Analysis and Evaluation of Parameters Determining Maximum Efficiency of Fish Protection
NASA Astrophysics Data System (ADS)
Khetsuriani, E. D.; Kostyukov, V. P.; Khetsuriani, T. E.
2017-11-01
The article is concerned with experimental research findings. The efficiency of fish fry protection from entering water inlets is the main criterion of any fish protection facility or device. The research was aimed to determine an adequate mathematical model E = f(PCT, Vp, α), where PCT, Vp and α are controlled factors influencing the process of fish fry protection. The result of the processing of experimental data was an adequate regression model. We determined the maximum of fish protection Emax=94,21 and the minimum of optimization function Emin=44,41. As a result of the statistical processing of experimental data we obtained adequate dependences for determining an optimal rotational speed of tip and fish protection efficiency. The analysis of fish protection efficiency dependence E% = f(PCT, Vp, α) allowed the authors to recommend the following optimized operating modes for it: the maximum fish protection efficiency is achieved at the process pressure PCT=3 atm, stream velocity Vp=0,42 m/s and nozzle inclination angle α=47°49’. The stream velocity Vp has the most critical influence on fish protection efficiency. The maximum efficiency of fish protection is obtained at the tip rotational speed of 70.92 rpm.
Szilágyi, N; Kovács, R; Kenyeres, I; Csikor, Zs
2013-01-01
Biofilm development in a fixed bed biofilm reactor system performing municipal wastewater treatment was monitored aiming at accumulating colonization and maximum biofilm mass data usable in engineering practice for process design purposes. Initially a 6 month experimental period was selected for investigations where the biofilm formation and the performance of the reactors were monitored. The results were analyzed by two methods: for simple, steady-state process design purposes the maximum biofilm mass on carriers versus influent load and a time constant of the biofilm growth were determined, whereas for design approaches using dynamic models a simple biofilm mass prediction model including attachment and detachment mechanisms was selected and fitted to the experimental data. According to a detailed statistical analysis, the collected data have not allowed us to determine both the time constant of biofilm growth and the maximum biofilm mass on carriers at the same time. The observed maximum biofilm mass could be determined with a reasonable error and ranged between 438 gTS/m(2) carrier surface and 843 gTS/m(2), depending on influent load, and hydrodynamic conditions. The parallel analysis of the attachment-detachment model showed that the experimental data set allowed us to determine the attachment rate coefficient which was in the range of 0.05-0.4 m d(-1) depending on influent load and hydrodynamic conditions.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F
2015-04-01
The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.
NASA Astrophysics Data System (ADS)
Ramachandran, Hema; Pillai, K. P. P.; Bindu, G. R.
2017-08-01
A two-port network model for a wireless power transfer system taking into account the distributed capacitances using PP network topology with top coupling is developed in this work. The operating and maximum power transfer efficiencies are determined analytically in terms of S-parameters. The system performance predicted by the model is verified with an experiment consisting of a high power home light load of 230 V, 100 W and is tested for two forced resonant frequencies namely, 600 kHz and 1.2 MHz. The experimental results are in close agreement with the proposed model.
Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation
NASA Technical Reports Server (NTRS)
Taylor, E S; Leary, W A; Diver, J R
1940-01-01
An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.
A figure of merit for AMTEC electrodes
NASA Technical Reports Server (NTRS)
Underwood, M. L.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.
1991-01-01
As a method to compare the results of alkali metal thermoelectric converter (AMTEC) electrode performance measured under different conditions, an AMTEC figure of merit called ZA is proposed. This figure of merit is the ratio of the experimental maximum power for an electrode to a calculated maximum power density as determined from a recently published electrode performance model. The calculation of a maximum power density assumes that certain loss terms in the electrode can be reduced to essentially zero by improved cell design and construction, and that the electrochemical exchange current is determined from a standard value. Other losses in the electrode are considered inherent to the electrode performance. Thus, these terms remain in the determination of the calculated maximum power. A value of ZA near one, then, indicates an electrode performance near the maximum possible performance. The primary limitation of this calculation is that the small electrode effect cannot be included. This effect leads to anomalously high values of ZA. Thus, the electrode area should be reported along with the figure of merit.
NASA Astrophysics Data System (ADS)
Mizev, A. I.; Bratsun, D. A.; Shmyrova, A. I.
2017-12-01
The dynamics of the formation of a surface phase in aqueous solutions of surfactants in a tray with the Langmuir barrier system during one compression-expansion cycle of the interface boundary is investigated both experimentally and theoretically. Organic salts of fatty acids such as potassium laurate, caprylate, and acetate, which are members of the same homologous series, were used as surfactants. It is experimentally determined that the dependence of the surface pressure increment measured under the maximum compression of the surface on the volume concentration has a maximum, the position of which is different for all the studied surfactant solutions. It is shown that the position of the maximum corresponds to the concentration value at which a saturated monolayer of surfactant molecules is formed at the interface boundary. A theoretical model that considers the effect of the forced convection arisen in the bulk of the solution upon changing the surface area is proposed for the interpretation of the experimental results. The model allows one to render the main kinetic characteristics of the adsorption/desorption processes involving the compounds under study. A good agreement between the theoretical and experimental results is observed, but there is a discrepancy between them when diffusion is considered to be the only way surfactant molecules are transferred into the bulk phase. Based on the data, a new method for determination of the Langmuir-Shishkovsky constant is proposed.
Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin
2017-10-01
To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide guidance on how to effectively reduce BDT and may be used to identifying deteriorating machine performance. © 2017 American Association of Physicists in Medicine.
Experimental investigation of the critical magnetic fields of transition metal superconductors
NASA Technical Reports Server (NTRS)
Mcevoy, J. P.
1973-01-01
The isothermal magnetic transitions of a type 2 superconductor have been studied by AC susceptibility techniques as a function of the amplitude and frequency of the exciting field. The field variation of the complex susceptibility was used to determine the critical fields. The research was planned to clarify the determination (both experimentally and theoretically) of the maximum field at which the superconductive phase spontaneously nucleates in the bulk and on the surface of the metal.
Fatigue Crack Growth Properties of Rail Steels
DOT National Transportation Integrated Search
1981-10-01
Fatigue crack propagation properties of rail steels were determined experimentally. The investigation covered 66 rail steels. The effects of the following parameters were studied: stress ratio (ratio of minimum to maximum stress in a cycle), frequenc...
Universal behavior in ideal slip
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Smith, John R.
1991-01-01
The slip energies and stresses are computed for defect-free crystals of Ni, Cu, Ag, and Al using the many-atom approach. A simple analytical expression for the slip energies is obtained, leading to a universal form for slip, with the energy scaled by the surface energy and displacement scaled by the lattice constant. Maximum stresses are found to be somewhat larger than but comparable with experimentally determined maximum whisker strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranson, W.F.; Schaeffel, J.A.; Murphree, E.A.
The response of prestressed and preheated plates subject to an exponentially decaying blast load was experimentally determined. A grid was reflected from the front surface of the plate and the response was recorded with a high speed camera. The camera used in this analysis was a rotating drum camera operating at 20,000 frames per second with a maximum of 224 frames at 39 microseconds separation. Inplane tension loads were applied to the plate by means of air cylinders. Maximum biaxial load applied to the plate was 500 pounds. Plate preheating was obtained with resistance heaters located in the specimen platemore » holder with a maximum capability of 500F. Data analysis was restricted to the maximum conditions at the center of the plate. Strains were determined from the photographic data and the stresses were calculated from the strain data. Results were obtained from zero preload conditions to a maximum of 480 pounds inplane tension loads and a plate temperature of 490F. The blast load ranged from 6 to 23 psi.« less
Fatigue Crack Initiation Properties of Rail Steels
DOT National Transportation Integrated Search
1982-01-01
Fatigue crack initiation properties of rail-steels were determined experimentally. One new and four used rail steels were investigated. The effects of the following parameters were studied: stress ratio (ratio of minimum to maximum stress in a cycle)...
Accurate determination of complex materials coefficients of piezoelectric resonators.
Du, Xiao-Hong; Wang, Qing-Ming; Uchino, Kenji
2003-03-01
This paper presents a method of accurately determining the complex piezoelectric and elastic coefficients of piezoelectric ceramic resonators from the measurement of the normalized electric admittance, Y, which is electric admittance Y of piezoelectric resonator normalized by the angular frequency omega. The coefficients are derived from the measurements near three special frequency points that correspond to the maximum and the minimum normalized susceptance (B) and the maximum normalized conductance (G). The complex elastic coefficient is determined from the frequencies at these points, and the real and imaginary parts of the piezoelectric coefficient are related to the derivative of the susceptance with respect to the frequency and the asymmetry of the conductance, respectively, near the maximum conductance point. The measurements for some lead zirconate titanate (PZT) based ceramics are used as examples to demonstrate the calculation and experimental procedures and the comparisons with the standard methods.
Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.
Chojnacka, Katarzyna
2005-04-01
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.
Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A
2018-05-17
A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.
NASA Astrophysics Data System (ADS)
Bragov, A. M.; Balandin, Vl. V.; Kotov, V. L.; Balandin, Vl. Vl.
2018-04-01
We present new experimental results on the investigation of the dynamic properties of sand soil on the basis of the inverse experiment technique using a measuring rod with a flat front-end face. A limited applicability has been shown of the method using the procedure for correcting the shape of the deformation pulse due to dispersion during its propagation in the measuring rod. Estimates of the pulse maximum have been obtained and the results of comparison of numerical calculations with experimental data are given. The sufficient accuracy in determining the drag force during the quasi-stationary stage of penetration has been established. The parameters of dynamic compressibility and resistance to shear of water-saturated sand have been determined in the course of the experimental-theoretical analysis of the maximum values of the drag force and its values at the quasi-stationary stage of penetration. It has been shown that with almost complete water saturation of sand its shear properties are reduced but remain significant in the practically important range of penetration rates.
Determination of contact angle from the maximum height of enlarged drops on solid surfaces
NASA Astrophysics Data System (ADS)
Behroozi, F.
2012-04-01
Measurement of the liquid/solid contact angle provides useful information on the wetting properties of fluids. In 1870, the German physicist Georg Hermann Quincke (1834-1924) published the functional relation between the maximum height of an enlarged drop and its contact angle. Quincke's relation offered an alternative to the direct measurement of contact angle, which in practice suffers from several experimental uncertainties. In this paper, we review Quincke's original derivation and show that it is based on a hidden assumption. We then present a new derivation that exposes this assumption and clarifies the conditions under which Quincke's relation is valid. To explore Quincke's relation experimentally, we measure the maximum height of enlarged water drops on several substrates and calculate the contact angle in each case. Our results are in good agreement with contact angles measured directly from droplet images.
Probability of stress-corrosion fracture under random loading
NASA Technical Reports Server (NTRS)
Yang, J. N.
1974-01-01
Mathematical formulation is based on cumulative-damage hypothesis and experimentally-determined stress-corrosion characteristics. Under both stationary random loadings, mean value and variance of cumulative damage are obtained. Probability of stress-corrosion fracture is then evaluated, using principle of maximum entropy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maximum quantity of byproduct material in each product; (2) Details of construction and design of each... experimental studies and tests, required by the Commission to facilitate a determination of the safety of the...
Determination of the combustion behavior for pure components and mixtures using a 20-liter sphere
NASA Astrophysics Data System (ADS)
Mashuga, Chad Victor
1999-11-01
The safest method to prevent fires and explosions of flammable vapors is to prevent the existence of flammable mixtures in the first place. This methodology requires detailed knowledge of the flammability region as a function of the fuel, oxygen, and nitrogen concentrations. A triangular flammability diagram is the most useful tool to display the flammability region, and to determine if a flammable mixture is present during plant operations. An automated apparatus for assessing the flammability region and for determining the potential effect of confined fuel-air explosions is described. Data derived from the apparatus included the limits of combustion, maximum combustion pressure, and the deflagration index, or KG. Accurate measurement of these parameters can be influenced by numerous experimental conditions, including igniter energy, humidity and gas composition. Gas humidity had a substantial effect on the deflagration index, but had little effect on the maximum combustion pressure. Small changes in gas compositions had a greater effect on the deflagration index than the maximum combustion pressure. Both the deflagration indices and the maximum combustion pressure proved insensitive to the range of igniter energies examined. Estimation of flammability limits using a calculated adiabatic flame temperature (CAFT) method is demonstrated. The CAFT model is compared with the extensive experimental data from this work for methane, ethylene and a 50/50 mixture of methane and ethylene. The CAFT model compares well to methane and ethylene throughout the flammability zone when using a 1200K threshold temperature. Deviations between the method and the experimental data occurs in the fuel rich region. For the 50/50 fuel mixture the CAFT deviates only in the fuel rich region---the inclusion of carbonaceous soot as one of the equilibrium products improved the fit. Determination of burning velocities from a spherical flame model utilizing the extensive pressure---time data was also completed. The burning velocities determined compare well to other investigators using this method. The data collected for the methane/ethylene mixture was used to evaluate mixing rules for the flammability limits, maximum combustion pressure, deflagration index, and burning velocity. These rules attempt to predict the behavior of fuel mixtures from pure component data. Le Chatelier's law and averaging both work well for predicting the flammability boundary in the fuel lean region and for mixtures of inerted fuel and air. Both methods underestimate the flammability boundary in the fuel rich region. For a mixture of methane and ethylene, we were unable to identify mixing rules for estimating the maximum combustion pressure and the burning velocity from pure component data. Averaging the deflagration indices for fuel air mixtures did provide a adequate estimation of the mixture behavior. Le Chatelier's method overestimated the maximum deflagration index in air but provided a satisfactory estimation in the extreme fuel lean and rich regions.
Deceleration-stats save much time during phototrophic culture optimization.
Hoekema, Sebastiaan; Rinzema, Arjen; Tramper, Johannes; Wijffels, René H; Janssen, Marcel
2014-04-01
In case of phototrophic cultures, photobioreactor costs contribute significantly to the total operating costs. Therefore one of the most important parameters to be determined is the maximum biomass production rate, if biomass or a biomass associated product is the desired product. This is traditionally determined in time consuming series of chemostat cultivations. The goal of this work is to assess the experimental time that can be saved by applying the deceleration stat (D-stat) technique to assess the maximum biomass production rate of a phototrophic cultivation system, instead of a series of chemostat cultures. A mathematical model developed by Geider and co-workers was adapted in order to describe the rate of photosynthesis as a function of the local light intensity. This is essential for the accurate description of biomass productivity in phototrophic cultures. The presented simulations demonstrate that D-stat experiments executed in the absence of pseudo steady-state (i.e., the arbitrary situation that the observed specific growth rate deviates <5% from the dilution rate) can still be used to accurately determine the maximum biomass productivity of the system. Moreover, this approach saves up to 94% of the time required to perform a series of chemostat experiments that has the same accuracy. In case more information on the properties of the system is required, the reduction in experimental time is reduced but still significant. © 2013 Wiley Periodicals, Inc.
King, Daniel A; O'Brien, William D
2011-01-01
Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.
A fluorimetric study of the thorium-morin system
Milkey, R.G.; Fletcher, M.H.
1957-01-01
Thorium reacts with morin to yield a yellow complex that fluoresces when irradiated with ultraviolet light. The effect on the fluorescence of such variables as concentration of acid, alcohol, thorium, morin, and complex; time, temperature and wave length of exciting light are studied to determine experimental conditions yielding maximum fluorescence. The effects of Zr+4, Al+3, Fe+3, Ca+2 and La+3 are discussed. The fundamental relationships between light absorption and fluorescence are expressed in a general equation that applies to a three-component system when the fluorescence is measured in a transmission-type fluorimeter. This general equation is used to obtain an expression for the fluorescence of the thoriummorin system. Equations, derived from experimental data, relate both the fraction of thorium reacted to form complex and the fraction of unquenched fluorescence to the concentration of uncombined morin. These functions, when combined with the general equation, give an expression whichrelates the total net fluorescence to the amount of uncombined morin in the solution. This last equation can be used to determine the one region for the concentration of uncombined morin that gives maximum sensitivity for the system. Calculated standard curves are in good agreement with experimental curves.
A fluorimetric study of the thorium-morin system
Milkey, Robert G.; Fletcher, Mary H.
