, the damper behaviour is not easy to simulate and engineers have been working in order to improve the accuracy with which theoretical contact models predict the damper behaviour. Majority of the experimental setups collect experimental data in terms of blade amplitude reduction which do not increase the knowledge about the damper dynamics and therefore the uncertainty on the damper behaviour remains a big issue. In this paper, a novel test rig has been purposely designed to accommodate a single blade and two under-platform dampers to deeply investigate the damper-blade interactions. In this test bench, a contact force measuring system was designed to extensively measure the damper contact forces. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of new test rig and discusses experimental results by comparing with previously measured results on an old experimental setup.

  7. Evaluation of transverse dispersion effects in tank experiments by numerical modeling: parameter estimation, sensitivity analysis and revision of experimental design.

    PubMed

    Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C

    2012-06-01

    Transverse dispersion represents an important mixing process for transport of contaminants in groundwater and constitutes an essential prerequisite for geochemical and biodegradation reactions. Within this context, this work describes the detailed numerical simulation of highly controlled laboratory experiments using uranine, bromide and oxygen depleted water as conservative tracers for the quantification of transverse mixing in porous media. Synthetic numerical experiments reproducing an existing laboratory experimental set-up of quasi two-dimensional flow through tank were performed to assess the applicability of an analytical solution of the 2D advection-dispersion equation for the estimation of transverse dispersivity as fitting parameter. The fitted dispersivities were compared to the "true" values introduced in the numerical simulations and the associated error could be precisely estimated. A sensitivity analysis was performed on the experimental set-up in order to evaluate the sensitivities of the measurements taken at the tank experiment on the individual hydraulic and transport parameters. From the results, an improved experimental set-up as well as a numerical evaluation procedure could be developed, which allow for a precise and reliable determination of dispersivities. The improved tank set-up was used for new laboratory experiments, performed at advective velocities of 4.9 m d(-1) and 10.5 m d(-1). Numerical evaluation of these experiments yielded a unique and reliable parameter set, which closely fits the measured tracer concentration data. For the porous medium with a grain size of 0.25-0.30 mm, the fitted longitudinal and transverse dispersivities were 3.49×10(-4) m and 1.48×10(-5) m, respectively. The procedures developed in this paper for the synthetic and rigorous design and evaluation of the experiments can be generalized and transferred to comparable applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.

    PubMed

    Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He

    2014-07-22

    To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.

  9. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    PubMed

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity.

    PubMed

    Vázquez-Nion, Daniel; Silva, Benita; Troiano, Federica; Prieto, Beatriz

    2017-01-01

    Simulated environmental colonisation of granite was induced under laboratory conditions in order to develop an experimental protocol for studying bioreceptivity. The experimental set-up proved suitable for producing subaerial biofilms by inoculating granite blocks with planktonic multi-species phototrophic cultures derived from natural biofilms. The ability of four different cultures to form biofilms was monitored over a three-month growth period via colour measurements, quantification of photosynthetic pigments and EPS, and CLSM observations. One of the cultures under study, which comprised several taxa including Bryophyta, Charophyta, Chlorophyta and Cyanobacteria, was particularly suitable as an inoculum, mainly because of its microbial richness, its rapid adaptability to the substratum and its high colonisation capacity. The use of this culture as an inoculum in the proposed experimental set-up to produce subaerial biofilms under laboratory conditions will contribute to standardising the protocols involved, thus enabling more objective assessment of the bioreceptivity of granite in further experiments.

  11. An introduction to photocatalysis through methylene blue photodegradation

    NASA Astrophysics Data System (ADS)

    Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Malinowski, Tuhiti; Dumas, Philippe

    2016-11-01

    We described a simple experimental set-up for lab work on the photocatalytic degradation of methylene blue by TiO2 nanoparticles. The photocatalysis process can be used for many applications. Treatments for diluted wastewater industries, air purifying in underground car parks, and preventing fouling on glass surfaces, are some of the potential applications of this phenomenon. The described experiment is easy to perform and the interpretation can be easily adapted to different levels of students, from high school students demonstrating their interest in sustainable development, to students obtaining a Masters in science departments who want to propose a full explanation for all phenomena of the photocatalytic process. Starting with a description of the experimental set-up, we analysed the photocatalyst nanoparticles and applied the Langmuir-Hinshelwood model to our experimental data. Finally we briefly discussed the respective energetic levels of the photocatalyst semiconductor and methylene blue.

  12. Generation of a tunable environment for electrical oscillator systems.

    PubMed

    León-Montiel, R de J; Svozilík, J; Torres, Juan P

    2014-07-01

    Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented, the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator's frequency fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon that takes place in quantum and classical coupled oscillator networks.

  13. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex.

    PubMed

    Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu

    2009-12-01

    Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.

  14. A new test procedure to evaluate the performance of substations for collective heating systems

    NASA Astrophysics Data System (ADS)

    Baetens, Robin; Verhaert, Ivan

    2017-11-01

    The overall heat demand of a single dwelling, existing out of space heating and domestic hot water production, decreases due to higher insulation rates. Because of this, investing in efficient and renewable heat generation becomes less interesting. Therefore, to incorporate renewables or residual heat on a larger scale, district heating or collective heating systems grow in importance. Within this set-up, the substation is responsible for the interaction between local demand for comfort and overall energy performance of the collective heating system. Many different configurations of substations exist, which influence both local comfort and central system performance. Next to that, also hybrids exist with additional local energy input. To evaluate performance of such substations, a new experimental-based test procedure is developed in order to evaluate these different aspects, characterized by the two roles a substation has, namely as heat generator and as heat consumer. The advantage of this approach is that an objective comparison between individual and central systems regarding performance on delivering local comfort can be executed experimentally. The lab set-up consists out of three different subsystems, namely the central system, the domestic hot water consumption and the local space heating. The central system can work with different temperature regimes and control strategies, as these aspects have proven to have the largest influence on actual performance. The domestic hot water system is able to generate similar tap profiles according to eco-design regulation for domestic hot water generation. The space heating system is able to demand a modular heat load.

  15. Achieving 100% Efficient Postcolumn Hydride Generation for As Speciation Analysis by Atomic Fluorescence Spectrometry.

    PubMed

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2016-04-05

    An experimental setup consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAs(III), iAs(V)), monomethylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V)) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L(-1); the optimal concentration of NaBH4 was 2.5% (m/v), and the volume of the reaction coil was 8.9 mL. To prevent excessive signal noise due to fluctuations of hydride supply to an atomizer, a new design of a gas-liquid separator was implemented. The optimized experimental setup was subsequently interfaced to HPLC and employed for speciation analysis of arsenic. Two chromatography columns were tested: (i) ion-pair chromatography and (ii) ion exchange chromatography. The latter offered much better results for human urine samples without a need for sample dilution. Due to the equal hydride generation efficiency (and thus the sensitivities) of all As species, a single species standardization by DMAs(V) standard was feasible. The limits of detection for iAs(III), iAs(V), MAs(V), and DMAs(V) were 40, 97, 57, and 55 pg mL(-1), respectively. Accuracy of the method was tested by the analysis of the standard reference material (human urine NIST 2669), and the method was also verified by the comparative analyses of human urine samples collected from five individuals with an independent reference method.

  16. WE-H-BRA-05: Investigation of LET Spectral Dependence of the Biological Effects of Therapeutic Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, F; Bronk, L; Kerr, M

    Purpose: To investigate the dependence of biologic effect (BE) of therapeutic protons on LET spectra by comparing BEs with equal dose-averaged LET (LETd) derived from different LET spectra using high-throughput in vitro clonogenic survival assays. Methods: We used Geant4 to design the relevant experimental setups and perform the dose, LETd, and LET spectra calculations for spot-scanning protons. The clonogenic assay was performed using the H460 lung cancer cell line cultured in 96-well plates. In the first experimental setup (S1), cells were irradiated using 127.4 MeV protons with a 93.22 mm Lucite buildup resulting in a LETd value of 3.4 keV/µmmore » in the cell layer. In the second experimental setup (S2), cells were irradiated by a combination of 127.4 MeV and 136.4 MeV protons with a 96.61 mm Lucite buildup. The LETd values in the cell layer were 11.4 keV/µm and 1.5 keV/µm respectively, but an average LETd of 3.4 keV/µm was obtained by adjusting the relative fluence of each beam. Ten discrete dose levels with 0.5 Gy increments were delivered. Results: In the two setups, the energies or LET spectra were different but resulted in identical LETd values. We quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous experiments) events in the LET spectra separately for these two setups as 3.2% and 10.5%. The biologic effects at each identical dose level yielded statistically significant different survival curves (extra sum-of-squares F-test, P<0.0001). The second setup with a higher contribution from high-LET events exhibited the higher biologic effect with a dose enhancement factor of 1.17±0.03 at 0.10 surviving fraction. Conclusion: The dose-averaged LET may not be an accurate indicator of the biological effects of protons. Detailed LET spectra may need to be considered explicitly to accurately quantify the biologic effects of protons. Funding Support: U19 CA021239-35, R21 CA187484-01 and MDACC-IRG.« less

  17. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity.

    PubMed

    Cantrell, John H; Adler, Laszlo; Yost, William T

    2015-02-01

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  18. NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers.

    PubMed

    Clos, Lawrence J; Jofre, M Fransisca; Ellinger, James J; Westler, William M; Markley, John L

    2013-06-01

    To facilitate the high-throughput acquisition of nuclear magnetic resonance (NMR) experimental data on large sets of samples, we have developed a simple and straightforward automated methodology that capitalizes on recent advances in Bruker BioSpin NMR spectrometer hardware and software. Given the daunting challenge for non-NMR experts to collect quality spectra, our goal was to increase user accessibility, provide customized functionality, and improve the consistency and reliability of resultant data. This methodology, NMRbot, is encoded in a set of scripts written in the Python programming language accessible within the Bruker BioSpin TopSpin ™ software. NMRbot improves automated data acquisition and offers novel tools for use in optimizing experimental parameters on the fly. This automated procedure has been successfully implemented for investigations in metabolomics, small-molecule library profiling, and protein-ligand titrations on four Bruker BioSpin NMR spectrometers at the National Magnetic Resonance Facility at Madison. The investigators reported benefits from ease of setup, improved spectral quality, convenient customizations, and overall time savings.

  19. Geophysical investigation of the pressure field produced by water guns at a pond site in La Crosse, Wisconsin

    USGS Publications Warehouse

    Adams, Ryan F.; Morrow, William S.

    2015-09-03

    The July 2013 study consisted of three scenarios: fish behavior, single gun assessment, and experimental barrier evaluation. The fish behavior scenario simulated the pond conditions from previous studies. Two 80-in3 water guns were fired in the south end of the testing pond. Pressures essentially doubled from the testing of the single 80-in3 water gun. The single gun assessment scenario sought to replicate the setup of the 80-in3 scenario in September 2012, but with additional sensors to better define the pressure field. The 5-lb/in2 target pressure field continued to show a radius ranging from 40 to 45 feet, dependent on the pressure of the input air. The final scenario, the experimental barrier evaluation, showed that a two-dimensional continuous plane of 5 lb/in2 can be created between two 80-in3 water guns to a separation of 99 feet and a depth of 6.5 feet with 1,500 lb/in2 of input air.

  20. Primary proton and helium spectra around the knee observed by the Tibet air-shower experiment

    NASA Astrophysics Data System (ADS)

    Jing, Huang; Tibet ASγ Collaboration

    A hybrid experiment was carried out to study the cosmic-ray primary composition in the 'knee' energy region. The experimental set-up consists of the Tibet-II air shower array( AS ), the emulsion chamber ( EC ) and the burst detector ( BD ) which are operated simulteneously and provides us information on the primary species. The experiment was carried out at Yangbajing (4,300 m a.s.l., 606 g/cm2) in Tibet during the period from 1996 through 1999. We have already reported the primary proton flux around the knee region based on the simulation code COSMOS. In this paper, we present the primary proton and helium spectra around the knee region. We also extensively examine the simulation codes COSMOS ad-hoc and CORSIKA with interaction models of QGSJET01, DPMJET 2.55, SIBYLL 2.1, VENUS 4.125, HDPM, and NEXUS 2. Based on these calculations, we briefly discuss on the systematic errors involved in our experimental results due to the Monte Carlo simulation.

  1. Measurements of rain effects on an 18-GHz dual-polarized propagation link

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1976-01-01

    The paper presents highlights of rain attenuation and depolarization data collected between August 1972 and March 1974 in an experimental setup consisting of a 1.43-km line-of-sight path with 1.22-m diam dual-polarized parabolic reflector antennas at each end. The antennas used question-mark mounted scalar feeds oriented to transmit or receive linearly polarized 17.65-GHz signals having electric field vectors at +45 deg and -45 deg from the vertical. Rain data were collected and analyzed for 24 individual storms in which the rain rate exceeded 10 mm/hr. Received signal levels were sampled once each second and stored by a small digital computer which controlled the experiment and performed preliminary data processing. The results are compared with a theoretical model presented by Wiley et al. (1974). Experimental cross-polarization isolation data are found to agree well with theoretical values, especially at high rain rates where the antenna effects are the least significant.

  2. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  3. Experimental validation of phase-only pre-compensation over 494  m free-space propagation.

    PubMed

    Brady, Aoife; Berlich, René; Leonhard, Nina; Kopf, Teresa; Böttner, Paul; Eberhardt, Ramona; Reinlein, Claudia

    2017-07-15

    It is anticipated that ground-to-geostationary orbit (GEO) laser communication will benefit from pre-compensation of atmospheric turbulence for laser beam propagation through the atmosphere. Theoretical simulations and laboratory experiments have determined its feasibility; extensive free-space experimental validation has, however, yet to be fulfilled. Therefore, we designed and implemented an adaptive optical (AO)-box which pre-compensates an outgoing laser beam (uplink) using the measurements of an incoming beam (downlink). The setup was designed to approximate the baseline scenario over a horizontal test range of 0.5 km and consisted of a ground terminal with the AO-box and a simplified approximation of a satellite terminal. Our results confirmed that we could focus the uplink beam on the satellite terminal using AO under a point-ahead angle of 28 μrad. Furthermore, we demonstrated a considerable increase in the intensity received at the satellite. These results are further testimony to AO pre-compensation being a viable technique to enhance Earth-to-GEO optical communication.

  4. Investigation of Dalton and Amagat's laws for gas mixtures with shock propagation

    NASA Astrophysics Data System (ADS)

    Wayne, Patrick; Trueba Monje, Ignacio; Yoo, Jason H.; Truman, C. Randall; Vorobieff, Peter

    2016-11-01

    Two common models describing gas mixtures are Dalton's Law and Amagat's Law (also known as the laws of partial pressures and partial volumes, respectively). Our work is focused on determining the suitability of these models to prediction of effects of shock propagation through gas mixtures. Experiments are conducted at the Shock Tube Facility at the University of New Mexico (UNM). To validate experimental data, possible sources of uncertainty associated with experimental setup are identified and analyzed. The gaseous mixture of interest consists of a prescribed combination of disparate gases - helium and sulfur hexafluoride (SF6). The equations of state (EOS) considered are the ideal gas EOS for helium, and a virial EOS for SF6. The values for the properties provided by these EOS are then used used to model shock propagation through the mixture in accordance with Dalton's and Amagat's laws. Results of the modeling are compared with experiment to determine which law produces better agreement for the mixture. This work is funded by NNSA Grant DE-NA0002913.

  5. Path optimisation of a mobile robot using an artificial neural network controller

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Parhi, D. R.

    2011-01-01

    This article proposed a novel approach for design of an intelligent controller for an autonomous mobile robot using a multilayer feed forward neural network, which enables the robot to navigate in a real world dynamic environment. The inputs to the proposed neural controller consist of left, right and front obstacle distance with respect to its position and target angle. The output of the neural network is steering angle. A four layer neural network has been designed to solve the path and time optimisation problem of mobile robots, which deals with the cognitive tasks such as learning, adaptation, generalisation and optimisation. A back propagation algorithm is used to train the network. This article also analyses the kinematic design of mobile robots for dynamic movements. The simulation results are compared with experimental results, which are satisfactory and show very good agreement. The training of the neural nets and the control performance analysis has been done in a real experimental setup.

  6. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.

    PubMed

    Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos

    2008-05-26

    An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.

  7. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)

    PubMed Central

    2013-01-01

    Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. Conclusions The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts. PMID:23497628

  8. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra

    2011-10-01

    Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. TU-EF-304-09: Quantifying the Biological Effects of Therapeutic Protons by LET Spectrum Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, F; Bronk, L; Kerr, M

    2015-06-15

    Purpose: To correlate in vitro cell kill with linear energy transfer (LET) spectra using Monte Carlo simulations and knowledge obtained from previous high-throughput in vitro proton relative biological effectiveness (RBE) measurements. Methods: The Monte Carlo simulation toolkit Geant4 was used to design the experimental setups and perform the dose, dose-averaged LET, and LET spectra calculations. The clonogenic assay was performed using the H460 lung cancer cell line in standard 6-well plates. Using two different experimental setups, the same dose and dose-averaged LET (12.6 keV/µm) was delivered to the cell layer; however, each respective energy or LET spectrum was different. Wemore » quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous RBE measurements) events in the LET spectra separately for these two setups as 39% and 53%. 8 dose levels with 1 Gy increments were delivered. The photon reference irradiation was performed using 6 MV x-rays from a LINAC. Results: The survival curves showed that both proton irradiations demonstrated an increased RBE compared to the reference photon irradiation. Within the proton-irradiated cells, the setup with 53% dose contribution from high-LET events exhibited the higher biological effectiveness. Conclusion: The experimental results indicate that the dose-averaged LET may not be an appropriate indicator to quantify the biological effects of protons when the LET spectrum is broad enough to contain both low- and high-LET events. Incorporating the LET spectrum distribution into robust intensity-modulated proton therapy optimization planning may provide more accurate biological dose distribution than using the dose-averaged LET. NIH Program Project Grant 2U19CA021239-35.« less

  10. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae).

    PubMed

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René

    2013-03-15

    Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.

