NASA Astrophysics Data System (ADS)
Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.
2014-06-01
In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.
Operational Characteristics of a High Voltage Dense Plasma Focus.
1985-11-01
A high voltage dense plasma focus powered by a single-stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120...kV, energy--20 kJ, short-circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The...about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and
ERIC Educational Resources Information Center
Gilstrap, Livia L.
2004-01-01
Despite suggestibility researchers' focus on adult behaviors that distort children's reports, whether behaviors examined in experimental work are used in the field is unknown. The current study presents a mutually exclusive and exhaustive hierarchical coding system that reflects interview questioning behaviors of concern in experimental work. The…
NASA Technical Reports Server (NTRS)
Gouldin, F. C.
1982-01-01
Fluid mechanical effects on combustion processes in steady flow combustors, especially gas turbine combustors were investigated. Flow features of most interest were vorticity, especially swirl, and turbulence. Theoretical analyses, numerical calculations, and experiments were performed. The theoretical and numerical work focused on noncombusting flows, while the experimental work consisted of both reacting and nonreacting flow studies. An experimental data set, e.g., velocity, temperature and composition, was developed for a swirl flow combustor for use by combustion modelers for development and validation work.
Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.
Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar
2017-10-01
Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.
Experimental study on the resonance frequencies of a cantilevered plate in air flow
NASA Astrophysics Data System (ADS)
Cros, Anne; Arellano Castro, Rocío F.
2016-02-01
The present experimental work focuses on the resonances exhibited by a cantilevered plate immersed in airflow. The flexible plate is clamped at its leading edge and submitted to a small, lateral harmonic displacement. Throughout this work, our two control parameters are the forcing frequency and the air velocity. We determine experimentally the evolution of the first three resonant frequencies as air velocity is increased. Our results are in agreement with the Eloy et al. (2007) [1] and Michelin and Llewellyn-Smith (2009) [2] linear theoretical predictions.
NASA Astrophysics Data System (ADS)
Wesendonk, F. S.; Terrazzan, E. A.
2016-12-01
In this article, we presented a characterization of the recent academic and scientific literature on experiments in Physics Education in terms of focus and research intentions and results built through these investigations. For this, we used as a source of information 10 national Academic and Scientific Journals available on websites. By consulting these journals, we identified that 147 papers published from 2009 to 2013 had as their main focus the experimental research. We classified the Works in categories established a priori and subcategories established a posteriori. At the end, we found out that few articles deal with this issue (9%). Moreover, in most productions there is a superficial discussion of theoretical studies on the use of experimentation in teaching. This makes the contribution of these productions for the development of conceptual discussions about the potential and limited use of experimentation in Physics Education to be relatively small.
ERIC Educational Resources Information Center
Lakova, Assel; Chaklikova, Assel
2016-01-01
This article focuses on the management of students' independent work in the specialty "Journalism" on the subject "Special Foreign Language" in high school through project-based learning, which is one of the most important and modern types of tasks. The goal of this work is theoretically and experimentally proved the…
Dynamics and statics of nonaxisymmetric liquid bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Resnick, Andy; Zhang, Yiqiang; Fedoseyev, A.
1994-01-01
We finished the construction of the experimental apparatus and the design and testing of some of the visualization and data acquisition techniques. Experimental work focused on three areas: force measurements, loss of stability to nonaxisymmetric bridges, and vibration behavior. The experimental work is summarized in section 2. Selected results from our force measurement experiments are outlined in section 3. In addition we worked on the theory of the dynamic stability of axisymmetric bridges and undertook numerical simulation of the effects of inclined gravity vectors on the minimum volume stability limit for static bridges. The results and status of our theoretical work and numerical simulation are described in section 4. Papers published and in preparation, conference presentations, etc., are described in section 5. Work planned for the third year is discussed in section 6. References cited in the report are listed in section 7.
Simulation and experimental study of 802.11 based networking for vehicular management and safety.
DOT National Transportation Integrated Search
2009-03-01
This work focuses on the use of wireless networking techniques for their potential impact in providing : information for traffic management, control and public safety goals. The premise of this work is based on the : reasonable expectation that vehic...
ERIC Educational Resources Information Center
Zhang, Wei; Yan, Ting-ting; Du, Ya-song; Liu, Xiao-hong
2014-01-01
The study evaluated the impact of solution-focused brief therapy (SFBT) group-work on the post-traumatic growth (PTG) of mothers who have a child with ASD. A quasi-experimental design was used in which 43 mothers participated. 18 mothers in 2 SFBT groups (n = 9 in each group) received a 6-session SFBT group therapy while 25 mothers in a control…
ERIC Educational Resources Information Center
Oberauer, Klauss; Lange, Elke B.
2009-01-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…
Hydrostatic Paradox: Experimental Verification of Pressure Equilibrium
ERIC Educational Resources Information Center
Kodejška, C.; Ganci, S.; Ríha, J.; Sedlácková, H.
2017-01-01
This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical…
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Innovative Method of Analysis of Actual Cost of Work in Progress
NASA Astrophysics Data System (ADS)
Fil, O.; Terentev, V.
2017-11-01
The article focuses on the basic theory and practical aspects of improving the strategic management in terms of enhancing the quality of a technological process: these aspects have been proven experimentally by their introduction in company operations. The authors have worked out some proposals aimed at selecting an optimal supplier for building companies as well as the algorithm for the analysis and optimization of a construction company basing on scientific and practical research and the experimental data obtained in the experiment
ERIC Educational Resources Information Center
Johanson, Megan; Arthur, Ann M.
2016-01-01
Background: Improving children's oral language skills is an important focus of educational research and practice; however, relatively few interventions have demonstrated impacts on these skills. This work makes a unique contribution to our understanding of the effects of language-focused interventions in pre-kindergarten settings by examining…
NASA Astrophysics Data System (ADS)
Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng
2018-05-01
In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.
Teaching Spelling without Spelling Books.
ERIC Educational Resources Information Center
Ley, Terry C.
1982-01-01
Describes a spelling program evolved out of reading in research and personal experimentation that focuses on teaching spelling generalizations, spelling demons, and words students misspell in their own written work. (JL)
Allen, Todd R.; Kaoumi, Djamel; Wharry, Janelle P.; ...
2015-05-20
Designing materials for performance in high-radiation fields can be accelerated through a carefully chosen combination of advanced multiscale modeling paired with appropriate experimental validation. Here, the studies reported in this work, the combined efforts of six universities working together as the Consortium on Cladding and Structural Materials, use that approach to focus on improving the scientific basis for the response of ferritic–martensitic steels to irradiation. A combination of modern modeling techniques with controlled experimentation has specifically focused on improving the understanding of radiation-induced segregation, precipitate formation and growth under radiation, the stability of oxide nanoclusters, and the development of dislocationmore » networks under radiation. Experimental studies use both model and commercial alloys, irradiated with both ion beams and neutrons. Lastly, transmission electron microscopy and atom probe are combined with both first-principles and rate theory approaches to advance the understanding of ferritic–martensitic steels.« less
An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator
1988-11-01
The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to
Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2
NASA Technical Reports Server (NTRS)
Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)
1998-01-01
The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.
ERIC Educational Resources Information Center
Johanson, Megan; Arthur, Ann M.
2016-01-01
Background: Improving children's oral language skills is an important focus of educational research and practice; however, relatively few interventions have demonstrated impacts on these skills. This work makes a unique contribution to our understanding of the effects of language-focused interventions in pre-kindergarten settings by examining…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Derek P.; Jacklin, Neil; Punnoose, Ratish J.
Time-reversal is a wave focusing technique that makes use of the reciprocity of wireless propagation channels. It works particularly well in a cluttered environment with associated multipath reflection. This technique uses the multipath in the environment to increase focusing ability. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. It does not require controlled geometric placement of the transmit antennas. Unlike existing techniques it can work without line-of-sight. We have explored the performance of time-reversal focusing in a variety of simulated environments. We have also developed new algorithms to simultaneously focus atmore » a location while nulling at an eavesdropper location. We have experimentally verified these techniques in a realistic cluttered environment.« less
The Development of Verbal and Visual Working Memory Processes: A Latent Variable Approach
ERIC Educational Resources Information Center
Koppenol-Gonzalez, Gabriela V.; Bouwmeester, Samantha; Vermunt, Jeroen K.
2012-01-01
Working memory (WM) processing in children has been studied with different approaches, focusing on either the organizational structure of WM processing during development (factor analytic) or the influence of different task conditions on WM processing (experimental). The current study combined both approaches, aiming to distinguish verbal and…
Temperature Scales: Celsius, Fahrenheit, Kelvin, Reamur, and Romer.
ERIC Educational Resources Information Center
Romer, Robert H.
1982-01-01
Traces the history and development of temperature scales which began with the 17th-century invention of the liquid-in-glass thermometer. Focuses on the work of Olaf Romer, Daniel Fahrenheit, Rene-Antoine de Reamur, Anders Celsius, and William Thomson (Lord Kelvin). Includes experimental work and consideration of high/low fixed points on the…
Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency
Fuster, José Miguel; Candelas, Pilar; Castiñeira-Ibáñez, Sergio; Pérez-López, Sergio
2017-01-01
The focusing properties of Fresnel Zone Plates (FZPs) against frequency are analyzed in this work. It is shown that the FZP focal length depends almost linearly on the operating frequency. Focal depth and focal distortion are also considered, establishing a limit on the frequency span at which the operating frequency can be shifted. An underwater FZP ultrasound focusing system is demonstrated, and experimental results agree with the theoretical analysis and simulations. PMID:29206137
De Schampheleire, Sven; De Jaeger, Peter; De Kerpel, Kathleen; Ameel, Bernd; Huisseune, Henk; De Paepe, Michel
2016-01-01
This paper reviews the available methods to study thermal applications with open-cell metal foam. Both experimental and numerical work are discussed. For experimental research, the focus of this review is on the repeatability of the results. This is a major concern, as most studies only report the dependence of thermal properties on porosity and a number of pores per linear inch (PPI-value). A different approach, which is studied in this paper, is to characterize the foam using micro tomography scans with small voxel sizes. The results of these scans are compared to correlations from the open literature. Large differences are observed. For the numerical work, the focus is on studies using computational fluid dynamics. A novel way of determining the closure terms is proposed in this work. This is done through a numerical foam model based on micro tomography scan data. With this foam model, the closure terms are determined numerically. PMID:28787894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.
NASA Astrophysics Data System (ADS)
Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.
2017-01-01
SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.
ERIC Educational Resources Information Center
Powell, Tara; Thompson, Sanna J.
2016-01-01
Objective: This article presents the Journey of Hope (JoH), a school-based intervention for children who have experienced a collective trauma such as a natural disaster. Through the use of group work, the JoH focuses on building coping skills and enhancing protective factors to help children recover. Method: This quasi-experimental research…
ERIC Educational Resources Information Center
Deming, David; Dynarski, Susan
2009-01-01
We review the experimental and quasi-experimental research evidence on the causal relationship between college costs and educational attainment, with a particular focus on low-income populations. The weight of the evidence indicates that reducing college costs can increase college entry and persistence. Simple and transparent programs appear to be…
Rui, Guanghao; Chen, Jian; Wang, Xiaoyan; Gu, Bing; Cui, Yiping; Zhan, Qiwen
2016-10-17
The propagation and focusing properties of light beams continue to remain a research interest owning to their promising applications in physics, chemistry and biological sciences. One of the main challenges to these applications is the control of polarization distribution within the focal volume. In this work, we propose and experimentally demonstrate a method for generating a focused beam with arbitrary homogeneous polarization at any transverse plane. The required input field at the pupil plane of a high numerical aperture objective lens can be found analytically by solving an inverse problem with the Richard-Wolf vectorial diffraction method, and can be experimentally created with a vectorial optical field generator. Focused fields with various polarizations are successfully generated and verified using a Stokes parameter measurement to demonstrate the capability and versatility of proposed technique.
Experimental semiotics: a review.
Galantucci, Bruno; Garrod, Simon
2011-01-01
In the last few years a new line of research has appeared in the literature. This line of research, which may be referred to as experimental semiotics (ES; Galantucci, 2009; Galantucci and Garrod, 2010), focuses on the experimental investigation of novel forms of human communication. In this review we will (a) situate ES in its conceptual context, (b) illustrate the main varieties of studies thus far conducted by experimental semioticians, (c) illustrate three main themes of investigation which have emerged within this line of research, and (d) consider implications of this work for cognitive neuroscience.
Experimental Semiotics: A Review
Galantucci, Bruno; Garrod, Simon
2010-01-01
In the last few years a new line of research has appeared in the literature. This line of research, which may be referred to as experimental semiotics (ES; Galantucci, 2009; Galantucci and Garrod, 2010), focuses on the experimental investigation of novel forms of human communication. In this review we will (a) situate ES in its conceptual context, (b) illustrate the main varieties of studies thus far conducted by experimental semioticians, (c) illustrate three main themes of investigation which have emerged within this line of research, and (d) consider implications of this work for cognitive neuroscience. PMID:21369364
NASA Astrophysics Data System (ADS)
Bochkarev, N. N.; Kabanov, A. M.; Stepanov, A. N.
2008-02-01
Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained of threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.
Montaje Experimental de Optica Adaptiva con Tecnología FPGA
NASA Astrophysics Data System (ADS)
Rodriguez Brizuela, F.; Verasay, J. P.; Recabarren, P.
An experimental platform based on FPGA devices, dedicated to implement active and adaptive optic software in HDL has been developed. The devel- oped assembly is the first of a series of works focused on this important area of instrumental astronomy. The exposed development is part of a Final Project of Electronic Engineering of the National University of Cordoba. FULL TEXT IN SPANISH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Wendt, Fabian F; Jonkman, Jason
The objective of this paper is to assess the sources of experimental uncertainty in an offshore wind validation campaign focused on better understanding the nonlinear hydrodynamic response behavior of a floating semisubmersible. The test specimen and conditions were simplified compared to other floating wind test campaigns to reduce potential sources of uncertainties and better focus on the hydrodynamic load attributes. Repeat tests were used to understand the repeatability of the test conditions and to assess the level of random uncertainty in the measurements. Attention was also given to understanding bias in all components of the test. The end goal ofmore » this work is to set uncertainty bounds on the response metrics of interest, which will be used in future work to evaluate the success of modeling tools in accurately calculating hydrodynamic loads and the associated motion responses of the system.« less
Size-of-source Effect in Infrared Thermometers with Direct Reading of Temperature
NASA Astrophysics Data System (ADS)
Manoi, A.; Saunders, P.
2017-07-01
The size-of-source effect (SSE) for six infrared (IR) thermometers with direct reading of temperature was measured in this work. The alternative direct method for SSE determination, where the aperture size is fixed and the measurement distance is varied, was used in this study. The experimental equivalence between the usual and the alternative direct methods is presented. The magnitudes of the SSE for different types of IR thermometers were investigated. The maxima of the SSE were found to be up to 5 %, 8 %, and 28 % for focusable, closed-focus, and open-focus thermometers, respectively. At 275°C, an SSE of 28 % corresponds to 52°C, indicating the severe effect on the accuracy of this type of IR thermometer. A method to realize the calibration conditions used by the manufacturer, in terms of aperture size and measurement distance, is discussed and validated by experimental results. This study would be of benefit to users in choosing the best IR thermometer to match their work and for calibration laboratories in selecting the technique most suitable for determining the SSE.
Carrier dynamics and recombination mechanisms in staggered-alignment heterostructures
NASA Astrophysics Data System (ADS)
Wilson, Barbara A.
1988-08-01
The experimental and theoretical work on carrier dynamics and recombination mechanisms in semiconductor heterostructures with staggered type II alignments is reviewed. Examples from the literature are discussed for each of the III-V, II-VI, and IV-VI systems, as well as cross-column examples, with a focus on AlGaAs structures. The key optical properties which have benn identified as signatures of staggered-alignment behavior are summarized. A discussion of other epitaxial systems likely to exhibit staggered lineups is presented, and additional experimental and theoretical work is suggested, which could increase understanding of staggered-system behavior.
Network speech systems technology program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1981-09-01
This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.
Irradiation Design for an Experimental Murine Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.
2010-12-07
In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.
NASA Astrophysics Data System (ADS)
Brennen, Gavin; Giacobino, Elisabeth; Simon, Christoph
2015-05-01
Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.
ERIC Educational Resources Information Center
Kefford, Colin W.
This description of a unit for teaching about the environment at the junior high level is an experimental study. The focus of the program is the integration of several media; films and tapes play a large role in the unit. Students perform a combination of classroom work, field work, and simulated exercises; assessment procedures are described.…
ERIC Educational Resources Information Center
Scharfenberg, Franz-Josef; Bogner, Franz X.; Klautke, Siegfried
2008-01-01
Our research objectives focused on monitoring (i) students' activities during experimental teaching phases in an out-of-school gene technology laboratory, and (ii) potential relationships with variables such as work group size and cognitive achievement. Altogether, we videotaped 20 work groups of A-level 12th graders (n = 67) by continuous…
ERIC Educational Resources Information Center
Bowskill, Jerry; Dyer, Nick
1999-01-01
Describes wearable computers, or information and communication technology devices that are designed to be mobile. Discusses how such technologies can enhance computer-mediated communications, focusing on collaborative working for learning. Describes an experimental system, MetaPark, which explores communications, data retrieval and recording, and…
An empirical investigation of the visual rightness theory of picture perception.
Locher, Paul J
2003-10-01
This research subjected the visual rightness theory of picture perception to experimental scrutiny. It investigated the ability of adults untrained in the visual arts to discriminate between reproductions of original abstract and representational paintings by renowned artists from two experimentally manipulated less well-organized versions of each art stimulus. Perturbed stimuli contained either minor or major disruptions in the originals' principal structural networks. It was found that participants were significantly more successful in discriminating between originals and their highly altered, but not slightly altered, perturbation than expected by chance. Accuracy of detection was found to be a function of style of painting and a viewer's way of thinking about a work as determined from their verbal reactions to it. Specifically, hit rates for originals were highest for abstract works when participants focused on their compositional style and form and highest for representational works when their content and realism were the focus of attention. Findings support the view that visually right (i.e., "good") compositions have efficient structural organizations that are visually salient to viewers who lack formal training in the visual arts.
U.S. Army Medical Department Journal (October-December 2006)
2006-12-01
prioritize Soldiers with medical conditions who need additional neurophysiological and/or neuroimaging evaluations. If local national facilities are...of Enlightenment . Focused experimentation and solid hard work by an increasingly diverse range of organizations leads to a true understanding of the
Positron scattering from molecular hydrogen
NASA Astrophysics Data System (ADS)
Machacek, J. R.; Anderson, E. K.; Makochekanwa, C.; Buckman, S. J.; Sullivan, J. P.
2013-10-01
We present results for total and partial cross sections for positron scattering from H2. The total scattering and positronium formation cross sections are reported between 0.5 and 200 eV. Total quasielastic and inelastic scattering cross sections are reported for energies between the positronium formation threshold and 50 eV, with quasielastic differential scattering cross sections reported at 1, 3, 5, 7, and 10 eV. Our results are compared with previous work, both experimental and theoretical, with particular attention paid to the region below the positronium formation threshold, where there are apparent discrepancies in previous work. A discussion of possible reasons for discrepancies between this and previous work is presented, including a focus on known systematic effects in the experimental results.
de la Garza-Rodea, Anabel Sofía; Padilla-Sánchez, Luis; de la Garza-Aguilar, Javier; Neri-Vela, Rolando
2007-01-01
The progress of medicine has largely been due to research, and for surgery, in particular, the experimental surgical laboratory has been considered fundamental to the surgeon's education. In this study, a general view of experimental surgery is given in animal models based on bioethical norms as well as to design, create and apply different surgical procedures before performing in humans. Experimental surgery also facilitates surgical teaching and promotes the surgeon's scientific reasoning. Methods. This is a retrospective and descriptive study. Data were collected from direct and indirect sources of available publications on the historical, bioethical and educational aspects of medicine, focusing on surgery. The important facts corresponding to the field of experimental surgery and applicable in Mexico were selected. Concepts of experimental surgical models and of the experimental surgery laboratory were described. Bioethical considerations are emphasized for care of experimental animals. Finally, this work focuses on the importance of surgical experimentation in current and future development of the surgical researcher. Conclusions. Experimentation with animal models in a surgical laboratory is essential for surgical teaching and promotes development of the scientific thought in the surgeon. It is necessary for surgical research and is fundamental for making progress in surgery, treatment and medicine as science.
A Student View of Experimental Physics
NASA Astrophysics Data System (ADS)
Bu, Frank; Marlowe, Robert Lloyd; Whitson, Kristin
2017-03-01
This is the story of how an enterprising high school student came to my lab one afternoon, asking if there were any way that he could gain "hands-on" lab experience by working with me. While I had some doubts about allowing him to work in an area with an expensive 150-mW focused laser beam, I eventually said yes. I was well aware that a couple of weeks of lab work could lead to interesting investigations for him….
A Research Experience for Undergraduates on Sustainable Land and Water Resources
NASA Astrophysics Data System (ADS)
Dalbotten, D. M.; Berthelote, A. R.; Myrbo, A.; Ito, E.; Howes, T.
2011-12-01
A new research experience for undergraduates is being piloted which supports student involvement in management of land and water resources with sustainability as the major focus. Working on two Native American reservations (Fond du Lac Band of Lake Superior Chippewa, and Confederated Salish and Kootenai Tribes of Flathead Reservation) and in conjunction with local tribal colleges, we particularly focus on management of tribal land and water resources. In this way we work to both increase the involvement of Native American students in the geosciences and support ethical partnerships for research on Native lands. Students also have the opportunity to work experimentally at the St. Anthony Falls Laboratory in conjunction with the National Center for Earth-surface Dynamics.
A Student View of Experimental Physics
ERIC Educational Resources Information Center
Bu, Frank; Marlowe, Robert Lloyd; Whitson, Kristin
2017-01-01
This is the story of how an enterprising high school student came to my lab one afternoon, asking if there were any way that he could gain "hands-on" lab experience by working with me. While I had some doubts about allowing him to work in an area with an expensive 150-mW focused laser beam, I eventually said yes. I was well aware that a…
2013-01-01
Background There is growing acceptance that optimal service provision for individuals with severe and recurrent mental illness requires a complementary focus on medical recovery (i.e., symptom management and general functioning) and personal recovery (i.e., having a ‘life worth living’). Despite significant research attention and policy-level support, the translation of this vision of healthcare into changed workplace practice continues to elude. Over the past decade, evidence-based training interventions that seek to enhance the knowledge, attitudes, and skills of staff working in the mental health field have been implemented as a primary redress strategy. However, a large body of multi-disciplinary research indicates disappointing rates of training transfer. There is an absence of empirical research that investigates the importance of worker-motivation in the uptake of desired workplace change initiatives. ‘Autonomy’ is acknowledged as important to human effectiveness and as a correlate of workplace variables like productivity, and wellbeing. To our knowledge, there have been no studies that investigate purposeful and structured use of values-based interventions to facilitate increased autonomy as a means of promoting enhanced implementation of workplace change. Methods This study involves 200 mental health workers across 22 worksites within five community-managed organisations in three Australian states. It involves cluster-randomisation of participants within organisation, by work site, to the experimental (values) condition, or the control (implementation). Both conditions receive two days of training focusing on an evidence-based framework of mental health service delivery. The experimental group receives a third day of values-focused intervention and 12 months of values-focused coaching. Well-validated self-report measures are used to explore variables related to values concordance, autonomy, and self-reported implementation success. Audits of work files and staff work samples are reviewed for each condition to determine the impact of implementation. Self-determination theory and theories of organisational change are used to interpret the data. Discussion The research adds to the current knowledge base related to worker motivation and uptake of workplace practice. It describes a structured protocol that aims to enhance worker autonomy for imposed workplace practices. The research will inform how best to measure and conceptualise transfer. These findings will apply particularly to contexts where individuals are not ‘volunteers’ in requisite change processes. Trial registration ACTRN: ACTRN12613000353796. PMID:23819816
NASA Astrophysics Data System (ADS)
Momenei, M.; Khodabakhshei, Z.; Panahi, N.; Mohammadi, M. A.
2017-03-01
The length of insulator sleeve is varied to investigate its effect on the pinch formation in the plasma focus facility. In this paper, the effect of insulator length on the time to pinch at various pressures and working voltages in the 1.15 kJ Mather type plasma focus is investigated. The results show that with 4.5 cm insulator length the time to pinch at all pressures is minimum. Other results also confirm that with increasing of pressure the time to pinch is increased. Moreover, with increasing working voltage the time to pinch is decreased. Pictures, captured using a digital single lens reflex (DSLR) Canon EOS 7D system, show that multipinch phenomenon is formed.
On the measurement of airborne, angular-dependent sound transmission through supercritical bars.
Shaw, Matthew D; Anderson, Brian E
2012-10-01
The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.
UNDERSTANDING POLLUTANT DISPERSION IN AN URBAN NEIGHBORHOOD
Work has been focused on urban air quality and homeland security issues, modeling the complex airflow patterns in cities and around buildings (e.g. the World Trade Center site in Lower Manhattan, and the Pentagon building in Washington, D.C.). These experimental studies have con...
NASA Astrophysics Data System (ADS)
Dodick, Jeff; Argamon, Shlomo; Chase, Paul
2009-08-01
A key focus of current science education reforms involves developing inquiry-based learning materials. However, without an understanding of how working scientists actually do science, such learning materials cannot be properly developed. Until now, research on scientific reasoning has focused on cognitive studies of individual scientific fields. However, the question remains as to whether scientists in different fields fundamentally rely on different methodologies. Although many philosophers and historians of science do indeed assert that there is no single monolithic scientific method, this has never been tested empirically. We therefore approach this problem by analyzing patterns of language used by scientists in their published work. Our results demonstrate systematic variation in language use between types of science that are thought to differ in their characteristic methodologies. The features of language use that were found correspond closely to a proposed distinction between Experimental Sciences (e.g., chemistry) and Historical Sciences (e.g., paleontology); thus, different underlying rhetorical and conceptual mechanisms likely operate for scientific reasoning and communication in different contexts.
Hydrogen as an atomic beam standard
NASA Technical Reports Server (NTRS)
Peters, H. E.
1972-01-01
After a preliminary discussion of feasibility, new experimental work with a hydrogen beam is described. A space focused magnetic resonance technique with separated oscillatory fields is used with a monochromatic beam of cold hydrogen atoms which are selected from a higher temperature source. The first resonance curves and other experimental results are presented. These results are interpreted from the point of view of accuracy potential and frequency stability, and are compared with hydrogen maser and cesium beam capabilities.
Ståhl, Tomas; Van Laar, Colette; Ellemers, Naomi
2012-06-01
Previous research has demonstrated that stereotype threat induces a prevention focus and impairs central executive functions. The present research examines how these 2 consequences of stereotype threat are related. The authors argue that the prevention focus is responsible for the effects of stereotype threat on executive functions and cognitive performance. However, because the prevention focus is adapted to deal with threatening situations, the authors propose that it also leads to some beneficial responses to stereotype threat. Specifically, because stereotype threat signals a high risk of failure, a prevention focus initiates immediate recruitment of cognitive control resources. The authors further argue that this response initially facilitates cognitive performance but that the additional cognitive demands associated with working under threat lead to cognitive depletion over time. Study 1 demonstrates that stereotype threat (vs. control) facilitates immediate cognitive control capacity during a stereotype-relevant task. Study 2 experimentally demonstrates the process by showing that stereotype threat (vs. control) facilitates cognitive control as a default, as well as when a prevention focus has been experimentally induced, but not when a promotion focus has been induced. Study 3 shows that stereotype threat facilitates initial math performance under a prevention focus, whereas no effect is found under a promotion focus. Consistent with previous research, however, stereotype threat impaired math performance over time under a prevention focus, but not under a promotion focus. 2012 APA, all rights reserved
A survey of urban climate change experiments in 100 cities
Castán Broto, Vanesa; Bulkeley, Harriet
2013-01-01
Cities are key sites where climate change is being addressed. Previous research has largely overlooked the multiplicity of climate change responses emerging outside formal contexts of decision-making and led by actors other than municipal governments. Moreover, existing research has largely focused on case studies of climate change mitigation in developed economies. The objective of this paper is to uncover the heterogeneous mix of actors, settings, governance arrangements and technologies involved in the governance of climate change in cities in different parts of the world. The paper focuses on urban climate change governance as a process of experimentation. Climate change experiments are presented here as interventions to try out new ideas and methods in the context of future uncertainties. They serve to understand how interventions work in practice, in new contexts where they are thought of as innovative. To study experimentation, the paper presents evidence from the analysis of a database of 627 urban climate change experiments in a sample of 100 global cities. The analysis suggests that, since 2005, experimentation is a feature of urban responses to climate change across different world regions and multiple sectors. Although experimentation does not appear to be related to particular kinds of urban economic and social conditions, some of its core features are visible. For example, experimentation tends to focus on energy. Also, both social and technical forms of experimentation are visible, but technical experimentation is more common in urban infrastructure systems. While municipal governments have a critical role in climate change experimentation, they often act alongside other actors and in a variety of forms of partnership. These findings point at experimentation as a key tool to open up new political spaces for governing climate change in the city. PMID:23805029
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, R.R.; McLellan, T.M.; Withey, W.R.
This report represents the results of TTCP-UTP6 efforts on modeling aspects when chemical protective ensembles are worn which need to be considered in warm environments. Since 1983, a significant data base has been collected using human experimental studies and wide clothing systems from which predictive modeling equations have been developed with individuals working in temperate and hot environments, but few comparisons of the -- results from various model outputs have ever been carried out. This initial comparison study was part of a key technical area (KIA) project for The Technical Cooperation Program (TTCP) UTP-6 working party. A modeling workshop wasmore » conducted in Toronto, Canada on 9-10 June 1994 to discuss the data reduction and results acquired in an initial clothing analysis study of TTCP using various chemical protective garments. To our knowledge, no comprehensive study to date has ever focused on comparing experimental results using an international standardized heat stress procedure matched to physiological outputs from various model predictions in individuals dressed in chemical protective clothing systems. This is the major focus of this TTCP key technical study. This technical report covers one aspect of the working party`s results.« less
FOCUSING OF HIGH POWER ULTRASOUND BEAMS AND LIMITING VALUES OF SHOCK WAVE PARAMETERS
Bessonova, O.V.; Khokhlova, V.A.; Bailey, M.R.; Canney, M.S.; Crum, L.A.
2009-01-01
In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions. PMID:20161349
FOCUSING OF HIGH POWER ULTRASOUND BEAMS AND LIMITING VALUES OF SHOCK WAVE PARAMETERS.
Bessonova, O V; Khokhlova, V A; Bailey, M R; Canney, M S; Crum, L A
2009-07-21
In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.
Focusing of high power ultrasound beams and limiting values of shock wave parameters
NASA Astrophysics Data System (ADS)
Bessonova, O. V.; Khokhlova, V. A.; Bailey, M. R.; Canney, M. S.; Crum, L. A.
2009-10-01
In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post-shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.
Intraocular lens based on double-liquid variable-focus lens.
Peng, Runling; Li, Yifan; Hu, Shuilan; Wei, Maowei; Chen, Jiabi
2014-01-10
In this work, the crystalline lens in the Gullstrand-Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye's limit of resolution.
NASA Astrophysics Data System (ADS)
Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.
2017-12-01
Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.
Probing for Reasons: Presentations, Questions, Phases
ERIC Educational Resources Information Center
Morris, Kellyn Farlow; Speiser, Bob
2010-01-01
This paper reports on a research study based on data from experimental teaching. Undergraduate dance majors were invited, through real-world problem tasks that raised central conceptual issues, to invent major ideas of calculus. This study focuses on work and thinking by these students, as they sought to build key ideas, representations and…
Repeating Decimals: An Alternative Teaching Approach
ERIC Educational Resources Information Center
Appova, Aina K.
2017-01-01
To help middle school students make better sense of decimals and fraction, the author and an eighth-grade math teacher worked on a 90-minute lesson that focused on representing repeating decimals as fractions. They embedded experimentations and explorations using technology and calculators to help promote students' intuitive and conceptual…
Computer Simulation of Laboratory Experiments: An Unrealized Potential.
ERIC Educational Resources Information Center
Magin, D. J.; Reizes, J. A.
1990-01-01
Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…
Control and Stabilization: Making Millikan's Oil Drop Experiment Work
ERIC Educational Resources Information Center
Muller-Hill, Christoph; Heering, Peter
2011-01-01
Educational versions of Millikan's oil-drop experiment have frequently been criticized; suggestions for improvement either focus on technical innovations of the setup or on replacing the experiment by other approaches of familiarization, such as computer simulations. In our approach, we have analysed experimental procedures. In doing so, we were…
Para-Quantitative Methodology: Reclaiming Experimentalism in Educational Research
ERIC Educational Resources Information Center
Shabani Varaki, Bakhtiar; Floden, Robert E.; Javidi Kalatehjafarabadi, Tahereh
2015-01-01
This article focuses on the criticisms of current approaches in educational research methodology. It summarizes rationales for mixed methods and argues that the mixing quantitative paradigm and qualitative paradigm is problematic due to practical and philosophical arguments. It is also indicated that the current rise of mixed methods work has…
NASA Technical Reports Server (NTRS)
1997-01-01
On this fifth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue experimental work aboard Columbia. Leonid Kadenyuk focuses on studies of plant growth in weightlessness.
What the Study of Scope Can Tell Us about Second Language Learning
ERIC Educational Resources Information Center
O'Grady, William; Lee, Miseon; Kwak, Hye-Young
2009-01-01
This paper, designed specifically for language teachers, focuses on a phenomenon in second language learning that is largely independent of instructional effects, curricular materials, and classroom activities. Experimental work suggests that scope, the relationship between two or more logical operators (such as quantifiers or negatives), is…
Housing Operation Taking into Account Obsolescence and Physical Deterioration
NASA Astrophysics Data System (ADS)
Petrenko, L.; Manjilevskaja, S.
2017-11-01
The article focuses on the basic theory and practical aspects of improving the strategic management in terms of enhancing the quality of a technological process: these aspects have been proven experimentally by their introduction in company operations. The authors have worked out some proposals aimed at selecting an optimal supplier for building companies as well as the algorithm for the analysis and optimization of a construction company basing on scientific and practical research and the experimental data obtained in the experiment
Experimental investigation of defect criticality in FRP laminate composites
NASA Astrophysics Data System (ADS)
Joyce, Peter James
1999-11-01
This work examines the defect criticality of fiber reinforced polymer Composites. The objective is to determine the sensitivity of the finished composite to various process-induced defects. This work focuses on two different classes of process-induced defects; (1) fiber waviness in high performance carbon-fiber reinforced unidirectional composites and (2) void volume in low cost glass-fabric reinforced composites. The role of fiber waviness in the compressive response of unidirectional composites has been studied by a number of other investigators. Because of difficulties associated with producing real composites with varying levels of fiber waviness, most experimental studies of fiber waviness have evaluated composites with artificially induced fiber waviness. Furthermore, most experimental studies have been concentrated on the effects of out-of-plane fiber waviness. The objective of this work is to evaluate the effects of in-plane fiber waviness naturally occurring in autoclave consolidated thermoplastic laminates. The first phase of this project involved the development of a simple technique for measuring the resulting fiber waviness levels. An experimental investigation of the compression strength reduction in composites with in-plane fiber waviness followed. The experimental program included carbon-fiber reinforced thermoplastic composites manufactured from prepreg tape by hand layup, and carbon-fiber and glass-fiber reinforced composites manufactured from an experimental powder towpreg by filament winding and autoclave consolidation. The compression specimens exhibited kink band failure in the prepreg composite and varying amounts of longitudinal splitting and kink banding in the towpreg composites. The compression test results demonstrated the same trend as predicted by microbudding theory but the overall quantitative correlation was poor. The second thrust of this research evaluated void effects in resin transfer molded composites. Much of the existing literature in this area has focused on composites with unidirectional fiber reinforcement. In this program, the influence of void volume on the mechanical behavior of RTM composites with plain weave reinforcement was investigated. The experimental program demonstrated that the effects of void volume are negligible in terms of the fiber dominated properties. Interlaminar shear strength tests on the other hand demonstrated a linear dependence on void volume in the range tested.