1956-01-01
Thorium reacts with morin to yield a yellow complex that fluoresces when irradiated with ultraviolet light. The effect on the fluorescence of such variable as concentration of acid, alcohol, thorium, morin, and complex; time, temperature, and wavelength of exciting light are studied to determine experimental conditions yielding maximum fluorescence. The effects of Zr4+, Al3+, Fe3+, Ca2+, and La3+ are discussed. The fundamental relationships between light absorption and fluorescence are expressed in a general equation which applied to a three-component system when the fluorescence is measured in a transmission-type fluorimeter. This general equation is used to obtain an expression for the fluorescence of the thorium-morin system. Equations, derived from experimental data, related both the fraction of thorium reacted to form complex and the fraction of unquenched fluorescence to the concentration of uncombined morin. These functions, when combined with the general equation, give an expression which relates the total net fluorescence to the amount of uncombined morin in the solution. This last equation can be used to determine the one region for the concentration of uncombined morin that gives maximum sensitivity for the system. Calculated standard curves are in excellent agreement with experimental curves.
Comparison of two methods for detection of strain localization in sheet forming
NASA Astrophysics Data System (ADS)
Lumelskyj, Dmytro; Lazarescu, Lucian; Banabic, Dorel; Rojek, Jerzy
2018-05-01
This paper presents a comparison of two criteria of strain localization in experimental research and numerical simulation of sheet metal forming. The first criterion is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method is determined by the maximum of the strain acceleration. Experimental and numerical investigation have been carried out for the Nakajima test performed for different specimens of the DC04 grade steel sheet. The strain localization has been identified by analysis of experimental and numerical curves showing the evolution of strains and their derivatives in failure zones. The numerical and experimental limit strains calculated from both criteria have been compared with the experimental FLC evaluated according to the ISO 12004-2 norm. It has been shown that the first method predicts formability limits closer to the experimental FLC. The second criterion predicts values of strains higher than FLC determined according to ISO norm. These values are closer to the strains corresponding to the fracture limit. The results show that analysis of strain evolution allows us to determine strain localization in numerical simulation and experimental studies.
Maximum Likelihood Analysis in the PEN Experiment
NASA Astrophysics Data System (ADS)
Lehman, Martin
2013-10-01
The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.
NASA Astrophysics Data System (ADS)
Makov, Y. N.; Espinosa, V.; Sánchez-Morcillo, V. J.; Ramis, J.; Cruañes, J.; Camarena, F.
2006-05-01
On the basis of theoretical concepts, an accurate and complete experimental and numerical examination of the on-axis distribution and the corresponding temporal profiles for low-Fresnel-number focused ultrasound beams under increasing transducer input voltage has been performed. For a real focusing transducer with sufficiently small Fresnel number, a strong initial (linear) shift of the main on-axis pressure maximum from geometrical focal point towards the transducer, and its following displacement towards the focal point and backward motion as the driving transducer voltage increase until highly nonlinear regimes were fixed. The simultaneous monitoring of the temporal waveform modifications determines the real roles and interplay between different nonlinear effects (refraction and attenuation) in the observed dynamics of on-axis pressure maximum. The experimental results are in good agreement with numerical solutions of KZK equation, confirming that the observed dynamic shift of the maximum pressure point is related only to the interplay between diffraction, dissipation and nonlinearity of the acoustic wave.
Hua, Yang; Liu, Zhanqiang
2018-05-24
Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.
The experimental and calculated characteristics of 22 tapered wings
NASA Technical Reports Server (NTRS)
Anderson, Raymond F
1938-01-01
The experimental and calculated aerodynamic characteristics of 22 tapered wings are compared, using tests made in the variable-density wind tunnel. The wings had aspect ratios from 6 to 12 and taper ratios from 1:6:1 and 5:1. The compared characteristics are the pitching moment, the aerodynamic-center position, the lift-curve slope, the maximum lift coefficient, and the curves of drag. The method of obtaining the calculated values is based on the use of wing theory and experimentally determined airfoil section data. In general, the experimental and calculated characteristics are in sufficiently good agreement that the method may be applied to many problems of airplane design.
Measurement of the Resolution of the Optical Microscope.
ERIC Educational Resources Information Center
Bowlt, C.
1983-01-01
Outlines procedures demonstrating that the aperture of a microscope objective limits resolving power and then, by using ancillary measurements made with a calibrated graticule in the microscope eyepiece, that the experimentally determined value for the maximum resolving power of a given objective is close to the value predicted by theory. (JN)
Milewski, Mikolaj; Stinchcomb, Audra L.
2012-01-01
An ability to estimate the maximum flux of a xenobiotic across skin is desirable both from the perspective of drug delivery and toxicology. While there is an abundance of mathematical models describing the estimation of drug permeability coefficients, there are relatively few that focus on the maximum flux. This article reports and evaluates a simple and easy-to-use predictive model for the estimation of maximum transdermal flux of xenobiotics based on three common molecular descriptors: logarithm of octanol-water partition coefficient, molecular weight and melting point. The use of all three can be justified on the theoretical basis of their influence on the solute aqueous solubility and the partitioning into the stratum corneum lipid domain. The model explains 81% of the variability in the permeation dataset comprised of 208 entries and can be used to obtain a quick estimate of maximum transdermal flux when experimental data is not readily available. PMID:22702370
Rocco, Paolo; Cilurzo, Francesco; Minghetti, Paola; Vistoli, Giulio; Pedretti, Alessandro
2017-10-01
The data presented in this article are related to the article titled "Molecular Dynamics as a tool for in silico screening of skin permeability" (Rocco et al., 2017) [1]. Knowledge of the confidence interval and maximum theoretical value of the correlation coefficient r can prove useful to estimate the reliability of developed predictive models, in particular when there is great variability in compiled experimental datasets. In this Data in Brief article, data from purposely designed numerical simulations are presented to show how much the maximum r value is worsened by increasing the data uncertainty. The corresponding confidence interval of r is determined by using the Fisher r → Z transform.
NASA Technical Reports Server (NTRS)
Elrod, D. A.; Childs, D. W.
1986-01-01
A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cellini, R.F.; Valiente, E.A.
1956-01-01
A spectrophotometric method for Cr (III) determination is established: hot and weak acid solutions are treated by disodium (ethylenediamine)tetraacetic acid (complexoneIII) yielding a very stable violet chelate, which follows Beer's law between 1 and 7 gamma Cr(III)/ml. These concentrations are employed in the experiences of this work. The absorption spectrum of Cr(III)-complexone-III has two maximums at 396 and 538 m mu . The maximum at 538 mu m is utilized in this method. Time, temperature, pH, and complexone-III concentration are studied and the best experimental conditions are fixed. (auth)
Human vision is determined based on information theory.
Delgado-Bonal, Alfonso; Martín-Torres, Javier
2016-11-03
It is commonly accepted that the evolution of the human eye has been driven by the maximum intensity of the radiation emitted by the Sun. However, the interpretation of the surrounding environment is constrained not only by the amount of energy received but also by the information content of the radiation. Information is related to entropy rather than energy. The human brain follows Bayesian statistical inference for the interpretation of visual space. The maximization of information occurs in the process of maximizing the entropy. Here, we show that the photopic and scotopic vision absorption peaks in humans are determined not only by the intensity but also by the entropy of radiation. We suggest that through the course of evolution, the human eye has not adapted only to the maximum intensity or to the maximum information but to the optimal wavelength for obtaining information. On Earth, the optimal wavelengths for photopic and scotopic vision are 555 nm and 508 nm, respectively, as inferred experimentally. These optimal wavelengths are determined by the temperature of the star (in this case, the Sun) and by the atmospheric composition.
Human vision is determined based on information theory
NASA Astrophysics Data System (ADS)
Delgado-Bonal, Alfonso; Martín-Torres, Javier
2016-11-01
It is commonly accepted that the evolution of the human eye has been driven by the maximum intensity of the radiation emitted by the Sun. However, the interpretation of the surrounding environment is constrained not only by the amount of energy received but also by the information content of the radiation. Information is related to entropy rather than energy. The human brain follows Bayesian statistical inference for the interpretation of visual space. The maximization of information occurs in the process of maximizing the entropy. Here, we show that the photopic and scotopic vision absorption peaks in humans are determined not only by the intensity but also by the entropy of radiation. We suggest that through the course of evolution, the human eye has not adapted only to the maximum intensity or to the maximum information but to the optimal wavelength for obtaining information. On Earth, the optimal wavelengths for photopic and scotopic vision are 555 nm and 508 nm, respectively, as inferred experimentally. These optimal wavelengths are determined by the temperature of the star (in this case, the Sun) and by the atmospheric composition.
Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust
NASA Astrophysics Data System (ADS)
Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.
2018-05-01
Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.
Human vision is determined based on information theory
Delgado-Bonal, Alfonso; Martín-Torres, Javier
2016-01-01
It is commonly accepted that the evolution of the human eye has been driven by the maximum intensity of the radiation emitted by the Sun. However, the interpretation of the surrounding environment is constrained not only by the amount of energy received but also by the information content of the radiation. Information is related to entropy rather than energy. The human brain follows Bayesian statistical inference for the interpretation of visual space. The maximization of information occurs in the process of maximizing the entropy. Here, we show that the photopic and scotopic vision absorption peaks in humans are determined not only by the intensity but also by the entropy of radiation. We suggest that through the course of evolution, the human eye has not adapted only to the maximum intensity or to the maximum information but to the optimal wavelength for obtaining information. On Earth, the optimal wavelengths for photopic and scotopic vision are 555 nm and 508 nm, respectively, as inferred experimentally. These optimal wavelengths are determined by the temperature of the star (in this case, the Sun) and by the atmospheric composition. PMID:27808236
Self-tapping ability of carbon fibre reinforced polyetheretherketone suture anchors.
Feerick, Emer M; Wilson, Joanne; Jarman-Smith, Marcus; Ó'Brádaigh, Conchur M; McGarry, J Patrick
2014-10-01
An experimental and computational investigation of the self-tapping ability of carbon fibre reinforced polyetheretherketone (CFR-PEEK) has been conducted. Six CFR-PEEK suture anchor designs were investigated using PEEK-OPTIMA® Reinforced, a medical grade of CFR-PEEK. Experimental tests were conducted to investigate the maximum axial force and torque required for self-taping insertion of each anchor design. Additional experimental tests were conducted for some anchor designs using pilot holes. Computational simulations were conducted to determine the maximum stress in each anchor design at various stages of insertion. Simulations also were performed to investigate the effect of wall thickness in the anchor head. The maximum axial force required to insert a self-tapping CFR-PEEK suture anchor did not exceed 150 N for any anchor design. The maximum torque required to insert a self-tapping CFR-PEEK suture anchor did not exceed 0.8 Nm. Computational simulations reveal significant stress concentrations in the region of the anchor tip, demonstrating that a re-design of the tip geometry should be performed to avoid fracture during self-tapping, as observed in the experimental component of this study. This study demonstrates the ability of PEEK-OPTIMA Reinforced suture anchors to self-tap polyurethane foam bone analogue. This provides motivation to further investigate the self-tapping ability of CFR-PEEK suture anchors in animal/cadaveric bone. An optimised design for CFR-PEEK suture anchors offers the advantages of radiolucency, and mechanical properties similar to bone with the ability to self-tap. This may have positive implications for reducing surgery times and the associated costs with the procedure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Jain, Veena; Mathur, Vijay Prakash; Abhishek, Kumar; Kothari, Mohit
2012-10-01
The purpose of the pilot study was to determine the effect of restoring lost occlusal vertical dimension (OVD) due to attrition on maximum bite force in humans. A total of 124 subjects in age range of 25-40 years, with moderate to severe attrition, having full complement of teeth were screened according to inclusion and exclusion criteria. After consent, occlusal vertical dimension was assessed by employing mechanical and physiological methods in the experimental group and a maxillary canine guided hard splint was fabricated for each subjects fulfilling inclusion criteria and with positive consent (78). Bite force in experimental group was measured before, immediately after delivery of splint and subsequently at an interval of four, eight, and twelve weeks. Due loss during follow up, only 50 subjects could be available for bite force recording till 12 weeks. Bite force of age, gender, height and weight matched controls with no signs of attrition was also measured for comparison. Bite force of the experimental group was found to be significantly less than the matched controls (P=0.000) initially. After delivery of splint, bite force values increased progressively till twelve weeks. However comparison of bite force values of experimental group with control group showed no significant difference at end of eight (P=0.008) and twelve weeks (P=0.162). It was concluded that maximum bite force increases with restoration of lost vertical using splint therapy. A time period of 8-12 weeks is required to restore the maximum bite force value approximately similar to matched controls. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.
Electron-impact ionization of silicon tetrachloride (SiCl4).
Basner, R; Gutkin, M; Mahoney, J; Tarnovsky, V; Deutsch, H; Becker, K
2005-08-01
We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.
Experimental analysis of the sheet metal forming behavior of newly developed press hardening steels
NASA Astrophysics Data System (ADS)
Meza-García, Enrique; Kräusel, Verena; Landgrebe, Dirk
2018-05-01
The aim of this work was the characterization of the newly developed press hardening sheet alloys 1800 PHS and 2000 PHS developed by SSAB with regard to their hot forming behavior on the basis of the experimental determination of relevant mechanical and technological properties. For this purpose conventional and non-conventional sheet metal testing methods were used. To determine the friction coefficient, the strip drawing test was applied, while the deep drawing cup test was used to determine the maximum draw depth. Finally, a V-bending test was carried out to evaluate the springback behavior of the investigated alloys by varying the blank temperature and quenching media. This work provides a technological guideline for the production of press hardened sheet parts made of these investigated sheet metals.
Zhao, H-G; Wang, M; Lin, Y-Y; Zhou, S-L
2018-03-01
The aim of this study was to optimize the culture conditions of a marine-derived fungus Penicillium sclerotiorum M-22 for the production of penicilazaphilone C (PAC), a novel azaphilonidal derivative exhibiting broad cytotoxic and antibacterial effects. By single factor experiments, the effects to the production of PAC of aged seawater concentration, initial pH values, fermentation time, carbon sources, nitrogen sources and inorganic salt sources were investigated individually. Response surface methodology (RSM) analysis was adopted to investigate the interactions between variables and determine the optimal values for maximum PAC production. Evaluation of the experimental results signified that the optimum conditions for maximum production of PAC (19·85 mg l -1 ) in 250 ml Erlenmeyer flask were fermentation time 24·83 days, pH of 7·00, corn meal concentration of 10·72 g l -1 , yeast extract concentration of 4·58 g l -1 , crude sea salt concentration of 20·59 g l -1 . Production under optimized conditions increased to 1·344-fold comparing to its production prior to optimization. The higher PAC production and the penicilazaphilone C -producing marine fungus would be provide a promising alterative approach for industrial and commercial applications. Penicilazaphilone C (PAC) was a novel azaphilonidal derivative which had exhibited selective cytotoxicity and antibacterial activity. To further enhance production of PAC by optimizing fermentation conditions of Penicillium sclerotiorum M-22 would provide a promising alterative approach for industrial and commercial applications. We used the single factor test to determine the key factors which influence the PAC production. Then through the Response surface methodology and Box-Behnken design to determine the best fermentation condition for maximum production of PAC. Through these experimental designs and analysis will help us improve experimental efficiency and save time and materials. © 2017 The Society for Applied Microbiology.
Experimental determination of turbulence in a GH2-GOX rocket combustion chamber
NASA Technical Reports Server (NTRS)
Tou, P.; Russell, R.; Ohara, J.
1974-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.
NASA Astrophysics Data System (ADS)
Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy
2017-10-01
The article considers the current questions of technological modeling and calculation of the new facility for cleaning natural waters, the clarifier reactor for the optimal operating mode, which was developed in Novosibirsk State University of Architecture and Civil Engineering (SibSTRIN). A calculation technique based on well-known dependences of hydraulics is presented. A calculation example of a structure on experimental data is considered. The maximum possible rate of ascending flow of purified water was determined, based on the 24 hour clarification cycle. The fractional composition of the contact mass was determined with minimal expansion of contact mass layer, which ensured the elimination of stagnant zones. The clarification cycle duration was clarified by the parameters of technological modeling by recalculating maximum possible upward flow rate of clarified water. The thickness of the contact mass layer was determined. Likewise, clarification reactors can be calculated for any other lightening conditions.