  11. Indigenously developed bending strain setup for I-V characterization of superconducting tapes and wires

    NASA Astrophysics Data System (ADS)

    Panchal, Arun; Bano, Anees; Ghate, Mahesh; Raj, Piyush; Pradhan, Subrata

    2017-04-01

    An indigenously developed bending strain setup to examine the effect of pure bending on critical current of superconducting tapes and strands has been presented in this paper. This set up is capable of applying various bending radius in situ at cryogenic temperature with rack and pinion gear mechanism. The bending strain applied on samples can be controlled externally by rotational input which is transferred in the form of bending radius during experiments. The working principle, design and optimization of this set up have been discussed. The performance and validation of this setup has been done on various HTS tapes and copper strands at 77 K in actual experimental facility. Effect of bending radius (15.5 mm - 48 mm) i.e. strains and ramp rate (2 A/s - 8 A/s) is observed on current capability of various HTS Tapes. It is observed that in uniform bending condition, degradation in current carrying capacity BSCCO and Di-BSCCO (˜ 30 %) is more as compare to YBCO (˜ 2.75 %) at 77 K. The effect of pure mechanical strain has been experimentally observed and presented.

  12. Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup

    NASA Astrophysics Data System (ADS)

    Vilitis, O.; Muzikante, I.; Rutkis, M.; Vembris, A.

    2012-01-01

    In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.

  13. Note: 4-bounce neutron polarizer for reflectometry applications

    NASA Astrophysics Data System (ADS)

    Nagy, B.; Merkel, D. G.; Jakab, L.; Füzi, J.; Veres, T.; Bottyán, L.

    2018-05-01

    A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup.

  14. A catheter friction tester using balance sensor: Combined evaluation of the effects of mechanical properties of tubing materials and surface coatings.

    PubMed

    Røn, Troels; Jacobsen, Kristina Pilgaard; Lee, Seunghwan

    2018-04-24

    In this study, we introduce a new experimental approach to characterize the forces emerging from simulated catherization. This setup allows for a linear translation of urinary catheters in vertical direction as controlled by an actuator. By employing silicone-based elastomer with a duct of comparable diameter with catheters as urethra model, sliding contacts during the translation of catheters along the duct is generated. A most unique design and operation feature of this setup is that a digital balance was employed as the sensor to detect emerging forces from simulated catherization. Moreover, the possibility to give a variation in environment (ambient air vs. water), clearance, elasticity, and curvature of silicone-based urethra model allows for the detection of forces arising from diverse simulated catherization conditions. Two types of commercially available catheters varying in tubing materials and surface coatings were tested together with their respective uncoated catheter tubing. The first set of testing on the catheter samples showed that this setup can probe the combined effect from flexural strain of bulk tubing materials and slipperiness of surface coatings, both of which are expected to affect the comfort and smooth gliding in clinical catherization. We argue that this new experimental setup can provide unique and valuable information in preclinical friction testing of urinary catheters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The development of the experimental setup for measuring the cell membrane electrical potential by Sucrose-Gap Technique

    NASA Astrophysics Data System (ADS)

    Yuzhakov, AD; Nosarev, AV; Aleinik, AN

    2017-11-01

    This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.

  16. Stable thermophoretic trapping of generic particles at low pressures

    NASA Astrophysics Data System (ADS)

    Fung, Long Fung Frankie

    2017-04-01

    We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in medium vacuum through thermophoresis. Typical sizes of the trapped particles are between 10 μm and 1 mm; air pressure is between 1 and 10 Torr. We describe the experimental setup used to produce the temperature gradient, as well as our procedure for introducing particles into the experimental setup. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment. NSF MRSEC Grant No. DMR-1420709.

  17. Velocity Measurements in Nasal Cavities by Means of Stereoscopic Piv - Preliminary Tests

    NASA Astrophysics Data System (ADS)

    Cozzi, Fabio; Felisati, Giovanni; Quadrio, Maurizio

    2017-08-01

    The prediction of detailed flow patterns in human nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics of the nasal anatomy and health problems, and ultimately led to improved surgery. The complex flow structure and the intricate geometry of the nasal cavities make achieving such goals a challenge for CFD specialists. The need for experimental data to validate and improve the numerical simulations is particularly crucial. To this aim an experimental set-up based on Stereo PIV and a silicon phantom of nasal cavities have been designed and realized at Politecnico di Milano. This work describes the main features and challenges of the set-up along with some preliminary results.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahena, A.; Villasenor, L.

    We describe a simple experimental setup to measure the rate of arrival of muons at the surface of the Earth by using a single water Cerenkov detector and home-made electronics. We find a strong anti-correlation between the muon rates averaged over one-hour periods and the atmospheric pressure, with a measured correlation coefficient of -0.67% per hPa. After applying this correction we achieve sufficient sensitivity to observe long term (hours) variations in the averaged muon rates which are greater than 2%. Forbush decreases as big as 4% have been observed with muon detectors located at similar magnetic rigidities compared to Morelia,more » therefore our experimental setup will detect Forbush decreases as soon as the Sun enters into a more active phase.« less

  19. Calibration of a Background Oriented Schlieren (BOS) Set-up

    NASA Astrophysics Data System (ADS)

    Porta, David; Echeverría, Carlos; Cardoso, Hiroki; Aguayo, Alejandro; Stern, Catalina

    2014-11-01

    We use two materials with different known indexes of refraction to calibrate a Background Oriented Schlieren (BOS) experimental set-up, and to validate the Lorenz-Lorentz equation. BOS is used in our experiments to determine local changes of density in the shock pattern of an axisymmetric supersonic air jet. It is important to validate, in particular, the Gladstone Dale approximation (index of refraction close to one) in our experimental conditions and determine the uncertainty of our density measurements. In some cases, the index of refraction of the material is well known, but in others the density is measured and related to the displacement field. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.

  20. Coherent properties of ultraweak photon emission from biological system and its application in medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu; Guo, Zhouyi

    2001-10-01

    In the paper the research status and viewpoints about the coherent of the ultra-weak photon emission from biological system (UPE) were simply introduced. For proving the biophotons indeed have coherent from another side, an experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300nm to 1060nm has been got. These test results show that UPE of living biological system exists in wide spectra region from UV-visible to infrared. Using the test data, we also can obtain the important conclusion of UPE has coherence. In the end of this paper, the UPE's application in medicine was discussed.

  1. Detecting technology of biophotons

    NASA Astrophysics Data System (ADS)

    Ma, Junfu; Zhu, Zhaohui; Zhu, Yanbin

    2002-03-01

    A key technique of detecting the ultra-weak photon emission from biological system (UPE) is to change the light signal of an extremely weak level into electric signal of a considerable level when the photo-electric detecting system were be applied. This paper analyzed the difficult for detecting the ultra-weak photon emission from biological system (UPE) mainly is in the absence of high sensitivity detector in UV-visible-infra spectra region. An experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300 nm to 1060 nm has were tested. The test result show the UPE of living biological system exists in wide spectra region from UV- visible to infrared.

  2. Evaporation, diffusion and self-assembly at drying interfaces.

    PubMed

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  3. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.

    PubMed

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto

    2005-01-01

    Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.

  4. Study on the quality and stability of compost through a Demo Compost Plant.

    PubMed

    Hasan, K M M; Sarkar, G; Alamgir, M; Bari, Q H; Haedrich, G

    2012-11-01

    This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan's compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots.

    PubMed

    Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2014-03-01

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  6. Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces

    ERIC Educational Resources Information Center

    Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian

    2007-01-01

    Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…

  7. Getting Shocks: Teaching Secondary School Physics through History.

    ERIC Educational Resources Information Center

    Heering, Peter

    2000-01-01

    Uses several replicas of experimental set-ups that were originally used in electrostatic research in teaching electrostatics through history on secondary school level. Makes visible the change of the style of electrostatic experimentation that took place at the end of the 18th century. (Contains 25 references.) (ASK)

  8. Meta-analysis as a tool to study crop productivity response to poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Extensive research on the use of poultry litter (PL) under different agricultural practices in the USA has shown both negative and positive effects on crop productivity (either yield or aboveground biomass). However, these experimental results are substantially dependent on the experimental set-up, ...

  9. PSICHE: a new beamline dedicated to X-ray diffraction and tomography at high pressure at synchrotron SOLEIL

    NASA Astrophysics Data System (ADS)

    Guignot, N.; Itié, J.; Zerbino, P.; Delmotte, A.; Moreno, T.

    2013-12-01

    The PSICHE beamline (for 'Pressure, Structure and Imaging by Contrast at High Energy') is a new facility opened for high pressure experiments at synchrotron SOLEIL (St-Aubin, France). With its source, optics, detectors and 3 experimental stations, it can handle a large variety of experimental setups. High energy photons are produced with an in-vacuum wiggler. The white beam obtained, with photons energy ranging continuously from 15 to 80 keV (from a 2.75 GeV machine), is used on the first experimental station for energy dispersive X-ray diffraction (EDX) measurements using different pressure cells. The main setup is a 1200 tons load capacity multi-anvil press featuring a (100) DIA compression module with a 15° horizontal aperture, allowing measurements up to 30° in 2theta by rotating the press. Other setups are a Paris-Edinburgh (PE) large volume press and diamond anvil cells (DACs). On the detection side we have a rotating Ge detector, based on the CAESAR design described by Wang et al. (2004) (combination of EDX and angular dispersive X-ray diffraction, ADX). One of the difficulties when building such setups is the rotation mechanism which cannot be physically attached to the rotation axis, potentially leading to large circle of confusions on the horizontal position of this axis. Thanks to translation corrections done at each angle step, the circle of confusion is minimized to 3x6 μm2 along the 35° travel, making possible measurements on very small objects. Combining EDX and ADX has a lot of advantages and we will present our first results obtained using this setup. The PSICHE focusing optics and monochromator are also used to focus monochromatic beams (up to 52 keV) on 2 different experimental stations. The first focal point at 31 m gives a beam size of 100x50 μm2 (HxV) and is useful for low pressure experiments and experiments done with the PE press associated with Soller slits. A PerkinElmer flatpanel detector can be precisely scanned in 3 directions, making ADX measurements at the highest possible resolution on this beamline. This station will also be used for diffraction tomography experiments. The second focal point at 37.6 m is located behind KB mirrors on the third experimental station. 10x10 μm2 beam sizes (full width) are expected. This station will be used for DAC experiments, with or without our future laser heating setup. Finally, parallel beams can be produced with sizes up to 15x5 mm2 (HxV) for tomography experiments, in pink (filtered white) beam or monochromatic beam. We plan to use rotating anvils presses such as the rotoPEc (J. Philippe et al., 2013) to take full advantage of this beam mode, but it can be opened to other techniques. The PSICHE beamline is opened for users since July 2013. Some stations are not available yet, and will be opened through 2014 and 2015. References X. Dong et al., Ray tracing application in hard x-ray optical development: Soleil first wiggler beamline (PSICHÉ) case" (2011), Proc. SPIE 8141, 814113 Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation (2004), J. Appl. Cryst. 37, 947-956 J. Philippe, Y. Le Godec, F. Bergame et M. Morand, Patent INPI 11 62335 (2013)

  10. A new small-footprint external-beam PIXE facility for cultural heritage applications using pulsed proton beams

    NASA Astrophysics Data System (ADS)

    Vadrucci, M.; Bazzano, G.; Borgognoni, F.; Chiari, M.; Mazzinghi, A.; Picardi, L.; Ronsivalle, C.; Ruberto, C.; Taccetti, F.

    2017-09-01

    In the framework of the COBRA project, elemental analyses of cultural heritage objects based on the particle induced X-ray emission (PIXE) are planned in a collaboration between the APAM laboratory of ENEA-Frascati and the LABEC laboratory of INFN in Florence. With this aim a 3-7 MeV pulsed proton beam, driven by the injector of the protontherapy accelerator under construction for the TOP-IMPLART project, will be used to demonstrate the feasibility of the technique with a small-footprint pulsed accelerator to Italian small and medium enterprises interested in the composition analysis of ancient artifacts. The experimental set-up for PIXE analysis on the TOP-IMPLART machine consists of a modified assembly of the vertical beam line usually dedicated to radiobiology experiments: the beam produced by the injector (RFQ + DTL, a PL7 ACCSYSHITACHI model) is bent to 90° by a magnet, is collimated by a 300 μm aperture inserted in the end nozzle and extracted into ambient pressure by an exit window consisting of a Upilex foil 7.5 μm thick. The beam is pulsed with a variable pulse duration of 20-100 μs and a repetition rate variable from 10 to 100 Hz. The X-ray detection system is based on a Ketek Silicon Drift Detector (SDD) with 7 mm2 active area and 450 μm thickness, with a thin Beryllium entrance window (8 μm). The results of the calibration of this new PIXE set-up using thick target standards and of the analysis of the preliminary measurements on pigments are presented.

  11. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.

    PubMed

    Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  12. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadlia, L.; Mayoufi, M.; Gasser, F.

    2014-09-15

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in thismore » paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.« less

  13. A simple method for the investigation of cell separation effects of blood with physiological hematocrit values.

    PubMed

    Gester, Kathrin; Jansen, Sebastian V; Stahl, Marion; Steinseifer, Ulrich

    2015-05-01

    Even though the separation of blood into erythrocyte-rich and erythrocyte-poor areas is well known in physiological setups such as small vessels, it has recently come into focus in small gaps in cardiovascular applications. Studies show that separation effects occur, for example, in gaps in hydrodynamic bearings, where they can have a positive effect on hemolysis. Separation effects depend on the hematocrit value, but due to visualization issues, studies in small gaps used very low hematocrit values. In this study, a test setup and an evaluation method for the investigation of separation effects of blood with hematocrit values of 30, 45, and 60% were developed. The erythrocyte distribution was evaluated by means of gray scale value distribution. This principle is based on the fact that an erythrocyte-rich region is more opaque than an erythrocyte-poor region. The experimental setup is designed in a way that no further processes (e.g., fluorescence labeling) need to be carried out which might change the properties of the membrane of the erythrocytes, and therefore their flow properties. Additionally, the method is executable with basic laboratory equipment, which makes it applicable for many laboratories. To validate the feasibility of the method, the influence of the diameter and the flow rate on the migration of erythrocytes were studied in micro channels for three different physiological hematocrit values. Even though no individual cells were traced, plasma layer and areas of high erythrocyte concentration could be identified. Dependencies of the erythrocyte distribution on flow rate and channel diameter were validated. The influence of the hematocrit value was demonstrated as well and showed the hematocrit value to be a crucial factor when investigating cell separation. The experimental results were consistent with findings in the literature. As the developed method is suitable for physiological hematocrit values and easy to handle, it provides an optimal basis for cell separation studies in gap models with whole blood, for example, hydrodynamic bearings, where it can be used to optimize these devices. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Temporal Dynamics and Persistence of Spatial Patterns: from Groundwater to Soil Moisture to Transpiration

    NASA Astrophysics Data System (ADS)

    Blume, T.; Hassler, S. K.; Weiler, M.

    2017-12-01

    Hydrological science still struggles with the fact that while we wish for spatially continuous images or movies of state variables and fluxes at the landscape scale, most of our direct measurements are point measurements. To date regional measurements resolving landscape scale patterns can only be obtained by remote sensing methods, with the common drawback that they remain near the earth surface and that temporal resolution is generally low. However, distributed monitoring networks at the landscape scale provide the opportunity for detailed and time-continuous pattern exploration. Even though measurements are spatially discontinuous, the large number of sampling points and experimental setups specifically designed for the purpose of landscape pattern investigation open up new avenues of regional hydrological analyses. The CAOS hydrological observatory in Luxembourg offers a unique setup to investigate questions of temporal stability, pattern evolution and persistence of certain states. The experimental setup consists of 45 sensor clusters. These sensor clusters cover three different geologies, two land use classes, five different landscape positions, and contrasting aspects. At each of these sensor clusters three soil moisture/soil temperature profiles, basic climate variables, sapflow, shallow groundwater, and stream water levels were measured continuously for the past 4 years. We will focus on characteristic landscape patterns of various hydrological state variables and fluxes, studying their temporal stability on the one hand and the dependence of patterns on hydrological states on the other hand (e.g. wet vs dry). This is extended to time-continuous pattern analysis based on time series of spatial rank correlation coefficients. Analyses focus on the absolute values of soil moisture, soil temperature, groundwater levels and sapflow, but also investigate the spatial pattern of the daily changes of these variables. The analysis aims at identifying hydrologic signatures of the processes or landscape characteristics acting as major controls. While groundwater, soil water and transpiration are closely linked by the water cycle, they are controlled by different processes and we expect this to be reflected in interlinked but not necessarily congruent patterns and responses.

  15. The virtual slice setup.

    PubMed

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  16. Time-Lapse Monitoring of an Engineering Scaled Excavation at Federal District, Brazil by Passive Ambient NoiseInterferometry

    NASA Astrophysics Data System (ADS)

    Cárdenas-Soto, M., Sr.; Hussain, Y.; Martinez-Carvajal, H., Sr.; Martino, S., Sr.; Rocha, M., Sr.

    2016-12-01

    Understanding the dynamics of stress relief mechanisms that lead to complete material collapse of unstable slopes is challenging. This research is focused on the novel use of Passive Ambient Noise Interferometry (PANI), a new technique that has revolutionized the seismology. In this technique the impulse response or Green function between two sensors is calculated by cross-correlation of the noise rescored at these stations. We applied PANI to monitor the deformational behavior of a prototype field experiment under semi controlled conditions for their use in landsliding early warning systems.The experimental setup consists of a 2 m engineering-scaled excavation,where induced failure was monitored by ambient vibrations propagating in tropical clayey deposits. The experimental setup consisted of dense network of 20 three components short period seismometers (Sercel L4C-3D) installed in three circular arrays with their distances from face of normal slope as 10, 20 and 30 meters, respectively.The frequency response of these seismometers is in range of 2-100 Hz. Recording was done in continuous mode at sampling rate of 1000 Hz with datalogger (RefTek DAS-130/3). Sensors were time synchronized by twenty 130 GPS/01. In this stage, the stress was applied on the one flank of this normal slope dug in the experimental field of University of Brasilia, by a hydraulic jack through a metallic plate. This incremental loading was kept on rising until the slope failure took place. This loading mechanism provided an opportunity to monitoring the changes in Rayleigh wave velocity before, during and after the complete failure. After initial processing, the green function (GF) or impulse response was calculated between each pair of sensors by cross correlation at time step of 4 second. All individual GFs, for entire monitoring period (30 minutes) were stacked to obtained a single reference GF. Stretching (dt/t) in waveform is calculated by subtracting individual GF from average GF, that gave Rayleigh wave velocity changes (dv/v=-dt/t). These changes correlated well with initiation and propagation of fracture at the face of this normal slope. It is concluded that cost effective technique, PANI has a good potential for the monitoring of time lapse changes of evolving fractures.

