Quiet Clean Short-Haul Experimental Engine (QSCEE). Preliminary analyses and design report, volume 1
NASA Technical Reports Server (NTRS)
1974-01-01
The experimental propulsion systems to be built and tested in the 'quiet, clean, short-haul experimental engine' program are presented. The flight propulsion systems are also presented. The following areas are discussed: acoustic design; emissions control; engine cycle and performance; fan aerodynamic design; variable-pitch actuation systems; fan rotor mechanical design; fan frame mechanical design; and reduction gear design.
Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2
NASA Technical Reports Server (NTRS)
1974-01-01
The experimental and flight propulsion systems are presented. The following areas are discussed: engine core and low pressure turbine design; bearings and seals design; controls and accessories design; nacelle aerodynamic design; nacelle mechanical design; weight; and aircraft systems design.
2016-06-01
characteristics, experimental design techniques, and analysis methodologies that distinguish each phase of the MBSE MEASA. To ensure consistency... methodology . Experimental design selection, simulation analysis, and trade space analysis support the final two stages. Figure 27 segments the MBSE MEASA...rounding has the potential to increase the correlation between columns of the experimental design matrix. The design methodology presented in Vieira
A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Parker, P. A.; Morton, M.; Draper, N.; Line, W.
2001-01-01
This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.
NASA Technical Reports Server (NTRS)
Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.
2014-01-01
The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.
1986-01-01
Chapter it Research Methodology This chapter describes the methodology and the experimental design used for this research. Prior to discussing the...50 Experimental Design ............................... 50 Task/Treatm ent ................................... 55 Task Design ...Figure 3.3 Interface Experiment Elements ............... 54 Figure 3.4 Experimental Design ....................... 55 Figure 3.5 Subject Assignment
1981-01-01
per-rev, ring weighting factor, etc.) and with compression system design . A detailed description of the SAE methodology is provided in Ref. 1...offers insights into the practical application of experimental aeromechanical procedures and establishes the process of valid design assessment, avoiding...considerations given to the total engine system. Design Verification in the Experimental Laboratory Certain key parameters are influencing the design of modern
DOT National Transportation Integrated Search
1976-05-01
This report presents an experimental design for a project to evaluate four techniques for reducing wheel-rail noise on urban rail transit systems: (a) resilient wheels, (b) damped wheels, (c) wheel truing, and (d) rail griding. The design presents th...
2015-06-30
7. Building Statistical Metamodels using Simulation Experimental Designs ............................................... 34 7.1. Statistical Design...system design drivers across several different domain models, our methodology uses statistical metamodeling to approximate the simulations’ behavior. A...output. We build metamodels using a number of statistical methods that include stepwise regression, boosted trees, neural nets, and bootstrap forest
2015-06-01
7. Building Statistical Metamodels using Simulation Experimental Designs ............................................... 34 7.1. Statistical Design...system design drivers across several different domain models, our methodology uses statistical metamodeling to approximate the simulations’ behavior. A...output. We build metamodels using a number of statistical methods that include stepwise regression, boosted trees, neural nets, and bootstrap forest
Development of guidelines for optimum baghouse fluid-dynamic-system design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eskinazi, D.; Gilbert, G.B.
1982-06-01
In recent years, the utility industry has turned to fabric filters as an alternative technology to electrostatic precipitators for particulate emission control from pulverized coal-fired power plants. One aspect of baghouse technology which appears to be of major importance in minimizing the size, cost, and operating pressure drop is the development of ductwork and compartment designs which achieve uniform gas and dust flow distribution to individual compartments and bags within a compartment. The objective of this project was to perform an experimental modeling program to develop design guidelines for optimizing the fluid mechanic performance of baghouses. Tasks included formulation ofmore » the appropriate modeling techniques for analysis of the flow of dust-laden gas through the collector system and extensive experimental analysis of fabric filter duct system design. A matrix of geometric configurations and operating conditions was experimentally investigated to establish the characteristics of an optimum system, to identify the level of fluid mechanic sophistication in current designs, and to experimentally develop new ideas and improved designs. Experimental results indicate that the design of the inlet and outlet manifolds, hopper entrance, hopper region below the tubesheet, and the compartment outlet have not been given sufficient attention. Unsteady flow patterns, poor velocity profiles, recirculation zones, and excessive pressure losses may be associated with these regions. It is evident from the results presented here that the fluid mechanic design of fabric filter systems can be improved significantly.« less
NASA Technical Reports Server (NTRS)
Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.
1986-01-01
To establish a long-term research facility for experimental investigations of design diversity as a means of achieving fault-tolerant systems, a distributed testbed for multiple-version software was designed. It is part of a local network, which utilizes the Locus distributed operating system to operate a set of 20 VAX 11/750 computers. It is used in experiments to measure the efficacy of design diversity and to investigate reliability increases under large-scale, controlled experimental conditions.
NASA Astrophysics Data System (ADS)
Thamvichai, Ratchaneekorn; Huang, Liang-Chih; Ashok, Amit; Gong, Qian; Coccarelli, David; Greenberg, Joel A.; Gehm, Michael E.; Neifeld, Mark A.
2017-05-01
We employ an adaptive measurement system, based on sequential hypotheses testing (SHT) framework, for detecting material-based threats using experimental data acquired on an X-ray experimental testbed system. This testbed employs 45-degree fan-beam geometry and 15 views over a 180-degree span to generate energy sensitive X-ray projection data. Using this testbed system, we acquire multiple view projection data for 200 bags. We consider an adaptive measurement design where the X-ray projection measurements are acquired in a sequential manner and the adaptation occurs through the choice of the optimal "next" source/view system parameter. Our analysis of such an adaptive measurement design using the experimental data demonstrates a 3x-7x reduction in the probability of error relative to a static measurement design. Here the static measurement design refers to the operational system baseline that corresponds to a sequential measurement using all the available sources/views. We also show that by using adaptive measurements it is possible to reduce the number of sources/views by nearly 50% compared a system that relies on static measurements.
Experimental system design for the integration of trapped-ion and superconducting qubit systems
NASA Astrophysics Data System (ADS)
De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.
2016-12-01
We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Moyer, W. R.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1973-01-01
The following tasks related to the design, construction, and evaluation of a mobile planetary vehicle for unmanned exploration of Mars are discussed: (1) design and construction of a 0.5 scale dynamic vehicle; (2) mathematical modeling of vehicle dynamics; (3) experimental 0.4 scale vehicle dynamics measurements and interpretation; (4) vehicle electro-mechanical control systems; (5) remote control systems; (6) collapsibility and deployment concepts and hardware; (7) design, construction and evaluation of a wheel with increased lateral stiffness, (8) system design optimization; (9) design of an on-board computer; (10) design and construction of a laser range finder; (11) measurement of reflectivity of terrain surfaces; (12) obstacle perception by edge detection; (13) terrain modeling based on gradients; (14) laser scan systems; (15) path selection system simulation and evaluation; (16) gas chromatograph system concepts; (17) experimental chromatograph separation measurements and chromatograph model improvement and evaluation.
Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.
2008-01-01
Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components. PMID:18607511
NASA Astrophysics Data System (ADS)
Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.
2003-01-01
Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components.
Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K
2009-01-01
Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.
Engineering Design Handbook. Army Weapon Systems Analysis. Part 2
1979-10-01
EXPERIMENTAL DESIGN ............................... ............ 41-3 41-5 RESULTS OF THE ASARS lIX SIMULATIONS ........................... 41-4 41-6 LATIN...sciences and human factors engineering fields utilizing experimental methodology and multi-variable statistical techniques drawn from experimental ...randomly to grenades for the test design . The nine experimental types of hand grenades (first’ nine in Table 33-2) had a "pip" on their spherical
BETA (Bitter Electromagnet Testing Apparatus) Design and Testing
NASA Astrophysics Data System (ADS)
Bates, Evan; Birmingham, William; Rivera, William; Romero-Talamas, Carlos
2016-10-01
BETA is a 1T water cooled Bitter-type magnetic system that has been designed and constructed at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County to serve as a prototype of a scaled 10T version. Currently the system is undergoing magnetic, thermal and mechanical testing to ensure safe operating conditions and to prove analytical design optimizations. These magnets will function as experimental tools for future dusty plasma based and collaborative experiments. An overview of design methods used for building a custom made Bitter magnet with user defined experimental constraints is reviewed. The three main design methods consist of minimizing the following: ohmic power, peak conductor temperatures, and stresses induced by Lorentz forces. We will also discuss the design of BETA which includes: the magnet core, pressure vessel, cooling system, power storage bank, high powered switching system, diagnostics with safety cutoff feedback, and data acquisition (DAQ)/magnet control Matlab code. Furthermore, we present experimental data from diagnostics for validation of our analytical preliminary design methodologies and finite element analysis calculations. BETA will contribute to the knowledge necessary to finalize the 10 T magnet design.
Relation between experimental and non-experimental study designs. HB vaccines: a case study
Jefferson, T.; Demicheli, V.
1999-01-01
STUDY OBJECTIVE: To examine the relation between experimental and non- experimental study design in vaccinology. DESIGN: Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. SETTING: Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. RESULTS: Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size. PMID:10326054
Solar-Diesel Hybrid Power System Optimization and Experimental Validation
NASA Astrophysics Data System (ADS)
Jacobus, Headley Stewart
As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.
1988-02-12
experimentally , a pulsed power system com- prising separate anode and cathode pulsers was designed and assembled. A double diode was developed to produce...be closed. To initiate this assessment, Mission Research Corporation (MRC) performed a two-year primarily experimental investigation of non - neutral...through from the cathode nad to be designed . Experimentation with several materials and setups produced a workable design , using nylon stocking hose
Wet scrubbing of biomass producer gas tars using vegetable oil
NASA Astrophysics Data System (ADS)
Bhoi, Prakashbhai Ramabhai
The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale experimental data from the wet scrubbing system would be useful in the design and operation of a pilot scale vegetable oil based system. The process model, validated using experimental data, would be a key design tool for the design and optimization of a pilot scale vegetable oil based system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Z. Q.; Chen, Z. J.; Xie, X. F.
2014-11-15
The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic fieldmore » of 200 G.« less
Three-year clinical effectiveness of four total-etch dentinal adhesive systems in cervical lesions.
Van Meerbeek, B; Peumans, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G
1996-11-01
A 3-year follow-up clinical trial of two experimental Bayer total-etch adhesive systems and two commercial total-etch systems. Clearfil Liner Bond System and Scotchbond Multi-Purpose, was conducted to evaluate their clinical effectiveness in Class V cervical lesions. Four hundred twenty abrasion-erosion lesions were restored randomly using the four adhesive systems. There were two experimental cavity designs, in which the adjacent enamel margins either were or were not beveled and acid etched. Clearfil Liner Bond System and Scotchbond Multi-Purpose demonstrated high retention rates in both types of cavity design at 3 years. The two experimental Bayer systems scored much lower retention rates in both cavity designs at 3 years. None of the systems guaranteed margins free of microleakage for a long time. At 3 years, superficial, localized marginal discolorations were observed, the least for Clearfil Liner Bond System, followed by Scotchbond Multi-Purpose and the two experimental systems. Small marginal defects were recorded at the cervical dentin and the incisal enamel margin. Retention of Clearfil Liner Bond and Scotchbond Multi-Purpose appears to be clearly improved over earlier systems, but marginal sealing remains problematic. The two Bayer systems were found to be clinically unreliable.
AGARD Index of Publications, 1977 - 1979.
1980-08-01
therefore, experimental verification of calculation Walter Schutz In AGARD Fracture Mach Design Methodology methods, hypotheses etc. is very time...2-. 3-. or 4-D navigation initial stages of preliminary design analysis The state of the art systems and allows experimental or theoretical...Technol. on Weapons Systems Design Dot. 1978 1ES WITH WINGS NON -LEVEL 23 01 AERONAUTICS (GENERAL) J Stanley Ausman In AGARD The Impact of Integrated
Foundational Terminal Operations HITL: Experimental Design Slides
NASA Technical Reports Server (NTRS)
Rorie, Robert Conrad
2017-01-01
The UAS (Unmanned Aircraft Systems) in the NAS (National Airspace System) project is conducting its first investigation of UAS operations in the terminal environment. A workshop is being held to get input from key stakeholders on the experimental design and scenario development occuring for this simulation, which intends to begin data collection in September 2017. These slides cover the proposed design and methodolgy for the experiment.
NASA Technical Reports Server (NTRS)
1981-01-01
The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.
Relation between experimental and non-experimental study designs. HB vaccines: a case study.
Jefferson, T; Demicheli, V
1999-01-01
To examine the relation between experimental and non-experimental study design in vaccinology. Assessment of each study design's capability of testing four aspects of vaccine performance, namely immunogenicity (the capacity to stimulate the immune system), duration of immunity conferred, incidence and seriousness of side effects, and number of infections prevented by vaccination. Experimental and non-experimental studies on hepatitis B (HB) vaccines in the Cochrane Vaccines Field Database. Experimental and non-experimental vaccine study designs are frequently complementary but some aspects of vaccine quality can only be assessed by one of the types of study. More work needs to be done on the relation between study quality and its significance in terms of effect size.
Human Factors in Field Experimentation Design and Analysis of Analytical Suppression Model
1978-09-01
men in uf"an-dachine- Systems " supports the development of new doctrines, design of weapon systems as well as training programs for trQops. One...Experimentation Design -Master’s thesis: and Analysis.of an Analytical Suppression.Spebr17 Model PR@~w 3.RPR 7. AUTHOR(@) COT RIETeo 31AN? wijMu~aw...influences to suppression. Techniques are examined for including. the suppre.ssive effects of weapon systems in Lanchester-type combat m~odels, whir~h may be
Full system engineering design and operation of an oxygen plant
NASA Technical Reports Server (NTRS)
Colvin, James; Schallhorn, Paul; Ramonhalli, Kumar
1992-01-01
The production of oxygen from the indigenous resources on Mars is described. After discussing briefly the project's background and the experimental system design, specific experimental results of the electrolytic cell are presented. At the heart of the oxygen production system is a tubular solid zirconia electrolyte cell that will electrochemically separate oxygen from a high-temperature stream of Coleman grade carbon dioxide. Experimental results are discussed and certain system efficiencies are defined. The parameters varied include (1) the cell operating temperature; (2) the carbon dioxide flow rate; and (3) the voltage applied across the cell. The results confirm our theoretical expectations.
Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model
NASA Astrophysics Data System (ADS)
Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer
2017-08-01
In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.
ERIC Educational Resources Information Center
HILL, EDWIN K.
AN EXPERIMENTAL POLYSENSORY SELF-INSTRUCTIONAL SYSTEM DESIGNED TO ASSIST STUDENTS IN ACQUIRING AND APPLYING KNOWLEDGE OF THE NATURE, CONVERSION, AND TRANSMISSION OF ELECTRICAL ENERGY AND OF PRINCIPLES OF SIMPLE EELECTRICAL CIRCUITS WAS DEVELOPED AND TESTED FOR EFFECTIVENESS. RELATED LABORATORY EXERCISES WERE AN INTEGRAL PART OF THE SYSTEM WHICH…
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
NASA Technical Reports Server (NTRS)
Kuo, K. K.; Hsieh, W. H.; Cheung, F. B.; Yang, A. S.; Brown, J. J.; Woodward, R. D.; Kline, M. C.; Burch, R. L.
1992-01-01
The objective was to achieve a better understanding of the combustion processes of liquid oxygen and gaseous hydrogen under broad range of pressure covering subcritical, critical, and supercritical conditions. The scope of the experimental work falls into the following areas: (1) design of the overall experimental setup; (2) modification of an existing windowed high pressure chamber; (3) design of the LOX feeding system; (4) provision of the safety features in the test rig design; (5) LOX cleanliness requirements; (6) cold shock testing; (7) implementation of data acquisition systems; (8) preliminary tests for system checkout; (9) modification of LOX feeding system; and (10) evaporation tests. Progress in each area is discussed.
Inclusion of quasi-experimental studies in systematic reviews of health systems research.
Rockers, Peter C; Røttingen, John-Arne; Shemilt, Ian; Tugwell, Peter; Bärnighausen, Till
2015-04-01
Systematic reviews of health systems research commonly limit studies for evidence synthesis to randomized controlled trials. However, well-conducted quasi-experimental studies can provide strong evidence for causal inference. With this article, we aim to stimulate and inform discussions on including quasi-experiments in systematic reviews of health systems research. We define quasi-experimental studies as those that estimate causal effect sizes using exogenous variation in the exposure of interest that is not directly controlled by the researcher. We incorporate this definition into a non-hierarchical three-class taxonomy of study designs - experiments, quasi-experiments, and non-experiments. Based on a review of practice in three disciplines related to health systems research (epidemiology, economics, and political science), we discuss five commonly used study designs that fit our definition of quasi-experiments: natural experiments, instrumental variable analyses, regression discontinuity analyses, interrupted times series studies, and difference studies including controlled before-and-after designs, difference-in-difference designs and fixed effects analyses of panel data. We further review current practices regarding quasi-experimental studies in three non-health fields that utilize systematic reviews (education, development, and environment studies) to inform the design of approaches for synthesizing quasi-experimental evidence in health systems research. Ultimately, the aim of any review is practical: to provide useful information for policymakers, practitioners, and researchers. Future work should focus on building a consensus among users and producers of systematic reviews regarding the inclusion of quasi-experiments. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tang, Qi-Yi; Zhang, Chuan-Xi
2013-04-01
A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.
Design of experimental system for supercritical CO2 fracturing under confining pressure conditions
NASA Astrophysics Data System (ADS)
Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.
2018-03-01
Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.
Bistatic radar sea state monitoring system design
NASA Technical Reports Server (NTRS)
Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.
1975-01-01
Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.
Computer Simulations: A Tool to Predict Experimental Parameters with Cold Atoms
2013-04-01
Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an...specifically designed to work with cold atom systems and atom chips, and is already able to compute their key properties. We simulate our experimental...also allows one to choose different physics and define the interdependencies between them. It is not specifically designed for cold atom systems or
A Generic, Agent-Based Framework for Design and Development of UAV/UCAV Control Systems
2004-02-27
37 EID Principles .................................................................................................. 38 Experimental Support for EID...Year 2 Interface design and implementation; creation of the simulation environment; Year 3 Demonstration of the concept and experimental evaluation...UAV/UCAV control in which operators can experience high cognitive workloads. There are several ways in which systems can construct user models by
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
2014-05-01
An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.
Design and validation of the eyesafe ladar testbed (ELT) using the LadarSIM system simulator
NASA Astrophysics Data System (ADS)
Neilsen, Kevin D.; Budge, Scott E.; Pack, Robert T.; Fullmer, R. Rees; Cook, T. Dean
2009-05-01
The development of an experimental full-waveform LADAR system has been enhanced with the assistance of the LadarSIM system simulation software. The Eyesafe LADAR Test-bed (ELT) was designed as a raster scanning, single-beam, energy-detection LADAR with the capability of digitizing and recording the return pulse waveform at up to 2 GHz for 3D off-line image formation research in the laboratory. To assist in the design phase, the full-waveform LADAR simulation in LadarSIM was used to simulate the expected return waveforms for various system design parameters, target characteristics, and target ranges. Once the design was finalized and the ELT constructed, the measured specifications of the system and experimental data captured from the operational sensor were used to validate the behavior of the system as predicted during the design phase. This paper presents the methodology used, and lessons learned from this "design, build, validate" process. Simulated results from the design phase are presented, and these are compared to simulated results using measured system parameters and operational sensor data. The advantages of this simulation-based process are also presented.
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph
1996-01-01
A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.
High-performance space shuttle auxiliary propellant valve system
NASA Technical Reports Server (NTRS)
Smith, G. M.
1973-01-01
Several potential valve closures for the space shuttle auxiliary propulsion system (SS/APS) were investigated analytically and experimentally in a modeling program. The most promising of these were analyzed and experimentally evaluated in a full-size functional valve test fixture of novel design. The engineering investigations conducted for both model and scale evaluations of the SS/APS valve closures and functional valve fixture are described. Preliminary designs, laboratory tests, and overall valve test fixture designs are presented, and a final recommended flightweight SS/APS valve design is presented.
Execution Of Systems Integration Principles During Systems Engineering Design
2016-09-01
This thesis discusses integration failures observed by DOD and non - DOD systems as, inadequate stakeholder analysis, incomplete problem space and design ... design , development, test and deployment of a system. A lifecycle structure consists of phases within a methodology or process model. There are many...investigate design decisions without the need to commit to physical forms; “ experimental investigation using a model yields design or operational
Design and experimental evaluation of robust controllers for a two-wheeled robot
NASA Astrophysics Data System (ADS)
Kralev, J.; Slavov, Ts.; Petkov, P.
2016-11-01
The paper presents the design and experimental evaluation of two alternative μ-controllers for robust vertical stabilisation of a two-wheeled self-balancing robot. The controllers design is based on models derived by identification from closed-loop experimental data. In the first design, a signal-based uncertainty representation obtained directly from the identification procedure is used, which leads to a controller of order 29. In the second design the signal uncertainty is approximated by an input multiplicative uncertainty, which leads to a controller of order 50, subsequently reduced to 30. The performance of the two μ-controllers is compared with the performance of a conventional linear quadratic controller with 17th-order Kalman filter. A proportional-integral controller of the rotational motion around the vertical axis is implemented as well. The control code is generated using Simulink® controller models and is embedded in a digital signal processor. Results from the simulation of the closed-loop system as well as experimental results obtained during the real-time implementation of the designed controllers are given. The theoretical investigation and experimental results confirm that the closed-loop system achieves robust performance in respect to the uncertainties related to the identified robot model.
Prado, Igor Afonso Acampora; Pereira, Mateus de Freitas Virgílio; de Castro, Davi Ferreira; Dos Santos, Davi Antônio; Balthazar, Jose Manoel
2018-06-01
The present paper is concerned with the design and experimental evaluation of optimal control laws for the nonlinear attitude dynamics of a multirotor aerial vehicle. Three design methods based on Hamilton-Jacobi-Bellman equation are taken into account. The first one is a linear control with guarantee of stability for nonlinear systems. The second and third are a nonlinear suboptimal control techniques. These techniques are based on an optimal control design approach that takes into account the nonlinearities present in the vehicle dynamics. The stability Proof of the closed-loop system is presented. The performance of the control system designed is evaluated via simulations and also via an experimental scheme using the Quanser 3-DOF Hover. The experiments show the effectiveness of the linear control method over the nonlinear strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Fault-tolerant clock synchronization validation methodology. [in computer systems
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Palumbo, Daniel L.; Johnson, Sally C.
1987-01-01
A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight-crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating the clock synchronization system of the Software Implemented Fault Tolerance computer. The design proof of the algorithm includes a theorem that defines the maximum skew between any two nonfaulty clocks in the system in terms of specific system parameters. Most of these parameters are deterministic. One crucial parameter is the upper bound on the clock read error, which is stochastic. The probability that this upper bound is exceeded is calculated from data obtained by the measurement of system parameters. This probability is then included in a detailed reliability analysis of the system.
Robust Control Design for Uncertain Nonlinear Dynamic Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.
2012-01-01
Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.
Development of design information for molecular-sieve type regenerative CO2-removal systems
NASA Technical Reports Server (NTRS)
Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.
1973-01-01
Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.
Demonstration of decomposition and optimization in the design of experimental space systems
NASA Technical Reports Server (NTRS)
Padula, Sharon; Sandridge, Chris A.; Haftka, Raphael T.; Walsh, Joanne L.
1989-01-01
Effective design strategies for a class of systems which may be termed Experimental Space Systems (ESS) are needed. These systems, which include large space antenna and observatories, space platforms, earth satellites and deep space explorers, have special characteristics which make them particularly difficult to design. It is argued here that these same characteristics encourage the use of advanced computer-aided optimization and planning techniques. The broad goal of this research is to develop optimization strategies for the design of ESS. These strategics would account for the possibly conflicting requirements of mission life, safety, scientific payoffs, initial system cost, launch limitations and maintenance costs. The strategies must also preserve the coupling between disciplines or between subsystems. Here, the specific purpose is to describe a computer-aided planning and scheduling technique. This technique provides the designer with a way to map the flow of data between multidisciplinary analyses. The technique is important because it enables the designer to decompose the system design problem into a number of smaller subproblems. The planning and scheduling technique is demonstrated by its application to a specific preliminary design problem.
Developing a cost effective rock bed thermal energy storage system: Design and modelling
NASA Astrophysics Data System (ADS)
Laubscher, Hendrik Frederik; von Backström, Theodor Willem; Dinter, Frank
2017-06-01
Thermal energy storage is an integral part of the drive for low cost of concentrated solar power (CSP). Storage of thermal energy enables CSP plants to provide base load power. Alternative, cheaper concepts for storing thermal energy have been conceptually proposed in previous studies. Using rocks as a storage medium and air as a heat transfer fluid, the proposed concept offers the potential of lower cost storage because of the abundance and affordability of rocks. A packed rock bed thermal energy storage (TES) concept is investigated and a design for an experimental rig is done. This paper describes the design and modelling of an experimental test facility for a cost effective packed rock bed thermal energy storage system. Cost effective, simplified designs for the different subsystems of an experimental setup are developed based on the availability of materials and equipment. Modelling of this design to predict the thermal performance of the TES system is covered in this study. If the concept under consideration proves to be successful, a design that is scalable and commercially viable can be proposed for further development of an industrial thermal energy storage system.