Liquid inflow to initially empty cylindrical tanks in low gravity
NASA Technical Reports Server (NTRS)
Spuckler, C. M.
1972-01-01
An experimental investigation was performed to determine the characteristics of liquid inflow to initially empty cylindrical tanks in a low gravity environment. The acceleration was varied so that Bond numbers based on the inlet radius varied from 0.059 to 2.80. The liquid entered the tank as a jet that grew to a maximum height and then decreased in height with respect to the bottom of the tank, with the liquid from the jet collecting in the bottom of the tank. The maximum jet heights were correlated in terms of the Weber number and the Bond number.
NASA Astrophysics Data System (ADS)
Hasegawa, Hideyuki
2017-07-01
The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).
NASA Astrophysics Data System (ADS)
Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.
2011-04-01
The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.
Cavitation erosion - scale effect and model investigations
NASA Astrophysics Data System (ADS)
Geiger, F.; Rutschmann, P.
2015-12-01
The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.
NASA Astrophysics Data System (ADS)
Pelekh, B. L.; Marchuk, M. V.; Kogut, I. S.
1992-06-01
The stress-strain state of an adhesive joint between cylindrical components made of a metal (steel) and a cross-reinforced filament-wound composite (glass/polymer or basalt/polymer) was investigated under static axial loading using newly proposed experimental techniques and a refined mathematical model. Analytical expressions are obtained for contact stresses in the adhesive joint. The maximum permissible load and the ultimate shear strength of the joint are determined. The experimental results are found to be in satisfactory agreement with model predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggs, J.B.
An experimental test model, which is dynamically similar to an actual UCC (Under ground Coal Conversion) system, has been used to determine fluid flow patterns and local heat transfer that occur in the UCC burn cavity. This study should provide insight into the little understood mechanisms (i.e., heat transfer and oxygen transport to the cavity walls) which control maximum cavity width, and therefore resource recovery during UCC. The experimental system is operational and producing physically realistic results. The qualitative results of this study have shown the dominant effect of free convection on the flow pattern of the system.
Sarrai, Abd Elaziz; Hanini, Salah; Merzouk, Nachida Kasbadji; Tassalit, Djilali; Szabó, Tibor; Hernádi, Klára; Nagy, László
2016-01-01
The feasibility of the application of the Photo-Fenton process in the treatment of aqueous solution contaminated by Tylosin antibiotic was evaluated. The Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimize the effect of hydrogen peroxide, ferrous ion concentration and initial pH as independent variables on the total organic carbon (TOC) removal as the response function. The interaction effects and optimal parameters were obtained by using MODDE software. The significance of the independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results show that the concentration of the ferrous ion and pH were the main parameters affecting TOC removal, while peroxide concentration had a slight effect on the reaction. The optimum operating conditions to achieve maximum TOC removal were determined. The model prediction for maximum TOC removal was compared to the experimental result at optimal operating conditions. A good agreement between the model prediction and experimental results confirms the soundness of the developed model. PMID:28773551
A theoretical model to determine the capacity performance of shape-specific electrodes
NASA Astrophysics Data System (ADS)
Yue, Yuan; Liang, Hong
2018-06-01
A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.
Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Takahashi, Hidekazu; Uo, Motohiro
2018-01-01
This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii) 1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased. PMID:29854774
Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro
2018-01-01
This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS) and with either (i) 1.6 mm thick AP (AP-APS) or (ii) 1.6 mm thick GF (GF-APS) covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa) and flexural modulus (7.53 GPa) than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa). Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... experimental studies and tests, required by the Commission to facilitate a determination of the safety of the... contact by any person with it; (3) The device is so designed that it cannot easily be disassembled; and (4...
Code of Federal Regulations, 2011 CFR
2011-01-01
... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... experimental studies and tests, required by the Commission to facilitate a determination of the safety of the... contact by any person with it; (3) The device is so designed that it cannot easily be disassembled; and (4...
Code of Federal Regulations, 2012 CFR
2012-01-01
... maximum quantity of tritium or promethium-147 in each device; (2) Details of construction and design; (3... experimental studies and tests, required by the Commission to facilitate a determination of the safety of the... contact by any person with it; (3) The device is so designed that it cannot easily be disassembled; and (4...
Altuntepe, Emrah; Emel'yanenko, Vladimir N; Forster-Rotgers, Maximilian; Sadowski, Gabriele; Verevkin, Sergey P; Held, Christoph
2017-10-01
Levulinic acid was esterified with methanol, ethanol, and 1-butanol with the final goal to predict the maximum yield of these equilibrium-limited reactions as function of medium composition. In a first step, standard reaction data (standard Gibbs energy of reaction Δ R g 0 ) were determined from experimental formation properties. Unexpectedly, these Δ R g 0 values strongly deviated from data obtained with classical group contribution methods that are typically used if experimental standard data is not available. In a second step, reaction equilibrium concentrations obtained from esterification catalyzed by Novozym 435 at 323.15 K were measured, and the corresponding activity coefficients of the reacting agents were predicted with perturbed-chain statistical associating fluid theory (PC-SAFT). The so-obtained thermodynamic activities were used to determine Δ R g 0 at 323.15 K. These results could be used to cross-validate Δ R g 0 from experimental formation data. In a third step, reaction-equilibrium experiments showed that equilibrium position of the reactions under consideration depends strongly on the concentration of water and on the ratio of levulinic acid: alcohol in the initial reaction mixtures. The maximum yield of the esters was calculated using Δ R g 0 data from this work and activity coefficients of the reacting agents predicted with PC-SAFT for varying feed composition of the reaction mixtures. The use of the new Δ R g 0 data combined with PC-SAFT allowed good agreement to the measured yields, while predictions based on Δ R g 0 values obtained with group contribution methods showed high deviations to experimental yields.
NASA Astrophysics Data System (ADS)
Pratsenka, S. V.; Voropai, E. S.; Belkin, V. G.
2018-01-01
Rapid measurement of the moisture content of dehydrated residues is a critical problem, the solution of which will increase the efficiency of treatment facilities and optimize the process of applying flocculants. The ability to determine the moisture content of dehydrated residues using a meter operating on the IR reflectance principle was confirmed experimentally. The most suitable interference filters were selected based on an analysis of the obtained diffuse reflectance spectrum of the dehydrated residue in the range 1.0-2.7 μm. Calibration curves were constructed and compared for each filter set. A measuring filter with a transmittance maximum at 1.19 μm and a reference filter with a maximum at 1.3 μm gave the best agreement with the laboratory measurements.
TAP score: torsion angle propensity normalization applied to local protein structure evaluation
Tosatto, Silvio CE; Battistutta, Roberto
2007-01-01
Background Experimentally determined protein structures may contain errors and require validation. Conformational criteria based on the Ramachandran plot are mainly used to distinguish between distorted and adequately refined models. While the readily available criteria are sufficient to detect totally wrong structures, establishing the more subtle differences between plausible structures remains more challenging. Results A new criterion, called TAP score, measuring local sequence to structure fitness based on torsion angle propensities normalized against the global minimum and maximum is introduced. It is shown to be more accurate than previous methods at estimating the validity of a protein model in terms of commonly used experimental quality parameters on two test sets representing the full PDB database and a subset of obsolete PDB structures. Highly selective TAP thresholds are derived to recognize over 90% of the top experimental structures in the absence of experimental information. Both a web server and an executable version of the TAP score are available at . Conclusion A novel procedure for energy normalization (TAP) has significantly improved the possibility to recognize the best experimental structures. It will allow the user to more reliably isolate problematic structures in the context of automated experimental structure determination. PMID:17504537
Evaluation of a Kinematically-Driven Finite Element Footstrike Model.
Hannah, Iain; Harland, Andy; Price, Dan; Schlarb, Heiko; Lucas, Tim
2016-06-01
A dynamic finite element model of a shod running footstrike was developed and driven with 6 degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared with experimental high-speed video (HSV) footage, vertical ground reaction force (GRF), and center of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations, respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. While representing an alternative approach to existing dynamic finite element footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process.
Experimental study of Cu-water nanofluid forced convective flow inside a louvered channel
NASA Astrophysics Data System (ADS)
Khoshvaght-Aliabadi, M.; Hormozi, F.; Zamzamian, A.
2015-03-01
Heat transfer enhancement plays a very important role for energy saving in plate-fin heat exchangers. In the present study, the influences of simultaneous utilization of a louvered plate-fin channel and copper-base deionized water nanofluid on performance of these exchangers are experimentally explored. The effects of flow rate (2-5 l/min) and nanoparticles weight fraction (0-0.4 %) on heat transfer and pressure drop characteristics are determined. Experimental results indicate that the use of louvered channel instead of the plain one can improve the heat transfer performance. Likewise, addition of small amounts of copper nanoparticles to the base fluid augments the convective heat transfer coefficient remarkably. The maximum rise of 21.7 % in the convective heat transfer coefficient is observed for the 0.4 % wt nanofluid compared to the base fluid. Also, pumping power for the base fluid and nanofluids are calculated based on the measured pressure drop in the louvered channel. The average increase in pumping power is 11.8 % for the nanofluid with 0.4 % wt compared to the base fluid. Applied performance criterion shows a maximum performance index of 1.167 for the nanofluid with 0.1 % wt Finally, two correlations are proposed for Nusselt number and friction factor which fit the experimental data with in ±10 %.
Quantum state estimation when qubits are lost: a no-data-left-behind approach
Williams, Brian P.; Lougovski, Pavel
2017-04-06
We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.
Abe, Keisuke; Takahashi, Hidekazu; Churei, Hiroshi; Iwasaki, Naohiko; Ueno, Toshiaki
2013-02-01
Experimental materials incorporating fiberglass cloth were used to develop a thin and lightweight face guard (FG). This study aims to evaluate the effect of fiberglass reinforcement on the flexural and shock absorption properties compared with conventional thermoplastic materials. Four commercial 3.2-mm and 1.6-mm medical splint materials (Aquaplast, Polyform, Co-polymer, and Erkodur) and two experimental materials were examined for use in FGs. The experimental materials were prepared by embedding two or four sheets of a plain woven fiberglass cloth on both surfaces of 1.5-mm Aquaplast. The flexural strength and flexural modulus were determined using a three-point bending test. The shock absorption properties were evaluated for a 5200-N impact load using the first peak intensity with a load cell system and the maximum stress with a film sensor system. The flexural strength (74.6 MPa) and flexural modulus (6.3 GPa) of the experimental material with four sheets were significantly greater than those of the 3.2-mm commercial specimens, except for the flexural strength of one product. The first peak intensity (515 N) and maximum stress (2.2 MPa) of the experimental material with four sheets were significantly lower than those of the commercial 3.2-mm specimens, except for one product for each property. These results suggest that the thickness and weight of the FG can be reduced using the experimental fiber-reinforced material. © 2012 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid
Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less
Sensor Detects Overheating Of Perishable Material
NASA Technical Reports Server (NTRS)
Dordick, Jonathan S.; Klibanov, Alexander
1990-01-01
Experimental temperature sensor changes color rapidly and irreversibly when temperature rises above pre-determined level. Based on reactions of enzymes in paraffins, blended so mixture melts at temperature considered maximum safe value. Similar devices used to detect temperature abuse, whether foods or medicines refrigerated exposed to excessive temperatures during shipment and storage. By viewing sensor, receiving clerk tells immediately whether product maintained at safe temperatures and acceptable.
ERIC Educational Resources Information Center
Deeney, F. A.; O'Leary, J. P.
2009-01-01
We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)
Quadrotor Intercept Trajectory Planning and Simulation
2017-06-01
Figure 41. Results are grouped by geometry type and colored based on trajectory planner. Figure 41. Summary of Experimental Data Intercept Time...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Quadrotor drones pose a safety hazard when operated in or near controlled airspace. A hazardous...quadrotor could be intercepted and removed by another quadrotor. In this thesis, we seek to determine if optimal control methods outperform missile
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Lewis, P. E.
1979-01-01
A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
Experimental datasets on engineering properties of expansive soil treated with common salt.
Durotoye, Taiwo O; Akinmusuru, Joseph O; Ogundipe, Kunle E
2018-06-01
Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016) [1], [2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content) to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength) to determine the strength parameters. The results of the experiment were presented in pie charts.
NASA Astrophysics Data System (ADS)
Ye, Jiping; Sun, Lei; Dai, Xianxi; Dai, Jixin
The flux relaxation is one of important topics in the studies of high Tc superconductivity, because it is related to the energy loss in practical applications. There are many mechanisms, theories and relaxation laws suggested in the literatures. It is very interesting to test them according to the characters and compare them with the experiments. Some people think that the characters of the famous theories are their negative curvature. According our inversion solution, the relaxation ArcG law and experimental data analysis, the relaxation law has both positive and negative signs. This prediction is hopeful to be checked by experiments in future. The current densities of many high Tc superconductors decrease very rapidly in the early time in the relaxation. People do not know what their maximums are. In this work, a theory to determine these maximums of the current densities is presented. The theory is concretely realized by inversion for some real data of the YBCO and their maximum current densities are obtained.
NASA Astrophysics Data System (ADS)
Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno
2016-09-01
This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.
Huang, Shih-Ying; Savic, Dragana; Yang, Jaewon; Shrestha, Uttam; Seo, Youngho
2014-11-01
Simultaneous imaging systems combining positron emission tomography (PET) and magnetic resonance imaging (MRI) have been actively investigated. A PET/MR imaging system (GE Healthcare) comprised of a time-of-flight (TOF) PET system utilizing silicon photomultipliers (SiPMs) and 3-tesla (3T) MRI was recently installed at our institution. The small-ring (60 cm diameter) TOF PET subsystem of this PET/MRI system can generate images with higher spatial resolution compared with conventional PET systems. We have examined theoretically and experimentally the effect of uniform magnetic fields on the spatial resolution for high-energy positron emitters. Positron emitters including 18 F, 124 I, and 68 Ga were simulated in water using the Geant4 Monte Carlo toolkit in the presence of a uniform magnetic field (0, 3, and 7 Tesla). The positron annihilation position was tracked to determine the 3D spatial distribution of the 511-keV gammy ray emission. The full-width at tenth maximum (FWTM) of the positron point spread function (PSF) was determined. Experimentally, 18 F and 68 Ga line source phantoms in air and water were imaged with an investigational PET/MRI system and a PET/CT system to investigate the effect of magnetic field on the spatial resolution of PET. The full-width half maximum (FWHM) of the line spread function (LSF) from the line source was determined as the system spatial resolution. Simulations and experimental results show that the in-plane spatial resolution was slightly improved at field strength as low as 3 Tesla, especially when resolving signal from high-energy positron emitters in the air-tissue boundary.
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.; Grant, L.
1984-01-01
The contributions of diffuse and specular reflection to the total canopy reflection of sunlight are determined experimentally for wheat at two stages of development using spectroradiometer measurements obtained at 13 wavelengths in the 480-720-nm range with a polarizing film in maximum and minimum signal-amplitude positions. The data and computation techniques are presented in tables, diagrams, and graphs, and the need to take specular reflection into account in constructing models of light/canopy interaction is stressed.
Beams on nonlinear elastic foundation
NASA Astrophysics Data System (ADS)
Lukkassen, Dag; Meidell, Annette
2014-12-01
In order to determination vertical deflections and rail bending moments the Winkler model (1867) is often used. This linear model neglects several conditions. For example, by using experimental results, it has been observed that there is a substantial increase in the maximum rail deflection and rail bending moment when considering the nonlinearity of the track support system. A deeper mathematical analysis of the models is necessary in order to obtain better methods for more accurate numerical solutions in the determination of deflections and rail bending moments. This paper is intended to be a small step in this direction.
Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír
We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less
Comparison of hydrodynamic simulations with two-shockwave drive target experiments
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William
2015-11-01
We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.
2008-01-01
The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.
Strength determination of brittle materials as curved monolithic structures.