Magic Mirror, on the Wall-Which Is the Right Study Design of Them All?-Part I.
Vetter, Thomas R
2017-06-01
The assessment of a new or existing treatment or intervention typically answers 1 of 3 research-related questions: (1) "Can it work?" (efficacy); (2) "Does it work?" (effectiveness); and (3) "Is it worth it?" (efficiency or cost-effectiveness). There are a number of study designs that on a situational basis are appropriate to apply in conducting research. These study designs are classified as experimental, quasi-experimental, or observational, with observational studies being further divided into descriptive and analytic categories. This first of a 2-part statistical tutorial reviews these 3 salient research questions and describes a subset of the most common types of experimental and quasi-experimental study design. Attention is focused on the strengths and weaknesses of each study design to assist in choosing which is appropriate for a given study objective and hypothesis as well as the particular study setting and available resources and data. Specific studies and papers are highlighted as examples of a well-chosen, clearly stated, and properly executed study design type.
Design of multisegmented freeform lens for LED fishing/working lamp with high efficiency.
Lai, Min-Feng; Anh, Nguyen Doan Quoc; Gao, Jia-Zhi; Ma, Hsin-Yi; Lee, Hsiao-Yi
2015-10-01
A novel LED fishing/working light is proposed to enhance the lighting efficiency of a fishing boat. The study is focused on the freeform secondary lens design so as to create a lamp that attracts fish and sheds light on the deck for the crew's work. The experimental results show that the proposed multisegmented freeform lens can deliver the proposed aim, giving 3 times as much illuminating power as the traditional high-intensity discharge fishing lamp does with the same input of electrical power.
Bourqui, Romain; Benchimol, William; Gaspin, Christine; Sirand-Pugnet, Pascal; Uricaru, Raluca; Dutour, Isabelle
2015-01-01
The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA–mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA–mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks. PMID:25477348
Thébault, Patricia; Bourqui, Romain; Benchimol, William; Gaspin, Christine; Sirand-Pugnet, Pascal; Uricaru, Raluca; Dutour, Isabelle
2015-09-01
The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA-mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA-mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks. © The Author 2014. Published by Oxford University Press.
Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator
NASA Astrophysics Data System (ADS)
Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul
2016-09-01
The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.
The Pulsed High Density Experiment (PHDX) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John P.; Andreason, Samuel
The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasmamore » ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.« less
High Alpha Technology Program (HATP) ground test to flight comparisons
NASA Technical Reports Server (NTRS)
Hall, R. M.; Banks, D. W.; Fisher, David F.; Ghaffari, F.; Murri, D. G.; Ross, J. C.; Lanser, Wendy R.
1994-01-01
This status paper reviews the experimental ground test program of the High Alpha Technology Program (HATP). The reasons for conducting this ground test program had their origins during the 1970's when several difficulties were experienced during the development programs of both the F-18 and F-16. A careful assessment of ground test to flight correlations appeared to be important for reestablishing a high degree of confidence in our ground test methodology. The current paper will then focus on one aspect of the HATP program that is intended to improve the correlation between ground test and flight, high-alpha gritting. The importance of this work arises from the sensitivity of configurations with smooth-sided forebodies to Reynolds number. After giving examples of the effects of Reynolds number, the paper will highlight efforts at forebody gritting. Finally, the paper will conclude by summarizing the charter of the HATP Experimental Aerodynamics Working Group and future experimental testing plans.
Experimental Potential Energy Curve for the 43 Π Electronic State of NaCs
NASA Astrophysics Data System (ADS)
Steely, Andrew; Cooper, Hannah; Zain, Hareem; Whipp, Ciara; Faust, Carl; Kortyna, Andrew; Huennekens, John
2017-04-01
We present results from experimental studies of the 43 Π electronic state of the NaCs molecule. This electronic state is interesting in that its potential energy curve likely exhibits a double minimum. As a result, interference effects are observed in the resolved bound-free fluorescence spectra. The optical-optical double resonance method was used to obtain Doppler-free excitation spectra for the 43 Π state. This dataset of measured level energies was expanded largely by observing fluorescence from levels populated by collisions. To aid in level assignments, simulations of resolved bound-free fluorescence spectra were calculated using the BCONT program (R. J. Le Roy, University of Waterloo). Spectroscopic constants were determined to summarize data belonging to inner well, outer well, and above barrier regions of the electronic state. Current work focuses on using the IPA method to construct an experimental potential energy curve. Work supported by NSF and Susquehanna University.
Airborne Chemical Sensing with Mobile Robots
Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom
2006-01-01
Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.
SU-F-T-211: Evaluation of a Dual Focusing Magnet System for the Treatment of Small Proton Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, TT; McAuley, GA; Heczko, S
Purpose: To investigate magnetic focusing for small volume proton targets using a doublet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Monte Carlo computer simulations were performed using the Geant4 toolkit to compare dose depositions of proton beams transported through two focusing magnets or in their absence. Proton beams with energies of 127 MeV and initial diameters of 5, 8 and 10 mm were delivered through two identical focusing magnets similar to those currently in experimental use at Loma Linda University Medical Center. Analogous experiments used optimized configurations based on the simulation results. Dose was measured bymore » a diode detector and Gafchromic EBT3 film and compared to simulation data. Based on results from the experimental data, an additional set of simulations was performed with an initial beam diameter of 18 mm and a two differing length magnets (40mm & 68mm). Results: Experimental data matched well with Monte Carlo simulations. However, under conditions necessary to produce circular beam spots at target depth, magnetically focused beams using two identical 40 mm length magnets did not meet all of our performance criteria of circular beam spots, improved peak to entrance (P/E) dose ratios and dose delivery efficiencies. The simulations using the longer 68 mm 2nd magnet yielded better results with 34% better P/E dose ratio and 20–50% better dose delivery efficiencies when compared to unfocused 10 mm beams. Conclusion: While magnetic focusing using two magnets with identical focusing power did not yield desired results, ongoing Monte Carlo simulations suggest that increasing the length of the 2nd magnet to 68 mm could improve P/E dose ratios and dose efficiencies. Future work includes additional experimental validation of the longer 2nd magnet setup as well as experiments with triplet magnet systems. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).« less
Theoretical Astrophysics at Fermilab
NASA Technical Reports Server (NTRS)
2004-01-01
The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:
Surface treatment with linearly polarized laser beam at oblique incidence
NASA Astrophysics Data System (ADS)
Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.
2002-07-01
An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.
Simpson-Southward, Chloe; Waller, Glenn; Hardy, Gillian E
2016-02-01
Psychological treatments for depression are not always delivered effectively or consistently. Clinical supervision of therapists is often assumed to keep therapy on track, ensuring positive patient outcomes. However, there is a lack of empirical evidence supporting this assumption. This experimental study explored the focus of supervision of depression cases, comparing guidance given to supervisees of different genders and anxiety levels. Participants were clinical supervisors who supervised therapists working with patients with depression. Supervisors indicated their supervision focus for three supervision case vignettes. Supervisee anxiety and gender was varied across vignettes. Supervisors focused calm female supervisees more on therapeutic techniques than state anxious female supervisees. Males were supervised in the same way, regardless of their anxiety. Both male and female supervisors had this pattern of focus. Findings indicate that supervision is influenced by supervisors' own biases towards their supervisees. These factors may cause supervisors to drift from prompting their supervisees to deliver best practice. Suggestions are made for ways to improve the effectiveness of clinical supervision and how these results may inform future research practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ti film deposition process of a plasma focus: Study by an experimental design
NASA Astrophysics Data System (ADS)
Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.
2017-10-01
The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.
Thermal Property Parameter Estimation of TPS Materials
NASA Technical Reports Server (NTRS)
Maddren, Jesse
1998-01-01
Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.
Fiber-Drawn Metamaterial for THz Waveguiding and Imaging
NASA Astrophysics Data System (ADS)
Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu; Habib, Md. Samiul; Hayashi, Juliano Grigoleto; Tuniz, Alessandro; Tang, Xiaoli; Anthony, Jessienta; Lwin, Richard; Argyros, Alexander; Fleming, Simon C.; Kuhlmey, Boris T.
2017-09-01
In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28.
Sound control by temperature gradients
NASA Astrophysics Data System (ADS)
Sánchez-Dehesa, José; Angelov, Mitko I.; Cervera, Francisco; Cai, Liang-Wu
2009-11-01
This work reports experiments showing that airborne sound propagation can be controlled by temperature gradients. A system of two heated tubes is here used to demonstrate the collimation and focusing of an ultrasonic beam by the refractive index profile created by the temperature gradients existing around the tubes. Numerical simulations supporting the experimental findings are also reported.
Supporting Fourth-Grade Students' Word Identification Using Application Software
ERIC Educational Resources Information Center
Moser, Gary P.; Morrison, Timothy G.; Wilcox, Brad
2017-01-01
A quasi-experimental study examined effects of a 10-week word structure intervention with fourth-grade students. During daily 10-15-minute practice periods, students worked individually with mobile apps focused on specific aspects of word identification. Pre- and post-treatment assessments showed no differences in rate and accuracy of oral reading…
ERIC Educational Resources Information Center
Nunez Esquer, Gustavo; Sheremetov, Leonid
This paper reports on the results and future research work within the paradigm of Configurable Collaborative Distance Learning, called Espacios Virtuales de Apredizaje (EVA). The paper focuses on: (1) description of the main concepts, including virtual learning spaces for knowledge, collaboration, consulting, and experimentation, a…
2009-12-31
materials. The initial work was focused on design and construction of an apparatus for injecting defects into the crystals using PZT ceramics ...in the energy partitioning (Table 2), which offers some insight into the nature of the energetic texture of crystalline materials not apparent in
Faraday's Investigation of Electromagnetic Induction. Experiment No. 21.
ERIC Educational Resources Information Center
Devons, Samuel
This paper focuses on Michael Faraday's experimental research in electricity in the 1830's. Historical notes related to his work are included as well as experiments, his objectives, and illustrations of equipment for the experiments. Examples from his diary are given so that students can attempt to emulate his honest and systematic manner of…
A 6-hour working day--effects on health and well-being.
Akerstedt, T; Olsson, B; Ingre, M; Holmgren, M; Kecklund, G
2001-12-01
The effect of the total amount of work hours and the benefits of a shortening is frequently debated, but very little data is available. The present study compared a group (N = 41) that obtained a 9 h reduction of the working week (to a 6 h day) with a comparison group (N = 22) that retained normal work hours. Both groups were constituted of mainly female health care and day care nursery personnel. The experimental group retained full pay and extra personnel were employed to compensate for loss of hours. Questionnaire data were obtained before and 1 year after the change. The data were analyzed using a two-factor ANOVA with the interaction term year*group as the main focus. The results showed a significant interaction of year*group for social factors, sleep quality, mental fatigue, and heart/respiratory complaints, and attitude to work hours. In all cases the experimental group improved whereas the control group did not change. It was concluded that shortened work hours have clear social effects and moderate effects on well-being.
Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets
NASA Astrophysics Data System (ADS)
Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai
2016-11-01
The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.
Feasibility of MHD submarine propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardini, Tom; Aquila, Andrew; Boutet, Sebastien
Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less
Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review
NASA Astrophysics Data System (ADS)
Lv, Weiqiang; He, Weidong; Wang, Xiaoning; Niu, Yinghua; Cao, Huanqi; Dickerson, James H.; Wang, Zhiguo
2014-02-01
Since Penn et al. first discovered the oriented attachment growth of crystals, the oriented attachment mechanism has now become a major research focus in the crystal field, and extensive efforts have been carried out over the past decade to systematically investigate the growth mechanism and the statistical kinetic models. However, most of the work mainly focuses on the experimental results on the oriented attachment growth. In contrast to the previous reviews, our review provides an overview of the recent theoretical advances in oriented attachment kinetics combined with experimental evidences. After a brief introduction to the van der Waals interaction and Coulombic interaction in a colloidal system, the correlation between the kinetic models of oriented attachment growth and the interactions is then our focus. The impact of in situ experimental observation techniques on the study of oriented attachment growth is examined with insightful examples. In addition, the advances in theoretical simulations mainly investigating the thermodynamic origin of these interactions at the atomic level are reviewed. This review seeks to understand the oriented attachment crystal growth from a kinetic point of view and provide a quantitative methodology to rationally design an oriented attachment system with pre-evaluated crystal growth parameters.
Pardini, Tom; Aquila, Andrew; Boutet, Sebastien; ...
2017-06-15
Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less
Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.
Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M
2013-03-20
Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.
NASA Astrophysics Data System (ADS)
Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.
2015-12-01
The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a function of lithology and loading pulse characteristics.
Sevillano, Enrique; Sun, Rui; Perera, Ricardo
2016-01-01
The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate—PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104
Sevillano, Enrique; Sun, Rui; Perera, Ricardo
2016-05-05
The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate-PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures.
NASA Astrophysics Data System (ADS)
Huismann, Tyler D.
Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous versions of the code assume an unknown dependence between particles' pre-collision velocities and post-collision scattering angles. This dissertation focuses on updating several of these types of collisions by assuming a curve fit based on the measurements of atom-ion interactions, such that previously unknown angular dependences are well-characterized.
Rapid development of Proteomic applications with the AIBench framework.
López-Fernández, Hugo; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Méndez Reboredo, José R; Santos, Hugo M; Carreira, Ricardo J; Capelo-Martínez, José L; Fdez-Riverola, Florentino
2011-09-15
In this paper we present two case studies of Proteomics applications development using the AIBench framework, a Java desktop application framework mainly focused in scientific software development. The applications presented in this work are Decision Peptide-Driven, for rapid and accurate protein quantification, and Bacterial Identification, for Tuberculosis biomarker search and diagnosis. Both tools work with mass spectrometry data, specifically with MALDI-TOF spectra, minimizing the time required to process and analyze the experimental data. Copyright 2011 The Author(s). Published by Journal of Integrative Bioinformatics.
Self-Focusing and the Talbot Effect in Conformal Transformation Optics.
Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining
2017-07-21
Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.
Self-Focusing and the Talbot Effect in Conformal Transformation Optics
NASA Astrophysics Data System (ADS)
Wang, Xiangyang; Chen, Huanyang; Liu, Hui; Xu, Lin; Sheng, Chong; Zhu, Shining
2017-07-01
Transformation optics has been used to propose various novel optical devices. With the help of metamaterials, several intriguing designs, such as invisibility cloaks, have been implemented. However, as the basic units should be much smaller than the working wavelengths to achieve the effective material parameters, and the sizes of devices should be much larger than the wavelengths of illumination to work within the light-ray approximation, it is a big challenge to implement an experimental system that works simultaneously for both geometric optics and wave optics. In this Letter, by using a gradient-index microstructured optical waveguide, we realize a device of conformal transformation optics (CTO) and demonstrate its self-focusing property for geometry optics and the Talbot effect for wave optics. In addition, the Talbot effect in such a system has a potential application to transfer digital information without diffraction. Our findings demonstrate the photon controlling ability of CTO in a feasible experiment system.
High pressure inertial focusing for separating and concentrating bacteria at high throughput
NASA Astrophysics Data System (ADS)
Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.
2017-08-01
Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.
NASA Astrophysics Data System (ADS)
Kluchnikova, O.; Pobegaylov, O.
2017-11-01
The article focuses on the basic theory and practical aspects of the strategic management improving in terms of enhancing the quality of a technological process: these aspects have been proven experimentally by their introduction in company operations. The authors have worked out some proposals aimed at the selection of an optimal supplier for building companies as well as the algorithm for the analysis and optimization of a construction company basing on scientific and practical research as well as on the experimental data obtained in the experiment.
An experimental apparatus for diffraction-limited soft x-ray nano-focusing
NASA Astrophysics Data System (ADS)
Merthe, Daniel J.; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Yuan, Sheng; McKinney, Wayne R.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Rakawa, Senajith B.; Anderson, Erik; Smith, Brian V.; Domning, Edward E.; Warwick, Tony; Padmore, Howard
2011-09-01
Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing. The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. Visible-light long-trace profilometry was used to pre-align the mirror before installation at the beamline. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.
Armored Enzyme Nanoparticles for Remediation of Subsurface Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan S. Dordick; Jay Grate; Jungbae Kim
2007-02-19
The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides;more » or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation. Research at Rensselaer focused on the development of haloalkane dehalogenase as a critical enzyme in the dehalogenation of contaminated materials (ultimately trichloroethylene and related pollutants). A combination of bioinformatic investigation and experimental work was performed. The bioinformatics was focused on identifying a range of dehalogenase enzymes that could be obtained from the known proteomes of major microorganisms. This work identified several candidate enzymes that could be obtained through relatively straightforward gene cloning and expression approaches. The experimental work focused on the isolation of haloalkane dehalogenase from a Xanthobacter species followed by incorporating the enzyme into silicates to form biocatalytic silicates. These are the precursors of SENs. At the conclusion of the study, dehalogenase was incorporated into SENs, although the loading was low. This work supported a single Ph.D. student (Ms. Philippa Reeder) for two years. The project ended prior to her being able to perform substantive bioinformatics efforts that would identify more promising dehalogenase enzymes. The SEN synthesis, however, was demonstrated to be partially successful with dehalogenases. Further work would provide optimized dehalogenases in SENs for use in pollution remission.« less
Generation of nano-voids inside polylactide using femtosecond laser radiation
NASA Astrophysics Data System (ADS)
Viertel, Tina; Pabst, Linda; Olbrich, Markus; Ebert, Robby; Horn, Alexander; Exner, Horst
2017-12-01
The arrangement of nanometer-sized voids, induced by focusing intense laser radiation within transparent material can allow the generation of transparent components with dimensions in the micrometer to nanometre range due to internal contour cut and thus satisfy the progressive miniaturization of products in micro-optics and medical technologies. For further improvements in the precision of those components, a deep understanding of the involved processes during the interaction of laser radiation within the material is necessary. In this work, voids inside bulk polylactide (PLA), a bioabsorbable polymer, were generated using a femtosecond laser ( λ = 1030 nm, τH = 180 fs) with single and multiple pulse irradiation. The dependence of the spot size was examined by the use of four microscope objectives with focus radii of 4.9, 3.3, 2 and 1.2 µm. For the experiments, the pulse energy and focusing depth into the material were varied. The dimensions of the voids were experimentally determined as function of the intensity. Differences in the lateral and axial extents of the voids were obtained for different focus radii and focusing depths at same intensities. Furthermore, the intensity distribution of the laser radiation inside the material for the different focus radii and focusing depths, and their dependence on the lateral and axial sizes of the voids was simulated and compared with the experimental results.
A Report on the Science Summer Camp for the Gifted 9th Grade Students.
ERIC Educational Resources Information Center
Kyeonggi Province Board of Education, Suweon (Republic of Korea).
A summer science camp was held in Korea for 30 ninth grade students gifted in science. Students were divided into three groups (physics, chemistry, and biology) for activities which included problem solving, brainstorming, and experimental work. The experiments of the physics group addressed the use of solar energy, the chemistry group focused on…
2008-03-04
energetic materials. The initial work was focused on design and construction of an apparatus for injecting defects into the crystals using PZT ceramics ...the PIXEL description is of the energetic texture of crystalline materials not apparent in adequate. The next determinant, B, is a clear 0 ..H
ERIC Educational Resources Information Center
Kraft, Matthew A.; Blazar, David
2017-01-01
This article analyzes a coaching model focused on classroom management skills and instructional practices across grade levels and subject areas. We describe the design and implementation of MATCH Teacher Coaching among an initial cohort of 59 teachers working in New Orleans charter schools. We evaluate the effect of the program on teachers'…
Experimental investigation of fire propagation in single live shrubs
Jing Li; Shankar Mahalingam; David R. Weise
2017-01-01
This work focuses broadly on individual, live shrubs and, more specifically, it examines bulk density in chaparral and its combined effects with wind and ignition location on the resulting fire behaviour. Empirical functions to predict bulk density as a function of height for 4-year-old chaparral were developed for two typical species of shrub fuels in southern...
Vivisecting Major: a Victorian gentleman scientist defends animal experimentation, 1876-1885.
Boddice, Rob
2011-06-01
Through an investigation of the public, professional, and private life of the Darwinian disciple George John Romanes, this essay seeks a better understanding of the scientific motivations for defending the practice of vivisection at the height of the controversy in late Victorian Britain. Setting aside a historiography that has tended to focus on the arguments of antivivisectionists, it reconstructs the viewpoint of the scientific community through an examination of Romanes's work to help orchestrate the defense of animal experimentation. By embedding his life in three complicatedly overlapping networks-the world of print, interpersonal communications among an increasingly professionalized body of scientific men, and the intimacies of private life-the essay uses Romanes as a lens with which to focus the physiological apprehension of the antivivisection movement. It is a story of reputation, self-interest, and affection.
Leite-Moreira, Adelino F; Lourenço, André P; Balligand, Jean-Luc; Bauersachs, Johann; Clerk, Angela; De Windt, Leon J; Heymans, Stephane; Hilfiker-Kleiner, Denise; Hirsch, Emilio; Iaccarino, Guido; Kaminski, Karol A; Knöll, Ralph; Mayr, Manuel; Tarone, Guido; Thum, Thomas; Tocchetti, Carlo G
2014-05-01
The right ventricle has become an increasing focus in cardiovascular research. In this position paper, we give a brief overview of the specific pathophysiological features of the right ventricle, with particular emphasis on functional and molecular modifications as well as therapeutic strategies in chronic overload, highlighting the differences from the left ventricle. Importantly, we put together recommendations on promising topics of research in the field, experimental study design, and functional evaluation of the right ventricle in experimental models, from non-invasive methodologies to haemodynamic evaluation and ex vivo set-ups. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.; Huber, Frank W.
1992-01-01
The current status of the activities and future plans of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics is reviewed. The activities of the Turbine Team focus on developing and enhancing codes and models, obtaining data for code validation and general understanding of flows through turbines, and developing and analyzing the aerodynamic designs of turbines suitable for use in the Space Transportation Main Engine fuel and oxidizer turbopumps. Future work will include the experimental evaluation of the oxidizer turbine configuration, the development, analysis, and experimental verification of concepts to control secondary and tip losses, and the aerodynamic design, analysis, and experimental evaluation of turbine volutes.
Reproducible model development in the cardiac electrophysiology Web Lab.
Daly, Aidan C; Clerx, Michael; Beattie, Kylie A; Cooper, Jonathan; Gavaghan, David J; Mirams, Gary R
2018-05-26
The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Supporting Scientific Experimentation and Reasoning in Young Elementary School Students
NASA Astrophysics Data System (ADS)
Varma, Keisha
2014-06-01
Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.
NASA Astrophysics Data System (ADS)
Weber, Michael; Shandas, Robin
2005-11-01
Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.
Experimental investigation of a packed bed thermal energy storage system
NASA Astrophysics Data System (ADS)
Cascetta, Mario; Cau, Giorgio; Puddu, Pierpaolo; Serra, Fabio
2015-11-01
In this work experimental investigations on a thermal energy storage system with a solid material as storage media and air as heat transfer fluid will be presented. The experimental test rig, installed at the DIMCM of the University of Cagliari, consists of a carbon steel tank filled with freely poured alumina beads that allows investigations of heat transfer phenomena in packed beds. The aim of this work is to show the influence of the operating conditions and physical parameters on thermocline formation and, in particular, the thermal behaviour of the thermal energy storage for repeated charging and discharging cycles. Better charging efficiency is obtained for lower values of mass flow rate and maximum air temperature and for increasing aspect ratio. A decreasing influence of the metal wall with continuous operation is also highlighted. In conclusion, the analysis focuses on the thermal hysteresis phenomenon, which causes degradation of the thermocline and the reduction of the energy that can be stored by the accumulator as the repeated number of cycles increases.
Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.
Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa
2018-06-06
Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.
Kinjerski, Val; Skrypnek, Berna J
2008-10-01
The effectiveness of a spirit at work program in long-term care was evaluated using a quasi-experimental, pretest-posttest design. These findings, along with focus group results, provide strong support that the program increased spirit at work, job satisfaction, organizational commitment, and organizational culture (particularly teamwork and morale), leading to a reduction in turnover and absenteeism--two major concerns in the long-term care sector. This study suggests that implementation of a spirit at work program is a relatively inexpensive way to enhance the work satisfaction of employees, increase their commitment to the organization (thus reducing turnover and absenteeism), and ultimately improve the quality of resident care.
Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.
Bednarik, Michal; Cervenka, Milan
2014-03-01
This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.
ERIC Educational Resources Information Center
Sutherland, Robert J.; Sparks, Fraser T.; Lehmann, Hugo
2010-01-01
The properties of retrograde amnesia after damage to the hippocampus have been explicated with some success using a rat model of human medial temporal lobe amnesia. We review the results of this experimental work with rats focusing on several areas of consensus in this growing literature. We evaluate the theoretically significant hypothesis that…
Demonstration of Hydrostatic Paradox with Plastic Bottles and LabQuest Vernier
ERIC Educational Resources Information Center
Kodejška, Cenek
2018-01-01
This work focuses on the experimental demonstration of the hydrostatic paradox using simple tools in the form of plastic bottles and plastic syringes with a thread. For the evaluation of the results obtained the data logger Lab Quest Vernier was used. The construction of the device is presented in the first part of this paper. The second part…
Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)
NASA Technical Reports Server (NTRS)
Herring, Rodney; Tryggvason, Bjarni; Duval, Walter
1998-01-01
Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less
Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study
NASA Astrophysics Data System (ADS)
Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.
2010-04-01
Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.
Achievements of ITEP astrophysicists
NASA Astrophysics Data System (ADS)
Baklanov, P. V.; Blinnikov, S. I.; Manukovskiy, K. V.; Nadyozhin, D. K.; Panov, I. V.; Utrobin, V. P.; Yudin, A. V.
2016-08-01
Astrophysical research at the Institute for Theoretical and Experimental Physics (ITEP) is examined historically over a period of more than 30 years. The primary focus is on the supernova problem, starting with how it was approached in the classical pioneering work of Imshennik and Nadyozhin and ending with present-day models of these most powerful star explosions in the Universe. The paper also reviews work in other areas of astrophysics, including chemical nucleosynthesis, the cosmological use of type-IIn supernovae and dark matter models. The paper was written as a contribution to the 70th anniversary of ITEP.
Work-focused treatment of common mental disorders and return to work: a comparative outcome study.
Lagerveld, Suzanne E; Blonk, Roland W B; Brenninkmeijer, Veerle; Wijngaards-de Meij, Leoniek; Schaufeli, Wilmar B
2012-04-01
The aim of this study was to compare the effectiveness of two individual-level psychotherapy interventions: (a) treatment as usual consisting of cognitive-behavioral therapy (CBT) and (b) work-focused CBT (W-CBT) that integrated work aspects early into the treatment. Both interventions were carried out by psychotherapists with employees on sick leave because of common mental disorders (depression, anxiety, or adjustment disorder). In a quasi-experimental design, 12-month follow-up data of 168 employees were collected. The CBT group consisted of 79 clients, the W-CBT group of 89. Outcome measures were duration until return to work (RTW), mental health problems, and costs to the employer. We found significant effects on duration until RTW in favor of the W-CBT group: full RTW occurred 65 days earlier. Partial RTW occurred 12 days earlier. A significant decrease in mental health problems was equally present in both conditions. The average financial advantage for the employer of an employee in the W-CBT group was estimated at $5,275 U.S. dollars compared with the CBT group. These results show that through focusing more and earlier on work-related aspects and RTW, functional recovery in work can be substantially speeded up within a regular psychotherapeutic setting. This result was achieved without negative side effects on psychological complaints over the course of 1 year. Integrating work-related aspects into CBT is, therefore, a fruitful approach with benefits for employees and employers alike. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels
NASA Astrophysics Data System (ADS)
Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.
2015-04-01
Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.
Experimental study of infrared filaments under different initial conditions
NASA Astrophysics Data System (ADS)
Mirell, Daniel Joseph
In 1964, four years after the first working laser was constructed, long skinny damage tracks and fluorescence trails were seen inside of certain transparent media that were excited by intense light pulses [1]. What was so remarkable about these features was the narrowness of the spatial profile and their long propagation length in the beam in concert with the very high intensity of the light that would be necessary to produce them. A purely linear model of light propagation through such media was insufficient to explain the results of these experiments and hence a new area of nonlinear optics, latex coined filamentation (to describe the length, slimness, and intensity of the light field), was born. Filament studies begin with a medium that has a nonlinear index of refraction, n¯2, that interacts with an intense beam of light so as to cause it to self-focus. The n¯2 of liquid and solid transparent media is much higher than the n¯ 2 of gases and therefore a much higher intensity of laser source would need to be invented to begin the study of filaments in air. With the advent of the Ti-Sapphire Kerr-lens modelocked laser [2], working in combination with the development of the chirped pulse amplifier system in the mid-1990's, light intensities sufficient to produce filaments in air was realized. Since that time much experimental and theoretical work has been done to better understand some of the additional complexities that arise specifically in the filamentation of light in air using several different wavelengths (UV to IR) and pulsewidths (femto- to pico-seconds). Many theoretical models exist each with a different emphasis on the various physical mechanisms that may produce the features experimentally observed in filaments. The experimental work has sought to give the theoretician better data on some of the properties of filaments such as the: (a) spatial and temporal structure of the beam and of the produced plasma (that arises due to the high intensity light field that gives birth to multiphoton and avalanche ionization), (b) conical emission/supercontinuum generation, and (c) emitted THz radiation. The aim of all of this research is to gain a better understanding of filamentation so that we may learn how to control them for the applications of: (a) laser-induced lightning, (b) laser-induced breakdown spectroscopy, (c) LIDAR, (d) medical imaging and many more. In this dissertation we will focus on an experimental study of filamentation in air produced by 780 nm radiation, pulsewidths of 200 fs, and energies pulse of 9 mJ/pulse. We have used an aerodynamic window + vacuum system to study the difference between focusing filament forming pulses down initially in vacuum conditions to that where it is allowed to focus in atmosphere. Described herein is a new way to use an off-the-shelf, inexpensive and robust 1064 nm mirror to observe the beam profile and its evolution in the filament as well as the filaments spectral properties. In addition, experiments to test for the plasma have been conducted. The results of these experiments indicate filament sizes of 200mum, in contrast to the commonly reported value of 100pm. Filaments of this size exist over a length of approximately a meter which is 8 times longer than the associated Rayleigh range for such a spot size with a clear enhancement in filament persistence with the use of the aerodynamic window. In addition the appearance of newly generated "bluer" frequencies that is present under atmospheric focusing is ail but eliminated through an initial focusing of the beam in vacuum conditions. Plasma densities of 1016 e -/cm3 were measured using plasma interferometry.
Preparation of MgB2 superconducting microbridges by focused ion beam direct milling
NASA Astrophysics Data System (ADS)
Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li
2017-01-01
MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.
CDEP Consortium on Ocean Data Assimilation for Seasonal-to-Interannual Prediction (ODASI)
NASA Technical Reports Server (NTRS)
Rienecker, Michele; Zebiak, Stephen; Kinter, James; Behringer, David; Rosati, Antonio; Kaplan, Alexey
2005-01-01
The ODASI consortium is focused activity of the NOAA/OGP/Climate Diagnostics and Experimental Prediction Program with the goal of improving ocean data assimilation methods and their implementations in support of seasonal forecasts with coupled general circulation models. The consortium is undertaking coordinated assimilation experiments, with common forcing data sets and common input data streams. With different assimilation systems and different models, we aim to understand what approach works best in improving forecast skill in the equatorial Pacific. The presentation will provide an overview of the consortium goals and plans and recent results focused towards evaluating data impacts.
A method to enhance the curve negotiation performance of HTS Maglev
NASA Astrophysics Data System (ADS)
Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.
2015-09-01
High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.
NASA Astrophysics Data System (ADS)
Pelamatti, Alice; Goiffon, Vincent; Chabane, Aziouz; Magnan, Pierre; Virmontois, Cédric; Saint-Pé, Olivier; de Boisanger, Michel Breart
2016-11-01
The charge transfer time represents the bottleneck in terms of temporal resolution in Pinned Photodiode (PPD) CMOS image sensors. This work focuses on the modeling and estimation of this key parameter. A simple numerical model of charge transfer in PPDs is presented. The model is based on a Montecarlo simulation and takes into account both charge diffusion in the PPD and the effect of potential obstacles along the charge transfer path. This work also presents a new experimental approach for the estimation of the charge transfer time, called pulsed Storage Gate (SG) method. This method, which allows reproduction of a ;worst-case; transfer condition, is based on dedicated SG pixel structures and is particularly suitable to compare transfer efficiency performances for different pixel geometries.
Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei
2013-08-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.
Heisenberg's error-disturbance relations: A joint measurement-based experimental test
NASA Astrophysics Data System (ADS)
Zhao, Yuan-Yuan; Kurzyński, Paweł; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can
2017-04-01
The original Heisenberg error-disturbance relation was recently shown to be not universally valid and two different approaches to reformulate it were proposed. The first one focuses on how the error and disturbance of two observables A and B depend on a particular quantum state. The second one asks how a joint measurement of A and B affects their eigenstates. Previous experiments focused on the first approach. Here we focus on the second one. First, we propose and implement an extendible method of quantum-walk-based joint measurements of noisy Pauli operators to test the error-disturbance relation for qubits introduced in the work of Busch et al. [Phys. Rev. A 89, 012129 (2014), 10.1103/PhysRevA.89.012129], where the polarization of the single photon, corresponding to a walker's auxiliary degree of freedom that is commonly known as a coin, undergoes a position- and time-dependent evolution. Then we formulate and experimentally test a universally valid state-dependent relation for three mutually unbiased observables. We therefore establish a method of testing error-disturbance relations.
Fovargue, Daniel E.; Mitran, Sorin; Smith, Nathan B.; Sankin, Georgy N.; Simmons, Walter N.; Zhong, Pei
2013-01-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model. PMID:23927200
Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES
NASA Astrophysics Data System (ADS)
Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team
2015-11-01
Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milanese, Maria Magdalena; CONICET - 7000 Tandil
2006-12-04
This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only formore » basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.« less
FY2017 Report on NISC Measurements and Detector Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Madison Theresa; Meierbachtol, Krista Cruse; Jordan, Tyler Alexander
FY17 work focused on automation, both of the measurement analysis and comparison of simulations. The experimental apparatus was relocated and weeks of continuous measurements of the spontaneous fission source 252Cf was performed. Programs were developed to automate the conversion of measurements into ROOT data framework files with a simple terminal input. The complete analysis of the measurement (which includes energy calibration and the identification of correlated counts) can now be completed with a documented process which involves one simple execution line as well. Finally, the hurdles of slow MCNP simulations resulting in low simulation statistics have been overcome with themore » generation of multi-run suites which make use of the highperformance computing resources at LANL. Preliminary comparisons of measurements and simulations have been performed and will be the focus of FY18 work.« less
Experimental Verification of an Instrument to Test Flooring Materials
NASA Astrophysics Data System (ADS)
Philip, Rony; Löfgren, Hans, Dr
2018-02-01
The focus of this work is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor. The main contribution of the present work focus on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model. The finding from this thesis showed that the fluid model works with more elastic model but it doesn’t work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.