A global parallel model based design of experiments method to minimize model output uncertainty.
Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E
2012-03-01
Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.
Flexible Space-Filling Designs for Complex System Simulations
2013-06-01
interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations
NASA Technical Reports Server (NTRS)
Macelroy, Robert D.; Smernoff, David T.; Rummel, John D.
1987-01-01
Problems of food production by higher plants are addressed. Experimentation requirements and necessary equipment for designing an experimental Controlled Ecological Life Support System (CELSS) Plant Growth Module are defined. A framework is provided for the design of laboratory sized plant growth chambers. The rationale for the development of an informal collaborative effort between investigators from universities and industry and those at Ames is evaluated. Specific research problems appropriate for collaborative efforts are identified.
X-57 Power and Command System Design
NASA Technical Reports Server (NTRS)
Clarke, Sean; Redifer, Matthew; Papathakis, Kurt; Samuel, Aamod; Foster, Trevor
2017-01-01
This paper describes the power and command system architecture of the X-57 Maxwell flight demonstrator aircraft. The X-57 is an experimental aircraft designed to demonstrate radically improved aircraft efficiency with a 3.5 times aero-propulsive efficiency gain at a "high-speed cruise" flight condition for comparable general aviation aircraft. These gains are enabled by integrating the design of a new, optimized wing and a new electric propulsion system. As a result, the X-57 vehicle takes advantage of the new capabilities afforded by electric motors as primary propulsors. Integrating new technologies into critical systems in experimental aircraft poses unique challenges that require careful design considerations across the entire vehicle system, such as qualification of new propulsors (motors, in the case of the X-57 aircraft), compatibility of existing systems with a new electric power distribution bus, and instrumentation and monitoring of newly qualified propulsion system devices.
NASA Technical Reports Server (NTRS)
Liu, G.
1985-01-01
One of the major concerns in the design of an active control system is obtaining the information needed for effective feedback. This involves the combination of sensing and estimation. A sensor location index is defined as the weighted sum of the mean square estimation errors in which the sensor locations can be regarded as estimator design parameters. The design goal is to choose these locations to minimize the sensor location index. The choice of the number of sensors is a tradeoff between the estimation quality based upon the same performance index and the total costs of installing and maintaining extra sensors. An experimental study for choosing the sensor location was conducted on an aeroelastic system. The system modeling which includes the unsteady aerodynamics model developed by Stephen Rock was improved. Experimental results verify the trend of the theoretical predictions of the sensor location index for different sensor locations at various wind speeds.
Near-optimal experimental design for model selection in systems biology.
Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M
2013-10-15
Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).
Modal Analysis Using the Singular Value Decomposition and Rational Fraction Polynomials
2017-04-06
information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...results. The programs are designed for experimental datasets with multiple drive and response points and have proven effective even for systems with... designed for experimental datasets with multiple drive and response points and have proven effective even for systems with numerous closely-spaced
Conceptual and Preliminary Design of a Low-Cost Precision Aerial Delivery System
2016-06-01
test results. It includes an analysis of the failure modes encountered during flight experimentation , methodology used for conducting coordinate...and experimentation . Additionally, the current and desired end state of the research is addressed. Finally, this chapter outlines the methodology ...preliminary design phases are utilized to investigate and develop a potentially low-cost alternative to existing systems. Using an Agile methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
Flutter suppression for the Active Flexible Wing - Control system design and experimental validation
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Srinathkumar, S.
1992-01-01
The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.
Three-dimensional broadband omnidirectional acoustic ground cloak
NASA Astrophysics Data System (ADS)
Zigoneanu, Lucian; Popa, Bogdan-Ioan; Cummer, Steven A.
2014-04-01
The control of sound propagation and reflection has always been the goal of engineers involved in the design of acoustic systems. A recent design approach based on coordinate transformations, which is applicable to many physical systems, together with the development of a new class of engineered materials called metamaterials, has opened the road to the unconstrained control of sound. However, the ideal material parameters prescribed by this methodology are complex and challenging to obtain experimentally, even using metamaterial design approaches. Not surprisingly, experimental demonstration of devices obtained using transformation acoustics is difficult, and has been implemented only in two-dimensional configurations. Here, we demonstrate the design and experimental characterization of an almost perfect three-dimensional, broadband, and, most importantly, omnidirectional acoustic device that renders a region of space three wavelengths in diameter invisible to sound.
Quasi-experimental study designs series-paper 7: assessing the assumptions.
Bärnighausen, Till; Oldenburg, Catherine; Tugwell, Peter; Bommer, Christian; Ebert, Cara; Barreto, Mauricio; Djimeu, Eric; Haber, Noah; Waddington, Hugh; Rockers, Peter; Sianesi, Barbara; Bor, Jacob; Fink, Günther; Valentine, Jeffrey; Tanner, Jeffrey; Stanley, Tom; Sierra, Eduardo; Tchetgen, Eric Tchetgen; Atun, Rifat; Vollmer, Sebastian
2017-09-01
Quasi-experimental designs are gaining popularity in epidemiology and health systems research-in particular for the evaluation of health care practice, programs, and policy-because they allow strong causal inferences without randomized controlled experiments. We describe the concepts underlying five important quasi-experimental designs: Instrumental Variables, Regression Discontinuity, Interrupted Time Series, Fixed Effects, and Difference-in-Differences designs. We illustrate each of the designs with an example from health research. We then describe the assumptions required for each of the designs to ensure valid causal inference and discuss the tests available to examine the assumptions. Copyright © 2017 Elsevier Inc. All rights reserved.
The system design and performance test of hybrid vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Dwiyantoro, Bambang Arip; Suphandani, Vivien
2017-04-01
Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
Hajare, V D; Patre, B M
2015-11-01
This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system
NASA Astrophysics Data System (ADS)
Kampmann, R.; Sinzinger, S.
2014-12-01
In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.
Model Selection in Systems Biology Depends on Experimental Design
Silk, Daniel; Kirk, Paul D. W.; Barnes, Chris P.; Toni, Tina; Stumpf, Michael P. H.
2014-01-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis. PMID:24922483
Model selection in systems biology depends on experimental design.
Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Stumpf, Michael P H
2014-06-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis.
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.
Computer-based visual communication in aphasia.
Steele, R D; Weinrich, M; Wertz, R T; Kleczewska, M K; Carlson, G S
1989-01-01
The authors describe their recently developed Computer-aided VIsual Communication (C-VIC) system, and report results of single-subject experimental designs probing its use with five chronic, severely impaired aphasic individuals. Studies replicate earlier results obtained with a non-computerized system, demonstrate patient competence with the computer implementation, extend the system's utility, and identify promising areas of application. Results of the single-subject experimental designs clarify patients' learning, generalization, and retention patterns, and highlight areas of performance difficulties. Future directions for the project are indicated.
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
NASA Technical Reports Server (NTRS)
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung
2018-02-01
The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.
Polish Experimental Light-Conducting Teletransmission System,
1982-07-26
7 AD-AuGB 959 FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/G 17/2 PLS EPERIMENTAL LIHT-CONDUCTIN , TELETRANSMTSSION SYSTEM,(U) JUL 82 Z SZPIGLER...amplifier; 1) transmitter; 2) transit amplifier; 3) receiver Transmitting facilities E7] When designing the tract, it was decided that the terminal _- ups...connections between exchanges. The described line has an experimental character. It enables one to collect many valuable data concerning both the design
DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology
Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng
2015-01-01
Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three ‘tier’ design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and ‘debugging’ the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package—accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems. PMID:26423437
Research and application of embedded real-time operating system
NASA Astrophysics Data System (ADS)
Zhang, Bo
2013-03-01
In this paper, based on the analysis of existing embedded real-time operating system, the architecture of an operating system is designed and implemented. The experimental results show that the design fully complies with the requirements of embedded real-time operating system, can achieve the purposes of reducing the complexity of embedded software design and improving the maintainability, reliability, flexibility. Therefore, this design program has high practical value.
The Role of Formal Experiment Design in Hypersonic Flight System Technology Development
NASA Technical Reports Server (NTRS)
McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.
2002-01-01
Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.
NASA Technical Reports Server (NTRS)
Glasgow, J. C.; Birchenough, A. G.
1978-01-01
The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.
High Level Analysis, Design and Validation of Distributed Mobile Systems with
NASA Astrophysics Data System (ADS)
Farahbod, R.; Glässer, U.; Jackson, P. J.; Vajihollahi, M.
System design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes (desired requirements and resulting properties) so as to ensure these attributes are properly established prior to actually building a system. We explore here the practical side of using the abstract state machine (ASM) formalism in combination with the CoreASM open source tool environment for high-level design and experimental validation of complex distributed systems. Emphasizing the early phases of the design process, a guiding principle is to support freedom of experimentation by minimizing the need for encoding. CoreASM has been developed and tested building on a broad scope of applications, spanning computational criminology, maritime surveillance and situation analysis. We critically reexamine here the CoreASM project in light of three different application scenarios.
An expert system for simulating electric loads aboard Space Station Freedom
NASA Technical Reports Server (NTRS)
Kukich, George; Dolce, James L.
1990-01-01
Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.
1993-04-01
not to be construed as an official Department of the Army position unless so designated by other authorizing documents. REPORT DOCUMENTATION PAGE...parameter sensitivity studies, and test procedure design . An experimental system providing reaL data on the parametters relevant to the calculations has been...experimental program was designed to exploit as much of the existing capabilities of the Ventilation Kinetics group as possible while keeping in mind
Computational Design of a Krueger Flap Targeting Conventional Slat Aerodynamics
NASA Technical Reports Server (NTRS)
Akaydin, H. Dogus; Housman, Jeffrey A.; Kiris, Cetin C.; Bahr, Christopher J.; Hutcheson, Florence V.
2016-01-01
In this study, we demonstrate the design of a Krueger flap as a substitute for a conventional slat in a high-lift system. This notional design, with the objective of matching equivalent-mission performance on aircraft approach, was required for a comparative aeroacoustic study with computational and experimental components. We generated a family of high-lift systems with Krueger flaps based on a set of design parameters. Then, we evaluated the high-lift systems using steady 2D RANS simulations to find a good match for the conventional slat, based on total lift coefficients in free-air. Finally, we evaluated the mean aerodynamics of the high-lift systems with Krueger flap and conventional slat as they were installed in an open-jet wind tunnel flow. The surface pressures predicted with the simulations agreed well with experimental results.
NASA Technical Reports Server (NTRS)
Kaul, R.; Wallace, R.; Kinal, G.
1980-01-01
This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system.
Hand controller study of force and control mode
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1992-01-01
The objectives are to compare and evaluate the utility and effectiveness of various input control devices, e.g., hand controllers, with respect to the relative importance of force and operation control mode (rate or position) for Space Station Freedom (SSF) related tasks. The topics are presented in viewgraph form and include the: Intelligent Research Systems Lab (ISRL) experimental design; Telerobotic Systems Research Laboratory (TSRL) final experimental design; and factor analysis summary of results.
NASA Technical Reports Server (NTRS)
Oliver, W. R.
1980-01-01
The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.
2011-09-01
AND EXPERIMENTAL DESIGN ..........................................................................................................31 1...PRIMARY RESERCH QUESTION ............................................................41 C. OBJECTIVE ACHIEVEMENT...Based Outpatient Clinic CPT Cognitive Processing Therapy DISE Distributed Information Systems Experimentation EBT Evidence-Based Treatment GMC
Experimental system, and its evaluation for the control of surgically inducted infections
NASA Technical Reports Server (NTRS)
Tevebaugh, M. D.; Nelson, J. P.
1972-01-01
The effect is reported to design, fabricate, test and evaluate a prototype experimental system for the control of surgically induced infections. The purpose is to provide the cleanest possible environment within a hospital surgery room and eliminate contamination sources that could cause infections during surgery. The system design is described. The system provides for a portable laminar flow clean room, a full bubble helmet system with associated communications and ventilation subsystems for operating room personnel, and surgical gowns that minimize the migration of bacteria. The development test results consisting of portability, laminar flowrate, air flow pattern, electrostatic buildup, noise level, ventilation, human factors, electrical and material compatibility tests are summarized. The conclusions are that the experimental system is effective in reducing the airborne and wound contamination although the helmets and gowns may not be a significant part of this reduction. Definitive conclusions with regard to the infection rate cannot be made at this time.
Bondi, Robert W; Igne, Benoît; Drennen, James K; Anderson, Carl A
2012-12-01
Near-infrared spectroscopy (NIRS) is a valuable tool in the pharmaceutical industry, presenting opportunities for online analyses to achieve real-time assessment of intermediates and finished dosage forms. The purpose of this work was to investigate the effect of experimental designs on prediction performance of quantitative models based on NIRS using a five-component formulation as a model system. The following experimental designs were evaluated: five-level, full factorial (5-L FF); three-level, full factorial (3-L FF); central composite; I-optimal; and D-optimal. The factors for all designs were acetaminophen content and the ratio of microcrystalline cellulose to lactose monohydrate. Other constituents included croscarmellose sodium and magnesium stearate (content remained constant). Partial least squares-based models were generated using data from individual experimental designs that related acetaminophen content to spectral data. The effect of each experimental design was evaluated by determining the statistical significance of the difference in bias and standard error of the prediction for that model's prediction performance. The calibration model derived from the I-optimal design had similar prediction performance as did the model derived from the 5-L FF design, despite containing 16 fewer design points. It also outperformed all other models estimated from designs with similar or fewer numbers of samples. This suggested that experimental-design selection for calibration-model development is critical, and optimum performance can be achieved with efficient experimental designs (i.e., optimal designs).
Curriculum system for experimental teaching in optoelectronic information
NASA Astrophysics Data System (ADS)
Di, Hongwei; Chen, Zhenqiang; Zhang, Jun; Luo, Yunhan
2017-08-01
The experimental curriculum system is directly related to talent training quality. Based on the careful investigation of the developing request of the optoelectronic information talents in the new century, the experimental teaching goal and the content, the teaching goal was set to cultivate students' innovative consciousness, innovative thinking, creativity and problem solving ability. Through straightening out the correlation among the experimental teaching in the main courses, the whole structure design was phased out, as well as the hierarchical curriculum connotation. According to the ideas of "basic, comprehensive, applied and innovative", the construction of experimental teaching system called "triple-three" was put forward for the optoelectronic information experimental teaching practice.
DOT National Transportation Integrated Search
2017-10-27
This report describes the system architecture and design of the Experimental Prototype System (EPS) for the demonstration of the use of mobile devices in a connected vehicle environment. Specifically, it defines the system structure and behavior, the...
Search Interface Design Using Faceted Indexing for Web Resources.
ERIC Educational Resources Information Center
Devadason, Francis; Intaraksa, Neelawat; Patamawongjariya, Pornprapa; Desai, Kavita
2001-01-01
Describes an experimental system designed to organize and provide access to Web documents using a faceted pre-coordinate indexing system based on the Deep Structure Indexing System (DSIS) derived from POPSI (Postulate based Permuted Subject Indexing) of Bhattacharyya, and the facet analysis and chain indexing system of Ranganathan. (AEF)
Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.
ERIC Educational Resources Information Center
Kaya, Azmi
1982-01-01
Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…
We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...
Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter
2015-01-01
Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227
NASA Technical Reports Server (NTRS)
Howard, D. F.
1976-01-01
The preliminary design and installation of high bypass, geared turbofan engine with a composite nacelle forming the propulsion system for a short haul passenger aircraft are described. The technology required for externally blown flap aircraft with under the wing (UTW) propulsion system installations for introduction into passenger service in the mid 1980's is included. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided.
Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.
NASA Astrophysics Data System (ADS)
Dudin, S. M.; Novitskiy, D. V.
2018-05-01
The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.
Intergration of system identification and robust controller designs for flexible structures in space
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Lew, Jiann-Shiun
1990-01-01
An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Zischka, Peter J.; Fentress, Michael L.; Chang, Stephen
1992-01-01
Some of the unique considerations that are associated with the design and experimental evaluation of chordwise deformable wing structures are addressed. Since chordwise elastic camber deformations are desired and must be free to develop, traditional rib concepts and experimental methodology cannot be used. New rib design concepts are presented and discussed. An experimental methodology based upon the use of a flexible sling support and load application system has been created and utilized to evaluate a model box beam experimentally. Experimental data correlate extremely well with design analysis predictions based upon a beam model for the global properties of camber compliance and spanwise bending compliance. Local strain measurements exhibit trends in agreement with intuition and theory but depart slightly from theoretical perfection based upon beam-like behavior alone. It is conjectured that some additional refinement of experimental technique is needed to explain or eliminate these (minor) departures from asymmetric behavior of upper and lower box cover strains. Overall, a solid basis for the design of box structures based upon the bending method of elastic camber production has been confirmed by the experiments.
Joint Services Electronics Program.
1983-09-30
environment. The research is under three interrelated heads: (1) algebraic Methodologies for Control Systems design , both linear and non -linear, (2) robust...properties of the device. After study of these experimental results, we plan to design a millimeter- wave version of the Gunn device. This will...appropriate dose discretization level for an adju- stable width beam. 2) Experimental Device Fabrication In a collaborative effort with the IC design group
Large-area sheet task advanced dendritic web growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.
1982-01-01
The thermal stress model was used to generate the design of a low stress lid and shield configuration, which was fabricated and tested experimentally. In preliminary tests, the New Experimental Web Growth Facility performed as designed, producing web on the first run. These experiments suggested desirable design modifications in the melt level sensing system to improve further its performance, and these are being implemented.
Computational design and experimental validation of new thermal barrier systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Shengmin
2015-03-31
The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validationmore » applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr 2.75O 8 and confirmed it’s hot corrosion performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology.« less
Experimental analysis and simulation calculation of the inductances of loosely coupled transformer
NASA Astrophysics Data System (ADS)
Kerui, Chen; Yang, Han; Yan, Zhang; Nannan, Gao; Ying, Pei; Hongbo, Li; Pei, Li; Liangfeng, Guo
2017-11-01
The experimental design of iron-core wireless power transmission system is designed, and an experimental model of loosely coupled transformer is built. Measuring the air gap on both sides of the transformer 15mm inductor under the parameters. The feasibility and feasibility of using the finite element method to calculate the coil inductance parameters of the loosely coupled transformer are analyzed. The system was modeled by ANSYS, and the magnetic field was calculated by finite element method, and the inductance parameters were calculated. The finite element method is used to calculate the inductive parameters of the loosely coupled transformer, and the basis for the accurate compensation of the capacitance of the wireless power transmission system is established.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.
White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K
2016-12-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.
Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle
NASA Technical Reports Server (NTRS)
Johnston, E. A.
1978-01-01
The detail design of the under the wing experimental composite nacelle components is summarized. Analysis of an inlet, fan bypass duct doors, core cowl doors, and variable fan nozzle are given. The required technology to meet propulsion system performance, weight, and operational characteristics is discussed. The materials, design, and fabrication technology for quiet propulsion systems which will yield installed thrust to weight ratios greater than 3.5 to 1 are described.
Innovative Clinical Trial Designs
Lavori, Philip W.
2015-01-01
Whereas the 20th-century health care system sometimes seemed to be inhospitable to and unmoved by experimental research, its inefficiency and unaffordability have led to reforms that foreshadow a new health care system. We point out certain opportunities and transformational needs for innovations in study design offered by the 21st-century health care system, and describe some innovative clinical trial designs and novel design methods to address these needs and challenges. PMID:26140056
Design, implementation and control of a magnetic levitation device
NASA Astrophysics Data System (ADS)
Shameli, Ehsan
Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic levitation system, the feedback linearization controller has the shortest settling time and is capable of reducing the positioning error to RMS value of 11.56mum. The force model was also utilized in the design of a model reference adaptive feedback linearization (MRAFL) controller for the z direction. For this case, the levitated object is a small microrobot equipped with a remote controlled gripper weighting approximately 28(gr). Experimental results showed that the MRAFL controller enables the micro-robot to pick up and transport a payload as heavy as 30% of its own weight without a considerable effect on its positioning accuracy. In the presence of the payload, the MRAFL controller resulted in a RMS positioning error of 8microm compared with 27.9mum of the regular feedback linearization controller. For the horizontal position control of the system, a mathematical formula for distributing the electric currents to the multiple electromagnets of the system was proposed and a PID control approach was implemented to control the position of the levitated object in the xy-plane. The control system was experimentally tested in tracking circular and spiral trajectories with overall positioning accuracy of 60mum. Also, a new mathematical approach is presented for the prediction of magnetic field distribution in the horizontal direction. The proposed approach is named the pivot point method and is capable of predicting the two dimensional position of the levitated object in a given vertical plane for an arbitrary current distribution in the electromagnets of the levitation system. Experimental results showed that the proposed method is capable of predicting the location of the levitated object with less than 10% error.
Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA)
NASA Astrophysics Data System (ADS)
Bates, E. M.; Birmingham, W. J.; Romero-Talamás, C. A.
2018-05-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.
Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA).
Bates, E M; Birmingham, W J; Romero-Talamás, C A
2018-05-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.
Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas
2015-01-01
Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications. PMID:25653655
NASA Technical Reports Server (NTRS)
Glasgow, J. C.; Birchenough, A. G.
1978-01-01
The Mod-O 100 kW Experimental Wind Turbine was designed and fabricated by NASA, as part of the Federal Wind Energy Program, to assess technology requirements and engineering problems of large wind turbines. The machine became operational in October 1975 and has demonstrated successful operation in all of its design modes. During the course of its operations the machine has generated a wealth of experimental data and has served as a prototype developmental test bed for the Mod-OA operational wind turbines which are currently used on utility networks. This paper describes the mechanical and control systems as they evolved in operational tests and describes some of the experience with various systems in the downwind rotor configuration.
Design Validation Methodology Development for an Aircraft Sensor Deployment System
NASA Astrophysics Data System (ADS)
Wowczuk, Zenovy S.
The OCULUS 1.0 Sensor Deployment concept design, was developed in 2004 at West Virginia University (WVU), outlined the general concept of a deployment system to be used on a C-130 aircraft. As a sequel, a new system, OCULUS 1.1, has been developed and designed. The new system transfers the concept system design to a safety of flight design, and also enhanced to a pre-production system to be used as the test bed to gain full military certification approval. The OCULUS 1.1 system has an implemented standard deployment system/procedure to go along with a design suited for military certification and implementation. This design process included analysis of the system's critical components and the generation of a critical component holistic model to be used as an analysis tool for future payload modification made to the system. Following the completion of the OCULUS 1.1 design, preparations and procedures for obtaining military airworthiness certification are described. The airworthiness process includes working with the agency overseeing all modifications to the normal operating procedures made to military C-130 aircraft and preparing the system for an experimental flight test. The critical steps in his process include developing a complete documentation package that details the analysis performed on the OCULUS 1.1 system and also the design of experiment flight test plan to analyze the system. Following the approval of the documentation and design of experiment an experimental flight test of the OCULUS 1.1 system was performed to verify the safety and airworthiness of the system. This test proved successfully that the OCULUS 1.1 system design was airworthy and approved for military use. The OCULUS 1.1 deployment system offers an open architecture design that is ideal for use as a sensor testing platform for developmental airborne sensors. The system's patented deployment methodology presents a simplistic approach to reaching the systems final operating position which offers the most robust field of view area of rear ramp deployment systems.
NASA Lidar system support and MOPA technology demonstration
NASA Technical Reports Server (NTRS)
Laughman, L. M.; Capuano, B.; Wayne, R. J.
1986-01-01
A series of lidar design and technology demonstration tasks in support of a CO2 lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO2 Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.
Experimental Designs and Psychometric Techniques for the Study of Ride Quality
DOT National Transportation Integrated Search
1977-05-01
A major variable in both the cost of any new transportation system and rider acceptance of the system is the ride quality of its vehicles. At this time, there exists no set of objective criteria which would allow the transportation system designer to...
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.
1990-01-01
Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.
Development of a Naval C2 Capability Evaluation Facility
2014-06-01
designs is required in highly complex systems since sub-system evaluation may not be predictive of the overall system effect. It has been shown by...all individual and team behaviours, communications and interactions must be recordable. From the start of the project the design concept was for a...experimentation requirements of the concept evaluations being developed by the concept development team. A system design that allowed a variable fidelity in
Code of Federal Regulations, 2010 CFR
2010-07-01
... system. (8) A description of the experimental design, including methods for the control of bias. (9... being conducted. (4) The proposed experimental start and termination dates. (5) Justification for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... system. (8) A description of the experimental design, including methods for the control of bias. (9... being conducted. (4) The proposed experimental start and termination dates. (5) Justification for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... system. (8) A description of the experimental design, including methods for the control of bias. (9... being conducted. (4) The proposed experimental start and termination dates. (5) Justification for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... system. (8) A description of the experimental design, including methods for the control of bias. (9... being conducted. (4) The proposed experimental start and termination dates. (5) Justification for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... system. (8) A description of the experimental design, including methods for the control of bias. (9... being conducted. (4) The proposed experimental start and termination dates. (5) Justification for...