Hooi, P; Addison, O; Fleming, G J P
2014-04-01
The dental literature is replete with "crunch the crown" monotonic load-to-failure studies of all-ceramic materials despite fracture behavior being dominated by the indenter contact surface. Load-to-failure data provide no information on stress patterns, and comparisons among studies are impossible owing to variable testing protocols. We investigated the influence of nonplanar geometries on the maximum principal stress of curved discs tested in biaxial flexure in the absence of analytical solutions. Radii of curvature analogous to elements of complex dental geometries and a finite element analysis method were integrated with experimental testing as a surrogate solution to calculate the maximum principal stress at failure. We employed soda-lime glass discs, a planar control (group P, n = 20), with curvature applied to the remaining discs by slump forming to different radii of curvature (30, 20, 15, and 10 mm; groups R30-R10). The mean deflection (group P) and radii of curvature obtained on slumping (groups R30-R10) were determined by profilometry before and after annealing and surface treatment protocols. Finite element analysis used the biaxial flexure load-to-failure data to determine the maximum principal stress at failure. Mean maximum principal stresses and load to failure were analyzed with one-way analyses of variance and post hoc Tukey tests (α = 0.05). The measured radii of curvature differed significantly among groups, and the radii of curvature were not influenced by annealing. Significant increases in the mean load to failure were observed as the radius of curvature was reduced. The maximum principal stress did not demonstrate sensitivity to radius of curvature. The findings highlight the sensitivity of failure load to specimen shape. The data also support the synergistic use of bespoke computational analysis with conventional mechanical testing and highlight a solution to complications with complex specimen geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafontaine Rivera, Jimmy G.; Theisen, Matthew K.; Chen, Po-Wei
The product formation yield (product formed per unit substrate consumed) is often the most important performance indicator in metabolic engineering. Until now, the actual yield cannot be predicted, but it can be bounded by its maximum theoretical value. The maximum theoretical yield is calculated by considering the stoichiometry of the pathways and cofactor regeneration involved. Here in this paper we found that in many cases, dynamic stability becomes an issue when excessive pathway flux is drawn to a product. This constraint reduces the yield and renders the maximal theoretical yield too loose to be predictive. We propose a more realisticmore » quantity, defined as the kinetically accessible yield (KAY) to predict the maximum accessible yield for a given flux alteration. KAY is either determined by the point of instability, beyond which steady states become unstable and disappear, or a local maximum before becoming unstable. Thus, KAY is the maximum flux that can be redirected for a given metabolic engineering strategy without losing stability. Strictly speaking, calculation of KAY requires complete kinetic information. With limited or no kinetic information, an Ensemble Modeling strategy can be used to determine a range of likely values for KAY, including an average prediction. We first apply the KAY concept with a toy model to demonstrate the principle of kinetic limitations on yield. We then used a full-scale E. coli model (193 reactions, 153 metabolites) and this approach was successful in E. coli for predicting production of isobutanol: the calculated KAY values are consistent with experimental data for three genotypes previously published.« less
Biophysical Characterization of an Bifunctional Iron Regulating Enzyme
2002-05-01
of the direct assay 29 Citrate, cis- aconitate and d- isocitrate all absorb light in the UV-Vis region, a fact which was confirmed...experimentally using a Hewlard-Packard 8452 Diode UV-Vis Diode Array Spectrophotometer. The maximum absorbance of cis- aconitate was determined to be 240 nm...and isocitrate was 212 nm. The preponderance of cis- aconitate concentration versus the formation of isocitrate concentration made tracking a
Kaur, Inderpreet; Gaba, Sonal; Kaur, Sukhraj; Kumar, Rajeev; Chawla, Jyoti
2018-05-01
A spectrophotometric method based on diazotization of aniline with triclosan has been developed for the determination of triclosan in water samples. The diazotization process involves two steps: (1) reaction of aniline with sodium nitrite in an acidic medium to form diazonium ion and (2) reaction of diazonium ion with triclosan to form a yellowish-orange azo compound in an alkaline medium. The resulting yellowish-orange product has a maximum absorption at 352 nm which allows the determination of triclosan in aqueous solution in the linear concentration range of 0.1-3.0 μM with R 2 = 0.998. The concentration of hydrochloric acid, sodium nitrite, and aniline was optimized for diazotization reaction to achieve good spectrophotometric determination of triclosan. The optimization of experimental conditions for spectrophotometric determination of triclosan in terms of concentration of sodium nitrite, hydrogen chloride and aniline was also carried out by using Box-Behnken design of response surface methodology and results obtained were in agreement with the experimentally optimized values. The proposed method was then successfully applied for analyses of triclosan content in water samples.
Impact of measurement uncertainty from experimental load distribution factors on bridge load rating
NASA Astrophysics Data System (ADS)
Gangone, Michael V.; Whelan, Matthew J.
2018-03-01
Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.
Two-Dimensional High-Lift Aerodynamic Optimization Using Neural Networks
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. The 'pressure difference rule,' which states that the maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the pressure at the trailing edge of the element, was applied and verified with experimental observations for this configuration. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 44% compared with traditional gradient-based optimization procedures for multiple optimization runs.
Fox, Peter; Suidan, Makram T.
1990-01-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175
Fox, P; Suidan, M T
1990-04-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.
Performance Investigations of a Large Centrifugal Compressor from an Experimental Turbojet Engine
NASA Technical Reports Server (NTRS)
Ginsburg, Ambrose; Creagh, John W. R.; Ritter, William K.
1948-01-01
An investigation was conducted on a large centrifugal compressor from an experimental turbojet engine to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the compressor indicated that the compressor would not meet the desired engine-design air-flow requirements (78 lb/sec) because of an air-flow restriction in the vaned collector (diffuser). Revision of the vaned collector resulted in an increased air-flow capacity over the speed range and showed improved matching of the impeller and diffuser components. At maximum flow, the original compressor utilized approximately 90 percent of the available geometric throat area at the vaned-collector inlet and the revised compressor utilized approximately 94 percent, regardless of impeller speed. The ratio of the maximum weight flows of the revised and original compressors were less than the ratio of effective critical throat areas of the two compressors because of the large pressure losses in the impeller near the impeller inelt and the difference increased with an increase in impeller speed. In order to further increase the pressure ratio and maximum weight flow of the compressor, the impeller must be modified to eliminate the pressure losses therein.
Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
Fuentes-Azcatl, Raúl; Alejandre, José
2014-02-06
The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.
NASA Astrophysics Data System (ADS)
Müller, Simon; Weygand, Sabine M.
2018-05-01
Axisymmetric stretch forming processes of aluminium-polymer laminate foils (e.g. consisting of PA-Al-PVC layers) are analyzed numerically by finite element modeling of the multi-layer material as well as experimentally in order to identify a suitable damage initiation criterion. A simple ductile fracture criterion is proposed to predict the forming limits. The corresponding material constants are determined from tensile tests and then applied in forming simulations with different punch geometries. A comparison between the simulations and the experimental results shows that the determined failure constants are not applicable. Therefore, one forming experiment was selected and in the corresponding simulation the failure constant was fitted to its measured maximum stretch. With this approach it is possible to predict the forming limit of the laminate foil with satisfying accuracy for different punch geometries.
New approach in the quantum statistical parton distribution
NASA Astrophysics Data System (ADS)
Sohaily, Sozha; Vaziri (Khamedi), Mohammad
2017-12-01
An attempt to find simple parton distribution functions (PDFs) based on quantum statistical approach is presented. The PDFs described by the statistical model have very interesting physical properties which help to understand the structure of partons. The longitudinal portion of distribution functions are given by applying the maximum entropy principle. An interesting and simple approach to determine the statistical variables exactly without fitting and fixing parameters is surveyed. Analytic expressions of the x-dependent PDFs are obtained in the whole x region [0, 1], and the computed distributions are consistent with the experimental observations. The agreement with experimental data, gives a robust confirm of our simple presented statistical model.
Study of Interaction of Reinforcement with Concrete by Numerical Methods
NASA Astrophysics Data System (ADS)
Tikhomirov, V. M.; Samoshkin, A. S.
2018-01-01
This paper describes the study of deformation of reinforced concrete. A mathematical model for the interaction of reinforcement with concrete, based on the introduction of a contact layer, whose mechanical characteristics are determined from the experimental data, is developed. The limiting state of concrete is described using the Drucker-Prager theory and the fracture criterion with respect to maximum plastic deformations. A series of problems of the theory of reinforced concrete are solved: stretching of concrete from a central-reinforced prism and pre-stressing of concrete. It is shown that the results of the calculations are in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Ashat, Ali; Pratama, Heru Berian
2017-12-01
The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.
Simulation of atmospheric PAH emissions from diesel engines.
Durán, A; de Lucas, A; Carmona, M; Ballesteros, R
2001-08-01
Simulation of atmospheric PAH emissions in a typical European passenger car diesel engine at steady conditions or under a certification cycle is made using in-house software. It is based on neural fitting of experimental data from eight different fuels tested under five operating steady conditions (reproducing modes of the European transient urban/extraurban certification cycle). The software allows the determination of PAH emissions as a function of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulphur content) and operation conditions (torque and engine speed). The mathematical model reproduces experimental data with a maximum error of 20%. This tool is very useful, since changes in parameters can be made without experimental cost and the trend in modifications in PAH emissions is immediately obvious.
Łagan, Sylwia D; Liber-Kneć, Aneta
2017-01-01
The aim of the study was an estimation of the possibility of using hyperelastic material models to fit experimental data obtained in the tensile test for the swine skin tissue. The uniaxial tensile tests of samples taken from the abdomen and back of a pig was carried out. The mechanical properties of the skin such as the mean Young's modulus, the mean maximum stress and the mean maximum elongation were calculated. The experimental data have been used to identify the parameters in specific strain-energy functions given in seven constitutive models of hyperelastic materials: neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Martins, Humphrey and Veronda-Westmann. An analysis of errors in fitting of theoretical and experimental data was done. Comparison of load -displacement curves for the back and abdomen regions of skin taken showed a different scope of both the mean maximum loading forces and the mean maximum elongation. Samples which have been prepared from the abdominal area had lower values of the mean maximum load compared to samples from the spine area. The reverse trend was observed during the analysis of the values of elongation. An analysis of the accuracy of model fitting to the experimental data showed that, the least accurate were the model of neo- -Hookean, model of Mooney-Rivlin for the abdominal region and model of Veronda-Westmann for the spine region. An analysis of seven hyperelastic material models showed good correlations between the experimental and the theoretical data for five models.
NASA Astrophysics Data System (ADS)
Ruíz-Robles, M. A.; Abundiz-Cisneros, N.; Bender-Pérez, C. E.; Gutiérrez-Lazos, C. D.; Fundora-Cruz, A.; Solís-Pomar, F.; Pérez-Tijerina, E.
2018-03-01
The design and optical characterization by UV–vis transmittance of ultrathin low-emissivity (low-e) windows by reactive sputtering are reported. Two heterostructures on a glass substrate were considered for the low-e windows. The first heterostructure is Si3N4/TiO2/ZnO/Ag/SnO2/Si3N4 and the second is Si3N4/Ag/Si3N4. The transmittance and reflectance of these heterostructures were simulated to determine the required thickness of each layer. The first heterostructure exhibited maximum transmittance of 85% at 550 nm, slightly higher than the one determined by simulation and less than 50% transmittance in the near-infrared region (900 nm). The second heterostructure exhibited transmittance greater than 86% at 550 nm and <50% transmittance in the near-infrared region. In addition, we found that the bandwidth and maximum position of the transmittance depend on the Si3N4 layer thickness. Specifically, the thickness of the first Si3N4 layer allows the modulation of the transmittance bandwidth and the thickness of the second Si3N4 layer allows the modulation of the maximum position. The low-e windows were protected by the deposition of an ultrathin film of NiCr alloy (Ni 80%, Cr 20%) that preserved the optical characteristics and decreased the maximum of the transmittance only by 3%.
Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Rummler, D. R.
1981-01-01
Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.
Interlaminar stresses in composite laminates: A perturbation analysis
NASA Technical Reports Server (NTRS)
Hsu, P. W.; Herakovich, C. T.
1976-01-01
A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest.
A High-Temperature Combinatorial Technique for the Thermal Analysis of Materials
2008-07-14
the calorimetric cell. The power dissipated in the thermistor is determined experimentally from the current supplied to the thermistor and the...electronics unit operates as a power supply for the PnSC sensors and as a data acquisition (DAQ) system for the input/output signals from each sensor. Both...the power supply and DAQ operations are galvanically isolated to ensure a maximum signal to noise ratio for the acquired signals. The control
An analytical study of thermal barrier coated first stage blades in a JT9D engine
NASA Technical Reports Server (NTRS)
Sevcik, W. R.; Stoner, B. L.
1978-01-01
Steady state and transient heat transfer and structural calculations were completed to determine the coating and base alloy temperatures and strains. Results indicate potential for increased turbine life using thin durable thermal barrier coatings on turbine airfoils due to a significant reduction in blade average and maximum temperatures, and alloy strain range. An intepretation of the analytical results is compared to the experimental engine test data.
Kuşçu, Özlem Selçuk; Sponza, Delia Teresa
2011-03-15
A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR. Copyright © 2011 Elsevier B.V. All rights reserved.
An algebraic turbulence model for three-dimensional viscous flows
NASA Technical Reports Server (NTRS)
Chima, R. V.; Giel, P. W.; Boyle, R. J.
1993-01-01
An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number.
Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics
NASA Astrophysics Data System (ADS)
Nuñez-Moraleda, Bernardo; Pizarro, Joaquin; Guerrero, Elisa; Guerrero-Lebrero, Maria P.; Yáñez, Andres; Molina, Sergio Ignacio; Galindo, Pedro Luis
2014-11-01
In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.
Velocity dependence of heavy-ion stopping below the maximum
NASA Astrophysics Data System (ADS)
Sigmund, P.; Schinner, A.
2015-01-01
In the slowing-down of heavy ions in materials, the standard description by Lindhard and Scharff assumes the electronic stopping cross section to be proportional to the projectile speed v up to close to a stopping maximum, which is related to the Thomas-Fermi speed vTF . It is well known that strict proportionality with v is rarely observed, but little is known about the systematics of observed deviations. In this study we try to identify factors that determine positive or negative curvature of stopping cross sections on the basis of experimental data and of binary stopping theory. We estimate the influence of shell structure of the target and of the equilibrium charge of the ion and comment the role of dynamic screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
Comparative assessment of prognosis of the stop stimulus and trapezoidal rotation programs
NASA Technical Reports Server (NTRS)
Grigorova, V. K.; Popov, V. K.; Todorova, V. S.
1980-01-01
For prognosis of the diagnostic possibilities of the stop stimulus and trapezoidal rotation programs with respect to the nystagmus response, 24 healthy young persons with normal auditory and vestibular analysers were studied experimentally. The trapezoidal program more accurately reflects the function and tone balance of the vestibular system than the stop stimulus program and causes the subject no unpleasant sensations during the study. Some optimum couples, acceleration and armchair rotation rate, necessary for effective deviation of the cupuloendolymphatic system were determined. The maximum angular velocity of the slow nystagmus component was more informative than nystagmus duration. The trapezoidal program is recommended for otoneurological practice and the maximum angular velocity of the slow nystagmus component as the basic index.
Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion
NASA Astrophysics Data System (ADS)
Dias, Eduardo; Miranda, Jose
2013-11-01
As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.
Effect of occlusal appliances and clenching on the internally deranged TMJ space.
Kuboki, T; Takenami, Y; Orsini, M G; Maekawa, K; Yamashita, A; Azuma, Y; Clark, G T
1999-01-01
Stabilization appliances and mandibular anterior repositioning appliances have been used to treat patients with internal derangement of the temporomandibular joint (TMJ) based on the assumption that these appliances work by decompressing the TMJ. The purpose of this study was to indirectly test this assumption. Bilateral TMJ tomograms of 7 subjects with unilateral anterior disc displacement without reduction (ADDwor) were taken during comfortable closure and during maximum clenching in maximum intercuspation; tomograms were also taken with the 2 types of occlusal appliances in use. Outlines of the condyle and the temporal fossa were automatically determined by an edge-detection protocol, and the minimum joint space dimension of the joints with and without ADDwor was automatically measured for each experimental condition as the outcome variable. Upon comfortable closure and maximum clenching, the minimum joint space dimensions of the ipsilateral and contralateral joints with the use of stabilization appliances and mandibular anterior repositioning appliances were not significantly different from those seen in maximum intercuspation. These findings do not indicate that these appliances induce an increase in joint space during closing and clenching in joints with ADDwor.