The role of sleep in cognitive processing: focusing on memory consolidation.
Chambers, Alexis M
2017-05-01
Research indicates that sleep promotes various cognitive functions, such as decision-making, language, categorization, and memory. Of these, most work has focused on the influence of sleep on memory, with ample work showing that sleep enhances memory consolidation, a process that stores new memories in the brain over time. Recent psychological and neurophysiological research has vastly increased understanding of this process. Such work not only suggests that consolidation relies on plasticity-related mechanisms that reactivate and stabilize memory representations, but also that this process may be experimentally manipulated by methods that target which memory traces are reactivated during sleep. Furthermore, aside from memory storage capabilities, memory consolidation also appears to reorganize and integrate memories with preexisting knowledge, which may facilitate the discovery of underlying rules and associations that benefit other cognitive functioning, including problem solving and creativity. WIREs Cogn Sci 2017, 8:e1433. doi: 10.1002/wcs.1433 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Problems in Microgravity Fluid Mechanics: G-Jitter Convection
NASA Technical Reports Server (NTRS)
Homsy, G. M.
2005-01-01
This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Fu, Qi; Niles, Paul B.
2011-01-01
We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).
Jolesz, Ferenc A; Hynynen, Kullervo; McDannold, Nathan; Freundlich, David; Kopelman, Doron
2004-11-01
A number of minimally invasive methods have been tested for the thermal ablation of liver tumors as an alternative to surgical resection. The use of focused ultrasound transducers to ablate deep tumors offers the first completely noninvasive alternative to these techniques. By increasing the flexibility of this technology with modern phased-array transducer design and by combining it with magnetic resonance imaging for targeting and online guidance, a powerful tool results with the potential to offer treatment to a larger population of patients, to reduce trauma to the patient, and to reduce the cost of treatment. In this article, we review previous work with focused ultrasound in the liver and recent experimental results with magnetic resonance imaging guidance.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
He-3, Pierre Morel and Me—Early Work on Anisotropic Superfluidity
NASA Astrophysics Data System (ADS)
Anderson, Philip W.
2011-08-01
The idea that there are alternative, anisotropic solutions of BCS equations, which might apply to He-3, surfaced independently in at least three places, one of which was Pierre Morel's thesis project (for the ENS, under me at Bell Labs) I was skeptical of quantitative estimates of transition temperatures and instead focused, with Pierre, on conceptual and experimental properties of such states.
ERIC Educational Resources Information Center
Hadley, Alena M.; Mbwana, Kassim; Hair, Elizabeth C.
2010-01-01
Major strides have been made in the field of youth development. However, youth transitioning into adulthood have not received similar attention. These older youth have frequently been overlooked by policymakers and practitioners who have been more focused on designing programs and services for adolescents and young children. Because older youth…
Can the Focus of Attention Accommodate Multiple, Separate Items?
Gilchrist, Amanda L.; Cowan, Nelson
2011-01-01
Researchers of working memory currently debate capacity limits of the focus of attention, the proposed mental faculty in which items are most easily accessed. Cowan (1999) suggested that its capacity is about 4 chunks, whereas others have suggested that its capacity is only 1 chunk. Recently, Oberauer and Bialkova (2009) found evidence that 2 items could reside in the focus of attention, but only because they were combined into a single chunk. We modified their experimental procedure, which depends on a pattern of switch costs, to obtain a situation in which chunking was not likely to occur (i.e., each item remained a separate chunk), and still obtained results consistent with a capacity of at least 2 items. Therefore, either the focus of attention can hold multiple chunks, or the switch cost logic must be reconsidered. PMID:21767065
Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuser, Brent; Stubbins, James; Kozlowski, Tomasz
The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys.more » The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and Be. International fabrication options were explored in Europe and Asia, but this proved to be impractical, if not impossible. Consequently, experimental investigation of the Zr-Be binary system was dropped and exploration binary Zr-Y binary system was initiated. The motivation behind the Zr-Y system is the known thermodynamic stability of yttria over zirconia.« less
HOLONET: a network for training holography
NASA Astrophysics Data System (ADS)
Pombo, Pedro; Santos, Emanuel
2014-07-01
Holography is an optics technique based on wave physics and lasers with several applications at our day life. The production of holograms involves experimental work based on hands-on activities and creativity. All these elements can contribute to the promotion of experimental teaching of optics and training on holography. The hologram itself acting as a final result from a long process of research and study can enable the engagement of high school students on physics and promote the stimulus on optics learning. Taking these assumptions into account a network of schools working on holography was built involving thirty schools from all country. Holography systems were developed and several hands-on activities were constructed. During last sixteen years students are working on laser optics and holography producing different kinds of holograms. This study presents all holography labs implemented at schools and it will analyzed the holography systems and materials developed for students. Training strategy will be discussed and holograms obtained by students will be presented. Results obtained show us that holography can be implemented as a strategy for promoting the learning of optics and it is a particular way to involve students on experimental work and lab research. Results obtained during this study will be presented in detail and analyzed with focus on students performance. Educational results, teachers training, prizes and other positive outcomes will be discussed and compared.
Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; ...
2015-11-16
With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanicsmore » community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.« less
All-dielectric metalens for terahertz wave imaging.
Jiang, Xue; Chen, Hao; Li, Zeyu; Yuan, Hongkuan; Cao, Luyao; Luo, Zhenfei; Zhang, Kun; Zhang, Zhihai; Wen, Zhongquan; Zhu, Li-Guo; Zhou, Xun; Liang, Gaofeng; Ruan, Desheng; Du, Lianghui; Wang, Lingfang; Chen, Gang
2018-05-28
Terahertz wave imaging offers promising properties for non-destructive testing applications in the areas of homeland security, medicine, and industrial inspection. However, conventional optical lenses are heavy and bulky and difficult to integrate. An all-dielectric metasurface provides an attractive way to realize a planar lens of light weight that is ultrathin and offers ease of integration. Terahertz lenses based on various metasurfaces have been studied, especially for the application of wave focusing, while there are few experimental demonstrations of terahertz wave imaging lenses based on an all-dielectric metasurface. In the present work, we propose a metalens based on an all-dielectric metasurface with a sub-wavelength unit size of 0.39λ for terahertz wave imaging and experimentally demonstrate its performance in focusing and imaging. A large numerical aperture metalens was fabricated with a focal length of 300λ, radius of 300λ, and numerical aperture of 0.707. The experimental results show that the lens can focus THz waves with an incident angle up to 48°. More importantly, clear terahertz wave images of different objects were obtained for both different cases of forward- and inverse-incident directions, which demonstrate the reversibility of the metalens for imaging. Such a metalens provides a way for realization of all-planar-lens THz imaging system, and might find application in terahertz wave imaging, information processing, microscopy, and others.
NASA Technical Reports Server (NTRS)
1981-01-01
Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.
Nuclear astrophysics in the laboratory and in the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champagne, A. E., E-mail: artc@physics.unc.edu; Iliadis, C.; Longland, R.
Nuclear processes drive stellar evolution and so nuclear physics, stellar models and observations together allow us to describe the inner workings of stars and their life stories. This Information on nuclear reaction rates and nuclear properties are critical ingredients in addressing most questions in astrophysics and often the nuclear database is incomplete or lacking the needed precision. Direct measurements of astrophysically-interesting reactions are necessary and the experimental focus is on improving both sensitivity and precision. In the following, we review recent results and approaches taken at the Laboratory for Experimental Nuclear Astrophysics (LENA, http://research.physics.unc.edu/project/nuclearastro/Welcome.html )
Sensor-Based Human Activity Recognition in a Multi-user Scenario
NASA Astrophysics Data System (ADS)
Wang, Liang; Gu, Tao; Tao, Xianping; Lu, Jian
Existing work on sensor-based activity recognition focuses mainly on single-user activities. However, in real life, activities are often performed by multiple users involving interactions between them. In this paper, we propose Coupled Hidden Markov Models (CHMMs) to recognize multi-user activities from sensor readings in a smart home environment. We develop a multimodal sensing platform and present a theoretical framework to recognize both single-user and multi-user activities. We conduct our trace collection done in a smart home, and evaluate our framework through experimental studies. Our experimental result shows that we achieve an average accuracy of 85.46% with CHMMs.
A low power ADS for transmutation studies in fast systems
NASA Astrophysics Data System (ADS)
Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria
2017-12-01
In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.
NASA Astrophysics Data System (ADS)
Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can
2016-11-01
In 1935, Einstein, Podolsky and Rosen published their influential paper proposing a now famous paradox (the EPR paradox) that threw doubt on the completeness of quantum mechanics. Two fundamental concepts: entanglement and steering, were given in the response to the EPR paper by Schrodinger, which both reflect the nonlocal nature of quantum mechanics. In 1964, John Bell obtained an experimentally testable inequality, in which its violation contradicts the prediction of local hidden variable models and agrees with that of quantum mechanics. Since then, great efforts have been made to experimentally investigate the nonlocal feature of quantum mechanics and many distinguished quantum properties were observed. In this work, along with the discussion of the development of quantum nonlocality, we would focus on our recent experimental efforts in investigating quantum correlations and their applications with optical systems, including the study of entanglement-assisted entropic uncertainty principle, Einstein-Podolsky-Rosen steering and the dynamics of quantum correlations.
NASA Astrophysics Data System (ADS)
van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis
2014-11-01
In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.
Molecular Mediators Governing Iron-Copper Interactions
Gulec, Sukru; Collins, James F.
2015-01-01
Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states. PMID:24995690
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Rickert, Wilhelm; Müller, Wolfgang H.
2018-03-01
This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is "correct," i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.
THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, A; Caro, M; Lopasso, E M
2005-04-14
The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based onmore » other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.« less
Genomic investigations of evolutionary dynamics and epistasis in microbial evolution experiments.
Jerison, Elizabeth R; Desai, Michael M
2015-12-01
Microbial evolution experiments enable us to watch adaptation in real time, and to quantify the repeatability and predictability of evolution by comparing identical replicate populations. Further, we can resurrect ancestral types to examine changes over evolutionary time. Until recently, experimental evolution has been limited to measuring phenotypic changes, or to tracking a few genetic markers over time. However, recent advances in sequencing technology now make it possible to extensively sequence clones or whole-population samples from microbial evolution experiments. Here, we review recent work exploiting these techniques to understand the genomic basis of evolutionary change in experimental systems. We first focus on studies that analyze the dynamics of genome evolution in microbial systems. We then survey work that uses observations of sequence evolution to infer aspects of the underlying fitness landscape, concentrating on the epistatic interactions between mutations and the constraints these interactions impose on adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Operation, Modeling and Analysis of the Reverse Water Gas Shift Process
NASA Technical Reports Server (NTRS)
Whitlow, Jonathan E.
2001-01-01
The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, D. T.; Shehee, T. C.
2015-08-31
Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence thatmore » other redox active components may have on the oxidation of Am III. Experimental findings indicated that Ce III, Np V, and Ru II are oxidized by peroxydisulfate, but there are no indications that the presence of Ce III, Np V, and Ru II affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.« less
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Catalina, A. V.; Juretzko, Frank R.; Sen, Subhayu; Curreri, P. A.
2003-01-01
The objective of the work on Particle Engulfment and Pushing by Solidifying Interfaces (PEP) include: 1) to obtain fundamental understanding of the physics of particle pushing and engulfment, 2) to develop mathematical models to describe the phenomenon, and 3) to perform critical experiments in the microgravity environment of space to provide benchmark data for model validation. Successful completion of this project will yield vital information relevant to a diverse area of terrestrial applications. With PEP being a long term research effort, this report will focus on advances in the theoretical treatment of the solid/liquid interface interaction with an approaching particle, experimental validation of some aspects of the developed models, and the experimental design aspects of future experiments to be performed on board the International Space Station.
Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion
NASA Astrophysics Data System (ADS)
Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.
2016-10-01
Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.
Study of heating capacity of focused IR light soldering systems.
Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H
2013-10-07
An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices.
Brenninkmeijer, Veerle; Lagerveld, Suzanne E; Blonk, Roland W B; Schaufeli, Wilmar B; Wijngaards-de Meij, Leoniek D N V
2018-02-15
Purpose This study examined who benefits most from a cognitive behavioural therapy (CBT)-based intervention that aims to enhance return to work (RTW) among employees who are absent due to common mental disorders (CMDs) (e.g., depression, anxiety, or adjustment disorder). We researched the influence of baseline work-related self-efficacy and mental health (depressive complaints and anxiety) on treatment outcomes of two psychotherapeutic interventions. Methods Using a quasi-experimental design, 12-month follow-up data of 168 employees were collected. Participants either received work-focused cognitive behavioural therapy (W-CBT) that integrated work aspects early into the treatment (n = 89) or regular cognitive behavioural therapy (R-CBT) without a focus on work (n = 79). Results Compared with R-CBT, W-CBT resulted in a faster partial RTW, irrespective of baseline self-efficacy. Among individuals with high self-efficacy, W-CBT also resulted in faster full RTW. The effectiveness of W-CBT on RTW did not depend on baseline depressive complaints or anxiety. The decline of mental health complaints did not differ between the two interventions, nor depended on baseline self-efficacy or mental health. Conclusions Considering the benefits of W-CBT for partial RTW, we recommend this intervention as a preferred method for employees with CMDs, irrespective of baseline self-efficacy, depression and anxiety. For individuals with high baseline self-efficacy, this intervention also results in higher full RTW. For those with low self-efficacy, extra exercises or components may be needed to promote full RTW.
ERIC Educational Resources Information Center
Faria, Claudia; Pereira, Goncalo; Chagas, Isabel
2012-01-01
The activities presented in this paper are part of a wider project that investigates the effects of infusing the history of science in science teaching, toward students' learning and attitude. Focused on the work of D. Carlos de Braganca, King of Portugal from 1889 to 1908, and a pioneer oceanographer, the activities are addressed at the secondary…
Logistics of Trainsets Creation with the Use of Simulation Models
NASA Astrophysics Data System (ADS)
Sedláček, Michal; Pavelka, Hynek
2016-12-01
This paper focuses on rail transport in following the train formation operational processes problem using computer simulations. The problem has been solved using SIMUL8 and applied to specific train formation station in the Czech Republic. The paper describes a proposal simulation model of the train formation work. Experimental modeling with an assessment of achievements and design solution for optimizing of the train formation operational process is also presented.
NASA Astrophysics Data System (ADS)
Greitzer, E. M.; Tan, C. S.; Graf, M. B.
2004-06-01
Focusing on phenomena important in implementing the performance of a broad range of fluid devices, this work describes the behavior of internal flows encountered in propulsion systems, fluid machinery (compressors, turbines, and pumps) and ducts (diffusers, nozzles and combustion chambers). The book equips students and practicing engineers with a range of new analytical tools. These tools offer enhanced interpretation and application of both experimental measurements and the computational procedures that characterize modern fluids engineering.
Connecting United States Air Force Core Values to Mission Accomplishment
2014-06-04
making ( Kohlberg , 2008), to published works with a specific focus on ethics in the Air Force. The case studies referenced throughout the paper are used...useful backdrop for solving this problem. Lawrence Kohlberg , an American psychologist, experimentally derived a model for moral development based...on the cognitive reasoning one employs in making moral decisions and solving ethical quandaries ( Kohlberg , 2008). How one thinks through moral and
NASA Astrophysics Data System (ADS)
Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik
2018-05-01
The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.
Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen
2015-09-20
Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.
Sharp acoustic vortex focusing by Fresnel-spiral zone plates
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Romero-García, Vicent; García-Raffi, Luis M.; Camarena, Francisco; Staliunas, Kestutis
2018-05-01
We report the optimal focusing of acoustic vortex beams by using flat lenses based on a Fresnel-spiral diffraction grating. The flat lenses are designed by spiral-shaped Fresnel zone plates composed of one or several arms. The constructive and destructive interferences of the diffracted waves by the spiral grating result in sharp acoustic vortex beams, following the focal laws obtained in analogy with the Fresnel zone plate lenses. In addition, we show that the number of arms determines the topological charge of the vortex, allowing the precise manipulation of the acoustic wave field by flat lenses. The experimental results in the ultrasonic regime show excellent agreement with the theory and full-wave numerical simulations. A comparison with beam focusing by Archimedean spirals also showing vortex focusing is given. The results of this work may have potential applications for particle trapping, ultrasound therapy, imaging, or underwater acoustic transmitters.
Trujillo, Carlos; Garcia-Sucerquia, Jorge
2015-06-01
A comparative analysis of the performance of the modified enclosed energy (MEE) method for self-focusing holograms recorded with digital lensless holographic microscopy is presented. Notwithstanding the MEE analysis previously published, no extended analysis of its performance has been reported. We have tested the MEE in terms of the minimum axial distance allowed between the set of reconstructed holograms to search for the focal plane and the elapsed time to obtain the focused image. These parameters have been compared with those for some of the already reported methods in the literature. The MEE achieves better results in terms of self-focusing quality but at a higher computational cost. Despite its longer processing time, the method remains within a time frame to be technologically attractive. Modeled and experimental holograms have been utilized in this work to perform the comparative study.
Williams, Paige; Kern, Margaret L; Waters, Lea
2016-01-01
Employee psychological capital (PsyCap), perceptions of organizational virtue (OV), and work happiness have been shown to be associated within and over time. This study examines selective exposure and confirmation bias as potential processes underlying PsyCap, OV, and work happiness associations. As part of a quasi-experimental study design, school staff (N = 69) completed surveys at three time points. After the first assessment, some staff (n = 51) completed a positive psychology training intervention. Results of descriptive statistics, correlation, and regression analyses on the intervention group provide some support for selective exposure and confirmation bias as explanatory mechanisms. In focusing on the processes through which employee attitudes may influence work happiness this study advances theoretical understanding, specifically of selective exposure and confirmation bias in a field study context.
University of Oklahoma - High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skubic, Patrick L.
2013-07-31
The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS,more » of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances, or at the very highest energies. The outcomes of the group's combined experimental and theoretical research will be an improved understanding of nature, at the highest energies reachable, from which applications to technological innovation will surely result, as they always have from such studies in the past.« less
Hybrid rocket engine, theoretical model and experiment
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Extended depth of field integral imaging using multi-focus fusion
NASA Astrophysics Data System (ADS)
Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua
2018-03-01
In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.
Bailey, Susan F; Bataillon, Thomas
2016-01-01
There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Surgical simulation training in orthopedics: current insights.
Kalun, Portia; Wagner, Natalie; Yan, James; Nousiainen, Markku T; Sonnadara, Ranil R
2018-01-01
While the knowledge required of residents training in orthopedic surgery continues to increase, various factors, including reductions in work hours, have resulted in decreased clinical learning opportunities. Recent work suggests residents graduate from their training programs without sufficient exposure to key procedures. In response, simulation is increasingly being incorporated into training programs to supplement clinical learning. This paper reviews the literature to explore whether skills learned in simulation-based settings results in improved clinical performance in orthopedic surgery trainees. A scoping review of the literature was conducted to identify papers discussing simulation training in orthopedic surgery. We focused on exploring whether skills learned in simulation transferred effectively to a clinical setting. Experimental studies, systematic reviews, and narrative reviews were included. A total of 15 studies were included, with 11 review papers and four experimental studies. The review articles reported little evidence regarding the transfer of skills from simulation to the clinical setting, strong evidence that simulator models discriminate among different levels of experience, varied outcome measures among studies, and a need to define competent performance in both simulated and clinical settings. Furthermore, while three out of the four experimental studies demonstrated transfer between the simulated and clinical environments, methodological study design issues were identified. Our review identifies weak evidence as to whether skills learned in simulation transfer effectively to clinical practice for orthopedic surgery trainees. Given the increased reliance on simulation, there is an immediate need for comprehensive studies that focus on skill transfer, which will allow simulation to be incorporated effectively into orthopedic surgery training programs.
Introduction to the internal fluid mechanics research session
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Povinelli, Louis A.
1990-01-01
Internal fluid mechanics research at LeRC is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The following three papers summarize ongoing work and indicate future emphasis in three major research thrusts: inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows. The underlying goal of the research in each of these areas is to bring internal computational fluid mechanic to a state of practical application for aerospace propulsion systems. Achievement of this goal requires that carefully planned and executed experiments be conducted in order to develop and validate useful codes. It is critical that numerical code development work and experimental work be closely coupled. The insights gained are represented by mathematical models that form the basis for code development. The resultant codes are then tested by comparing them with appropriate experiments in order to ensure their validity and determine their applicable range. The ultimate user community must be a part of this process to assure relevancy of the work and to hasten its practical application. Propulsion systems are characterized by highly complex and dynamic internal flows. Many complex, 3-D flow phenomena may be present, including unsteadiness, shocks, and chemical reactions. By focusing on specific portions of a propulsion system, it is often possible to identify the dominant phenomena that must be understood and modeled for obtaining accurate predictive capability. The three major research thrusts serve as a focus leading to greater understanding of the relevant physics and to an improvement in analytic tools. This in turn will hasten continued advancements in propulsion system performance and capability.
Nuclear Criticality Experimental Research Center (NCERC) Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk
The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less
Chang, Po-Ju; Bae, So Young
2017-07-11
Studies have shown that family and work spillover affects well-being and that leisure activities can alleviate the negative effects of work-related stress on health. However, few studies have focused on investigating the effects of specific leisure activities among specific populations. To examine whether leisure activities in green spaces can promote individual recovery processes and alleviate the effects of work and family spillover on positive emotions, this study applied the effort-recovery model to a population of working mothers. Through online and paper questionnaires, sample data were collected from 221 working mothers in Taiwan. Structural equation modeling was used to test the experimental hypothesis, and mediation analysis was used to determine whether leisure in green spaces is a mediating factor. The results indicated that leisure in green spaces is a mediator of the relationship of negative work and family spillover with positive emotions. In addition, strolls and park visits were found to provide greater psychological benefits to working mothers, compared with picnics.
Liu, Chao; Hu, Guoqing; Jiang, Xingyu; Sun, Jiashu
2015-02-21
Inertial microfluidics has emerged as an important tool for manipulating particles and cells. For a better design of inertial microfluidic devices, we conduct 3D direct numerical simulations (DNS) and experiments to determine the complicated dependence of focusing behaviour on the particle size, channel aspect ratio, and channel Reynolds number. We find that the well-known focusing of the particles at the two centers of the long channel walls occurs at a relatively low Reynolds number, whereas additional stable equilibrium positions emerge close to the short walls with increasing Reynolds number. Based on the numerically calculated trajectories of particles, we propose a two-stage particle migration which is consistent with experimental observations. We further present a general criterion to secure good focusing of particles for high flow rates. This work thus provides physical insight into the multiplex focusing of particles in rectangular microchannels with different geometries and Reynolds numbers, and paves the way for efficiently designing inertial microfluidic devices.
Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun
2011-07-21
Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.
PACS—Realization of an adaptive concept using pressure actuated cellular structures
NASA Astrophysics Data System (ADS)
Gramüller, B.; Boblenz, J.; Hühne, C.
2014-10-01
A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.
LaDisa, John F.; Taylor, Charles A.; Feinstein, Jeffrey A.
2010-01-01
Coarctation of the aorta (CoA) is often considered a relatively simple disease, but long-term outcomes suggest otherwise as life expectancies are decades less than in the average population and substantial morbidity often exists. What follows is an expanded version of collective work conducted by the authors’ and numerous collaborators that was presented at the 1st International Conference on Computational Simulation in Congenital Heart Disease pertaining to recent advances for CoA. The work begins by focusing on what is known about blood flow, pressure and indices of wall shear stress (WSS) in patients with normal vascular anatomy from both clinical imaging and the use of computational fluid dynamics (CFD) techniques. Hemodynamic alterations observed in CFD studies from untreated CoA patients and those undergoing surgical or interventional treatment are subsequently discussed. The impact of surgical approach, stent design and valve morphology are also presented for these patient populations. Finally, recent work from a representative experimental animal model of CoA that may offer insight into proposed mechanisms of long-term morbidity in CoA is presented. PMID:21152106
Coherent resonance stop bands in alternating gradient beam transport
NASA Astrophysics Data System (ADS)
Ito, K.; Okamoto, H.; Tokashiki, Y.; Fukushima, K.
2017-06-01
An extensive experimental study is performed to confirm fundamental resonance bands of an intense hadron beam propagating through an alternating gradient linear transport channel. The present work focuses on the most common lattice geometry called "FODO" or "doublet" that consists of two quadrupoles of opposite polarities. The tabletop ion-trap system "S-POD" (Simulator of Particle Orbit Dynamics) developed at Hiroshima University is employed to clarify the parameter-dependence of coherent beam instability. S-POD can provide a non-neutral plasma physically equivalent to a charged-particle beam in a periodic focusing potential. In contrast with conventional experimental approaches relying on large-scale machines, it is straightforward in S-POD to control the doublet geometry characterized by the quadrupole filling factor and drift-space ratio. We verify that the resonance feature does not essentially change depending on these geometric factors. A few clear stop bands of low-order resonances always appear in the same pattern as previously found with the sinusoidal focusing model. All stop bands become widened and shift to the higher-tune side as the beam density is increased. In the space-charge-dominated regime, the most dangerous stop band is located at the bare betatron phase advance slightly above 90 degrees. Experimental data from S-POD suggest that this severe resonance is driven mainly by the linear self-field potential rather than by nonlinear external imperfections and, therefore, unavoidable at high beam density. The instability of the third-order coherent mode generates relatively weak but noticeable stop bands near the phase advances of 60 and 120 degrees. The latter sextupole stop band is considerably enhanced by lattice imperfections. In a strongly asymmetric focusing channel, extra attention may have to be paid to some coupling resonance lines induced by the Coulomb potential. Our interpretations of experimental data are supported by theoretical predictions and systematic multiparticle simulations.
Boersma, P; Dröes, R M; Lissenberg-Witte, B I; van Meijel, B; van Weert, J C M
2017-12-01
Person-centered care interventions can improve the quality of life and decrease behavioral problems of people with dementia. Although not convincingly proven, person-centered care interventions may benefit the caregivers as well. This study aims to gain insight into how working with the Veder Contact Method (VCM) - a new person-centered care method - influences the job satisfaction of caregivers. Within a quasi-experimental study, the job satisfaction of caregivers of six experimental wards (n = 75) was compared with caregivers of six control wards (n = 36) that applied Care-As-Usual. The Leiden Quality of Work Questionnaire (LQWQ) was filled in by caregivers in both conditions. Additionally, on the experimental wards, qualitative research, i.e. focus groups with 42 caregivers and interviews with 11 managers, was conducted to obtain a deeper understanding of the influence of applying VCM on caregivers' job satisfaction. The transcripts were analyzed using deductive analysis. No quantitatively significant differences were found on the subscales of the LQWQ: work and time pressure, job satisfaction, autonomous decision making, social support from colleagues, and social support from supervisors. From the qualitative research, some caregivers and managers reported that implementing VCM contributed to their job satisfaction and that applying VCM supported handling difficult behavior and depressed mood of residents and contributed to team building. No significant effects on job satisfaction were demonstrated. Qualitative findings indicate that VCM positively influences the daily work performances of nursing home caregivers. The relation between the experience of offering quality care and job satisfaction of caregivers needs further investigation.
Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato
NASA Astrophysics Data System (ADS)
Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif
2016-03-01
In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.
NASA Astrophysics Data System (ADS)
Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.
2017-01-01
Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.
Jet Measurements for Development of Jet Noise Prediction Tools
NASA Technical Reports Server (NTRS)
Bridges, James E.
2006-01-01
The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.
SVM based colon polyps classifier in a wireless active stereo endoscope.
Ayoub, J; Granado, B; Mhanna, Y; Romain, O
2010-01-01
This work focuses on the recognition of three-dimensional colon polyps captured by an active stereo vision sensor. The detection algorithm consists of SVM classifier trained on robust feature descriptors. The study is related to Cyclope, this prototype sensor allows real time 3D object reconstruction and continues to be optimized technically to improve its classification task by differentiation between hyperplastic and adenomatous polyps. Experimental results were encouraging and show correct classification rate of approximately 97%. The work contains detailed statistics about the detection rate and the computing complexity. Inspired by intensity histogram, the work shows a new approach that extracts a set of features based on depth histogram and combines stereo measurement with SVM classifiers to correctly classify benign and malignant polyps.
Awh, E; Anllo-Vento, L; Hillyard, S A
2000-09-01
We investigated the hypothesis that the covert focusing of spatial attention mediates the on-line maintenance of location information in spatial working memory. During the delay period of a spatial working-memory task, behaviorally irrelevant probe stimuli were flashed at both memorized and nonmemorized locations. Multichannel recordings of event-related potentials (ERPs) were used to assess visual processing of the probes at the different locations. Consistent with the hypothesis of attention-based rehearsal, early ERP components were enlarged in response to probes that appeared at memorized locations. These visual modulations were similar in latency and topography to those observed after explicit manipulations of spatial selective attention in a parallel experimental condition that employed an identical stimulus display.
Space Flight Cable Model Development
NASA Technical Reports Server (NTRS)
Spak, Kaitlin
2013-01-01
This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.
NASA Astrophysics Data System (ADS)
Timoumi, S.; Zagrouba, F.; Mihoubi, D.; Tlili, M. M.
2004-12-01
This work is focused on some properties of dried apple (Red Chief) and carrot (Misky). Water sorption isotherms of carrot and apple were investigated at three temperatures: 30, 40 and 60°C, corresponding to drying temperatures, by the static method consisting of the use of different sulphuric acid solutions. Guggenheim-Anderson-de Boer (G.A.B) model is found to describe the experimental curves better than Henderson, Hasley and Oswin models with a correlation coefficient superior to 0.97 for both products. The hysteresis phenomenon was clearly observed in the case of apple isotherms. The experimental data were also used to determine the isosteric enthalpy of desorption of apple and carrot. The isosteric enthalpy of desorption decreased with increase in moisture content and the trend became asymptotic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Carl R.
Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less
Chang, Po-Ju; Bae, So Young
2017-01-01
Studies have shown that family and work spillover affects well-being and that leisure activities can alleviate the negative effects of work-related stress on health. However, few studies have focused on investigating the effects of specific leisure activities among specific populations. To examine whether leisure activities in green spaces can promote individual recovery processes and alleviate the effects of work and family spillover on positive emotions, this study applied the effort-recovery model to a population of working mothers. Through online and paper questionnaires, sample data were collected from 221 working mothers in Taiwan. Structural equation modeling was used to test the experimental hypothesis, and mediation analysis was used to determine whether leisure in green spaces is a mediating factor. The results indicated that leisure in green spaces is a mediator of the relationship of negative work and family spillover with positive emotions. In addition, strolls and park visits were found to provide greater psychological benefits to working mothers, compared with picnics. PMID:28696388
NASA Astrophysics Data System (ADS)
Belyaev, Vadim S.; Guterman, Vitaly Y.; Ivanov, Anatoly V.
2004-06-01
The report presents the theoretical and experimental results obtained during the first year of the ISTC project No. 1926. The energy and temporal characteristics of the laser radiation necessary to ignite the working components mixture in a rocket engine combustion chamber have been predicted. Two approaches have been studied: the optical gas fuel laser-induced breakdown; the laser-initiated plasma torch on target surface. The possibilities and conditions of the rocket fuel components ignition by a laser beam in the differently designed combustion chambers have been estimated and studied. The comparative analysis shows that both the optical spark and light focusing on target techniques can ignite the mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, J; Cahill, DG; Hidrovo, CH
2014-07-23
In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methodsmore » for phase change heat transfer.« less
A potential method for lift evaluation from velocity field data
NASA Astrophysics Data System (ADS)
de Guyon-Crozier, Guillaume; Mulleners, Karen
2017-11-01
Computing forces from velocity field measurements is one of the challenges in experimental aerodynamics. This work focuses on low Reynolds flows, where the dynamics of the leading and trailing edge vortices play a major role in lift production. Recent developments in 2D potential flow theory, using discrete vortex models, have shown good results for unsteady wing motions. A method is presented to calculate lift from experimental velocity field data using a discrete vortex potential flow model. The model continuously adds new point vortices at leading and trailing edges whose circulations are set directly from vorticity measurements. Forces are computed using the unsteady Blasius equation and compared with measured loads.
Transport Studies of Quantum Magnetism: Physics and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Minhyea
The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project'smore » initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy excitation, e.g. Majorana fermions.« less
Recommender systems in knowledge-mining
NASA Astrophysics Data System (ADS)
Volna, Eva
2017-07-01
The subject of the paper is to analyse the possibilities of application of recommender systems in the field of data mining. The work focuses on three basic types of recommender systems (collaborative, content-based and hybrid). The goal of the article is to evaluate which of these three concepts of recommender systems provides forecast with the lowest error rate in the domain of recommending movies. This target is fulfilled by the practical part of the work - at first, the own recommender system was designed and created, capable of obtaining movies recommendation from the database based on the user's preferences. Next, we verified experimentally which recommender system produces more accurate results.
Operational characteristics of a high voltage dense plasma focus
NASA Astrophysics Data System (ADS)
Woodall, D. M.
1985-11-01
A high voltage dense plasma focus powered by a single stage Marx bank was designed, built and operated. The maximum bank parameters are: voltage--120 kV, energy--20 kJ, short circuit current--600kA. The bank impedance is about 200 millohms. The plasma focus center electrode diameter is 1.27 cm. The outer electrode diameter is 10.16 cm. Rundown length is about 10 cm, corresponding to a bank quarter period of about 900 millohms ns. Rundown L is about 50 milliohms. The context of this work is established with a review of previous plasma focus theoretical, experimental and computational work and related topics. Theoretical motivation for high voltage operation is presented. The design, construction and operation of this device are discussed in detail. Results and analysis of measurements obtained are presented. Device operation was investigated primarily at 80 kV (9 kJ), with a gas fill of about 1 torr H2, plus 3-5 percent A. The following diagnostics were used: gun voltage and current measurements; filtered, time resolved x ray PIN measurements of the pinch region; time integrated x ray pinhole photographs of the pinch region; fast frame visible light photographs of the sheath during rundown; and B probe measurements of the current sheath shortly before collapse.
NASA Astrophysics Data System (ADS)
Zin, M. F. M.; Baijan, A. H.; Damideh, V.; Hashim, S. A.; Sabri, R. M.