Zimmer, Christoph
2016-01-01
Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
Application of additive laser technologies in the gas turbine blades design process
NASA Astrophysics Data System (ADS)
Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.
2017-11-01
An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manera, Annalisa; Corradini, Michael; Petrov, Victor
This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has beenmore » developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.« less
47 CFR 5.63 - Supplementary statements required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... experimental authorization involving a satellite system must submit a description of the design and operational... 5.63 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE (OTHER... for an authorization in the Experimental Radio Service must enclose with the application a narrative...
47 CFR 5.63 - Supplementary statements required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... experimental authorization involving a satellite system must submit a description of the design and operational... 5.63 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE (OTHER... for an authorization in the Experimental Radio Service must enclose with the application a narrative...
NASA Technical Reports Server (NTRS)
1980-01-01
The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.
A Reverse Osmosis System for an Advanced Separation Process Laboratory.
ERIC Educational Resources Information Center
Slater, C. S.; Paccione, J. D.
1987-01-01
Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)
DSP-Based Hands-On Laboratory Experiments for Photovoltaic Power Systems
ERIC Educational Resources Information Center
Muoka, Polycarp I.; Haque, Md. Enamul; Gargoom, Ameen; Negnetvitsky, Michael
2015-01-01
This paper presents a new photovoltaic (PV) power systems laboratory module that was developed to experimentally reinforce students' understanding of design principles, operation, and control of photovoltaic power conversion systems. The laboratory module is project-based and is designed to support a renewable energy course. By using MATLAB…
NASA Astrophysics Data System (ADS)
Doganca Kucuk, Zerrin; Saysel, Ali Kerem
2017-03-01
A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.
Experimental research of flow servo-valve
NASA Astrophysics Data System (ADS)
Takosoglu, Jakub
Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.
Research on grid connection control technology of double fed wind generator
NASA Astrophysics Data System (ADS)
Ling, Li
2017-01-01
The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.
Pasadena City College SIGI Project Research Design. Pilot Study.
ERIC Educational Resources Information Center
Risser, John J.; Tulley, John E.
A pilot study evaluation of SIGI (System of Interactive Guidance and Information) at Pasadena City College in 1974-75 tested the effectiveness of an experimental research design for an expanded field test of the system the following year. (SIGI is a computer based career guidance program designed by Educational Testing Service to assist community…
Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianchao; Ding, Yonghua, E-mail: yhding@mail.hust.edu.cn; Zhang, Xiaoqing
2014-11-15
A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma coremore » and boundary.« less
NASA Technical Reports Server (NTRS)
1971-01-01
The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.
Development of Optimal Stressor Scenarios for New Operational Energy Systems
2017-12-01
Analyzing the previous model using a design of experiments (DOE) and regression analysis provides critical information about the associated operational...from experimentation. The resulting system requirements can be used to revisit the design requirements and develop a more robust system. This process...stressor scenarios for acceptance testing. Analyzing the previous model using a design of experiments (DOE) and regression analysis provides critical
Decisionmaking in Military Command Teams: An Experimental Study
1992-03-01
of the problems that remain to be solved by systems designers . The Fogarty report concluded that "The AEGIS combat system’s performance was excellent...1989). He maintains that the designers of the AEGIS system failed to incorporate enough human engineering in their design . Without addressing the fault...Naval Command Teams (RAINCOAT), Composite Warfare Commander - Destributed Dynamc Decisionmaking ICWC-[I)), resource coordination, resource effectiveness
Atmosphere Explorer (AE) spacecraft system description
NASA Technical Reports Server (NTRS)
1972-01-01
The principal design and performance characteristics of the AE spacecraft system designed to support the Atmosphere Explorer C, D, and E missions are summarized. It has been prepared for the information of experimenters and other participants in the Atmosphere Explorer program as a general guide for design and operational planning. The description represents the spacecraft system as defined at the conclusion of the interface definition study.
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
Design and Implementation of RF Energy Harvesting System for Low-Power Electronic Devices
NASA Astrophysics Data System (ADS)
Uzun, Yunus
2016-08-01
Radio frequency (RF) energy harvester systems are a good alternative for energizing of low-power electronics devices. In this work, an RF energy harvester is presented to obtain energy from Global System for Mobile Communications (GSM) 900 MHz signals. The energy harvester, consisting of a two-stage Dickson voltage multiplier circuit and L-type impedance matching circuits, was designed, simulated, fabricated and tested experimentally in terms of its performance. Simulation and experimental works were carried out for various input power levels, load resistances and input frequencies. Both simulation and experimental works have been carried out for this frequency band. An efficiency of 45% is obtained from the system at 0 dBm input power level using the impedance matching circuit. This corresponds to the power of 450 μW and this value is sufficient for many low-power devices. The most important parameters affecting the efficiency of the RF energy harvester are the input power level, frequency band, impedance matching and voltage multiplier circuits, load resistance and the selection of diodes. RF energy harvester designs should be optimized in terms of these parameters.
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
Solar energy program evaluation: an introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLeon, P.
The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the rolemore » and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.S.; Zhu, S.; Cai, Y.
Motion-dependent magnetic forces are the key elements in the study of magnetically levitated vehicle (maglev) system dynamics. In the past, most maglev-system designs were based on a quasisteady-motion theory of magnetic forces. This report presents an experimental and analytical study that will enhance our understanding of the role of unsteady-motion-dependent magnetic forces and demonstrate an experimental technique that can be used to measure those unsteady magnetic forces directly. The experimental technique provides a useful tool to measure motion-dependent magnetic forces for the prediction and control of maglev systems.
The Effects of Certain Background Noises on the Performance of a Voice Recognition System.
1980-09-01
Principles in Experimental Design. New York: McGraw-Hill, 1962. Woodworth, R.S. and H. Schlosberg, Experimental Psychology, (Revised edition), New...collection iheet APPENDIX II EXPERIMENTAL PROTOCOL AND SUBJECTS’ INSTRICTJONS THIS IS AN EXPERIMENT DESIGNED TO EVALUJATE SOME ," lE RECOGNITION EQUIPMENT. I...37. CDR Paul Chatelier OUSD R&E Room 3D129 Pentagon Washington, D.C. 20301 38. Ralph Cleveland NFMSO Code 9333 Mechanicsburg, PA 17055 39. Clay Coler
A practical model for pressure probe system response estimation (with review of existing models)
NASA Astrophysics Data System (ADS)
Hall, B. F.; Povey, T.
2018-04-01
The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.
Conceptual design study of Fusion Experimental Reactor (FY86 FER): Safety
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu
1987-08-01
This report describes the study on safety for FER (Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. The report consists of two chapters. The first chapter summarizes the FER system and describes FMEA (Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including purification, isotope separation and storage. Probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA.
Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen
2015-01-01
The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870
Code of Federal Regulations, 2014 CFR
2014-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Design and implementation of an experiment scheduling system for the ACTS satellite
NASA Technical Reports Server (NTRS)
Ringer, Mark J.
1994-01-01
The Advanced Communication Technology Satellite (ACTS) was launched on the 12th of September 1993 aboard STS-51. All events since that time have proceeded as planned with user operations commencing on December 6th, 1993. ACTS is a geosynchronous satellite designed to extend the state of the art in communication satellite design and is available to experimenters on a 'time/bandwidth available' basis. The ACTS satellite requires the advance scheduling of experimental activities based upon a complex set of resource, state, and activity constraints in order to ensure smooth operations. This paper describes the software system developed to schedule experiments for ACTS.
Optimal active vibration absorber: Design and experimental results
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.
1992-01-01
An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.
Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions
1974-10-01
apparatus underwent significant changes as the final engineering design evolved. Section Ill describes the tests which were conducted with the...2- I , U~ - - SECTION II EXPERIMENTAL APPARATUS As noted in the Introduction to this report, the conceptual design of the experimental laser Raman...overlap in the measurement volume of Interest, The details Wf thisl opýýlp &I engineering design trod@. off have been proviouuly replorted toy Munrio
Stirling engines for low-temperature solar-thermal-electric power generation
NASA Astrophysics Data System (ADS)
der Minassians, Artin
This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves their self-starting potential. The start-up temperature, i.e., the heater temperature at which the system starts its operation, is derived based on the same modal analysis. Following the mathematical modeling, the design, fabrication, and test of a symmetric three-phase free-piston Stirling engine system are discussed. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and provide appropriate seals. The experimental results are presented and compared with design calculations. Experimental assessments confirm the models for flow friction and gas spring hysteresis dissipation. It is revealed that gas spring hysteresis loss is an important dissipation phenomenon in low-power low-pressure Stirling engines, and should be carefully addressed during the design as it may hinder the engine operation. Further analysis shows that the gas hysteresis dissipation can be reduced drastically by increasing the number of phases in a system with a little compromise on the operating frequency and, hence, the output power. It is further shown that for an even number of phases, half of the pistons could be eliminated by utilizing a reverser. By introducing a reverser to the fabricated system, the system proves its self-starting capability in engine mode and validates the derived expressions for computing the start-up temperature.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.
2016-01-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.
1973-01-01
Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.
[Research-oriented experimental course of plant cell and gene engineering for undergraduates].
Xiaofei, Lin; Rong, Zheng; Morigen, Morigen
2015-04-01
Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.
AMPS data management concepts. [Atmospheric, Magnetospheric and Plasma in Space experiment
NASA Technical Reports Server (NTRS)
Metzelaar, P. N.
1975-01-01
Five typical AMPS experiments were formulated to allow simulation studies to verify data management concepts. Design studies were conducted to analyze these experiments in terms of the applicable procedures, data processing and displaying functions. Design concepts for AMPS data management system are presented which permit both automatic repetitive measurement sequences and experimenter-controlled step-by-step procedures. Extensive use is made of a cathode ray tube display, the experimenters' alphanumeric keyboard, and the computer. The types of computer software required by the system and the possible choices of control and display procedures available to the experimenter are described for several examples. An electromagnetic wave transmission experiment illustrates the methods used to analyze data processing requirements.
NASA Technical Reports Server (NTRS)
Ippolito, L. J.; Kaul, R. D.; Wallace, R. G.
1983-01-01
This Propagation Handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in some detail, in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. In order to make the Handbook readily usable to many engineers, it has been arranged in two parts. Chapters 2-5 comprise the descriptive part. They deal in some detail with rain systems, rain and attenuation models, depolarization and experimental data. Chapters 6 and 7 make up the design part of the Handbook and may be used almost independently of the earlier chapters. In Chapter 6, the design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. Chapter 7 addresses the questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results.
The Design and Implementation of Adsorptive Removal of Cu(II) from Leachate Using ANFIS
Turan, Nurdan Gamze; Ozgonenel, Okan
2013-01-01
Clinoptilolite was investigated for the removal of Cu(II) ions from industrial leachate. Adaptive neural fuzzy interface system (ANFIS) was used for modeling the batch experimental system and predicting the optimal input values, that is, initial pH, adsorbent dosage, and contact time. Experiments were studied under laboratory batch and fixed bed conditions. The outcomes of suggested ANFIS modeling were then compared to a full factorial experimental design (23), which was utilized to assess the effect of three factors on the adsorption of Cu(II) ions in aqueous leachate of industrial waste. It was observed that the optimized parameters are almost close to each other. The highest removal efficiency was found as about 93.65% at pH 6, adsorbent dosage 11.4 g/L, and contact time 33 min for batch conditions of 23 experimental design and about 90.43% at pH 5, adsorbent dosage 15 g/L and contact time 35 min for batch conditions of ANFIS. The results show that clinoptilolite is an efficient sorbent and ANFIS, which is easy to implement and is able to model the batch experimental system. PMID:23844405
2011-03-06
based LCO suppression system housed in a winglet , specifically designed for the GTW. Upon completion of rehabilitation and modifications to the wing to...accommodate the winglet /NES, the full system will be ready for additional testing in the TDT. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...University, will result in the design of an NES-based LCO suppression system housed in a winglet , specifically designed for the GTW. Upon completion of
ERIC Educational Resources Information Center
Barhoumi, Chokri; Rossi, Pier Giuseppe
2013-01-01
The use of hypertext systems for learning and teaching complex and ill-structured domain of knowledge has been attracting attention in design of instruction. In this context, an experimental research has been conducted to explore the effectiveness of instructional design oriented hypertext systems. Cognitive flexibility hypertext theory is…
Vertical Integration of System-on-Chip Concepts in the Digital Design Curriculum
ERIC Educational Resources Information Center
Tang, Ying; Head, L. M.; Ramachandran, R. P.; Chatman, L. M.
2011-01-01
The rapid evolution of System-on-Chip (SoC) challenges academic curricula to keep pace with multidisciplinary/interdisciplinary system thinking. This paper presents a curricular prototype that cuts across artificial course boundaries and provides a meaningful exploration of diverse facets of SoC design. Specifically, experimental contents of a…
Zimmer, Christoph
2016-01-01
Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802
Neural control of magnetic suspension systems
NASA Technical Reports Server (NTRS)
Gray, W. Steven
1993-01-01
The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.
A methodology for identification and control of electro-mechanical actuators
Tutunji, Tarek A.; Saleem, Ashraf
2015-01-01
Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants’ response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: • Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators. • Combines off-line and on-line controller design for practical performance. • Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure. PMID:26150992
A methodology for identification and control of electro-mechanical actuators.
Tutunji, Tarek A; Saleem, Ashraf
2015-01-01
Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants' response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: •Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators.•Combines off-line and on-line controller design for practical performance.•Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure.
Burns, Gully A.P.C.; Turner, Jessica A.
2015-01-01
Neuroimaging data is raw material for cognitive neuroscience experiments, leading to scientific knowledge about human neurological and psychological disease, language, perception, attention and ultimately, cognition. The structure of the variables used in the experimental design defines the structure of the data gathered in the experiments; this in turn structures the interpretative assertions that may be presented as experimental conclusions. Representing these assertions and the experimental data which support them in a computable way means that they could be used in logical reasoning environments, i.e. for automated meta-analyses, or linking hypotheses and results across different levels of neuroscientific experiments. Therefore, a crucial first step in being able to represent neuroimaging results in a clear, computable way is to develop representations for the scientific variables involved in neuroimaging experiments. These representations should be expressive, computable, valid, extensible, and easy-to-use. They should also leverage existing semantic standards to interoperate easily with other systems. We present an ontology design pattern called the Ontology of Experimental Variables and Values (OoEVV). This is designed to provide a lightweight framework to capture mathematical properties of data, with appropriate ‘hooks’ to permit linkage to other ontology-driven projects (such as the Ontology of Biomedical Investigations, OBI). We instantiate the OoEVV system with a small number of functional Magnetic Resonance Imaging datasets, to demonstrate the system’s ability to describe the variables of a neuroimaging experiment. OoEVV is designed to be compatible with the XCEDE neuroimaging data standard for data collection terminology, and with the Cognitive Paradigm Ontology (CogPO) for specific reasoning elements of neuroimaging experimental designs. PMID:23684873
A low-cost, computer-controlled robotic flower system for behavioral experiments.
Kuusela, Erno; Lämsä, Juho
2016-04-01
Human observations during behavioral studies are expensive, time-consuming, and error prone. For this reason, automatization of experiments is highly desirable, as it reduces the risk of human errors and workload. The robotic system we developed is simple and cheap to build and handles feeding and data collection automatically. The system was built using mostly off-the-shelf components and has a novel feeding mechanism that uses servos to perform refill operations. We used the robotic system in two separate behavioral studies with bumblebees (Bombus terrestris): The system was used both for training of the bees and for the experimental data collection. The robotic system was reliable, with no flight in our studies failing due to a technical malfunction. The data recorded were easy to apply for further analysis. The software and the hardware design are open source. The development of cheap open-source prototyping platforms during the recent years has opened up many possibilities in designing of experiments. Automatization not only reduces workload, but also potentially allows experimental designs never done before, such as dynamic experiments, where the system responds to, for example, learning of the animal. We present a complete system with hardware and software, and it can be used as such in various experiments requiring feeders and collection of visitation data. Use of the system is not limited to any particular experimental setup or even species.
NASA Astrophysics Data System (ADS)
Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.
2012-01-01
A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.
1986-02-01
ability level (low, medium and hilh) showed that the experimental groups performed higher than the non - experimental groups at each ibility level. The...instructional system design (19D) model. The T’. model hail the following deficiencies: inadequate methodology for preDnring, analyzing, and categorizing... experimental designs will be required in the future and the emphasis unon observation will become more complex. Rriggs, .F., & -Johnston, W.A. Lshorptory
Robust parameter design for automatically controlled systems and nanostructure synthesis
NASA Astrophysics Data System (ADS)
Dasgupta, Tirthankar
2007-12-01
This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor-made to address the unique phenomena associated with nanostructure synthesis. A sequential space filling design called Sequential Minimum Energy Design (SMED) for exploring best process conditions for synthesis of nanowires. The SMED is a novel approach to generate sequential designs that are model independent, can quickly "carve out" regions with no observable nanostructure morphology, and allow for the exploration of complex response surfaces.
Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P
2007-05-01
We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.
Dutch Research on Knowledge-Based Instructional Systems: Introduction to the Special Issue.
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
1994-01-01
Provides an overview of this issue that reviews Dutch research concerning knowledge-based instructional systems. Topics discussed include experimental research, conceptual models, design considerations, and guidelines; the design of student diagnostic modules, instructional modules, and interface modules; second-language teaching; intelligent…
Experimental Design for Parameter Estimation of Gene Regulatory Networks
Timmer, Jens
2012-01-01
Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723
Mechanical design of experimental apparatus for FIREX cryo-target cooling
NASA Astrophysics Data System (ADS)
Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.
2016-05-01
Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.
An experimental design for quantification of cardiovascular responses to music stimuli in humans.
Chang, S-H; Luo, C-H; Yeh, T-L
2004-01-01
There have been several researches on the relationship between music and human physiological or psychological responses. However, there are cardiovascular index factors that have not been explored quantitatively due to the qualitative nature of acoustic stimuli. This study proposes and demonstrates an experimental design for quantification of cardiovascular responses to music stimuli in humans. The system comprises two components: a unit for generating and monitoring quantitative acoustic stimuli and a portable autonomic nervous system (ANS) analysis unit for quantitative recording and analysis of the cardiovascular responses. The experimental results indicate that the proposed system can exactly achieve the goal of full control and measurement for the music stimuli, and also effectively support many quantitative indices of cardiovascular response in humans. In addition, the analysis results are discussed and predicted in the future clinical research.
Quiet Clean Short-haul Experimental Engine (QCSEE) Over The Wing (OTW) design report
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is demonstrated. Composite structures and digital engine controls are among the topics included.
Defense Science Board Task Force Report on Next-Generation Unmanned Undersea Systems
2016-10-01
active learning occurs in an environment that extends beyondchoreographed demonstrations designed to validate pre -determined hypotheses. Finally, when...4 OPNAV N99 should coordinate a broad-based design , development, and experimental effort to bypass traditional limitations for unmanned undersea...approaches that could facilitate rapid experimentation , operational demonstration of capabilities, and deployment of initial capabilities that show
NASA Technical Reports Server (NTRS)
Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan
2011-01-01
Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.
Design and experimental investigation of an ejector in an air-conditioning and refrigeration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL-Khalidy, N.; Zayonia, A.
1995-12-31
This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.
Management of geriatric incontinence in nursing homes.
Schnelle, J F; Traughber, B; Morgan, D B; Embry, J E; Binion, A F; Coleman, A
1983-01-01
A behavioral management system designed to reduce urinary incontinence was evaluated in two nursing homes with a pretest-posttest control group design with repeated measures. The primary components of the system were prompting and contingent social approval/disapproval which required approximately 2.5 minutes per patient per hour to administer. The frequency of correct toileting for experimental subjects increased by approximately 45%. The experimental groups were significantly different from the control groups on both incontinence and correct toileting measures. The results are discussed in view of the management issues inherent in nursing home settings. PMID:6885672
Mohsenizadeh, Daniel N; Dehghannasiri, Roozbeh; Dougherty, Edward R
2018-01-01
In systems biology, network models are often used to study interactions among cellular components, a salient aim being to develop drugs and therapeutic mechanisms to change the dynamical behavior of the network to avoid undesirable phenotypes. Owing to limited knowledge, model uncertainty is commonplace and network dynamics can be updated in different ways, thereby giving multiple dynamic trajectories, that is, dynamics uncertainty. In this manuscript, we propose an experimental design method that can effectively reduce the dynamics uncertainty and improve performance in an interaction-based network. Both dynamics uncertainty and experimental error are quantified with respect to the modeling objective, herein, therapeutic intervention. The aim of experimental design is to select among a set of candidate experiments the experiment whose outcome, when applied to the network model, maximally reduces the dynamics uncertainty pertinent to the intervention objective.
Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leick, Michael T.; Moses, Ronald W.
2015-03-01
This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to chargemore » the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.« less
Thermogravity system designed for use in dispersion strengthening studies
NASA Technical Reports Server (NTRS)
Herbell, T. P.
1972-01-01
A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.
Thermogravimetry system designed for use in dispersion strengthening studies.
NASA Technical Reports Server (NTRS)
Herbell, T. P.
1972-01-01
A thermogravimetry system, designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials, is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 p.p.m. water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.
Modular disposable can (MODCAN) crash cushion: A concept investigation
NASA Technical Reports Server (NTRS)
Knoell, A.; Wilson, A.
1976-01-01
A conceptual design investigation of an improved highway crash cushion system is presented. The system is referred to as a modular disposable can (MODCAN) crash system. It is composed of a modular arrangement of disposable metal beverage cans configured to serve as an effective highway impact attenuation system. Experimental data, design considerations, and engineering calculations supporting the design development are presented. Design performance is compared to that of a conventional steel drum system. It is shown that the MODCAN concepts offers the potential for smoother and safer occupant deceleration for a larger class of vehicle impact weights than the steel drum device.
Lavis, John N; Bärnighausen, Till; El-Jardali, Fadi
2017-09-01
To describe the infrastructure available to support the production of policy-relevant health systems research syntheses, particularly those incorporating quasi-experimental evidence, and the tools available to support the use of these syntheses. Literature review. The general challenges associated with the available infrastructure include their sporadic nature or limited coverage of issues and countries, whereas the specific ones related to policy-relevant syntheses of quasi-experimental evidence include the lack of mechanism to register synthesis titles and scoping review protocols, the limited number of groups preparing user-friendly summaries, and the difficulty of finding quasi-experimental studies for inclusion in rapid syntheses and research syntheses more generally. Although some new tools have emerged in recent years, such as guidance workbooks and citizen briefs and panels, challenges related to using available tools to support the use of policy-relevant syntheses of quasi-experimental evidence arise from such studies potentially being harder for policymakers and stakeholders to commission and understand. Policymakers, stakeholders, and researchers need to expand the coverage and institutionalize the use of the available infrastructure and tools to support the use of health system research syntheses containing quasi-experimental evidence. Copyright © 2017 Elsevier Inc. All rights reserved.
Experimental Comparison of Two Quantum Computing Architectures
2017-03-28
IN A U G U RA L A RT IC LE CO M PU TE R SC IE N CE S Experimental comparison of two quantum computing architectures Norbert M. Linkea,b,1, Dmitri...the vast computing power a universal quantumcomputer could offer, several candidate systems are being explored. They have allowed experimental ...existing systems and the role of architecture in quantum computer design . These will be crucial for the realization of more advanced future incarna
World Key Information Service System Designed For EPCOT Center
NASA Astrophysics Data System (ADS)
Kelsey, J. A.
1984-03-01
An advanced Bell Laboratories and Western Electric designed electronic information retrieval system utilizing the latest Information Age technologies, and a fiber optic transmission system is featured at the Walt Disney World Resort's newest theme park - The Experimental Prototype Community of Tomorrow (EPCOT Center). The project is an interactive audio, video and text information system that is deployed at key locations within the park. The touch sensitive terminals utilizing the ARIEL (Automatic Retrieval of Information Electronically) System is interconnected by a Western Electric designed and manufactured lightwave transmission system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensingmore » needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.« less
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1972-01-01
The problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars were investigated. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; navigation, terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks were studied: vehicle model design, mathematical modeling of dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement and transport parameter evaluation.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1972-01-01
Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
...--Experimental Aircraft Association ELT--Emergency Locator Transmitter ES--Extended Squitter EUROCAE--European...--Security Certification and Accreditation Procedures SDA--System Design Assurance SIL--Source Integrity.... Surveillance Integrity Level 6. Source Integrity Level (SIL) and System Design Assurance (SDA) 7. Secondary...
Experimental Packet Radio System Design Plan
1974-03-13
specific design parameters (packet format, data rates, modulation type, spread factor, etc.) for the initial system configuration. c. Prototype...are described along with size, weight and power estimates, and projections of per- formance parameters . d. Measurement and Test. The plan...are presented covering the communications link, system parameters , and various levels of network operation and performance. This plan is a snapshot
Dasgupta, Annwesa P.; Anderson, Trevor R.; Pelaez, Nancy J.