Recombinant albumin monolayers on latex particles.
Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata
2014-01-14
The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.
Meniscal shear stress for punching.
Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek
2009-01-01
Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.
Boaro, Letícia Cristina Cidreira; Brandt, William Cunha; Meira, Josete Barbosa Cruz; Rodrigues, Flávia Pires; Palin, William M; Braga, Roberto Ruggiero
2014-02-01
To determine the free surface displacement of resin-composite restorations as a function of the C-Factor, volume and substrate stiffness, and to compare the results with interfacial stress values evaluated by finite element analysis (FEA). Surface displacement was determined by an extensometer using restorations with 4 or 6mm diameter and 1 or 2mm depth, prepared in either bovine teeth or glass. The maximum displacement of the free surface was monitored for 5 min from the start of photoactivation, at an acquisition rate of 1s(-1). Axisymmetric cavity models were performed by FEA. Structural stiffness and maximum stresses were investigated. For glass, displacement showed a stronger correlation with volume (r=0.771) than with C-Factor (r=0.395, p<0.001 for both). For teeth, a stronger correlation was found with C-Factor (r=0.709; p<0.001) than with volume (r=0.546, p<0.001). For similar dimensions, stress and displacement were defined by stiffness. Simultaneous increases in volume and C-Factor led to increases in stress and surface displacement. Maximum stresses were located at the cavosurface angle, internal angle (glass) and at the dentine-enamel junction (teeth). The displacement of the restoration's free surface was related to interfacial stress development. Structural stiffness seems to affect the shrinkage stress at the tooth/resin-composite interface in bonded restorations. Deep restorations are always problematic because they showed high shear stress, regardless of their width. FEA is the only tool capable of detecting shear stress due to polymerization as there is still no reliable experimental alternative. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kujawska, Tamara; Secomski, Wojciech; Kruglenko, Eleonora; Krawczyk, Kazimierz; Nowicki, Andrzej
2014-01-01
A tissue thermal conductivity (Ks) is an important parameter which knowledge is essential whenever thermal fields induced in selected organs are predicted. The main objective of this study was to develop an alternative ultrasonic method for determining Ks of tissues in vitro suitable for living tissues. First, the method involves measuring of temperature-time T(t) rises induced in a tested tissue sample by a pulsed focused ultrasound with measured acoustic properties using thermocouples located on the acoustic beam axis. Measurements were performed for 20-cycle tone bursts with a 2 MHz frequency, 0.2 duty-cycle and 3 different initial pressures corresponding to average acoustic powers equal to 0.7 W, 1.4 W and 2.1 W generated from a circular focused transducer with a diameter of 15 mm and f-number of 1.7 in a two-layer system of media: water/beef liver. Measurement results allowed to determine position of maximum heating located inside the beef liver. It was found that this position is at the same axial distance from the source as the maximum peak-peak pressure calculated for each nonlinear beam produced in the two-layer system of media. Then, the method involves modeling of T(t) at the point of maximum heating and fitting it to the experimental data by adjusting Ks. The averaged value of Ks determined by the proposed method was found to be 0.5±0.02 W/(m·°C) being in good agreement with values determined by other methods. The proposed method is suitable for determining Ks of some animal tissues in vivo (for example a rat liver). PMID:24743838
NASA Astrophysics Data System (ADS)
Gabriel, Paramo; Adrian, Benitez
2014-07-01
Incremental sheet forming by the method of single point incremental forming Dieless-SPIF, is a widely studied process, experimented and developed in countries with high manufacturing technologies, with friendly costs when the productive configuration in a productivity system is based in small production batches. United states, United kingdom and France lead this type of studies and cases, developing various proof with experimental geometries, different from the national environment such as Colombia, Bolivia, Chile, Ecuador and Peru where this process where discretely studied. Previously mentioned, it pretends develop an experimental case of a particular geometry, identifying the maximum formability angle of material permissible for the forming of a piece in one pass, the analysis of forming limit curve (FLC), with the objective to emphasizes in this innovative method based in CAD-CAM technologies, compare with other analogous process of deformation sheet metal like embossing, take correct decisions about the viability and applicability of this process (Dieless) in a particular industrial piece, which responses to the necessities of productive configurations mentioned and be highly taken like a manufacturing alternative to the other conventional process of forming sheet metal like embossing, for systems with slow batches production.
Kinetically accessible yield (KAY) for redirection of metabolism to produce exo-metabolites
Lafontaine Rivera, Jimmy G.; Theisen, Matthew K.; Chen, Po-Wei; ...
2017-04-05
The product formation yield (product formed per unit substrate consumed) is often the most important performance indicator in metabolic engineering. Until now, the actual yield cannot be predicted, but it can be bounded by its maximum theoretical value. The maximum theoretical yield is calculated by considering the stoichiometry of the pathways and cofactor regeneration involved. Here in this paper we found that in many cases, dynamic stability becomes an issue when excessive pathway flux is drawn to a product. This constraint reduces the yield and renders the maximal theoretical yield too loose to be predictive. We propose a more realisticmore » quantity, defined as the kinetically accessible yield (KAY) to predict the maximum accessible yield for a given flux alteration. KAY is either determined by the point of instability, beyond which steady states become unstable and disappear, or a local maximum before becoming unstable. Thus, KAY is the maximum flux that can be redirected for a given metabolic engineering strategy without losing stability. Strictly speaking, calculation of KAY requires complete kinetic information. With limited or no kinetic information, an Ensemble Modeling strategy can be used to determine a range of likely values for KAY, including an average prediction. We first apply the KAY concept with a toy model to demonstrate the principle of kinetic limitations on yield. We then used a full-scale E. coli model (193 reactions, 153 metabolites) and this approach was successful in E. coli for predicting production of isobutanol: the calculated KAY values are consistent with experimental data for three genotypes previously published.« less
Velaei, Kobra; Torkman, Giti; Rezaie, Fatemealsadat; Amini, Abdollah; Noruzian, Mohsen; Tavassol, Azaedh; Bayat, Mehernoush
2012-01-01
This study used a biomechanical test to evaluate the effects of pentoxifylline administration on the wound healing process of an experimental pressure sore induced in rats. Under general anesthesia and sterile conditions, experimental pressure sores generated by no. 25 Halsted mosquito forceps were inflicted on 12 adult male rats. Pentoxifylline was injected intraperitoneally at a dose of 50 mg/kg daily from the day the pressure sore was generated, for a period of 20 days. At the end of 20 days, rats were sacrificed and skin samples extracted. Samples were biomechanically examined by a material testing instrument for maximum stress (N mm2), work up to maximum force (N), and elastic stiffness (N/mm). In the experimental group, maximum stress (2.05±0.15) and work up to maximum force (N/mm) (63.75±4.97) were significantly higher than the control group (1.3±0.27 and 43.3±14.96, P=0.002 and P=0.035, respectively). Pentoxifylline administration significantly accelerated the wound healing process in experimental rats with pressure sores, compared to that of the control group. PMID:23091522
Velaei, Kobra; Bayat, Mohammad; Torkman, Giti; Rezaie, Fatemealsadat; Amini, Abdollah; Noruzian, Mohsen; Tavassol, Azaedh; Bayat, Mehernoush
2012-09-01
This study used a biomechanical test to evaluate the effects of pentoxifylline administration on the wound healing process of an experimental pressure sore induced in rats. Under general anesthesia and sterile conditions, experimental pressure sores generated by no. 25 Halsted mosquito forceps were inflicted on 12 adult male rats. Pentoxifylline was injected intraperitoneally at a dose of 50 mg/kg daily from the day the pressure sore was generated, for a period of 20 days. At the end of 20 days, rats were sacrificed and skin samples extracted. Samples were biomechanically examined by a material testing instrument for maximum stress (N mm(2)), work up to maximum force (N), and elastic stiffness (N/mm). In the experimental group, maximum stress (2.05±0.15) and work up to maximum force (N/mm) (63.75±4.97) were significantly higher than the control group (1.3±0.27 and 43.3±14.96, P=0.002 and P=0.035, respectively). Pentoxifylline administration significantly accelerated the wound healing process in experimental rats with pressure sores, compared to that of the control group.
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Harris, Thomas A
1931-01-01
This experimental investigation was conducted primarily for the purpose of obtaining a method of correcting to free air conditions the results of airfoil force tests in four open wind tunnel jets of different shapes. Tests were also made to determine whether the jet boundaries had any appreciable effect on the pitching moments of a complete airplane model. Satisfactory corrections for the effect of the boundaries of the various jets were obtained for all the airfoils tested, the span of the largest being 0.75 of the jet width. The corrections for angle of attack were, in general, larger than those for drag. The boundaries had no appreciable effect on the pitching moments of either the airfoils or the complete airplane model. Increasing turbulence appeared to increase the minimum drag and maximum lift and to decrease the pitching moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bregeon, B.G.; Kadirgan, M.A.N.; Lamy, C.
1981-01-01
The authors have derived an experimental technique, using ESR spectroscopy, that allows this determination. A quartz burner equipped with an appropriate cooling system is placed directly in the ESR cavity. We obtained the hydrogen resonance signal and studied its variation for different positions of the flame inside the cavity. Hydrogen concentrations cannot be calculated directly from experimental data; hence we proceed indirectly to deconvoluate the resonance signal. This allows us to overcome the present severe handicap in obtaining atomic hydrogen concentrations in oxy-fuel flames from ESR measurements. Data obtained in this work, after temperature correction, give us the axial distributionmore » of hydrogen radicals for different oxy-propane and hydrogen-oxygen flames. These results show clearly that for all flames, the hydrogen radical concentration is maximum in a zone immediately above the inner cone. 13 refs.« less
NASA Technical Reports Server (NTRS)
Mason, Angela J.
1999-01-01
An experimental investigation was performed on damaged arresting gear tapes at the Langley Aircraft Landing Dynamics Facility. The arrestment system uses five pairs of tapes to bring the test carriage to a halt. The procedure used to determine when to replace the tapes consists of a close evaluation of each of the 10 tapes after each run. During this evaluation, each tape is examined thoroughly and any damage observed on the tape is recorded. If the damaged tape does not pass the inspection, the tape is replaced with a new one. For the past 13 years, the most commonly seen damage types are edge fray damage and transverse damage. Tests were conducted to determine the maximum tensile strength of a damaged arresting gear tape specimen. The data indicate that tapes exhibiting transverse damage can withstand higher loads than tapes with edge fray damage.
NASA Astrophysics Data System (ADS)
Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.
2018-01-01
In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.
NASA Astrophysics Data System (ADS)
Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.
2018-03-01
Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.
NASA Astrophysics Data System (ADS)
Muti Mohamed, Norani; Bashiri, Robabeh; Kait, Chong Fai; Sufian, Suriati
2018-04-01
we investigated the influence of fluctuating the preparation variables of TiO2 on the efficiency of photocatalytic water splitting in photoelectrochemical (PEC) cell. Hydrothermal associated sol-gel technique was applied to synthesis modified TiO2 with nickel and copper oxide. The variation of water (mL), acid (mL) and total metal loading (%) were mathematically modelled using central composite design (CCD) from the response surface method (RSM) to explore the single and combined effects of parameters on the system performance. The experimental data were fitted using quadratic polynomial regression model from analysis of variance (ANOVA). The coefficient of determination value of 98% confirms the linear relationship between the experimental and predicted values. The amount of water had maximum effect on the photoconversion efficiency due to a direct effect on the crystalline and the number of defects on the surface of photocatalyst. The optimal parameter ratios with maximum photoconversion efficiency were 16 mL, 3 mL and 5 % for water, acid and total metal loading, respectively.
Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash
2011-11-01
The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimization of elutriation device for filtration of microplastic particles from sediment.
Zhu, X
2015-03-15
The increasing presence of plastic pollution in marine ecosystems has become a major concern. In the environment, plastics break down into smaller and smaller pieces of microplastics. Methods of microplastic recovery are needed to reduce the dangers they can pose to a variety of organisms. An elutriation device was manufactured and optimized to achieve maximum microplastic recovery. The parameters flow rate and diameter of elutriation column were varied and their domain of variation was determined. A composite factorial experimental design was generated using MODDE 10.1 and was undergone. The optimal values of flow rate and column diameter were determined to be 385 L h(-1) and 5.06 cm respectively, under constraints, to achieve a maximum feasible microplastics recovery percentage of 50.2%. The elutriation process can be improved through further testing, and can be tested in the field to compare its efficiency to that of manual microplastics filtration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modern methodology of designing target reliability into rotating mechanical components
NASA Technical Reports Server (NTRS)
Kececioglu, D. B.; Chester, L. B.
1973-01-01
Experimentally determined distributional cycles-to-failure versus maximum alternating nominal strength (S-N) diagrams, and distributional mean nominal strength versus maximum alternating nominal strength (Goodman) diagrams are presented. These distributional S-N and Goodman diagrams are for AISI 4340 steel, R sub c 35/40 hardness, round, cylindrical specimens 0.735 in. in diameter and 6 in. long with a circumferential groove 0.145 in. radius for a theoretical stress concentration = 1.42 and 0.034 in. radius for a stress concentration = 2.34. The specimens are subjected to reversed bending and steady torque in specially built, three complex-fatigue research machines. Based on these results, the effects on the distributional S-N and Goodman diagrams and on service life of superimposing steady torque on reversed bending are established, as well as the effect of various stress concentrations. In addition a computer program for determining the three-parameter Weibull distribution representing the cycles-to-failure data, and two methods for calculating the reliability of components subjected to cumulative fatigue loads are given.
NASA Technical Reports Server (NTRS)
Thomas, F. P.
2006-01-01
Aerospace structures utilize innovative, lightweight composite materials for exploration activities. These structural components, due to various reasons including size limitations, manufacturing facilities, contractual obligations, or particular design requirements, will have to be joined. The common methodologies for joining composite components are the adhesively bonded and mechanically fastened joints and, in certain instances, both methods are simultaneously incorporated into the design. Guidelines and recommendations exist for engineers to develop design criteria and analyze and test composites. However, there are no guidelines or recommendations based on analysis or test data to specify a torque or torque range to apply to metallic mechanical fasteners used to join composite components. Utilizing the torque tension machine at NASA s Marshall Space Flight Center, an initial series of tests were conducted to determine the maximum torque that could be applied to a composite specimen. Acoustic emissions were used to nondestructively assess the specimens during the tests and thermographic imaging after the tests.
Evaluation of the Carrying Capacity of Rectangular Steel-Concrete Columns
NASA Astrophysics Data System (ADS)
Vatulia, Glib; Rezunenko, Maryna; Petrenko, Dmytro; Rezunenko, Sergii
2018-06-01
Experimental studies of rectangular steel-concrete columns under centric compression with random eccentricity were conducted. The stress-strain state and the carrying capacity exhaustion have been assessed. The regression dependence is proposed to determine the maximum carrying capacity of such columns. The mathematical model takes into account the combined influence of the physical and geometric characteristics of the columns, such as their length, crosssectional area, casing thickness, prism strength of concrete, yield strength of steel, modulus of elasticity of both steel and concrete. The correspondence of the obtained model to the experimental data, as well as the significance of the regression parameters are confirmed by the Fisher and Student criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggs, J.B.
An experimental test model, which is dynamically similar to an actual UCC (Underground Coal Conversion) system, was used to determine fluid-flow patterns and local heat transfer that occur in the UCC burn cavity. This study was designed to provide insight into the little understood mechanisms (i.e., heat transfer and oxygen transport to the cavity walls) that control maximum cavity width, and therefore resource recovery during UCC. The experimental studies will be designed to study the effects of a growing cavity upon the transport to the side walls of a UCG cavity. The flow model will be used to study themore » effects of rubble pile shape changes upon the transport to the side walls.« less
Laser-sodium interaction for the polychromatic laser guide star project
NASA Astrophysics Data System (ADS)
Bellanger, Veronique; Petit, Alain D.