  17. Detection prospects for the Cosmic Neutrino Background using laser interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domcke, Valerie; Spinrath, Martin, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: martin.spinrath@cts.nthu.edu.tw

    The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup couldmore » also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.« less

  18. Using refraction in thick glass plates for optical path length modulation in low coherence interferometry.

    PubMed

    Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard

    2017-09-01

    In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.

  19. Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence.

    PubMed

    Parfenov, P S; Litvin, A P; Ushakova, E V; Fedorov, A V; Baranov, A V; Berwick, K

    2013-11-01

    We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 μm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 μm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.

  20. Search for hybrid baryons with CLAS12 experimental setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Lucille

    It is crucial to study the meson electroproduction in the kinematic region dominated by the formation of resonances. CLAS12 setup in Hall B at Jefferson Lab is particularly suitable for this task, since it is able to detect scattered electrons at low polar angles thanks to the Forward Tagger (FT) component. The process that we propose to study is ep → e'K +Λ, where the electron beam will be provided by the CEBAF accelerator with energies of 6.6, 8.8, and 11 GeV. This thesis work describes the setup and calibration of the FT calorimeter and the studies related to themore » search of hybrid baryons through the measurement of the K + Λ electroproduction cross section.« less

  1. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Detection prospects for the Cosmic Neutrino Background using laser interferometers

    NASA Astrophysics Data System (ADS)

    Domcke, Valerie; Spinrath, Martin

    2017-06-01

    The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.

  3. Assessment of the Tensile Properties for Single Fibers

    DTIC Science & Technology

    2018-02-01

    Approved for public release; distribution is unlimited. 14. ABSTRACT A novel experimental test method is presented to assess the tensile properties...distribution is unlimited. iii Contents List of Figures iv List of Tables v Acknowledgments vi 1. Introduction 1 2. Experimental Procedure 2 2.1 Test...fiber diameter measurements .............................. 7 Fig. 5 The coordinate system defining the experimental setup with the x- direction along

  4. Experimental Study of the Moment of Inertia of a Cone--Angular Variation and Inertia Ellipsoid

    ERIC Educational Resources Information Center

    Pintao, Carlos A. F.; de Souza Filho, Moacir P.; Usida, Wesley F.; Xavier, Jose A.

    2007-01-01

    In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque…

  5. Can We Falsify the Consciousness-Causes-Collapse Hypothesis in Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio; Oas, Gary

    2017-10-01

    In this paper we examine some proposals to disprove the hypothesis that the interaction between mind and matter causes the collapse of the wave function, showing that such proposals are fundamentally flawed. We then describe a general experimental setup retaining the key features of the ones examined, and show that even a more general case is inadequate to disprove the mind-matter collapse hypothesis. Finally, we use our setup provided to argue that, under some reasonable assumptions about consciousness, such hypothesis is unfalsifiable.

  6. A microprocessor-based table lookup approach for magnetic bearing linearization

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Miller, J. B.

    1981-01-01

    An approach for producing a linear transfer characteristic between force command and force output of a magnetic bearing actuator without flux biasing is presented. The approach is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing power driver. An experimental test setup used to demonstrate the feasibility of the approach is described, and test results are presented. The test setup contains bearing elements similar to those used in a laboratory model annular momentum control device.

  7. Simulating interfering fringe displacements by lateral shifts of a camera for educational purposes

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel

    2018-07-01

    In this manuscript we propose a simple method to emulate fringe displacements in a fringe pattern, due to the interference of two plane waves, by using lateral shifts of a CMOS detector under the scheme of a Twyman–Green interferometric setup, avoiding unwanted vibrations and the need for specific and expensive devices in order to accomplish the task. The simplicity of the proposed experimental setup allows it to be easily replicated and used for teaching or demonstrative purposes, essentially for undergraduate students.

  8. Contactless ultrasonic device to measure surface acoustic wave velocities versus temperature.

    PubMed

    Hubert, C; Nadal, M H; Ravel-Chapuis, G; Oltra, R

    2007-02-01

    A complete optical experimental setup for generating and detecting surface acoustic waves [Rayleigh waves (RWs)] in metals versus temperature up to the melting point is described. The RWs were excited by a pulsed Nd:YAG laser and detected by a high sensitivity subangstrom heterodyne interferometer. A special furnace was used to heat the sample using infrared radiation with a regulation of the sample temperature less than 0.1 K. First measurements on an aluminum alloy sample are presented to validate the setup.

  9. Remote laboratories for optical metrology: from the lab to the cloud

    NASA Astrophysics Data System (ADS)

    Osten, W.; Wilke, M.; Pedrini, G.

    2012-10-01

    The idea of remote and virtual metrology has been reported already in 2000 with a conceptual illustration by use of comparative digital holography, aimed at the comparison of two nominally identical but physically different objects, e.g., master and sample, in industrial inspection processes. However, the concept of remote and virtual metrology can be extended far beyond this. For example, it does not only allow for the transmission of static holograms over the Internet, but also provides an opportunity to communicate with and eventually control the physical set-up of a remote metrology system. Furthermore, the metrology system can be modeled in the environment of a 3D virtual reality using CAD or similar technology, providing a more intuitive interface to the physical setup within the virtual world. An engineer or scientist who would like to access the remote real world system can log on to the virtual system, moving and manipulating the setup through an avatar and take the desired measurements. The real metrology system responds to the interaction between the avatar and the 3D virtual representation, providing a more intuitive interface to the physical setup within the virtual world. The measurement data are stored and interpreted automatically for appropriate display within the virtual world, providing the necessary feedback to the experimenter. Such a system opens up many novel opportunities in industrial inspection such as the remote master-sample-comparison and the virtual assembling of parts that are fabricated at different places. Moreover, a multitude of new techniques can be envisaged. To them belong modern ways for documenting, efficient methods for metadata storage, the possibility for remote reviewing of experimental results, the adding of real experiments to publications by providing remote access to the metadata and to the experimental setup via Internet, the presentation of complex experiments in classrooms and lecture halls, the sharing of expensive and complex infrastructure within international collaborations, the implementation of new ways for the remote test of new devices, for their maintenance and service, and many more. The paper describes the idea of remote laboratories and illustrates the potential of the approach on selected examples with special attention to optical metrology.

  10. Frequency domain fluorescence diffuse tomography of small animals

    NASA Astrophysics Data System (ADS)

    Orlova, Anna G.; Turchin, Ilya V.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Balalaeva, Irina V.; Sergeeva, Ekaterina A.; Shirmanova, Marina V.; Kleshnin, Michail S.

    2007-05-01

    Fluorescent compounds for selective cancer cell marking are used for development of novel medical diagnostic methods, investigation of the influence of external factors on tumor growth, regress and metastasis. Only special tools for turbid media imaging, such as optical diffusion tomography permit noninvasive monitoring of fluorescent-labeled tumor alterations deep in animal tissue. In this work, the results of preliminary experiments utilizing frequency-domain fluorescent diffusion tomography (FD FDT) experimental setup in small animal are presented. Low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the wavelength of 532 nm was used in the setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Models of deep tumors were created by two methods: (1) glass capsules containing fluorophore solution were inserted into esophagus of small animals to simulate marked tumors; (2) a suspension of transfected HEΚ293-Turbo-RFP cells was subcutaneously injected to small animal. The conducted experiments have shown that FD FDT allows one to detect the presence of labeled tumor cells in small animals, to determine the volume of an experimental tumor, to perform 3D tumor reconstruction, as well as to conduct monitoring investigations. The obtained results demonstrate the potential capability of the FD FDT method for noninvasive whole-body imaging in cancer studies, diagnostics and therapy.

  11. Resolution power in digital in-line holography

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.; Xu, W.; Jericho, S. K.; Jericho, M. H.; Klages, P.; Kreuzer, H. J.

    2006-01-01

    Digital in-line holographic microscopy (DIHM) can achieve wavelength resolution both laterally and in depth with the simple optical setup consisting of a laser illuminating a wavelength-sized pinhole and a CCD camera for recording the hologram. The reconstruction is done numerically on the basis of the Kirchhoff-Helmholtz transform which yields a three-dimensional image of the objects throughout the sample volume. Resolution in DIHM depends on several controllable factors or parameters: (1) pinhole size controlling spatial coherence, (2) numerical aperture given by the size and positioning of the recording CCD chip, (3) pixel density and dynamic range controlling fringe resolution and noise level in the hologram and (4) wavelength. We present a detailed study of the individual and combined effects of these factors by doing an analytical analysis coupled with numerical simulations of holograms and their reconstruction. The result of this analysis is a set of criteria, also in the form of graphs, which can be used for the optimum design of the DIHM setup. We will also present a series of experimental results that test and confirm our theoretical analysis. The ultimate resolution to date is the imaging of the motion of submicron spheres and bacteria, a few microns apart, with speeds of hundreds of microns per second.

  12. So ware-Defined Network Solutions for Science Scenarios: Performance Testing Framework and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settlemyer, Bradley; Kettimuthu, R.; Boley, Josh

    High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods ofmore » time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.« less

  13. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  14. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the 2013 Roosevelt Island Climate Evolution (RICE) ice core processing campaign achieved high precision measurements, in particular for δD, with high temporal resolution for the upper part of the core, where a seasonally resolved isotopic signal is preserved.

  15. Scalar transport in inline mixers with spatially periodic flows

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2017-01-01

    Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.

  16. Global analysis of a renewable micro hydro power generation plant

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul

    2017-12-01

    Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.

  17. Hostile fire indicator threat data collection for helicopter-mounted applications

    NASA Astrophysics Data System (ADS)

    Naz, P.; Hengy, S.; De Mezzo, S.

    2013-05-01

    This paper briefly describes the set-up of the sensors and the instrumentation deployed by the French-German Research Institute of Saint-Louis (ISL) during the last NATO/ACG3/SG2 HFI Threat Data Collection (Trial PROTEUS which has been conducted during the summer 2012 in Slovenia). The main purpose of this trial was the measurements of weapon and ammunition signatures for threat warning and hostile fire indicator (HFI) system development. The used weapons vary from small caliber rifles to anti-tank rockets in ground-to-ground shooting configurations. For the ISL team, the objectives consisted in measuring the acoustic signals for detection and localization of weapon firing events. Experimental results of sound localization obtained by using ground based sensors are presented and analyzed under various conditions.

  18. Experimental and numerical investigation of a scalable modular geothermal heat storage system

    NASA Astrophysics Data System (ADS)

    Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof

    2017-04-01

    Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days of heat extraction. The experiment was performed for the determination of heat losses during a complete thermal loading and extraction cycle. The storage could be charged with 54 kWh of heat energy during thermal loading. 36 kWh could be regained during the extraction period, which translates to a heat loss of 33% during the 10 days of operation. Heat exchanger fluid flow rates and supply temperature were measured during the experiment and used as input for the 3D finite element model. Numerically simulated temperature distribution in the storage, return temperature and heat balances were compared to the measured data and showed that the 3D model accurately reflects the storage behavior. Also the third experiment, consisting of six days of cyclic operation after five days of continuous thermal loading, a good agreement between observed and modelled heat storage behavior is found. In addition to determining the storage performance during cyclic operation, the experiment will also be used to further validate the numerical model. This abstract will present the laboratory setup as well as the experimental data obtained from the experiment. It will also present the modelling approach chosen for the numerical representation of the experiment and give a comparison between measured and modelled temperatures and heat balances for the modular heat storage system.

  19. Apparatus for Investigating Momentum and Energy Conservation With MBL and Video Analysis

    NASA Astrophysics Data System (ADS)

    George, Elizabeth; Vazquez-Abad, Jesus

    1998-04-01

    We describe the development and use of a laboratory setup that is appropriate for computer-aided student investigation of the principles of conservation of momentum and mechanical energy in collisions. The setup consists of two colliding carts on a low-friction track, with one of the carts (the target) attached to a spring, whose extension or compression takes the place of the pendulum's rise in the traditional ballistic pendulum apparatus. Position vs. time data for each cart are acquired either by using two motion sensors or by digitizing images obtained with a video camera. This setup allows students to examine the time history of momentum and mechanical energy during the entire collision process, rather than simply focusing on the before and after regions. We believe that this setup is suitable for helping students gain understanding as the processes involved are simple to follow visually, to manipulate, and to analyze.

  20. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    PubMed

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Procedures for cryogenic X-ray ptychographic imaging of biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusuf, M.; Zhang, F.; Chen, B.

    Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This paper describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.

  2. Cultures of Experimental Practice--An Approach in a Museum.

    ERIC Educational Resources Information Center

    Heering, Peter; Muller, Falk

    2002-01-01

    Describes generations and experiences of an exhibition presented in Spring 1998 at the Oldenburg Museum of Natural History and Pre-History. Discusses the thematic leitmotiv of this exhibition which was to present experiments from the history of physics as a cultural activity. Describes how reconstructions of historical experimental set-ups were…

  3. Procedures for cryogenic X-ray ptychographic imaging of biological samples

    DOE PAGES

    Yusuf, M.; Zhang, F.; Chen, B.; ...

    2017-01-12

    Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This paper describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.

  4. Check the Lambert-Beer-Bouguer law: a simple trick to boost the confidence of students toward both exponential laws and the discrete approach to experimental physics

    NASA Astrophysics Data System (ADS)

    Di Capua, R.; Offi, F.; Fontana, F.

    2014-07-01

    Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.

  5. Photonic crystal enhanced silicon cell based thermophotovoltaic systems

    DOE PAGES

    Yeng, Yi Xiang; Chan, Walker R.; Rinnerbauer, Veronika; ...

    2015-01-30

    We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm⁻² at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formore » any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm⁻² and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.« less

  6. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    2016-01-01

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  7. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  8. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O are 0.30 and 0.18 ‰ for the custom 2013 and WVISS setup, respectively, after averaging times of 104 s (2.78 h). Using response time tests and stability tests, we show that the custom setups are more responsive (shorter response time), whereas the University of Copenhagen (UC) setup is more stable. More broadly, comparisons of different setups address the challenge of integrating vaporizer/spectrometer isotope measurement systems into a CFA campaign with many other analytical instruments.

  9. Revised Robertson's test theory of special relativity

    NASA Astrophysics Data System (ADS)

    Vargas, José G.

    1984-07-01

    The only test theory used by workers in the field of testing special relativity to analyze the significance of their experiments is the proof by H. P. Robertson [ Rev. Mod. Phys. 21, 378 (1949)] of the Lorentz transformations from the results of the experimental evidence. Some researchers would argue that the proof contains an unwarranted assumption disguised as a convention about synchronization procedures. Others would say that alternative conventions are possible. In the present paper, no convention is used, but the Lorentz transformations are still obtained using only the results of the experiments in Robertson's proof, namely the Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell experiments. Thus the revised proof is a valid test theory which is independent of any conventions, since one appeals only to the experimental evidence. The analysis of that evidence shows the directions in which efforts to test special relativity should go. Finally it is shown how the resulting test theory still has to be improved for consistency in the analysis of experiments with complicated experimental setups, how it can be simplified for expediency as to what should be tested, and how it should be completed for a missing step not considered by Robertson.

  10. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less

  11. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    NASA Astrophysics Data System (ADS)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  12. Mass transfer in thin films under counter-current gas: experiments and numerical study

    NASA Astrophysics Data System (ADS)

    Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant

    2016-11-01

    Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.

  13. Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer

    NASA Astrophysics Data System (ADS)

    Gu, Honggang; Chen, Xiuguo; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan

    2018-01-01

    Birefringent waveplates are indispensable optical elements for polarization state modification in various optical systems. The retardance of a birefringent waveplate will change significantly when the incident angle of the light varies. Therefore, it is of great importance to study such field-of-view errors on the polarization properties, especially the retardance of a birefringent waveplate, for the performance improvement of the system. In this paper, we propose a generalized retardance formula at arbitrary incidence and azimuth for a general plane-parallel composite waveplate consisting of multiple aligned single waveplates. An efficient method and corresponding experimental set-up have been developed to characterize the retardance versus the field-of-view angle based on a constructed spectroscopic Mueller matrix ellipsometer. Both simulations and experiments on an MgF2 biplate over an incident angle of 0°-8° and an azimuthal angle of 0°-360° are presented as an example, and the dominant experimental errors are discussed and corrected. The experimental results strongly agree with the simulations with a maximum difference of 0.15° over the entire field of view, which indicates the validity and great potential of the presented method for birefringent waveplate characterization at tilt incidence.

  14. Optical differential reflectance spectroscopy for photochromic molecules on solid surfaces

    NASA Astrophysics Data System (ADS)

    Nickel, Fabian; Bernien, Matthias; Lipowski, Uwe; Kuch, Wolfgang

    2018-03-01

    Optical reflectance of thin adsorbates on solid surfaces is able to reveal fundamental changes of molecular properties compared to bulk systems. The detection of very small changes in the optical reflectance required several technical improvements in the past decades. We present an experimental setup that is capable of high-quality measurements of submonolayers and ultrathin layers of photochromic molecules on surfaces as well as quantifying their isomerization kinetics. By using photomultipliers as detectors, an enhancement of the signal-to-noise ratio by a factor of three with a total reduction of light exposure on the sample by at least four orders of magnitude is achieved. The potential of the experimental setup is demonstrated by a characterization of the photoswitching and thermal switching of a spirooxazine derivate on a bismuth surface.