2016-01-01
Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students’ competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not measure how well students use standard symbolism to visualize biological experiments. We propose an assessment-design process that 1) provides background knowledge and questions for developers of new “experimentation assessments,” 2) elicits practices of representing experiments with conventional symbol systems, 3) determines how well the assessment reveals expert knowledge, and 4) determines how well the instrument exposes student knowledge and difficulties. To illustrate this process, we developed the Neuron Assessment and coded responses from a scientist and four undergraduate students using the Rubric for Experimental Design and the Concept-Reasoning Mode of representation (CRM) model. Some students demonstrated sound knowledge of concepts and representations. Other students demonstrated difficulty with depicting treatment and control group data or variability in experimental outcomes. Our process, which incorporates an authentic research situation that discriminates levels of visualization and experimentation abilities, shows potential for informing assessment design in other disciplines. PMID:27146159
NASA Astrophysics Data System (ADS)
Scarborough, David E.
Manufacturers of commercial, power-generating, gas turbine engines continue to develop combustors that produce lower emissions of nitrogen oxides (NO x) in order to meet the environmental standards of governments around the world. Lean, premixed combustion technology is one technique used to reduce NOx emissions in many current power and energy generating systems. However, lean, premixed combustors are susceptible to thermo-acoustic oscillations, which are pressure and heat-release fluctuations that occur because of a coupling between the combustion process and the natural acoustic modes of the system. These pressure oscillations lead to premature failure of system components, resulting in very costly maintenance and downtime. Therefore, a great deal of work has gone into developing methods to prevent or eliminate these combustion instabilities. This dissertation presents the results of a theoretical and experimental investigation of a novel Fuel System Tuner (FST) used to damp detrimental combustion oscillations in a gas turbine combustor by changing the fuel supply system impedance, which controls the amplitude and phase of the fuel flowrate. When the FST is properly tuned, the heat release oscillations resulting from the fuel-air ratio oscillations damp, rather than drive, the combustor acoustic pressure oscillations. A feasibility study was conducted to prove the validity of the basic idea and to develop some basic guidelines for designing the FST. Acoustic models for the subcomponents of the FST were developed, and these models were experimentally verified using a two-microphone impedance tube. Models useful for designing, analyzing, and predicting the performance of the FST were developed and used to demonstrate the effectiveness of the FST. Experimental tests showed that the FST reduced the acoustic pressure amplitude of an unstable, model, gas-turbine combustor over a wide range of operating conditions and combustor configurations. Finally, combustor acoustic pressure amplitude measurements made in using the model combustor were used in conjunction with model predicted fuel system impedances to verify the developed design rules. The FST concept and design methodology presented in this dissertation can be used to design fuel system tuners for new and existing gas turbine combustors to reduce, or eliminate altogether, thermo-acoustic oscillations.
Annual Review of Research under the Joint Services Electronics Program,
1981-12-01
nonlinear system under investigation to be transformed, without approximation, into an equivalent linear system to which classical design methodologies are...employed his work in the design of an experimental helicopter autopilot which is presently under- going simulation and is expected to fly in the near...decentralized, and non -quad- duced from that which would be required ratic systems is presented. Here, one for an optimal non -linlar controller. designs a
Visual monitoring of autonomous life sciences experimentation
NASA Technical Reports Server (NTRS)
Blank, G. E.; Martin, W. N.
1987-01-01
The design and implementation of a computerized visual monitoring system to aid in the monitoring and control of life sciences experiments on board a space station was investigated. A likely multiprocessor design was chosen, a plausible life science experiment with which to work was defined, the theoretical issues involved in the programming of a visual monitoring system for the experiment was considered on the multiprocessor, a system for monitoring the experiment was designed, and simulations of such a system was implemented on a network of Apollo workstations.
ATLAS, an integrated structural analysis and design system. Volume 5: System demonstration problems
NASA Technical Reports Server (NTRS)
Samuel, R. A. (Editor)
1979-01-01
One of a series of documents describing the ATLAS System for structural analysis and design is presented. A set of problems is described that demonstrate the various analysis and design capabilities of the ATLAS System proper as well as capabilities available by means of interfaces with other computer programs. Input data and results for each demonstration problem are discussed. Results are compared to theoretical solutions or experimental data where possible. Listings of all input data are included.
Performance of the SERI parallel-passage dehumidifer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlepp, D.; Barlow, R.
1984-09-01
The key component in improving the performance of solar desiccant cooling systems is the dehumidifier. A parallel-passage geometry for the desiccant dehumidifier has been identified as meeting key criteria of low pressure drop, high mass transfer efficiency, and compact size. An experimental program to build and test a small-scale prototype of this design was undertaken in FY 1982, and the results are presented in this report. Computer models to predict the adsorption/desorption behavior of desiccant dehumidifiers were updated to take into account the geometry of the bed and predict potential system performance using the new component design. The parallel-passage designmore » proved to have high mass transfer effectiveness and low pressure drop over a wide range of test conditions typical of desiccant cooling system operation. The prototype dehumidifier averaged 93% effectiveness at pressure drops of less than 50 Pa at design point conditions. Predictions of system performance using models validated with the experimental data indicate that system thermal coefficients of performance (COPs) of 1.0 to 1.2 and electrical COPs above 8.5 are possible using this design.« less
An experimental investigation of the effects of alarm processing and display on operator performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Hara, J.; Brown, W.; Hallbert, B.
1998-03-01
This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) aspects of nuclear power plant alarm systems. The overall objective of the program is to develop HFE review guidance for advanced alarm systems. As part of this program, guidance has been developed based on a broad base of technical and research literature. In the course of guidance development, aspects of alarm system design for which the technical basis was insufficient to support complete guidance development were identified. The primary purpose of the research reported in this paper was to evaluatemore » the effects of three of these alarm system design characteristics on operator performance in order to contribute to the understanding of potential safety issues and to provide data to support the development of design review guidance in these areas. Three alarm system design characteristics studied were (1) alarm processing (degree of alarm reduction), (2) alarm availability (dynamic prioritization and suppression), and (3) alarm display (a dedicated tile format, a mixed tile and message list format, and a format in which alarm information is integrated into the process displays). A secondary purpose was to provide confirmatory evidence of selected alarm system guidance developed in an earlier phase of the project. The alarm characteristics were combined into eight separate experimental conditions. Six, two-person crews of professional nuclear power plant operators participated in the study. Following training, each crew completed 16 test trials which consisted of two trials in each of the eight experimental conditions (one with a low-complexity scenario and one with a high-complexity scenario). Measures of process performance, operator task performance, situation awareness, and workload were obtained. In addition, operator opinions and evaluations of the alarm processing and display conditions were collected. No deficient performance was observed in any of the experimental conditions, providing confirmatory support for many design review guidelines. The operators identified numerous strengths and weaknesses associated with individual alarm design characteristics.« less
ACCELERATORS: RF system design and measurement of HIRF-CSRe
NASA Astrophysics Data System (ADS)
Xu, Zhe; Zhao, Hong-Wei; Wang, Chun-Xiao; Xia, Jia-Wen; Zhan, Wen-Long; Bian, Zhi-Bin
2009-05-01
An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB interface and has three feedback loops. Finally we give the results of the measurement on our system.
Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen
2015-02-28
The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
2011-08-01
challenges in new design methodologies . Particular examples involve an in-circuit functional timing testing of systems with millions of cores. I...TECHNIQUES Chair: Dwight Woolard, U.S. Army Research Office (ARO) 8:40-9:05 EXPERIMENTAL DESIGN OF SINGLE-CRYSTAL DNA FOR THZ SPECTROSCOPY...Detection Based Techniques EXPERIMENTAL DESIGN OF SINGLE-CRYSTAL DNA FOR THZ SPECTROSCOPY E. R. Brown, M.L. Norton, M. Rahman, W. Zhang Wright
Advanced Technology for Ultra-Low Power System-on-Chip (SoC)
2017-06-01
design at IDS=1mA/μm compared with that in experimental 14nm-node FinFET. The redistributed electric field along the channel length direction can... design can result in more uniform electron density and electron velocity distributions compared to a homojunction device. This uniform electron... design at IDS=1mA/μm compared with that in experimental 14nm-node FinFET. 14 Approved for public release, distribution is unlimited. 0 5 10 15 20
Sortie laboratory, phase B technical summary. [design and operational requirements
NASA Technical Reports Server (NTRS)
1973-01-01
The design and operational requirements which evolved from Sortie Lab (SL) analysis are summarized. A source of requirements for systems is given along with experimental support for the SL, baseline. Basic design data covered include: configuration definition, mission analysis, experimental integration, safety, and logistics. A technical summary outlines characteristics which reflect the influence of the growth in SL capability and the results of the mission and operational analysis. Each of the selected areas is described in terms of objectives, equipment, operational concept, and support requirements.
Simulators for Mariner Training and Licensing: Guidelines for Deck Officer Training Systems.
1982-12-01
Information regarding the three major elements of the training system - the simu- lator design , the training program structure, and the instructor...1.1.2 Empirical Research/ Experimentation Phase ........................................ 1 1.1.3 Major Product...3 3.2 Simulator Design (Critical Characteristics) ......................................... 13 3.2.1 Visual Scee
The Caterpillar Game: A Classroom Management System
ERIC Educational Resources Information Center
Floress, Margaret T.; Rock, Angela L.; Hailemariam, Assegedech
2017-01-01
A single-case experimental design was used to evaluate the effects of the Caterpillar Game, a classroom management system, on disruptive behavior in a general education first grade classroom. A multiple baseline design across settings was used to evaluate changes in student disruptive behavior and teacher praise. When the Caterpillar Game was…
Design and test of a simulation system for autonomous optic-navigated planetary landing
NASA Astrophysics Data System (ADS)
Cai, Sheng; Yin, Yanhe; Liu, Yanjun; He, Fengyun
2018-02-01
In this paper, a simulation system based on commercial projector is proposed to test the optical navigation algorithms for autonomous planetary landing in laboratorial scenarios. The design work of optics, mechanics and synchronization control are carried out. Furthermore, the whole simulation system is set up and tested. Through the calibration of the system, two main problems, synchronization between the projector and CCD and pixel-level shifting caused by the low repeatability of DMD used in the projector, are settled. The experimental result shows that the RMS errors of pitch, yaw and roll angles are 0.78', 0.48', and 2.95' compared with the theoretical calculation, which can fulfill the requirement of experimental simulation for planetary landing in laboratory.
Prediction uncertainty and optimal experimental design for learning dynamical systems.
Letham, Benjamin; Letham, Portia A; Rudin, Cynthia; Browne, Edward P
2016-06-01
Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.
Video Games: A Human Factors Guide to Visual Display Design and Instructional System Design
1984-04-01
Electronic video games have many of the same technological and psychological characteristics that are found in military computer-based systems. For...both of which employ video games as experimental stimuli, are presented here. The first research program seeks to identify and exploit the...characteristics of video games in the design of game-based training devices. The second program is designed to explore the effects of electronic video display
Louisiana experimental base project : interim report No. 1.
DOT National Transportation Integrated Search
1979-11-01
The Louisiana Experimental Base Project is a research study evaluating the design/performance characteristics of three types of base courses as incorporated into comparable flexible pavement systems on a full-scale test road. Fourteen different test ...
Experimental results in evolutionary fault-recovery for field programmable analog devices
NASA Technical Reports Server (NTRS)
Zebulum, Ricardo S.; Keymeulen, Didier; Duong, Vu; Guo, Xin; Ferguson, M. I.; Stoica, Adrian
2003-01-01
This paper presents experimental results of fast intrinsic evolutionary design and evolutionary fault recovery of a 4-bit Digital to Analog Converter (DAC) using the JPL stand-alone board-level evolvable system (SABLES).
Title I preliminary engineering for: A. S. E. F. solid waste to methane gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1976-01-01
An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec.more » 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.« less
Design and experimental verification for optical module of optical vector-matrix multiplier.
Zhu, Weiwei; Zhang, Lei; Lu, Yangyang; Zhou, Ping; Yang, Lin
2013-06-20
Optical computing is a new method to implement signal processing functions. The multiplication between a vector and a matrix is an important arithmetic algorithm in the signal processing domain. The optical vector-matrix multiplier (OVMM) is an optoelectronic system to carry out this operation, which consists of an electronic module and an optical module. In this paper, we propose an optical module for OVMM. To eliminate the cross talk and make full use of the optical elements, an elaborately designed structure that involves spherical lenses and cylindrical lenses is utilized in this optical system. The optical design software package ZEMAX is used to optimize the parameters and simulate the whole system. Finally, experimental data is obtained through experiments to evaluate the overall performance of the system. The results of both simulation and experiment indicate that the system constructed can implement the multiplication between a matrix with dimensions of 16 by 16 and a vector with a dimension of 16 successfully.
Structural similitude and design of scaled down laminated models
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Rezaeepazhand, J.
1993-01-01
The excellent mechanical properties of laminated composite structures make them prime candidates for wide variety of applications in aerospace, mechanical and other branches of engineering. The enormous design flexibility of advanced composites is obtained at the cost of large number of design parameters. Due to complexity of the systems and lack of complete design based informations, designers tend to be conservative in their design. Furthermore, any new design is extensively evaluated experimentally until it achieves the necessary reliability, performance and safety. However, the experimental evaluation of composite structures are costly and time consuming. Consequently, it is extremely useful if a full-scale structure can be replaced by a similar scaled-down model which is much easier to work with. Furthermore, a dramatic reduction in cost and time can be achieved, if available experimental data of a specific structure can be used to predict the behavior of a group of similar systems. This study investigates problems associated with the design of scaled models. Such study is important since it provides the necessary scaling laws, and the factors which affect the accuracy of the scale models. Similitude theory is employed to develop the necessary similarity conditions (scaling laws). Scaling laws provide relationship between a full-scale structure and its scale model, and can be used to extrapolate the experimental data of a small, inexpensive, and testable model into design information for a large prototype. Due to large number of design parameters, the identification of the principal scaling laws by conventional method (dimensional analysis) is tedious. Similitude theory based on governing equations of the structural system is more direct and simpler in execution. The difficulty of making completely similar scale models often leads to accept certain type of distortion from exact duplication of the prototype (partial similarity). Both complete and partial similarity are discussed. The procedure consists of systematically observing the effect of each parameter and corresponding scaling laws. Then acceptable intervals and limitations for these parameters and scaling laws are discussed. In each case, a set of valid scaling factors and corresponding response scaling laws that accurately predict the response of prototypes from experimental models is introduced. The examples used include rectangular laminated plates under destabilizing loads, applied individually, vibrational characteristics of same plates, as well as cylindrical bending of beam-plates.
Pulse cleaning flow models and numerical computation of candle ceramic filters.
Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang
2002-04-01
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.
NASA Technical Reports Server (NTRS)
Ippolito, Louis J.
1989-01-01
The NASA Propagation Effects Handbook for Satellite Systems Design provides a systematic compilation of the major propagation effects experienced on space-Earth paths in the 10 to 100 GHz frequency band region. It provides both a detailed description of the propagation phenomenon and a summary of the impact of the effect on the communications system design and performance. Chapter 2 through 5 describe the propagation effects, prediction models, and available experimental data bases. In Chapter 6, design techniques and prediction methods available for evaluating propagation effects on space-Earth communication systems are presented. Chapter 7 addresses the system design process and how the effects of propagation on system design and performance should be considered and how that can be mitigated. Examples of operational and planned Ku, Ka, and EHF satellite communications systems are given.
Vehicle Counting and Moving Direction Identification Based on Small-Aperture Microphone Array.
Zu, Xingshui; Zhang, Shaojie; Guo, Feng; Zhao, Qin; Zhang, Xin; You, Xing; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2017-05-10
The varying trend of a moving vehicle's angles provides much important intelligence for an unattended ground sensor (UGS) monitoring system. The present study investigates the capabilities of a small-aperture microphone array (SAMA) based system to identify the number and moving direction of vehicles travelling on a previously established route. In this paper, a SAMA-based acoustic monitoring system, including the system hardware architecture and algorithm mechanism, is designed as a single node sensor for the application of UGS. The algorithm is built on the varying trend of a vehicle's bearing angles around the closest point of approach (CPA). We demonstrate the effectiveness of our proposed method with our designed SAMA-based monitoring system in various experimental sites. The experimental results in harsh conditions validate the usefulness of our proposed UGS monitoring system.
NASA Technical Reports Server (NTRS)
Williams, D. H.; Simpson, C. A.
1976-01-01
Line pilots (fifty captains, first officers, and flight engineers) from 8 different airlines were administered a structured questionnaire relating to future warning system design and solutions to current warning system problems. This was followed by a semantic differential to obtain a factor analysis of 18 different cockpit warning signals on scales such as informative/distracting, annoying/soothing. Half the pilots received a demonstration of the experimental text and voice synthesizer warning systems before answering the questionnaire and the semantic differential. A control group answered the questionnaire and the semantic differential first, thus providing a check for the stability of pilot preferences with and without actual exposure to experimental systems. Generally, the preference data obtained revealed much consistency and strong agreement among line pilots concerning advance cockpit warning system design.
Automated optimal coordination of multiple-DOF neuromuscular actions in feedforward neuroprostheses.
Lujan, J Luis; Crago, Patrick E
2009-01-01
This paper describes a new method for designing feedforward controllers for multiple-muscle, multiple-DOF, motor system neural prostheses. The design process is based on experimental measurement of the forward input/output properties of the neuromechanical system and numerical optimization of stimulation patterns to meet muscle coactivation criteria, thus resolving the muscle redundancy (i.e., overcontrol) and the coupled DOF problems inherent in neuromechanical systems. We designed feedforward controllers to control the isometric forces at the tip of the thumb in two directions during stimulation of three thumb muscles as a model system. We tested the method experimentally in ten able-bodied individuals and one patient with spinal cord injury. Good control of isometric force in both DOFs was observed, with rms errors less than 10% of the force range in seven experiments and statistically significant correlations between the actual and target forces in all ten experiments. Systematic bias and slope errors were observed in a few experiments, likely due to the neuromuscular fatigue. Overall, the tests demonstrated the ability of a general design approach to satisfy both control and coactivation criteria in multiple-muscle, multiple-axis neuromechanical systems, which is applicable to a wide range of neuromechanical systems and stimulation electrodes.
Counterbalancing for Serial Order Carryover Effects in Experimental Condition Orders
ERIC Educational Resources Information Center
Brooks, Joseph L.
2012-01-01
Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed…
1984-06-01
emostraion. Tese eserch ool wee deignted and experimental demonstrations wre successfully con- for demonstrations. These research tools wre designated ...Topics 4.02 Instructional Systems Design Methodology Instructional Systems Development and Effectiveness Evaluation .................................... 1...6 53 0 0 67w Report Page 10.07 Human Performance Variables/Factors 10.08 Man-Machine Design Methodology Computer Assisted Methods for Human
Ben-Shaanan, Tamar; Schiller, Maya; Rolls, Asya
2017-10-01
The interactions between the brain and the immune system are bidirectional. Nevertheless, we have far greater understanding of how the immune system affects the brain than how the brain affects immunity. New technological developments such as optogenetics and chemogenetics (using DREADDs; Designer Receptors Exclusively Activated by Designer Drugs) can bridge this gap in our understanding, as they enable an unprecedented mechanistic and systemic analysis of the communication between the brain and the immune system. In this review, we discuss new experimental approaches for revealing neuronal circuits that can participate in regulation of immunity. In addition, we discuss methods, specifically optogenetics and chemogenetics, that enable targeted neuronal manipulation to reveal how different brain regions affect immunity. We describe how these techniques can be used as an experimental platform to address fundamental questions in psychoneuroimmunology and to understand how neuronal circuits associate with different psychological states can affect physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Implementation of an experimental fault-tolerant memory system
NASA Technical Reports Server (NTRS)
Carter, W. C.; Mccarthy, C. E.
1976-01-01
The experimental fault-tolerant memory system described in this paper has been designed to enable the modular addition of spares, to validate the theoretical fault-secure and self-testing properties of the translator/corrector, to provide a basis for experiments using the new testing and correction processes for recovery, and to determine the practicality of such systems. The hardware design and implementation are described, together with methods of fault insertion. The hardware/software interface, including a restricted single error correction/double error detection (SEC/DED) code, is specified. Procedures are carefully described which, (1) test for specified physical faults, (2) ensure that single error corrections are not miscorrections due to triple faults, and (3) enable recovery from double errors.
Design of the compact high-resolution imaging spectrometer (CHRIS), and future developments
NASA Astrophysics Data System (ADS)
Cutter, Mike; Lobb, Dan
2017-11-01
The CHRIS instrument was launched on ESA's PROBA platform in October 2001, and is providing hyperspectral images of selected ground areas at 17m ground sampling distance, in the spectral range 415nm to 1050nm. Platform agility allows image sets to be taken at multiple view angles in each overpass. The design of the instrument is briefly outlined, including design of optics, structures, detection and in-flight calibration system. Lessons learnt from construction and operation of the experimental system, and possible design directions for future hyperspectral systems, are discussed.
Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems
NASA Technical Reports Server (NTRS)
Koch, Patrick N.
1997-01-01
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.
Large - scale Rectangular Ruler Automated Verification Device
NASA Astrophysics Data System (ADS)
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
Development for equipment of the milk macromolecules content detection
NASA Astrophysics Data System (ADS)
Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen
Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.
Mars integrated transportation system multistage Mars mission
NASA Technical Reports Server (NTRS)
1991-01-01
In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.
Experimental characterization of an adaptive aileron: lab tests and FE correlation
NASA Astrophysics Data System (ADS)
Amendola, Gianluca; Dimino, Ignazio; Amoroso, Francesco; Pecora, Rosario
2016-04-01
Like any other technology, morphing has to demonstrate system level performance benefits prior to implementation onto a real aircraft. The current status of morphing structures research efforts (as the ones, sponsored by the European Union) involves the design of several subsystems which have to be individually tested in order to consolidate their general performance in view of the final integration into a flyable device. This requires a fundamental understanding of the interaction between aerodynamic, structure and control systems. Important worldwide research collaborations were born in order to exchange acquired experience and better investigate innovative technologies devoted to morphing structures. The "Adaptive Aileron" project represents a joint cooperation between Canadian and Italian research centers and leading industries. In this framework, an overview of the design, manufacturing and testing of a variable camber aileron for a regional aircraft is presented. The key enabling technology for the presented morphing aileron is the actuation structural system, integrating a suitable motor and a load-bearing architecture. The paper describes the lab test campaign of the developed device. The implementation of a distributed actuation system fulfills the actual tendency of the aeronautical research to move toward the use of electrical power to supply non-propulsive systems. The aileron design features are validated by targeted experimental tests, demonstrating both its adaptive capability and robustness under operative loads and its dynamic behavior for further aeroelastic analyses. The experimental results show a satisfactory correlation with the numerical expectations thus validating the followed design approach.
NASA Astrophysics Data System (ADS)
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1993-01-01
PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.
A Robust Adaptive Autonomous Approach to Optimal Experimental Design
NASA Astrophysics Data System (ADS)
Gu, Hairong
Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.
Design and Experimental Study of an Over-Under TBCC Exhaust System.
Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan
2014-01-01
Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.
An experimental SMI adaptive antenna array for weak interfering signals
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Gupta, I. J.
1989-01-01
A modified sample matrix inversion (SMI) algorithm designed to increase the suppression of weak interference is implemented on an existing experimental array system. The algorithm itself is fully described as are a number of issues concerning its implementation and evaluation, such as sample scaling, snapshot formation, weight normalization, power calculation, and system calibration. Several experiments show that the steady state performance (i.e., many snapshots are used to calculate the array weights) of the experimental system compares favorably with its theoretical performance. It is demonstrated that standard SMI does not yield adequate suppression of weak interference. Modified SMI is then used to experimentally increase this suppression by as much as 13dB.
Identification of vehicle suspension parameters by design optimization
NASA Astrophysics Data System (ADS)
Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.
2014-05-01
The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.
Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes
NASA Astrophysics Data System (ADS)
Fonseca Flores, Luis Diego
This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.
The Problem of Size in Robust Design
NASA Technical Reports Server (NTRS)
Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri
1997-01-01
To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.
System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling
Bacelli, Giorgio; Coe, Ryan; Patterson, David; ...
2017-04-01
Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less
System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacelli, Giorgio; Coe, Ryan; Patterson, David
Empirically based modeling is an essential aspect of design for a wave energy converter. These models are used in structural, mechanical and control design processes, as well as for performance prediction. The design of experiments and methods used to produce models from collected data have a strong impact on the quality of the model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followedmore » for wave tank testing. The general system identification processes are shown to have a number of advantages. The experimental data is then used to produce multiple models for the dynamics of the device. These models are validated and their performance is compared against one and other. Furthermore, while most models of wave energy converters use a formulation with wave elevation as an input, this study shows that a model using a hull pressure sensor to incorporate the wave excitation phenomenon has better accuracy.« less
NASA Astrophysics Data System (ADS)
Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald
2009-05-01
A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
NASA Technical Reports Server (NTRS)
Miley, G. H.
1981-01-01
A gas handling system capable of use with uranium fluoride was designed and constructed for use with nuclear pumped laser experiments using the TRIGA research reactor. By employing careful design and temperature controls, the UF6 can be first transported into the irradiation chamber, and then, at the conclusion of the experiment, returned to gas cylinders. The design of the system is described. Operating procedures for the UF6 and gas handling systems are included.