2017-03-01
In this work, preliminary results of MNA-PF device as a Slow Focus Mode device are presented. Four different kinds of Rogowski Coils which have been designed and constructed for dI/dt signals measurements show that response frequency of Rogowski Coil can affect signal time resolution and delay which can change the discharge circuit inductance. Experimental results for 10 to 20 mbar Deuterium and 0.5 mbar to 6 mbar Argon which are captured by 630 MHz Rogowski coil in correlation with Lee Model Code are presented. Proper current fitting using Lee Model Code shows that the speed factor for MNA-PF device working with 13 mbar Deuterium is 30 kA/cm.torr1/2 at 14 kV which indicates that the device is operating at slow focus mode. Model parameters fm and fmr predicted by Lee Model Code during current fitting for 13 mbar Deuterium at 14kV were 0.025 and 0.31 respectively. Microspec-4 Neutron Detector was used to obtain the dose rate which was found to be maximum at 4.78 uSv/hr and also the maximum neutron yield calculated from Lee Model Code is 7.5E+03 neutron per shot.
Localized Fault Recovery for Nested Fork-Join Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kestor, Gokcen; Krishnamoorthy, Sriram; Ma, Wenjing
Nested fork-join programs scheduled using work stealing can automatically balance load and adapt to changes in the execution environment. In this paper, we design an approach to efficiently recover from faults encountered by these programs. Specifically, we focus on localized recovery of the task space in the presence of fail-stop failures. We present an approach to efficiently track, under work stealing, the relationships between the work executed by various threads. This information is used to identify and schedule the tasks to be re-executed without interfering with normal task execution. The algorithm precisely computes the work lost, incurs minimal re-execution overhead,more » and can recover from an arbitrary number of failures. Experimental evaluation demonstrates low overheads in the absence of failures, recovery overheads on the same order as the lost work, and much lower recovery costs than alternative strategies.« less
A new application of PVDF line-focus transducers on measuring dispersion curves of a layered medium
NASA Astrophysics Data System (ADS)
Lee, Yung-Chun; Ko, Shin-Pin
2000-05-01
In the past few years, PVDF line-focus acoustic transducers have been proven to be a useful and convenient tool for accurately measuring surface wave velocity. The transducer is very easy to construct and the measurement system can be readily established with conventional ultrasonic instruments. In this investigation, however, the capability of PVDF line-focus transducers will be further extended to the measurement of dispersion relation of surface acoustic waves of a layered medium. To achieve this, a number of line-focus transducers are first fabricated with PVDF films of various thickness so that they can operate at different frequencies. Experimental testing on these transducers shows that surface acoustic waves of frequency ranging from 2 MHz to 20 MHz can be effectively generated and detected. For the determination of surface wave velocity as a function of frequency, a new method of processing the measured waveforms during a z-direction defocusing measurements is developed. A mathematical model is given to explain how this method works. With the transducers and the analyzing method, the surface wave dispersion relation of a layer/substrate configuration have been experimentally determined. Samples include thick polymeric films as well as metal films deposited on glass, aluminum, and silicon crystal. Possibility of determining material properties of the layers from the measured dispersion curves will be discussed.
"Enfant Terrible": Lancelot Hogben's Life and Work in the 1920s.
Erlingsson, Steindór J
2016-08-01
Until recently the British zoologist Lancelot Hogben (1895-1975) has usually appeared as a campaigning socialist, an anti-eugenicist or a popularizer of science in the literature. The focus has mainly been on Hogben after he became a professor of social biology at the London School of Economics in 1930. This paper focuses on Hogben's life in the 1920s. Early in the decade, while based in London, he focused on cytology, but in 1922, after moving to Edinburgh, he turned his focus on experimental zoology, first concentrating on vertebrate endocrinology and later moving over to the comparative physiology of invertebrate muscle. In the early 1920s Hogben played an active role in the development of experimental zoology in Britain. As such he was a fearless critic of evolutionary and metaphysical speculations. But in this period Hogben's career prospects were seriously hampered by his confrontational nature and serious depression. As a result he was forced to leave Britain in 1925. He first accepted a position in Canada and in the period 1927-1930 he was a professor of zoology in South Africa. This paper will also add crucial new material to James Tabery's recent discussion of the history behind Hogben's ideas about the interaction of heredity and environment in individual development. In addition a previously unknown Lamarckian controversy will be discussed.
NASA Astrophysics Data System (ADS)
Yang, Qiang; Xu, Xiao; Lai, Puxiang; Sang, Xinzhu; Wang, Lihong V.
2014-03-01
Focusing light inside highly scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging, manipulation, and therapy. This challenge can be overcome by time reversing ultrasonically encoded (TRUE) diffuse light to the ultrasonic focus inside a turbid medium. In TRUE optical focusing, a photorefractive crystal or polymer is used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the response time of the photorefractive material, is used to encode the diffuse light. With this long ultrasound burst, the resolution of the TRUE focus along the acoustic axis is poor. In this work, we used two transducers, emitting two intersecting ultrasound beams at 3.4 MHz and 3.6 MHz respectively, to modulate the diffuse light within their intersection volume at the beat frequency. We show that light encoded at the beat frequency can be time-reversed and converge to the intersection volume. Experimentally, TRUE focusing with an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with the theoretical estimation.
Molecular Dynamics Studies of Proton Transport in Hydrogenase and Hydrogenase Mimics.
Ginovska, B; Raugei, S; Shaw, W J
2016-01-01
There is extensive interest in hydrogenases based on their ability to rapidly and efficiently interconvert H2 with protons and electrons, and their (typically) superior function relative to molecular mimics. Understanding the function of enzymes is one approach to implementing design features to make better catalysts and is an approach we have implemented in our work. In this review, we will discuss our efforts to develop design principles from enzymes, with specific focus on proton transport. We will also present computational studies of the mimics we have investigated with similar methodologies. We will discuss the mechanisms used by small scaffolds on molecular mimics which in many cases are surprisingly similar to those used by nature, while in other cases, computational analysis allowed us to reveal an unexpected role. Computational methods provide one of the best ways, and in some cases, the only way, to gain insight into the mechanistic details of enzymes. In this review, we illustrate the general computational strategy we used to study the proton pathway of [FeFe]-hydrogenase, and the similar strategy to investigate small molecules. We present the main results we obtained and how our computational work stimulated or worked in concert with experimental investigations. We also focus on estimation of errors and convergence of properties in the simulations. These studies demonstrate the powerful results that can be obtained by the close pairing of experimental and theoretical approaches. Copyright © 2016 Elsevier Inc. All rights reserved. Battelle, operator of PNNL, under Contract No: DE-AC05-76RL01830 with US DoE.
Self-organization of magnetic particles at fluid interfaces
NASA Astrophysics Data System (ADS)
Belkin, Maxim
Understanding principles that govern emergent behavior in systems with complex interactions has puzzled scientists for many years. In my work I studied seemingly simple but highly non-trivial system of magnetic micro-particles suspended at fluid interface and energized by an external vertical AC magnetic field. It can be considered as a prototype for probing the interplay of individual interactions on the collective response of system to the external driving. The first part of this work is focused on experimental study of self-organization in this system. In a certain region of parameters formation of localized snake-like structures with accompanying large-scale symmetric surface flows is observed. Characteristics of the self-organized structure as well as flows strongly depend on parameters of the external driving. Increased driving leads to a spontaneous symmetry breaking of the surface flows which results in a self-propulsion of the "snake". This observation leads to an idea of controlled design of a self-propelled swimmer. Numerical calculations based on a phenomenological model proposed for the description of such system successfully reproduces self-organization of the snake-like structures, self-propulsion under spontaneous and artificial symmetry breaking. Increase in the number of the particles promotes a formation of multiple snakes which are in turn unstable with respect to self-induced flows and become mobile swimmers. Such ensemble effectively mixes the surface of liquid. Experimental study of such two-dimensional mixing is the focus of the second part of this work. Results of molecular-dynamics simulations based on proposed theoretical model are reported.
Williams, Paige; Kern, Margaret L.; Waters, Lea
2016-01-01
Employee psychological capital (PsyCap), perceptions of organizational virtue (OV), and work happiness have been shown to be associated within and over time. This study examines selective exposure and confirmation bias as potential processes underlying PsyCap, OV, and work happiness associations. As part of a quasi-experimental study design, school staff (N = 69) completed surveys at three time points. After the first assessment, some staff (n = 51) completed a positive psychology training intervention. Results of descriptive statistics, correlation, and regression analyses on the intervention group provide some support for selective exposure and confirmation bias as explanatory mechanisms. In focusing on the processes through which employee attitudes may influence work happiness this study advances theoretical understanding, specifically of selective exposure and confirmation bias in a field study context. PMID:27378978
NASA Astrophysics Data System (ADS)
Park, Wonyong; Song, Jinwoong
2018-03-01
There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H; Elias, Jeff; Pauly, Kim Butts
2016-09-01
In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. The simulated skull efficiency using individual-specific heterogeneous models predicts well (R(2) = 0.84) the experimental energy efficiency. This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H.; Elias, Jeff; Pauly, Kim Butts
2016-01-01
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R2 = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible. PMID:27587047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni,
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen humanmore » subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.« less
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-01
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results.
Dynamic Investigation of Static Divergence: Analysis and Testing
NASA Technical Reports Server (NTRS)
Heeg, Jennifer
2000-01-01
The phenomenon known as aeroelastic divergence is the focus of this work. The analyses and experiment presented here show that divergence can occur without a structural dynamic mode losing its oscillatory nature. Aeroelastic divergence occurs when the structural restorative capability or stiffness of a structure is overwhelmed by the static aerodynamic moment. This static aeroelastic coupling does not require the structural dynamic system behavior to cease, however. Aeroelastic changes in the dynamic mode behavior are governed not only by the stiffness, but by damping and inertial properties. The work presented here supports these fundamental assertions by examining a simple system: a typical section airfoil with only a rotational structural degree of freedom. Analytical results identified configurations that exhibit different types of dynamic mode behavior as the system encounters divergence. A wind tunnel model was designed and tested to examine divergence experimentally. The experimental results validate the analytical calculations and explicitly examine the divergence phenomenon where the dynamic mode persists. Three configurations of the wind tunnel model were tested. The experimental results agree very well with the analytical predictions of subcritical characteristics, divergence velocity, and behavior of the noncritical dynamic mode at divergence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, M; Browand, F; Flowers, D
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at University of Southern California, Los Angeles, California on July 30, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results and the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Sandia Model. Much ofmore » the meeting discussion involved the NASA Ames 7 ft x 10 ft wind tunnel tests and the need for documentation of the results. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, USC, and California Institute of Technology (Caltech). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.« less
The fundamental surface science of wurtzite gallium nitride
NASA Astrophysics Data System (ADS)
Bermudez, V. M.
2017-09-01
A review is presented that covers the experimental and theoretical literature relating to the preparation, electronic structure and chemical and physical properties of the surfaces of the wurtzite form of GaN. The discussion includes the adsorption of various chemical elements and of inorganic, organometallic and organic species. The focus is on work that contributes to a microscopic, atomistic understanding of GaN surfaces and interfaces, and the review concludes with an assessment of possible future directions.
Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNSmore » users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.« less
Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzec, B.
1996-05-01
The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNSmore » users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.« less
NASA Astrophysics Data System (ADS)
Clawson, Wesley Patrick
Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.
Investigation of Portevin-Le Chatelier effect in 5456 Al-based alloy using digital image correlation
NASA Astrophysics Data System (ADS)
Cheng, Teng; Xu, Xiaohai; Cai, Yulong; Fu, Shihua; Gao, Yue; Su, Yong; Zhang, Yong; Zhang, Qingchuan
2015-02-01
A variety of experimental methods have been proposed for Portevin-Le Chatelier (PLC) effect. They mainly focused on the in-plane deformation. In order to achieve the high-accuracy measurement, three-dimensional digital image correlation (3D-DIC) was employed in this work to investigate the PLC effect in 5456 Al-based alloy. The temporal and spatial evolutions of deformation in the full field of specimen surface were observed. The large deformation of localized necking was determined experimentally. The distributions of out-of-plane displacement over the loading procedure were also obtained. Furthermore, a comparison of measurement accuracy between two-dimensional digital image correlation (2D-DIC) and 3D-DIC was also performed. Due to the theoretical restriction, the measurement accuracy of 2D-DIC decreases with the increase of deformation. A maximum discrepancy of about 20% with 3D-DIC was observed in this work. Therefore, 3D-DIC is actually more essential for the high-accuracy investigation of PLC effect.
Investigation of Dalton and Amagat's laws for gas mixtures with shock propagation
NASA Astrophysics Data System (ADS)
Wayne, Patrick; Trueba Monje, Ignacio; Yoo, Jason H.; Truman, C. Randall; Vorobieff, Peter
2016-11-01
Two common models describing gas mixtures are Dalton's Law and Amagat's Law (also known as the laws of partial pressures and partial volumes, respectively). Our work is focused on determining the suitability of these models to prediction of effects of shock propagation through gas mixtures. Experiments are conducted at the Shock Tube Facility at the University of New Mexico (UNM). To validate experimental data, possible sources of uncertainty associated with experimental setup are identified and analyzed. The gaseous mixture of interest consists of a prescribed combination of disparate gases - helium and sulfur hexafluoride (SF6). The equations of state (EOS) considered are the ideal gas EOS for helium, and a virial EOS for SF6. The values for the properties provided by these EOS are then used used to model shock propagation through the mixture in accordance with Dalton's and Amagat's laws. Results of the modeling are compared with experiment to determine which law produces better agreement for the mixture. This work is funded by NNSA Grant DE-NA0002913.
Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Slobozhanin, Lev A.; Resnick, Andrew H.; Ramus, Jean-Francois; Delafontaine, Sylvie
1999-01-01
Liquid bridges have been the focus of numerous theoretical and experimental investigations since the early work by Plateau more than a century ago. More recently, motivated by interest in their physical behavior and their occurrence in a variety of technological situations, there has been a resurgence of interest in the static and dynamic behavior of liquid bridges. Furthermore, opportunities to carry out experiments in the near weightless environment of a low-Earth-orbit spacecraft have also led to a number of low-gravity experiments involving large liquid bridges. In this paper, we present selected results from our work concerning the stability of nonaxisymmetric liquid bridges, the bifurcation of weightless bridges in the neighborhood of the maximum volume stability limit, isorotating axisymmetric bridges contained between equidimensional disks, and bridges contained between unequal disks. For the latter, we discuss both theoretical and experimental results. Finally, we present results concerning the stability of axisymmetric equilibrium configurations for a capillary liquid partly contained in a closed circular cylinder.
Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Bourdais, Florian, E-mail: florian.lebourdais@cea.fr; Marchand, Benoit, E-mail: florian.lebourdais@cea.fr
2015-03-31
Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of amore » newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, R.P.
As part of the DOE-sponsored contract Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas'' experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al[sub 2]O[sub 3] methanol synthesis catalyst, developed in Air Products' laboratories, has the highest performance in terms of rate and selectivity for C[sub 2+]-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, R.P.
As part of the DOE-sponsored contract ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas`` experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst, developed in Air Products` laboratories, has the highest performance in terms of rate and selectivity for C{sub 2+}-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less
Experimental study of the focusing properties of a Gaussian Schell-model vortex beam.
Wang, Fei; Zhu, Shijun; Cai, Yangjian
2011-08-15
We carry out an experimental and theoretical study of the focusing properties of a Gaussian Schell-model (GSM) vortex beam. It is found that we can shape the beam profile of the focused GSM vortex beam by varying its initial spatial coherence width. Focused dark hollow, flat-topped, and Gaussian beam spots can be obtained in our experiment, which will be useful for trapping particles. The experimental results agree well with the theoretical results. © 2011 Optical Society of America
MO-FG-BRC-00: Joint AAPM-ESTRO Symposium: Advances in Experimental Medical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph
1996-01-01
A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.
Mark, Barbara A; Hughes, Linda C; Belyea, Michael; Chang, Yunkyung; Hofmann, David; Jones, Cheryl B; Bacon, Cynthia T
2007-01-01
Hospital nurses have one of the highest work-related injury rates in the United States. Yet, approaches to improving employee safety have generally focused on attempts to modify individual behavior through enforced compliance with safety rules and mandatory participation in safety training. We examined a theoretical model that investigated the impact on nurse injuries (back injuries and needlesticks) of critical structural variables (staffing adequacy, work engagement, and work conditions) and further tested whether safety climate moderated these effects. A longitudinal, non-experimental, organizational study, conducted in 281 medical-surgical units in 143 general acute care hospitals in the United States. Work engagement and work conditions were positively related to safety climate, but not directly to nurse back injuries or needlesticks. Safety climate moderated the relationship between work engagement and needlesticks, while safety climate moderated the effect of work conditions on both needlesticks and back injuries, although in unexpected ways. DISCUSSION AND IMPACT ON INDUSTRY: Our findings suggest that positive work engagement and work conditions contribute to enhanced safety climate and can reduce nurse injuries.
Bechtold, Joan E.; Swider, Pascal; Goreham-Voss, Curtis; Soballe, Kjeld
2016-01-01
This research review aims to focus attention on the effect of specific surgical and host factors on implant fixation, and the importance of accounting for them in experimental and numerical models. These factors affect (a) eventual clinical applicability and (b) reproducibility of findings across research groups. Proper function and longevity for orthopedic joint replacement implants relies on secure fixation to the surrounding bone. Technology and surgical technique has improved over the last 50 years, and robust ingrowth and decades of implant survival is now routinely achieved for healthy patients and first-time (primary) implantation. Second-time (revision) implantation presents with bone loss with interfacial bone gaps in areas vital for secure mechanical fixation. Patients with medical comorbidities such as infection, smoking, congestive heart failure, kidney disease, and diabetes have a diminished healing response, poorer implant fixation, and greater revision risk. It is these more difficult clinical scenarios that require research to evaluate more advanced treatment approaches. Such treatments can include osteogenic or antimicrobial implant coatings, allo- or autogenous cellular or tissue-based approaches, local and systemic drug delivery, surgical approaches. Regarding implant-related approaches, most experimental and numerical models do not generally impose conditions that represent mechanical instability at the implant interface, or recalcitrant healing. Many treatments will work well in forgiving settings, but fail in complex human settings with disease, bone loss, or previous surgery. Ethical considerations mandate that we justify and limit the number of animals tested, which restricts experimental permutations of treatments. Numerical models provide flexibility to evaluate multiple parameters and combinations, but generally need to employ simplifying assumptions. The objectives of this paper are to (a) to highlight the importance of mechanical, material, and surgical features to influence implant–bone healing, using a selection of results from two decades of coordinated experimental and numerical work and (b) discuss limitations of such models and the implications for research reproducibility. Focusing model conditions toward the clinical scenario to be studied, and limiting conclusions to the conditions of a particular model can increase clinical relevance and research reproducibility. PMID:26720312
Working group report on beam plasmas, electronic propulsion, and active experiments using beams
NASA Technical Reports Server (NTRS)
Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.
1986-01-01
The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forest, Cary B.
This report covers the UW-Madison activities that took place within a larger DoE Center Administered and directed by Professor George Tynan at the University of California, San Diego. The work at Wisconsin will also be covered in the final reporting for the entire center, which will be submitted by UCSD. There were two main activities, one experimental and one that was theoretical in nature, as part of the Center activities at the University of Wisconsin, Madison. First, the Center supported an experimentally focused postdoc (Chris Cooper) to carry out fundamental studies of momentum transport in rotating and weakly magnetized plasma.more » His experimental work was done on the Plasma Couette Experiment, a cylindrical plasma confinement device, with a plasma flow created through electromagnetically stirring plasma at the plasma edge facilitated by arrays of permanent magnets. Cooper's work involved developing optical techniques to measure the ion temperature and plasma flow through Doppler-shifted line radiation from the plasma argon ions. This included passive emission measurements and development of a novel ring summing Fabry-Perot spectroscopy system, and the active system involved using a diode laser to induce fluorescence. On the theoretical side, CMTFO supported a postdoc (Johannes Pueschel) to carry out a gyrokinetic extension of residual zonal flow theory to the case with magnetic fluctuations, showing that magnetic stochasticity disrupts zonal flows. The work included a successful comparison with gyrokinetic simulations. This work and its connection to the broader CMTFO will be covered more thoroughly in the final CMTFO report from Professor Tynan.« less
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-06-01
It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.
Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames
NASA Astrophysics Data System (ADS)
Heye, Colin; Raman, Venkat
2012-11-01
A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.
Critical Evaluation of Kinetic Method Measurements: Possible Origins of Nonlinear Effects
NASA Astrophysics Data System (ADS)
Bourgoin-Voillard, Sandrine; Afonso, Carlos; Lesage, Denis; Zins, Emilie-Laure; Tabet, Jean-Claude; Armentrout, P. B.
2013-03-01
The kinetic method is a widely used approach for the determination of thermochemical data such as proton affinities (PA) and gas-phase acidities ( ΔH° acid ). These data are easily obtained from decompositions of noncovalent heterodimers if care is taken in the choice of the method, references used, and experimental conditions. Previously, several papers have focused on theoretical considerations concerning the nature of the references. Few investigations have been devoted to conditions required to validate the quality of the experimental results. In the present work, we are interested in rationalizing the origin of nonlinear effects that can be obtained with the kinetic method. It is shown that such deviations result from intrinsic properties of the systems investigated but can also be enhanced by artifacts resulting from experimental issues. Overall, it is shown that orthogonal distance regression (ODR) analysis of kinetic method data provides the optimum way of acquiring accurate thermodynamic information.
Exploiting single-cell variability to infer the dynamics of immune responses
NASA Astrophysics Data System (ADS)
Höfer, Thomas
Cell division, differentiation, migration and death determine the dynamics of immune responses. These processes are regulated by a multitude of biochemical signals which, at present, cannot faithfully be reconstituted outside the living organism. However, quantitative measurements in living organisms have been limited. In recent years experimental techniques for the ``fate mapping'' of single immune cells have been developed that allow performing parallel single-cell experiments in an experimental animal. The resulting data are more informative about underlying biological processes than traditional measurements. I will show how the theory of stochastic dynamical systems can be used to infer the topology and dynamics of cell differentiation pathways from such data. The focus will be on joint theoretical and experimental work addressing: (i) the development of immune cells during hematopoiesis, and (ii) T cell responses to diverse pathogens. I will discuss questions on the nature of cellular variability that are posed by these new findings.
Saez Vergara, J C; Romero Gutiérrez, A M; Rodriguez Jiménez, R; Dominguez-Mompell Román, R
2004-01-01
The results from 2 years (2001-2002) of experimental measurements of in-board radiation doses received at IBERIA commercial flights are presented. The routes studied cover the most significant destinations and provide a good estimate of the route doses as required by the new Spanish regulations on air crew radiation protection. Details on the experimental procedures and calibration methods are given. The experimental measurements from the different instruments (Tissue Equivalent Proportional Counter and the combination of a high pressure ion chamber and a high-energy neutron compensated rem-counter) and their comparison with the predictions from some route-dose codes (CARI-6, EPCARD 3.2) are discussed. In contrast with the already published data, which are mainly focused on North latitudes over parallel 50, many of the data presented in this work have been obtained for routes from Spain to Central and South America.
Dual-Mode Combustion of Hydrogen in a Mach 5, Continuous-Flow Facility
NASA Technical Reports Server (NTRS)
Goyne, C. P.; McDaniel, J. C.; Quagliaroli, T. M.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.
2001-01-01
Results of an experimental and numerical study of a dual-mode scramjet combustor are reported. The experiment consisted of a direct-connect test of a Mach 2 hydrogen-air combustor with a single unswept-ramp fuel injector. The flow stagnation enthalpy simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and a particle-imaging laser diagnostic technique. The particle imaging was enabled through the development of a new apparatus for seeding fine silicon dioxide particles into the combustor fuel stream. Numerical simulations of the combustor were performed using the GASP code. The modeling, and much of the experimental work, focused on the supersonic combustion mode. Reasonable agreement was observed between experimental and numerical wall pressure distributions. However, the numerical model was unable to predict accurately the effects of combustion on the fuel plume size, penetration, shape, and axial growth.
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
NASA Technical Reports Server (NTRS)
Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)
2003-01-01
The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.
Miccio, L; Finizio, A; Grilli, S; Vespini, V; Paturzo, M; De Nicola, S; Ferraro, Pietro
2009-02-16
A special class of tunable liquid microlenses is presented here. The microlenses are generated by an electrowetting effect under an electrode-less configuration and they exhibit two different regimes that are named here as separated lens regime (SLR) and wave-like lens regime (WLR). The lens effect is induced by the pyroelectricity of polar dielectric crystals, as was proved in principle in a previous work by the same authors (S. Grilli et al., Opt. Express 16, 8084, 2008). Compared to that work, the improvements to the experimental set-up and procedure allow to reveal the two lens regimes which exhibit different optical properties. A digital holography technique is used to reconstruct the transmitted wavefront during focusing and a focal length variation in the millimetre range is observed. The tunability of such microlenses could be of great interest to the field of micro-optics thanks to the possibility to achieve focus tuning without moving parts and thus favouring the miniaturization of the optical systems.
Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.
2018-04-01
Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.
O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin
2017-12-06
Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.
NASA Astrophysics Data System (ADS)
Scharfenberg, Franz-Josef; Bogner, Franz X.
2011-08-01
Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.
Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing
2013-03-01
Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.
Phase Field Modeling of Microstructure Development in Microgravity
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Goldenfeld, Nigel
2001-01-01
This newly funded project seeks to extend our NASA-sponsored project on modeling of dendritic microstructures to facilitate collaboration between our research group and those of other NASA investigators. In our ongoing program, we have applied advanced computational techniques to study microstructural evolution in dendritic solidification, for both pure isolated dendrites and directionally solidified alloys. This work has enabled us to compute dendritic microstructures using both realistic material parameters and experimentally relevant processing conditions, thus allowing for the first time direct comparison of phase field computations with laboratory observations. This work has been well received by the materials science and physics communities, and has led to several opportunities for collaboration with scientists working on experimental investigations of pattern selection and segregation in solidification. While we have been able to pursue these collaborations to a limited extent, with some important findings, this project focuses specifically on those collaborations. We have two target collaborations: with Prof. Glicksman's group working on the Isothermal Dendritic Growth Experiment (IDGE), and with Prof. Poirier's group studying directional solidification in Pb-Sb alloys. These two space experiments match well with our two thrusts in modeling, one for pure materials, as in the IDGE, and the other directional solidification. Such collaboration will benefit all of the research groups involved, and will provide for rapid dissemination of the results of our work where it will have significant impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerly, D.
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
MO-FG-BRC-04: Ionacoustic Imaging for Particle Range Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parodi, K.
2016-06-15
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
Tracking prominent points in image sequences
NASA Astrophysics Data System (ADS)
Hahn, Michael
1994-03-01
Measuring image motion and inferring scene geometry and camera motion are main aspects of image sequence analysis. The determination of image motion and the structure-from-motion problem are tasks that can be addressed independently or in cooperative processes. In this paper we focus on tracking prominent points. High stability, reliability, and accuracy are criteria for the extraction of prominent points. This implies that tracking should work quite well with those features; unfortunately, the reality looks quite different. In the experimental investigations we processed a long sequence of 128 images. This mono sequence is taken in an outdoor environment at the experimental field of Mercedes Benz in Rastatt. Different tracking schemes are explored and the results with respect to stability and quality are reported.
NASA Astrophysics Data System (ADS)
Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.
2010-03-01
Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.
Microlensed dual-fiber probe for depth-resolved fluorescence measurements
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo
2011-07-01
We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.
Quantum-relativistic velocities in nano-transport
NASA Astrophysics Data System (ADS)
Di Sia, Paolo
2018-07-01
In this paper I present an interesting analysis focused on the hypothesis of relativistic velocities and quantum aspects inside a nanostructure. A new analytical model is considered, able to well describe the conductors in nanostructured form. Considering appropriate scattering times, it is possible to mimic the infrared properties of oxides and semiconductors in the nano-form. The new presented result concerns the analytical form of the quantum-relativistic velocities correlation function, and how it works with experimental data of carbon nanotube films.
Annual Fuze Conference (54th) Held in Kansas City, Missouri on May 11-13, 2010
2010-05-13
approaches to development • Lets get something straight !!! – Experimentation (A few of a kind) • Focus on answering questions (is it useful?, how does it...machines are applicable / available • How do the machines work • Where do they get their reference • What kind of tolerances are they capable of...Tactical Benefits: • Fastest way to get local reconnaissance images • Totally impervious to weather/gusts • ~ $20/round Background History New
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, N.; Wierzbicki, T.
1983-01-01
Behind the quest for safety in all forms of transport lies a complex technology of which structural crashworthiness forms an important part. This volume contains the work of over twenty experts whose interests range from the fundamental principles of structural collapse to the application of those principles to the design of ships, aircraft, road vehicles, and rail vehicles. The text focuses on the application of analytical and experimental techniques to predict energy dissipation characteristics of thin-walled structures and structural members under quasi-static and dynamic loadings.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.
2007-07-21
the spin coherent states P-representation", Conference on Quantum Computations and Many- Body Systems, February 2006, Key West, FL 9. B. N. Harmon...solid-state spin-based qubit systems was the focus of our project. Since decoherence is a complex many- body non-equilibrium process, and its...representation of the density matrix, see Sec. 3 below). This work prompted J. Taylor from the experimental group of C. Marcus and M. Lukin (funded by
Unorganized machines for seasonal streamflow series forecasting.
Siqueira, Hugo; Boccato, Levy; Attux, Romis; Lyra, Christiano
2014-05-01
Modern unorganized machines--extreme learning machines and echo state networks--provide an elegant balance between processing capability and mathematical simplicity, circumventing the difficulties associated with the conventional training approaches of feedforward/recurrent neural networks (FNNs/RNNs). This work performs a detailed investigation of the applicability of unorganized architectures to the problem of seasonal streamflow series forecasting, considering scenarios associated with four Brazilian hydroelectric plants and four distinct prediction horizons. Experimental results indicate the pertinence of these models to the focused task.
Explosively produced fracture of oil shale
NASA Astrophysics Data System (ADS)
Morris, W. A.
1982-05-01
Rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort is reported. Experimental work is outlined, proposed studies in explosive characterization are detailed and progress in numerical calculation techniques to predict fracture of the shale is described. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. The latest generation of the stress wave code SHALE, its three dimensional potential, and the slide line package for it are described. A general stress rate equation that takes energy dependence into account is discussed.
Toward a multiscale modeling framework for understanding serotonergic function
Wong-Lin, KongFatt; Wang, Da-Hui; Moustafa, Ahmed A; Cohen, Jeremiah Y; Nakamura, Kae
2017-01-01
Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin. PMID:28417684
Guidance of visual attention by semantic information in real-world scenes
Wu, Chia-Chien; Wick, Farahnaz Ahmed; Pomplun, Marc
2014-01-01
Recent research on attentional guidance in real-world scenes has focused on object recognition within the context of a scene. This approach has been valuable for determining some factors that drive the allocation of visual attention and determine visual selection. This article provides a review of experimental work on how different components of context, especially semantic information, affect attentional deployment. We review work from the areas of object recognition, scene perception, and visual search, highlighting recent studies examining semantic structure in real-world scenes. A better understanding on how humans parse scene representations will not only improve current models of visual attention but also advance next-generation computer vision systems and human-computer interfaces. PMID:24567724
Building a Science of Animal Minds: Lloyd Morgan, Experimentation, and Morgan's Canon.
Fitzpatrick, Simon; Goodrich, Grant
2017-08-01
Conwy Lloyd Morgan (1852-1936) is widely regarded as the father of modern comparative psychology. Yet, Morgan initially had significant doubts about whether a genuine science of comparative psychology was even possible, only later becoming more optimistic about our ability to make reliable inferences about the mental capacities of non-human animals. There has been a fair amount of disagreement amongst scholars of Morgan's work about the nature, timing, and causes of this shift in Morgan's thinking. We argue that Morgan underwent two quite different shifts of attitude towards the proper practice of comparative psychology. The first was a qualified acceptance of the Romanesian approach to comparative psychology that he had initially criticized. The second was a shift away from Romanes' reliance on systematizing anecdotal evidence of animal intelligence towards an experimental approach, focused on studying the development of behaviour. We emphasize the role of Morgan's evolving epistemological views in bringing about the first shift - in particular, his philosophy of science. We emphasize the role of an intriguing but overlooked figure in the history of comparative psychology in explaining the second shift, T. Mann Jones, whose correspondence with Morgan provided an important catalyst for Morgan's experimental turn, particularly the special focus on development. We also shed light on the intended function of Morgan's Canon, the methodological principle for which Morgan is now mostly known. The Canon can only be properly understood by seeing it in the context of Morgan's own unique experimental vision for comparative psychology.
Predictors of attrition from an expressive writing intervention for sexual abuse survivors.
Harte, Christopher B; Hamilton, Lisa D; Meston, Cindy M
2013-01-01
This study examined predictors of attrition from a clinical trial examining the effects of an expressive writing intervention for sexual problems among female survivors of child sexual abuse. Participants were 124 women all reporting sexual difficulties, who were randomized to a trauma-focused condition (n = 45), an experimental sexual schema-focused condition (n = 37), or a control condition (n = 42). Thirty-five women (28%) dropped out before completing posttreatment assessments. Younger age, less education, and increased use of positive coping strategies were each independently associated with dropout. Results have implications for both researchers and clinicians working with this population, and it is hoped that these data can help bolster retention of those who are more likely to discontinue treatment.
Megajoule Dense Plasma Focus Solid Target Experiments
NASA Astrophysics Data System (ADS)
Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.
2016-10-01
Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
Robotically assisted velocity-sensitive triggered focused ultrasound surgery
NASA Astrophysics Data System (ADS)
Maier, Florian; Brunner, Alexander; Jenne, Jürgen W.; Krafft, Axel J.; Semmler, Wolfhard; Bock, Michael
2012-11-01
Magnetic Resonance (MR) guided Focused Ultrasound Surgery (FUS) of abdominal organs is challenging due to breathing motion and limited patient access in the MR environment. In this work, an experimental robotically assisted FUS setup was combined with a MR-based navigator technique to realize motion-compensated sonications and online temperature imaging. Experiments were carried out in a static phantom, during periodic manual motion of the phantom without triggering, and with triggering to evaluate the triggering method. In contrast to the non-triggered sonication, the results of the triggered sonication show a confined symmetric temperature distribution. In conclusion, the velocity sensitive navigator can be employed for triggered FUS to compensate for periodic motion. Combined with the robotic FUS setup, flexible treatment of abdominal targets might be realized.
Night-shift work is associated with increased pain perception.
Matre, Dagfinn; Knardahl, Stein; Nilsen, Kristian Bernhard
2017-05-01
Objectives The aim of the present study was to determine whether shift workers exhibit increased perception of experimentally induced pain after working night shifts. Methods The study was a paired cross-over design with two sleep conditions, after at least two nights of habitual sleep and after two consecutive night shifts at work. Fifty-three nurses in rotating shift work participated. The sensitivity to electrically induced pain, heat pain, cold pain, pressure pain and pain inhibition was determined experimentally in each sleep condition. Sleepiness and vigilance were also assessed. Results Night-shift work (NSW) increased the sensitivity to electrically induced pain and heat pain (P≤0.001). Relative to habitual sleep, electrically induced pain increased by 22.3% and heat pain increased by 26.5%. The sensitivity to cold and pressure pain did not change, changes relative to habitual sleep was <5% (P>0.5). Pain inhibition was 66.9% stronger after NSW versus after habitual sleep (P<0.001). Sleepiness (measured with the Karolinska Sleepiness Scale) increased from 4.1 after habitual sleep to 6.9 after NSW (P<0.001). Vigilance decreased after NSW, measured as a 0.03-second decrease in reaction time (P<0.005). Conclusions Changes in pain sensitivity after NSW is measurable with clinically relevant effect sizes and may be an important marker for studies comparing the physiological effects of different shift work schedules. Explanations for the differential effect on different pain modalities should be a focus for future studies.