  15. Diagnostic Accuracy of Antigen 5-Based ELISAs for Human Cystic Echinococcosis

    PubMed Central

    Pagnozzi, Daniela; Addis, Maria Filippa; Biosa, Grazia; Roggio, Anna Maria; Tedde, Vittorio; Mariconti, Mara; Tamarozzi, Francesca; Meroni, Valeria; Masu, Gabriella; Masala, Giovanna; Brunetti, Enrico; Uzzau, Sergio

    2016-01-01

    Background Clinical diagnosis and follow up of cystic echinococcosis (CE) are based on imaging complemented by serology. Several immunodiagnostic tests are commercially available, but the development of new tools is still needed to overcome the lack of standardization of the target antigen, generally consisting of a crude extract of Echinococcus granulosus hydatid cyst fluid. In a previous work, we described a chromatographic method for the preparation of a highly enriched Antigen 5 fraction from hydatid cyst fluid. The high reactivity of patient sera against this preparation prompted us to evaluate further this antigen for the serodiagnosis of CE on a larger cohort of samples. Methodology/Principal Findings A total of 327 sera from CE patients with heterogeneous conditions for cyst stage, cyst number, organ localization, drug therapy, and surgical intervention, together with 253 sera from healthy controls, were first analyzed by an ELISA based on the Ag5 preparation in two different experimental setups and, in parallel, by a commercial ELISA routinely used in clinical laboratories for CE serodiagnosis. The Ag5 ELISAs revealed different sensitivity (88.3% vs 95.3%) without significant differences in specificity (94.1% vs 92.5%), for the two setups, respectively. Moreover, possible relationships between the Ag5 ELISA absorbance results and clinical variables were investigated. Chi squared test, bivariate logistic regression and multiple regression analyses highlighted differences in the serology reactivity according to pharmacological treatment, cyst activity, and cyst number. Conclusions/Significance The two Ag5 ELISAs revealed different performances depending on the setup. The good diagnostic sensitivity and the high reliability of the Ag5 preparation method make this antigen a promising candidate for the serodiagnosis of CE. Further studies will be needed to evaluate the ability of our test to provide useful information on specific CE clinical traits. PMID:27023205

  16. Investigation of a novel approach for the cross-linking characterization of SU-8 photoresist materials by means of optical dispersion measurements

    NASA Astrophysics Data System (ADS)

    Taudt, Ch.; Baselt, T.; Koch, E.; Hartmann, P.

    2014-03-01

    The increase in efficiency and precision in the production of semiconductor structures under the use of polymeric materials like SU-8 is crucial in securing the technological innovation within this industry. The manufacturing of structures on wafers demands a high quality of materials, tools and production processes. In particular, deviations in the materials' parameters (e.g. cross-linking state, density or mechanical properties) could lead to subsequent problems such as a reduced lifetime of structures and systems. In particular problems during the soft and post-exposure bake process can lead to an inhomogeneous distribution of material properties. This paper describes a novel approach for the characterization of SU-8 material properties in relation to a second epoxy-based material of different cross-linking by the measurement of optical dispersion within the material. A white-light interferometer was used. In particular the setup consisted of a white-light source, a Michelson-type interferometer and a spectrometer. The investigation of the dispersion characteristics was carried out by the detection of the equalization wavelength for different positions of the reference arm in a range from 400 to 900 nm. The measured time delay due to dispersion ranges from 850 to 1050 ps/m. For evaluation purposes a 200μm SU-8 sample was characterized in the described setup regarding its dispersion characteristics in relation to bulk epoxy material. The novel measurement approach allowed a fast and high-resolution material characterization for SU-8 micro structures which was suitable for integration in production lines. The outlook takes modifications of the experimental setup regarding on-wafer measurements into account.

  17. BC404 scintillators as gamma locators studied via Geant4 simulations

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Hoischen, R.; Eisenhauer, K.; Gerl, J.; Pietralla, N.

    2014-05-01

    In many applications in industry and academia, an accurate determination of the direction from where gamma rays are emitted is either needed or desirable. Ion-beam therapy treatments, the search for orphan sources, and homeland security applications are examples of fields that can benefit from directional sensitivity to gamma-radiation. Scintillation detectors are a good option for these types of applications as they have relatively low cost, are easy to handle and can be produced in a large range of different sizes. In this work a Geant4 simulation was developed to study the directional sensitivity of different BC404 scintillator geometries and arrangements. The simulation includes all the physical processes relevant for gamma detection in a scintillator. In particular, the creation and propagation of optical photons inside the scintillator was included. A simplified photomultiplier tube model was also simulated. The physical principle exploited is the angular dependence of the shape of the energy spectrum obtained from thin scintillator layers when irradiated from different angles. After an experimental confirmation of the working principle of the device and a check of the simulation, the possibilities and limitations of directional sensitivity to gamma radiation using scintillator layers was tested. For this purpose, point-like sources of typical energies expected in ion-beam therapy were used. Optimal scintillator thicknesses for different energies were determined and the setup efficiencies calculated. The use of arrays of scintillators to reconstruct the direction of incoming gamma rays was also studied. For this case, a spherical source emitting Bremsstrahlung radiation was used together with a setup consisting of scintillator layers. The capability of this setup to identify the center of the extended source was studied together with its angular resolution.

  18. JANUS - A setup for low-energy Coulomb excitation at ReA3

    NASA Astrophysics Data System (ADS)

    Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.

    2018-03-01

    A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.

  19. Analysis of aerobic granular sludge formation based on grey system theory.

    PubMed

    Zhang, Cuiya; Zhang, Hanmin

    2013-04-01

    Based on grey entropy analysis, the relational grade of operational parameters with aerobic granular sludge's granulation indicators was studied. The former consisted of settling time (ST), aeration time (AT), superficial gas velocity (SGV), height/diameter (H/D) ratio and organic loading rates (OLR), the latter included sludge volume index (SVI) and set-up time. The calculated result showed that for SVI and set-up time, the influence orders and the corresponding grey entropy relational grades (GERG) were: SGV (0.9935) > AT (0.9921) > OLR (0.9894) > ST (0.9876) > H/D (0.9857) and SGV (0.9928) > H/D (0.9914) > AT (0.9909) > OLR (0.9897) > ST (0.9878). The chosen parameters were all key impact factors as each GERG was larger than 0.98. SGV played an important role in improving SVI transformation and facilitating the set-up process. The influence of ST on SVI and set-up time was relatively low due to its dual functions. SVI transformation and rapid set-up demanded different optimal H/D ratio scopes (10-20 and 16-20). Meanwhile, different functions could be obtained through adjusting certain factors' scope.

  20. Experimental investigation of the heat and mass transfer in a tube bundle absorber of an absorption chiller

    NASA Astrophysics Data System (ADS)

    Olbricht, Michael; Luke, Andrea

    2018-05-01

    The design of the absorber of absorption chillers is still subject to great uncertainty since the coupled processes of heat and mass transfer as well as the influence of systemic interactions on the absorption process are not fully understood. Unfortunately, only a few investigations on the transport phenomena in the absorber during operation in an absorption chiller are reported in the literature. Therefore, experimental investigations on the heat and mass transfer during falling film absorption of steam in aqueous LiBr-solution are carried out in an absorber installed in an absorption chiller in this work. An improvement of heat and mass transfer due to the increase in convective effects are observed as the Ref number increases. Furthermore, an improvement of the heat transfer in the absorber with increasing coolant temperature can be identified in the systemic context. This is explained by a corresponding reduction in the average viscosity of the solution in the absorber. A comparison with experimental data from literature obtained from so-called absorber-generator test rigs shows a good consistency. Thus, it has been shown that the findings obtained on these simplified experimental setups can be transferred to the absorber in an absorption chiller. However, a comparison with correlations from the literature reveals a strong deviation between experimental and calculated results. Hence, further research activities on the development of better correlations are required in future.

  1. Biogas from mesophilic digestion of cow dung using charcoal and gelatin as additives

    NASA Astrophysics Data System (ADS)

    Islam, Md Rashedul; Salam, Bodius; Rahman, Md Mizanur; Mamun, Abdullah Al

    2017-06-01

    Biogas, a source of renewable energy is produced from bacteria in the process of biodegradation of organic matter under anaerobic conditions. A research work was performed to find out the production of biogas from cow dung using charcoal and gelatin as additives. Five laboatory scale experimental set-up were constructed using 0, 0.2, 0.4, 0.6 and 0.8% gelatin with cow dung as additive to perform the research work. For all the set-up 0.5% charcoal was also added. All the set-ups were made from 1-liter capacity conical flask. The amount of water and cow dung was used respectively 382 gm. and 318 gm. in every set-up. Total solid content was maintained 8% throughout all set-ups. The digesters were operated at ambient temperature of 26°-32°C. The total gas yield without using gelatin additive was found to be 12 L/kg cow dung. The maximum gas yield was found from 0.2% gelatin additive and 23% more as compared to without gelatin gas production. The retention time varied from 28 to 79 days for the experiments.

  2. Collapse dynamics of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    King, Daniel Alan

    Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.

  3. Interactive Internet Based Pendulum for Learning Mechatronics

    NASA Astrophysics Data System (ADS)

    Sethson, Magnus R.

    2003-01-01

    This paper describes an Internet based remote experimental setup of a double lined pendulum mechanism for students experiments at the M. Sc. Level. Some of the first year experience using this web-based setup in classes is referred. In most of the courses given at the division of mechanical engineering systems at Linkoeping Institute of Technology we provide experimental setups to enhance the teaching Of M.Sc. students. Many of these experimental setups involve mechatronical systems. Disciplines like fluid power, electronics, and mechanics and also software technologies are used in each experiment. As our campus has recently been split into two different cities some new concepts for distance learning have been studied. The one described here tries to implement remotely controlled mechatronic setups for teaching basic programming of real-time operating systems and analysis of the dynamics of mechanical systems. The students control the regulators for the pendulum through a web interface and get measurement results and a movie back through their email. The present setup uses a double linked pendulum that is controlled by a DC-motor and monitored through both camera and angular position sensors. All software needed is hosted on a double-processor PC running the RedHat 7.1. distribution complemented with real-time scheduling using DIAPM-RTAI 1.7. The Internet site is presented to the students using PHP, Apache and MySQL. All of the used software originates from the open source domain. The experience from integrating these technologies and security issues is discussed together with the web-camera interface. One of the important experiences from this project so far is the need for a good visual feedback. This is both in terms of video speed but also in resolution. It has been noticed that when the students makes misstates and wants to search the failure they want clear, large images with high resolution to support their personal believes in the cause of the failure. Even if the student does not need a high resolution image to get the idea of the mechanics and the function of the pendulum, they need such high quality images to get confidence in the hardware. It is important to support this when the ability to direct hand-on contact with the hardware is taken away. Some of the experiences in combining open source software; real-time scheduling and measurement hardware into a cost efficient way is also discussed. The pendulum has been available publicly on the Internet but has now been removed due to security issues.

  4. Thermographic measurements of high-speed metal cutting

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  5. Comparative evaluation of user interfaces for robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Becattini, Gabriele; Dellepiane, Massimo; Caldwell, Darwin G

    2011-01-01

    This research investigates the impact of three different control devices and two visualization methods on the precision, safety and ergonomics of a new medical robotic system prototype for assistive laser phonomicrosurgery. This system allows the user to remotely control the surgical laser beam using either a flight simulator type joystick, a joypad, or a pen display system in order to improve the traditional surgical setup composed by a mechanical micromanipulator coupled with a surgical microscope. The experimental setup and protocol followed to obtain quantitative performance data from the control devices tested are fully described here. This includes sets of path following evaluation experiments conducted with ten subjects with different skills, for a total of 700 trials. The data analysis method and experimental results are also presented, demonstrating an average 45% error reduction when using the joypad and up to 60% error reduction when using the pen display system versus the standard phonomicrosurgery setup. These results demonstrate the new system can provide important improvements in terms of surgical precision, ergonomics and safety. In addition, the evaluation method presented here is shown to support an objective selection of control devices for this application.

  6. Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria

    2015-11-01

    The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.

  7. Model Based Inference for Wire Chafe Diagnostics

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Wheeler, Kevin R.; Timucin, Dogan A.; Wysocki, Philip F.; Kowalski, Marc Edward

    2009-01-01

    Presentation for Aging Aircraft conference covering chafing fault diagnostics using Time Domain Reflectometry. Laboratory setup and experimental methods are presented, along with initial results that summarize fault modeling and detection capabilities.

  8. Wave and setup dynamics on steeply-sloping reefs with large bottom roughness

    NASA Astrophysics Data System (ADS)

    Buckley, M. L.; Hansen, J.; Lowe, R.

    2016-12-01

    High-resolution observations from a wave flume were used to investigate the dynamics of wave setup over a steeply-sloping fringing reef profile with the effect of bottom roughness modeled using roughness elements scaled to mimic a coral reef. Results with roughness were compared with smooth bottom runs across sixteen offshore wave and still water level conditions. The time-averaged and depth-integrated force balance was evaluated from observations collected at seventeen locations across the flume, which was found to consist of cross-shore pressure and radiation stress gradients whose sum was balanced by mean quadratic bottom stresses. We found that when radiation stress gradients were calculated from observations of the radiation stress derived from linear wave theory, both wave setdown and setup were under predicted for the majority of wave and water level conditions tested. Inaccuracies in the predicted setdown and setup were improved by including a wave roller model, which provides a correction to the kinetic energy predicted by linear wave theory for breaking waves and produces a spatial delay in the wave forcing that was consistent with the observations. The introduction of roughness had two primary effects. First, the amount of wave energy dissipated during wave breaking was reduced due to frictional wave dissipation that occurred on the reef slope offshore of the breakpoint. Second, offshore directed mean bottom stresses were generated by the interaction of the combined wave-current velocity field with the roughness elements. These two mechanisms acted counter to one another. As a result, setup on the reef flat was comparable (7% mean difference) between corresponding rough and smooth runs. These findings are used to assess prior results from numerical modelling studies of reefs, and also to discuss the broader implications for how steep slopes and large roughness influences setup dynamics for general nearshore systems.

  9. Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator.

    PubMed

    Lertsatitthanakorn, C

    2007-05-01

    The use of biomass cook stoves is widespread in the domestic sector of developing countries, but the stoves are not efficient. To advance the versatility of the cook stove, we investigated the feasibility of adding a commercial thermoelectric (TE) module made of bismuth-telluride based materials to the stove's side wall, thereby creating a thermoelectric generator system that utilizes a proportion of the stove's waste heat. The system, a biomass cook stove thermoelectric generator (BITE), consists of a commercial TE module (Taihuaxing model TEP1-1264-3.4), a metal sheet wall which acts as one side of the stove's structure and serves as the hot side of the TE module, and a rectangular fin heat sink at the cold side of the TE module. An experimental set-up was built to evaluate the conversion efficiency at various temperature ranges. The experimental set-up revealed that the electrical power output and the conversion efficiency depended on the temperature difference between the cold and hot sides of the TE module. At a temperature difference of approximately 150 degrees C, the unit achieved a power output of 2.4W. The conversion efficiency of 3.2% was enough to drive a low power incandescent light bulb or a small portable radio. A theoretical model approximated the power output at low temperature ranges. An economic analysis indicated that the payback period tends to be very short when compared with the cost of the same power supplied by batteries. Therefore, the generator design formulated here could be used in the domestic sector. The system is not intended to compete with primary power sources but serves adequately as an emergency or backup source of power.

  10. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  11. Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions

    PubMed Central

    Ackermann, Mark R.

    2006-01-01

    The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional. PMID:17033699

  12. An Automated, Experimenter-Free Method for the Standardised, Operant Cognitive Testing of Rats

    PubMed Central

    Rivalan, Marion; Munawar, Humaira; Fuchs, Anna; Winter, York

    2017-01-01

    Animal models of human pathology are essential for biomedical research. However, a recurring issue in the use of animal models is the poor reproducibility of behavioural and physiological findings within and between laboratories. The most critical factor influencing this issue remains the experimenter themselves. One solution is the use of procedures devoid of human intervention. We present a novel approach to experimenter-free testing cognitive abilities in rats, by combining undisturbed group housing with automated, standardized and individual operant testing. This experimenter-free system consisted of an automated-operant system (Bussey-Saksida rat touch screen) connected to a home cage containing group living rats via an automated animal sorter (PhenoSys). The automated animal sorter, which is based on radio-frequency identification (RFID) technology, functioned as a mechanical replacement of the experimenter. Rats learnt to regularly and individually enter the operant chamber and remained there for the duration of the experimental session only. Self-motivated rats acquired the complex touch screen task of trial-unique non-matching to location (TUNL) in half the time reported for animals that were manually placed into the operant chamber. Rat performance was similar between the two groups within our laboratory, and comparable to previously published results obtained elsewhere. This reproducibility, both within and between laboratories, confirms the validity of this approach. In addition, automation reduced daily experimental time by 80%, eliminated animal handling, and reduced equipment cost. This automated, experimenter-free setup is a promising tool of great potential for testing a large variety of functions with full automation in future studies. PMID:28060883

  13. Multicolour LEDs in educational demonstrations of physics and optometry

    NASA Astrophysics Data System (ADS)

    Paulins, Paulis; Ozolinsh, Maris

    2014-07-01

    LED light sources are used to design experimental setup for university courses teaching human color vision. The setup allows to demonstrate various vision characteristics and to apply for student practical exercises to study eye spectral sensitivity in different spectral range using heterochromatic flicker photometry. Technique can be used in laboratory works for students to acquire knowledge in visual perception, basics of electronics and measuring, or it can be applied as fully computer control experiment. Besides studies of the eye spectral sensitivity students can practice in trichromatic color matching and other visual perception tasks

  14. Torsion sensing setup based on a Mach-Zehnder interferometer with photonics crystal fiber

    NASA Astrophysics Data System (ADS)

    Pacheco-Chacon, Eliana I.; Gallegos-Arellano, E.; Sierra-Hernandez, Juan M.; Rojas-Laguna, Roberto; Estudillo-Ayala, Julian M.; Hernandez, Emmanuel; Jauregui-Vazquez, D.; Hernandez-Garcia, J. C.

    2017-02-01

    A torsion experimental sensing setup based on a Mach-Zehnder interferometer (MZI) with photonics crystal fiber is presented. The MZI was fabricated by fusion splicing a piece of photonic crystal fiber (PCF) between two segments of a single-mode fiber (SMF). Here, a spectral MZI fringe shifting is induced by applying torsion over the SMF-PCF-SMF. As a result a torsion sensitivity of 35.79 pm/ and a high visibility of 10 dB were achieved. Finally, it is shown that the sensing arrangement is compact and robust.

  15. Measurement of the {sup 214}Po half-life by the DEVIS track setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, V. A.; Brakhman, E. V.; Zeldovich, O. Ya.

    2013-04-15

    Measurement of the {sup 214}Po half-life with the DEVIS track setup at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) by means of a procedure based on determining lifetimes of individual nuclei is described. The value obtained for the {sup 214}Po half-life is 163.8 {+-} 3.0 Micro-Sign s. The possibility of reaching the accuracy of the measurements that is required for testing the statement that the decay of some nuclei has a nonexponential character and the source intensity necessary for this are discussed.