2002-02-01
We developed a code aimed at determining the laser parameters leading to the maximum return flux of photons at 0.33 micrometers for a polychromatic sodium Laser Guide Star. This software relies upon a full 48-level collisionless and magnetic-field-free density-matrix description of the hyperfine structure of Na and includes Doppler broadening and Zeeman degeneracy. Experimental validation of BEACON was conducted on the SILVA facilities and will also be discussed in this paper.
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum test speed is used in §§ 94.105, 94.106, and § 94.109 (including the...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum test speed is used in §§ 94.105, 94.106, and § 94.109 (including the...
NASA Astrophysics Data System (ADS)
Amran, M. A. M.; Idayu, N.; Faizal, K. M.; Sanusi, M.; Izamshah, R.; Shahir, M.
2016-11-01
In this study, the main objective is to determine the percentage difference of part weight between experimental and simulation work. The effect of process parameters on weight of plastic part is also investigated. The process parameters involved were mould temperature, melt temperature, injection time and cooling time. Autodesk Simulation Moldflow software was used to run the simulation of the plastic part. Taguchi method was selected as Design of Experiment to conduct the experiment. Then, the simulation result was validated with the experimental result. It was found that the minimum and maximum percentage of differential of part weight between simulation and experimental work are 0.35 % and 1.43 % respectively. In addition, the most significant parameter that affected part weight is the mould temperature, followed by melt temperature, injection time and cooling time.
Study and characterization of a MEMS micromirror device
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2004-08-01
In this paper, advances in our study and characterization of a MEMS micromirror device are presented. The micromirror device, of 510 mm characteristic length, operates in a dynamic mode with a maximum displacement on the order of 10 mm along its principal optical axis and oscillation frequencies of up to 1.3 kHz. Developments are carried on by analytical, computational, and experimental methods. Analytical and computational nonlinear geometrical models are developed in order to determine the optimal loading-displacement operational characteristics of the micromirror. Due to the operational mode of the micromirror, the experimental characterization of its loading-displacement transfer function requires utilization of advanced optical metrology methods. Optoelectronic holography (OEH) methodologies based on multiple wavelengths that we are developing to perform such characterization are described. It is shown that the analytical, computational, and experimental approach is effective in our developments.
Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to Multi-GPU Clusters
2012-12-01
Experimental results were generated with 10 nVidia Tesla C2050 GPUs having maximum throughput of 972 Gflop /s. Our approach scales well for output...Experimental results were generated with 10 nVidia Tesla C2050 GPUs having maximum throughput of 972 Gflop /s. Our approach scales well for output
2017-01-01
PURPOSE The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS Low levels of vertical wall taper, ≤ 10-degrees, were needed to resist rotational displacement in all wall height categories; 2–to–6–degrees is generally considered ideal, with 7–to–10–degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form. PMID:28874995
NASA Astrophysics Data System (ADS)
Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.
2010-05-01
In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.
Resolution limits of ultrafast ultrasound localization microscopy
NASA Astrophysics Data System (ADS)
Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael
2015-11-01
As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20 000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size of capillaries are achievable at several centimeter depths.
Optimized operation of dielectric laser accelerators: Single bunch
NASA Astrophysics Data System (ADS)
Hanuka, Adi; Schächter, Levi
2018-05-01
We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ˜10 GV /m , one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.
NASA Astrophysics Data System (ADS)
Bufetov, Igor'A.; Bufetova, G. A.; Fyodorov, V. B.
1994-12-01
Spatial distributions of laser radiation scattered by a laser spark were determined at different laser radiation wavelengths (λ = 1060, 530, 353, and 265 nm) and gas pressures (air at 10-760 Torr). An interference structure of the cone of the scattered radiation behind the spark was detected for the first time. The structure was attributed to interference of the radiation scattered in two or more self-focusing centres in the laser-spark plasma in air. The dependences of the maximum scattering angle on the gas pressure and on the laser radiation wavelength were determined experimentally.
Loss of efficiency in a coaxial arrangement of a pair of wind rotors
NASA Astrophysics Data System (ADS)
Okulov, V. L.; Naumov, I. V.; Tsoy, M. A.; Mikkelsen, R. F.
2017-07-01
The efficiency of a pair of wind turbines is experimentally investigated for the case when the model of the second rotor is coaxially located in the wake of the first one. This configuration implies the maximum level of losses in wind farms, as in the rotor wakes, the deceleration of the freestream is maximum. As a result of strain gauge measurements, the dependences of dimensionless power characteristics of both rotors on the distances between them were determined for different modes at different tip speed ratios. The obtained results are of interest for further development of aerodynamics of wind turbines, for optimizing the work of existing wind farms and reducing their power losses due to interactions with wakes of other wind turbines during design and calculation.
Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
NASA Astrophysics Data System (ADS)
Lian, J.; Ahn, D. C.; Chae, D. C.; Münstermann, S.; Bleck, W.
2016-08-01
Experimental and numerical investigations on the characterisation and prediction of cold formability of a ferritic steel sheet are performed in this study. Tensile tests and Nakajima tests were performed for the plasticity characterisation and the forming limit diagram determination. In the numerical prediction, the modified maximum force criterion is selected as the localisation criterion. For the plasticity model, a non-associated formulation of the Hill48 model is employed. With the non-associated flow rule, the model can result in a similar predictive capability of stress and r-value directionality to the advanced non-quadratic associated models. To accurately characterise the anisotropy evolution during hardening, the anisotropic hardening is also calibrated and implemented into the model for the prediction of the formability.
Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee
2015-01-01
In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916
Determining the effect of grain size and maximum induction upon coercive field of electrical steels
NASA Astrophysics Data System (ADS)
Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel
2011-10-01
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.
NASA Technical Reports Server (NTRS)
Carvalho, Nelson; Murri, G.
2014-01-01
A novel method is proposed to obtain Mode I delamination growth rate from a Double Cantilever Beam (DCB) specimen. In the proposed method, Unidirectional (UD) DCB specimens are tested in fatigue at different initial maximum energy release rates levels. The growth rate data obtained in the first increments of crack growth at each maximum energy release rate level are used to generate a Paris Law equation, which characterizes delamination growth rate without fiber-bridging, and can also be used to determine a delamination onset curve. The remaining delamination growth rate data from each test are used to determine a modified Paris law, which characterizes the delamination growth rate in a DCB specimen, explicitly accounting for fiber-bridging. The proposed expression captures well the scatter in experimental data obtained using the DCB specimens, suggesting its adequacy. The Paris Law characterizing delamination growth rate without fiber-bridging predicts higher delamination growth rates for the same maximum energy release rate applied, leading to a conservative estimate for delamination growth. This is particularly relevant, since in generic ply interfaces, fiber-bridging is less predominant than in UD DCB specimens. Failing to account for fiber-bridging in UD DCB specimens may underestimate the delamination growth rate, yielding non-conservative predictions.
Jain, Veena; Mathur, Vijay Prakash; Kumar, Abhishek
2013-01-01
The objective of the study was to investigate whether moderate-to-severe attrition is associated with maximum bite force in the first molar region. Maximum bite force in the first molar region was measured for a total of 60 subjects having moderate-to-severe attrition of occlusal surface (experimental group) using a specially-designed piezoelectric sensor based bite force measuring device. An equal number of age, gender, height and weight matched controls (control group) were also subjected to bite force measurement for comparison. The maximum bite force was found to be significantly lower (p < 0.05) in the experimental group [480.32 (153.40)] as compared to the controls [640.63 (148.90)]. While analyzing the possible etiology for occlusal wear mainly two reasons were elicited, i.e. history of parafunctional habits like use of known abrasive tooth powder (sub-group A) and Bruxism (sub-group B). However, there were many subjects in which no known definite etiological factors be attributed to occlusal wear (sub-group C). On analysing further with respect to the possibly correlated etiological factors with maximum bite force, no significant difference was found within the experimental sub-group. However, all three experimental sub-groups had significantly lower maximum bite force as compared to age, gender and BMI matched controls. A significantly lower maximum bite force was found to be associated with moderate-to-severe attrition as compared to subjects without attrition. However, no specific relation could be found between bite force and possible etiological factors like history of parafunctional habits, history of use of known abrasive tooth powder, etc.
2012-12-13
pressure of ∼2.5 GPa. The final bulk magnets having dimensions Ø6 mm × 1.5 mm were characterized for morphology and the crystalline structure using scanning... Magnetic properties were measured with a superconducting quantum interference device (SQUID) magnetometer with a maximum applied field of 70 kOe. To...calculate the true energy product (BH)max of the bulk sample, we determined the demagnetization factor experimentally as described in [9]. Figure 1 shows
Yang, Shan; Al-Hashimi, Hashim M.
2016-01-01
A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693
Ji, Chengdong; Guo, Xuan; Li, Zhen; Qian, Shuwen; Zheng, Feng; Qin, Haiqing
2013-01-01
Many studies have been conducted on colorectal anastomotic leakage to reduce the incidence of anastomotic leakage. However, how to precisely determine if the bowel can withstand the pressure of a colorectal anastomosis experiment, which is called anastomotic bursting pressure, has not been determined. A task force developed the experimental animal hollow organ mechanical testing system to provide precise measurement of the maximum pressure that an anastomotic colon can withstand, and to compare it with the commonly used method such as the mercury and air bag pressure manometer in a rat colon rupture pressure test. Forty-five male Sprague-Dawley rats were randomly divided into the manual ball manometry (H) group, the tracing machine manometry pressure gauge head (MP) group, and the experimental animal hollow organ mechanical testing system (ME) group. The rats in each group were subjected to a cut colon rupture pressure test after injecting anesthesia in the tail vein. Colonic end-to-end anastomosis was performed, and the rats were rested for 1 week before anastomotic bursting pressure was determined by one of the three methods. No differences were observed between the normal colon rupture pressure and colonic anastomotic bursting pressure, which were determined using the three manometry methods. However, several advantages, such as reduction in errors, were identified in the ME group. Different types of manometry methods can be applied to the normal rat colon, but the colonic anastomotic bursting pressure test using the experimental animal hollow organ mechanical testing system is superior to traditional methods. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Vastrad, B. M.; Neelagund, S. E.
2014-01-01
Neomycin production of Streptomyces fradiae NCIM 2418 was optimized by using response surface methodology (RSM), which is powerful mathematical approach comprehensively applied in the optimization of solid state fermentation processes. In the first step of optimization, with Placket-Burman design, ammonium chloride, sodium nitrate, L-histidine, and ammonium nitrate were established to be the crucial nutritional factors affecting neomycin production significantly. In the second step, a 24 full factorial central composite design and RSM were applied to determine the optimal concentration of significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important nutrients for the maximum were obtained as follows: ammonium chloride 2.00%, sodium nitrate 1.50%, L-histidine 0.250%, and ammonium nitrate 0.250% with a predicted value of maximum neomycin production of 20,000 g kg−1 dry coconut oil cake. Under the optimal condition, the practical neomycin production was 19,642 g kg−1 dry coconut oil cake. The determination coefficient (R 2) was 0.9232, which ensures an acceptable admissibility of the model. PMID:25009746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosla, D.; Singh, M.
The estimation of three-dimensional dipole current sources on the cortical surface from the measured magnetoencephalogram (MEG) is a highly under determined inverse problem as there are many {open_quotes}feasible{close_quotes} images which are consistent with the MEG data. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they often produce overly smoothed solutions and exhibit severe sensitivity to noise. In this paper we explore the maximum entropy approach to obtain better solutions to the problem. This estimation technique selects that image from the possible set of feasible imagesmore » which has the maximum entropy permitted by the information available to us. In order to account for the presence of noise in the data, we have also incorporated a noise rejection or likelihood term into our maximum entropy method. This makes our approach mirror a Bayesian maximum a posteriori (MAP) formulation. Additional information from other functional techniques like functional magnetic resonance imaging (fMRI) can be incorporated in the proposed method in the form of a prior bias function to improve solutions. We demonstrate the method with experimental phantom data from a clinical 122 channel MEG system.« less
NASA Technical Reports Server (NTRS)
Byvik, C. E.
1971-01-01
The dynamic nuclear polarization of hydrogen nuclei by the solid effect in single crystals of samarium doped lanthanum magnesium nitrate (Sm:LMN) was studied theoretically and experimentally. The equations of evolution governing the dynamic nuclear polarization by the solid effect were derived in detail using the spin temperature theory and the complete expression for the steady state enhancement of the nuclear polarization was calculated. Experimental enhancements of the proton polarization were obtained for eight crystals at 9.2 GHz and liquid helium temperatures. The samarium concentration ranged from 0.1 percent to 1.1 percent as determined by X-ray fluorescence. A peak enhancement of 181 was measured for a 1.1 percent Sm:LMN crystal at 3.0 K. The maximum enhancements extrapolated with the theory using the experimental data for peak enhancement versus microwave power and correcting for leakage, agree with the ideal enhancement (240 in this experiment) within experimental error for three of the crystals.
Takamiya, K; Imanaka, T; Ota, Y; Akamine, M; Shibata, S; Shibata, T; Ito, Y; Imamura, M; Uwamino, Y; Nogawa, N; Baba, M; Iwasaki, S; Matsuyama, S
2008-07-01
The upper and lower limits of the excitation function of the (63)Cu(n,p)(63)Ni reaction were experimentally determined, and the number of (63)Ni nuclei produced in copper samples exposed to atomic bomb neutrons in Hiroshima was estimated by using the experimental excitation functions and the neutron fluences given in the DS02 dosimetry system. The estimated number of (63)Ni nuclei was compared with that measured and with that calculated using the DS02 dosimetry system and the corresponding ENDF/B-VI cross section. In comparison with DS02, there is about a 60% maximum difference in (63)Ni production at the hypocenter when the experimental upper cross section values are used. The difference becomes smaller at greater distances from the hypocenter and decreases, for example, to less than 30 and 5% when using the upper and lower experimental cross sections at 1,000 m, respectively.
Determination of the atrazine migration parameters in Vertisol
NASA Astrophysics Data System (ADS)
Raymundo-Raymundo, E.; Hernandez-Vargas, J.; Nikol'Skii, Yu. N.; Guber, A. K.; Gavi-Reyes, F.; Prado-Pano, B. L.; Figueroa-Sandoval, B.; Mendosa-Hernandez, J. R.
2010-05-01
The parameters of the atrazine migration in columns with undisturbed Vertisol sampled from an irrigated plot in Guanajuato, Mexico were determined. A model of the convection-dispersion transport of the chemical compounds accounting for the decomposition and equilibrium adsorption, which is widely applied for assessing the risk of contamination of natural waters with pesticides, was used. The model parameters were obtained by solving the inverse problem of the transport equation on the basis of laboratory experiments on the transport of the 18O isotope and atrazine in soil columns with an undisturbed structure at three filtration velocities. The model adequately described the experimental data at the individual selection of the parameters for each output curve. Physically unsubstantiated parameters of the atrazine adsorption and degradation were obtained when the parameter of the hydrodynamic dispersion was determined from the data on the 18O migration. The simulation also showed that the use of parameters obtained at water content close to saturation in the calculations for an unsaturated soil resulted in the overestimation of the leaching rate and the maximum concentration of atrazine in the output curve compared to the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffel, J.A.; Mullinix, B.R.; Ranson, W.F.
An experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures is presented. Data from 34 tests are included to demonstrate the technique. The effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined. The experimental technique utilizes a high energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded usingmore » a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.« less
Laser-ion accelerators: State-of-the-art and scaling laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borghesi, M.; Kar, S.; Margarone, D.
2013-07-26
A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projectedmore » scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.« less
Fabrication of a superhydrophobic polyurethane foam and its application for continuous oil removal
NASA Astrophysics Data System (ADS)
Liu, Hai-Dong; Gu, Bin; Yuan, Wei-Feng; He, Qi
2018-02-01
A new polyurethane foam with superhydrophobicity and excellent lipophilicity is presented and demonstrated experimentally in this work. The superhydrophobic foam is synthesized by dip coating the polyurethane foam with a mixture solution of silicone resine and silicon dioxide nanoparticles. Its superhydrophobic and oleophilic capacity is characterized and verified via the SEM images, the water contact angle measurement, the adsorption tests and recyclability tests for water and some typical oils. Combining with the vacuum assisted oil-water separation technology (VAST), continuous recovery of oil spill at the lab scale is realized on the new superhydrophobic foam. Moreover, the break through pressure for water penetrating through the superhydrophobic foam is determined experimentally and referred as the maximum operation pressure in the VAST.