The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid
NASA Astrophysics Data System (ADS)
Pavlenko, Alexander
2011-06-01
The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.
Douglas, Heather E; Raban, Magdalena Z; Walter, Scott R; Westbrook, Johanna I
2017-03-01
Multi-tasking is an important skill for clinical work which has received limited research attention. Its impacts on clinical work are poorly understood. In contrast, there is substantial multi-tasking research in cognitive psychology, driver distraction, and human-computer interaction. This review synthesises evidence of the extent and impacts of multi-tasking on efficiency and task performance from health and non-healthcare literature, to compare and contrast approaches, identify implications for clinical work, and to develop an evidence-informed framework for guiding the measurement of multi-tasking in future healthcare studies. The results showed healthcare studies using direct observation have focused on descriptive studies to quantify concurrent multi-tasking and its frequency in different contexts, with limited study of impact. In comparison, non-healthcare studies have applied predominantly experimental and simulation designs, focusing on interleaved and concurrent multi-tasking, and testing theories of the mechanisms by which multi-tasking impacts task efficiency and performance. We propose a framework to guide the measurement of multi-tasking in clinical settings that draws together lessons from these siloed research efforts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.
2012-04-01
The study of the habitability and potential for life formation of terrestrial planets requires a considerable work of modelization owing to the limited amount of experimental constraints typical of this type of research. As an example, the paucity of experimental Archean data severely limits the study of the habitability of the primitive Earth at the epoch of the origin of life. In the case of exoplanets the amount of experimental information available is quite limited and the need for modelization strong. Here we focus on the modelization of the surface planetary temperature, a key thermodynamical quantity used to define the habitability. Energy Balance Models (EBM) of planetary climate provide a simple way to calculate the temperature-latitude profile of terrestrial planets with a small amount of computing resources. Thanks to this fact EBMs offer an excellent tool to exploring a wide range of parameter space and therefore testing the effects of variations of physical/chemical quantities unconstrained by experimental data. In particular, one can easily probe possible scenarios of habitability at different stages of planetary evolution. We have recently implemented one-dimensional EBMs featuring the possibility of probing variations of astronomical and geophysical parameters, such as stellar luminosity, orbital semi-major axis and eccentricity, obliquity of the planetary axis, planet rotational velocity, land/ocean surface fractions and thermal capacities, and latitudinal heat diffusion. After testing our models against results obtained in previous work (Williams & Kasting 1997, Icarus, 129, 254; Spiegel et al. 2008, ApJ, 681, 1609), we introduced a novel parametrization of the diffusion coefficient as a function of the stellar zenith distance. Our models have been validated using the mean temperature-latitude profiles of the present Earth and its seasonal variations; the global albedo has been used as an additional constraint. In this work we present specific examples of application of our EBMs to studies of habitability of terrestrial planets. In the first part we focus on the primitive Earth, taking into account the effects of the higher speed of Earth rotation and reduced solar luminosity at the epoch of life formation. In the second part we provide examples of habitability studies of planetary systems discovered in surveys of exoplanets. These examples allow us to critically discuss the concept of circumstellar habitable zone.
Modeling of Transient Flow Mixing of Streams Injected into a Mixing Chamber
NASA Technical Reports Server (NTRS)
Voytovych, Dmytro M.; Merkle, Charles L.; Lucht, Robert P.; Hulka, James R.; Jones, Gregg W.
2006-01-01
Ignition is recognized as one the critical drivers in the reliability of multiple-start rocket engines. Residual combustion products from previous engine operation can condense on valves and related structures thereby creating difficulties for subsequent starting procedures. Alternative ignition methods that require fewer valves can mitigate the valve reliability problem, but require improved understanding of the spatial and temporal propellant distribution in the pre-ignition chamber. Current design tools based mainly on one-dimensional analysis and empirical models cannot predict local details of the injection and ignition processes. The goal of this work is to evaluate the capability of the modern computational fluid dynamics (CFD) tools in predicting the transient flow mixing in pre-ignition environment by comparing the results with the experimental data. This study is a part of a program to improve analytical methods and methodologies to analyze reliability and durability of combustion devices. In the present paper we describe a series of detailed computational simulations of the unsteady mixing events as the cold propellants are first introduced into the chamber as a first step in providing this necessary environmental description. The present computational modeling represents a complement to parallel experimental simulations' and includes comparisons with experimental results from that effort. A large number of rocket engine ignition studies has been previously reported. Here we limit our discussion to the work discussed in Refs. 2, 3 and 4 which is both similar to and different from the present approach. The similarities arise from the fact that both efforts involve detailed experimental/computational simulations of the ignition problem. The differences arise from the underlying philosophy of the two endeavors. The approach in Refs. 2 to 4 is a classical ignition study in which the focus is on the response of a propellant mixture to an ignition source, with emphasis on the level of energy needed for ignition and the ensuing flame propagation issues. Our focus in the present paper is on identifying the unsteady mixing processes that provide the propellant mixture in which the ignition source is to be placed. In particular, we wish to characterize the spatial and temporal mixture distribution with a view toward identifying preferred spatial and temporal locations for the ignition source. As such, the present work is limited to cold flow (pre-ignition) conditions
NASA Astrophysics Data System (ADS)
Temme, Andrew Kenneth Gerken
Finding people trapped inside of a burning house is extremely difficult, dangerous, and time consuming. Smoke, heat, unfamiliar floor plans, and possible structural collapse all combine to challenge a firefighter's ability to find a person. Thermal imaging cameras, the most advanced technology available to firefighters today, are able to see through smoke but are unable to see through walls and household items. Through-wall radar and vital-sign detection radar offer an imaging modality that may be able to help firefighters find victims from outside of a room or even a house. Flames can interact with electromagnetic (radar) waves because the flames create a weakly-ionized plasma. Previous work has looked at small flames fueled by pure gases or flames from wildfires. Combustable items in a house are typically petroleum-based products that have different combustion reactions compared to previously studied flames and fire-induced plasmas. Because of this, it is unknown how electromagnetic waves interact with flames found in a house fire. This dissertation investigates the question of how electromagnetic waves interact with flames in a house fire. This is an open problem, with many variables, that poses a subtle and difficult measurement task. This work focuses on creating experimental techniques to explore this problem. From an electromagnetic metrology perspective, the physical phenomena of interest are difficult to measure due to ill-defined physical boundaries, characteristics lengths of varying magnitude, inhomogeneity, and varying time scales. The experimental methods studied here primarily focus on transmission measurements through flames a few feet in height. Additionally, this work presents a proof-of-concept two-wire transmission line for bench-scale, material-characterization of solids, liquids, gases, and flames. Results from this work provide a metrological foundation for future studies in this area. An experimental setup that can withstand direct exposure to flames was developed and preliminary measurements recorded. Data taken during the development of this setup showed a time-dependance that corresponded to transmissions through the flame and the solid fuel being consumed. Calibration procedures were used to verify measurements of standard materials; the calibration procedure should be refined for larger flame measurements. Transmitters were placed inside of a burning house and signal propagation was measured, which required the design of fire-proof enclosures for the transmitters. Measured results demonstrated that transmissions may not be affected when sent from a firefighter inside of a house with fire conditions suitable for an offensive, interior attack. It is unknown if severe conditions, such as a flashover, would affect transmissions. Plasmas were observed in interferometric measurements of live-fire experiments performed in the laboratory. This work has explored an open problem in electromagnetics with live-saving applications to the fire service. Results from this work warrant additional study in this area to improve techniques, with the goal of putting search-and-rescue radars into the hands of firefighters.
Multi-focus image fusion using a guided-filter-based difference image.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu
2016-03-20
The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.
Manual for Transference Work Scale; a micro-analytical tool for therapy process analyses.
Ulberg, Randi; Amlo, Svein; Høglend, Per
2014-11-18
The present paper is a manual for the Transference Work Scale (TWS). The inter-rater agreement on the 26 TWS items was good to excellent and previously published. TWS is a therapy process rating scale focusing on Transference Work (TW) (i.e. analysis of the patient-therapist relationship). TW is considered a core active ingredient in dynamic psychotherapy. Adequate process scales are needed to identify and analyze in-session effects of therapist techniques in psychodynamic psychotherapy and empirically establish their links to outcome. TWS was constructed to identify and categorize relational (transference) interventions, and explore the in-session impact of analysis of the patient-therapist relationship (transference work). TWS has sub scales that rate timing, content, and valence of the transference interventions, as well as response from the patient. Descriptions and elaborations of the items in TWS are provided. Clinical examples of transference work from the First Experimental Study of Transference Interpretations (FEST) are included and followed by examples of how to rate transcripts from therapy sessions with TWS. The present manual describes in detail the rating procedure when using Transference Work Scale. Ratings are illustrated with clinical examples from FEST. TWS might be a potentially useful tool to explore the interaction of timing, category, and valence of transference work in predicting in-session patient response as well as treatment outcome. TWS might prove especially suitable for intensive case studies combining quantitative and narrative data. First Experimental Study of Transference-interpretations (FEST307/95). ClinicalTrials.gov Identifier: NCT00423462. URL: http://clinicaltrials.gov/ct2/show/NCT00423462?term=FEST&rank=2.
NASA Astrophysics Data System (ADS)
Zhang, J.; Li, M.; Li, W. H.; Alici, G.
2013-08-01
The focusing of particles has a variety of applications in industry and biomedicine, including wastewater purification, fermentation filtration, and pathogen detection in flow cytometry, etc. In this paper a novel inertial microfluidic device using two secondary flows to focus particles is presented. The geometry of the proposed microfluidic channel is a simple straight channel with asymmetrically patterned triangular expansion-contraction cavity arrays. Three different focusing patterns were observed under different flow conditions: (1) a single focusing streak on the cavity side; (2) double focusing streaks on both sides; (3) half of the particles were focused on the opposite side of the cavity, while the other particles were trapped by a horizontal vortex in the cavity. The focusing performance was studied comprehensively up to flow rates of 700 µl min-1. The focusing mechanism was investigated by analysing the balance of forces between the inertial lift forces and secondary flow drag in the cross section. The influence of particle size and cavity geometry on the focusing performance was also studied. The experimental results showed that more precise focusing could be obtained with large particles, some of which even showed a single-particle focusing streak in the horizontal plane. Meanwhile, the focusing patterns and their working conditions could be adjusted by the geometry of the cavity. This novel inertial microfluidic device could offer a continuous, sheathless, and high-throughput performance, which can be potentially applied to high-speed flow cytometry or the extraction of blood cells.
Modeling liquid crystal polymeric devices
NASA Astrophysics Data System (ADS)
Gimenez Pinto, Vianney Karina
The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.
Blumenthal, Heidemarie; Leen-Feldner, Ellen W; Badour, Christal L; Babson, Kimberly A
2011-01-01
Adolescent alcohol use is a critical public health concern; accordingly, a considerable body of work exists identifying developmentally salient risk and protective factors. One area receiving increasing attention among adults is the linkage between specific constellations of anxiety psychopathology and alcohol use problems. Relatively less is known about such linkages among adolescents, despite the onset of both anxiety-type problems and alcohol use during this developmental period. The current review presents a detailed summary and analysis of the empirical literature focused on specific forms of anxiety psychopathology as they relate to alcohol use among adolescents, and provides a number of specific recommendations for future work with an emphasis on the utility of experimental psychopathology techniques for clarifying basic questions and forwarding this body of work.
NASA Astrophysics Data System (ADS)
Tirandazi, Pooyan; Hidrovo, Carlos H.
2017-07-01
Microfluidic techniques for production of uniform droplets usually rely on the use of two immiscible liquids (e.g. water-in-oil emulsions). It has been shown recently that a continuous gas flow instead of a second liquid carrier can be used as an alternative approach in droplet microfluidics. In this work we experimentally investigate the generation of liquid water droplets within air in flow-focusing configurations. Over a wide range of flow conditions we identify six distinct flow regimes inside the microchannel: Co-flowing, Threading, Plugging, Dripping, Multi-Satellite Formation, and Jetting. Flow regimes and their transitions are plotted and characterized based on the Weber number (We) of the system. We further investigate the impact of liquid microchannel size on the flow maps. Generation frequency, morphology, and monodispersity of the droplets are characterized in more detail in the Dripping regime. Generation frequency can be related to the product of the liquid and gas flow rates. However, droplet morphology (length and width) is more dependent on the gas flow rate. We demonstrate the production of monodisperse droplets (d < 100 µm and σ/d < 5 %) up to kHz formation rates in liquid-gas microfluidic systems for the first time. The results of this work provide practical and useful guidelines for precise, oil-free delivery of ultra-small volumes of fluid which can be integrated in lab-on-a-chip systems for a variety of applications in biochemical research and material synthesis.
NASA Technical Reports Server (NTRS)
Langhoff, Stephen; Bauschlicher, Charles; Jaffe, Richard
1992-01-01
One of the primary goals of NASA's high-speed research program is to determine the feasibility of designing an environmentally safe commercial supersonic transport airplane. The largest environmental concern is focused on the amount of ozone destroying nitrogen oxides (NO(x)) that would be injected into the lower stratosphere during the cruise portion of the flight. The limitations placed on NO(x) emission require more than an order of magnitude reduction over current engine designs. To develop strategies to meet this goal requires first gaining a fundamental understanding of the combustion chemistry. To accurately model the combustor requires a computational fluid dynamics approach that includes both turbulence and chemistry. Since many of the important chemical processes in this regime involve highly reactive radicals, an experimental determination of the required thermodynamic data and rate constants is often very difficult. Unlike experimental approaches, theoretical methods are as applicable to highly reactive species as stable ones. Also our approximation of treating the dynamics classically becomes more accurate with increasing temperature. In this article we review recent progress in generating thermodynamic properties and rate constants that are required to understand NO(x) formation in the combustion process. We also describe our one-dimensional modeling efforts to validate an NH3 combustion reaction mechanism. We have been working in collaboration with researchers at LeRC, to ensure that our theoretical work is focused on the most important thermodynamic quantities and rate constants required in the chemical data base.
NASA Astrophysics Data System (ADS)
Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique
2009-05-01
An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP [1]. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak™ 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.
Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.
Hussey, N E; MacNeil, M A; Olin, J A; McMeans, B C; Kinney, M J; Chapman, D D; Fisk, A T
2012-04-01
Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Sheikh, Muhammad; Elmarakbi, Ahmed; Elkady, Mustafa
2017-12-01
This paper focuses on state of charge (SOC) dependent mechanical failure analysis of 18650 lithium-ion battery to detect signs of thermal runaway. Quasi-static loading conditions are used with four test protocols (Rod, Circular punch, three-point bend and flat plate) to analyse the propagation of mechanical failures and failure induced temperature changes. Finite element analysis (FEA) is used to model single battery cell with the concentric layered formation which represents a complete cell. The numerical simulation model is designed with solid element formation where stell casing and all layers followed the same formation, and fine mesh is used for all layers. Experimental work is also performed to analyse deformation of 18650 lithium-ion cell. The numerical simulation model is validated with experimental results. Deformation of cell mimics thermal runaway and various thermal runaway detection strategies are employed in this work including, force-displacement, voltage-temperature, stress-strain, SOC dependency and separator failure. Results show that cell can undergo severe conditions even with no fracture or rupture, these conditions may slow to develop but they can lead to catastrophic failures. The numerical simulation technique is proved to be useful in predicting initial battery failures, and results are in good correlation with the experimental results.
High resolution wind turbine wake measurements with a scanning lidar
NASA Astrophysics Data System (ADS)
Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.
2017-05-01
High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung
2018-02-01
The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.
Experimental Evolution and Heart Function in Drosophila.
Shahrestani, Parvin; Burke, Molly K; Birse, Ryan; Kezos, James N; Ocorr, Karen; Mueller, Laurence D; Rose, Michael R; Bodmer, Rolf
Drosophila melanogaster is a good model species for the study of heart function. However, most previous work on D. melanogaster heart function has focused on the effects of large-effect genetic variants. We compare heart function among 18 D. melanogaster populations that have been selected for altered development time, aging, or stress resistance. We find that populations with faster development and faster aging have increased heart dysfunction, measured as percentage heart failure after electrical pacing. Experimental evolution of different triglyceride levels, by contrast, has little effect on heart function. Evolved differences in heart function correlate with allele frequency changes at many loci of small effect. Genomic analysis of these populations produces a list of candidate loci that might affect cardiac function at the intersection of development, aging, and metabolic control mechanisms.
Lerner, Debra; Rodday, Angie Mae; Cohen, Joshua T; Rogers, William H
2013-02-01
To assess the evidence regarding the economic impact of worker health promotion programs. Peer-reviewed research articles were identified from a database search. Included articles were published between January 2000 and May 2010, described a study conducted in the United States that used an experimental or quasi-experimental study design and analyzed medical, pharmacy (direct), and/or work productivity (indirect) costs. A multidisciplinary review team, following specific criteria, assessed research quality. Of 2030 retrieved articles, 44 met study inclusion criteria. Of these, 10 were of sufficient quality to be considered evidentiary. Only three analyzed direct and indirect costs. Evidence regarding economic impact is limited and inconsistent. Higher-quality research is needed to demonstrate the value of specific programs.
Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system
NASA Astrophysics Data System (ADS)
Kampmann, R.; Sinzinger, S.
2014-12-01
In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.
Masculinities and experimental practices in physics: The view from three case studies
NASA Astrophysics Data System (ADS)
Gonsalves, Allison J.; Danielsson, Anna; Pettersson, Helena
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] This article analyzes masculinity and experimental practices within three different physics communities. This work is premised on the understanding that the discipline of physics is not only dominated by men, but also is laden with masculine connotations on a symbolical level, and that this limited and limiting construction of physics has made it difficult for many women to find a place in the discipline. Consequently, we argue that in order to further the understanding of gender dynamics within physics communities and enrich the current understandings about the lack of women in physics, perspectives from masculinity studies are crucial. The article draws on three different ethnographic case studies dealing with undergraduate students, graduate students, and research scientists.
The role of tone sensation and musical stimuli in early experimental psychology.
Klempe, Sven Hroar
2011-01-01
In this article, the role of music in early experimental psychology is examined. Initially, the research of Wilhelm Wundt is considered, as tone sensation and musical elements appear as dominant factors in much of his work. It is hypothesized that this approach was motivated by an understanding of psychology that dates back to Christian Wolff 's focus on sensation in his empirical psychology of 1732. Wolff, however, had built his systematization of psychology on Gottfried Wilhelm von Leibniz, who combined perception with mathematics,and referred to music as the area in which sensation is united with numerical exactitude. Immanuel Kant refused to accept empirical psychology as a science, whereas Johann Friedrich Herbart reintroduced the scientific basis of empirical psychology by, among other things, referring to music.
The influence of authentic leadership and areas of worklife on work engagement of registered nurses.
Bamford, Megan; Wong, Carol A; Laschinger, Heather
2013-04-01
To examine the relationships among nurses' perceptions of nurse managers' authentic leadership, nurses' overall person-job match in the six areas of worklife and their work engagement. Reports have highlighted the impact of demanding and unsupportive work environments on nurses' wellbeing, resulting in a need for strong nursing leadership to build sustainable and healthier work environments. A secondary analysis of data collected from a non-experimental, predictive design survey of a random sample of 280 registered nurses working in acute care hospitals was conducted. An overall person-job match in the six areas of worklife fully mediated the relationship between authentic leadership and work engagement. Further, authentic leadership, overall person-job match in the six areas of worklife and years of nursing experience explained 33.1% of the variance in work engagement. Findings suggest that nurses who work for managers demonstrating higher levels of authentic leadership report a greater overall person-job match in the six areas of worklife and greater work engagement. As nurse managers' play a key role in promoting work engagement among nurses, authentic leadership development for nurse managers focusing on self-awareness, relational transparency, ethics and balanced processing would be beneficial. © 2012 Blackwell Publishing Ltd.
Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control
NASA Technical Reports Server (NTRS)
Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.
2004-01-01
NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.
Radiation dominated acoustophoresis driven by surface acoustic waves.
Guo, Jinhong; Kang, Yuejun; Ai, Ye
2015-10-01
Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.
Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter
NASA Astrophysics Data System (ADS)
Kurt, H. Hilal
2018-05-01
Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.
Wet Work and Barrier Function.
Fartasch, Manigé
2016-01-01
Wet work defined as unprotected exposure to humid environments/water; high frequencies of hand washing procedures or prolonged glove occlusion is believed to cause irritant contact dermatitis in a variety of occupations. This review considers the recent studies on wet-work exposure and focuses on its influence on barrier function. There are different methods to study the effect of wet work on barrier function. On the one hand, occupational cohorts at risk can be monitored prospectively by skin bioengineering technology and clinical visual scoring systems; on the other hand, experimental test procedures with defined application of water, occlusion and detergents are performed in healthy volunteers. Both epidemiological studies and the results of experimental procedures are compared and discussed. A variety of epidemiological studies analyze occupational cohorts at risk. The measurement of transepidermal water loss, an indicator of the integrity of the epidermal barrier, and clinical inspection of the skin have shown that especially the frequencies of hand washing and water contact/contact to aqueous mixtures seem to be the main factors for the occurrence of barrier alterations. On the other hand, in a single cross-sectional study, prolonged glove wearing (e.g. occlusion for 6 h per shift in clean-room workers) without exposure to additional hazardous substances seemed not to affect the skin negatively. But regarding the effect of occlusion, there is experimental evidence that previously occluded skin challenged with sodium lauryl sulfate leads to an increased susceptibility to the irritant with an aggravation of the irritant reaction. These findings might have relevance for the real-life situation in so far as after occupational glove wearing, the skin is more susceptible to potential hazards to the skin even during leisure hours. © 2016 S. Karger AG, Basel.
Experimental and numerical analysis of convergent nozzlex
NASA Astrophysics Data System (ADS)
Srinivas, G.; Rakham, Bhupal
2017-05-01
In this paper the main focus was given to convergent nozzle where both the experimental and numerical calculations were carried out with the support of standardized literature. In the recent years the field of air breathing and non-air breathing engine developments significantly increase its performance. To enhance the performance of both the type of engines the nozzle is the one of the component which will play a vital role, especially selecting the type of nozzle depends upon the vehicle speed requirement and aerodynamic behavior at most important in the field of propulsion. The convergent nozzle flow experimental analysis done using scaled apparatus and the similar setup was arranged artificially in the ANSYS software for doing the flow analysis across the convergent nozzle. The consistent calculation analysis are done based on the public literature survey to validate the experimental and numerical simulation results of convergent nozzle. Using these two experimental and numerical simulation approaches the best fit results will bring up to meet the design requirements. However the comparison also made to meet the reliability of the work on design criteria of convergent nozzle which can entrench in the field of propulsion applications.
NASA Astrophysics Data System (ADS)
Zenkov, E. V.
2018-01-01
Two methods are given in the article by considering the type of stressed-Deformed state (SDS) based on equations limit condition and analyzing the results of laboratory tests of special specimens for mechanical testing, focus having destruction thereof in the same view of SDS as in focus possible destruction of the structural member. The considered limited use of these methods in terms of considering physically consistent strength criterion type Pisarenko-Lebedev. A revised design-experimental procedure for determining the strength of the material of the structure, combining therein the elements of these two methods, consisting in determining the strength parameters of construction material, entering criterion equation Pisarenko-Lebedev, considering the actual appearance of the region-of-interest SDS structure. The implementation of the procedure is performed on the basis of the selection of the respective experimental laboratory specimens for mechanical testing, plan SDS in working zone coinciding with a SDS: structure whose strength is evaluated. The refinement process limit state equations demonstrated in determining 50CrV4 steel strength parameters, being in a state of biaxial stretching. Design-experimentally determined by, that steel for a given voltage limit value is almost a quarter of its value is reduced compared to the conventional tensile strength. value is reduced compared to the conventional tensile strength.
Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation
NASA Astrophysics Data System (ADS)
Weerawarne, Darshana L.
Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.
Jayaswal, Vivek; Lutherborrow, Mark; Ma, David D F; Hwa Yang, Yee
2009-05-01
Over the past decade, a class of small RNA molecules called microRNAs (miRNAs) has been shown to regulate gene expression at the post-transcription stage. While early work focused on the identification of miRNAs using a combination of experimental and computational techniques, subsequent studies have focused on identification of miRNA-target mRNA pairs as each miRNA can have hundreds of mRNA targets. The experimental validation of some miRNAs as oncogenic has provided further motivation for research in this area. In this article we propose an odds-ratio (OR) statistic for identification of regulatory miRNAs. It is based on integrative analysis of matched miRNA and mRNA time-course microarray data. The OR-statistic was used for (i) identification of miRNAs with regulatory potential, (ii) identification of miRNA-target mRNA pairs and (iii) identification of time lags between changes in miRNA expression and those of its target mRNAs. We applied the OR-statistic to a cancer data set and identified a small set of miRNAs that were negatively correlated to mRNAs. A literature survey revealed that some of the miRNAs that were predicted to be regulatory, were indeed oncogenic or tumor suppressors. Finally, some of the predicted miRNA targets have been shown to be experimentally valid.
Using the Git Software Tool on the Peregrine System | High-Performance
branch workflow. Create a local branch called "experimental" based on the current master... git branch experimental Use your branch (start working on that experimental branch....) git checkout experimental git pull origin experimental # work, work, work, commit.... Send local branch to the repo git push
In search of the focus of attention in working memory: 13 years of the retro-cue effect.
Souza, Alessandra S; Oberauer, Klaus
2016-10-01
The concept of attention has a prominent place in cognitive psychology. Attention can be directed not only to perceptual information, but also to information in working memory (WM). Evidence for an internal focus of attention has come from the retro-cue effect: Performance in tests of visual WM is improved when attention is guided to the test-relevant contents of WM ahead of testing them. The retro-cue paradigm has served as a test bed to empirically investigate the functions and limits of the focus of attention in WM. In this article, we review the growing body of (behavioral) studies on the retro-cue effect. We evaluate the degrees of experimental support for six hypotheses about what causes the retro-cue effect: (1) Attention protects representations from decay, (2) attention prioritizes the selected WM contents for comparison with a probe display, (3) attended representations are strengthened in WM, (4) not-attended representations are removed from WM, (5) a retro-cue to the retrieval target provides a head start for its retrieval before decision making, and (6) attention protects the selected representation from perceptual interference. The extant evidence provides support for the last four of these hypotheses.
The First Moment of Azimuthal Anisotropy in Nuclear Collisions from AGS to LHC Energies
Singha, Subhash; Shanmuganathan, Prashanth; Keane, Declan
2016-10-01
We reviewmore » topics related to the first moment of azimuthal anisotropy ( v 1 ), commonly known as directed flow, focusing on both charged particles and identified particles from heavy-ion collisions. Beam energies from the highest available, at the CERN LHC, down to projectile kinetic energies per nucleon of a few GeV per nucleon, as studied in experiments at the Brookhaven AGS, fall within our scope. We focus on experimental measurements and on theoretical work where direct comparisons with experiment have been emphasized. The physics addressed or potentially addressed by this review topic includes the study of Quark Gluon Plasma and, more generally, investigation of the Quantum Chromodynamics phase diagram and the equation of state describing the accessible phases.« less
NASA Astrophysics Data System (ADS)
Hornburg, Kathryn J.; Kim, Jihwan; Escuti, Michael J.
2017-02-01
We report on the properties of a fast F/1.5 geometric-phase lens with a focal length of 37 mm at 633 nm and a 24.5 mm diameter. This lens employs photo-aligned liquid crystal layers to implement the spatially varying Pancharatnam-Berry phase, leading to the expected polarization- and wavelength-dependent focusing. An achromatic spectrum is achieved using (chiral nematic) multi-twist retarder coatings, with high first-order (>=98%) and low zero-order (<=1%) transmittance across 450-700 nm. We measure traditional optical metrics of the GP lens including focused spot profile and modulation transfer function through knife edge testing and NBS 1963a resolution charts. This work includes a comparison to similar F/# conventional thick and thin lenses.
A handheld optical device for skin profile measurement
NASA Astrophysics Data System (ADS)
Sun, Jiuai; Liu, Xiaojin
2018-04-01
This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.
Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1994-01-01
The objective of this proposal is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness. Results of experimentation are summarized and modifications to a two-axis rotation device are described. Abstracts of a number of papers generated during the reporting period are appended.
Zonal wavefront sensing using a grating array printed on a polyester film
NASA Astrophysics Data System (ADS)
Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.
2015-12-01
In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.
A blur-invariant local feature for motion blurred image matching
NASA Astrophysics Data System (ADS)
Tong, Qiang; Aoki, Terumasa
2017-07-01
Image matching between a blurred (caused by camera motion, out of focus, etc.) image and a non-blurred image is a critical task for many image/video applications. However, most of the existing local feature schemes fail to achieve this work. This paper presents a blur-invariant descriptor and a novel local feature scheme including the descriptor and the interest point detector based on moment symmetry - the authors' previous work. The descriptor is based on a new concept - center peak moment-like element (CPME) which is robust to blur and boundary effect. Then by constructing CPMEs, the descriptor is also distinctive and suitable for image matching. Experimental results show our scheme outperforms state of the art methods for blurred image matching
Magnetically tunable 1D Coulomb drag: Theory
NASA Astrophysics Data System (ADS)
Tylan-Tyler, Anthony; Tang, Yuhe; Levy, Jeremy
In this work, we examine the Coulomb drag effect in 1D nanowires in close proximity, focusing on experimental parameters relevant to complex-oxide nanostructures. Previous work on this problem examined Coulomb drag through quantum point contacts, where effective capacitive coupling between the 2D leads of the system generates the drag voltage. In our case, the entire system is composed of 1D components and thus a more careful treatment of the Coulomb interactions is required. This more complex environment then leads to the ability to switch the drag voltage by an applied magnetic field without altering the current supplied to the drive system. We gratefully acknowledge financial support from ONR N00014-15-1-2847 and DOE DE-SC0014417.
Life sciences flight experiments program - Overview
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.
1981-01-01
The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.
Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P
2014-06-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation
Scheff, Jeremy D.; Griffel, Benjamin; Corbett, Siobhan A.; Calvano, Steve E.; Androulakis, Ioannis P.
2014-01-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. PMID:24680646
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robar, J.
2016-06-15
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sancey, L.
2016-06-15
Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and themore » implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.« less
Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating
Tang, Xiaoduan; Xu, Shen; Wang, Xinwei
2013-01-01
Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566
Spectral broadening of optical transitions in InAs/GaAs coupled quantum dot pairs
NASA Astrophysics Data System (ADS)
Kumar, P.; Czarnocki, C.; Jennings, C.; Casara, J.; Monteros, A. L.; Zahbihi, N.; Scheibner, M.; Economou, S. E.; Bracker, A. S.; Pursley, B. C.; Gammon, D.; Carter, S. G.
The optical transitions in InAs/GaAs coupled quantum dot (CQD) pairs are investigated experimentally. These coupled dot systems provide new means to study the interaction of quantum states with the mechanical modes of the crystal environment. Here, the line width and line shape of CQD optical transitions are analyzed in detail as a function of temperature, excitation power, excitation energy, and tunnel coupling strength. A significant line broadening, up to 25 times the typical lifetime-limited linewidth of single-dot excitons, is being observed at level anti-crossings where the coherent tunnel coupling between spatially direct and indirect exciton states is considerable. The experimental observations are compared with theoretical predictions where linewidth broadening at anti-crossings is attributed to the phonon assisted transitions, and found to be strongly dependent on the energy splitting of the two exciton branches. This work focuses on understanding the linewidth broadening due to the pure dephasing, and fundamental aspects of the interaction of these systems with the local environment. This work was supported by the Defense Threat Reduction Agency, Basic Research Award HDTRA1-15-1-0011.
Layes, Smail; Lalonde, Robert; Bouakkaz, Yamina; Rebai, Mohamed
2017-12-22
We examined whether the working memory (WM) capacity of developmentally dyscalculic children can be improved by a WM training program and whether outcomes relate to mathematical performance. The experimental design comprised two groups with developmental dyslexia with grade 4 schooling: an experimental group (n = 14; mean age = 129.74 months) and a control group (n = 14; mean age = 126.9 months). All participants were assessed on measures of WM, mathematic attainment, and nonverbal mental ability (Raven test) before and after training. The WM training program focused on manipulating and maintaining arithmetic information. The results show that both WM and mathematical performances improved significantly after intervention, indicating a strong relationship between these two constructs. The control group improved slightly in Raven's progressive matrices and a reading number task. These findings are discussed in terms of near and far transfer toward trained and untrained skills and stress the positive impact of WM training on learning mathematics in children with dyscalculia.
Biorefinery Demonstration Project Final Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David
2015-10-20
In this project we focused on various aspects of biorefinery technology development including algal-biorefinery technology, thermochemical conversion of biomass to bio-oils and biochar; we tested characteristics and applications of biochars and evaluated nutrient cycling with wastewater treatment by the coupling of algal culture systems and anaerobic digestion. Key results include a method for reducing water content of bio-oil through atomized alcohol addition. The effect included increasing the pH and reducing the viscosity and cloud point of the bio-oil. Low input biochar production systems were evaluated via literature reviews and direct experimental work. Additionally, emissions were evaluated and three biochar systemsmore » were compared via a life cycle analysis. Attached growth systems for both algal cultivation and algal harvesting were found to be superior to suspended growth cultures. Nutrient requirements for algal cultivation could be obtained by the recycling of anaerobic digester effluents, thus experimentally showing that these two systems could be directly coupled. Twenty-two journal articles and six intellectual property applications resulted from the cumulative work that this project contributed to programmatically.« less
Practical methods for generating alternating magnetic fields for biomedical research
NASA Astrophysics Data System (ADS)
Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina
2017-08-01
Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.
Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier
NASA Astrophysics Data System (ADS)
Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad
2017-10-01
The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.
NASA Astrophysics Data System (ADS)
Gunter, Amy-Lee; Ng, Hoi Dick
2012-11-01
This experimental study aims to investigate the phenomenon of a bouncing soap droplet on a horizontal soap film, and how this behavior is affected by variations in the glycerol content of the solution for both the droplet and film. Direct visualization of the bouncing dynamics using high-speed photography allows determination of droplet size and rebound height as the viscosity is varied. In addition, the upper and lower limits of the mixture composition at which the viscosity of the fluid prevents the droplet from bouncing are determined. A thorough examination of this fluid trampoline was recently conducted by Gilet and Bush, the focus of which was to compare the effect of vibration in the soap film [T. Gilet and J.W.M. Bush, J. Fluid Mech. 625: 167-203, 2009]. A small amount of attention was given to the effect of viscosity changes in the droplet and film, and this work aims to expand on those findings. This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
NASA Technical Reports Server (NTRS)
Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.
2008-01-01
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.
(U) Equation of State and Compaction Modeling for CeO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredenburg, David A.; Chisolm, Eric D.