  16. Self-powered electrospinning apparatus based on a hand-operated Wimshurst generator

    NASA Astrophysics Data System (ADS)

    Han, Wen-Peng; Huang, Yuan-Yuan; Yu, Miao; Zhang, Jun-Cheng; Yan, Xu; Yu, Gui-Feng; Zhang, Hong-Di; Yan, Shi-Ying; Long, Yun-Ze

    2015-03-01

    A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator for an electrospinning process, but also a beneficial complement to conventional electrospinning especially where or when without a power supply, and may be used in wound healing and rapid hemostasis, etc.A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator for an electrospinning process, but also a beneficial complement to conventional electrospinning especially where or when without a power supply, and may be used in wound healing and rapid hemostasis, etc. Electronic supplementary information (ESI) available: The video of the electrospinning process by this new self-powered electrospinning apparatus and the vivid details were recorded by a high-speed digital video camera. See DOI: 10.1039/c5nr00387c

  17. Melt electrospinning of poly(lactic acid) and polycaprolactone microfibers by using a hand-operated Wimshurst generator

    NASA Astrophysics Data System (ADS)

    Qin, Chong-Chong; Duan, Xiao-Peng; Wang, Le; Zhang, Li-Hua; Yu, Miao; Dong, Rui-Hua; Yan, Xu; He, Hong-Wei; Long, Yun-Ze

    2015-10-01

    A conventional melt electrospinning setup usually needs a large, heavy high-voltage power supply and cannot work without a plug (electricity supply). In this article, we report a new melt electrospinning setup based on a small hand-operated Wimshurst generator, which can avoid electrical interference between the high-voltage spinning system and the heating system, and make the setup very portable and safe. Poly(lactic acid) (PLA) and polycaprolactone (PCL) fibers with diameters of 15-45 μm were fabricated successfully by using this apparatus. Experimental parameters such as the rotational speed of the generator handle (a half turn to two turns per second) and the spinning distance (2-14 cm) were investigated. In addition, PLA and PCL fibers were directly melt-electrospun onto a pork liver, and the temperature and adhesiveness of the deposited fibers were studied. The results indicate that the apparatus and melt-electrospun polymer microfibers may be used in dressing for wound healing.A conventional melt electrospinning setup usually needs a large, heavy high-voltage power supply and cannot work without a plug (electricity supply). In this article, we report a new melt electrospinning setup based on a small hand-operated Wimshurst generator, which can avoid electrical interference between the high-voltage spinning system and the heating system, and make the setup very portable and safe. Poly(lactic acid) (PLA) and polycaprolactone (PCL) fibers with diameters of 15-45 μm were fabricated successfully by using this apparatus. Experimental parameters such as the rotational speed of the generator handle (a half turn to two turns per second) and the spinning distance (2-14 cm) were investigated. In addition, PLA and PCL fibers were directly melt-electrospun onto a pork liver, and the temperature and adhesiveness of the deposited fibers were studied. The results indicate that the apparatus and melt-electrospun polymer microfibers may be used in dressing for wound healing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05367f

  18. Automated setup for spray assisted layer-by-layer deposition.

    PubMed

    Mundra, Paul; Otto, Tobias; Gaponik, Nikolai; Eychmüller, Alexander

    2013-07-01

    The design for a setup allowing the layer-by-layer (LbL) assembly of thin films consisting of various colloidal materials is presented. The proposed system utilizes the spray-assisted LbL approach and is capable of autonomously producing films. It provides advantages to existing LbL procedures in terms of process speed and applicability. The setup offers several features that are advantageous for routine operation like an actuated sample holder, stainless steel spraying nozzles, or an optical liquid detection system. The applicability is demonstrated by the preparation of films containing semiconductor nanoparticles, namely, CdSe∕CdS quantum dots and a polyelectolyte. The films of this type are of potential interest for applications in optoelectronic devices such as light-emitting diodes or solar cells.

  19. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    PubMed

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  20. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  1. Reconstruction of gene regulatory modules from RNA silencing of IFN-α modulators: experimental set-up and inference method.

    PubMed

    Grassi, Angela; Di Camillo, Barbara; Ciccarese, Francesco; Agnusdei, Valentina; Zanovello, Paola; Amadori, Alberto; Finesso, Lorenzo; Indraccolo, Stefano; Toffolo, Gianna Maria

    2016-03-12

    Inference of gene regulation from expression data may help to unravel regulatory mechanisms involved in complex diseases or in the action of specific drugs. A challenging task for many researchers working in the field of systems biology is to build up an experiment with a limited budget and produce a dataset suitable to reconstruct putative regulatory modules worth of biological validation. Here, we focus on small-scale gene expression screens and we introduce a novel experimental set-up and a customized method of analysis to make inference on regulatory modules starting from genetic perturbation data, e.g. knockdown and overexpression data. To illustrate the utility of our strategy, it was applied to produce and analyze a dataset of quantitative real-time RT-PCR data, in which interferon-α (IFN-α) transcriptional response in endothelial cells is investigated by RNA silencing of two candidate IFN-α modulators, STAT1 and IFIH1. A putative regulatory module was reconstructed by our method, revealing an intriguing feed-forward loop, in which STAT1 regulates IFIH1 and they both negatively regulate IFNAR1. STAT1 regulation on IFNAR1 was object of experimental validation at the protein level. Detailed description of the experimental set-up and of the analysis procedure is reported, with the intent to be of inspiration for other scientists who want to realize similar experiments to reconstruct gene regulatory modules starting from perturbations of possible regulators. Application of our approach to the study of IFN-α transcriptional response modulators in endothelial cells has led to many interesting novel findings and new biological hypotheses worth of validation.

  2. Geometric Limitations Of Ultrasonic Measurements

    NASA Astrophysics Data System (ADS)

    von Nicolai, C.; Schilling, F.

    2006-12-01

    Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.

  3. Multigeneration effects of insect growth regulators on the springtail Folsomia candida.

    PubMed

    Campiche, Sophie; L'Ambert, Grégory; Tarradellas, Joseph; Becker-van Slooten, Kristin

    2007-06-01

    Multigeneration tests are very useful for the assessment of long term toxicity of pollutants such as endocrine disruptor compounds. In this study, multigeneration reproduction tests adapted from the ISO standard 11267 were conducted with the Collembola Folsomia candida. Springtails were exposed to artificial soil contaminated with four insect growth regulators (methoprene, fenoxycarb, teflubenzuron, and precocene II) according to two different experimental set-ups. In the first set-up, the parental generation (F(0)) of Collembola was exposed to a pollutant for 28 days. Juveniles from the F(1) generation were transferred to uncontaminated soil for another 28-day period to generate the F(2) generation. In the second set-up, the F(0) generation was exposed to a pollutant for 10 days before being transferred to uncontaminated soil to reproduce. After 18-28 days, juveniles from the F(1) were transferred to clean soil to generate the F(2) generation. An effect on the number of hatched juveniles of the F(2) generation was observed for methoprene after exposure of the F(0) for 28 days and hatching of F(1) in contaminated soil. For methoprene and teflubenzuron, significant effects were even observed on the F(2) generation with the second experimental set-up, when only the F(0) generation was exposed for 10 days. This shows that the impact of these substances is transgenerational, which can have important consequences for the population of these or other organisms. No effect on the F(2) generation was observed with fenoxycarb and precocene II with the 10-day exposure experiment. Our results show that the developed experimental procedures are appropriate to assess the long term effects of endocrine disrupting compounds on the reproduction of the non-target species F. candida. Another important finding is that two substances with the same predicted mode of action (i.e., the two juvenile hormone analogues fenoxycarb and methoprene) do not necessarily affect the same endpoints in F. candida.

  4. Human Haptic Interaction with Soft Objects: Discriminability, Force Control, and Contact Visualization

    DTIC Science & Technology

    1998-01-01

    consisted of a videomicroscopy system and a tactile stimulator system. By using this setup, real-time images from the contact region as wvell as the... Videomicroscopy system . 4.3.2 Tactile stimulator svsteln . 4.3.3 Real-time imaging setup. 4.3.4 Active and passive touch experiments. 4.3.5...contact process is an important step. In this study, therefore, a videomicroscopy system was built’to visualize the contact re- gion of the fingerpad

  5. Real-time feedback control of three-dimensional Tollmien-Schlichting waves using a dual-slot actuator geometry

    NASA Astrophysics Data System (ADS)

    Vemuri, SH. S.; Bosworth, R.; Morrison, J. F.; Kerrigan, E. C.

    2018-05-01

    The growth of Tollmien-Schlichting (TS) waves is experimentally attenuated using a single-input and single-output (SISO) feedback system, where the TS wave packet is generated by a surface point source in a flat-plate boundary layer. The SISO system consists of a single wall-mounted hot wire as the sensor and a miniature speaker as the actuator. The actuation is achieved through a dual-slot geometry to minimize the cavity near-field effects on the sensor. The experimental setup to generate TS waves or wave packets is very similar to that used by Li and Gaster [J. Fluid Mech. 550, 185 (2006), 10.1017/S0022112005008219]. The aim is to investigate the performance of the SISO control system in attenuating single-frequency, two-dimensional disturbances generated by these configurations. The necessary plant models are obtained using system identification, and the controllers are then designed based on the models and implemented in real-time to test their performance. Cancellation of the rms streamwise velocity fluctuation of TS waves is evident over a significant domain.

  6. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  7. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  8. In situ Pressure Fluctuations of Polymer Melt Flow Instabilities: Experimental Evidence about their Origin and Dynamics.

    PubMed

    Palza, Humberto; Naue, Ingo F C; Wilhelm, Manfred

    2009-11-02

    Despite the practical importance of polymer melt instabilities, there is still a lack of experiments able to characterize in situ the origin and behavior of these phenomena. In this context, a new set-up consisting of high sensitive pressure transducers located inside a slit-die and an advanced mathematical framework to process in situ measurements of polymer melt instabilities, are developed and applied. Our results show for the first time that pressure oscillations can actually be detected inside the die under sharkskin conditions. This originates from a factor of 10(3) and 10(2) improvement in terms of time and pressure resolution. Furthermore, new evidence towards the propagation of the slip phenomena along the die in spurt instabilities are found. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular organization of phospholipid monolayers on the water surface by Maxwell displacement current measurement

    NASA Astrophysics Data System (ADS)

    Sulaiman, Khaulah; Majid, Wan Haliza Abdul; Muhamad, Muhamad Rasat

    2006-02-01

    The monolayer of organic molecules at the air-water interface has been studied using the Maxwell displacement current (MDC) technique. The materials used in this study were the biological materials of phosphatidyl ethanolamine (PE) and phosphatidic acids (PA). The configuration of the experimental set-up consists of the metal/air-gap/monolayer/metal coupled with the Langmuir method. This measurement enables the detection of current without destroying the monolayer. The phase transition and molecular orientation of the phospholipid monolayers were investigated using MDC measurement without mechanical contact between electrodes and the materials. Direct evidence of phase transition from gaseous to the polar ordering phase can be obtained across phospholipid monolayers even though at very low surface pressure. Relaxation process of the phospholipid monolayers was investigated by using the step compression on the MDC signals.

  10. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  11. The tensile strength of ice and dust aggregates and its dependence on particle properties

    NASA Astrophysics Data System (ADS)

    Gundlach, B.; Schmidt, K. P.; Kreuzig, C.; Bischoff, D.; Rezaei, F.; Kothe, S.; Blum, J.; Grzesik, B.; Stoll, E.

    2018-06-01

    The knowledge of the tensile strength of astrophysical dust and ice aggregates is of major importance to understand the early stages of planet formation in our solar system and cometary activity. In this letter we report on an experimental setup, developed to measure the tensile strength of granular, astrophysical relevant materials, such as water ice and silica aggregates. We found that the tensile strength of aggregates composed of monodisperse silica particles depends on the grain size of the used material and is in a good agreement with the predictions of earlier works. For aggregates consisting of polydisperse water-ice particles, the measured tensile strength is very low compared to the theoretical prediction, which indicates that the specific surface energy of water ice at low temperatures is lower than previously assumed.

  12. Laser Transmission Welding of CFRTP Using Filler Material

    NASA Astrophysics Data System (ADS)

    Berger, Stefan; Schmidt, Michael

    In the automotive industry the increasing environmental awareness is reflected through consistent lightweight construction. Especially the use of carbon fiber reinforced thermoplastics (CFRTP) plays an increasingly important role. Accordingto the material substitution, the demand for adequate joining technologies is growing. Therefore, laser transmission welding with filler material provides a way to combine two opaque joining partners by using process specific advantages of the laser transmission welding process. After introducing the new processing variant and the used experimental setup, this paper investigates the process itselfand conditions for a stable process. The influence of the used process parameters on weld quality and process stability is characterized by tensile shear tests. The successfully performed joining of PA 6 CF 42 organic sheets using natural PA 6 as filler material underlines the potential of the described joining method for lightweight design and other industrial applications.

  13. Measurement of cosmic muon angular distribution and vertical integrated flux by 2 m × 2 m RPC stack at IICHEP-Madurai

    NASA Astrophysics Data System (ADS)

    Pethuraj, S.; Datar, V. M.; Majumder, G.; Mondal, N. K.; Ravindran, K. C.; Satyanarayana, B.

    2017-09-01

    The 50 kton INO-ICAL is a proposed underground high energy physics experiment at Theni, India (9o57'N, 77o16'E) to study the neutrino oscillation parameters using atmospheric neutrinos. The Resistive Plate Chamber (RPC) has been chosen as the active detector element for the ICAL detector. An experimental setup consisting of 12 layers of glass RPCs of size 2 m × 2 m has been built at IICHEP, Madurai to study the long term stability and performance of RPCs which are produced on a large scale in Indian industry. In this paper, the studies on the performance of RPCs are presented along with the angular distribution of muons at Madurai (9o56'N,78o00'E and Altitude ≈ 160 m from sea level).

  14. Role of electron temperature on charging of dust grains

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Chakraborty, M.; Saikia, B. K.

    2007-02-01

    Dust grains are produced by evaporation of silver in an experimental setup consisting of a dust chamber, a plasma chamber, and a deflection chamber. Due to differential pressure between the dust and plasma chambers, the dust grains move upward and after passing through plasma they become negatively charged. These charged dust grains are then deflected by a dc field applied across a pair of deflector plates in the deflection chamber. Both from the amount of deflection and also from the floating potential, the number of charges collected on the dust grains is calculated. As the gas pressure is changed, the plasma density and the electron temperature changes. Dust charge is then calculated at each value of pressure from the deflection and floating potential. It is found that the electron temperature has a profound effect in the accumulation of charge on dust grains.

  15. Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water

    NASA Astrophysics Data System (ADS)

    Orghici, R.; Willer, U.; Gierszewska, M.; Waldvogel, S. R.; Schade, W.

    2008-02-01

    A fiber optic approach for the determination of the carbon dioxide concentration in the gas or fluid phase during sequestration, as well as for the sensing of the explosive TNT is described. The sensor consists of a quartz glass multimode fiber with core diameter of 200 μm and is based on the evanescent field principle. Cladding and jacket of the fiber are removed in the sensing portion, therefore interaction between light within the fiber and the surrounding medium is possible. A single-mode distributed feedback (DFB) laser diode with an emission wavelength around λ= 1.57 μm and a frequency doubled passively Q-switched Cr4+:Nd3+:YAG microchip laser (λ= 1064 nm)are used as light sources. The experimental setup and the sensitivity of the evanescent field sensor are characterized.

  16. (3+1)D Quasiparticle Anisotropic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions.

    PubMed

    Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael

    2017-07-28

    We present the first comparisons of experimental data with phenomenological results from (3+1)D quasiparticle anisotropic hydrodynamics (aHydroQP). We compare particle spectra, average transverse momentum, and elliptic flow. The dynamical equations used for the hydrodynamic stage utilize aHydroQP, which naturally includes both shear and bulk viscous effects. The (3+1)D aHydroQP evolution obtained is self-consistently converted to hadrons using anisotropic Cooper-Frye freeze-out. Hadron production and decays are modeled using a customized version of therminator 2. In this first study, we utilized smooth Glauber-type initial conditions and a single effective freeze-out temperature T_{FO}=130  MeV with all hadronic species in full chemical equilibrium. With this rather simple setup, we find a very good description of many heavy-ion observables.

  17. Multi-path interferometric Josephson directional amplifier for qubit readout

    NASA Astrophysics Data System (ADS)

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  18. Spatial encoding using the nonlinear field perturbations from magnetic materials.

    PubMed

    Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H

    2014-08-01

    A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.

  19. Life on rock. Scaling down biological weathering in a new experimental design at Biosphere-2

    NASA Astrophysics Data System (ADS)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Chorover, J.; Maier, R.; Perdrial, J. N.

    2012-12-01

    Biological colonization and weathering of bedrock on Earth is a major driver of landscape and ecosystem development, its effects reaching out into other major systems such climate and geochemical cycles of elements. In order to understand how microbe-plant-mycorrhizae communities interact with bedrock in the first phases of mineral weathering we developed a novel experimental design in the Desert Biome at Biosphere-2, University of Arizona (U.S.A). This presentation will focus on the development of the experimental setup. Briefly, six enclosed modules were designed to hold 288 experimental columns that will accommodate 4 rock types and 6 biological treatments. Each module is developed on 3 levels. A lower volume, able to withstand the weight of both, rock material and the rest of the structure, accommodates the sampling elements. A middle volume, houses the experimental columns in a dark chamber. A clear, upper section forms the habitat exposed to sunlight. This volume is completely sealed form exterior and it allows a complete control of its air and water parameters. All modules are connected in parallel with a double air purification system that delivers a permanent air flow. This setup is expected to provide a model experiment, able to test important processes in the interaction rock-life at grain-to- molecular scale.

  20. Contact Angle Measurements Using a Simplified Experimental Setup

    ERIC Educational Resources Information Center

    Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-01-01

    A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…

  1. Control of the collapse distance in atmospheric propagation

    NASA Astrophysics Data System (ADS)

    Fibich, Gadi; Sivan, Yonatan; Ehrlich, Yosi; Louzon, Einat; Fraenkel, Moshe; Eisenmann, Shmuel; Katzir, Yiftach; Zigler, Arie

    2006-06-01

    We show experimentally for ultrashort laser pulses propagating in air, that the collapse/filamentation distance of intense laser pulses in the atmosphere can be extended and controlled with a simple double-lens setup. We derive a simple formula for the filamentation distance, and confirm its agreement with the experimental results. We also observe that delaying the onset of filamentation increases the filament length.

  2. Experimental investigation of demineralization and remineralization of human teeth using infrared photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Jeon, Raymond J.; Hellen, Adam; Matvienko, Anna; Mandelis, Andreas; Abrams, Stephen H.; Amaechi, Bennett T.