1988-05-01
ifforiable manpower investement. On the basis of our current experience it seems that the basic design principles are valid. The system developed will... system is operational on various computer networks, and in both industrial and in research environments. The design pri,lciples for the construction of...to a useful numerical simulation and design system for very complex configurations and flows. 7. REFERENCES 1. Bartlett G. W. , "An experimental
Modular biowaste monitoring system
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1975-01-01
The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.
Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs.
Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo
2016-07-22
This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy).
Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs †
Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo
2016-01-01
This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277
Design of a motor-generator for an energy storage flywheel
NASA Astrophysics Data System (ADS)
Niemeyer, W. Leland; Studer, Philip A.
1988-10-01
The paper examines motor/generator designs in which the rotor is integrated into the flywheel. Rotational loss considerations tend to dominate the design tradeoffs to maintain high system storage efficiency with a directly coupled unit. Some of the design alternatives are described as a guide to the experimental and analytical program needed to finalize a design.
He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2016-06-13
In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.
Electro-mechanical probe positioning system for large volume plasma device
NASA Astrophysics Data System (ADS)
Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.
2018-05-01
An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.
Common path in-line holography using enhanced joint object reference digital interferometers
Kelner, Roy; Katz, Barak; Rosen, Joseph
2014-01-01
Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 38(22), 4719 (2013)24322115]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated. PMID:24663838
Life on rock. Scaling down biological weathering in a new experimental design at Biosphere-2
NASA Astrophysics Data System (ADS)
Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Chorover, J.; Maier, R.; Perdrial, J. N.
2012-12-01
Biological colonization and weathering of bedrock on Earth is a major driver of landscape and ecosystem development, its effects reaching out into other major systems such climate and geochemical cycles of elements. In order to understand how microbe-plant-mycorrhizae communities interact with bedrock in the first phases of mineral weathering we developed a novel experimental design in the Desert Biome at Biosphere-2, University of Arizona (U.S.A). This presentation will focus on the development of the experimental setup. Briefly, six enclosed modules were designed to hold 288 experimental columns that will accommodate 4 rock types and 6 biological treatments. Each module is developed on 3 levels. A lower volume, able to withstand the weight of both, rock material and the rest of the structure, accommodates the sampling elements. A middle volume, houses the experimental columns in a dark chamber. A clear, upper section forms the habitat exposed to sunlight. This volume is completely sealed form exterior and it allows a complete control of its air and water parameters. All modules are connected in parallel with a double air purification system that delivers a permanent air flow. This setup is expected to provide a model experiment, able to test important processes in the interaction rock-life at grain-to- molecular scale.
Development of high temperature acoustic emission sensing system using fiber Bragg grating
NASA Astrophysics Data System (ADS)
Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang
2018-03-01
In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.
Consortium for Robotics & Unmanned Systems Education & Research (CRUSER)
2012-09-30
as facilities at Camp Roberts, Calif. and frequent experimentation events, the Many vs. Many ( MvM ) Autonomous Systems Testbed provides the...and expediently translate theory to practice. The MvM Testbed is designed to integrate technological advances in hardware (inexpensive, expendable...designed to leverage the MvM Autonomous Systems Testbed to explore practical and operationally relevant avenues to counter these “swarm” opponents, and
NASA Astrophysics Data System (ADS)
Parekh, Bhaumik Kamlesh
Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.
Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes
Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian
2016-01-01
Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes. PMID:26751451
Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.
Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian
2016-01-07
Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.
Single Axis Flywheel IPACS @1300W, 0.8 N-m
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Kenny, Barbara; Kascak, Peter; Dever, Tim; Santiago, Walter
2005-01-01
NASA Glenn Research Center is developing flywheels for space systems. A single axis laboratory version of an integrated power and attitude control (IPACs) system has been experimentally demonstrated. This is a significant step on the road to a flight qualified three axes IPACS system. The presentation outlines the flywheel development process at NASA GRC, the experimental hardware and approach, the IPACS control algorithm that was formulated and the results of the test program and then proposes a direction for future work. GRC has made progress on flywheel module design in terms of specific energy density and capability through a design and test program resulting in three flywheel module designs. Two of the flywheels are used in the 1D-IPACS experiment with loads and power sources to simulate a satellite power system. The system response is measured in three power modes: charge, discharge, and charge reduction while simultaneously producing a net output torque which could be used for attitude control. Finally, recommendations are made for steps that should be taken to evolve from this laboratory demonstration to a flight like system.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
Laser beam distribution system for the HiLASE Center
NASA Astrophysics Data System (ADS)
Macúchová, Karolina; Heřmánek, Jan; Kaufman, Jan; Muresan, Mihai-George; Růžička, Jan; Řeháková, Martina; Divoký, Martin; Švandrlík, Luděk.; Mocek, Tomáś
2017-12-01
We report recent progress in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. Laser beam distribution system is a technical system allowing safe and precise distribution of different laser beams from laboratories to several experimental stations. The unique nature of HiLASE lasers requires new approach, which makes design of the distribution system a state-of-the-art challenge.
Reducing tilt-to-length coupling for the LISA test mass interferometer
NASA Astrophysics Data System (ADS)
Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.
2018-05-01
Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of ±25 μm rad‑1 for interfering beams with relative angles of up to ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.
ERIC Educational Resources Information Center
Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…
Set membership experimental design for biological systems.
Marvel, Skylar W; Williams, Cranos M
2012-03-21
Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. The practicability of our approach is illustrated with a case study. This study shows that our approach is able to 1) identify candidate measurement time points that maximize information corresponding to biologically relevant metrics and 2) determine the number at which additional measurements begin to provide insignificant information. This framework can be used to balance the availability of resources with the addition of one or more measurement time points to improve the predictability of resulting models.
Set membership experimental design for biological systems
2012-01-01
Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This study shows that our approach is able to 1) identify candidate measurement time points that maximize information corresponding to biologically relevant metrics and 2) determine the number at which additional measurements begin to provide insignificant information. This framework can be used to balance the availability of resources with the addition of one or more measurement time points to improve the predictability of resulting models. PMID:22436240
Design of a flow perfusion bioreactor system for bone tissue-engineering applications.
Bancroft, Gregory N; Sikavitsas, Vassilios I; Mikos, Antonios G
2003-06-01
Several different bioreactors have been investigated for tissue-engineering applications. Among these bioreactors are the spinner flask and the rotating wall vessel reactor. In addition, a new type of culture system has been developed and investigated, the flow perfusion culture bioreactor. Flow perfusion culture offers several advantages, notably the ability to mitigate both external and internal diffusional limitations as well as to apply mechanical stress to the cultured cells. For such investigation, a flow perfusion culture system was designed and built. This design is the outgrowth of important design requirements and incorporates features crucial to successful experimentation with such a system.
NASA Technical Reports Server (NTRS)
Koltai, Kolina; Ho, Nhut; Masequesmay, Gina; Niedober, David; Skoog, Mark; Cacanindin, Artemio; Johnson, Walter; Lyons, Joseph
2014-01-01
This paper discusses a case study that examined the influence of cultural, organizational and automation capability upon human trust in, and reliance on, automation. In particular, this paper focuses on the design and application of an extended case study methodology, and on the foundational lessons revealed by it. Experimental test pilots involved in the research and development of the US Air Force's newly developed Automatic Ground Collision Avoidance System served as the context for this examination. An eclectic, multi-pronged approach was designed to conduct this case study, and proved effective in addressing the challenges associated with the case's politically sensitive and military environment. Key results indicate that the system design was in alignment with pilot culture and organizational mission, indicating the potential for appropriate trust development in operational pilots. These include the low-vulnerability/ high risk nature of the pilot profession, automation transparency and suspicion, system reputation, and the setup of and communications among organizations involved in the system development.
A Discourse on Human Systems Integration
2010-09-01
criterion for one of the study tasks. 2. Research Design This was a mixed methods study. The first-phase quantitative portion of the study...used a quasi-experimental, posttest-only with nonequivalent groups design . The independent variables were defined as follows: • The categorical... Research Design ...............................................................................287 3. Instruments
Quiet Clean Short-Haul Experimental Engine (QCSEE) Under-the-Wing (UTW) Final Design Report
NASA Technical Reports Server (NTRS)
1977-01-01
The QCSEE Program provides for the design, fabrication, and testing of two experimental high-bypass geared turbofan engines and propulsion systems for short-haul passenger aircraft. The overall objective of the program is to develop the propulsion technology required for future externally blown flap types of aircraft with engines located both under-the-wing and over-the-wing. This technology includes work in composite structures and digital engine controls.
2012-10-01
13 Based on the limited work done, the best reported ORR chalcogenide electrocatalysts for PEMFC applications can be ranked as follows: MoRuSe... PEMFC catalysts is the durability of the catalyst particles. Particle size distribution tends to shift towards larger particles during the...the design of new materials for applications in PEMFCs . Reference: A more detailed treatment of the topics of this section, Experimental Target 11
Bódalo, A; Gómez, J L.; Gómez, E; Bastida, J; Máximo, M F.; Montiel, M C.
2001-03-08
In this paper the possibility of continuous resolution of DL-phenylalanine, catalyzed by L-aminoacylase in a ultrafiltration membrane reactor (UFMR) is presented. A simple design model, based on previous kinetic studies, has been demonstrated to be capable of describing the behavior of the experimental system. The model has been used to determine the optimal experimental conditions to carry out the asymmetrical hydrolysis of N-acetyl-DL-phenylalanine.
Quiet Clean Short-haul Experimental Engine (QCSEE) UTW fan preliminary design
NASA Technical Reports Server (NTRS)
1975-01-01
High bypass geared turbofan engines and propulsion systems designed for short-haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is emphasized. The aerodynamic and mechanical preliminary design of the QCSEE under the wing 1.34 pressure ratio fan with variable blade pitch is presented. Design information is given for two pitch change actuation systems which will provide reverse thrust.
A computer simulator for development of engineering system design methodologies
NASA Technical Reports Server (NTRS)
Padula, S. L.; Sobieszczanski-Sobieski, J.
1987-01-01
A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples.
Magnetic suspension and balance system advanced study, 1989 design
NASA Technical Reports Server (NTRS)
Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.
1991-01-01
The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.
Active controls: A look at analytical methods and associated tools
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Adams, W. M., Jr.; Mukhopadhyay, V.; Tiffany, S. H.; Abel, I.
1984-01-01
A review of analytical methods and associated tools for active controls analysis and design problems is presented. Approaches employed to develop mathematical models suitable for control system analysis and/or design are discussed. Significant efforts have been expended to develop tools to generate the models from the standpoint of control system designers' needs and develop the tools necessary to analyze and design active control systems. Representative examples of these tools are discussed. Examples where results from the methods and tools have been compared with experimental data are also presented. Finally, a perspective on future trends in analysis and design methods is presented.
Conceptual design of ACB-CP for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang
2012-06-01
ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.
Monitoring is not enough: on the need for a model-based approach to migratory bird management
Nichols, J.D.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry
2000-01-01
Informed management requires information about system state and about effects of potential management actions on system state. Population monitoring can provide the needed information about system state, as well as information that can be used to investigate effects of management actions. Three methods for investigating effects of management on bird populations are (1) retrospective analysis, (2) formal experimentation and constrained-design studies, and (3) adaptive management. Retrospective analyses provide weak inferences, regardless of the quality of the monitoring data. The active use of monitoring data in experimental or constrained-design studies or in adaptive management is recommended. Under both approaches, learning occurs via the comparison of estimates from the monitoring program with predictions from competing management models.
Reform of experimental teaching based on quality cultivation
NASA Astrophysics Data System (ADS)
Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun
2017-08-01
Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.
ERIC Educational Resources Information Center
Baggett, Patricia
1989-01-01
The first part of this document is the final report of a research project (1984-1989) on designing and implementing an intelligent multimedia tutoring system for repair tasks. The problem/goal and approach, equipment and implementation, experimental work, and results are discussed for three phases of research: (1) developing and testing an…
Tokamak experimental power reactor conceptual design. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)
NASA Technical Reports Server (NTRS)
1973-01-01
Experimental results are presented on alternative designs for a hydrogen depolarized cell to concentrate CO2 in spacecraft atmospheric control systems. Data cover technical problems, methods for solving these problems, and the suitability of such a cell for CO2 removal and control of atmospheric humidity during the flight mode.
John G. Michopoulos; John G. Hermanson; Athanasios lliopoulos; Samuel Lambrakos; Tomonari Furukawa
2011-01-01
In the present paper we focus on demonstrating the use of design optimization for the constitutive characterization of anisotropic material systems such as polymer matrix composites, with or without damage. All approaches are based on the availability of experimental data originating from mechatronic material testing systems that can expose specimens to...
Fold or hold: experimental evolution in vitro
Collins, S; Rambaut, A; Bridgett, S J
2013-01-01
We introduce a system for experimental evolution consisting of populations of short oligonucleotides (Oli populations) evolving in a modified quantitative polymerase chain reaction (qPCR). It is tractable at the genetic, genomic, phenotypic and fitness levels. The Oli system uses DNA hairpins designed to form structures that self-prime under defined conditions. Selection acts on the phenotype of self-priming, after which differences in fitness are amplified and quantified using qPCR. We outline the methodological and bioinformatics tools for the Oli system here and demonstrate that it can be used as a conventional experimental evolution model system by test-driving it in an experiment investigating adaptive evolution under different rates of environmental change. PMID:24003997
Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu
2017-06-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).
An Experimental Testbed for Evaluation of Trust and Reputation Systems
NASA Astrophysics Data System (ADS)
Kerr, Reid; Cohen, Robin
To date, trust and reputation systems have often been evaluated using methods of their designers’ own devising. Recently, we demonstrated that a number of noteworthy trust and reputation systems could be readily defeated, revealing limitations in their original evaluations. Efforts in the trust and reputation community to develop a testbed have yielded a successful competition platform, ART. This testbed, however, is less suited to general experimentation and evaluation of individual trust and reputation technologies. In this paper, we propose an experimentation and evaluation testbed based directly on that used in our investigations into security vulnerabilities in trust and reputation systems for marketplaces. We demonstrate the advantages of this design, towards the development of more thorough, objective evaluations of trust and reputation systems.
Experimental results from a laboratory-scale molten salt thermocline storage
NASA Astrophysics Data System (ADS)
Seubert, Bernhard; Müller, Ralf; Willert, Daniel; Fluri, Thomas
2017-06-01
Single-tank storage presents a valid option for cost reduction in thermal energy storage systems. For low-temperature systems with water as storage medium this concept is widely implemented and tested. For high-temperature systems very limited experimental data are publicly available. To improve this situation a molten salt loop for experimental testing of a single-tank storage prototype was designed and built at Fraunhofer ISE. The storage tank has a volume of 0.4 m3 or a maximum capacity of 72 kWhth. The maximum charging and discharging power is 60 kW, however, a bypass flow control system enables to operate the system also at a very low power. The prototype was designed to withstand temperatures up to 550 °C. A cascaded insulation with embedded heating cables can be used to reduce the effect of heat loss on the storage which is susceptible to edge effects due to its small size. During the first tests the operating temperatures were adapted to the conditions in systems with thermal oil as heat transfer fluid and a smaller temperature difference. A good separation between cold and hot fluid was achieved with temperature gradients of 95 K within 16 cm.
A mechanical rotator for neutron scattering measurements
Thaler, A.; Northen, E.; Aczel, A. A.; ...
2016-12-01
We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses andmore » future extension possibilities.« less
Seat pressure measurement technologies: considerations for their evaluation.
Gyi, D E; Porter, J M; Robertson, N K
1998-04-01
Interface pressure measurement has generated interest in the automotive industry as a technique which could be used in the prediction of driver discomfort for various car seat designs, and provide designers and manufacturers with rapid information early on in the design process. It is therefore essential that the data obtained are of the highest quality, relevant and have some quantitative meaning. Exploratory experimental work carried out with the commercially available Talley Pressure Monitor is outlined. This led to a better understanding of the strengths and weaknesses of this system and the re-design of the sensor matrix. Such evaluation, in the context of the actual experimental environment, is considered essential.
Robust Bayesian Experimental Design for Conceptual Model Discrimination
NASA Astrophysics Data System (ADS)
Pham, H. V.; Tsai, F. T. C.
2015-12-01
A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.
Computational approaches to metabolic engineering utilizing systems biology and synthetic biology.
Fong, Stephen S
2014-08-01
Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.
NASA Astrophysics Data System (ADS)
Wierschem, Nicholas E.; Quinn, D. Dane; Hubbard, Sean A.; Al-Shudeifat, Mohammad A.; McFarland, D. Michael; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; Vakakis, Alexander F.; Bergman, Lawrence A.
2012-12-01
This work reports on the first experimental study of the broadband targeted energy transfer properties of a two-degree-of-freedom (two-DOF) essentially nonlinear energy absorber. In particular, proper design of the absorber allows for an extended range of energy over which it serves to significantly enhance the damping observed in the structural system to which it is attached. Comparisons of computational and experimental results validate the proposed design as a means of drastically enhancing the damping properties of a structure by passive broadband targeted energy transfers to a strongly nonlinear, multidegree-of-freedom attachment.
NASA Technical Reports Server (NTRS)
Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.
2007-01-01
The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.
NASA Technical Reports Server (NTRS)
Vance, J. M.; Noah, S. T.; Yim, K. B.
1985-01-01
A theory developed by Vance in 1978 to explain the destabilizing effect of torque on a whirling rotor was experimentally verified. The measurements made on a specially designed test apparatus are described. New computer models were also developed to investigate the effect of torque on rotordynamic stability of multidisk flexible rotor bearing systems. The effect of torque was found to be most pronounced when the system is already marginally stable from other influences. The modifications required to include torque in a typical shaft transfer matrix are described, and results are shown which identify the type of rotor design most sensitive to load torque.
Design of embedded intelligent monitoring system based on face recognition
NASA Astrophysics Data System (ADS)
Liang, Weidong; Ding, Yan; Zhao, Liangjin; Li, Jia; Hu, Xuemei
2017-01-01
In this paper, a new embedded intelligent monitoring system based on face recognition is proposed. The system uses Pi Raspberry as the central processor. A sensors group has been designed with Zigbee module in order to assist the system to work better and the two alarm modes have been proposed using the Internet and 3G modem. The experimental results show that the system can work under various light intensities to recognize human face and send alarm information in real time.
2012-07-01
developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be
Electrocardiogram Scanner-System Requirements
DOT National Transportation Integrated Search
1973-03-01
An experimental and analytical study has been conducted to establish the feasibility for scanning and digitizing electrocardiogram records. The technical requirements and relative costs for two systems are discussed herein. One is designed to automat...
NASA Astrophysics Data System (ADS)
Arriola, David; Thielecke, Frank
2017-09-01
Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.
Object-oriented design for accelerator control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stok, P.D.V. van der; Berk, F. van den; Deckers, R.
1994-02-01
An object-oriented design for the distributed computer control system of the accelerator ring EUTERPE is presented. Because of the experimental nature of the ring, flexibility is of the utmost importance. The object-oriented principles have contributed considerably to the flexibility of the design incorporating multiple views, multi-level access and distributed surveillance.
Identification and robust control of an experimental servo motor.
Adam, E J; Guestrin, E D
2002-04-01
In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.
A processing centre for the CNES CE-GPS experimentation
NASA Technical Reports Server (NTRS)
Suard, Norbert; Durand, Jean-Claude
1994-01-01
CNES is involved in a GPS (Global Positioning System) geostationary overlay experimentation. The purpose of this experimentation is to test various new techniques in order to select the optimal station synchronization method, as well as the geostationary spacecraft orbitography method. These new techniques are needed to develop the Ranging GPS Integrity Channel services. The CNES experimentation includes three transmitting/receiving ground stations (manufactured by IN-SNEC), one INMARSAT 2 C/L band transponder and a processing center named STE (Station de Traitements de l'Experimentation). Not all the techniques to be tested are implemented, but the experimental system has to include several functions; part of the future system simulation functions, such as a servo-loop function, and in particular a data collection function providing for rapid monitoring of system operation, analysis of existing ground station processes, and several weeks of data coverage for other scientific studies. This paper discusses system architecture and some criteria used in its design, as well as the monitoring function, the approach used to develop a low-cost and short-life processing center in collaboration with a CNES sub-contractor (ATTDATAID), and some results.
NASA Astrophysics Data System (ADS)
Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre
2016-07-01
With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.
Experimental study of uncentralized squeeze film dampers
NASA Technical Reports Server (NTRS)
Quinn, R. D.
1983-01-01
The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.
NASA Technical Reports Server (NTRS)
Howard, D. F.
1977-01-01
The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented. Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m sideline.
NASA Technical Reports Server (NTRS)
Labak, L. J.; Remus, G. A.; Mansnerus, R.
1971-01-01
Three transport system concepts were experimentally evaluated for transferring human and nonhuman wastes from a collection site to an incineration unit onboard spacecraft. The operating parameters, merits, and shortcomings of a porous-pneumatic, nozzle-pneumatic, and a mechanical screw-feed system were determined. An analysis of the test data was made and a preliminary design of two prototype systems was prepared.
Integrated voice and visual systems research topics
NASA Technical Reports Server (NTRS)
Williams, Douglas H.; Simpson, Carol A.
1986-01-01
A series of studies was performed to investigate factors of helicopter speech and visual system design and measure the effects of these factors on human performance, both for pilots and non-pilots. The findings and conclusions of these studies were applied by the U.S. Army to the design of the Army's next generation threat warning system for helicopters and to the linguistic functional requirements for a joint Army/NASA flightworthy, experimental speech generation and recognition system.
Greenbelt Community Project: Solar energy retrofit for a multi-family dwelling
NASA Technical Reports Server (NTRS)
Hymowitz, E. W.; Hannemann, R. J.; Millman, L. L.; Pownell, J. E.
1978-01-01
A cooperative project was initiated between Goddard Space Flight Center and the nearby community of Greenbelt, Maryland. The purpose was to design, install and operate an experimental solar heating system on a group of four tandem town houses. The system was successfully developed and is operating. A description is given of the design, installation, system operation and performance as well as the important considerations for judging the economic feasibility of solar heating systems.
Iurian, Sonia; Turdean, Luana; Tomuta, Ioan
2017-01-01
This study focuses on the development of a drug product based on a risk assessment-based approach, within the quality by design paradigm. A prolonged release system was proposed for paliperidone (Pal) delivery, containing Kollidon ® SR as an insoluble matrix agent and hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), or sodium carboxymethyl cellulose as a hydrophilic polymer. The experimental part was preceded by the identification of potential sources of variability through Ishikawa diagrams, and failure mode and effects analysis was used to deliver the critical process parameters that were further optimized by design of experiments. A D-optimal design was used to investigate the effects of Kollidon SR ratio ( X 1 ), the type of hydrophilic polymer ( X 2 ), and the percentage of hydrophilic polymer ( X 3 ) on the percentages of dissolved Pal over 24 h ( Y 1 - Y 9 ). Effects expressed as regression coefficients and response surfaces were generated, along with a design space for the preparation of a target formulation in an experimental area with low error risk. The optimal formulation contained 27.62% Kollidon SR and 8.73% HPMC and achieved the prolonged release of Pal, with low burst effect, at ratios that were very close to the ones predicted by the model. Thus, the parameters with the highest impact on the final product quality were studied, and safe ranges were established for their variations. Finally, a risk mitigation and control strategy was proposed to assure the quality of the system, by constant process monitoring.
Preliminary Design of Winged Experimental Rocket by University Consortium
NASA Astrophysics Data System (ADS)
Wakita, Masashi; Yonemoto, Koichi; Akiyama, Tomoki; Aso, Shigeru; Kohsetsu, Yuji; Nagata, Harunori
The project of Winged Experimental Rocket described here is a proposal by the alliance of universities (University Consortium) expanding and integrating the research activities of reusable space transportation system performed by individual universities, and is the proposal that aims at flight proof of the results of advanced research conducted by the universities and JAXA using the university-centered experimental launch systems. This paper verifies the validity of the winged experimental rocket by surveying the technical issues that should be demonstrated and by estimating the airframe scale, weight and finally the total cost. The development schedule of this project was set to five years, where two airframes of different scales will be developed to minimize the risks. A 1.5-meter-long airframe will be first manufactured and conduct flight tests in the third year to verify the design issues. Then, a 2.5-meter-long airframe will be finally developed and conduct a complete flight demonstration of various research issues in the fifth year.
NASA Technical Reports Server (NTRS)
Cohen, B. M.; Rice, R. E.; Rowny, P. E.
1978-01-01
A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed.