2014-10-20
Recent efforts have focused on developing a solid-liquid and three-phase equation of state (EOS) for CeO 2, while parallel experimental efforts have focused on obtaining high-fidelity Hugoniot measurements on CeO 2 in the porous state. The current work examines the robustness of two CeO 2 SESAME equations of state, a solid-liquid EOS, 96170, and a three-phase EOS, 96171, by validating the EOS against a suite of high-pressure shock compression experiments on initially porous CeO 2. At lower pressures compaction is considered by incorporating a two-term exponential form of the P-compaction model, using three separate definitions for α(P). Simulations are executedmore » spanning the partially compacted and fully compacted EOS regimes over the pressure range 0.5 - 109 GPa. Comparison of calculated Hugoniot results with those obtained experimentally indicate good agreement for all definitions of α(P) with both the solid-liquid and three-phase EOS in the low-pressure compaction regime. At higher pressures the three-phase EOS does a better job at predicting the measured Hugoniot response, though at the highest pressures EOS 96171 predicts a less compliant response than is observed experimentally. Measured material velocity profiles of the shock-wave after it has transmitted through the powder are also compared with those simulated using with solid-liquid and three-phase EOS. Profiles lend insight into limits of the current experimental design, as well as the threshold conditions for the shock-induced phase transition in CeO 2.« less
Zijlmans, L J M; Embregts, P J C M; Gerits, L; Bosman, A M T; Derksen, J J L
2015-07-01
Recent research addressed the relationship between staff behaviour and challenging behaviour of individuals with an intellectual disability (ID). Consequently, research on interventions aimed at staff is warranted. The present study focused on the effectiveness of a staff training aimed at emotional intelligence and interactions between staff and clients. The effects of the training on emotional intelligence, coping style and emotions of support staff were investigated. Participants were 214 support staff working within residential settings for individuals with ID and challenging behaviour. The experimental group consisted of 76 staff members, 138 staff members participated in two different control groups. A pre-test, post-test, follow-up control group design was used. Effectiveness was assessed using questionnaires addressing emotional intelligence, coping and emotions. Emotional intelligence of the experimental group changed significantly more than that of the two control groups. The experimental group showed an increase in task-oriented coping, whereas one control group did not. The results with regard to emotions were mixed. Follow-up data revealed that effects within the experimental group were still present four months after the training ended. A staff training aimed at emotional intelligence and staff-client interactions is effective in improving emotional intelligence and coping styles of support staff. However, the need for more research aiming at the relationship between staff characteristics, organisational factors and their mediating role in the effectiveness of staff training is emphasised. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Shift work and cognition in the Nurses' Health Study.
Devore, Elizabeth E; Grodstein, Francine; Schernhammer, Eva S
2013-10-15
Rotating night-shift work, which can disrupt circadian rhythm, may adversely affect long-term health. Experimental studies indicate that circadian rhythm disruption might specifically accelerate brain aging; thus, we prospectively examined shift-work history at midlife as associated with cognitive function among older women in the Nurses' Health Study. Women reported their history of rotating night-shift work in 1988 and participated in telephone-based cognitive interviews between 1995 and 2001; interviews included 6 cognitive tests that were subsequently repeated 3 times, at 2-year intervals. We focused on shift work through midlife (here, ages 58-68 years) because cognitive decline is thought to begin during this period. Using multivariable-adjusted linear regression, we evaluated mean differences in both "average cognitive status" at older age (averaging cognitive scores from all 4 interviews) and rates of cognitive decline over time across categories of shift-work duration at midlife (none, 1-9, 10-19, or ≥20 years). There was little association between shift work and average cognition in later life or between shift work and cognitive decline. Overall, this study does not clearly support the hypothesis that shift-work history in midlife has long-term effects on cognition in older adults.
Thermal refraction focusing in planar index-antiguided lasers.
Casperson, Lee W; Dittli, Adam; Her, Tsing-Hua
2013-03-15
Thermal refraction focusing in planar index-antiguided lasers is investigated both theoretically and experimentally. An analytical model based on zero-field approximation is presented for treating the combined effects of index antiguiding and thermal focusing. At very low pumping power, the mode is antiguided by the amplifier boundary, whereas at high pumping power it narrows due to thermal focusing. Theoretical results are in reasonable agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-19
This report discusses the following topics: US Nuclear Data Network Meeting; TUNL A=3--20 Data Project Activity Report 1993; INEL Mass-chain Evaluation Project Activity Report for 1993; 1993 Isotopes; Nuclear Data Project Activity Report; The NNDC Activity Report Parts A and B; Minutes of the Formats and Procedures Subcommittee; Evaluation of High-spin Nuclear Data for ENSDF and Table of Superdeformed Nuclear Bands; Proposal for Support of a Experimental High-spin; Data File/Data-Network Coordinator; Radioactive Decay and Applications; A Plan for a Horizontal Evaluation of Decay Data; ENSDF On-line System; The MacNuclide Project Expanding the Scope of the Nuclear Structure Reference File; ENSDAT:more » Evaluated Nuclear Structure Drawings and Tables; Cross Section Evaluation Working Group (CSEWG) and CSEWG Strategy Session; A Draft Proposal for a USNDN Program Advisory Council; Recommendations of Focus Group 1; Recommendations of Focus Group 2; Recommendations of Focus Group 3; Recommendations of Focus Group 4; The Table of Isotopes; The Isotopes CD-ROM; Electronic Table of Isotopes (ETOI); and Electronic Access to Nuclear Data.« less
Parameter estimation for lithium ion batteries
NASA Astrophysics Data System (ADS)
Santhanagopalan, Shriram
With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of road conditions is important. An algorithm to predict the SOC in time intervals as small as 5 ms is of critical demand. In such cases, the conventional non-linear estimation procedure is not time-effective. There exist methodologies in the literature, such as those based on fuzzy logic; however, these techniques require a lot of computational storage space. Consequently, it is not possible to implement such techniques on a micro-chip for integration as a part of a real-time device. The Extended Kalman Filter (EKF) based approach presented in this work is a first step towards developing an efficient method to predict online, the State of Charge of a lithium ion cell based on an electrochemical model. The final part of the dissertation focuses on incorporating uncertainty in parameter values into electrochemical models using the polynomial chaos theory (PCT).
Particulate and Gaseous Emissions Measurement System (PAGEMS) Project
NASA Technical Reports Server (NTRS)
Kostic, Milivoje
2003-01-01
Professor Kostic will work on the current UEET program of the Aerosol and Particulate task. This task will focus on: how to acquire experimental data through Labview software how to make the data acquisition system more efficient trouble existing problem of the labview software recommend a better system improve existing system with better data and usually friendly.Three different assignments in this project included:Particle-Size Distribution Data Presentation;Error or Uncertainty Analysis of Measurement Results; and Enhancement of LabVlRN Data Acquisition Program for GRC PAGEMS Project.
Growth of HgZnTe Layers by LPE Technique
1988-03-01
1 F IL E C O PY I . C, L . 0 l GROWTH OF UgZn’re LAYER." BY LPE TECHNIQUE Final Report 00by U A. Sher, A. Tsigelman and D. Eger March 1988 United...experimental research into the narrw bnd ap range ofthis solid solution. In the present work, the LPE of lgfZn~Te was studied. focusing on the...growth process and the characterisation of the epilayers. B. The effect of the substrate lattice mismatch on the LPE process of the llgZnTe and the
The Impact of Population Bottlenecks on Microbial Adaptation
NASA Astrophysics Data System (ADS)
LeClair, Joshua S.; Wahl, Lindi M.
2018-07-01
Population bottlenecks—sudden, severe reductions in population size—are ubiquitous in nature. Because of their critical implications for conservation genetics, the effects of population bottlenecks on the loss of genetic diversity have been well studied. Bottlenecks also have important implications for adaptation, however, and these effects have been addressed more recently, typically in microbial populations. In this short review, we survey both experimental and theoretical work describing the impact of population bottlenecks on microbial adaptation. Focusing on theoretical contributions, we highlight emerging insights and conclude with several open questions of interest in the field.
2010-04-01
Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test
Testing and Analysis of Sensor Ports
NASA Technical Reports Server (NTRS)
Zhang, M.; Frendi, A.; Thompson, W.; Casiano, M. J.
2016-01-01
This Technical Publication summarizes the work focused on the testing and analysis of sensor ports. The tasks under this contract were divided into three areas: (1) Development of an Analytical Model, (2) Conducting a Set of Experiments, and (3) Obtaining Computational Solutions. Results from the experiment using both short and long sensor ports were obtained using harmonic, random, and frequency sweep plane acoustic waves. An amplification factor of the pressure signal between the port inlet and the back of the port is obtained and compared to models. Comparisons of model and experimental results showed very good agreement.
Mesenchymal stem cells and cardiac repair
Nesselmann, Catharina; Ma, Nan; Bieback, Karen; Wagner, Wolfgang; Ho, Anthony; Konttinen, Yrjö T; Zhang, Hao; Hinescu, Mihail E; Steinhoff, Gustav
2008-01-01
Accumulating clinical and experimental evidence indicates that mesenchymal stem cells (MSCs) are promising cell types in the treatment of cardiac dysfunction. They may trigger production of reparative growth factors, replace damaged cells and create an environment that favours endogenous cardiac repair. However, identifying mechanisms which regulate the role of MSCs in cardiac repair is still at work. To achieve the maximal clinical benefits, ex vivo manipulation can further enhance MSC therapeutic potential. This review focuses on the mechanism of MSCs in cardiac repair, with emphasis on ex vivo manipulation. PMID:18684237
Vortex rope instabilities in a model of conical draft tube
NASA Astrophysics Data System (ADS)
Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey
2017-10-01
We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.
Convective Instabilities in Liquid Foams
NASA Technical Reports Server (NTRS)
Veretennikov, Igor; Glazier, James A.
2004-01-01
The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.
GPR application on construction foundation study
NASA Astrophysics Data System (ADS)
Amran, T. S. T.; Ismail, M. P.; Ismail, M. A.; Amin, M. S. M.; Ahmad, M. R.; Basri, N. S. M.
2017-11-01
Extensive researches and studies have been carried on radar system for commercialisation of ground penetrating radar (GPR) technology pioneered in construction, and thus claimed its rightful place in the vision of future. The application of ground penetrating radar in construction study is briefly reviewed. Based on previous experimentation and studies, this paper is focus on reinforcement bar (rebar) investigation on construction. The various data through previous references used to discuss and analyse the capability of ground penetrating radar for further improvement in construction projects especially in rebar placement in works.
Research and development support for the Center for Seismic Studies
NASA Astrophysics Data System (ADS)
Romney, C. F.; Huszar, L.; Frazier, G. A.
1984-07-01
Work during the second and third quarters of FY1984 continued to be focused on the development of the Center for Seismic Studies, and on planning and developments to prepare for a test of Seismic data exchange and event determination, as proposed by the group of Scientific Experts, UN Committee on Disarmament. A help system was designed and partially completed, and other aids for new users of the Center's data and facilities were developed. An introduction to Ingres was prepared, and new experimental data bases were installed.
Developmental mechanisms underlying variation in craniofacial disease and evolution.
Fish, Jennifer L
2016-07-15
Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.
Adversarial Feature Selection Against Evasion Attacks.
Zhang, Fei; Chan, Patrick P K; Biggio, Battista; Yeung, Daniel S; Roli, Fabio
2016-03-01
Pattern recognition and machine learning techniques have been increasingly adopted in adversarial settings such as spam, intrusion, and malware detection, although their security against well-crafted attacks that aim to evade detection by manipulating data at test time has not yet been thoroughly assessed. While previous work has been mainly focused on devising adversary-aware classification algorithms to counter evasion attempts, only few authors have considered the impact of using reduced feature sets on classifier security against the same attacks. An interesting, preliminary result is that classifier security to evasion may be even worsened by the application of feature selection. In this paper, we provide a more detailed investigation of this aspect, shedding some light on the security properties of feature selection against evasion attacks. Inspired by previous work on adversary-aware classifiers, we propose a novel adversary-aware feature selection model that can improve classifier security against evasion attacks, by incorporating specific assumptions on the adversary's data manipulation strategy. We focus on an efficient, wrapper-based implementation of our approach, and experimentally validate its soundness on different application examples, including spam and malware detection.
Electronic transport in VO 2 —Experimentally calibrated Boltzmann transport modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinaci, Alper; Kado, Motohisa; Rosenmann, Daniel
2015-12-28
Materials that undergo metal-insulator transitions (MITs) are under intense study because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach to model electronic transport properties in VO2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high qualitymore » VO2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.« less
A biorobotic model of the human larynx.
Manti, M; Cianchetti, M; Nacci, A; Ursino, F; Laschi, C
2015-08-01
This work focuses on a physical model of the human larynx that replicates its main components and functions. The prototype reproduces the multilayer vocal folds and the ab/adduction movements. In particular, the vocal folds prototype is made with soft materials whose mechanical properties have been obtained to be similar to the natural tissue in terms of viscoelasticity. A computational model was used to study fluid-structure interaction between vocal folds and the airflow. This tool allowed us to make a comparison between theoretical and experimental results. Measurements were performed with this prototype in an experimental platform comprising a controlled air flow, pressure sensors and a high-speed camera for measuring vocal fold vibrations. Data included oscillation frequency at the onset pressure and glottal width. Results show that the combination between vocal fold geometry, mechanical properties and dimensions exhibits an oscillation frequency close to that of the human vocal fold. Moreover, computational results show a high correlation with the experimental one.
NASA Astrophysics Data System (ADS)
Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo
2017-06-01
This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.
Numerical modeling of the early interaction of a planar shock with a dense particle field
NASA Astrophysics Data System (ADS)
Regele, Jonathan; Blanquart, Guillaume
2011-11-01
Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.
Bertomeu-Sánchez, José Ramón
2012-01-01
The paper follows the lives of Mateu Orfila and François Magendie in early nineteenth-century Paris, focusing on their common interest in poisons. The first part deals with the striking similarities of their early careers: their medical training, their popular private lectures, and their first publications. The next section explores their experimental work on poisons by analyzing their views on physical and vital forces in living organisms and their ideas about the significance of animal experiments in medicine. The last part describes their contrasting research on the absorption of poisons and the divergences in their approaches, methods, aims, standards of proof, and intended audiences. The analysis highlights the connections between nineteenth-century courtrooms and experimental laboratories, and shows how forensic practice not only prompted animal experimentation but also provided a substantial body of information and new research methods for dealing with major theoretical issues like the absorption of poisons.
Grunwald, Gerald B
2013-12-01
The historical roots of cell adhesion research stretch back over a hundred years, commencing with fundamental questions from the advent of experimental embryology in the late nineteenth century. The transition of embryology from a descriptive to an experimentally driven and mechanistic branch of the biological sciences included investigations focused on the interactions of the first cells of the newly developing embryo, the blastomeres, and followed the movement, interactions and fate of these cells as the tissues and organs of the growing embryo took form. Of special interest to early investigators were cell-cell contacts, which were obviously dynamic but of an obscure nature. This historical review, the first of a series, explores the early years of the cell adhesion field, including the work of Roux, Wilson, Galtsoff, Just and Holtfreter, and discusses the classical experiments, observations and conceptual developments that formed the cornerstone of cell adhesion research during its premolecular era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Amiya K.
The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficultmore » and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.« less
Motivational orientations and task autonomy fit: effects on organizational attraction.
Wu, Yu-Chi
2012-02-01
The main purpose of this study was to investigate whether there is congruence between applicant needs (i.e., motivational orientations) and what is available (i.e., task autonomy) from an organizational perspective based on the fit between needs and supply. The fit between work motivation and task autonomy was examined to see whether it was associated with organizational attraction. This experimental study included two phases. Phase 1 participants consisted of 446 undergraduate students, of whom 228 were recruited to participate in Phase 2. The fit relations between task autonomy and intrinsic motivation and between task control and extrinsic motivation were characterized. Findings indicated that the fit between work motivation and task autonomy was positively associated with organizational attraction. Based on these results, it may be inferred that employers should emphasize job characteristics such as autonomy or control orientations to attract individuals, and focus on the most suitable work motivations for their organizations.
Fault-tolerant dynamic task graph scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal
2014-11-16
In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space andmore » time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.« less
Application of nonlinear ultrasonics to inspection of stainless steel for dry storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.
This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes tomore » the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.« less
Neural Effects of Short-Term Training on Working Memory
Buschkuehl, Martin; Garcia, Luis Hernandez; Jaeggi, Susanne M.; Bernard, Jessica A.; Jonides, John
2014-01-01
Working memory training has been the focus of intense research interest. Despite accumulating behavioral work, knowledge about the neural mechanisms underlying training effects is scarce. Here we show that seven days of training on an n back task lead to substantial performance improvements in the trained task; furthermore, the experimental group shows cross modal transfer as compared to an active control group. In addition, there are two neural effects that emerged as a function of training: first, increased perfusion during task performance in selected regions, reflecting a neural response to cope with high task demand; second, increased blood flow at rest in regions where training effects were apparent. We also found that perfusion at rest was correlated with task proficiency, probably reflecting an improved neural readiness to perform. Our findings are discussed within the context of the available neuroimaging literature on n back training. PMID:24496717
NASA Astrophysics Data System (ADS)
Mlkvik, Marek; Zaremba, Matous; Jedelsky, Jan; Jicha, Miroslav
2016-03-01
Presented paper focuses on spraying of two viscous liquids (μ = 60 and 143 mPa·s) by two types of twinfluid atomizers with internal mixing. We compared the well-known Y-jet atomizer with the less known, "outside in liquid" (OIL), configuration of the effervescent atomizer. The required liquid viscosity was achieved by using the water-maltodextrin solutions of different concentrations. Both the liquids were sprayed at two gas inlet pressures (Δp = 0.14 and 0.28 MPa) and various gas-to-liquid ratios (GLR = 2.5%, 5%, 10% and 20%). The comparison was focused on four characteristics: liquid flow-rate (for the same working regimes, defined by Δp and GLR), internal flow regimes, Weber numbers of a liquid breakup (We) and droplet sizes. A high-speed camera and Malvern Spraytec laser diffraction system were used to obtain necessary experimental data. Comparing the results of our experiments, we can state that for both the liquids the OIL atomizer reached higher liquid flow-rates at corresponding working regimes, it was typical by annular internal flow and higher We in the near-nozzle region at all the working regimes. As a result, it produced considerably smaller droplets than the second tested atomizing device, especially for GLR < 10%.
Turbulent structures in cylindrical density currents in a rotating frame of reference
NASA Astrophysics Data System (ADS)
Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas
2018-06-01
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhlig, W. Casey; Heine, Andreas, E-mail: andreas.heine@emi.fraunhofer.de
2015-11-14
A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signalmore » to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.« less
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.
2016-11-01
Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.
Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface
Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun
2015-01-01
Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772
HyRA: A Hybrid Recommendation Algorithm Focused on Smart POI. Ceutí as a Study Scenario.
Alvarado-Uribe, Joanna; Gómez-Oliva, Andrea; Barrera-Animas, Ari Yair; Molina, Germán; Gonzalez-Mendoza, Miguel; Parra-Meroño, María Concepción; Jara, Antonio J
2018-03-17
Nowadays, Physical Web together with the increase in the use of mobile devices, Global Positioning System (GPS), and Social Networking Sites (SNS) have caused users to share enriched information on the Web such as their tourist experiences. Therefore, an area that has been significantly improved by using the contextual information provided by these technologies is tourism. In this way, the main goals of this work are to propose and develop an algorithm focused on the recommendation of Smart Point of Interaction (Smart POI) for a specific user according to his/her preferences and the Smart POIs' context. Hence, a novel Hybrid Recommendation Algorithm (HyRA) is presented by incorporating an aggregation operator into the user-based Collaborative Filtering (CF) algorithm as well as including the Smart POIs' categories and geographical information. For the experimental phase, two real-world datasets have been collected and preprocessed. In addition, one Smart POIs' categories dataset was built. As a result, a dataset composed of 16 Smart POIs, another constituted by the explicit preferences of 200 respondents, and the last dataset integrated by 13 Smart POIs' categories are provided. The experimental results show that the recommendations suggested by HyRA are promising.
HyRA: A Hybrid Recommendation Algorithm Focused on Smart POI. Ceutí as a Study Scenario
Gómez-Oliva, Andrea; Molina, Germán
2018-01-01
Nowadays, Physical Web together with the increase in the use of mobile devices, Global Positioning System (GPS), and Social Networking Sites (SNS) have caused users to share enriched information on the Web such as their tourist experiences. Therefore, an area that has been significantly improved by using the contextual information provided by these technologies is tourism. In this way, the main goals of this work are to propose and develop an algorithm focused on the recommendation of Smart Point of Interaction (Smart POI) for a specific user according to his/her preferences and the Smart POIs’ context. Hence, a novel Hybrid Recommendation Algorithm (HyRA) is presented by incorporating an aggregation operator into the user-based Collaborative Filtering (CF) algorithm as well as including the Smart POIs’ categories and geographical information. For the experimental phase, two real-world datasets have been collected and preprocessed. In addition, one Smart POIs’ categories dataset was built. As a result, a dataset composed of 16 Smart POIs, another constituted by the explicit preferences of 200 respondents, and the last dataset integrated by 13 Smart POIs’ categories are provided. The experimental results show that the recommendations suggested by HyRA are promising. PMID:29562590
Le Foll, Bernard; Ng, Enoch; Di Ciano, Patricia; Trigo, José M
2015-01-01
Epidemiological studies indicate a high prevalence of tobacco smoking in subjects with psychiatric disorders. Notably, there is a high prevalence of smoking among those with dependence to other substances, schizophrenia, mood, or anxiety disorders. It has been difficult to understand how these phenomena interact with clinical populations as it is unclear what preceded what in most of the studies. These comorbidities may be best understood by using experimental approaches in well-controlled conditions. Notably, animal models represent advantageous approaches as the parameters under study can be controlled perfectly. This review will focus on evidence collected so far exploring how behavioral effects of nicotine are modified in animal models of psychiatric conditions. Notably, we will focus on behavioral responses induced by nicotine that are relevant for its addictive potential. Despite the clinical relevance and frequency of the comorbidity between psychiatric issues and tobacco smoking, very few studies have been done to explore this issue in animals. The available data suggest that the behavioral and reinforcing effects of nicotine are enhanced in animal models of these comorbidities, although much more experimental work would be required to provide certainty in this domain.
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND
Bessonova, O.V.; Khokhlova, V.A.; Canney, M.S.; Bailey, M.R.; Crum, L.A.
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue. PMID:20582159
A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND.
Bessonova, O V; Khokhlova, V A; Canney, M S; Bailey, M R; Crum, L A
2010-01-01
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
Flat Lens Focusing Demonstrated With Left-Handed Metamaterial
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Schwartz, Zachary D.; Chevalier, Christine T.; Downey, Alan N.; Vaden, Karl R.
2004-01-01
Left-handed metamaterials (LHM's) are a new media engineered to possess an effective negative index of refraction over a selected frequency range. This characteristic enables LHM's to exhibit physical properties never before observed. In particular, a negative index of refraction should cause electromagnetic radiation to refract or bend at a negative angle when entering an LHM, as shown in the figure above on the left. The figure on the right shows that this property could be used to bring radiation to a focus with a flat LHM lens. The advantage of a flat lens in comparison to a conventional curved lens is that the focal length could be varied simply by adjusting the distance between the lens and the electromagnetic wave source. In this in-house work, researchers at the NASA Glenn Research Center developed a computational model for LHM's with the three-dimensional electromagnetic commercial code Microwave Studio, constructed an LHM flat lens, and used it to experimentally demonstrate the reversed refraction and flat lens focusing of microwave radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Faqi; Zeng, Deping; He, Min
2015-12-15
Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the sphericalmore » cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.« less
Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies
NASA Astrophysics Data System (ADS)
Song, Jiaojian; Guo, Jinjia; Tian, Ye; Lu, Yuan; Zheng, Ronger
2017-10-01
With the hope of applying LIBS to solid target detection in deep-sea, the influences of laser focus to sample distance (LFTSD) on the plasma characteristics were investigated using spectra-image approach with the laser energies at sub- and super- threshold irradiance of solution. The experimental results show that LFTSD is a critical parameter which can directly influence the plasma shapes, by changing the laser fluence on sample surface. The plasma is divided into two parts under pre-focus condition, while the plasma only forms at the surface of Cu target under de-focus condition. Moreover, the "seed electron" generated from Cu sample can reduce the breakdown threshold of the solution. By comparing the laser energy, it seems to be inefficient by using super-threshold energy due to the plasma shielding effect of the liquid. High quality spectra can be observed by using lower laser energy and longer gate delay (25 mJ and 1000 ns, in this work).
Dynamics of laser-driven proton beam focusing and transport into solid density matter
NASA Astrophysics Data System (ADS)
Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.
2016-10-01
Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.
NASA Astrophysics Data System (ADS)
Liu, Zhipeng; Zhang, Bin; Feng, Qi; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Focusing light through strongly scattering media plays an important role in biomedical imaging and therapy. Here, we experimentally demonstrate light focusing through ZnO sample by controlling binary amplitude optimization using genetic algorithm. In the experiment, we use a Micro Electro-Mechanical System (MEMS)-based digital micromirror device (DMD) which is in amplitude-only modulation mode. The DMD consists of 1920×1080 square mirrors that can be independently controlled to reflect light to a desired position. We control only 160 thousand mirrors which are divided into 400 segments to modulate light focusing through the scattering media using advanced genetic algorithm. Light intensity at the target position is enhanced up to 50+/-5 times the average speckle intensity. The diameters of focusing spot can be changed ranging from 7 μm to 70 μm at arbitrary positions and multiple foci are obtained simultaneously. The spatial arrangement of multiple foci can be flexibly controlled. The advantage of DMDs lies in their switching speed up to 30 kHz, which has the potential to generate a focus in an ultra-short period of time. Our work provides a reference for the study of high speed wavefront shaping that is required in vivo tissues imaging.
Effects of physical and mental stressors on muscle pain.
Westgaard, R H
1999-01-01
Physical and mental stressors as risk factors for pain development are discussed. These multifaceted stressor terms are narrowed down so that physical stressors are represented by muscle activity recorded by electromyography (EMG), while mental stress is considered synonymous with psychosocial stress in vocational studies; in experimental studies cognitive stress is used as a model. Pain in the shoulder and neck are focused and related to EMG recordings of activity in the trapezius muscle. Major challenges in this field include proper risk assessment at low physical work loads and criteria for evaluating stress as a risk factor. A 3-factor conceptual model is presented in which the independent dimensions physical work load, mental stress, and individual sensitivity determine the risk of shoulder and neck complaints. It is pointed out that a predominant reduction in physical work load for many jobs and an increasing interaction between work conditions and the general life situation of workers pose particular challenges for risk assessment.
Gangl, Markus; Ziefle, Andrea
2015-09-01
The authors investigate the relationship between family policy and women's attachment to the labor market, focusing specifically on policy feedback on women's subjective work commitment. They utilize a quasi-experimental design to identify normative policy effects from changes in mothers' work commitment in conjunction with two policy changes that significantly extended the length of statutory parental leave entitlements in Germany. Using unique survey data from the German Socio-Economic Panel and difference-in-differences, triple-differenced, and instrumental variables estimators for panel data, they obtain consistent empirical evidence that increasing generosity of leave entitlements led to a decline in mothers' work commitment in both East and West Germany. They also probe potential mediating mechanisms and find strong evidence for role exposure and norm setting effects. Finally, they demonstrate that policy-induced shifts in mothers' preferences have contributed to. retarding women's labor force participation after childbirth in Germany, especially as far as mothers' return to full-time employment is concerned.
González-Beltrán, Alejandra N; Yong, May Y; Dancey, Gairin; Begent, Richard
2012-01-06
Biology, biomedicine and healthcare have become data-driven enterprises, where scientists and clinicians need to generate, access, validate, interpret and integrate different kinds of experimental and patient-related data. Thus, recording and reporting of data in a systematic and unambiguous fashion is crucial to allow aggregation and re-use of data. This paper reviews the benefits of existing biomedical data standards and focuses on key elements to record experiments for therapy development. Specifically, we describe the experiments performed in molecular, cellular, animal and clinical models. We also provide an example set of elements for a therapy tested in a phase I clinical trial. We introduce the Guidelines for Information About Therapy Experiments (GIATE), a minimum information checklist creating a consistent framework to transparently report the purpose, methods and results of the therapeutic experiments. A discussion on the scope, design and structure of the guidelines is presented, together with a description of the intended audience. We also present complementary resources such as a classification scheme, and two alternative ways of creating GIATE information: an electronic lab notebook and a simple spreadsheet-based format. Finally, we use GIATE to record the details of the phase I clinical trial of CHT-25 for patients with refractory lymphomas. The benefits of using GIATE for this experiment are discussed. While data standards are being developed to facilitate data sharing and integration in various aspects of experimental medicine, such as genomics and clinical data, no previous work focused on therapy development. We propose a checklist for therapy experiments and demonstrate its use in the 131Iodine labeled CHT-25 chimeric antibody cancer therapy. As future work, we will expand the set of GIATE tools to continue to encourage its use by cancer researchers, and we will engineer an ontology to annotate GIATE elements and facilitate unambiguous interpretation and data integration.
2012-01-01
Background Biology, biomedicine and healthcare have become data-driven enterprises, where scientists and clinicians need to generate, access, validate, interpret and integrate different kinds of experimental and patient-related data. Thus, recording and reporting of data in a systematic and unambiguous fashion is crucial to allow aggregation and re-use of data. This paper reviews the benefits of existing biomedical data standards and focuses on key elements to record experiments for therapy development. Specifically, we describe the experiments performed in molecular, cellular, animal and clinical models. We also provide an example set of elements for a therapy tested in a phase I clinical trial. Findings We introduce the Guidelines for Information About Therapy Experiments (GIATE), a minimum information checklist creating a consistent framework to transparently report the purpose, methods and results of the therapeutic experiments. A discussion on the scope, design and structure of the guidelines is presented, together with a description of the intended audience. We also present complementary resources such as a classification scheme, and two alternative ways of creating GIATE information: an electronic lab notebook and a simple spreadsheet-based format. Finally, we use GIATE to record the details of the phase I clinical trial of CHT-25 for patients with refractory lymphomas. The benefits of using GIATE for this experiment are discussed. Conclusions While data standards are being developed to facilitate data sharing and integration in various aspects of experimental medicine, such as genomics and clinical data, no previous work focused on therapy development. We propose a checklist for therapy experiments and demonstrate its use in the 131Iodine labeled CHT-25 chimeric antibody cancer therapy. As future work, we will expand the set of GIATE tools to continue to encourage its use by cancer researchers, and we will engineer an ontology to annotate GIATE elements and facilitate unambiguous interpretation and data integration. PMID:22226027
Nanoscale hotspots due to nonequilibrium thermal transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Sanjiv; Goodson, Kenneth E.
2004-01-01
Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of themore » additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal transport properties at room temperature. In addition, the defect density was observed to play a major role in the rate of change in thermal resistivity as a function of temperature.« less
Lo Iacono, Sergio
2018-07-01
Despite the theoretical relevance attributed to the spillover effect, little empirical research has focused on testing its causal validity. Addressing this gap in the literature, I propose a novel experimental design to test if the overall density of social links in a community promotes trustworthy and trusting behaviors with absolute strangers. Controlling for social integration (i.e. the individual number of social connections), I found that density fosters higher levels of trust. In particular, results show that people in denser communities are more likely to trust their unknown fellow citizens, encouraging isolated subjects to engage with strangers. However, evidence did not support the idea that community social embeddedness causes an increase of trustworthiness, indicating that the spillover effect works only with respect to trust. Copyright © 2018 Elsevier Inc. All rights reserved.
Plasma mirror implementation on LFEX laser for ion and fast electron fast ignition
NASA Astrophysics Data System (ADS)
Morace, A.; Kojima, S.; Arikawa, Y.; Fujioka, S.; Yogo, A.; Tosaki, S.; Sakata, S.; Abe, Y.; Lee, S. H.; Matsuo, K.; Sagisaka, A.; Kondo, K.; Pirozhkov, A. S.; Norimatsu, T.; Jitsuno, T.; Miyanaga, N.; Shiraga, H.; Nakai, M.; Nishimura, H.; Azechi, H.
2017-12-01
In this work we report the successful implementation of plasma mirror (PM) technology on an LFEX laser facility at the Institute of Laser Engineering, Osaka University. The LFEX laser pulse was successfully refocused at the target chamber center (TCC) by means of a spherical plasma mirror, resulting in 5 × 1018 W cm-2 laser intensity, with 45% reflectivity at a laser flux of about 90 J cm-2 on the PM. Experimental results show stable focusing and pointing of the LFEX pulse after PM refocusing. The contrast improvement was demonstrated by both cooler fast electron slope temperature distribution as well as by the ability to shoot sub-µm plastic foils obtaining proton beams with maximum energy exceeding 20 MeV. Experimental results are qualitatively reproduced by 2D particle in cell simulations.
Klima, J
2011-02-01
An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and possible effects are illustrated on several examples. The most effective process is formation of microjets,which can not only decrease diffusion layer thickness under 1 lm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed: – focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure; – ‘‘tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in itsresonant mode. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. James Kirkpatrick; Andrey G. Kalinichev
2008-11-25
Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches tomore » important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed Neutron Source facility of the Argonne National Lab, and Dr. A. Faraone at the NIST Center for Neutron Research. A manuscript reporting the first results of these experiments, which are highly complimentary to our previous NMR, X-ray, and infra-red results for these phases, is currently in preparation. In total, in 2006-2007 our work has resulted in the publication of 14 peer-reviewed research papers. We also devoted considerable effort to making our work known to a wide range of researchers, as indicated by the 24 contributed abstracts and 14 invited presentations.« less
A comparison study of visually stimulated brain-computer and eye-tracking interfaces
NASA Astrophysics Data System (ADS)
Suefusa, Kaori; Tanaka, Toshihisa
2017-06-01
Objective. Brain-computer interfacing (BCI) based on visual stimuli detects the target on a screen on which a user is focusing. The detection of the gazing target can be achieved by tracking gaze positions with a video camera, which is called eye-tracking or eye-tracking interfaces (ETIs). The two types of interface have been developed in different communities. Thus, little work on a comprehensive comparison between these two types of interface has been reported. This paper quantitatively compares the performance of these two interfaces on the same experimental platform. Specifically, our study is focused on two major paradigms of BCI and ETI: steady-state visual evoked potential-based BCIs and dwelling-based ETIs. Approach. Recognition accuracy and the information transfer rate were measured by giving subjects the task of selecting one of four targets by gazing at it. The targets were displayed in three different sizes (with sides 20, 40 and 60 mm long) to evaluate performance with respect to the target size. Main results. The experimental results showed that the BCI was comparable to the ETI in terms of accuracy and the information transfer rate. In particular, when the size of a target was relatively small, the BCI had significantly better performance than the ETI. Significance. The results on which of the two interfaces works better in different situations would not only enable us to improve the design of the interfaces but would also allow for the appropriate choice of interface based on the situation. Specifically, one can choose an interface based on the size of the screen that displays the targets.