    2008-02-01

    Photothermal radiometry (PTR) and modulated luminescence (LUM) were applied to detect and monitor the demineralization of root and enamel surfaces of human teeth to produce caries lesions and the subsequent remineralization of the produced lesions. The experimental set-up consisted of a semiconductor laser (659 nm, 120 mW), a mercury-cadmium-telluride IR detector for PTR, a photodiode for LUM, and two lock-in amplifiers. A lesion was created on a 1-mm × 4-mm rectangular window, spanning root to enamel surface, using an artificial caries lesion gel to demineralize the tooth surface and create small carious lesions. The samples were subsequently immersed in a remineralization solution. Each sample was examined with PTR/LUM on root and enamel before and after treatment at times from 1 to 10 days of demineralization and 2 to 10 days of remineralization. PTR/LUM signals showed gradual and consistent changes with treatment time. At the completion of the experiments, transverse micro-radiography (TMR) analysis was performed to correlate the PTR/LUM signals to depth of the carious lesions and mineral losses. In this study, TMR showed good correlation with PTR/LUM. It was also found that treatment duration did not correlate well to any technique, PTR/LUM, or TMR, which is indicative of significant variations in demineralization - remineralization rates among different teeth.

  3. Validity of Monod kinetics at different sludge ages--peptone biodegradation under aerobic conditions.

    PubMed

    Orhon, Derin; Cokgor, Emine Ubay; Insel, Guclu; Karahan, Ozlem; Katipoglu, Tugce

    2009-12-01

    The study presented an evaluation of the effect of culture history (sludge age) on the growth kinetics of a mixed culture grown under aerobic conditions. It involved an experimental setup where a lab-scale sequencing batch reactor was operated at steady-state at two different sludge ages (theta(X)) of 2 and 10 days. The system sustained a mixed culture fed with a synthetic substrate mainly consisting of peptone. The initial concentration of substrate COD was selected around 500 mg COD/L. Polyhydroxyalkanoate (PHA) storage occurred to a limited extent, around 30 mg COD/L for theta(X)=10 days and 15 mg COD/L for theta(X)=2 days. Evaluation of the experimental data based on calibration of two different models provided consistent and reliable evidence for a variable Monod kinetics where the maximum specific growth rate, was assessed as 6.1/day for theta(X)=2 days and 4.1/day for theta(X)=10 days. A similar variability was also applicable for the hydrolysis and storage kinetics. The rate of storage was significantly lower than the levels reported in the literature, exhibiting the ability of the microorganisms to regulate their metabolic mechanisms for adjusting the rate of microbial growth and storage competing for the same substrate. This adjustment evidently resulted in case-specific, variable kinetics both for microbial growth and substrate storage.

  4. Recent developments in heterodyne laser interferometry at Harbin Institute of Technology

    NASA Astrophysics Data System (ADS)

    Hu, P. C.; Tan, J. B. B.; Yang, H. X. X.; Fu, H. J. J.; Wang, Q.

    2013-01-01

    In order to fulfill the requirements for high-resolution and high-precision heterodyne interferometric technologies and instruments, the laser interferometry group of HIT has developed some novel techniques for high-resolution and high-precision heterodyne interferometers, such as high accuracy laser frequency stabilization, dynamic sub-nanometer resolution phase interpolation and dynamic nonlinearity measurement. Based on a novel lock point correction method and an asymmetric thermal structure, the frequency stabilized laser achieves a long term stability of 1.2×10-8, and it can be steadily stabilized even in the air flowing up to 1 m/s. In order to achieve dynamic sub-nanometer resolution of laser heterodyne interferometers, a novel phase interpolation method based on digital delay line is proposed. Experimental results show that, the proposed 0.62 nm, phase interpolator built with a 64 multiple PLL and an 8-tap digital delay line achieves a static accuracy better than 0.31nm and a dynamic accuracy better than 0.62 nm over the velocity ranging from -2 m/s to 2 m/s. Meanwhile, an accuracy beam polarization measuring setup is proposed to check and ensure the light's polarization state of the dual frequency laser head, and a dynamic optical nonlinearity measuring setup is built to measure the optical nonlinearity of the heterodyne system accurately and quickly. Analysis and experimental results show that, the beam polarization measuring setup can achieve an accuracy of 0.03° in ellipticity angles and an accuracy of 0.04° in the non-orthogonality angle respectively, and the optical nonlinearity measuring setup can achieve an accuracy of 0.13°.

  5. In vivo stimulus presentation to the mouse vomeronasal system: Surgery, experiment, setup, and software.

    PubMed

    Yoles-Frenkel, Michal; Cohen, Oksana; Bansal, Rohini; Horesh, Noa; Ben-Shaul, Yoram

    2017-06-15

    Achieving controlled stimulus delivery is a major challenge in the physiological analysis of the vomeronasal system (VNS). We provide a comprehensive description of a setup allowing controlled stimulus delivery into the vomeronasal organ (VNO) of anesthetized mice. VNO suction is achieved via electrical stimulation of the sympathetic nerve trunk (SNT) using cuff electrodes, followed by flushing of the nasal cavity. Successful application of this methodology depends on several aspects including the surgical preparation, fabrication of cuff electrodes, experimental setup modifications, and the stimulus delivery and flushing. Here, we describe all these aspects in sufficient detail to allow other researchers to readily adopt it. We also present a custom written MATLAB based software with a graphical user interface that controls all aspects of the actual experiment, including trial sequencing, hardware control, and data logging. The method allows measurement of stimulus evoked sensory responses in brain regions that receive vomeronasal inputs. An experienced investigator can complete the entire surgical procedure within thirty minutes. This is the only approach that allows repeated and controlled stimulus delivery to the intact VNO, employing the natural mode of stimulus uptake. The approach is economical with respect to stimuli, requiring stimulus volumes as low as 1-2μl. This comprehensive description will allow other investigators to adapt this setup to their own experimental needs and can thus promote our physiological understanding of this fascinating chemosensory system. With minor changes it can also be adapted for other rodent species. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An innovative experimental setup for Large Scale Particle Image Velocimetry measurements in riverine environments

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Olivieri, Giorgio; Porfiri, Maurizio; Grimaldi, Salvatore

    2014-05-01

    Large Scale Particle Image Velocimetry (LSPIV) is a powerful methodology to nonintrusively monitor surface flows. Its use has been beneficial to the development of rating curves in riverine environments and to map geomorphic features in natural waterways. Typical LSPIV experimental setups rely on the use of mast-mounted cameras for the acquisition of natural stream reaches. Such cameras are installed on stream banks and are angled with respect to the water surface to capture large scale fields of view. Despite its promise and the simplicity of the setup, the practical implementation of LSPIV is affected by several challenges, including the acquisition of ground reference points for image calibration and time-consuming and highly user-assisted procedures to orthorectify images. In this work, we perform LSPIV studies on stream sections in the Aniene and Tiber basins, Italy. To alleviate the limitations of traditional LSPIV implementations, we propose an improved video acquisition setup comprising a telescopic, an inexpensive GoPro Hero 3 video camera, and a system of two lasers. The setup allows for maintaining the camera axis perpendicular to the water surface, thus mitigating uncertainties related to image orthorectification. Further, the mast encases a laser system for remote image calibration, thus allowing for nonintrusively calibrating videos without acquiring ground reference points. We conduct measurements on two different water bodies to outline the performance of the methodology in case of varying flow regimes, illumination conditions, and distribution of surface tracers. Specifically, the Aniene river is characterized by high surface flow velocity, the presence of abundant, homogeneously distributed ripples and water reflections, and a meagre number of buoyant tracers. On the other hand, the Tiber river presents lower surface flows, isolated reflections, and several floating objects. Videos are processed through image-based analyses to correct for lens distortions and analyzed with a commercially available PIV software. Surface flow velocity estimates are compared to supervised measurements performed by visually tracking objects floating on the stream surface and to rating curves developed by the Ufficio Idrografico e Mareografico (UIM) at Regione Lazio, Italy. Experimental findings demonstrate that the presence of tracers is crucial for surface flow velocity estimates. Further, considering surface ripples and patterns may lead to underestimations in LSPIV analyses.

  7. Experimental verification of Pyragas-Schöll-Fiedler control.

    PubMed

    von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram

    2010-09-01

    We present an experimental realization of time-delayed feedback control proposed by Schöll and Fiedler. The scheme enables us to stabilize torsion-free periodic orbits in autonomous systems, and to overcome the so-called odd number limitation. The experimental control performance is in quantitative agreement with the bifurcation analysis of simple model systems. The results uncover some general features of the control scheme which are deemed to be relevant for a large class of setups.

  8. Configuration and Sizing of a Test Fixture for Panels Under Combined Loads

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2006-01-01

    Future air and space structures are expected to utilize composite panels that are subjected to combined mechanical loads, such as bi-axial compression/tension, shear and pressure. Therefore, the ability to accurately predict the buckling and strength failures of such panels is important. While computational analysis can provide tremendous insight into panel response, experimental results are necessary to verify predicted performances of these panels to judge the accuracy of computational methods. However, application of combined loads is an extremely difficult task due to the complex test fixtures and set-up required. Presented herein is a comparison of several test set-ups capable of testing panels under combined loads. Configurations compared include a D-box, a segmented cylinder and a single panel set-up. The study primarily focuses on the preliminary sizing of a single panel test configuration capable of testing flat panels under combined in-plane mechanical loads. This single panel set-up appears to be best suited to the testing of both strength critical and buckling critical panels. Required actuator loads and strokes are provided for various square, flat panels.

  9. Investigating and understanding fouling in a planar setup using ultrasonic methods.

    PubMed

    Wallhäusser, E; Hussein, M A; Becker, T

    2012-09-01

    Fouling is an unwanted deposit on heat transfer surfaces and occurs regularly in foodstuff heat exchangers. Fouling causes high costs because cleaning of heat exchangers has to be carried out and cleaning success cannot easily be monitored. Thus, used cleaning cycles in foodstuff industry are usually too long leading to high costs. In this paper, a setup is described with which it is possible, first, to produce dairy protein fouling similar to the one found in industrial heat exchangers and, second, to detect the presence and absence of such fouling using an ultrasonic based measuring method. The developed setup resembles a planar heat exchanger in which fouling can be made and cleaned reproducible. Fouling presence, absence, and cleaning progress can be monitored by using an ultrasonic detection unit. The setup is described theoretically based on electrical and mechanical lumped circuits to derive the wave equation and the transfer function to perform a sensitivity analysis. Sensitivity analysis was done to determine influencing quantities and showed that fouling is measurable. Also, first experimental results are compared with results from sensitivity analysis.

  10. Determination of the magnetocaloric entropy change by field sweep using a heat flux setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, J. C. B., E-mail: jolmiui@gmail.com; Reis, R. D. dos; Mansanares, A. M.

    2014-08-18

    We report on a simple setup using a heat flux sensor adapted to a Quantum Design Physical Property Measurement System to determine the magnetocaloric entropy change (ΔS). The major differences for the existing setups are the simplicity of this assembly and the ease to obtain the isothermal entropy change either by a field sweep or a temperature sweep process. We discuss the use of these two processes applied to Gd and Gd{sub 5}Ge{sub 2}Si{sub 2} samples. The results are compared to the temperature sweep measurements and they show the advantages of this setup and of the field sweep procedure. Wemore » found a significant reduction of ΔS and on the refrigerating cooling power (RCP) at low field changes in a field sweep process when the sample is not driven to the same initial state for each temperature. We show that the field sweep process without any measuring protocol is the only correct way to experimentally determine ΔS and RCP for a practical regenerative refrigerator.« less

  11. JANUS — A setup for low-energy Coulomb excitation at ReA3

    DOE PAGES

    Lunderberg, E.; Belarge, J.; Bender, P. C.; ...

    2017-12-21

    We report that a new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access tomore » observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. Here, in this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm 2 208Pb target at a beam energy of 3.9 MeV/u.« less

  12. A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses.

    PubMed

    Bradler, Maximilian; Werhahn, Jasper C; Hutzler, Daniel; Fuhrmann, Simon; Heider, Rupert; Riedle, Eberhard; Iglev, Hristo; Kienberger, Reinhard

    2013-08-26

    We present a three-color mid-IR setup for vibrational pump-repump-probe experiments with a temporal resolution well below 100 fs and a freely selectable spectral resolution of 20 to 360 cm(-1) for the pump and repump. The usable probe range without optical realignment is 900 cm(-1). The experimental design employed is greatly simplified compared to the widely used setups, highly robust and includes a novel means for generation of tunable few-cycle pulses with stable carrier-envelope phase. A Ti:sapphire pump system operating with 1 kHz and a modest 150 fs pulse duration supplies the total pump energy of just 0.6 mJ. The good signal-to-noise ratio of the setup allows the determination of spectrally resolved transient probe changes smaller than 6·10(-5) OD at 130 time delays in just 45 minutes. The performance of the spectrometer is demonstrated with transient IR spectra and decay curves of HDO molecules in lithium nitrate trihydrate and ice and a first all MIR pump-repump-probe measurement.

  13. A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics

    NASA Astrophysics Data System (ADS)

    Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W.; Siddiqui, L.; Datta, S.

    2005-08-01

    We present a transport model for molecular conduction involving an extended Hückel theoretical treatment of the molecular chemistry combined with a nonequilibrium Green's function treatment of quantum transport. The self-consistent potential is approximated by CNDO (complete neglect of differential overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode configurations employing only a single adjustable parameter to locate the Fermi energy. As this model is based on semiempirical methods it is computationally inexpensive and flexible compared to ab initio models, yet at the same time it is able to capture salient qualitative features as well as several relevant quantitative details of transport. We apply our model to investigate recent experimental data on alkane dithiol molecules obtained in a nanopore setup. We also present a comparison study of single molecule transistors and identify electronic properties that control their performance.

  14. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Experimental generation of partially coherent beams with different complex degrees of coherence.

    PubMed

    Wang, Fei; Liu, Xianlong; Yuan, Yangsheng; Cai, Yangjian

    2013-06-01

    We established an experimental setup for generating partially coherent beams with different complex degrees of coherence, and we report experimental generation of an elliptical Gaussian Schell-model (GSM) beam and a Laguerre-GSM beam for the first time. It has been demonstrated experimentally that an elliptical GSM beam and a Laguerre-GSM beam produce an elliptical beam spot and a dark hollow beam spot in the focal plane (or in the far field), respectively, which agrees with theoretical predictions. Our results are useful for beam shaping and particle trapping.

  16. Global embedding of fibre inflation models

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Muia, Francesco; Shukla, Pramod

    2016-11-01

    We present concrete embeddings of fibre inflation models in globally consistent type IIB Calabi-Yau orientifolds with closed string moduli stabilisation. After performing a systematic search through the existing list of toric Calabi-Yau manifolds, we find several examples that reproduce the minimal setup to embed fibre inflation models. This involves Calabi-Yau manifolds with h 1,1 = 3 which are K3 fibrations over a ℙ1 base with an additional shrinkable rigid divisor. We then provide different consistent choices of the underlying brane set-up which generate a non-perturbative superpotential suitable for moduli stabilisation and string loop corrections with the correct form to drive inflation. For each Calabi-Yau orientifold setting, we also compute the effect of higher derivative contributions and study their influence on the inflationary dynamics.

  17. A Direct Method for Viewing Ferromagnetic Phase Transition.

    ERIC Educational Resources Information Center

    Lue, Chin-Shan

    1994-01-01

    Provides a method, using the Rowland ring as a specimen, to observe the phase transition process directly on the oscilloscope and even extract the critical exponent of ferromagnetic transition. Includes theory, experimental setup, and results. (MVL)

  18. Scintillator Detector Development at Central Michigan University

    NASA Astrophysics Data System (ADS)

    McClain, David; Estrade, Alfredo; Neupane, Shree

    2017-09-01

    Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.

  19. Modeling and analysis of wet friction clutch engagement dynamics

    NASA Astrophysics Data System (ADS)

    Iqbal, Shoaib; Al-Bender, Farid; Ompusunggu, Agusmian P.; Pluymers, Bert; Desmet, Wim

    2015-08-01

    In recent years, there has been a significant increase in the usage of wet-friction clutches. Presently researchers across the globe are involved in improving the performance and lifetime of clutches through testing and simulation. To understand the clutch vibrational and dynamical behavior, an SAE#2 test setup mathematical model based on extended reset-integrator friction model is developed in this paper. In order to take into account the different phases of fluid lubrication during engagement cycle, the model includes the experimentally determined Stribeck function. In addition the model considers the viscous effect and the delay in the actuation pressure signal. The model is validated with the experiments performed on the SAE#2 test setup in both time and frequency domains. By analyzing the set of experimental results, we confirmed that the amplitude of shudder vibration is independent of the amplitude of applied contact pressure fluctuation.

  20. Fission Fragment characterization with FALSTAFF at NFS

    NASA Astrophysics Data System (ADS)

    Doré, D.; Farget, F.; Lecolley, F.-R.; Ledoux, X.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.

    2013-03-01

    The Neutrons for Science (NFS) facility will be one of the first installations of the SPIRAL2 facility. NFS will be composed of a time-of-flight baseline and irradiation stations and will allow studying neutron-induced reactions for energies going from some hundreds of keV up to 40 MeV. Continuous and quasi-monoenergetic energy neutron beams will be available. Taking advantage of this new installation, the development of an experimental setup for a full characterization of actinide fission fragments in this energy domain has been undertaken. To achieve this goal a new detection system called FALSTAFF (Four Arm cLover for the STudy of Actinide Fission Fragments) in under development. In this paper, the characteristics of the NFS facility will be exposed and the motivations for the FALSTAFF experiment will be presented. The experimental setup will be described and the expected resolutions based on realistic GEANT4 simulations will be discussed.

  1. Object recognition through a multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Takagi, Ryosuke; Horisaki, Ryoichi; Tanida, Jun

    2017-04-01

    We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.

  2. Digital image compression for a 2f multiplexing optical setup

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Amaya, D.; Rueda, E.

    2016-07-01

    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  3. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurementmore » errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.« less

  4. Microwave-mediated magneto-optical trap for polar molecules

    NASA Astrophysics Data System (ADS)

    Dizhou, Xie; Wenhao, Bu; Bo, Yan

    2016-05-01

    Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However, due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap (MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT, which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup. Project supported by the Fundamental Research Funds for the Central Universities of China.

  5. Contribution of religiousness in the prediction and interpretation of mystical experiences in a sensory deprivation context: activation of religious schemas.