Research and design of portable photoelectric rotary table data-acquisition and analysis system
NASA Astrophysics Data System (ADS)
Yang, Dawei; Yang, Xiufang; Han, Junfeng; Yan, Xiaoxu
2015-02-01
Photoelectric rotary table as the main test tracking measurement platform, widely use in shooting range and aerospace fields. In the range of photoelectric tracking measurement system, in order to meet the photoelectric testing instruments and equipment of laboratory and field application demand, research and design the portable photoelectric rotary table data acquisition and analysis system, and introduces the FPGA device based on Xilinx company Virtex-4 series and its peripheral module of the system hardware design, and the software design of host computer in VC++ 6.0 programming platform and MFC package based on class libraries. The data acquisition and analysis system for data acquisition, display and storage, commission control, analysis, laboratory wave playback, transmission and fault diagnosis, and other functions into an organic whole, has the advantages of small volume, can be embedded, high speed, portable, simple operation, etc. By photoelectric tracking turntable as experimental object, carries on the system software and hardware alignment, the experimental results show that the system can realize the data acquisition, analysis and processing of photoelectric tracking equipment and control of turntable debugging good, and measurement results are accurate, reliable and good maintainability and extensibility. The research design for advancing the photoelectric tracking measurement equipment debugging for diagnosis and condition monitoring and fault analysis as well as the standardization and normalization of the interface and improve the maintainability of equipment is of great significance, and has certain innovative and practical value.
BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks
Rialle, Stéphanie; Felicori, Liza; Dias-Lopes, Camila; Pérès, Sabine; El Atia, Sanaâ; Thierry, Alain R.; Amar, Patrick; Molina, Franck
2010-01-01
Motivation: Synthetic biology studies how to design and construct biological systems with functions that do not exist in nature. Biochemical networks, although easier to control, have been used less frequently than genetic networks as a base to build a synthetic system. To date, no clear engineering principles exist to design such cell-free biochemical networks. Results: We describe a methodology for the construction of synthetic biochemical networks based on three main steps: design, simulation and experimental validation. We developed BioNetCAD to help users to go through these steps. BioNetCAD allows designing abstract networks that can be implemented thanks to CompuBioTicDB, a database of parts for synthetic biology. BioNetCAD enables also simulations with the HSim software and the classical Ordinary Differential Equations (ODE). We demonstrate with a case study that BioNetCAD can rationalize and reduce further experimental validation during the construction of a biochemical network. Availability and implementation: BioNetCAD is freely available at http://www.sysdiag.cnrs.fr/BioNetCAD. It is implemented in Java and supported on MS Windows. CompuBioTicDB is freely accessible at http://compubiotic.sysdiag.cnrs.fr/ Contact: stephanie.rialle@sysdiag.cnrs.fr; franck.molina@sysdiag.cnrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20628073
Development of lead-acid battery thermal management systems
NASA Astrophysics Data System (ADS)
Delaney, W. C.; McKinney, B. L.; Mrotek, E. N.; Weinlein, C. E.
The design and construction of thermal management systems developed for battery packs supplied for field service units are discussed. Thermal management on the module and pack levels is addressed, describing experimental results. A recently developed thermal management system is described.
Ghanbari, F; Rowland-Yeo, K; Bloomer, J C; Clarke, S E; Lennard, M S; Tucker, G T; Rostami-Hodjegan, A
2006-04-01
The published literature on mechanism based inhibition (MBI) of CYPs was evaluated with respect to experimental design, methodology and data analysis. Significant variation was apparent in the dilution factor, ratio of preincubation to incubation times and probe substrate concentrations used, and there were some anomalies in the estimation of associated kinetic parameters (k(inact), K(I), r). The impact of the application of inaccurate values of k(inact) and K(I) when extrapolating to the extent of inhibition in vivo is likely to be greatest for those compounds of intermediate inhibitory potency, but this also depends on the fraction of the net clearance of substrate subject to MBI and the pre-systemic and systemic exposure to the inhibitor. For potent inhibitors, the experimental procedure is unlikely to have a material influence on the maximum inhibition. Nevertheless, the bias in the values of the kinetic parameters may influence the time for recovery of enzyme activity following re-synthesis of the enzyme. Careful attention to the design of in vitro experiments to obtain accurate kinetic parameters is necessary for a reliable prediction of different aspects of the in vivo consequences of MBI. The review calls for experimental studies to quantify the impact of study design in studies of MBI, with a view to better harmonisation of protocols.
Huang, Wenwen; Ebrahimi, Davoud; Dinjaski, Nina; Tarakanova, Anna; Buehler, Markus J; Wong, Joyce Y; Kaplan, David L
2017-04-18
Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of modeling with experiment. In this Account, we summarize recent advances in understanding and functionalization of silk-based protein systems, with a focus on the integration of simulation and experiment for biopolymer design. Spider silk was selected as an exemplary protein to address the fundamental challenges in polymer designs, including specific insights into the role of molecular weight, hydrophobic/hydrophilic partitioning, and shear stress for silk fiber formation. To expand current silk designs toward biointerfaces and stimuli responsive materials, peptide modules from other natural proteins were added to silk designs to introduce new functions, exploiting the modular nature of silk proteins and fibrous proteins in general. The integrated approaches explored suggest that protein folding, silk volume fraction, and protein amino acid sequence changes (e.g., mutations) are critical factors for functional biomaterial designs. In summary, the integrated modeling-experimental approach described in this Account suggests a more rationally directed and more rapid method for the design of polymeric materials. It is expected that this combined use of experimental and computational approaches has a broad applicability not only for silk-based systems, but also for other polymer and composite materials.
NASA Technical Reports Server (NTRS)
1981-01-01
The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.
ERIC Educational Resources Information Center
Korkmaz, Saadet Deniz; Ayas, Bahadir; Aybek, Eren Can; Pat, Suat
2018-01-01
The purpose of this study was to investigate the effectiveness of the experimental system design related to plasma state on the gifted students' understanding on the subject of the plasma state. To test the research hypothesis, one group pretest-posttest research model was carried out with 18 eighth-grade (4 girls and 14 boys) gifted students in…
NASA Technical Reports Server (NTRS)
1981-01-01
Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.
A numerical study of mixing in supersonic combustors with hypermixing injectors
NASA Technical Reports Server (NTRS)
Lee, J.
1993-01-01
A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Average Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.
A numerical study of mixing in supersonic combustors with hypermixing injectors
NASA Technical Reports Server (NTRS)
Lee, J.
1992-01-01
A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Averaged Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bruyn, D.; Engelen, J.; Ortega, A.
MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of threemore » years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)« less
30 cm Engineering Model thruster design and qualification tests
NASA Technical Reports Server (NTRS)
Schnelker, D. E.; Collett, C. R.
1975-01-01
Development of a 30-cm mercury electron bombardment Engineering Model ion thruster has successfully brought the thruster from the status of a laboratory experimental device to a point approaching flight readiness. This paper describes the development progress of the Engineering Model (EM) thruster in four areas: (1) design features and fabrication approaches, (2) performance verification and thruster to thruster variations, (3) structural integrity, and (4) interface definition. The design of major subassemblies, including the cathode-isolator-vaporizer (CIV), main isolator-vaporizer (MIV), neutralizer isolator-vaporizer (NIV), ion optical system, and discharge chamber/outer housing is discussed along with experimental results.
ERIC Educational Resources Information Center
Karakus, Fatih; Aydin, Bünyamin
2017-01-01
This study aimed at determining the effects of using a computer algebra system (CAS) on undergraduate students' spatial visualization skills in a calculus course. This study used an experimental design. The "one group pretest-posttest design" was the research model. The participants were 41 sophomore students (26 female and 15 male)…
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.; Trumpis, B. D.; Udalov, S.
1975-01-01
Various aspects of space shuttle communication systems were studied. The following major areas were investigated: burst error correction for shuttle command channels; performance optimization and design considerations for Costas receivers with and without bandpass limiting; experimental techniques for measuring low level spectral components of microwave signals; and potential modulation and coding techniques for the Ku-band return link. Results are presented.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Protocol. 792.120 Section 792.120... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Cetinceviz, Yucel; Bayindir, Ramazan
2012-05-01
The network requirements of control systems in industrial applications increase day by day. The Internet based control system and various fieldbus systems have been designed in order to meet these requirements. This paper describes an Internet based control system with wireless fieldbus communication designed for distributed processes. The system was implemented as an experimental setup in a laboratory. In industrial facilities, the process control layer and the distance connection of the distributed control devices in the lowest levels of the industrial production environment are provided with fieldbus networks. In this paper, the Internet based control system that will be able to meet the system requirements with a new-generation communication structure, which is called wired/wireless hybrid system, has been designed on field level and carried out to cover all sectors of distributed automation, from process control, to distributed input/output (I/O). The system has been accomplished by hardware structure with a programmable logic controller (PLC), a communication processor (CP) module, two industrial wireless modules and a distributed I/O module, Motor Protection Package (MPP) and software structure with WinCC flexible program used for the screen of Scada (Supervisory Control And Data Acquisition), SIMATIC MANAGER package program ("STEP7") used for the hardware and network configuration and also for downloading control program to PLC. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Design and evaluation of an onboard computer-based information system for aircraft
NASA Technical Reports Server (NTRS)
Rouse, S. H.; Rouse, W. B.; Hammer, J. M.
1982-01-01
Information seeking by human operators of technical systems is considered. Types of information and forms of presentation are discussed and important issues reviewed. This broad discussion provides a framework within which flight management is considered. The design of an onboard computer-based information system for aircraft is discussed. The aiding possibilities of a computer-based system are emphasized. Results of an experimental evaluation of a prototype system are presented. It is concluded that a computer-based information system can substantially lessen the frequency of human errors.
NASA Technical Reports Server (NTRS)
Easley, W. C.; Tanguy, J. S.
1986-01-01
An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.
NASA Astrophysics Data System (ADS)
Thubagere, Anupama J.; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F.; Ardelean, Diana A.; Cherry, Kevin M.; Qian, Lulu
2017-02-01
Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits.
Effect of metal shielding on a wireless power transfer system
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng
2017-05-01
In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.
Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System
NASA Technical Reports Server (NTRS)
Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.
2009-01-01
Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.
Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos
2015-02-01
A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.
Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics
Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan
2013-01-01
The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220
Remote wind sensing with a CW diode laser lidar beyond the coherence regime.
Hu, Qi; Rodrigo, Peter John; Pedersen, Christian
2014-08-15
We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars at a sampling rate of 2 Hz. Based on our experimental results, we describe a practical guideline for designing a wind lidar operating beyond the coherence regime.
A small scale CSP-based cooling system prototype (300W cooling capacity) and the system performance simulation tool will be developed as a proof of concept. Practical issues will be identified to improve our design.
Proper battery system design for GAS experiments
NASA Astrophysics Data System (ADS)
Calogero, Stephen A.
1992-10-01
The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.
Proper battery system design for GAS experiments
NASA Technical Reports Server (NTRS)
Calogero, Stephen A.
1992-01-01
The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1990-01-01
This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
The Development of a Fiber Optic Raman Temperature Measurement System for Rocket Flows
NASA Technical Reports Server (NTRS)
Degroot, Wim A.
1992-01-01
A fiberoptic Raman diagnostic system for H2/O2 rocket flows is currently under development. This system is designed for measurement of temperature and major species concentration in the combustion chamber and part of the nozzle of a 100 Newton thrust rocket currently undergoing testing. This paper describes a measurement system based on the spontaneous Raman scattering phenomenon. An analysis of the principles behind the technique is given. Software is developed to measure temperature and major species concentrations by comparing theoretical Raman scattering spectra with experimentally obtained spectra. Equipment selection and experimental approach are summarized. This experimental program is part of a program, which is in progress, to evaluate Navier-Stokes based analyses for this class of rocket.
Evaluation Designs for Practitioners. TM Report No. 35.
ERIC Educational Resources Information Center
Eash, Maurice J.; And Others
Practitioners are not afforded the luxury of ideal laboratory conditions. The natural settings of the classroom, the school, or the school system place constraints on the type of data obtainable; hence, educators must work with less than an ideal experimental design. Four evaluation designs used in natural settings are described. Each involves an…
An analytical method for designing low noise helicopter transmissions
NASA Technical Reports Server (NTRS)
Bossler, R. B., Jr.; Bowes, M. A.; Royal, A. C.
1978-01-01
The development and experimental validation of a method for analytically modeling the noise mechanism in the helicopter geared power transmission systems is described. This method can be used within the design process to predict interior noise levels and to investigate the noise reducing potential of alternative transmission design details. Examples are discussed.
An integrated radiation physics computer code system.
NASA Technical Reports Server (NTRS)
Steyn, J. J.; Harris, D. W.
1972-01-01
An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.
BETA (Bitter Electromagnet Testing Apparatus)
NASA Astrophysics Data System (ADS)
Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.
2017-10-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.
NASA Technical Reports Server (NTRS)
Stieber, Michael E.
1989-01-01
A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment.
Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance.
Russo, Juan M; Zhang, Deming; Gordon, Michael; Vorndran, Shelby; Wu, Yuechen; Kostuk, Raymond K
2014-03-10
During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas. The system conversion efficiency is examined in detail and the role of optical spectral filters with respect to the efficiency is developed. A new metric termed the Improvement over Best Bandgap is defined which expresses the efficiency gain of the spectrum splitting system with respect to a similar system that contains the highest constituent single bandgap photovoltaic cell. This parameter indicates the benefit of using the more complex spectrum splitting system with respect to a single bandgap photovoltaic system. Metrics are also provided to assess the performance of experimental spectral filters in different spectrum splitting configurations. The paper concludes by using the methodology to evaluate spectrum splitting systems with different filter configurations and indicates the overall efficiency improvement that is possible with ideal and experimental designs.
NASA Astrophysics Data System (ADS)
Čenský, Miroslav; Hrubý, Jan; Vinš, Václav; Hykl, Jiří; Šmíd, Bohuslav
2018-06-01
A unique in-house designed experimental apparatus for investigation of nucleation of droplets in CCS relevant systems is being developed by the present team. The apparatus allows simulating various processes relevant to CCS technologies. Gaseous mixtures with CO2 are prepared in a Mixture Preparation Device (MPD) based on accurate adjustment of flow rates of individual components [EPJ Web of Conferences 143, 02140 (2017)]. The mixture then flows into an expansion chamber, where it undergoes a rapid adiabatic expansion. As a consequence of adiabatic cooling, the mixture becomes supersaturated and nucleation and simultaneous growth of droplets occurs. In this study, we describe the design and testing of the expansion part of the experimental setup. The rapid expansion was realized using two valve systems, one for low pressures (up to 0.7 MPa) and the other for high pressures (up to 10 MPa). A challenge for a proper design of the expansion system is avoiding acoustic oscillations. These can occur either in the mode of Helmholtz resonator, where the compressible gas in the chamber acts as a spring and the rapidly moving gas in the valve system as a mass, or in the "flute" mode, where acoustic waves are generated in a long outlet tubing.
Wang, Xun; Sun, Beibei; Liu, Boyang; Fu, Yaping; Zheng, Pan
2017-01-01
Experimental design focuses on describing or explaining the multifactorial interactions that are hypothesized to reflect the variation. The design introduces conditions that may directly affect the variation, where particular conditions are purposely selected for observation. Combinatorial design theory deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. In this work, borrowing the concept of "balance" in combinatorial design theory, a novel method for multifactorial bio-chemical experiments design is proposed, where balanced templates in combinational design are used to select the conditions for observation. Balanced experimental data that covers all the influencing factors of experiments can be obtianed for further processing, such as training set for machine learning models. Finally, a software based on the proposed method is developed for designing experiments with covering influencing factors a certain number of times.
NASA Technical Reports Server (NTRS)
1981-01-01
The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)
2000-01-01
We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.
NASA Technical Reports Server (NTRS)
1976-01-01
A variable pitch fan actuation system was designed which incorporates a remote nacelle-mounted blade angle regulator. The regulator drives a rotating fan-mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Detail design parameters of the actuation system are presented. These include the following: design philosophies, operating limits, mechanical, hydraulic and thermal characteristics, mechanical efficiencies, materials, weights, lubrication, stress analyses, reliability and failure analyses.
NASA Technical Reports Server (NTRS)
Aldrin, John C.; Williams, Phillip A.; Wincheski, Russell (Buzz) A.
2008-01-01
A case study is presented for using models in eddy current NDE design for crack detection in Shuttle Reaction Control System thruster components. Numerical methods were used to address the complex geometry of the part and perform parametric studies of potential transducer designs. Simulations were found to show agreement with experimental results. Accurate representation of the coherent noise associated with the measurement and part geometry was found to be critical to properly evaluate the best probe designs.
Design of charge exchange recombination spectroscopy for the joint Texas experimental tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Cheng, Z. F.
The old diagnostic neutral beam injector first operated at the University of Texas at Austin is ready for rejoining the joint Texas experimental tokamak (J-TEXT). A new set of high voltage power supplies has been equipped and there is no limitation for beam modulation or beam pulse duration henceforth. Based on the spectra of fully striped impurity ions induced by the diagnostic beam the design work for toroidal charge exchange recombination spectroscopy (CXRS) system is presented. The 529 nm carbon VI (n = 8 − 7 transition) line seems to be the best choice for ion temperature and plasma rotationmore » measurements and the considered hardware is listed. The design work of the toroidal CXRS system is guided by essential simulation of expected spectral results under the J-TEXT tokamak operation conditions.« less
NASA Astrophysics Data System (ADS)
Guo, Limin; Liu, Youqiang; Huang, Rui; Wang, Zhiyong
2017-06-01
High concentrating PV systems rely on large Fresnel lens that must be precisely oriented in the direction of the Sun to maintain high concentration ratio. We propose a new Fresnel lens design method combining equal-width and equal-height of grooves in this paper based on the principle of focused spot maximum energy. In the ring band near the center of Fresnel lens, the design with equal-width grooves is applied, and when the given condition is reached, the design with equal-height grooves is introduced near the edges of the Fresnel lens, which ensures all the lens grooves are planar. In this paper, we establish a Fresnel lens design example model by Solidworks, and simulate it with the software ZEMAX. An experimental test platform is built to test, and the simulation correctness is proved by experiments. Experimental result shows the concentrating efficiency of this example is 69.3%, slightly lower than the simulation result 75.1%.
Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor
NASA Technical Reports Server (NTRS)
1972-01-01
The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.
Development of a Self-Balancing Human Transportation Vehicle for the Teaching of Feedback Control
ERIC Educational Resources Information Center
Lin, Shui-Chun; Tsai, Ching-Chih
2009-01-01
Control systems education often needs to design interesting hands-on exercises that keep students interested in the control theory presented in lectures. These exercises include system modeling, system analyses, controller syntheses, implementation, experimentation, and performance evaluation of a control system. This paper presents an interesting…
Assessing an Introduction to Systems Thinking
ERIC Educational Resources Information Center
Monroe, Martha C.; Plate, Richard R.; Colley, Lara
2015-01-01
This research study investigated the learning outcomes of a brief systems thinking intervention at the undergraduate level. A pre/post experimental design (n = 50) was used to address two primary questions: (1) Can a brief introduction to systems thinking improve students' understanding of systems thinking? and (2) Which teaching method (of…
Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1994-01-01
An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.
Definition of smolder experiments for Spacelab
NASA Technical Reports Server (NTRS)
Summerfield, M.; Messina, N. A.; Ingram, L. S.
1979-01-01
The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities.
NASA Astrophysics Data System (ADS)
Ivanova, B. B.; Simeonov, V. D.; Arnaudov, M. G.; Tsalev, D. L.
2007-05-01
A validation of the developed new orientation method of solid samples as suspension in nematic liquid crystal (NLC), applied in linear-dichroic infrared (IR-LD) spectroscopy has been carried out using a model system DL-isoleucine ( DL-isoleu). Accuracy, precision and the influence of the liquid crystal medium on peak positions and integral absorbances of guest molecules have been presented. Optimization of experimental conditions has been performed as well. An experimental design for quantitative evaluation of the impact of four input factors: the number of scans, the rubbing-out of KBr-pellets, the amount of studied compounds included in the liquid crystal medium and the ratios of Lorentzian to Gaussian peak functions in the curve fitting procedure on the spectroscopic signal at five different frequencies, indicating important specifities of the system has been studied.
Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
Laser Ranging for Effective and Accurate Tracking of Space Debris in Low Earth Orbits
NASA Astrophysics Data System (ADS)
Blanchet, Guillaume; Haag, Herve; Hennegrave, Laurent; Assemat, Francois; Vial, Sophie; Samain, Etienne
2013-08-01
The paper presents the results of preliminary design options for an operational laser ranging system adapted to the measurement of the distance of space debris. Thorough analysis of the operational parameters is provided with identification of performance drivers and assessment of enabling design options. Results from performance simulation demonstrate how the range measurement enables improvement of the orbit determination when combined with astrometry. Besides, experimental results on rocket-stage class debris in LEO were obtained by Astrium beginning of 2012, in collaboration with the Observatoire de la Côte d'Azur (OCA), by operating an experimental laser ranging system supported by the MéO (Métrologie Optique) telescope.
Extended development of a sodium hydroxide thermal energy storage module
NASA Technical Reports Server (NTRS)
Rice, R. E.; Rowny, P. E.; Cohen, B. M.
1980-01-01
The post-test evaluation of a single heat exchanger sodium hydroxide thermal energy storage module for use in solar electric generation is reported. Chemical analyses of the storage medium used in the experimental model are presented. The experimental verification of the module performance using an alternate heat transfer fluid, Caloria HT-43, is described. Based on these results, a design analysis of a dual heat exchanger concept within the storage module is presented. A computer model and a reference design for the dual system (storage working fluid/power cycle working fluid) were completed. The dual system is estimated to have a capital cost of approximately one half that of the single heat exchanger concept.
Design of a microfluidic system for red blood cell aggregation investigation.
Mehri, R; Mavriplis, C; Fenech, M
2014-06-01
The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.
Innovative solutions in monitoring systems in flood protection
NASA Astrophysics Data System (ADS)
Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra
2018-02-01
The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.
2017-05-26
Mathematical psychology. In APA Handbook of Research Methods in Psychology, Vol. 2: Research Designs: Quantitative , Qualitative, DISTRIBUTION A: Distribution...AFRL-AFOSR-VA-TR-2017-0108 A Proposal to Perform New Theoretical and Experimental Research on Human Efficiency Through Developments Within Systems...release. AF Office Of Scientific Research (AFOSR)/ RTA2 Arlington, Virginia 22203 Air Force Research Laboratory Air Force Materiel Command a. REPORT
NASA Astrophysics Data System (ADS)
Azarov, A. V.; Zhukova, N. S.; Kozlovtseva, E. Yu; Dobrinsky, D. R.
2018-05-01
The article considers obtaining mathematical models to assess the efficiency of the dust collectors using an integrated system of analysis and data management STATISTICA Design of Experiments. The procedure for obtaining mathematical models and data processing is considered by the example of laboratory studies on a mounted installation containing a dust collector in counter-swirling flows (CSF) using gypsum dust of various fractions. Planning of experimental studies has been carried out in order to reduce the number of experiments and reduce the cost of experimental research. A second-order non-position plan (Box-Bencken plan) was used, which reduced the number of trials from 81 to 27. The order of statistical data research of Box-Benken plan using standard tools of integrated system for analysis and data management STATISTICA Design of Experiments is considered. Results of statistical data processing with significance estimation of coefficients and adequacy of mathematical models are presented.
NASA Technical Reports Server (NTRS)
Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei
1994-01-01
A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.
Laboratory evaluation of alcohol safety interlock systems. Volume 1 : summary report
DOT National Transportation Integrated Search
1974-01-01
The report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were developed...
Cankorur-Cetinkaya, Ayca; Dias, Joao M. L.; Kludas, Jana; Slater, Nigel K. H.; Rousu, Juho; Dikicioglu, Duygu
2017-01-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple‐to‐use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257). PMID:28635591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less
Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil
2014-10-01
To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David
1995-01-01
The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
Active Optical Zoom for Tracking
2008-09-01
optical system. 2. Current Setup Deformable Flat Two Deformable Flat Figure 1. Zemax lens design layout and experimental layout on the...optical bench. Figure 1 is a ZEMAX design and setup on the optical bench of two Deformable Mirrors (DMs) from OKO technologies. These mirrors have
NASA Astrophysics Data System (ADS)
Popov, A.; Zolotarev, V.; Bychkov, S.
2016-11-01
This paper examines the results of experimental studies of a previously submitted combined algorithm designed to increase the reliability of information systems. The data that illustrates the organization and conduct of the studies is provided. Within the framework of a comparison of As a part of the study conducted, the comparison of the experimental data of simulation modeling and the data of the functioning of the real information system was made. The hypothesis of the homogeneity of the logical structure of the information systems was formulated, thus enabling to reconfigure the algorithm presented, - more specifically, to transform it into the model for the analysis and prediction of arbitrary information systems. The results presented can be used for further research in this direction. The data of the opportunity to predict the functioning of the information systems can be used for strategic and economic planning. The algorithm can be used as a means for providing information security.
Intuitive web-based experimental design for high-throughput biomedical data.
Friedrich, Andreas; Kenar, Erhan; Kohlbacher, Oliver; Nahnsen, Sven
2015-01-01
Big data bioinformatics aims at drawing biological conclusions from huge and complex biological datasets. Added value from the analysis of big data, however, is only possible if the data is accompanied by accurate metadata annotation. Particularly in high-throughput experiments intelligent approaches are needed to keep track of the experimental design, including the conditions that are studied as well as information that might be interesting for failure analysis or further experiments in the future. In addition to the management of this information, means for an integrated design and interfaces for structured data annotation are urgently needed by researchers. Here, we propose a factor-based experimental design approach that enables scientists to easily create large-scale experiments with the help of a web-based system. We present a novel implementation of a web-based interface allowing the collection of arbitrary metadata. To exchange and edit information we provide a spreadsheet-based, humanly readable format. Subsequently, sample sheets with identifiers and metainformation for data generation facilities can be created. Data files created after measurement of the samples can be uploaded to a datastore, where they are automatically linked to the previously created experimental design model.