Bazant, Eva; Sarkar, Supriya; Banda, Joseph; Kanjipite, Webby; Reinhardt, Stephanie; Shasulwe, Hildah; Mulilo, Joyce Monica Chongo; Kim, Young Mi
2014-12-20
Human resource shortages and reforms in HIV-related care make it challenging for frontline health care providers in southern Africa to deliver high-quality services. At health facilities of the Zambian Defence Forces, a performance and quality improvement approach was implemented to improve HIV-related care and was evaluated in 2010/2011. Changes in providers' work environment and perceived quality of HIV-related care were assessed to complement data of provider performance. The intervention involved on-site training, supportive supervision, and action planning focusing on detailed service delivery standards. The quasi-experimental evaluation collected pre- and post-intervention data from eight intervention and comparison facilities matched on defence force branch and baseline client volume. Overall, 101 providers responded to a 24-item questionnaire on the work environment, covering topics of drugs, supplies, and equipment; training, feedback, and supervision; compensation; staffing; safety; fulfilment; and HIV services quality. In bivariate analysis and multivariate analyses, we assessed changes within each study group and between the two groups. In the bivariate analysis, the intervention group providers reported improvements in the work environment on adequacy of equipment, feeling safe from harm, confidence in clinical skills, and reduced isolation, while the comparison group reported worsening of the work environment on supplies, training, safety, and departmental morale.In the multivariate analysis, the intervention group's improvement and the comparison group's decline were significant on perceived adequacy of drugs, supplies, and equipment; constructive feedback received from supervisor and co-workers; and feeling safe from physical harm (all P <0.01, except P <0.04 for equipment). Further, the item "provider lacks confidence in some clinical skills" declined in the intervention group but increased in the comparison group (P = -0.005). In multivariate analysis, changes in perceived quality of HIV care did not differ between study groups. Provider perceptions were congruent with observations of preparing drugs, supplies, equipment, and in service delivery of prevention of mother-to-child transmission of HIV and antiretroviral therapy follow-up care. The performance and quality improvement intervention implemented at Zambian Defence Forces' health facilities was associated with improvements in providers' perceptions of work environment consistent with the intervention's focus on commodities, skills acquisition, and receipt of constructive feedback.
Thorp, Alicia A; Kingwell, Bronwyn A; Owen, Neville; Dunstan, David W
2014-11-01
To examine whether the introduction of intermittent standing bouts during the workday using a height-adjustable workstation can improve subjective levels of fatigue, musculoskeletal discomfort and work productivity relative to seated work. Overweight/obese office workers (n=23; age 48.2±7.9 years, body mass index 29.6±4 kg/m(2)) undertook two, 5-day experimental conditions in an equal, randomised (1:1) order. In a simulated office environment, participants performed their usual occupational tasks for 8 h/day in a: seated work posture (SIT condition); or interchanging between a standing and seated work posture every 30 min using an electric, height-adjustable workstation (STAND-SIT condition). Self-administered questionnaires measuring fatigue, musculoskeletal discomfort and work productivity were performed on day 5 of each experimental condition. Participants' total fatigue score was significantly higher during the SIT condition (mean 67.8 (95% CI 58.8 to 76.7)) compared with the STAND-SIT condition (52.7 (43.8 to 61.5); p<0.001). Lower back musculoskeletal discomfort was significantly reduced during the STAND-SIT condition compared with the SIT condition (31.8% reduction; p=0.03). Despite concentration/focus being significantly higher during the SIT condition (p=0.006), there was a trend towards improved overall work productivity in favour of the STAND-SIT condition (p=0.053). Transitioning from a seated to a standing work posture every 30 min across the workday, relative to seated work, led to a significant reduction in fatigue levels and lower back discomfort in overweight/obese office workers, while maintaining work productivity. Future investigations should be directed at understanding whether sustained use of height-adjustable workstations promote concentration and productivity at work. ACTRN12611000632998. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs
NASA Technical Reports Server (NTRS)
Turner, Wlat
2011-01-01
With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments
Measurement of fracture properties of concrete at high strain rates
Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.
2017-01-01
An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956510
Effect of Sudarshan Kriya (meditation) on gamma, alpha, and theta rhythm during working memory task.
Chandra, Sushil; Sharma, Greeshma; Mittal, Alok Prakash; Jha, Devendra
2016-01-01
The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on brain signals during a working memory (WM) task. To envision the significant effects of SKY on WM capacity (WMC), we chose a control group for contriving a cogent comparison that could be corroborated using statistical tests. A total of 25 subjects were taken in the study, of which 10 were allotted to a control group and 15 to an experimental group. Electroencephalograph was taken during a WM task, which was an automated operation span test before and after SKY with 90 days intervals. No SKY was given to the control group. t-test and one-way ANOVA were applied. SKY promoted the efficient use of energy and power spectral density (PSD) for different brain rhythms in the desired locations as depicted by the gamma (F8 channel), alpha, and theta 2 (F7 and FC5) bands. It was found that gamma PSD reduced for both phases of memory in the experimental group. Alpha energy increased during the retrieval phase in the experimental group after SKY. Theta 1 rhythm was not affected by SKY, but theta 2 had shown left hemispheric activation. Theta rhythm was associated with memory consolidation. SKY had shown minimized energy losses while performing the task. SKY can improve WMC by changing the brain rhythms such that energy is utilized efficiently in performing the task.
Aircraft engine hot section technology: An overview of the HOST Project
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E.; Hirschberg, Marvin H.
1990-01-01
NASA sponsored the Turbine Engine Hot Section (HOST) project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high temperature operation were conducted from 1980 to 1987. The project involved representatives from six engineering disciplines who are spread across three work disciplines - industry, academia, and NASA. The HOST project not only initiated and sponsored 70 major activities, but also was the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.
Zonal wavefront sensing using a grating array printed on a polyester film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj
2015-12-15
In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less
Ergonomic Work Station Design to Improve Workload Quality and Productivity of the Craffsmen
NASA Astrophysics Data System (ADS)
Widana, IK; Wayan Sumetri, Ni; Ketut Sutapa, I.
2018-01-01
This study is a research on ergonomics field, especially for ergonomics work station. This research begins with direct observation on the work process of carving craft. In addition to the aspect of occupational health, the stages of the process are also subject matter in the effort to solve the research problem. In accordance with the master plan of research of Bali State Polytechnic, problem solving will be focused on human aspect and utilization of appropriate technology, so that will get the work process ENASEP (effective, convenient, safe, healthy, efficient and productive) Technical easy to work, economical, ergonomic, energy saving, environmentally friendly and in accordance with the trend of the era. The method to be used in this research is experimental with the same subject design. Involves 9 samples who perform activities on conditions before and after treatment. Data on environmental conditions were analyzed by Mann-Whitney test. Data on work productivity and workload were tested with two pair sample t-test at a significance level of 5%. The results showed that by utilizing ergonomic work stations, occupational health indicators such as workload showed better signs, indicated by decreased the workload. In addition to occupational health, productivity indicators also increased significantly.
NASA Astrophysics Data System (ADS)
Popota, F. D.; Aguiar, P.; España, S.; Lois, C.; Udias, J. M.; Ros, D.; Pavia, J.; Gispert, J. D.
2015-01-01
In this work a comparison between experimental and simulated data using GATE and PeneloPET Monte Carlo simulation packages is presented. All simulated setups, as well as the experimental measurements, followed exactly the guidelines of the NEMA NU 4-2008 standards using the microPET R4 scanner. The comparison was focused on spatial resolution, sensitivity, scatter fraction and counting rates performance. Both GATE and PeneloPET showed reasonable agreement for the spatial resolution when compared to experimental measurements, although they lead to slight underestimations for the points close to the edge. High accuracy was obtained between experiments and simulations of the system’s sensitivity and scatter fraction for an energy window of 350-650 keV, as well as for the counting rate simulations. The latter was the most complicated test to perform since each code demands different specifications for the characterization of the system’s dead time. Although simulated and experimental results were in excellent agreement for both simulation codes, PeneloPET demanded more information about the behavior of the real data acquisition system. To our knowledge, this constitutes the first validation of these Monte Carlo codes for the full NEMA NU 4-2008 standards for small animal PET imaging systems.
Popota, F D; Aguiar, P; España, S; Lois, C; Udias, J M; Ros, D; Pavia, J; Gispert, J D
2015-01-07
In this work a comparison between experimental and simulated data using GATE and PeneloPET Monte Carlo simulation packages is presented. All simulated setups, as well as the experimental measurements, followed exactly the guidelines of the NEMA NU 4-2008 standards using the microPET R4 scanner. The comparison was focused on spatial resolution, sensitivity, scatter fraction and counting rates performance. Both GATE and PeneloPET showed reasonable agreement for the spatial resolution when compared to experimental measurements, although they lead to slight underestimations for the points close to the edge. High accuracy was obtained between experiments and simulations of the system's sensitivity and scatter fraction for an energy window of 350-650 keV, as well as for the counting rate simulations. The latter was the most complicated test to perform since each code demands different specifications for the characterization of the system's dead time. Although simulated and experimental results were in excellent agreement for both simulation codes, PeneloPET demanded more information about the behavior of the real data acquisition system. To our knowledge, this constitutes the first validation of these Monte Carlo codes for the full NEMA NU 4-2008 standards for small animal PET imaging systems.
Examining students' views about validity of experiments: From introductory to Ph.D. students
NASA Astrophysics Data System (ADS)
Hu, Dehui; Zwickl, Benjamin M.
2018-06-01
We investigated physics students' epistemological views on measurements and validity of experimental results. The roles of experiments in physics have been underemphasized in previous research on students' personal epistemology, and there is a need for a broader view of personal epistemology that incorporates experiments. An epistemological framework incorporating the structure, methodology, and validity of scientific knowledge guided the development of an open-ended survey. The survey was administered to students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and physics Ph.D. students. Within our sample, we identified several differences in students' ideas about validity and uncertainty in measurement. The majority of introductory students justified the validity of results through agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the validity of results based on the quality of the experimental process and repeatability of results. When asked about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g., describing imperfections, data variability, and human mistakes). However, advanced students focused on the inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish validity, such as by valuing documentation of the experimental process when evaluating the quality of student work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to iterate, make repeated comparisons, and make decisions based on those comparisons.
The MGED ontology: a framework for describing functional genomics experiments.
Stoeckert, Christian J; Parkinson, Helen
2003-01-01
The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of applications, there are common concepts used and a common need to capture experimental information in a standardized manner. In building the MGED ontology, it was recognized that it would be impractical to cover all the different types of experiments on all the different types of organisms by listing and defining all the types of organisms and their properties. Our solution was to create a framework for describing microarray experiments with an initial focus on the biological sample and its manipulation. For concepts that are common for many species, we could provide a manageable listing of controlled terms. For concepts that are species-specific or whose values cannot be readily listed, we created an 'OntologyEntry' concept that referenced an external resource. The MGED ontology is a work in progress that needs additional instances and particularly needs constraints to be added. The ontology currently covers the experimental sample and design, and we have begun capturing aspects of the microarrays themselves as well. The primary application of the ontology will be to develop forms for entering information into databases, and consequently allowing queries, taking advantage of the structure provided by the ontology. The application of an ontology of experimental conditions extends beyond microarray experiments and, as the scope of MGED includes other aspects of functional genomics, so too will the MGED ontology.
The effects of an early intervention music curriculum on prereading/writing.
Register, D
2001-01-01
This study evaluated the effects of music sessions using a curriculum designed to enhance the prereading and writing skills of 25 children aged 4 to 5 years who were enrolled in Early Intervention and Exceptional Student Education programs. This study was a replication of the work of Standley and Hughes (1997) and utilized a larger sample size (n = 50) in order to evaluate the efficacy of a music curriculum designed specifically to teach prereading and writing skills versus one that focuses on all developmental areas. Both the experimental (n = 25) and control (n = 25) groups received two 30-minute sessions each week for an entire school year for a minimum of 60 sessions per group. The differentiating factors between the two groups were the structure and components of the musical activities. The fall sessions for the experimental group were focused primarily on writing skills while the spring sessions taught reading/book concepts. Music sessions for the control group were based purely on the thematic material, as determined by the classroom teacher with purposeful exclusion of all preliteracy concepts. All participants were pretested at the beginning of the school year and posttested before the school year ended. Overall, results demonstrated that music sessions significantly enhanced both groups' abilities to learn prewriting and print concepts. However, the experimental group showed significantly higher results on the logo identification posttest and the word recognition test. Implications for curriculum design and academic and social applications of music in Early Intervention programs are discussed.
Final Report of DOE Grant No. DE-FG02-04ER41306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Satyanarayan; Babu, Kaladi S; Rizatdinova, Flera
2013-12-10
Project: Theoretical and Experimental Research in Weak, Electromagnetic and Strong Interactions: Investigators: S. Nandi, K.S. Babu, F. Rizatdinova Institution: Oklahoma State University, Stillwater, OK 74078 This completed project focused on the cutting edge research in theoretical and experimental high energy physics. In theoretical high energy physics, the two investigators (Nandi and Babu) worked on a variety of topics in model-building and phenomenological aspects of elementary particle physics. This includes unification of particles and forces, neutrino physics, Higgs boson physics, proton decay, supersymmetry, and collider physics. Novel physics ideas beyond the Standard Model with testable consequences at the LHC have beenmore » proposed. These ideas have stimulated the experimental community to look for new signals. The contributions of the experimental high energy physics group has been at the D0 experiment at the Fermilab Tevatraon and the ATLAS experiment at the Large Hadron Collider. At the D0 experiment, the main focus was search for the Higgs boson in the WH channel, where improved limits were obtained. At the LHC, the OSU group has made significant contributions to the top quark physics, and the calibration of the b-tagging algorithms. The group is also involved in the pixel detector upgrade. This DOE supported grant has resulted in 5 PhD degrees during the past three years. Three postdoctoral fellows were supported as well. In theoretical research over 40 refereed publications have resulted in the past three years, with several involving graduate students and postdoctoral fellows. It also resulted in over 30 conference presentations in the same time period. We are also involved in outreach activities through the Quarknet program, where we engage Oklahoma school teachers and students in our research.« less
Superelastic tension and bending characteristics of shape memory alloys
NASA Astrophysics Data System (ADS)
Bundara, B.; Tokuda, M.; Kuselj, B.; Ule, B.; Tuma, J. V.
2000-08-01
The objective of this study was to develop a numerical model of the superelastic behavior of shape memory alloys (SMA) on a macro-scale level. Results from a study on this behavior under tension and pure bending tests are presented and discussed. Two SMA samples were used in the experimental work and subjected to various loading paths in tension and pure bending: a single crystalline CuZnAl alloy and polycrystalline NiTi wire. Bending tests were performed under a pure bending loading condition on a new testing apparatus designed for the specific needs of this study. The experimental part of this study focused mainly on the response of the SMA to the loading paths in a quasi-plastic domain where the deformation mechanism is dominantly governed by the stress-induced martensitic transformation. Experimental results obtained from the NiTi polycrystals by tensile tests indicate that the superelastic SMA exhibits sufficient repeatability useful enough for a modeling task, while similar results obtained from the single crystalline CuZnAl indicate that the same modeling approach is not easily feasible. The facts have been qualitatively verified by the experimental data from pure bending tests, and a further area as study is suggested.
NASA Astrophysics Data System (ADS)
Moore, David G.; Stair, Sarah L.; Jack, David A.
2018-04-01
Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.
The European politics of animal experimentation: From Victorian Britain to 'Stop Vivisection'.
Germain, Pierre-Luc; Chiapperino, Luca; Testa, Giuseppe
2017-08-01
This paper identifies a common political struggle behind debates on the validity and permissibility of animal experimentation, through an analysis of two recent European case studies: the Italian implementation of the European Directive 2010/63/EC regulating the use of animals in science, and the recent European Citizens' Initiative (ECI) 'Stop Vivisection'. Drawing from a historical parallel with Victorian antivivisectionism, we highlight important threads in our case studies that mark the often neglected specificities of debates on animal experimentation. From the representation of the sadistic scientist in the XIX century, to his/her claimed capture by vested interests and evasion of public scrutiny in the contemporary cases, we show that animals are not simply the focus of the debate, but also a privileged locus at which much broader issues are being raised about science, its authority, accountability and potential misalignment with public interest. By highlighting this common socio-political conflict underlying public controversies around animal experimentation, our work prompts the exploration of modes of authority and argumentation that, in establishing the usefulness of animals in science, avoid reenacting the traditional divide between epistemic and political fora. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, David G.; Stair, Sarah Louise; Jack, David A.
Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less
Moore, David G.; Stair, Sarah Louise; Jack, David A.
2018-04-01
Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less
Muka, Samantha K
2016-09-01
This paper seeks to contribute to understandings of practice and place in the history of early American neurophysiology by exploring research with jellyfish at marine stations. Jellyfish became a particularly important research tool to experimental physiologists studying neurological subjects at the turn of the twentieth century. But their enthusiasm for the potential of this organism was constrained by its delicacy in captivity. The discovery of hardier species made experimentation at the shore possible and resulted in two epicenters of neurophysiological research on the American East Coast: the Marine Biological Laboratory and the Carnegie Institution's Dry Tortugas Laboratory. Work done in these locations had impacts on a wide range of physiological questions. These centers were short lived-researchers at the MBL eventually focused on the squid giant axon and the Tortugas lab closed after the death of Mayer-but the development of basic requirements and best practices to sustain these organisms paints an important picture of early experimental neurophysiology. Marine organisms and locations have played an integral role in the development of experimental life sciences in America. By understanding the earliest experimental research done at these locations, and the organisms that lured researchers from the campus to the coastline, we can begin to integrate marine stations into the larger historical narrative of American physiology.
Aerodynamic Drag Scoping Work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voskuilen, Tyler; Erickson, Lindsay Crowl; Knaus, Robert C.
This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined bymore » Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.« less
Environment and brain plasticity: towards an endogenous pharmacotherapy.
Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto
2014-01-01
Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.
NASA Astrophysics Data System (ADS)
Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo
2012-10-01
Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.
ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.
Hohman, Fred; Hodas, Nathan; Chau, Duen Horng
2017-05-01
Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.
Nucleation of Quantized Vortices from Rotating Superfluid Drops
NASA Technical Reports Server (NTRS)
Donnelly, Russell J.
2001-01-01
The long-term goal of this project is to study the nucleation of quantized vortices in helium II by investigating the behavior of rotating droplets of helium II in a reduced gravity environment. The objective of this ground-based research grant was to develop new experimental techniques to aid in accomplishing that goal. The development of an electrostatic levitator for superfluid helium, described below, and the successful suspension of charged superfluid drops in modest electric fields was the primary focus of this work. Other key technologies of general low temperature use were developed and are also discussed.
Angular correlation studies in noble gases
NASA Technical Reports Server (NTRS)
Coleman, P. G.
1990-01-01
There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Michael; Schuh, Christopher; Marzouk, Youssef
2016-08-29
This is the final report on project DE-SC0008926. The goal of this project was to create capabilities for constructing, analyzing, and modeling experimental databases of the crystallographic characters and physical properties of thousands of individual grain boundaries (GBs) in polycrystalline metals. This project focused on gallium permeation through aluminum (Al) GBs and hydrogen uptake into nickel (Ni) GBs as model problems. This report summarizes the work done within the duration of this project (including the original three-year award and the subsequent one-year renewal), i.e. from August 1, 2012 until April 30, 2016.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay
2014-01-01
The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.
Best Practices for In-Situ Sediment-Water Incubations with Benthic Landers
NASA Astrophysics Data System (ADS)
Tengberg, Anders; Kononets, Mikhail; Hall, Per; Nilsson, Madeleine; Ekeroth, Nils
2017-04-01
Biological, chemical, physical and geological processes that take place at the seafloor are crucial in influencing and regulating many aquatic environments. One method to estimate exchange rates, fluxes, between the sediment and the overlying water is in-situ sediment-water incubations using autonomous chamber landers. As for all field sampling and measurements best practices methods are needed to obtain high quality data. With experiences form many years usage of the Gothenburg autonomous bottom lander systems this presentation will describe some of the experimental work that has been done with focus on quality control and data evaluation methods.
Historical view of development of comparative endocrinology in Japan.
Kikuyama, Sakae; Tsutsui, Kazuyoshi
2011-04-01
This article describing a brief history of development of comparative endocrinology in Japan is contributed to the journal General and Comparative Endocrinology, in commemoration of the 50th anniversary of its publication. It covers significant works in the field of comparative endocrinology that have been done by Japanese endocrinologists, focusing those achieved during the past 70 years. The contents were arranged according to the taxonomical order of the experimental animals with which individual researchers or research groups have contributed to the acquisition of important knowledge in comparative endocrinology. Copyright © 2011 Elsevier Inc. All rights reserved.
Mueller matrix imaging and analysis of cancerous cells
NASA Astrophysics Data System (ADS)
Fernández, A.; Fernández-Luna, J. L.; Moreno, F.; Saiz, J. M.
2017-08-01
Imaging polarimetry is a focus of increasing interest in diagnostic medicine because of its non-invasive nature and its potential for recognizing abnormal tissues. However, handling polarimetric images is not an easy task, and different intermediate steps have been proposed to introduce physical parameters that may be helpful to interpret results. In this work, transmission Mueller matrices (MM) corresponding to cancer cell samples have been experimentally obtained, and three different transformations have been applied: MM-Polar Decomposition, MM-Transformation and MM-Differential Decomposition. Special attention has been paid to diattenuation as a sensitive parameter to identify apoptosis processes induced by cisplatin and etoposide.
SHIELD and HZETRN comparisons of pion production cross sections
NASA Astrophysics Data System (ADS)
Norbury, John W.; Sobolevsky, Nikolai; Werneth, Charles M.
2018-03-01
A program of comparing American (NASA) and Russian (ROSCOSMOS) space radiation transport codes has recently begun, and the first paper directly comparing the NASA and ROSCOSMOS space radiation transport codes, HZETRN and SHIELD respectively has recently appeared. The present work represents the second time that NASA and ROSCOSMOS calculations have been directly compared, and the focus here is on models of pion production cross sections used in the two transport codes mentioned above. It was found that these models are in overall moderate agreement with each other and with experimental data. Disagreements that were found are discussed.
Carbon contamination topography analysis of EUV masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Y.-J.; Yankulin, L.; Thomas, P.
2010-03-12
The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.
NASA Astrophysics Data System (ADS)
Mallinson, Christopher F.
Beryllium is an important metal in the nuclear industry for which there are no suitable replacements. It undergoes localised corrosion at the site of heterogeneities in the metal surface. Corrosion pits are associated with a range of second phase particles. To investigate the role of these particles in corrosion, a safe experimental protocol was established using an aluminium alloy as a corrosion material analogue. The 7075-T6 alloy had not previously been investigated using the experimental methodology used in this thesis. This work led to the development of the experimental methodology and safe working practices for handling beryllium. The range and composition of the second phase particles present in S-65 beryllium billet were identified using a combination of SEM, AES, EDX and WDX. Following the identification of a range of particles with various compositions, including the AlFeBe4 precipitate which has been previously associated with corrosion, the location of the particles were marked to enable their repeated study. Attention was focused on the microchemistry in the vicinity of second phase particles, as a function of immersion time in pH 7, 0.1 M NaCl solution. The corrosion process associated with different particles was followed by repeatedly relocating the particles to perform analysis by means of SEM, AES and EDX. The use of traditional chlorinated vapour degreasing solvents on beryllium was investigated and compared to two modern commercially available cleaning solutions designed as drop-in replacements. This work expanded the range of solvents suitable for cleaning beryllium and validated the conclusions from previous thermodynamic modelling. Additionally, a new experimental methodology has been developed which enables the acquisition of chemical state information from the surface of micron scale features. This was applied to sub-micron copper and iron particles, as well as a copper intermetallic.
Large Diameter, Radiative Extinction Experiments with Decane Droplets in Microgravity
NASA Technical Reports Server (NTRS)
Easton, John; Tien, James; Dietrich, Daniel
1999-01-01
The extinction of a diffusion flame is of fundamental interest in combustion science. Linan, Law, and Chung and Law analytically and experimentally determined an extinction boundary in terms of droplet diameter and pressure for a single droplet due to Damkohler, or blowoff, extinction. More recently, other researchers demonstrated extinction due to finite rate kinetics in reduced gravity for free droplets of heptane. Chao modeled the effect of radiative heat loss on a quasi-steady spherically symmetric single droplet burning in the absence of buoyancy. They determined that for increasing droplet diameter, a second limit can be reached such that combustion is no longer possible. This second, larger droplet diameter limit arises due to radiative heat loss, which increases with increasing droplet and flame diameter. This increase in radiative heat loss arises due to an increase in the surface area of the flame. Recently, Marchese modeled fuel droplets with detailed chemistry and radiative effects, and compared the results to other work. The modeling also showed the importance of radiative loss and radiative extinction Experiments examined the behavior of a large droplet of decane burning in reduced gravity onboard the NASA Lewis DC-9 aircraft, but did not show a radiative extinction boundary due to g-jitter (Variations in gravitational level and direction) effects. Dietrich conducted experiments in the reduced gravity environment of the Space Shuttle. This work showed that the extinction diameter of methanol droplets increased when the initial diameter of the droplets was large (in this case, approximately 5 mm). Theoretical results agreed with these experimental results only when the theory included radiative effects . Radiative extinction was experimentally verified by Nayagam in a later Shuttle mission. The following work focuses on the combustion and extinction of a single fuel droplet. The goal is to experimentally determine a large droplet diameter limit that arises due to radiative heat loss from the flame to the surroundings.
Bolintineanu, Dan S.; Sayyed-Ahmad, Abdallah; Davis, H. Ted; Kaznessis, Yiannis N.
2009-01-01
Protegrin peptides are potent antimicrobial agents believed to act against a variety of pathogens by forming nonselective transmembrane pores in the bacterial cell membrane. We have employed 3D Poisson-Nernst-Planck (PNP) calculations to determine the steady-state ion conduction characteristics of such pores at applied voltages in the range of −100 to +100 mV in 0.1 M KCl bath solutions. We have tested a variety of pore structures extracted from molecular dynamics (MD) simulations based on an experimentally proposed octomeric pore structure. The computed single-channel conductance values were in the range of 290–680 pS. Better agreement with the experimental range of 40–360 pS was obtained using structures from the last 40 ns of the MD simulation, where conductance values range from 280 to 430 pS. We observed no significant variation of the conductance with applied voltage in any of the structures that we tested, suggesting that the voltage dependence observed experimentally is a result of voltage-dependent channel formation rather than an inherent feature of the open pore structure. We have found the pore to be highly selective for anions, with anionic to cationic current ratios (ICl−/IK+) on the order of 103. This is consistent with the highly cationic nature of the pore but surprisingly in disagreement with the experimental finding of only slight anionic selectivity. We have additionally tested the sensitivity of our PNP model to several parameters and found the ion diffusion coefficients to have a significant influence on conductance characteristics. The best agreement with experimental data was obtained using a diffusion coefficient for each ion set to 10% of the bulk literature value everywhere inside the channel, a scaling used by several other studies employing PNP calculations. Overall, this work presents a useful link between previous work focused on the structure of protegrin pores and experimental efforts aimed at investigating their conductance characteristics. PMID:19180178
ERIC Educational Resources Information Center
Pike, Lisa; Rentsch, Jeremy
2017-01-01
This math activity focuses on experimental design while connecting math with life science. It is important that the science and engineering practices (SEPs) are not taught as a separate "unit" but integrated within the curriculum wherever possible. The focus is on experimental design to teach animal behavior. Students predict and test…
Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.
2013-01-01
There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616
The roles of fluid motion and other transport phenomena in the morphology of materials
NASA Technical Reports Server (NTRS)
Saville, D. A.
1993-01-01
Two crystallization problems were studied: the growth of protein crystals, in particular the influence of colloidal forces and convection, and the influence of interface resistance on the growth of dendritic crystals. The protein study involved both experimental and theoretical work; the work of dendrites was entirely theoretical. In the study of protein crystallization, experiments were carried out where crystals were grown in the presence and absence of natural convection. No evidence was found that convection retards crystal growth. The theoretical study focused on the influence of colloidal forces (electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that electrostatic interactions play a strong role in deciding whether or not a molecule will find a favorable site for adsorption. In the study of dendritic growth, the role of an interfacial resistance on the selection processes was examined. Using a computational scheme, it was found that the selected velocity is strongly dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible explanation for discrepancies between the theoretical and experimental results on succinonitrile.
NASA Astrophysics Data System (ADS)
Umi, N. N.; Norazman, M. N.; Daud, N. M.; Yusof, M. A.; Yahya, M. A.; Othman, M.
2018-04-01
Green building technology and sustainability development is current focus in the world nowadays. In Malaysia and most tropical countries the maximum temperature recorded typically at 35°C. Air-conditioning system has become a necessity in occupied buildings, thereby increasing the cost of electric consumption. The aim of this study is to find out the solution in minimizing heat transfer from the external environment and intentions towards going green. In this study, the experimental work includes testing three types of concrete wall panels. The main heat intervention material in this research is 2 inch diameter Polyvinyl Chloride (PVC) pipe embedded at the center of the concrete wall panel, while the EPS foam beads were added to the cement content in the concrete mix forming the outer layer of the wall panel. Water from the rainwater harvesting system is regulated in the PVC pipe to intervene with the heat conductivity through the wall panel. Results from the experimental works show that the internal surface temperature of these heat resistance wall panels is to 3□C lower than control wall panel from plain interlocking bricks.
2018-01-01
This work focuses on the process development of membrane-assisted solvent extraction of hydrophobic compounds such as monoterpenes. Beginning with the choice of suitable solvents, quantum chemical calculations with the simulation tool COSMO-RS were carried out to predict the partition coefficient (logP) of (S)-(+)-carvone and terpinen-4-ol in various solvent–water systems and validated afterwards with experimental data. COSMO-RS results show good prediction accuracy for non-polar solvents such as n-hexane, ethyl acetate and n-heptane even in the presence of salts and glycerol in an aqueous medium. Based on the high logP value, n-heptane was chosen for the extraction of (S)-(+)-carvone in a lab-scale hollow-fibre membrane contactor. Two operation modes are investigated where experimental and theoretical mass transfer values, based on their related partition coefficients, were compared. In addition, the process is evaluated in terms of extraction efficiency and overall product recovery, and its biotechnological application potential is discussed. Our work demonstrates that the combination of in silico prediction by COSMO-RS with membrane-assisted extraction is a promising approach for the recovery of hydrophobic compounds from aqueous solutions. PMID:29765654
Efficient Density Functional Approximation for Electronic Properties of Conjugated Systems
NASA Astrophysics Data System (ADS)
Caldas, Marília J.; Pinheiro, José Maximiano, Jr.; Blum, Volker; Rinke, Patrick
2014-03-01
There is on-going discussion about reliable prediction of electronic properties of conjugated oligomers and polymers, such as ionization potential IP and energy gap. Several exchange-correlation (XC) functionals are being used by the density functional theory community, with different success for different properties. In this work we follow a recent proposal: a fraction α of exact exchange is added to the semi-local PBE XC aiming consistency, for a given property, with the results obtained by many-body perturbation theory within the G0W0 approximation. We focus the IP, taken as the negative of the highest occupied molecular orbital energy. We choose α from a study of the prototype family trans-acetylene, and apply this same α to a set of oligomers for which there is experimental data available (acenes, phenylenes and others). Our results indicate we can have excellent estimates, within 0,2eV mean ave. dev. from the experimental values, better than through complete EN - 1 -EN calculations from the starting PBE functional. We also obtain good estimates for the electrical gap and orbital energies close to the band edge. Work supported by FAPESP, CNPq, and CAPES, Brazil, and DAAD, Germany.
MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries
NASA Astrophysics Data System (ADS)
Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas
2015-11-01
The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabaz, Fardin, E-mail: rajesh.khare@ttu.edu; Khare, Ketan S., E-mail: rajesh.khare@ttu.edu; Khare, Rajesh, E-mail: rajesh.khare@ttu.edu
2014-05-15
We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring themore » resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.« less
The roles of fluid motion and other transport phenomena in the morphology of materials
NASA Astrophysics Data System (ADS)
Saville, D. A.
1993-11-01
Two crystallization problems were studied: the growth of protein crystals, in particular the influence of colloidal forces and convection, and the influence of interface resistance on the growth of dendritic crystals. The protein study involved both experimental and theoretical work; the work of dendrites was entirely theoretical. In the study of protein crystallization, experiments were carried out where crystals were grown in the presence and absence of natural convection. No evidence was found that convection retards crystal growth. The theoretical study focused on the influence of colloidal forces (electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that electrostatic interactions play a strong role in deciding whether or not a molecule will find a favorable site for adsorption. In the study of dendritic growth, the role of an interfacial resistance on the selection processes was examined. Using a computational scheme, it was found that the selected velocity is strongly dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible explanation for discrepancies between the theoretical and experimental results on succinonitrile.
Effectiveness of Student Learning during Experimental Work in Primary School.
Logar, Ana; Peklaj, Cirila; Ferk Savec, Vesna
2017-09-01
The aim of the research was to optimize the effectiveness of student learning based on experimental work in chemistry classes in Slovenian primary schools. To obtain evidence about how experimental work is implemented during regular chemistry classes, experimental work was videotaped during 19 units of chemistry lessons at 12 Slovenian primary schools from the pool of randomly selected schools. Altogether 332 eight-grade students were involved in the investigation, with an average age of 14.2 years. Students were videotaped during chemistry lessons, and their worksheets were collected afterward. The 12 chemistry teachers, who conducted lessons in these schools, were interviewed before the lessons; their teaching plans were also collected. The collected data was analyzed using qualitative methods. The results indicate that many teachers in Slovenian primary schools are not fully aware of the potential of experimental work integrated into chemistry lessons for the development of students' experimental competence. Further research of the value of different kinds of training to support teachers for the use of experimental work in chemistry teaching is needed.
Working memory contents revive the neglected, but suppress the inhibited.
Han, Suk Won
2015-12-01
It is well known that attention is biased toward a stimulus matching working memory contents. However, it remains unknown whether the maintenance of information in working memory by itself is sufficient to create memory-driven attentional capture. Notably, in many previous studies showing the memory-driven attentional capture, the task settings might have explicitly or implicitly incentivized participants to strategically attend to a memory-matching stimulus. By innovating an experimental paradigm, the present study overcame this challenge and directly tested whether working memory contents capture attention in the absence of task-level attentional bias toward a memory-matching stimulus. I found that a stimulus that is usually outside the focus of attention, powerfully captured attention when it matched working memory contents, whereas a match between working memory and an inhibited stimulus suppressed attentional allocation toward the memory-matching stimulus. These findings suggest that in the absence of any task-level attentional bias toward memory-matching stimuli, attention is biased toward a memory-matching stimulus, but this memory-driven attentional capture is diminished when top-down inhibition is imposed on the stimulus. Copyright © 2015 Elsevier B.V. All rights reserved.
Physiological optics, cognition and emotion: a novel look at the early work of Wilhelm Wundt.
Wassmann, Claudia
2009-04-01
The German physiologist Wilhelm Wundt, who later founded experimental psychology, arguably developed the first modern scientific conception of emotion. In the first edition of Vorlesungen über die Menschen- und Thierseele (Lectures on human and animal psychology), which was published in 1863, Wundt tried to establish that emotions were essential parts of rational thought. In fact, he considered them unconscious steps of decision-making that were implied in all processes of conscious thought. His early work deserves attention not only because it is the attempt to conceptualize cognition and emotion strictly from a neural point of view but also because it represents the very foundation of the debate about the nature of emotion that revolved around William James' theory of emotion during the 1890s. However, this aspect of his work is little known because scholars who have analyzed Wundt's work focused on his late career. Furthermore, historical analysis interpreted Wundt's work within a philosophical framework, rather than placing it in the context of German medical and physiological research in which it belongs. In addition, Wundt's early works are hardly available to an English speaking audience because they were never translated.