    PubMed

    Granqvist, Pehr; Larsson, Marcus

    2006-07-01

    M. A. Persinger (2002) claimed that transcranial magnetic stimulation with weak, complex magnetic fields evokes mystical experiences. However, in a double-blind experiment, P. Granqvist, M. Fredrikson, P. Unge, A. Hagenfeldt, S. Valind., et al. (2005) found no effects of field exposure on mystical experiences (N = 89), though a minority of participants reported spontaneous mystical experiences. Following the conclusion of null effects from magnetic field exposure, the setup of this experiment, including pre-experimental assessments of religiousness and sensory deprivation, can be viewed as a prime/setting for such experiences. The authors analyzed subsets of experimental data from P. Granqvist and colleagues with emphasis on the contribution of religiousness in the prediction and interpretation of mystical experiences. They found that a higher degree of religiousness predicted a higher occurrence of mystical experiences with a religious quality, but not of mystical experiences without such a quality. The authors discuss findings in terms of the experimental setup serving as a prime/setting activating the religious schemas of religious participants.

  6. Getting a grip on the transverse motion in a Zeeman decelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulitz, Katrin; Softley, Timothy P., E-mail: tim.softley@chem.ox.ac.uk; Motsch, Michael

    2014-03-14

    Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This ismore » achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.« less

  7. Development of an Experimental Setup for the Measurement of the Coefficient of Restitution under Vacuum Conditions

    PubMed Central

    Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno

    2016-01-01

    The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand. PMID:27077671

  8. Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh-Liem; Klibanov, Michael V.; Nguyen, Loc H.; Kolesov, Aleksandr E.; Fiddy, Michael A.; Liu, Hui

    2017-09-01

    We analyze in this paper the performance of a newly developed globally convergent numerical method for a coefficient inverse problem for the case of multi-frequency experimental backscatter data associated to a single incident wave. These data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. The challenges for the inverse problem under the consideration are not only from its high nonlinearity and severe ill-posedness but also from the facts that the amount of the measured data is minimal and that these raw data are contaminated by a significant amount of noise, due to a non-ideal experimental setup. This setup is motivated by our target application in detecting and identifying explosives. We show in this paper how the raw data can be preprocessed and successfully inverted using our inversion method. More precisely, we are able to reconstruct the dielectric constants and the locations of the scattering objects with a good accuracy, without using any advanced a priori knowledge of their physical and geometrical properties.

  9. Development of an Experimental Setup for the Measurement of the Coefficient of Restitution under Vacuum Conditions.

    PubMed

    Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno

    2016-03-29

    The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand.

  10. Kalman filter based control for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2004-12-01

    Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.

  11. The Moment of Inertia of a Rectangular Rod

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takao

    2007-11-01

    Recently an inexpensive setup to obtain the moment of inertia of a rotating system was proposed by Peter E. Banks. An equally simple and inexpensive experiment to obtain the moment of inertia of a uniform rod is proposed in this paper. A rectangular rod with a hole somewhere in the rod was used for this purpose. The moment of inertia of a rectangular rod around the hole location was attempted. The experimental setup is shown in Fig. 1. Various supporting rods, clamps, and rubber stoppers to hold the rectangular rod in place at point p are not shown.

  12. Large atom number Bose-Einstein condensate machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.

    2006-02-15

    We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.

  13. Isolated heart models: cardiovascular system studies and technological advances.

    PubMed

    Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo

    2015-07-01

    Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.

  14. Characterization of the Medley setup for measurements of neutron-induced fission cross sections at the GANIL-NFS facility

    NASA Astrophysics Data System (ADS)

    Tarrío, Diego; Prokofiev, Alexander V.; Gustavsson, Cecilia; Jansson, Kaj; Andersson-Sundén, Erik; Al-Adili, Ali; Pomp, Stephan

    2017-09-01

    Neutron-induced fission cross sections of 235U and 238U are widely used as standards for monitoring of neutron beams and fields. An absolute measurement of these cross sections at an absolute scale, i.e., versus the H(n,p) scattering cross section, is planned with the white neutron beam under construction at the Neutrons For Science (NFS) facility in GANIL. The experimental setup, based on PPACs and ΔE-ΔE-E telescopes containing Silicon and CsI(Tl) detectors, is described. The expected uncertainties are discussed.

  15. Measuring the Newtonian constant of gravitation with a differential free-fall gradiometer: A feasibility study

    NASA Astrophysics Data System (ADS)

    Rothleitner, Christian; Francis, Olivier

    2014-04-01

    An original setup is presented to measure the Newtonian Constant of Gravitation G. It is based on the same principle as used in ballistic absolute gravimeters. The differential acceleration of three simultaneously freely falling test masses is measured in order to determine G. In this paper, a description of the experimental setup is presented. A detailed uncertainty budget estimates the relative uncertainty to be of the order of 5.3 × 10-4, however with some improvements a relative uncertainty in G of one part in 104 could be feasible.

  16. a New Set-Up for Total Reaction Cross Section Measuring

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Ivanov, M. P.; Kugler, A.; Penionzhkevich, Yu. E.

    2013-06-01

    The experimental method and set-up based on 4 n-Υ-technique for direct and modelindependent measuring of the total reaction cross section σR have been presented. The excitation function σR(E) for 6He+197Au reaction at the Coulomb barrier energy region has been measured. The measured data are compared with the summarized cross section which has been prepared by summing of measured cross sections of main reaction channels: 1n-transfer and 197Au(6He, xn)203-xnT1 with x = 2÷7 evaporation reaction channels.

  17. RF breakdown in "cold" slow wave structures operating at travelling wave mode of TM01

    NASA Astrophysics Data System (ADS)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian; Bai, Zhen; Zhu, Danni

    2018-01-01

    RF breakdown experiments and simulations in "cold" slow wave structures (SWSs) are executed. All the SWSs are designed as traveling wave structures, which operate at the π/2 mode of TM01 waves. The experimental results indicate that the input microwave energy is mainly absorbed, not reflected by the RF breakdown process in traveling wave SWSs. Both larger magnitude of Es-max and more numbers of periods of SWSs aggravate the microwave absorption in the breakdown process and bring about a shorter transmission pulse width. We think that the critical surface E-field of the multi-period SWSs is 1 MV/cm. However, little correlation between RF breakdown effects and Bext is observed in the experiments. The simulation conditions are coincident with the experimental setup. Explosive emissions of electrons in the rounded corner of SWSs together with the ionization of the gas layer close to it supply the breakdown plasma. The gas layer consists of water vapor and hydrogen gas and has a pressure of 1 Pa. Different kinds of circumstances of SWSs are simulated. We mainly concern about the characteristic of the plasma and its influence on microwave power. Comprehensive simulation results are obtained. The simulation results match the experimental results basically and are helpful in explaining the RF breakdown phenomenon physically.

  18. Visuo-acoustic stimulation that helps you to relax: A virtual reality setup for patients in the intensive care unit.

    PubMed

    Gerber, Stephan M; Jeitziner, Marie-Madlen; Wyss, Patric; Chesham, Alvin; Urwyler, Prabitha; Müri, René M; Jakob, Stephan M; Nef, Tobias

    2017-10-16

    After prolonged stay in an intensive care unit (ICU) patients often complain about cognitive impairments that affect health-related quality of life after discharge. The aim of this proof-of-concept study was to test the feasibility and effects of controlled visual and acoustic stimulation in a virtual reality (VR) setup in the ICU. The VR setup consisted of a head-mounted display in combination with an eye tracker and sensors to assess vital signs. The stimulation consisted of videos featuring natural scenes and was tested in 37 healthy participants in the ICU. The VR stimulation led to a reduction of heart rate (p = 0. 049) and blood pressure (p = 0.044). Fixation/saccade ratio (p < 0.001) was increased when a visual target was presented superimposed on the videos (reduced search activity), reflecting enhanced visual processing. Overall, the VR stimulation had a relaxing effect as shown in vital markers of physical stress and participants explored less when attending the target. Our study indicates that VR stimulation in ICU settings is feasible and beneficial for critically ill patients.

  19. Forward hadron calorimeter at MPD/NICA

    NASA Astrophysics Data System (ADS)

    Golubeva, M.; Guber, F.; Ivashkin, A.; Izvestnyy, A.; Kurepin, A.; Morozov, S.; Parfenov, P.; Petukhov, O.; Taranenko, A.; Selyuzhenkov, I.; Svintsov, I.

    2017-01-01

    Forward hadron calorimeter (FHCAL) at MPD/NICA experimental setup is described. The main purpose of the FHCAL is to provide an experimental measurement of a heavy-ion collision centrality (impact parameter) and orientation of its reaction plane. Precise event-by-event estimate of these basic observables is crucial for many physics phenomena studies to be performed by the MPD experiment. The simulation results of FHCAL performance are presented.

  20. Coplanar waveguide discontinuities for P-I-N diode switches and filter applications

    NASA Technical Reports Server (NTRS)

    Dib, N. I.; Katehi, P. B.; Ponchak, George E.; Simons, Rainee N.

    1990-01-01

    A full wave space domain integral equation (SDIE) analysis of coplanar waveguide (CPW) two port discontinuities is presented. An experimental setup to measure the S-parameters of such discontinuities is described. Experimental and theoretical results for CPW realizations of pass-band and stop-band filters are presented. The S-parameters of such structures are plotted in the frequency range 5 to 25 GHz.

  1. The First Static and Dynamic Analysis of 3-D Printed Sintered Ceramics for Body Armor Applications

    DTIC Science & Technology

    2016-09-01

    evaluate sintered alumina tiles produced by 3-D printing methodology. This report examines the static and quasi -static parameters (including density...Figures iv List of Tables iv Acknowledgments v 1. Introduction 1 2. Processing and Experimental Procedures 1 3. Results and Discussion 7 4...6 Fig. 8 Experimental setup for recording fracture .............................................7 Fig. 9 Rod projectile

  2. Optical Microwave Interactions in Semiconductor Devices.

    DTIC Science & Technology

    1980-11-01

    geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability

  3. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-07

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.

  4. Experimental and Theoretical Probing of Molecular Dynamics at Catalytic and Ionic Liquid Interfaces

    DTIC Science & Technology

    2014-04-01

    15. SUBJECT TERMS Surface, interface,  photocatalysis , fluorescence yield, ionic liquid, reactive force field    16. SECURITY CLASSIFICATION OF: 17...2, 3 which are promising photocatalysts for hydrogen production via photocatalytic water splitting. 1. Experimental The new experimental setup...Wang, G. Liu, G. Q. Lu, H.-M. Cheng, Int. J. of Hydrogen Energ., 2010, 35, 8199- 8205. 3. F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao, K. Jiang, CrystEngComm

  5. Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers.

    PubMed

    Miernik, Arkadiusz; Eilers, Yvan; Nuese, Christoph; Bolwien, Carsten; Lambrecht, Armin; Hesse, Albrecht; Rassweiler, Jens J; Schlager, Daniel; Wilhelm, Konrad; Wetterauer, Ulrich; Schoenthaler, Martin

    2015-10-01

    Raman spectroscopy allows immediate analysis of stone composition. In vivo stone analysis during endoscopic treatment may offer advantages concerning surgical strategy and metaphylaxis. Urinary stone components were evaluated utilizing an experimental setup of a Raman system coupled to commercial laser fibers. Samples of paracetamol (acetaminophen) and human urinary stones with known Raman spectra were analyzed using an experimental Raman system coupled to common commercial lithotripsy laser fibers (200 and 940 µm). Two different excitation lasers were used at wavelengths of 532 and 785 nm. Numerical aperture of the fibers, proportion of reflected light reaching the CCD chip, and integration times were calculated. Mathematical signal correction was performed. Both the laser beam profile and the quality of light reflected by the specimens were impaired significantly when used with commercial fibers. Acquired spectra could no longer be assigned to a specific stone composition. Subsequent measurements revealed a strong intrinsic fluorescence of the fibers and poor light acquisition properties leading to a significant decrease in the Raman signal in comparison with a free-beam setup. This was true for both investigated fiber diameters and both wavelengths. Microscopic examination showed highly irregular fiber tip surfaces (both new and used fibers). Our results propose that laser excitation and light acquisition properties of commercial lithotripsy fibers impair detectable Raman signals significantly in a fiber-coupled setting. This study provides essential physical and technological information for the development of an advanced fiber-coupled system able to be used for immediate stone analysis during endoscopic stone therapy.

  6. A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete

    PubMed Central

    Jibran, Mohammed Abdul Azeem; Azad, Abul Kalam

    2014-01-01

    The accuracy in the measurement of the rate of corrosion of steel in concrete depends on many factors. The high resistivity of concrete makes the polarization data erroneous due to the Ohmic drop. The other source of error is the use of an arbitrarily assumed value of the Stern-Geary constant for calculating corrosion current density. This paper presents the outcomes of a research work conducted to develop a reliable and low-cost experimental setup and a simple calculation procedure that can be utilised to calculate the corrosion current density considering the Ohmic drop compensation and the actual value of the Stern-Geary constants calculated using the polarization data. The measurements conducted on specimens corroded to different levels indicate the usefulness of the developed setup to determine the corrosion current density with and without Ohmic drop compensation. PMID:24526907

  7. White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake

    NASA Astrophysics Data System (ADS)

    Volz, Pierre; Brodwolf, Robert; Zoschke, Christian; Haag, Rainer; Schäfer-Korting, Monika; Alexiev, Ulrike

    2018-05-01

    We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.

  8. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts.

    PubMed

    Bentrup, Ursula

    2010-12-01

    Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.

  9. Broadband interferometric characterisation of nano-positioning stages with sub-10 pm resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Brand, Uwe; Wolff, Helmut; Koenders, Ludger; Yacoot, Andrew; Puranto, Prabowo

    2017-06-01

    A traceable calibration setup for investigation of the quasi-static and the dynamic performance of nano-positioning stages is detailed, which utilizes a differential plane-mirror interferometer with double-pass configuration from the National Physical Laboratory (NPL). An NPL-developed FPGA-based interferometric data acquisition and decoding system has been used to enable traceable quasi-static calibration of nano-positioning stages with high resolution. A lockin based modulation technique is further introduced to quantitatively calibrate the dynamic response of moving stages with a bandwidth up to 100 kHz and picometer resolution. First experimental results have proven that the calibration setup can achieve under nearly open-air conditions a noise floor lower than 10 pm/sqrt(Hz). A pico-positioning stage, that is used for nanoindentation with indentation depths down to a few picometers, has been characterized with this calibration setup.

  10. Pixel detectors in double beta decay experiments, a new approach for background reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, J. M.; Čermák, P.; Štekl, I.

    Double beta decay (ββ) experiments are challenging frontiers in contemporary physics. These experiments have the potential to investigate more about neutrinos (eg. nature and mass). The main challenge for these experiments is the reduction of background. The group at IEAP, CTU in Prague is investigating a new approach using pixel detectors Timepix. Pixel detector offer background reduction capabilities with its ability to identify the particle interaction (from the 2D signature it generates). However, use of pixel detectors has some challenges such as the presence of readout electronics near the sensing medium and heat dissipation. Different aspects of pixel setup (identificationmore » of radio-impurities, selection of radio-pure materials) and proposed experimental setup are presented. Also, results of preliminary background measurements (performed on the surface and in the underground laboratories) using the prototype setups are presented.« less

  11. Hypernuclear Spectroscopy with Electron Beam at JLab Hall C

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.

    2010-10-01

    Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.

  12. Hypernuclear Spectroscopy with Electron Beam at JLab Hall C

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.

    Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.

  13. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    PubMed Central

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678

  14. Analysis of the accuracy and robustness of the leap motion controller.

    PubMed

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  15. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian

    2013-04-15

    We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed opticalmore » dipole trap and cooled evaporatively to quantum degeneracy.« less

  16. Liquid volume measurement method for the picoliter to nanoliter volume range based on quartz crystal microbalance technology

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Zhang, Jin; Thanikhatla Govindaiah, Muniyogeshbabu; Tanguy, Laurent; Ernst, Andreas; Zengerle, Roland; Koltay, Peter

    2014-09-01

    In this article, a quantitative liquid volume measurement method for the sub-nanoliter range using a quartz crystal microbalance (QCM) is described and experimentally analyzed. The primary measurement device to determine the volume of small liquid droplets is a QCM sensor coated with a surface-attached hydrogel to improve the mechanical coupling of the liquid to the sensor surface. An experimental evaluation of measured volumes in the range of 3 nl to 15 nl in normal room conditions has been performed with three identical sensors prepared with a PDMAA-1%MaBP hydrogel coating with a thickness of 1.5 µm ± 0.12 µm. A linearity of R2 more than 0.87, an average coefficient of variation (CV) within one experimental run of 5.7%, a mean absolute relative bias of 5.5%, and a sensor-to-sensor variation of 6.3% have been experimentally determined. The feasibility of this method has also been experimentally proven for the picoliter volume range down to 200 pl, with an average CV of 5.3% and a mean absolute relative bias of 6.5%. Furthermore, a stability evaluation consisting of 10 experimental series with approximately 150 measurements over the course of one week has been performed. This evaluation showed that the experimental setup, although exhibiting highly consistent performance within one measurement run, is not yet reproducible enough for long-term and repeated use because of undefined swelling and crack formation in the hydrogel layer. The low reproducibility implies a relatively high expanded uncertainty, with k = 2 according to the JCGM ‘Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement’ (GUM) for the total measurement method of approximately 3.82 nl when measuring a 10 nl liquid droplet. Nevertheless, the QCM method as described here contributes to significant progress beyond the state-of-the-art that might allow new opportunities for precise measurement of sub-nanoliter liquid volumes.

  17. Culvert roughness elements for native Utah fish passage : phase I.

    DOT National Transportation Integrated Search

    2011-01-01

    Laboratory flume testing of native Utah non-salmonid fish was performed to observe how : they use altered flow around obstacles to swim upstream. Three experimental setups included : a bare Plexiglas flume, vertical cylinders, and natural substrate p...

  18. Large-scale laboratory observations of wave forces on a highway bridge superstructure.

    DOT National Transportation Integrated Search

    2011-10-01

    The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...

  19. TAMOAS: In Situ Gasometry in the Atmosphere with Solid Electrolyte Sensors on BEXUS-19

    NASA Astrophysics Data System (ADS)

    Bronowski, A.; Clemens, R.; Jaster, T.; Kosel, F.; Matyash, I.; Westphal, A.