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.
1982-02-01
This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt,1 Gemini, 2 and Helios3 lasers currently operational at Los Alamos, and the Antares 4 laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial sets obtained by the digitization6 of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant.
Parameter Design and Optimal Control of an Open Core Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Pang, D.; Anand, D. K.; Kirk, J. A.
1996-01-01
In low earth orbit (LEO) satellite applications spacecraft power is provided by photovoltaic cells and batteries. To overcome battery shortcomings the University of Maryland, working in cooperation with NASA/GSFC and NASA/LeRC, has developed a magnetically suspended flywheel for energy storage applications. The system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. Successful application of flywheel energy storage requires integration of several technologies, viz. bearings, rotor design, motor/generator, power conditioning, and system control. In this paper we present a parameter design method which has been developed for analyzing the linear SISO model of the magnetic bearing controller for the OCCF. The objective of this continued research is to principally analyze the magnetic bearing system for nonlinear effects in order to increase the region of stability, as determined by high speed and large air gap control. This is achieved by four tasks: (1) physical modeling, design, prototyping, and testing of an improved magnetically suspended flywheel energy storage system, (2) identification of problems that limit performance and their corresponding solutions, (3) development of a design methodology for magnetic bearings, and (4) design of an optimal controller for future high speed applications. Both nonlinear SISO and MIMO models of the magnetic system were built to study limit cycle oscillations and power amplifier saturation phenomenon observed in experiments. The nonlinear models include the inductance of EM coils, the power amplifier saturation, and the physical limitation of the flywheel movement as discussed earlier. The control program EASY5 is used to study the nonlinear SISO and MIMO models. Our results have shown that the characteristics and frequency responses of the magnetic bearing system obtained from modeling are comparable to those obtained experimentally. Although magnetic saturation is shown in the bearings, there are good correlations between the theoretical model and experimental data. Both simulation and experiment confirm large variations of the magnetic bearing characteristics due to air gap growth. Therefore, the gap growth effect should be considered in the magnetic bearing system design. Additionally, the magnetic bearing control system will be compared to other design methods using not only parameter design but H-infinity optimal control and mu synthesis.
Robust decentralized control laws for the ACES structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Control system design for the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center is discussed. The primary objective of this experiment is to design controllers that provide substantial reduction of the line-of-sight pointing errors. Satisfaction of this objective requires the controllers to attenuate beam vibration significantly. The primary method chosen for control design is the optimal projection approach for uncertain systems (OPUS). The OPUS design process allows the simultaneous tradeoff of five fundamental issues in control design: actuator sizing, sensor accuracy, controller order, robustness, and system performance. A brief description of the basic ACES configuration is given. The development of the models used for control design and control design for eight system loops that were selected by analysis of test data collected from the structure are discussed. Experimental results showing that very significant performance improvement is achieved when all eight feedback loops are closed are presented.
Analytical and experimental investigation of flutter suppression by piezoelectric actuation
NASA Technical Reports Server (NTRS)
Heeg, Jennifer
1993-01-01
The objective of this research was to analytically and experimentally study the capabilities of piezoelectric plate actuators for suppressing flutter. Piezoelectric materials are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two-degree-of-freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system that permitted a translational and a rotational degree of freedom. The model was designed such that flutter was encountered within the testing envelope of the wind tunnel. Actuators made of piezoelectric material were affixed to leaf springs of the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed by using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. They demonstrate that small, carefully placed actuating plates can be used effectively to control aeroelastic response.
Model-Based Optimal Experimental Design for Complex Physical Systems
2015-12-03
for public release. magnitude reduction in estimator error required to make solving the exact optimal design problem tractable. Instead of using a naive...for designing a sequence of experiments uses suboptimal approaches: batch design that has no feedback, or greedy ( myopic ) design that optimally...approved for public release. Equation 1 is difficult to solve directly, but can be expressed in an equivalent form using the principle of dynamic programming
Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report
NASA Technical Reports Server (NTRS)
1977-01-01
A control system incorporating a digital electronic control was designed for the over-the-wing engine. The digital electronic control serves as the primary controlling element for engine fuel flow and core compressor stator position. It also includes data monitoring capability, a unique failure indication and corrective action feature, and optional provisions for operating with a new type of servovalve designed to operate in response to a digital-type signal and to fail with its output device hydraulically locked into position.
The use of experimental design to find the operating maximum power point of PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria
2015-03-10
Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.
DOT National Transportation Integrated Search
1996-11-01
The purpose of Task A was to conduct a literature review of human factors-applicable articles associated with Advanced Traveler Information Systems (ATIS) and ATIS-related commercial vehicle operations (CVO) systems. Specifically, Task A was to asses...
The Effects of Swedish Knife Model on Students' Understanding of the Digestive System
ERIC Educational Resources Information Center
Cerrah Ozsevgec, Lale; Artun, Huseyin; Unal, Melike
2012-01-01
This study was designed to examine the effect of Swedish Knife Model on students' understanding of digestive system. A simple experimental design (pretest-treatment-posttest) was used in the study and internal comparison of the results of the one group was made. The sample consisted of 40 7th grade Turkish students whose ages range from 13 to 15.…
ERIC Educational Resources Information Center
Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen
2018-01-01
The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…
Experimental realization of noise-induced adiabaticity in nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Wang, Bi-Xue; Xin, Tao; Kong, Xiang-Yu; Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2018-04-01
The adiabatic evolution is the dynamics of an instantaneous eigenstate of a slowly varing Hamiltonian. Recently, an interesting phenomenon shows up that white noises can enhance and even induce adiabaticity, which is in contrast to previous perception that environmental noises always modify and even ruin a designed adiabatic passage. We experimentally realized a noise-induced adiabaticity in a nuclear magnetic resonance system. Adiabatic Hadamard gate and entangled state are demonstrated. The effect of noise on adiabaticity is experimentally exhibited and compared with the noise-free process. We utilized a noise-injected method, which can be applied to other quantum systems.
Design and experiment of a neural signal detection using a FES driving system.
Zonghao, Huang; Zhigong, Wang; Xiaoying, Lu; Wenyuan, Li; Xiaoyan, Shen; Xintai, Zhao; Shushan, Xie; Haixian, Pan; Cunliang, Zhu
2010-01-01
The channel bridging, signal regenerating, and functional rebuilding of injured nerves is one of the most important issues in life science research. In recent years, some progresses in the research area have been made in repairing injured nerves with microelectronic neural bridge. Based on the previous work, this paper presents a neural signal detection and functional electrical stimulation (FES) driving system with using high performance operational amplifiers, which has been realized. The experimental results show that the designed system meets requirements. In animal experiments, sciatic nerve signal detection, regeneration and function rebuilding between two toads have been accomplished successfully by using the designed system.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1996-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1999-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
The Effects of General System Justification on Corruption Perception and Intent
Tan, Xuyun; Liu, Li; Huang, Zhenwei; Zheng, Wenwen; Liang, Yuan
2016-01-01
Previous research stresses that system justifying belief can weaken corruption perception, by this possibly fostering unjust behaviors. However, general results of the effect of general system justification on corruption are ambiguous, indicating also a lessening impact. We conducted a line of studies trying to elucidate these circumstances by testing the effect of general system justification on corruption perception and intention. In addition, we explored institutional trust as a possible mediator in this process. For this purpose, we conducted three studies. The first two studies examined the association between general system justification and corruption. In Study 1, a correlational design was run using questionnaires to assess the relation between general system justification and corruption perception as well as corruption intention. In Study 2, an experimental design was conducted manipulating general system justification via exposure to high or low system threat condition, then measuring its effect on corruption perception and corrupt intention. In Study 3, two sub-studies using correlational and experimental designs were run to explore the mediating role of institutional trust, respectively. Results replicated former studies showing that general system justification is negatively associated with corruption perception. However, they also showed a negative correlation with corrupt intention. Furthermore, they showed that institutional trust mediated the relation between general system justification and corruption. We suggest to consider these findings to further elucidate the psychological basis underlying different effects of general system justification on human behaviors. PMID:27507954
The Effects of General System Justification on Corruption Perception and Intent.
Tan, Xuyun; Liu, Li; Huang, Zhenwei; Zheng, Wenwen; Liang, Yuan
2016-01-01
Previous research stresses that system justifying belief can weaken corruption perception, by this possibly fostering unjust behaviors. However, general results of the effect of general system justification on corruption are ambiguous, indicating also a lessening impact. We conducted a line of studies trying to elucidate these circumstances by testing the effect of general system justification on corruption perception and intention. In addition, we explored institutional trust as a possible mediator in this process. For this purpose, we conducted three studies. The first two studies examined the association between general system justification and corruption. In Study 1, a correlational design was run using questionnaires to assess the relation between general system justification and corruption perception as well as corruption intention. In Study 2, an experimental design was conducted manipulating general system justification via exposure to high or low system threat condition, then measuring its effect on corruption perception and corrupt intention. In Study 3, two sub-studies using correlational and experimental designs were run to explore the mediating role of institutional trust, respectively. Results replicated former studies showing that general system justification is negatively associated with corruption perception. However, they also showed a negative correlation with corrupt intention. Furthermore, they showed that institutional trust mediated the relation between general system justification and corruption. We suggest to consider these findings to further elucidate the psychological basis underlying different effects of general system justification on human behaviors.
Design of low noise imaging system
NASA Astrophysics Data System (ADS)
Hu, Bo; Chen, Xiaolai
2017-10-01
In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.
Iurian, Sonia; Turdean, Luana; Tomuta, Ioan
2017-01-01
This study focuses on the development of a drug product based on a risk assessment-based approach, within the quality by design paradigm. A prolonged release system was proposed for paliperidone (Pal) delivery, containing Kollidon® SR as an insoluble matrix agent and hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), or sodium carboxymethyl cellulose as a hydrophilic polymer. The experimental part was preceded by the identification of potential sources of variability through Ishikawa diagrams, and failure mode and effects analysis was used to deliver the critical process parameters that were further optimized by design of experiments. A D-optimal design was used to investigate the effects of Kollidon SR ratio (X1), the type of hydrophilic polymer (X2), and the percentage of hydrophilic polymer (X3) on the percentages of dissolved Pal over 24 h (Y1–Y9). Effects expressed as regression coefficients and response surfaces were generated, along with a design space for the preparation of a target formulation in an experimental area with low error risk. The optimal formulation contained 27.62% Kollidon SR and 8.73% HPMC and achieved the prolonged release of Pal, with low burst effect, at ratios that were very close to the ones predicted by the model. Thus, the parameters with the highest impact on the final product quality were studied, and safe ranges were established for their variations. Finally, a risk mitigation and control strategy was proposed to assure the quality of the system, by constant process monitoring. PMID:28331293
Antovska, Packa; Ugarkovic, Sonja; Petruševski, Gjorgji; Stefanova, Bosilka; Manchevska, Blagica; Petkovska, Rumenka; Makreski, Petre
2017-11-01
Development, experimental design and in vitro in vivo correlation (IVIVC) of controlled-release matrix formulation. Development of novel oral controlled delivery system for indapamide hemihydrate, optimization of the formulation by experimental design and evaluation regarding IVIVC on a pilot scale batch as a confirmation of a well-established formulation. In vitro dissolution profiles of controlled-release tablets of indapamide hemihydrate from four different matrices had been evaluated in comparison to the originator's product Natrilix (Servier) as a direction for further development and optimization of a hydroxyethylcellulose-based matrix controlled-release formulation. A central composite factorial design had been applied for the optimization of a chosen controlled-release tablet formulation. The controlled-release tablets with appropriate physical and technological properties had been obtained with a matrix: binder concentration variations in the range: 20-40w/w% for the matrix and 1-3w/w% for the binder. The experimental design had defined the design space for the formulation and was prerequisite for extraction of a particular formulation that would be a subject for transfer on pilot scale and IVIV correlation. The release model of the optimized formulation has shown best fit to the zero order kinetics depicted with the Hixson-Crowell erosion-dependent mechanism of release. Level A correlation was obtained.
Study of a Secondary Power System Based on an Intermediate Bus Converter and POLs
NASA Astrophysics Data System (ADS)
Santoja, Almudena; Fernandez, Arturo; Tonicello, Ferdinando
2014-08-01
Secondary power systems in satellites are everything but standard nowadays. All sorts of options can be found and, in the end, a new custom design is used in most of the cases. Even though this might be interesting in some specific cases, for most of them it would be more convenient to have a straightforward system based on standard components. One of the options to achieve this is to design the secondary power system with an Intermediate Bus Converter (IBC) and Point of Load converters (POLs). This paper presents a study of this architecture and some experimental verifications to establish some basic rules devoted to achieve an optimum design of this system.
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
NASA Astrophysics Data System (ADS)
Hanan, Lu; Qiushi, Li; Shaobin, Li
2016-12-01
This paper presents an integrated optimization design method in which uniform design, response surface methodology and genetic algorithm are used in combination. In detail, uniform design is used to select the experimental sampling points in the experimental domain and the system performance is evaluated by means of computational fluid dynamics to construct a database. After that, response surface methodology is employed to generate a surrogate mathematical model relating the optimization objective and the design variables. Subsequently, genetic algorithm is adopted and applied to the surrogate model to acquire the optimal solution in the case of satisfying some constraints. The method has been applied to the optimization design of an axisymmetric diverging duct, dealing with three design variables including one qualitative variable and two quantitative variables. The method of modeling and optimization design performs well in improving the duct aerodynamic performance and can be also applied to wider fields of mechanical design and seen as a useful tool for engineering designers, by reducing the design time and computation consumption.
Design and implementation of robust controllers for a gait trainer.
Wang, F C; Yu, C H; Chou, T Y
2009-08-01
This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.
Counter-Attrition Programs in the United States Armed Forces
1984-07-01
the average pretest - posttest improvement of ART students on the Gates-MacGinitie Reading Test was 2.5 RGL. No comparison control group change scores...retraining programs, elaborate quasi - experimentation could be readily built Into the existing operational system. Every major installation has one or more...research on teach-n. Chicago: Rand McNally, 1963, pp. 171-246. Reprinted as Experimental and quasi - experimental designs for research. Chicago: Rand
Network speech systems technology program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1981-09-01
This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.
Bunker, Alex; Magarkar, Aniket; Viitala, Tapani
2016-10-01
Combined experimental and computational studies of lipid membranes and liposomes, with the aim to attain mechanistic understanding, result in a synergy that makes possible the rational design of liposomal drug delivery system (LDS) based therapies. The LDS is the leading form of nanoscale drug delivery platform, an avenue in drug research, known as "nanomedicine", that holds the promise to transcend the current paradigm of drug development that has led to diminishing returns. Unfortunately this field of research has, so far, been far more successful in generating publications than new drug therapies. This partly results from the trial and error based methodologies used. We discuss experimental techniques capable of obtaining mechanistic insight into LDS structure and behavior. Insight obtained purely experimentally is, however, limited; computational modeling using molecular dynamics simulation can provide insight not otherwise available. We review computational research, that makes use of the multiscale modeling paradigm, simulating the phospholipid membrane with all atom resolution and the entire liposome with coarse grained models. We discuss in greater detail the computational modeling of liposome PEGylation. Overall, we wish to convey the power that lies in the combined use of experimental and computational methodologies; we hope to provide a roadmap for the rational design of LDS based therapies. Computational modeling is able to provide mechanistic insight that explains the context of experimental results and can also take the lead and inspire new directions for experimental research into LDS development. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and Diagnosis Problem Solving with Multifunctional Technical Knowledge Bases
1992-09-29
STRUCTURE METHODOLOGY Design problem solving is a complex activity involving a number of subtasks. and a number of alternative methods potentially available...Conference on Artificial Intelligence. London: The British Computer Society, pp. 621-633. Friedland, P. (1979). Knowledge-based experimental design ...Computing Milieuxl: Management of Computing and Information Systems- -ty,*m man- agement General Terms: Design . Methodology Additional Key Words and Phrases
Compendium of Authenticated Systems and Logistics Terms, Definitions and Acronyms
1981-04-01
assigned for storage operations, within OTHER NON WAREHOUSE SPACE a structure designed for other than storage Space being used for storage within any...opposed to Any work done in order to correct rejected work. administrative), design (engineering design and (AFLCM1 74-2) drafting), experimental test...study. (principal or designated representative) authorized practices, methodology , or procedures involved in to request, receive, store, and account
Design and implementation of telephone dialer based on Arduino
NASA Astrophysics Data System (ADS)
Ma, Zilong; Lei, Ying
2017-03-01
Introduces a system design scheme of the telephone dialer based on Arduino, including the design principle, hardware and software design and the experimental results in this paper. The scheme is based on the dual tone multi frequency (DTMF) dialing mode, using the Arduino UNO as the main controller, the serial port send out the telephone number to be dialed, speaker synthesize the voice.
NASA Technical Reports Server (NTRS)
Campbell, R. H.; Essick, R. B.; Grass, J.; Johnston, G.; Kenny, K.; Russo, V.
1986-01-01
The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing.
The Influence of Prior Knowledge, Peer Review, Age, and Gender in Online Philosophy Discussions
ERIC Educational Resources Information Center
Cuddy, Lucas Stebbins
2016-01-01
Using a primarily experimental design, this study investigated whether discussion boards in online community college philosophy classes can be designed in the Blackboard course management system to lead to higher order thinking. Discussions were designed using one of two teaching techniques: the activation of prior knowledge or the use of peer…
Wiki-based Data Management System for Toxicogenomics
We are developing a data management system to enable systems-based toxicology at the US EPA. This is built upon the WikiLIMS platform and is capabale of housing not just genomics data but also a wide variety of toxicology data and associated experimental design information. Thi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorogushin, M.F.
Principle and experimental analysis of RF power feed system, based on 3 db directional couplers, for undesirable modes eliminating, divided power coupling with the RFQ accelerating structure, endotron type RF power source matching, are presented. The structure fine tuning and the system adjustment results and high-speed RF autocontrol system design are considered also.
Ahmed, Hafiz; Salgado, Ivan; Ríos, Héctor
2018-02-01
Robust synchronization of master slave chaotic systems are considered in this work. First an approximate model of the error system is obtained using the ultra-local model concept. Then a Continuous Singular Terminal Sliding-Mode (CSTSM) Controller is designed for the purpose of synchronization. The proposed approach is output feedback-based and uses fixed-time higher order sliding-mode (HOSM) differentiator for state estimation. Numerical simulation and experimental results are given to show the effectiveness of the proposed technique. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
DESIGN CRITERIA FOR HIGH TEMPERATURE LATTICE TEST REACTOR PROJECT CAH-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, D.L.; Brown, W.W.; Harrison, C.W.
Design and construction specifications to be followed in the development of the reactor, its associated systems and experimental facilities, and the housing and required services for the facility are presented. The testing procedures to be used are outlined. (D.C.W.)
Quiet Clean Short-haul Experimental Engine (QCSEE). Ball spline pitch change mechanism design report
NASA Technical Reports Server (NTRS)
1978-01-01
Detailed design parameters are presented for a variable-pitch change mechanism. The mechanism is a mechanical system containing a ball screw/spline driving two counteracting master bevel gears meshing pinion gears attached to each of 18 fan blades.
NASA Astrophysics Data System (ADS)
Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.
2016-07-01
Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.
NASA Astrophysics Data System (ADS)
Johnson, Maike; Hübner, Stefan; Reichmann, Carsten; Schönberger, Manfred; Fiß, Michael
2017-06-01
Energy storage systems are a key technology for developing a more sustainable energy supply system and lowering overall CO2 emissions. Among the variety of storage technologies, high temperature phase change material (PCM) storage is a promising option with a wide range of applications. PCM storages using an extended finned tube storage concept have been designed and techno-economically optimized for solar thermal power plant operations. These finned tube components were experimentally tested in order to validate the optimized design and simulation models used. Analysis of the charging and discharging characteristics of the storage at the pilot scale gives insight into the heat distribution both axially as well as radially in the storage material, thereby allowing for a realistic validation of the design. The design was optimized for discharging of the storage, as this is the more critical operation mode in power plant applications. The data show good agreement between the model and the experiments for discharging.
DOT National Transportation Integrated Search
1974-01-01
The report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were developed...
Building an experimental model of the human body with non-physiological parameters.
Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi
2017-03-01
New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.
Building an experimental model of the human body with non-physiological parameters
Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi
2017-01-01
New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851
Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S
2013-04-05
This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. Copyright © 2013 Elsevier B.V. All rights reserved.
Large-scale flow experiments for managing river systems
Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.
2011-01-01
Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.
National Combustion Code: A Multidisciplinary Combustor Design System
NASA Technical Reports Server (NTRS)
Stubbs, Robert M.; Liu, Nan-Suey
1997-01-01
The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.
Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector
NASA Technical Reports Server (NTRS)
Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.
1999-01-01
The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.
An experimental design method leading to chemical Turing patterns.
Horváth, Judit; Szalai, István; De Kepper, Patrick
2009-05-08
Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.
Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application
NASA Technical Reports Server (NTRS)
Chapin, W. G.
1986-01-01
A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.
An experimental system for symmetric capacitive rf discharge studies
NASA Astrophysics Data System (ADS)
Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.
1990-09-01
An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.
Intelligent redundant actuation system requirements and preliminary system design
NASA Technical Reports Server (NTRS)
Defeo, P.; Geiger, L. J.; Harris, J.
1985-01-01
Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.
2014-12-01
27 Figure 37. Posttest view of SDC-B experimental specimen...center vertical displacement (y2) vs. time (x). .............................................. 28 Figure 40. Posttest front view of the SDC B top...center column. .......................................................... 30 Figure 41. Posttest front view of end columns
E-healthcare at an experimental welfare techno house in Japan.
Tamura, Toshiyo; Kawarada, Atsushi; Nambu, Masayuki; Tsukada, Akira; Sasaki, Kazuo; Yamakoshi, Ken-Ichi
2007-01-01
An automated monitoring system for home health care has been designed for an experimental house in Japan called the Welfare Techno House (WTH). Automated electrocardiogram (ECG) measurements can be taken while in bed, in the bathtub, and on the toilet, without the subject's awareness, and without using body surface electrodes. In order to evaluate this automated health monitoring system, overnight measurements were performed to monitor health status during the daily lives of both young and elderly subjects.
Li, Zhifei; Qin, Dongliang
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572
Li, Zhifei; Qin, Dongliang; Yang, Feng
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.
Performance metric comparison study for non-magnetic bi-stable energy harvesters
NASA Astrophysics Data System (ADS)
Udani, Janav P.; Wrigley, Cailin; Arrieta, Andres F.
2017-04-01
Energy harvesting employing non-linear systems offers considerable advantages over linear systems given the broadband resonant response which is favorable for applications involving diverse input vibrations. In this respect, the rich dynamics of bi-stable systems present a promising means for harvesting vibrational energy from ambient sources. Harvesters deriving their bi-stability from thermally induced stresses as opposed to magnetic forces are receiving significant attention as it reduces the need for ancillary components and allows for bio- compatible constructions. However, the design of these bi-stable harvesters still requires further optimization to completely exploit the dynamic behavior of these systems. This study presents a comparison of the harvesting capabilities of non-magnetic, bi-stable composite laminates under variations in the design parameters as evaluated utilizing established power metrics. Energy output characteristics of two bi-stable composite laminate plates with a piezoelectric patch bonded on the top surface are experimentally investigated for variations in the thickness ratio and inertial mass positions for multiple load conditions. A particular design configuration is found to perform better over the entire range of testing conditions which include single and multiple frequency excitation, thus indicating that design optimization over the geometry of the harvester yields robust performance. The experimental analysis further highlights the need for appropriate design guidelines for optimization and holistic performance metrics to account for the range of operational conditions.
An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique
NASA Astrophysics Data System (ADS)
Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.
2018-05-01
To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.
1980-02-01
The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less
NASA Technical Reports Server (NTRS)
Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,
2011-01-01
Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.
Evaluation of ground motion scaling methods for analysis of structural systems
O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.
2011-01-01
Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.
Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis
NASA Technical Reports Server (NTRS)
Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.
2003-01-01
The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
NASA Astrophysics Data System (ADS)
Dehnel, Morgan Patrick
1998-11-01
This thesis addresses two major problems. One is of interest to commercial cyclotron manufacturers and the other is of interest to the accelerator physics community. The industrial problem was to produce a compact and modular ion source and injection system for the new TR13 H- cyclotron, which is capable of transporting and injecting a high quality and well matched beam into the cyclotron. The accelerator physics problem was to advance the science of inflector ion optical design, analysis and troubleshooting from the realm of pure simulation to the realm of measurement and experimentation. The industrial problem was solved by designing candidate injection systems in parallel with the TR13 cyclotron design. These systems were fabricated and then experimentally optimized along with the ion source on a 1 MeV test cyclotron. This work resulted in a set of ion source and injection systems with well documented and understood properties. The recommended solution for the TR13 was a cost effective injection system composed of only two axially rotated quadrupole magnets. The accelerator physics problem is the lack of measured cyclotron inflector optical data and beam related properties in the immediate vicinity of a cyclotron inflector. This required the development of an experimental technique to overcome the numerous technical difficulties associated with making measurements near a device as inaccessible as a cyclotron inflector. A diverse assembly of equipment and procedures was required: a well understood injection system, a pinhole collimator for producing beamlets for ray-tracing, a specially configured center region to expose the inflector to view, a system of scintillators in close proximity to the inflector for producing visible beamspots, a TV camera and frame grabber to record images and a set of image analysis and data processing procedures. The results obtained using this technique were: (a) measured constraints on the coefficients of an inflector's transport matrix, (b) measurement of the beam's centering, size, shape and orientation in phase space at the entrance and exit of an inflector, (c) measurements of beam displacement as a function of field and energy perturbations at an inflector exit and (d) comparison of an inflector simulation code's capabilities against detailed measured data. Such properties of a beam have not heretofore been determined experimentally.