NASA Astrophysics Data System (ADS)
Patole, Pralhad B.; Kulkarni, Vivek V.
2018-06-01
This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.
Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh
2015-04-01
Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.
NASA Astrophysics Data System (ADS)
Vafaei, Masoud; Afrand, Masoud; Sina, Nima; Kalbasi, Rasool; Sourani, Forough; Teimouri, Hamid
2017-01-01
In this paper, the thermal conductivity ratio of MgO-MWCNTs/EG hybrid nanofluids has been predicted by an optimal artificial neural network at solid volume fractions of 0.05%, 0.1%, 0.15%, 0.2%, 0.4% and 0.6% in the temperature range of 25-50 °C. In this way, at the first, thirty six experimental data was presented to determine the thermal conductivity ratio of the hybrid nanofluid. Then, four optimal artificial neural networks with 6, 8, 10 and 12 neurons in hidden layer were designed to predict the thermal conductivity ratio of the nanofluid. The comparison between four optimal ANN results and experimental showed that the ANN with 12 neurons in hidden layer was the best model. Moreover, the results obtained from the best ANN indicated the maximum deviation margin of 0.8%.
NASA Astrophysics Data System (ADS)
Gorgolis, S.; Giannopoulou, A.; Anastassopoulos, D.; Kounavis, P.
2012-07-01
Photocurrent response, optical absorption, and x-ray diffraction (XRD) measurements in pentacene films grown on glass substrates are performed in order to obtain an insight into the mobile photocarriers generation mechanism. For film thickness of the order of 50 nm and lower, the photocurrent response spectra are found to follow the optical absorption spectra demonstrating the so-called symbatic response. Upon increasing the film thickness, the photoresponse demonstrates a transition to the so-called antibatic response, which is characterized by a maximum and minimum photocurrent for photon energies of minimum and maximum optical absorption, respectively. The experimental results are not in accordance with the model of important surface recombination rate. By taking into account the XRD patterns, the experimental photoresponse spectra can be reproduced by model simulations assuming efficient exciton dissociation at a narrow layer of the order of 20 nm near the pentacene-substrate interface. The simulated spectra are found sensitive to the film thickness, the absolute optical absorption coefficient, and the diffusion exciton length. By comparing the experimental with the simulated spectra, it is deduced that the excitons, which are created by optical excitation in the spectral region of 1.7-2.2 eV, diffuse with a diffusion length of the order of 10-80 nm to the pentacene-substrate interface where efficiently dissociate into mobile charge carriers.
NASA Astrophysics Data System (ADS)
Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.
2018-01-01
An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.
Effect of the RC time on photocurrent transients and determination of charge carrier mobilities
NASA Astrophysics Data System (ADS)
Kniepert, Juliane; Neher, Dieter
2017-11-01
We present a closed analytical model to describe time dependent photocurrents upon pulsed illumination in the presence of an external RC circuit. In combination with numerical drift diffusion simulations, it is shown that the RC time has a severe influence on the shape of the transients. In particular, the maximum of the photocurrent is delayed due to a delayed recharging of the electrodes. This delay increases with the increasing RC constant. As a consequence, charge carrier mobilities determined from simple extrapolation of the initial photocurrent decay will be in general too small and feature a false dependence on the electric field. Here, we present a recipe to correct charge carrier mobilities determined from measured photocurrent transients by taking into account the RC time of the experimental set-up. We also demonstrate how the model can be used to more reliably determine the charge carrier mobility from experimental data of a typical polymer/fullerene organic solar cell. It is shown that further aspects like a finite rising time of the pulse generator and the current contribution of the slower charger carriers influence the shape of the transients and may lead to an additional underestimation of the transit time.
The statistical multifragmentation model: Origins and recent advances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donangelo, R., E-mail: donangel@fing.edu.uy; Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972 Rio de Janeiro - RJ; Souza, S. R., E-mail: srsouza@if.ufrj.br
2016-07-07
We review the Statistical Multifragmentation Model (SMM) which considers a generalization of the liquid-drop model for hot nuclei and allows one to calculate thermodynamic quantities characterizing the nuclear ensemble at the disassembly stage. We show how to determine probabilities of definite partitions of finite nuclei and how to determine, through Monte Carlo calculations, observables such as the caloric curve, multiplicity distributions, heat capacity, among others. Some experimental measurements of the caloric curve confirmed the SMM predictions of over 10 years before, leading to a surge in the interest in the model. However, the experimental determination of the fragmentation temperatures reliesmore » on the yields of different isotopic species, which were not correctly calculated in the schematic, liquid-drop picture, employed in the SMM. This led to a series of improvements in the SMM, in particular to the more careful choice of nuclear masses and energy densities, specially for the lighter nuclei. With these improvements the SMM is able to make quantitative determinations of isotope production. We show the application of SMM to the production of exotic nuclei through multifragmentation. These preliminary calculations demonstrate the need for a careful choice of the system size and excitation energy to attain maximum yields.« less
The statistical multifragmentation model: Origins and recent advances
NASA Astrophysics Data System (ADS)
Donangelo, R.; Souza, S. R.
2016-07-01
We review the Statistical Multifragmentation Model (SMM) which considers a generalization of the liquid-drop model for hot nuclei and allows one to calculate thermodynamic quantities characterizing the nuclear ensemble at the disassembly stage. We show how to determine probabilities of definite partitions of finite nuclei and how to determine, through Monte Carlo calculations, observables such as the caloric curve, multiplicity distributions, heat capacity, among others. Some experimental measurements of the caloric curve confirmed the SMM predictions of over 10 years before, leading to a surge in the interest in the model. However, the experimental determination of the fragmentation temperatures relies on the yields of different isotopic species, which were not correctly calculated in the schematic, liquid-drop picture, employed in the SMM. This led to a series of improvements in the SMM, in particular to the more careful choice of nuclear masses and energy densities, specially for the lighter nuclei. With these improvements the SMM is able to make quantitative determinations of isotope production. We show the application of SMM to the production of exotic nuclei through multifragmentation. These preliminary calculations demonstrate the need for a careful choice of the system size and excitation energy to attain maximum yields.
Van So, Pham; Jun, Hyun Woo; Lee, Jaichan
2013-12-01
We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.
Dai, Huanping; Micheyl, Christophe
2015-05-01
Proportion correct (Pc) is a fundamental measure of task performance in psychophysics. The maximum Pc score that can be achieved by an optimal (maximum-likelihood) observer in a given task is of both theoretical and practical importance, because it sets an upper limit on human performance. Within the framework of signal detection theory, analytical solutions for computing the maximum Pc score have been established for several common experimental paradigms under the assumption of Gaussian additive internal noise. However, as the scope of applications of psychophysical signal detection theory expands, the need is growing for psychophysicists to compute maximum Pc scores for situations involving non-Gaussian (internal or stimulus-induced) noise. In this article, we provide a general formula for computing the maximum Pc in various psychophysical experimental paradigms for arbitrary probability distributions of sensory activity. Moreover, easy-to-use MATLAB code implementing the formula is provided. Practical applications of the formula are illustrated, and its accuracy is evaluated, for two paradigms and two types of probability distributions (uniform and Gaussian). The results demonstrate that Pc scores computed using the formula remain accurate even for continuous probability distributions, as long as the conversion from continuous probability density functions to discrete probability mass functions is supported by a sufficiently high sampling resolution. We hope that the exposition in this article, and the freely available MATLAB code, facilitates calculations of maximum performance for a wider range of experimental situations, as well as explorations of the impact of different assumptions concerning internal-noise distributions on maximum performance in psychophysical experiments.
von Hansen, Yann; Mehlich, Alexander; Pelz, Benjamin; Rief, Matthias; Netz, Roland R
2012-09-01
The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and-if present-macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.
Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils
NASA Astrophysics Data System (ADS)
McLennan, Anthony William
Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.
Shen, Yi; Dai, Wei; Richards, Virginia M
2015-03-01
A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given.
Heidarizadi, Elham; Tabaraki, Reza
2016-01-01
A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Microstructurally based variations on the dwell fatgue life of titanium alloy IMI 834
NASA Technical Reports Server (NTRS)
Thomsen, Mark L.; Hoeppner, David W.
1994-01-01
An experimental study was undertaken to determine the role of microstructure on the fatigue life reduction observed in titanium alloy IMI 834 under dwell loading conditions. The wave forms compared were a trapezoid with 15 and 30 second hold times at the maximum test load and a baseline, 10 Hertz, haversine. The stress ratio for both loading wave forms was 0.10. The fatigue loading of each specimen was conducted in a vacuum within a scanning electron microscope chamber which minimized the possibility that the laboratory environment would adversely affect the material behavior. Two microstructural conditions were investigated in the experimental program. The first involved standard 'disk' material with equiaxed alpha in a transformed beta matrix. The second material was cut from the same disk forging as the first but was heat treated to obtain a martensitic alpha prime microstructure. Tensile tests were performed prior to the onset of the fatigue loading portion of the study, and it was determined that the yield strengths of the specimens from both material conditions were within ten percent. The maximum fatigue loads were chosen to be 72 percent of the average yield strength for both materials as determined from the tensile tests. It was found that the cycles to failure from the 10 Hertz loading wave form were reduced by a factor of approximately five when the loading was changed to the trapezoidal wave form for the standard 'disk' material. The fatigue life reduction for the martensitic structure under identical test conditions was approximately 1.75. The improvement observed with the martensitic structure also was accompanied by an increase in overall fatigue life for the wave forms tested. This paper will review the results and conclusions of this effort.
Comparison of hydrodynamic simulations with two-shockwave drive target experiments
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William
2015-11-01
We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number
Saffar, Saber; Abdullah, Amir
2014-01-01
The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.
Tu, Yiyou; Plotnikov, Elizaveta Y; Seidman, David N
2015-04-01
This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (m/Δm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3-20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.
Servais, P
1995-03-01
In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.
Experimental strategies in carrying out VCU for tobacco crop I: plot design and size.
Toledo, F H R B; Ramalho, M A P; Pulcinelli, C E; Bruzi, A T
2013-09-19
We aimed to establish standards for tobacco Valor de Cultivo e Uso (VCU) in Brazil. We obtained information regarding the size and design of plots of two varietal groups of tobacco (Virginia and Burley). Ten inbred lines of each varietal group were evaluated in a randomized complete block design with four replications. The plot contained 42 plants with six rows of seven columns each. For each experiment plant, considering the position of the respective plant in the plot (row and column) as a reference, cured leaf weight (g/plant), total sugar content (%), and total alkaloid content (%) were determined. The maximum curvature of the variations in coefficients was estimated. Trials with the number of plants per plot ranging from 2 to 41 were simulated. The use of a border was not justified because the interactions between inbred lines x position in the plots were never significant, showing that the behavior of the inbred lines coincided with the different positions. The plant performance varied according to the column position in the plot. To lessen the effect of this factor, the use of plots with more than one row is recommended. Experimental precision, evaluated by the CV%, increased with an increase in plot size; nevertheless, the maximum curvature of the variation coefficient method showed no expressive increase in precision if the number of plants was greater than seven. The result in identification of the best inbred line, in terms of the size of each plot, coincided with the maximum curvature method.
Pandey, Devendra Kumar; Kaur, Prabhjot
2018-03-01
In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).
NASA Astrophysics Data System (ADS)
Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming
2018-05-01
An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.
Arabi, Simin; Sohrabi, Mahmoud Reza
2013-01-01
In this study, NZVI particles was prepared and studied for the removal of vat green 1 dye from aqueous solution. A four-factor central composite design (CCD) combined with response surface modeling (RSM) to evaluate the combined effects of variables as well as optimization was employed for maximizing the dye removal by prepared NZVI based on 30 different experimental data obtained in a batch study. Four independent variables, viz. NZVI dose (0.1-0.9 g/L), pH (1.5-9.5), contact time (20-100 s), and initial dye concentration (10-50 mg/L) were transform to coded values and quadratic model was built to predict the responses. The significant of independent variables and their interactions were tested by the analysis of variance (ANOVA). Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. The ANOVA results indicated that the proposed model can be used to navigate the design space. Optimization of the variables for maximum adsorption of dye by NZVI particles was performed using quadratic model. The predicted maximum adsorption efficiency (96.97%) under the optimum conditions of the process variables (NZVI dose 0.5 g/L, pH 4, contact time 60 s, and initial dye concentration 30 mg/L) was very close to the experimental value (96.16%) determined in batch experiment. In the optimization, R2 and R2adj correlation coefficients for the model were evaluated as 0.95 and 0.90, respectively.
Evolutionary-based approaches for determining the deviatoric stress of calcareous sands
NASA Astrophysics Data System (ADS)
Shahnazari, Habib; Tutunchian, Mohammad A.; Rezvani, Reza; Valizadeh, Fatemeh
2013-01-01
Many hydrocarbon reservoirs are located near oceans which are covered by calcareous deposits. These sediments consist mainly of the remains of marine plants or animals, so calcareous soils can have a wide variety of engineering properties. Due to their local expansion and considerable differences from terrigenous soils, the evaluation of engineering behaviors of calcareous sediments has been a major concern for geotechnical engineers in recent years. Deviatoric stress is one of the most important parameters directly affecting important shearing characteristics of soils. In this study, a dataset of experimental triaxial tests was gathered from two sources. First, the data of previous experimental studies from the literature were gathered. Then, a series of triaxial tests was performed on calcareous sands of the Persian Gulf to develop the dataset. This work resulted in a large database of experimental results on the maximum deviatoric stress of different calcareous sands. To demonstrate the capabilities of evolutionary-based approaches in modeling the deviatoric stress of calcareous sands, two promising variants of genetic programming (GP), multigene genetic programming (MGP) and gene expression programming (GEP), were applied to propose new predictive models. The models' input parameters were the physical and in-situ condition properties of soil and the output was the maximum deviatoric stress (i.e., the axial-deviator stress). The results of statistical analyses indicated the robustness of these models, and a parametric study was also conducted for further verification of the models, in which the resulting trends were consistent with the results of the experimental study. Finally, the proposed models were further simplified by applying a practical geotechnical correlation.
NASA Astrophysics Data System (ADS)
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
Influence of cutting data on surface quality when machining 17-4 PH stainless steel
NASA Astrophysics Data System (ADS)
Popovici, T. D.; Dijmărescu, M. R.
2017-08-01
The aim of the research presented in this paper is to analyse the cutting data influence upon surface quality for 17-4 PH stainless steel milling machining. The cutting regime parameters considered for the experiments were established using cutting regimes from experimental researches or from industrial conditions as basis, within the recommended ranges. The experimental program structure was determined by taking into account compatibility and orthogonality conditions, minimal use of material and labour. The machined surface roughness was determined by measuring the Ra roughness parameter, followed by surface profile registration in the form of graphics which were saved on a computer with MarSurf PS1Explorer software. Based on Ra roughness parameter, maximum values were extracted from these graphics and the influence charts of the cutting regime parameters upon surface roughness were traced using Microsoft Excel software. After a thorough analysis of the resulting data, relevant conclusions were drawn, presenting the interdependence between the surface roughness of the machined 17-4 PH samples and the cutting data variation.
Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha).
Miretzky, Patricia; Muñoz, Carolina; Carrillo-Chávez, Alejandro
2008-03-01
The use of nopal cladodes (Opuntia streptacantha) as raw material for Pb(2+) biosorption was investigated. Batch experiments were carried out to determine Pb(2+) sorption capacity and the efficiency of the sorption process under different pH, initial Pb(2+) and nopal biomass concentrations. The experimental data showed a good fit to Langmuir and Freundlich isotherms models. The maximum adsorption capacity for Pb(2+) was 0.14 mmol g(-1) with an efficiency higher than 94% (pH 5.0 and 2.5 g L(-1) nopal biomass). The Pb(2+) kinetics were best described by the pseudo-second-order rate model. The rate constant, the initial sorption rate and the equilibrium sorption capacity were determined. The practical implication of this study is the development of an effective and economic technology in which the nopal biomass did not undergo any chemical or physical pretreatment, which added to nopal abundance in Mexico and its low cost makes it a good option for Pb(2+) removal from contaminated waters.