Computational Study of Hypersonic Boundary Layer Stability on Cones
NASA Astrophysics Data System (ADS)
Gronvall, Joel Edwin
Due to the complex nature of boundary layer laminar-turbulent transition in hypersonic flows and the resultant effect on the design of re-entry vehicles, there remains considerable interest in developing a deeper understanding of the underlying physics. To that end, the use of experimental observations and computational analysis in a complementary manner will provide the greatest insights. It is the intent of this work to provide such an analysis for two ongoing experimental investigations. The first focuses on the hypersonic boundary layer transition experiments for a slender cone that are being conducted at JAXA's free-piston shock tunnel HIEST facility. Of particular interest are the measurements of disturbance frequencies associated with transition at high enthalpies. The computational analysis provided for these cases included two-dimensional CFD mean flow solutions for use in boundary layer stability analyses. The disturbances in the boundary layer were calculated using the linear parabolized stability equations. Estimates for transition locations, comparisons of measured disturbance frequencies and computed frequencies, and a determination of the type of disturbances present were made. It was found that for the cases where the disturbances were measured at locations where the flow was still laminar but nearly transitional, that the highly amplified disturbances showed reasonable agreement with the computations. Additionally, an investigation of the effects of finite-rate chemistry and vibrational excitation on flows over cones was conducted for a set of theoretical operational conditions at the HIEST facility. The second study focuses on transition in three-dimensional hypersonic boundary layers, and for this the cone at angle of attack experiments being conducted at the Boeing/AFOSR Mach-6 quiet tunnel at Purdue University were examined. Specifically, the effect of surface roughness on the development of the stationary crossflow instability are investigated in this work. One standard mean flow solution and two direct numerical simulations of a slender cone at an angle of attack were computed. The direct numerical simulations included a digitally-filtered, randomly distributed surface roughness and were performed using a high-order, low-dissipation numerical scheme on appropriately resolved grids. Comparisons with experimental observations showed excellent qualitative agreement. Comparisons with similar previous computational work were also made and showed agreement in the wavenumber range of the most unstable crossflow modes.
Kim, Na Young; Wittenberg, Ellen; Nam, Chang S
2017-01-01
This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time) and neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task (i.e., flanker task) were influenced by the updating load (n-back level) and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels) and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.
NASA Astrophysics Data System (ADS)
Villagrasa, Carmen; Meylan, Sylvain; Gonon, Geraldine; Gruel, Gaëtan; Giesen, Ulrich; Bueno, Marta; Rabus, Hans
2017-09-01
In this work we present results obtained in the frame of the BioQuaRT project. The objective of the study was the correlation between the number of radiation-induced double strand breaks (DSB) of the DNA molecule and the probability of detecting nuclear foci after targeted microbeam irradiation of cells with protons and alpha particles of different LET. The former were obtained by simulation with new methods integrated into Geant4-DNA that permit calculating the number of DSB in a DNA target model induced by direct and indirect radiation effects. A particular focus was laid in this work on evaluating the influence of different criteria applied to the simulated results for predicting the formation of a direct SSB. Indeed, these criteria have an important impact on the predicted number of DSB per particle track and its dependence with LET. Among the criteria tested in this work, the case that a direct radiation interaction leads to a strand break if the cumulative energy deposited in the backbone part of one nucleotide exceeds a threshold of 17.5 eV leads to the best agreement with the relative LET dependence of number of radiation induced foci. Further calculations and experimental data are nevertheless needed in order to fix the simulation parameters and to help interpreting the biological experimental data observed by immunofluorescence in terms of the DSB complexity.
White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis
2014-01-01
Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of clearly articulating the skills required. The results of these discussions highlight the critical importance of experimental, mathematical, and interpersonal skills including collaboration, teamwork, safety, and ethics. The groups also found experimental design, data interpretation and analysiand the ability to communicate findings to diverse audience to be essential skills. To aid in the development of appropriate assessments these skills are grouped into three categories, 1) Process of Science, 2) Communication and Comprehension of Science, and 3) Community of Practice Aspects of Science. Finally, the groups worked to align these competencies with the best practices in both teaching and in skills assessment. PMID:24019246
Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions
NASA Astrophysics Data System (ADS)
Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.
2017-12-01
The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.
Wang, Xun; Sun, Beibei; Liu, Boyang; Fu, Yaping; Zheng, Pan
2017-01-01
Experimental design focuses on describing or explaining the multifactorial interactions that are hypothesized to reflect the variation. The design introduces conditions that may directly affect the variation, where particular conditions are purposely selected for observation. Combinatorial design theory deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance and/or symmetry. In this work, borrowing the concept of "balance" in combinatorial design theory, a novel method for multifactorial bio-chemical experiments design is proposed, where balanced templates in combinational design are used to select the conditions for observation. Balanced experimental data that covers all the influencing factors of experiments can be obtianed for further processing, such as training set for machine learning models. Finally, a software based on the proposed method is developed for designing experiments with covering influencing factors a certain number of times.
Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.
This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered,more » focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.« less
A Comparative Characteristic Study of Jatropha and Cardanol Biodiesel Blends
NASA Astrophysics Data System (ADS)
Pugazhenthi, R.; Chandrasekaran, M.; Muthuraman, R. K.; Vivek, P.; Parthiban, A.
2017-03-01
The demand in fuel needs and the depleting fossil fuels raised the need towards bio-fuels. The emerging trend in research field is highly focused on biodiesel production and their characteristic analysis. Since pollution is a major threat to the environment, emission parameter analyses are much important to be concentrated. As the entire world contains plenty of biofuels, it is necessary to explore them for its efficiency and analyze their parameters. In this experimental work jatropha and cashew nut shell biodiesel (Cardanol) was extracted and they were blended with diesel. The characteristics of jatropha and cardanol biodiesel were studied in the DI diesel engine by varying the load at the same speed. In brief, this experimental analysis is carried out to compare the emission characteristics between Jatropha biodiesel at 20% (B20) and 40% (B40) and Cardanol biodiesel blends at 20% (C20) and 40% (C40).
a Study of Nanocomposite Coatings on the Surface of Ship Exhaust Pipe
NASA Astrophysics Data System (ADS)
Shen, Yan; Sahoo, Prasanta K.; Pan, Yipeng
In order to improve the high temperature oxidation resistance of exhaust pipes, the nanocomposite coatings are carried out on the surface of exhaust pipe by pulsed current electrodeposition technology, and the microstructure and oxidation behavior of the nanocomposite coatings are investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and oxidation resistance of nanocomposite coatings in presence of attapulgite and cerium oxide CeO2. The results show that the amount of the attapulgite-CeO2 has significant influence on the structural properties of nanocomposite coatings. The surface of coating becomes more compact and smooth with the increase of the amount of the attapulgite and CeO2. Furthermore, the anti-oxidation performances of the nanocomposite coatings formed with attapulgite and CeO2 were both better than those of the composite coatings formed without attapulgite and CeO2.
Risko, Evan F; Kingstone, Alan
2017-06-01
Understanding the basic mechanisms underlying attentional function using naturalistic stimuli, tasks, and/or settings is the focus of everyday attention research. Interest in everyday approaches to attention research has increased recently-arguably riding a more general wave of support for such considerations in experimental psychology. This special issue of the Canadian Journal of Experimental Psychology attempts to capture the emerging enthusiasm for studying everyday attention by bringing together work from a wide array of attentional domains (e.g., visual attention, dual tasking, search, mind wandering, social attention) that are representative of this general approach. The 14 contributions to the special issue highlight the breadth of topics addressed in this research, the methodological creativity required to carry it out, and the promise of everyday attention for understanding the basic mechanisms underlying attentional function. This introduction will summarise the everyday attention approach as represented in the contributions to the special issue. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Elwina; Yunardi; Bindar, Yazid
2018-04-01
this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.
Experiments and modelling of surge in small centrifugal compressor for automotive engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galindo, J.; Serrano, J.R.; Climent, H.
2008-01-15
In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneousmore » pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)« less
a Study of Composite Coatings on 22MnCrNiMo Steel for Mooring Chain
NASA Astrophysics Data System (ADS)
Shen, Yan; Sahoo, Prasanta K.; Pan, Yipeng
In order to enhance the corrosion resistance of mooring chain, the composite coatings are carried out on the surface of 22MnCrNiMo steel for mooring chain by double-pulsed electrodeposition technology using centrifugal force in the rotating device. The microstructure and anti-corrosion performance of the composite coatings have been investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and corrosion resistance of composite coatings in the presence of nano-SiC. The results show that the presence of nano-SiC has a significant effect on the preparation of composite coating during the process. The surface of the coating becomes compact and smooth at a moderate concentration of nano-SiC particles. Furthermore, the best corrosion resistance of the composite coatings can be obtained when the concentration of nano-SiC particles is 2.0g.L-1 after salt spray treatment.
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2005-01-01
An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.
Adsorption Processes of Lead Ions on the Mixture Surface of Bentonite and Bottom Sediments.
Hegedűsová, Alžbeta; Hegedűs, Ondrej; Tóth, Tomáš; Vollmannová, Alena; Andrejiová, Alena; Šlosár, Miroslav; Mezeyová, Ivana; Pernyeszi, Tímea
2016-12-01
The adsorption of contaminants plays an important role in the process of their elimination from a polluted environment. This work describes the issue of loading environment with lead Pb(II) and the resulting negative impact it has on plants and living organisms. It also focuses on bentonite as a natural adsorbent and on the adsorption process of Pb(II) ions on the mixture of bentonite and bottom sediment from the water reservoir in Kolíňany (SR). The equilibrium and kinetic experimental data were evaluated using Langmuir isotherm kinetic pseudo-first and pseudo-second-order rate equations the intraparticle and surface diffusion models. Langmuir isotherm model was successfully used to characterize the lead ions adsorption equilibrium on the mixture of bentonite and bottom sediment. The pseudo second-order model, the intraparticle and surface (film) diffusion models could be simultaneously fitted the experimental kinetic data.
Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam
NASA Technical Reports Server (NTRS)
Allen, Albert R.; Schiller, Noah H.
2016-01-01
Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.
Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.
2016-01-01
This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.
Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui
2016-01-01
Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365
Experimental design applied to photo-Fenton treatment of highly methomyl-concentrated water.
Micó, María M; Bacardit, Jordi; Sans, Carme
2010-01-01
This work is focused on the study of the suitability of the photo-Fenton process as a pretreatment for water highly contaminated with a methomyl commercial formulation in Advanced Greenhouses devices. Initial concentrations of reagents and pesticide were evaluated according to a central composite experimental design, with methomyl depletion and biocompatibility of the final effluent as response functions. A triad of optimal operation conditions could be determined, [Met.](0)=50 mg L(-1), [H(2)O(2)](0)=254 mg L(-1) and [Fe(2+)](0)=77 mg L(-1) for the best elimination yield and an acceptable BOD(5)/COD value, and initial concentration of methomyl can be established as the most important parameter for the performance of the treatment due to the limitations that impose on the hydrogen peroxide doses in the presence of the excipients of the commercial formulation.
Sedimentation dynamics and diffusion of suspensions of swimming E. coli
NASA Astrophysics Data System (ADS)
Arratia, Paulo; Patteson, Alison; Singh, Jaspreet; Purohit, Prashant
2017-11-01
Sedimentation in active fluids has come into focus due to the ubiquity of swimming micro-organisms in natural and man-made environments. Here, we experimentally investigate sedimentation of passive particles in water containing various concentrations of the bacterium E. coli. Results show that the presence of live bacteria reduces the velocity of the sedimentation front even in the dilute regime, where constant sedimentation velocity is expected to be independent of particle concentration. The presence of live bacteria increases the effective diffusion coefficient, which determines the width of the sedimentation front. For higher bacteria concentration, we find the development of two sedimentation fronts due to bacterial death. A model in which the advection-diffusion equation describing the settling of particles under gravity is coupled to the population dynamics of the bacteria captures the experimental trends relatively well. This work is supported by NSF-CBET-1437482.
NASA Astrophysics Data System (ADS)
Abdelaziz, Chebboubi; Grégoire, Kessedjian; Olivier, Serot; Sylvain, Julien-Laferriere; Christophe, Sage; Florence, Martin; Olivier, Méplan; David, Bernard; Olivier, Litaize; Aurélien, Blanc; Herbert, Faust; Paolo, Mutti; Ulli, Köster; Alain, Letourneau; Thomas, Materna; Michal, Rapala
2017-09-01
The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. In the past with the LOHENGRIN spectrometer of the ILL, priority has been given for the studies in the light fission fragment mass range. The LPSC in collaboration with ILL and CEA has developed a measurement program on symmetric and heavy mass fission fragment distributions. The combination of measurements with ionisation chamber and Ge detectors is necessary to describe precisely the heavy fission fragment region in mass and charge. Recently, new measurements of fission yields and kinetic energy distributions are has been made on the 233U(nth,f) reaction. The focus of this work has been on the new optical and statistical methodology and the self-normalization of the data to provide new absolute measurements, independently of any libraries, and the associated experimental covariance matrix.
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2007-01-01
An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Simulations and experiments on gas adsorption in novel microporous polymers
NASA Astrophysics Data System (ADS)
Larsen, Gregory Steven
Microporous materials represent a fascinating class of materials with a broad range of applications. The work presented here focuses on the use of a novel class of microporous material known as polymers of intrinsic micrioporosity, or PIMs, for use in gas separation and storage technologies. The aim of this research is to develop a detailed understanding of the relationship between the monomeric structure and the adsorptive performance of PIMs. First, a generalizable structure generation technique was developed such that simulation samples of PIM-1 recreated experimental densities, scattering, surface areas, pore size distributions, and adsorption isotherms. After validation, the simulations were applied as virtual experiments on several new PIMs with the intent to screen their capabilities as adsorbent materials and elucidate design principles for linear PIMs. The simulations are useful in understanding the unique properties such as pore size distribution and scattering observed experimentally.
NASA Astrophysics Data System (ADS)
Etourneau, Jean; Matar, Samir F.
2018-06-01
The thermodynamic pressure parameter has been thoroughly used with mastership by Gérard Demazeau throughout his rich career in solid state chemistry and materials sciences and more recently in biosciences. After a review of such works, focus is made in this topical article on his contribution together with his team in the field of hard materials based on light elements B, C, N with a proposition of a new ultra-hard carbon nitride C2N on one hand and on the structural transformations under high pressures of perovskite into postperovskite with a change of dimensionality from 3D to 2D and related oxides, regarding the arrangement of octahedra, on the other hand. Investigation and concepts first arising from experimental observables are shown to be aided and accelerated via first principles calculations of energy and energy-related quantities.
Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules
Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin
2015-01-01
Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO2) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires. PMID:28793434
Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.
Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin
2015-07-09
Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.
NASA Astrophysics Data System (ADS)
Cowan, Brett; von Lockette, Paris R.
2017-04-01
The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.
NASA Astrophysics Data System (ADS)
Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.
2018-01-01
Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.
Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators
NASA Astrophysics Data System (ADS)
Geerts, Jonathan Simon
Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).
Project EX: A Program of Empirical Research on Adolescent Tobacco Use Cessation
Sussman, Steve; McCuller, William J; Zheng, Hong; Pfingston, Yvonne M; Miyano, James; Dent, Clyde W
2004-01-01
This paper presents the Project EX research program. The historical background for Project EX is presented, including a brief summary of reasons youth fail to quit tobacco use, the disappointing status of previous cessation research, and the teen cessation trial that provided the template for the current project (Project TNT). Next, program development studies for Project EX are described. Through use of focus groups, a theme study (concept evaluation of written activity descriptions), a component study, and pilot studies, an eight-session program was developed. This program involves novel activities (e.g., "talk show enactments," games, and alternative medicine-type activities such as yoga and meditation) in combination with motivation enhancement and cognitive-behavioral strategies to motivate and instruct in cessation initiation and maintenance efforts. The outcomes of the first experimental trial of Project EX, a school-based clinic program, are described, followed by a posthoc analysis of its effects mediation. A second EX study, a multiple baseline single group pilot study design in Wuhan, China, is described next. Description of a second experimental trial follows, which tested EX with nicotine gum versus a natural herb. A third experimental trial that tests a classroom prevention/cessation version of EX is then introduced. Finally, the implications of this work are discussed. The intent-to-treat quit rate for Project EX is approximately 15% across studies, double that of a standard care comparison. Effects last up to a six-month post-program at regular and alternative high schools. Through a systematic protocol of empirical program development and field trials, an effective and replicable model teen tobacco use cessation program is established. Future cessation work might expand on this work.
Project EX: A Program of Empirical Research on Adolescent Tobacco Use Cessation
Sussman, Steve; McCuller, William J; Zheng, Hong; Pfingston, Yvonne M; Miyano, James; Dent, Clyde W
2004-01-01
This paper presents the Project EX research program. The historical background for Project EX is presented, including a brief summary of reasons youth fail to quit tobacco use, the disappointing status of previous cessation research, and the teen cessation trial that provided the template for the current project (Project TNT). Next, program development studies for Project EX are described. Through use of focus groups, a theme study (concept evaluation of written activity descriptions), a component study, and pilot studies, an eight-session program was developed. This program involves novel activities (e.g., "talk show enactments," games, and alternative medicine-type activities such as yoga and meditation) in combination with motivation enhancement and cognitive-behavioral strategies to motivate and instruct in cessation initiation and maintenance efforts. The outcomes of the first experimental trial of Project EX, a school-based clinic program, are described, followed by a posthoc analysis of its effects mediation. A second EX study, a multiple baseline single group pilot study design in Wuhan, China, is described next. Description of a second experimental trial follows, which tested EX with nicotine gum versus a natural herb. A third experimental trial that tests a classroom prevention/cessation version of EX is then introduced. Finally, the implications of this work are discussed. The intent-to-treat quit rate for Project EX is approximately 15% across studies, double that of a standard care comparison. Effects last up to a six-month post-program at regular and alternative high schools. Through a systematic protocol of empirical program development and field trials, an effective and replicable model teen tobacco use cessation program is established. Future cessation work might expand on this work. PMID:19570278
Ren, Yukun; Liu, Xianyu; Liu, Weiyu; Tao, Ye; Jia, Yankai; Hou, Likai; Li, Wenying; Jiang, Hongyuan
2018-02-01
We report herein a novel microfluidic particle concentrator that utilizes constriction microchannels to enhance the flow-focusing performance of induced-charge electroosmosis (ICEO), where viscous hemi-spherical oil droplets are embedded within the mainchannel to form deformable converging-diverging constriction structures. The constriction region between symmetric oil droplets partially coated on the electrode strips can improve the focusing performance by inducing a granular wake flow area at the diverging channel, which makes almost all of the scattered sample particles trapped within a narrow stream on the floating electrode. Another asymmetric droplet pair arranged near the outlets can further direct the trajectory of focused particle stream to one specified outlet port depending on the symmetry breaking in the shape of opposing phase interfaces. By fully exploiting rectification properties of induced-charge electrokinetic phenomena at immiscible water/oil interfaces of tunable geometry, the expected function of continuous and switchable flow-focusing is demonstrated by preconcentrating both inorganic silica particles and biological yeast cells. Physical mechanisms responsible for particle focusing and locus deflection in the droplet-assisted concentrentor are analyzed in detail, and simulation results are in good accordance with experimental observations. Our work provides new routes to construct flexible electrokinetic framework for preprocessing on-chip biological samples before performing subsequent analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of New Power Management Circuit for Light Energy Harvesting System
Jafer, Issa; Stack, Paul; MacNamee, Kevin
2016-01-01
Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestehe, S. J., E-mail: sjpest@tabrizu.ac.ir; Mohammadnejad, M.; Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz
A theoretical model is developed to study the signals from a typical dynamic Faraday cup, and using this model the output signals from this structure are obtained. A detailed discussion on the signal structure, using different experimental conditions, is also given. It is argued that there is a possibility of determining the total charge of the generated ion pulse, the maximum velocity of the ions, ion velocity distribution, and the number of ion species for mixed working gases, under certain conditions. In addition, the number of different ionization stages, the number of different pinches in one shot, and the numbermore » of different existing acceleration mechanisms can also be determined provided that the mentioned conditions being satisfied. An experiment is carried out on the Filippov type 90 kJ Sahand plasma focus using Ar as the working gas at the pressure of 0.25 Torr. The data from a typical shot are fitted to a signal from the model and the total charge of the related energetic ion pulse is deduced using the values of the obtained fit parameters. Good agreement between the obtained amount of the total charge and the values obtained during other experiments on the same plasma focus device is observed.« less
Shami, Gerald J.; Morsch, Marco; Chung, Roger S.; Braet, Filip
2016-01-01
Research in the field of gastroenterology is increasingly focused on the use of alternative nonrodent model organisms to provide new experimental tools to study chronic diseases. The zebrafish is a particularly valuable experimental platform to explore organ and cell structure-function relationships under relevant biological and pathobiological settings. This is due to its optical transparency and its close-to-human genetic makeup. To-date, the structure-function properties of the GIS of the zebrafish are relatively unexplored and limited to histology and fluorescent microscopy. Occasionally those studies include EM of a given subcellular process but lack the required full histological picture. In this work, we employed a novel combined biomolecular imaging approach in order to cross-correlate 3D ultrastructure over different length scales (optical-, X-ray micro-CT, and high-resolution EM). Our correlated imaging studies and subsequent data modelling provide to our knowledge the first detailed 3D picture of the zebrafish larvae GIS. Our results provide unequivocally a limit of confidence for studying various digestive disorders and drug delivery pathways in the zebrafish. PMID:27340669
NASA Astrophysics Data System (ADS)
Menet, Claire; Reynaud, Pascal; Fantozzi, Gilbert; Thibault, Delphine; Laforêt, Adrien
2017-06-01
Sand cores are used to produce internal cavities of metallic cast parts with complex shapes like automotive cylinder heads. Foundry cores are granular materials made of sand grains aggregated with binder bridges. In the cold box coring process, the binder is a polyurethane resin. It is noteworthy that during the casting of the liquid metal, the polymer binder is seriously damaged. This kind of materials has been poorly investigated so far. This study aims for a better understanding of the mechanical behaviour and fracture of cores subjected to various loads and thermal ageing. Particularly, the focus is on the decoring step, which consists in removing the sand by hammering and vibration of the metallic part after casting. This major project, generated from the collaboration of the aluminum casting company Montupet, and two laboratories Centre des Matériaux (CdM) and MATEIS, includes both experimental and numerical activities in order to model the decoring step of cylinder heads based on empiric data. Here, the experimental part of the work is presented.
Droplet formation at the non-equilibrium water/water (w/w) interface
NASA Astrophysics Data System (ADS)
Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung
2017-11-01
The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.
Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis
NASA Technical Reports Server (NTRS)
Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.
2003-01-01
The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.
Tomographic iterative reconstruction of a passive scalar in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Pisso, Ignacio; Kylling, Arve; Cassiani, Massimo; Solveig Dinger, Anne; Stebel, Kerstin; Schmidbauer, Norbert; Stohl, Andreas
2017-04-01
Turbulence in stable planetary boundary layers often encountered in high latitudes influences the exchange fluxes of heat, momentum, water vapor and greenhouse gases between the Earth's surface and the atmosphere. In climate and meteorological models, such effects of turbulence need to be parameterized, ultimately based on experimental data. A novel experimental approach is being developed within the COMTESSA project in order to study turbulence statistics at high resolution. Using controlled tracer releases, high-resolution camera images and estimates of the background radiation, different tomographic algorithms can be applied in order to obtain time series of 3D representations of the scalar dispersion. In this preliminary work, using synthetic data, we investigate different reconstruction algorithms with emphasis on algebraic methods. We study the dependence of the reconstruction quality on the discretization resolution and the geometry of the experimental device in both 2 and 3-D cases. We assess the computational aspects of the iterative algorithms focusing of the phenomenon of semi-convergence applying a variety of stopping rules. We discuss different strategies for error reduction and regularization of the ill-posed problem.
Cheng, Delfine; Shami, Gerald J; Morsch, Marco; Chung, Roger S; Braet, Filip
2016-01-01
Research in the field of gastroenterology is increasingly focused on the use of alternative nonrodent model organisms to provide new experimental tools to study chronic diseases. The zebrafish is a particularly valuable experimental platform to explore organ and cell structure-function relationships under relevant biological and pathobiological settings. This is due to its optical transparency and its close-to-human genetic makeup. To-date, the structure-function properties of the GIS of the zebrafish are relatively unexplored and limited to histology and fluorescent microscopy. Occasionally those studies include EM of a given subcellular process but lack the required full histological picture. In this work, we employed a novel combined biomolecular imaging approach in order to cross-correlate 3D ultrastructure over different length scales (optical-, X-ray micro-CT, and high-resolution EM). Our correlated imaging studies and subsequent data modelling provide to our knowledge the first detailed 3D picture of the zebrafish larvae GIS. Our results provide unequivocally a limit of confidence for studying various digestive disorders and drug delivery pathways in the zebrafish.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory
NASA Astrophysics Data System (ADS)
Baum, David A.; Vetsigian, Kalin
2017-12-01
Most experimental work on the origin of life has focused on either characterizing the chemical synthesis of particular biochemicals and their precursors or on designing simple chemical systems that manifest life-like properties such as self-propagation or adaptive evolution. Here we propose a new class of experiments, analogous to artificial ecosystem selection, where we select for spontaneously forming self-propagating chemical assemblages in the lab and then seek evidence of a response to that selection as a key indicator that life-like chemical systems have arisen. Since surfaces and surface metabolism likely played an important role in the origin of life, a key experimental challenge is to find conditions that foster nucleation and spread of chemical consortia on surfaces. We propose high-throughput screening of a diverse set of conditions in order to identify combinations of "food," energy sources, and mineral surfaces that foster the emergence of surface-associated chemical consortia that are capable of adaptive evolution. Identification of such systems would greatly advance our understanding of the emergence of self-propagating entities and the onset of adaptive evolution during the origin of life.
Gelman, Hannah; Gruebele, Martin
2014-01-01
Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, J.; Reynard-Carette, C.; Carette, M.
2015-07-01
The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit
In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate andmore » transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the this part of the Continuation Phase 2 period (Oct. 1, 06 to March 31, 07) of this project were to (a) fabricate laser-doped SiC wafers and start testing the SiC chips for individual gas species sensing under high temperature and pressure conditions and (b) demonstrate the designs and workings of a temperature probe suited for industrial power generation turbine environment. A focus of the reported work done via Kar UCF LAMP lab. is to fabricate the embedded optical phase or doped microstructures based SiC chips, namely, Chromium (C), Boron (B) and Aluminum (Al) doped 4H-SiC, andmore » to eventually deploy such laser-doped chips to enable gas species sensing under high temperature and pressure. Experimental data is provided from SiC chip optical response for various gas species such as pure N2 and mixtures of N2 and H{sub 2}, N{sub 2} and CO, N{sub 2} and CO{sub 2}, and N{sub 2} and CH{sub 4}. Another main focus of the reported work was a temperature sensor probe assembly design and initial testing. The probe transmit-receive fiber optics were designed and tested for electrically controlled alignment. This probe design was provided to overcome mechanical vibrations in typical industrial scenarios. All these goals have been achieved and are described in detail in the report.« less
On the Forward Scattering of Microwave Breast Imaging
Lui, Hoi-Shun; Fhager, Andreas; Persson, Mikael
2012-01-01
Microwave imaging for breast cancer detection has been of significant interest for the last two decades. Recent studies focus on solving the imaging problem using an inverse scattering approach. Efforts have mainly been focused on the development of the inverse scattering algorithms, experimental setup, antenna design and clinical trials. However, the success of microwave breast imaging also heavily relies on the quality of the forward data such that the tumor inside the breast volume is well illuminated. In this work, a numerical study of the forward scattering data is conducted. The scattering behavior of simple breast models under different polarization states and aspect angles of illumination are considered. Numerical results have demonstrated that better data contrast could be obtained when the breast volume is illuminated using cross-polarized components in linear polarization basis or the copolarized components in the circular polarization basis. PMID:22611371
Three-dimensional imaging using phase retrieval with two focus planes
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev
2016-03-01
This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.
Diffractive micro-optical element with nonpoint response
NASA Astrophysics Data System (ADS)
Soifer, Victor A.; Golub, Michael A.
1993-01-01
Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.
Experimental study of turbulent structures over hairy poro-elastic surfaces
NASA Astrophysics Data System (ADS)
Couliou, Marie; Hansson, Jonas; van der Wijngaart, Wouter; Lundell, Fredrik; Bagheri, Shervin
2016-11-01
Flows over slender, deformable and dense structures are ubiquitous in both nature and technological applications, ranging from the atmospheric flow over trees to the flow over the over the skin of organisms. In order to create a fundamental understanding of how poro-elatic surface can be used for flow control purposes, our work focuses on the behaviour of wall-bounded turbulent flows over fibrous poro-elastic surfaces. We fabricate the coatings using Off-Stoichiometry-Thiolene-Epoxy (OSTE+) polymers and multidirectional UV-lithography which enables us to design arrays of flexible pillars with various geometrical parameters (aspect ratio, pitch, inclinaison, etc.). We assess the effects of these coatings on an overlying low-Reynolds number turbulent flow using a water-table facility and PIV measurements. In particular, we focus on the modification of near wall turbulent structures in both space and time due to the presence of the poro-elastic coatings.
Lin, Chun-I; Lee, Yung-Chun
2014-08-01
Line-focused PVDF transducers and defocusing measurement method are applied in this work to determine the dispersion curve of the Rayleigh-like surface waves propagating along the circumferential direction of a solid cylinder. Conventional waveform processing method has been modified to cope with the non-linear relationship between phase angle of wave interference and defocusing distance induced by a cylindrically curved surface. A cross correlation method is proposed to accurately extract the cylindrical Rayleigh wave velocity from measured data. Experiments have been carried out on one stainless steel and one glass cylinders. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrical Rayleigh wave velocity due to the cylindrical curvature is quantitatively verified using this new method. Other potential applications of this measurement method for cylindrical samples will be addressed. Copyright © 2014 Elsevier B.V. All rights reserved.
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
NASA Technical Reports Server (NTRS)
Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III
2013-01-01
The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators.
Functional feature embedded space mapping of fMRI data.
Hu, Jin; Tian, Jie; Yang, Lei
2006-01-01
We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.
Quantum scattering beyond the plane-wave approximation
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry
2017-12-01
While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Improving L2 Reading Comprehension through Emotionalized Dynamic Assessment Procedures.
Abdolrezapour, Parisa
2017-06-01
The paper reports a study on an emotionally-loaded dynamic assessment procedure used with Iranian EFL learners. It focuses on the effect of using emotional intelligence characteristics (based on Goleman's framework) as a tool for motivating learners while performing reading tasks. The study with 50 intermediate learners aged 12-15 used three modalities: a control group, which was taught under institute's normal procedures; a comparison group, which received dynamic assessment (DA); and an experimental group, which received emotionalized dynamic assessment (EDA) procedures, in the form of an intervention focusing on characteristics of Goleman's emotional intelligence framework with the express purpose of inducing them to work with their emotions. Results showed that applying EDA procedures to reading assessment tasks made a difference in learners' level of performance in comparison to those who went through pure DA procedures who in turn performed significantly better than those who did not received DA in any form.
Materialistic Values and Goals.
Kasser, Tim
2016-01-01
Materialism comprises a set of values and goals focused on wealth, possessions, image, and status. These aims are a fundamental aspect of the human value/goal system, standing in relative conflict with aims concerning the well-being of others, as well as one's own personal and spiritual growth. Substantial evidence shows that people who place a relatively high priority on materialistic values/goals consume more products and incur more debt, have lower-quality interpersonal relationships, act in more ecologically destructive ways, have adverse work and educational motivation, and report lower personal and physical well-being. Experimentally activating materialistic aims causes similar outcomes. Given these ills, researchers have investigated means of decreasing people's materialism. Successful interventions encourage intrinsic/self-transcendent values/goals, increase felt personal security, and/or block materialistic messages from the environment. These interventions would likely be more effective if policies were also adopted that diminished contemporary culture's focus on consumption, profit, and economic growth.
Berret, Bastien; Darlot, Christian; Jean, Frédéric; Pozzo, Thierry; Papaxanthis, Charalambos; Gauthier, Jean Paul
2008-01-01
An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function that is not smooth. First, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation. Second, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed trajectories, velocity profiles, and final postures were accurately simulated by the model. In accordance, electromyographic signals showed brief simultaneous inactivation of opposing muscles during movements. Thus, assuming that human movements are optimal with respect to a certain integral cost, the minimization of an absolute-work-like cost is supported by experimental observations. Such types of optimality criteria may be applied to a large range of biological movements. PMID:18949023
An item-oriented recommendation algorithm on cold-start problem
NASA Astrophysics Data System (ADS)
Qiu, Tian; Chen, Guang; Zhang, Zi-Ke; Zhou, Tao
2011-09-01
Based on a hybrid algorithm incorporating the heat conduction and probability spreading processes (Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 4511), in this letter, we propose an improved method by introducing an item-oriented function, focusing on solving the dilemma of the recommendation accuracy between the cold and popular items. Differently from previous works, the present algorithm does not require any additional information (e.g., tags). Further experimental results obtained in three real datasets, RYM, Netflix and MovieLens, show that, compared with the original hybrid method, the proposed algorithm significantly enhances the recommendation accuracy of the cold items, while it keeps the recommendation accuracy of the overall and the popular items. This work might shed some light on both understanding and designing effective methods for long-tailed online applications of recommender systems.
Reflexive composites: self-healing composite structures
NASA Astrophysics Data System (ADS)
Margraf, Thomas W., Jr.; Barnell, Thomas J.; Havens, Ernie; Hemmelgarn, Christopher D.
2008-03-01
Cornerstone Research Group Inc. has developed reflexive composites achieving increased vehicle survivability through integrated structural awareness and responsiveness to damage. Reflexive composites can sense damage through integrated piezoelectric sensing networks and respond to damage by heating discrete locations to activate the healable polymer matrix in areas of damage. The polymer matrix is a modified thermoset shape memory polymer that heals based on phenomena known as reptation. In theory, the reptation healing phenomena should occur in microseconds; however, during experimentation, it has been observed that to maximize healing and restore up to 85 % of mechanical properties a healing cycle of at least three minutes is required. This paper will focus on work conducted to determine the healing mechanisms at work in CRG's reflexive composites, the optimal healing cycles, and an explanation of the difference between the reptation model and actual healing times.
Influence of laser beam profiles on received power fluctuation
NASA Astrophysics Data System (ADS)
Dordova, Lucie; Diblik, Jan
2011-09-01
Gaussian beam is very often used for the transmission of information in optical wireless links. The usage of this optical beam has its advantages and, of course, disadvantages. This work focuses on possibilities of using laser beams with different distribution of optical intensity - Top Hat beam. Creation of the optical beam with selected optical intensity profile will be briefly described. Optical beams will propagate through the "clear" and stationary atmosphere in the experimental part of this work. These results will be compared with the data obtained after a laser beam is passed through the turbulent and attenuated atmosphere. We will use an ultrasound fog generator for laser beam attenuation testing. To create the turbulence, infra radiators will be applied. Particular results obtained from different atmospheric conditions will be compared and using different types of optical beams will be assessed.