Design and Experimental Results for the S414 Airfoil
2010-08-01
EXECUTION The Eppler Airfoil Design and Analysis Code (refs. 15 and 16), a subcritical, single- element code, was used to design the initial fore- and...1965. 14. Maughmer, Mark D.: Trailing Edge Conditions as a Factor in Airfoil Design. Ph.D. Dis- sertation, Univ. of Illinois, 1983.14 15. Eppler ...Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990. 16. Eppler , Richard: Airfoil Program System “PROFIL07.” User’s Guide. Richard
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Huber, Frank W.
1992-01-01
The current status of the activities and future plans of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics is reviewed. The activities of the Turbine Team focus on developing and enhancing codes and models, obtaining data for code validation and general understanding of flows through turbines, and developing and analyzing the aerodynamic designs of turbines suitable for use in the Space Transportation Main Engine fuel and oxidizer turbopumps. Future work will include the experimental evaluation of the oxidizer turbine configuration, the development, analysis, and experimental verification of concepts to control secondary and tip losses, and the aerodynamic design, analysis, and experimental evaluation of turbine volutes.
NASA Astrophysics Data System (ADS)
Claus, Daniel; Reichert, Carsten; Herkommer, Alois
2017-05-01
This paper relates to the improvement of conventional surgical stereo microscopy via the application of digital recording devices and adaptive optics. The research is aimed at improving the working conditions of the surgeon during the operation, such that free head movement is possible. The depth clues known from conventional stereo microscopy in interaction with the human eye's functionality, such as convergence, disparity, angular elevation, parallax, and accommodation, are implemented in a digital recording system via adaptive optomechanical components. Two laterally moving pupil apertures have been used mimicking the digital implementation of the eye's vergence and head motion. The natural eye's accommodation is mimicked via the application of a tunable lens. Additionally, another system has been built, which enables tracking the surgeon's eye pupil through a digital displaying stereoscopic microscope to supply the necessary information for steering the recording system. The optomechanical design and experimental results for both systems, digital recording stereoscopic microscope and pupil tracking system, are shown.
Small optical inter-satellite communication system for small and micro satellites
NASA Astrophysics Data System (ADS)
Iwamoto, Kyohei; Nakao, Takashi; Ito, Taiji; Sano, Takeshi; Ishii, Tamotsu; Shibata, Keiichi; Ueno, Mitsuhiro; Ohta, Shinji; Komatsu, Hiromitsu; Araki, Tomohiro; Kobayashi, Yuta; Sawada, Hirotaka
2017-02-01
Small optical inter-satellite communication system to be installed into small and micro satellites flying on LEO are designed and experimentally verified of its fundamental functions. Small, light weighted, power efficient as well as usable data transmission rate optical inter-satellite communication system is one of promising approach to provide realtime data handling and operation capabilities for micro and small satellite constellations which have limited conditions of payload. Proposed system is designed to connect satellites with 4500 (km) long maximum to be able to talk with ground station continuously by relaying LEO satellites even when they are in their own maneuvers. Connecting satellites with 4500 (km) long with keeping steady data rate, accurate pointing and tracking method will be one of a crucial issue. In this paper, we propose a precious pointing and tracking method and system with a miniature optics and experimentally verified almost 10 (μrad) of pointing accuracy with more than 500 (mrad) of angular coverage.
Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2016-02-01
Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.
Acquisition Management for Systems-of-Systems: Exploratory Model Development and Experimentation
2009-04-22
outputs of the Requirements Development and Logical Analysis processes into alternative design solutions and selects a final design solution. Decision...Analysis Provides the basis for evaluating and selecting alternatives when decisions need to be made. Implementation Yields the lowest-level system... Dependenc y Matrix 1 ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ 011 100 110 2 ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ 000 100 100 a) Example of SoS b) Model Structure for Example SoS
Design and Implementation of Telemedicine based on Java Media Framework
NASA Astrophysics Data System (ADS)
Xiong, Fengguang; Jia, Zhiyan
According to analyze the importance and problem of telemedicine in this paper, a telemedicine system based on JMF is proposed to design and implement capturing, compression, storage, transmission, reception and play of a medical audio and video. The telemedicine system can solve existing problems that medical information is not shared, platform-dependent is high, software is incompatibilities and so on. Experimental data prove that the system has low hardware cost, and is easy to transmission and storage, and is portable and powerful.
Operator assistant systems - An experimental approach using a telerobotics application
NASA Technical Reports Server (NTRS)
Boy, Guy A.; Mathe, Nathalie
1993-01-01
This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.
Spacelab payload accommodation handbook. Main volume
NASA Technical Reports Server (NTRS)
1978-01-01
The main characteristics of the Spacelab system are described to enable individual experimenters or payload planning groups to determine how their payload equipment can be accommodated by Spacelab. Spacelab/experiment interfaces, Spacelab payload support systems and requirements that the experiments have to comply with are described to allow experiment design and development. The basic operational aspects are outlined as far as they have an impact on experiment design. The relationship of the Spacelab Payload Accommodation Handbook to Space Transportation System documentation is outlined. Data concerning the space shuttle system are briefly described.
Note: Design of FPGA based system identification module with application to atomic force microscopy
NASA Astrophysics Data System (ADS)
Ghosal, Sayan; Pradhan, Sourav; Salapaka, Murti
2018-05-01
The science of system identification is widely utilized in modeling input-output relationships of diverse systems. In this article, we report field programmable gate array (FPGA) based implementation of a real-time system identification algorithm which employs forgetting factors and bias compensation techniques. The FPGA module is employed to estimate the mechanical properties of surfaces of materials at the nano-scale with an atomic force microscope (AFM). The FPGA module is user friendly which can be interfaced with commercially available AFMs. Extensive simulation and experimental results validate the design.
Design of a CO2 laser power control system for a Spacelab microgravity experiment
NASA Technical Reports Server (NTRS)
Wenzler, Carl J.; Eichenberg, Dennis J.
1990-01-01
The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.
Medical Technology Base Master Plan
1990-03-01
methodologes to evaluate off ectiveness of current and new Integrated protectivb equxipment systems. The failure of the system designer to adequately consider...With animal studies to use fewer than one-tenth the nu~r~e of aniimals used In standard factorial experimental designs , and "* Preliminary development of...research and developmnent have Produced Cost savings as well as sustained and augmented combat and non -combat rniss~on effectiveness. Examples 0f the Armys
ERIC Educational Resources Information Center
Tezer, Murat; Çimsir, Burcu Turan
2018-01-01
This research aimed to examine the impact of using mobile-supported learning management systems (LMS) in teaching web design on the academic success of students and their opinion on the course; and it was conducted on 70 volunteer students (35 experimental, 35 control) enrolled at Giresun University, Technical Sciences Vocational School, Computer…
Benchmarking hypercube hardware and software
NASA Technical Reports Server (NTRS)
Grunwald, Dirk C.; Reed, Daniel A.
1986-01-01
It was long a truism in computer systems design that balanced systems achieve the best performance. Message passing parallel processors are no different. To quantify the balance of a hypercube design, an experimental methodology was developed and the associated suite of benchmarks was applied to several existing hypercubes. The benchmark suite includes tests of both processor speed in the absence of internode communication and message transmission speed as a function of communication patterns.
JPRS Report, Soviet Union, Political Affairs
1988-11-28
in the development of its physical plant , improve designing , increase work quality, as well as strengthen order and organization in the sector...time, the Academy considers it essential to develop within its system a network of design bureaus and experimental plants . It must be said that almost...insufficiently developed physical plant . Over the last 10 years, not a single bus system has been built. For more than 6 years now, a trolley bus
NASA Technical Reports Server (NTRS)
Post, E. J.
1970-01-01
An experiment, designed to determine the difference between fields-magnetic and electric-surrounding a uniformly moving charge as contrasted with the fields surrounding an accelerated charge, is presented. A thought experiment is presented to illustrate the process.
Product design for energy reduction in concurrent engineering: An Inverted Pyramid Approach
NASA Astrophysics Data System (ADS)
Alkadi, Nasr M.
Energy factors in product design in concurrent engineering (CE) are becoming an emerging dimension for several reasons; (a) the rising interest in "green design and manufacturing", (b) the national energy security concerns and the dramatic increase in energy prices, (c) the global competition in the marketplace and global climate change commitments including carbon tax and emission trading systems, and (d) the widespread recognition of the need for sustainable development. This research presents a methodology for the intervention of energy factors in concurrent engineering product development process to significantly reduce the manufacturing energy requirement. The work presented here is the first attempt at integrating the design for energy in concurrent engineering framework. It adds an important tool to the DFX toolbox for evaluation of the impact of design decisions on the product manufacturing energy requirement early during the design phase. The research hypothesis states that "Product Manufacturing Energy Requirement is a Function of Design Parameters". The hypothesis was tested by conducting experimental work in machining and heat treating that took place at the manufacturing lab of the Industrial and Management Systems Engineering Department (IMSE) at West Virginia University (WVU) and at a major U.S steel manufacturing plant, respectively. The objective of the machining experiment was to study the effect of changing specific product design parameters (Material type and diameter) and process design parameters (metal removal rate) on a gear head lathe input power requirement through performing defined sets of machining experiments. The objective of the heat treating experiment was to study the effect of varying product charging temperature on the fuel consumption of a walking beams reheat furnace. The experimental work in both directions have revealed important insights into energy utilization in machining and heat-treating processes and its variance based on product, process, and system design parameters. In depth evaluation to how the design and manufacturing normally happen in concurrent engineering provided a framework to develop energy system levels in machining within the concurrent engineering environment using the method of "Inverted Pyramid Approach", (IPA). The IPA features varying levels of output energy based information depending on the input design parameters that is available during each stage (level) of the product design. The experimental work, the in-depth evaluation of design and manufacturing in CE, and the developed energy system levels in machining provided a solid base for the development of the model for the design for energy reduction in CE. The model was used to analyze an example part where 12 evolving designs were thoroughly reviewed to investigate the sensitivity of energy to design parameters in machining. The model allowed product design teams to address manufacturing energy concerns early during the design stage. As a result, ranges for energy sensitive design parameters impacting product manufacturing energy consumption were found in earlier levels. As designer proceeds to deeper levels in the model, this range tightens and results in significant energy reductions.
ERIC Educational Resources Information Center
Mitchell, Christine M.; Govindaraj, T.
1990-01-01
Discusses the use of intelligent tutoring systems as opposed to traditional on-the-job training for training operators of complex dynamic systems and describes the computer architecture for a system for operators of a NASA (National Aeronautics and Space Administration) satellite control system. An experimental evaluation with college students is…
Russ, Thomas A; Ramakrishnan, Cartic; Hovy, Eduard H; Bota, Mihail; Burns, Gully A P C
2011-08-22
We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS).
2011-01-01
Background We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. Results The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. Conclusions We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS). PMID:21859449
Urban pedestrian accident countermeasures experimental evaluation. Volume 2, Accident studies
DOT National Transportation Integrated Search
1975-02-01
A pedestrian accident data collection system was established in six major cities. The system involved using the regular police accident report form and a specifically designed supplementary data form. The information on the forms was combined, and th...
Experimental CAD Course Uses Low-Cost Systems.
ERIC Educational Resources Information Center
Wohlers, Terry
1984-01-01
Describes the outstanding results obtained when a department of industrial sciences used special software on microcomputers to teach computer-aided design (CAD) as an alternative to much more expensive equipment. The systems used and prospects for the future are also considered. (JN)
DOT National Transportation Integrated Search
1974-01-01
This report contains the results of an experimental and analytical evaluation of instruments and techniques designed to prevent an intoxicated driver from operating his automobile. The prototype 'Alcohol Safety Interlock Systems' tested were develope...
Adaptive antenna arrays for satellite communications: Design and testing
NASA Technical Reports Server (NTRS)
Gupta, I. J.; Swarner, W. G.; Walton, E. K.
1985-01-01
When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.
Web-Based Integrated Research Environment for Aerodynamic Analyses and Design
NASA Astrophysics Data System (ADS)
Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won
e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.
Design of a rapid magnetic microfluidic mixer
NASA Astrophysics Data System (ADS)
Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander
2015-11-01
Using three-dimensional simulations and experiments, we demonstrate rapid mixing of fluid streams in a microchannel using orbiting magnetic microbeads. We use a lattice Boltzmann model coupled to a Brownian dynamics model to perform numerical simulations that study in depth the effect of system parameters such as channel configuration and fluid and bead velocities. We use our findings to aid the design of an experimental micromixer. Using this experimental device, we demonstrate rapid microfluidic mixing over a compact channel length, and validate our numerical simulation results. Finally, we use numerical simulations to study the physical mechanisms leading to microfluidic mixing in our system. Our findings demonstrate a promising method of rapid microfluidic mixing over a short distance, with applications in lab-on-a-chip sample testing.
Proteome Dynamics: Revisiting Turnover with a Global Perspective*
Claydon, Amy J.; Beynon, Robert
2012-01-01
Although bulk protein turnover has been measured with the use of stable isotope labeled tracers for over half a century, it is only recently that the same approach has become applicable to the level of the proteome, permitting analysis of the turnover of many proteins instead of single proteins or an aggregated protein pool. The optimal experimental design for turnover studies is dependent on the nature of the biological system under study, which dictates the choice of precursor label, protein pool sampling strategy, and treatment of data. In this review we discuss different approaches and, in particular, explore how complexity in experimental design and data processing increases as we shift from unicellular to multicellular systems, in particular animals. PMID:23125033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Kyle; Cardoni, Jeffrey N.; Wilson, Chisom Shawn
2015-12-01
Efforts are being pursued to develop and qualify a system-level model of a reactor core isolation (RCIC) steam-turbine-driven pump. The model is being developed with the intent of employing it to inform the design of experimental configurations for full-scale RCIC testing. The model is expected to be especially valuable in sizing equipment needed in the testing. An additional intent is to use the model in understanding more fully how RCIC apparently managed to operate far removed from its design envelope in the Fukushima Daiichi Unit 2 accident. RCIC modeling is proceeding along two avenues that are expected to complement eachmore » other well. The first avenue is the continued development of the system-level RCIC model that will serve in simulating a full reactor system or full experimental configuration of which a RCIC system is part. The model reasonably represents a RCIC system today, especially given design operating conditions, but lacks specifics that are likely important in representing the off-design conditions a RCIC system might experience in an emergency situation such as a loss of all electrical power. A known specific lacking in the system model, for example, is the efficiency at which a flashing slug of water (as opposed to a concentrated jet of steam) could propel the rotating drive wheel of a RCIC turbine. To address this specific, the second avenue is being pursued wherein computational fluid dynamics (CFD) analyses of such a jet are being carried out. The results of the CFD analyses will thus complement and inform the system modeling. The system modeling will, in turn, complement the CFD analysis by providing the system information needed to impose appropriate boundary conditions on the CFD simulations. The system model will be used to inform the selection of configurations and equipment best suitable of supporting planned RCIC experimental testing. Preliminary investigations with the RCIC model indicate that liquid water ingestion by the turbine decreases the developed turbine torque; the RCIC speed then slows, and thus the pump flow rate to the RPV decreases. Subsequently, RPV water level decreases due to continued boiling and the liquid fraction flowing to the RCIC decreases, thereby accelerating the RCIC and refilling the RPV. The feedback cycle then repeats itself and/or reaches a quasi-steady equilibrium condition. In other words, the water carry-over is limited by cyclic RCIC performance degradation, and hence the system becomes self-regulating. The indications achieved to date with the system model are more qualitative than quantitative. The avenues being pursued to increase the fidelity of the model are expected to add quantitative realism. The end product will be generic in the sense that the RCIC model will be incorporable within the larger reactor coolant system model of any nuclear power plant or experimental configuration.« less
2007-06-01
the CNES proposal to perform in-flight experimentation mainly on reusable thermal protections, aero-thermo-dynamics and guidance to secure the second...the vehicle. A preliminary in-flight experimentation and measurement plan has been assessed defining the main objectives in terms of reusable Thermal ...Energy Management THEFA Thermographie Face Arrière TPS Thermal Protection System VKI Von Karman Institute WRT With Respect To WTT Wind
Experimental Evolution with Caenorhabditis Nematodes
Teotónio, Henrique; Estes, Suzanne; Phillips, Patrick C.; Baer, Charles F.
2017-01-01
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host–pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative. PMID:28592504
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.
Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V
2014-07-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology
Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.
2014-01-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914
NASA Technical Reports Server (NTRS)
Carlson, Harry W.
1985-01-01
The purpose here is to show how two linearized theory computer programs in combination may be used for the design of low speed wing flap systems capable of high levels of aerodynamic efficiency. A fundamental premise of the study is that high levels of aerodynamic performance for flap systems can be achieved only if the flow about the wing remains predominantly attached. Based on this premise, a wing design program is used to provide idealized attached flow camber surfaces from which candidate flap systems may be derived, and, in a following step, a wing evaluation program is used to provide estimates of the aerodynamic performance of the candidate systems. Design strategies and techniques that may be employed are illustrated through a series of examples. Applicability of the numerical methods to the analysis of a representative flap system (although not a system designed by the process described here) is demonstrated in a comparison with experimental data.
Design of Thomson scattering diagnostic system on J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yinan; Gao, Li, E-mail: gaoli@hust.edu.cn; Huang, Jiefeng
2016-11-15
An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT atmore » present and in the near future. A detailed description of the system design is presented in this paper.« less
Design validation and performance of closed loop gas recirculation system
NASA Astrophysics Data System (ADS)
Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.
2016-11-01
A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.
IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.
Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles
2014-01-01
The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin
2008-03-01
We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.
Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems
NASA Astrophysics Data System (ADS)
Koch, Patrick Nathan
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.
Design and fabrication of an energy-harvesting device using vibration absorber
NASA Astrophysics Data System (ADS)
Heidari, Hamidreza; Afifi, Arash
2017-05-01
Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.
ERIC Educational Resources Information Center
Vezzoli, Carlo; Penin, Lara
2006-01-01
Purpose: This paper aims to diffuse the concept of a multi-lateral learning process as a means to promote experimental didactics and research (and the cross-fertilization between these two activities) in the field of design of sustainable product-service systems (PSSs) and to consider the university campus as the locus for the design,…
The Penn State Safety Floor: Part I--Design parameters associated with walking deflections.
Casalena, J A; Ovaert, T C; Cavanagh, P R; Streit, D A
1998-08-01
A new flooring system has been developed to reduce peak impact forces to the hips when humans fall. The new safety floor is designed to remain relatively rigid under normal walking conditions, but to deform elastically when impacted during a fall. Design objectives included minimizing peak force experienced by the femur during a fall-induced impact, while maintaining a maximum of 2 mm of floor deflection during walking. Finite Element Models (FEMs) were developed to capture the complex dynamics of impact response between two deformable bodies. Validation of the finite element models included analytical calculations of theoretical buckling column response, experimental quasi-static loading of full-scale flooring prototypes, and flooring response during walking trials. Finite Element Method results compared well with theoretical and experimental data. Both finite element and experimental data suggest that the proposed safety floor can effectively meet the design goal of 2 mm maximum deflection during walking, while effectively reducing impact forces during a fall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Z. Y.; Liu, H. Q., E-mail: hqliu@ipp.ac.cn; Jie, Y. X.
A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.
Zou, Z Y; Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Wang, Z X; Shen, J S; An, Z H; Yang, Y; Zeng, L; Wei, X C; Li, G S; Zhu, X; Lan, T
2014-11-01
A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ∼20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.
Design of the klystron filament power supply control system for EAST LHCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zege; Wang, Mao; Hu, Huaichuan
A filament is a critical component of the klystron used to heat the cathode. There are totally 44 klystrons in experimental advanced superconducting tokamak (EAST) lower hybrid current drive (LHCD) systems. All klystron filaments are powered by AC power suppliers through isolated transformers. In order to achieve better klystron preheat, a klystron filament power supply control system is designed to obtain the automatic control of all filament power suppliers. Klystron filament current is measured by PLC and the interlock between filament current and klystron high voltage system is also implemented. This design has already been deployed in two LHCD systemsmore » and proves feasible completely.« less
Investigation of noise sources and propagation in external gear pumps
NASA Astrophysics Data System (ADS)
Opperwall, Timothy J.
Oil hydraulics is widely accepted as the best technology for transmitting power in many engineering applications due to its advantages in power density, control, layout flexibility, and efficiency. Due to these advantages, hydraulic systems are present in many different applications including construction, agriculture, aerospace, automotive, forestry, medical, and manufacturing, just to identify a few. Many of these applications involve the systems in close proximity to human operators and passengers where noise is one of the main constraints to the acceptance and spread of this technology. As a key component in power transfer, displacement machines can be major sources of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of applying fluid power systems to a wider range of applications, as well as improving the performance of current hydraulic systems. The present research aims to leverage previous efforts and develop new models and experimental techniques in the topic of noise generation caused by hydrostatic units. This requires challenging and surpassing current accepted methods in the understanding of noise in fluid power systems. This research seeks to expand on the previous experimental and modeling efforts by directly considering the effect that system and component design changes apply on the total sound power and the sound frequency components emitted from displacement machines and the attached lines. The case of external gear pumps is taken as reference for a new model to understand the generation and transmission of noise from the sources out to the environment. The lumped parameter model HYGESim (HYdraulic GEar machine Simulator) was expanded to investigate the dynamic forces on the solid bodies caused by the pump operation and to predict interactions with the attached system. Vibration and sound radiation were then predicted using a combined finite element and boundary element vibro-acoustic model as well as the influence of additional models for system components to better understand the essential problems of noise generation in hydraulic systems. This model is a step forward for the field due to the coupling of an advanced internal model of pump operation coupled to a detailed vibro-acoustic model. Several experimental studies were also completed in order to advance the current science. The first study validated the pump model in terms of outlet pressure ripple prediction through comparison to experimentally measured results for the reference pump as well as prototype pumps designed for low outlet pressure ripple. The second study focused on the air-borne noise through sound pressure and intensity measurements on reference and prototype pumps at steady-state operating conditions. A third study over a wide range of operating speeds and pressures was completed to explore the impact of operating condition and system design to greater detail through measuring noise and vibration in the working fluid, the system structures, and the air. Applying the knowledge gained through experimental and simulation studies has brought new advances in the understanding of the physics of noise generation and propagation in hydraulic components and systems. The focus of the combined simulation and modeling approach is to clearly understand the different contributions from noise sources and surpasses the previous methods that focus on the outlet pressure ripple alone as a source of noise. The application of the new modeling and experimental approach allows for new advances which directly contribute to advancing the science of noise in hydraulic applications and the design of new quieter hydrostatic units and hydraulic systems.
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
True and Quasi-Experimental Designs. ERIC/AE Digest.
ERIC Educational Resources Information Center
Gribbons, Barry; Herman, Joan
Among the different types of experimental design are two general categories: true experimental designs and quasi- experimental designs. True experimental designs include more than one purposively created group, common measured outcomes, and random assignment. Quasi-experimental designs are commonly used when random assignment is not practical or…
Application of uniform design to improve dental implant system.
Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei
2015-01-01
This paper introduces the application of uniform experimental design to improve dental implant systems subjected to dynamic loads. The dynamic micromotion of the Zimmer dental implant system is calculated and illustrated by explicit dynamic finite element analysis. Endogenous and exogenous factors influence the success rate of dental implant systems. Endogenous factors include: bone density, cortical bone thickness and osseointegration. Exogenous factors include: thread pitch, thread depth, diameter of implant neck and body size. A dental implant system with a crest module was selected to simulate micromotion distribution and stress behavior under dynamic loads using conventional and proposed methods. Finally, the design which caused minimum micromotion was chosen as the optimal design model. The micromotion of the improved model is 36.42 μm, with an improvement is 15.34% as compared to the original model.
Thermal power systems small power systems applications project. Volume 2: Detailed report
NASA Technical Reports Server (NTRS)
Marriott, A. T.
1979-01-01
Small power system technology as applied to power plants up to 10 MW in size was considered. Markets for small power systems were characterized and cost goals were established for the project. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Breakeven capital costs were determined for leading contenders among the candidate systems. The potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, was studied. Criteria and methodologies were developed for the ranking of candidate power plant system design concepts. Experimental power plant concepts of 1 MW rating were studied to define a power plant configuration for subsequent detail design construction, testing and evaluation. Site selection criteria and ground rules were developed.