    2015-09-01

    A student experiment developed for testing gas sensors in the stratosphere is described. The setup consists of a measurement electronic running miniaturized in situ amperiometric gas sensors based on different solid state electrolytes dedicated for oxygen, ozone and atomic oxygen. The experiment took place at Esrange Space Center in October 2014. The setup was attached to the high-altitude balloon BEXUS-19 and reached an altitude of 27 km at night. The primary objective was to test the prototype sensors and to gain data during flight.

  20. Evaluation of an exposure setup for studying effects of diesel exhaust in humans.

    PubMed

    Rudell, B; Sandström, T; Hammarström, U; Ledin, M L; Hörstedt, P; Stjernberg, N

    1994-01-01

    Diesel exhaust is a common air pollutant and work exposure has been reported to cause discomfort and affect lung function. The aim of this study was to develop an experimental setup which would allow investigation of acute effects on symptoms and lung function in humans exposed to diluted diesel exhaust. Diluted diesel exhaust was fed from an idling lorry through heated tubes into an exposure chamber. During evaluations of the setup we found the size and the shape of the exhaust particles to appear unchanged during the transport from the tail pipe to the exposure chamber. The composition of the diesel exhaust expressed as the ratios CO/NO, total hydrocarbons/NO, particles/NO, NO2/NO, and formaldehyde/NO were almost constant at different dilutions. The concentrations of NO2 and particles in the exposure chamber showed no obvious gradients. New steady state concentrations in the exposure chamber were obtained within 5-7 min. In a separate experiment eight healthy nonsmoking subjects were exposed to diluted exhaust at a median steady state concentration of 1.6 ppm NO2 for the duration of 1 h in the exposure chamber. All subjects experienced unpleasant smell, eye irritation, and nasal irritation. Throat irritation, headache, dizziness, nausea, tiredness, and coughing were experienced by some subjects. Lung function was not found to be affected during the exposure. The experimental setup was found to be appropriate for creating different predetermined steady state concentrations in the exposure chamber of diluted exhaust from a continuously idling vehicle. The acute symptoms reported by the subjects were relatively similar to what patients reported at different workplaces.

  1. Characterisation of the responsive properties of two running-specific prosthetic models.

    PubMed

    Grobler, Lara; Ferreira, Suzanne; Vanwanseele, Benedicte; Terblanche, Elmarie E

    2017-04-01

    The need for information regarding running-specific prosthetic properties has previously been voiced. Such information is necessary to assist in athletes' prostheses selection. This study aimed to describe the characteristics of two commercially available running-specific prostheses. The running-specific prostheses were tested (in an experimental setup) without the external interference of athlete performance variations. Four stiffness categories of each running-specific prosthetic model (Xtend ™ and Xtreme ™ ) were tested at seven alignment setups and three drop masses (28, 38 and 48 kg). Results for peak ground reaction force (GRF peak ), contact time ( t c ), flight time ( t f ), reactive strength index (RSI) and maximal compression (Δ L) were determined during controlled dropping of running-specific prostheses onto a force platform with different masses attached to the experimental setup. No statistically significant differences were found between the different setups of the running-specific prostheses. Statistically significant differences were found between the two models for all outcome variables (GRF peak , Xtend > Xtreme; t c , Xtreme > Xtend; t f , Xtreme > Xtend; RSI, Xtend > Xtreme; Δ L, Xtreme > Xtend; p < 0.05). These findings suggest that the Xtreme stores more elastic energy than the Xtend, leading to a greater performance response. The specific responsive features of blades could guide sprint athletes in their choice of running-specific prostheses. Clinical relevance Insights into the running-specific prosthesis (RSP) properties and an understanding of its responsive characteristics have implications for athletes' prosthetic choice. Physiologically and metabolically, a short sprint event (i.e. 100 m) places different demands on the athlete than a long sprint event (i.e. 400 m), and the RSP should match these performance demands.

  2. Frequency domain fluorescent diffuse tomography of small animals with DsRed2-expressed tumors

    NASA Astrophysics Data System (ADS)

    Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Sergeeva, Ekaterina A.; Kleshnin, Mikhail S.; Shirmanova, Marina V.

    2006-02-01

    The main applications of fluorescent proteins (FPs) are monitoring tumor growth, angiogenesis, metastases formation and effects of new classes of drugs. Different types of tomography allow fluorescence imaging of tumors located deep in human or animal tissue. These techniques were used for investigation of the distribution of near-infrared fluorescent probes, but only a few works are devoted to fluorescence tomography in visible light. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FD FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments we utilized second harmonic generation of Nd:YAG laser (532 nm) modulated by low frequency (1 kHz) in the experimental setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Post mortem experiments with capsules containing DsRed2 and scattering solution introduced into esophagus of rats to simulate tumor formation have been conducted. The results of these experiments show that sensitivity of the setup is sufficient to detect DsRed2 in concentrations similar to those in FP-expressed tumor, but the contrast is not enough high to separate fluorescence of DsRed2 and surrounding tissues. The setup can be significantly improved by utilizing high-frequency modulation (110 MHz using acousto-optical modulator) of the excitation light and precise phase measurements due to difference in fluorescence life-time of FPs and surrounding tissues. An algorithm of processing a fluorescent image based on calculating zero of maximum curvature was employed for detection of fluorescent inclusions boundaries in the image.

  3. A concept to transfer a therapeutic splint position into permanent occlusion with a customized lingual appliance.

    PubMed

    Sachse, Tina; Schwestka-Polly, Rainer; Flieger, Stefanie; Wiechmann, Dirk

    2012-05-21

    The role of occlusion concerning temporomandibular disorder is still unclear but seems to be the only component of the stomathognathic system dentists are able to change morphologically. The aim of the paper is to describe the orthodontist's approach for transferring and maintaining a therapeutic splint position into permanent occlusion using a fully customized lingual appliance. Fixed acrylic bite planes on lower molars were used to maintain a symptom-free condyle position prior to orthodontic treatment. Silicone impressions of the arches including the fixed bite planes were used for the Incognito laboratory procedure. Two digital setups were made. One setup represents the target occlusion. A second setup including the bite planes was used to fabricate an additional set of lower molar brackets. In the leveling stage all teeth except the lower molars were settled to maintain the therapeutic condyle position. Finally, the fixed bite planes were stepwise removed and molar brackets were replaced to establish the permanent occlusion planned with the first setup. The advantage of an individual lingual appliance consists in the high level of congruence between the fabricated setups and the final clinical result. Both the individual scope for design and the precision of the appliance were vitally important in the treatment of a patient with a functional disorder of the masticatory system.

  4. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  5. SU-F-T-185: Study of the Robustness of a Proton Arc Technique Based On PBS Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z; Zheng, Y

    Purpose: One potential technique to realize proton arc is through using PBS beams from many directions to form overlaid Bragg peak (OBP) spots and placing these OBP spots throughout the target volume to achieve desired dose distribution. In this study, we analyzed the robustness of this proton arc technique. Methods: We used a cylindrical water phantom of 20 cm in radius in our robustness analysis. To study the range uncertainty effect, we changed the density of the phantom by ±3%. To study the setup uncertainty effect, we shifted the phantom by 3 & 5 mm. We also combined the rangemore » and setup uncertainties (3mm/±3%). For each test plan, we performed dose calculation for the nominal and 6 disturbed scenarios. Two test plans were used, one with single OBP spot and the other consisting of 121 OBP spots covering a 10×10cm{sup 2} area. We compared the dose profiles between the nominal and disturbed scenarios to estimate the impact of the uncertainties. Dose calculation was performed with Gate/GEANT based Monte Carlo software in cloud computing environment. Results: For each of the 7 scenarios, we simulated 100k & 10M events for plans consisting of single OBP spot and 121 OBP spots respectively. For single OBP spot, the setup uncertainty had minimum impact on the spot’s dose profile while range uncertainty had significant impact on the dose profile. For plan consisting of 121 OBP spots, similar effect was observed but the extent of disturbance was much less compared to single OBP spot. Conclusion: For PBS arc technique, range uncertainty has significantly more impact than setup uncertainty. Although single OBP spot can be severely disturbed by the range uncertainty, the overall effect is much less when a large number of OBP spots are used. Robustness optimization for PBS arc technique should consider range uncertainty with priority.« less

  6. Technical Note: Using dual step-wedge and 2D scintillator to achieve highly precise and robust proton range quality assurance.

    PubMed

    Deng, Wei; Liu, Wei; Robertson, Daniel G; Bues, Martin; Sio, Terence T; Keole, Sameer R; Shen, Jiajian

    2018-05-12

    To develop a fast method for proton range quality assurance (QA) using a dual step-wedge and 2D scintillator and to evaluate the robustness, sensitivity, and long term reproducibility of this method. An in-house customized dual step-wedge and a 2D scintillator were developed to measure proton ranges. Proton beams with homogenous fluence were delivered through wedge, and the images captured by the scintillator were used to calculate the proton ranges by a simple trigonometric method. The range measurements of 97 energies, comprising all clinically available synchrotron energies at our facility (ranges varying from 4 to 32 cm) were repeated 10 times in all four gantry rooms for range baseline values. They were then used for evaluating room-to-room range consistencies. The robustness to setup uncertainty was evaluated by measuring ranges with ±2mm setup deviations in the x, y, and z directions. The long term reproducibility was evaluated by one month of daily range measurements by this method. Ranges of all 97 energies were measured in less than 10 minutes including setup time. The reproducibility in a single day and daily over one month is within 0.1 mm and 0.15 mm, respectively. The method was very robust to setup uncertainty, with measured range consistencies within 0.15mm for ±2mm couch shifts. The method was also sensitive enough for validating range consistencies among gantry rooms and for detecting small range variations. The new method of using a dual step-wedge and scintillator for proton range QA was efficient, highly reproducible, and robust. This method of proton range QA was highly feasible, and appealing from a workflow point of view. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Inclusive ϱ0 production in overlineνμp charged current interactions

    NASA Astrophysics Data System (ADS)

    Grässler, H.; Lanske, D.; Schulte, R.; Jones, G. T.; Kennedy, B. W.; Middleton, R. P.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Hoffmann, E.; Nellen, B.; Saarikko, H.; Klein, H.; Mittendorfer, J.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Barnham, K. W. J.; Clayton, E. F.; Hamisi, F.; Miller, D. B.; Mobayyen, M. M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.; Aachen-Birmingham-Bonn-CERN-Imperial College-München (MPI)-Oxford Collaboration

    1986-07-01

    Inclusive ϱ0 production has been studied in antineutrino-proton charged current interactions, using a sample of 3340 events obtained in BEBC filled with hydrogen and exposed to the CERN wideband antineutrino beam. An average multiplicity of 0.11 ± 0.02 ϱ0 per event at a mean hadronic mass W of 4.2 GeV is observed. The ϱ0 production characteristics are determined as functions of pT, xF, and z. The ratio ϱ 0/"π 0" is found to be low at small z values consistent with centrally produced pions coming mainly from resonances. At large z values this ratio approaches 0.45 ± 0.15 which is compatible with a vector/pseudoscalar meson direct production ratio of one. The results are compared with those obtained from neutrino-proton interactions in the same experimental set-up.

  8. Status of the SAGA Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.

    The SAGA Light Source (SAGA-LS) is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring that is 75.6 m in circumference. The SAGA-LS has been stably providing synchrotron radiation to users since it first started user operation in February 2006. Along with the user operation, various machine improvements have been made over the past years, including upgrading the injector linac control system, replacing a septum magnet and constructing a beam diagnostic system. In addition to these improvements, insertion devices have been developed and installed. An APPLE-II type variable polarization undulator was installedmore » in 2008. To address the demand from users for high-flux hard x-rays, a superconducting 4 T class wiggler is being developed. An experimental setup for generating MeV photons by laser Compton scattering is being constructed for beam monitoring and future user experiments.« less

  9. Radiographic measurements of viscosity in Comp B

    NASA Astrophysics Data System (ADS)

    Oschwald, Dave; Suvorova, Natalya; Remelius, Dennis; Henson, Bryan; Smilowitz, Laura

    2017-06-01

    Experiments were preformed using standard Composition B which is an explosive consisting of castable mixtures of RDX and TNT. Comp B is most commonly described as 60/40 RDX/TNT. This material was pressed into cylindrical samples with a spherical bead of various materials imbedded into the center. The samples were then incased into aluminum tubes that were wrapped in heat tape for external heating. A table top CW X-ray system coupled with a scintillator/camera system was used to observe the heating process and the time to temperature where the bead started to move inside the melt of the TNT due to gravity. These experiments where aiming to measure viscosity of Comp B versus temperature. The beads embedded into the pellets were made of various materials and differ in density and sizes to increase accuracy of the viscosity measurements. This work will focus on the experimental set-up and the suite of diagnostic used in these experiments.

  10. Investigation on the absolute and relative photoionization cross sections of 3 potential propargylic fuels.

    PubMed

    Winfough, Matthew; Meloni, Giovanni

    2017-12-01

    Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    NASA Astrophysics Data System (ADS)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  12. Measurement of cosmic muon angular distribution and vertical integrated flux by 2 m × 2 m RPC stack at IICHEP-Madurai

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pethuraj, S.; Datar, V.M.; Majumder, G.

    2017-09-01

    The 50 kton INO-ICAL is a proposed underground high energy physics experiment at Theni, India (9{sup o}57' N , 77{sup o}16' E ) to study the neutrino oscillation parameters using atmospheric neutrinos. The Resistive Plate Chamber (RPC) has been chosen as the active detector element for the ICAL detector. An experimental setup consisting of 12 layers of glass RPCs of size 2 m × 2 m has been built at IICHEP, Madurai to study the long term stability and performance of RPCs which are produced on a large scale in Indian industry. In this paper, the studies on the performancemore » of RPCs are presented along with the angular distribution of muons at Madurai (9{sup o}56' N ,78{sup o}00' E and Altitude ≈ 160 m from sea level).« less

  13. Observation of Langmuir Cascade in Single Hot Spot Laser-Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Montgomery, D. S.; Fernandez, J. C.; Focia, R. J.

    2001-10-01

    We present results from the sixth in a series of experiments designed to investigate the interaction of a single laser hot spot, or speckle, with a preformed, quasi-homogeneous plasma. The experiments were conducted at the Los Alamos National Laboratory (LANL) using the TRIDENT laser. Thomson scattering was used to probe plasma waves driven by stimulated Raman scattering (SRS) and structure was observed in the scattered spectra consistent with multiple steps of the Langmuir decay instability (LDI).(R. J. Focia et al., PSFC Report PSFC/JA-01-17, M.I.T.) The experimental setup is described. The Thomson scattered spectra, resolved in both wavelength versus time and wavelength versus wave vector (effectively ω vs. k), are well-correlated with measurements of the backscattered SRS light and calculations based on linear theory. Parameter regimes are identified in which the LDI cascade exists.

  14. Status of the AMoRE Experiment Searching for Neutrinoless Double Beta Decay Using Low-Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Jo, H. S.; Choi, S.; Danevich, F. A.; Fleischmann, A.; Jeon, J. A.; Kang, C. S.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. L.; Kim, I.; Kim, S. K.; Kim, S. R.; Kim, Y. H.; Kim, Y. D.; Kornoukhov, V.; Kwon, D. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Lee, S. H.; Oh, S. Y.; So, J. H.; Yoon, Y. S.

    2018-05-01

    The goal of the Advanced Mo-based Rare process Experiment (AMoRE) is to search for the neutrinoless double beta decay of ^{100} Mo using low-temperature detectors consisting of Mo-based scintillating crystals read out via metallic magnetic calorimeters. Heat and light signals are measured simultaneously at millikelvin temperatures, which are reached using a cryogen-free dilution refrigerator. The AMoRE-Pilot experiment, using six ^{100} Mo-enriched, ^{48} Ca-depleted calcium molybdate crystals with a total mass of about 1.9 kg, has been running in the 700-m-deep Yangyang underground laboratory as the pilot phase of the AMoRE project. Several setup improvements through different runs allowed us to achieve a high energy resolution and an efficient particle discrimination. This article briefly presents the status of the AMoRE-Pilot experiment, as well as the plans for the next, larger-scale, experimental stages.

  15. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    PubMed

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  16. Can muon-induced backgrounds explain the DAMA data?

    NASA Astrophysics Data System (ADS)

    Klinger, Joel; Kudryavtsev, Vitaly A.

    2016-05-01

    We present an accurate simulation of the muon-induced background in the DAMA/LIBRA experiment. Muon sampling underground has been performed using the MUSIC/MUSUN codes and subsequent interactions in the rock around the DAMA/LIBRA detector cavern and the experimental setup including shielding, have been simulated with GEANT4.9.6. In total we simulate the equivalent of 20 years of muon data. We have calculated the total muon-induced neutron flux in the DAMA/LIBRA detector cavern as Φμ n = 1.0 × 10-9 cm-2s-1, which is consistent with other simulations. After selecting events which satisfy the DAMA/LIBRA signal criteria, our simulation predicts 3.49 × 10-5 cpd/kg/keV which accounts for less than 0.3% of the DAMA/LIBRA modulation amplitude. We conclude from our work that muon-induced backgrounds are unable to contribute to the observed signal modulation.

  17. Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group.

    PubMed

    Wei, Zhenglun Alan; Sonntag, Simon Johannes; Toma, Milan; Singh-Gryzbon, Shelly; Sun, Wei

    2018-04-19

    The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.

  18. The Bungee Jumper: A Comparison of Predicted and Measured Values

    NASA Astrophysics Data System (ADS)

    Biezeveld, Hubert

    2003-04-01

    The greater-than-g acceleration of a bungee jumper discussed in a previous article in this journal by Kagan and Kott led to many lively discussions among Dutch physics teachers. These inspired me to look for an inexpensive experimental setup, suitable for use in a high school physics class, that can be used to confirm that indeed the acceleration is greater than g. In this paper I describe an exercise to compare the predicted and the measured graphs for the displacement y(t) of the jumper and the force Fb(t) exerted by the bungee on the bridge to which it is fastened. In my apparatus, the "bungee" consists of a light chain and the "jumper" is a small piece of brass. Data collection and the calculation of predicted values were carried out using Coach.2 The analysis reliably leads to the conclusion that the acceleration of the falling jumper does indeed exceed g.

  19. Matching multiple rigid domain decompositions of proteins

    PubMed Central

    Flynn, Emily; Streinu, Ileana

    2017-01-01

    We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528

  20. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

Top