Validation of Analytical Damping Ratio by Fatigue Stress Limit
NASA Astrophysics Data System (ADS)
Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul
2018-03-01
The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
NASA Astrophysics Data System (ADS)
Dhaundiyal, Alok; Singh, Suraj B.; Hanon, Muammel M.; Rawat, Rekha
2018-02-01
A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
NASA Astrophysics Data System (ADS)
Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho
2017-05-01
The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.
NASA Astrophysics Data System (ADS)
Sapundzhiev, M.; Evtimov, I.; Ivanov, R.
2017-10-01
The paper presents an upgraded methodology for determination of the electric motor power considering the time for acceleration. The influence of the speed factor of electric motor on the value of needed power at same acceleration time is studied. Some calculations on the basis of real vehicle were made. The numeric and graphical results are given. They show a decrease of needed power with the increase of the speed factor of motor, because the high speed factor allows the use of a larger range of the characteristic with the maximum power of the motor. An experimental verification of methodology was done.
The Lateral Stability of Equal-flanged Aluminum-alloy I-beams Subjected to Pure Bending
NASA Technical Reports Server (NTRS)
Dumont, C; Hill, H N
1940-01-01
Equal-flange beams of a special extruded I-section of 27ST aluminum alloy were tested in pure bending. Complete end fixity was not attained. Loading was continued until a definite maximum value had been reached. Tensile tests were made on specimens cut from the flanges and the web of each beam. Compressive stress-strain characteristics were determined by pack compression tests on specimens cut from the flanges. Values computed from an equation previously suggested by one of the authors for the critical stress at which such beams become unstable were found to be in good agreement with values computed from experimentally determined critically bending moments.
Numerical Simulation of Cylindrical, Self-field MPD Thrusters with Multiple Propellants
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1994-01-01
A two-dimensional, two-temperature, single fluid MHD code was used to predict the performance of cylindrical, self-field magnetoplasmadynamic (MPD) thrusters operated with argon, lithium, and hydrogen propellants. A thruster stability equation was determined relating maximum stable J(sup 2)/m values to cylindrical thruster geometry and propellant species. The maximum value of J(sup 2)/m was found to scale as the inverse of the propellant molecular weight to the 0.57 power, in rough agreement with limited experimental data which scales as the inverse square root of the propellant molecular weight. A general equation which relates total thrust to electromagnetic thrust, propellant molecular weight, and J(sup 2)/m was determined using reported thrust values for argon and hydrogen and calculated thrust values for lithium. In addition to argon, lithium, and hydrogen, the equation accurately predicted thrust for ammonia at sufficiently high J(sup 2)/m values. A simple algorithm is suggested to aid in the preliminary design of cylindrical, self-field MPD thrusters. A brief example is presented to illustrate the use of the algorithm in the design of a low power MPD thruster.
Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis
2012-08-01
The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production. Copyright © 2012 Elsevier Ltd. All rights reserved.
Martín Rodríguez, Francisco; Fernández Pérez, Cristina; Castro Villamor, Miguel; Martín Conty, José Luis; Arnillas Gómez, Pedro; Casado Vicente, Verónica
2018-01-01
Our aim was to determine the usefulness of level D personal protective equipment (PPE) in safeguarding health care staff who perform cardiopulmonary resuscitation (CPR). Quasi-experimental, uncontrolled trial in 96 volunteers chosen randomly and stratified by sex, level of training, and professional category. The subjects were selected from a convenience sample of 164 nurses, physicians, and students of nursing and medicine (40 men [41.66%] and 56 women [58.33%]). The mean (SD) age was 31 (11) years. The Conconi test was used to determine heart rate (HR) at the anaerobic threshold on a cycle ergometer. That HR was then compared to each volunteer's maximum HR during performance of CPR while wearing PPE. While the volunteers were performing CPR, 46.9% of them surpassed their maximum recommendable HR recorded during the cycle ergometer test. We found that performing CPR while wearing level D PPE requires intense physical effort. Special situations should be taken into consideration when developing protocols for situations that require staff to wear PPE. Staff who must perform CPR under these conditions should be given specific training.
A three-dimensional inverse finite element analysis of the heel pad.
Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet
2012-03-01
Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.
Measurement of Capillary Radius and Contact Angle within Porous Media.
Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed
2015-12-01
The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.
NASA Astrophysics Data System (ADS)
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-01
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-14
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Prediction of wax buildup in 24 inch cold, deep sea oil loading line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asperger, R.G.; Sattler, R.E.; Tolonen, W.J.
1981-10-01
When designing pipelines for cold environments, it is important to know how to predict potential problems due to wax deposition on the pipeline's inner surface. The goal of this work was to determine the rate of wax buildup and the maximum, equlibrium wax thickness for a North Sea field loading line. The experimental techniques and results used to evaluate the waxing potential of the crude oil (B) are described. Also, the theoretic model which was used for predicting the maximum wax deposit thickness in the crude oil (B) loading pipeline at controlled temperatures of 40 F (4.4 C) and 100more » F (38 C), is illustrated. Included is a recommendation of a procedure for using hot oil at the end of a tanker loading period in order to dewax the crude oil (B) line. This technique would give maximum heating of the pipeline and should be followed by shutting the hot oil into the pipeline at the end of the loading cycle which will provide a hot oil soaking to help soften existing wax. 14 references.« less
The Ultrachopper tip: a wound temperature study.
Barlow, William R; Pettey, Jeff; Olson, Randall J
2013-12-01
To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Malcolm; Roy, Timothy; Tessier, Frederic
Purpose: To develop the techniques required to experimentally determine electron stopping powers for application in primary standards and dosimetry protocols. Method and Materials: A large-volume HPGe detector system (>80% efficiency) was commissioned for the measurement of high energy (5–35 MeV) electron beams. As a proof of principle the system was used with a Y-90/Sr-90 radioactive source. Thin plates of absorbing material (< 0.1 gcm-2) were then placed between the source and detector and the emerging electron spectrum was acquired. The full experimental geometry was modelled using the EGSnrc package to validate the detector design, optimize the experimental setup and comparemore » measured and calculated spectra. Results: The biggest challenge using a beta source was to identify a robust spectral parameter to determine for each measurement. An end-point-fitting routine was used to determine the maximum energy, Emax, of the beta spectrum for each absorber thickness t. The parameter dEmax/dt is related to the electron stopping power and the same routine was applied to both measured and simulated spectra. Although the standard uncertainty in dEmax/dt was of the order of 5 %, by taking the ratio of measured and Monte Carlo values for dEmax/dt the uncertainty of the fitting routine was eliminated and the uncertainty was reduced to less than 2 %. The agreement between measurement and simulation was within this uncertainty estimate. Conclusion: The investigation confirmed the experimental approach and demonstrated that EGSnrc could accurately determine correction factors that will be required for the final measurement setup in a linac beam.« less
NASA Technical Reports Server (NTRS)
Smiley, Robert F.; Haines, Gilbert A.
1949-01-01
Bureau of Aeronautics Design Specifications SS-IC-2 for water loads in sheltered water are compared with experimental water loads obtained during a full--scale landing investigation. This investigation was conducted with a JRS-1 flying boat which has a 20 degrees dead-rise V-bottom with a partial chine flare. The range of landing conditions included airspeeds between 88 and 126 feet per second, sinking speeds between 1.6 and 9.1 feet per second, flight angles less than 6 degrees, and trims between 2 degrees and 12 degrees. Landings were moderate and were made in calm water. Measurements were obtained of maximum over-all loads, maximum pitching moments, and pressure distributions. Maximum experimental loads include over-all load factors of 2g, moments of 128,000 pound-feet, and maximum local pressures greater than 40 pounds per square inch. Experimental over-all loads are approximately one-half the design values, while local pressures are of the same order as or larger than pressures calculated from specifications for plating, stringer, floor, and frame design. The value of this comparison is limited, to some extent, by the moderate conditions of the test and by the necessary simplifying assumptions used in comparing the specifications with the experimental loads.
Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils
NASA Astrophysics Data System (ADS)
Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.
2018-04-01
The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cellini, R.F.; Palomino, J.V.
1956-01-01
The ion exchange of the uranyl ion on Amberlite Ir-120 resin was studied with different uranyl ion concentrations. Elution with sulfuric acid was investlgated and the elution curve for the experimental conditions was determined. From the concentrations of the ions of Cu/sup 2+/, Ni/sup 2+/, Fe/sup 3+/, Cd/sup 2+/, Mn/sup 2+/, and Cr/sup 3+/ the maximum exchange capacity was tested and elation curves with 4 N sulfuric acid were obtained. (tr-auth)
Investigation of acoustic and gas dynamic characteristics of strongly swirled turbulent jets
NASA Astrophysics Data System (ADS)
Krasheninnikov, S. Yu; Maslov, VP; Mironov, AK; Toktaliev, PD
2018-03-01
Generalization of the series of experimental and numerical results for properties and characteristics of swirling jets with high swirling intensity W0>1 is considered. These jets are typically used in gas turbine aviation engines for intensification of mixing process and combustion process stabilization. Flow structures in swirling jets and in the near-field are analyzed. It is shown, that, in the main, the flow structure behind the swirling device can be determined by swirling intensity W 0 and acoustic fluctuations field formed far from the jet boundaries. Experimental measurements and numerical simulation of the noise levels of the highly swirling jet are performed using Ffowcs-Williams-Hawkins analogy. Maximum levels of noise axis are observed at angles of 50°-70° from the jet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, D. W.; Kawauchi, S.; Abraham, D. P.
Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}, used as the active material in a lithium-ion battery porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10{sup -10} cm{sup 2} s{sup -1} at 3.85 V. The lithium diffusion coefficient values obtainedmore » from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study.« less
NASA Technical Reports Server (NTRS)
Schafer, Louis J; Stepka, Francis S; Brown, W Byron
1953-01-01
An analysis was made to permit the calculation of the effectiveness of oxide coatings in retarding the transient heat flow into turbine blades when the combustion gas temperature of a turbojet engine is suddenly changed. The analysis is checked with experimental data obtained from a turbojet engine whose blades were coated with two different coating materials (silicon dioxide and boric oxide) by adding silicone oil and tributyl borate to the engine fuel. The very thin coatings (approximately 0.001 in.) that formed on the blades produced a negligible effect on the turbine-blade transient temperature response. With the analysis discussed here, it was possible to predict the turbine rotor-blade temperature response with a maximum error of 40 F.
Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency
Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei
2016-01-01
The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178
Richards, V. M.; Dai, W.
2014-01-01
A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given. PMID:24671826
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.
Laser pulse heating of steel mixing with WC particles in a irradiated region
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.; Ali, H.; Karatas, C.
2016-12-01
Laser pulse heating of steel mixing with tungsten carbide (WC) particles is carried out. Temperature field in the irradiated region is simulated in line with the experimental conditions. In the analysis, a laser pulse parameter is introduced, which defines the laser pulse intensity distribution at the irradiated surface. The influence of the laser parameter on the melt pool size and the maximum temperature increase in the irradiated region is examined. Surface temperature predictions are compared with the experimental data. In addition, the distribution of WC particles and their re-locations in the treated layer, due to combination of the natural convection and Marangoni currents, are predicted. The findings are compared to the experimental data. It is found that surface temperature predictions agree well with the experimental data. The dislocated WC particles form a streamlining in the near region of the melt pool wall, which agree with the experimental findings. The Gaussian distribution of the laser pulse intensity results in the maximum peak temperature and the maximum flow velocity inside the melt pool. In this case, the melt pool depth becomes the largest as compared to those corresponding to other laser pulse intensity distributions at the irradiated surface.
Seismic performance of the typical RC beam-column joint subjected to repeated earthquakes
NASA Astrophysics Data System (ADS)
Hassanshahi, Omid; Majid, Taksiah A.; Lau, Tze Liang; Yousefi, Ali; Tahara, R. M. K.
2017-10-01
It is common that a building experience repeated earthquakes throughout its lifetime. Such earthquake is capable of creating severe damage in primary elements of the building due to accumulation of inelastic displacement from repetition. The present study focuses on the influence of repeated earthquakes on a typical Reinforced Concrete (RC) beam-column joint, especially on the maximum inelastic displacement demand and maximum residual displacement. For this purpose, the capability of nonlinear modelling in simulating the hysteretic behaviour of the prototype experimental specimen is first determined using RUAUMOKO. A nonlinear Incremental Dynamic Analysis (IDA) on the verified model is then carried out in order to estimate with maximum accuracy the ultimate load bearing capacity to progressive collapse of the RC joint under investigation. Twenty ground motions are selected, and single (C1), double (C2), and triple (C3) event of synthetic repeated earthquakes are then considered. The results show that the repeated earthquakes significantly increase the inelastic demand of the RC joint. On average, relative increment of maximum inelastic displacement demand is experienced about 28.9% and 39.4% when C2 and C3 events of repeated earthquakes are induced, respectively. Residual displacements for repeated earthquakes are also significantly higher than that for single earthquakes.
Optimum display luminance depends on white luminance under various ambient illuminance conditions
NASA Astrophysics Data System (ADS)
Kim, Minkoo; Jeon, Dong-Hwan; Kim, Jeong-Sik; Yu, Byung-Chang; Park, YungKyung; Lee, Seung-Woo
2018-02-01
This paper reports display luminance levels for good visibility under nine ambient illuminance conditions (50, 100, 200, 500, 1000, 2000, 5000, 10,000, and 20,000 lx) for a given white luminance level, chosen from five candidates (100, 200, 500, 1000, and 2000 cd / m2), through a psychophysical experiment. This work reveals that the luminance levels for good visibility increase as the maximum white luminance of the display increases. The white luminance dependency of display luminance is caused by the fact that the human visual system adapts to the maximum white luminance and evaluates the brightness of the display based on it. Based on the experimental results, an appropriate luminance zone under various illuminance conditions is proposed. The appropriate luminance zone varies with the maximum white luminance of the displays. This may be understood to mean that there is no absolute luminance level under a given lighting condition. To solve this issue, a new method is proposed to determine optimum luminance levels by considering both visibility and power consumption. By the proposed method, it is reported that the optimum maximum luminance lies between 200 and 500 cd / m2 for indoor use (below 500 lx). These results were verified by young adults with normal vision.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Species Composition and Fire: Non-Additive Mixture Effects on Ground Fuel Flammability
van Altena, Cassandra; van Logtestijn, Richard S. P.; Cornwell, William K.; Cornelissen, Johannes H. C.
2012-01-01
Diversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of diversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e., differ from expected flammability based on the component species in monospecific fuel. In standardized fire experiments on ground fuels, including monospecific fuels and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration, and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects for temporal dynamics – fire speed and duration. Fuel types with the more flammable value for a characteristic determined the rate of fire speed and duration of the whole mixture; in contrast, maximum temperature of the fire was determined by the biomass-weighted mean of the mixture. These results suggest that ecological invasions by highly flammable species may have effects on ground-fire dynamics well out of proportion to their biomass. PMID:22639656
Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar
2013-08-01
The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.
The Effects of Tooth Brushing on Whole Salivary Flow Rate in Older Adults
Trottier, K.; Garrick, R.; Mascarenhas, T.; Jang, Y.
2018-01-01
Objectives (1) To determine whether manual (MTB), or electric, tooth brushing (ETB) modulates whole salivary flow rate in older adults who are free of systemic disease. (2) To determine the duration of the brushing-related modulation of salivary flow rate. (3) To compare salivary flow rate modulation associated with MTB and ETB. Method Twenty-one adults aged 60 years and older participated in two experimental sessions during which they used a manual, or electric, toothbrush to brush their teeth, tongue, and palate. Whole salivary flow rates were determined using the draining method before, during, and after brushing. Differences in salivary flow rates across time periods, and between conditions, were examined using paired samples t-tests applying a Holm-Bonferroni sequential procedure (pcorr < 0.0045). The relationship between tooth brushing and age with respect to maximum salivary flow rate increase was examined using Pearson's correlation coefficient (p < 0.05). Results/Conclusion Whole salivary flow rates increased during, and for up to 5 minutes following, tooth brushing in adults aged 60 years and older who were free of systemic disease. The salivary effects of MTB and ETB were not significantly different. A moderate, positive correlation was observed between tooth-brushing-related maximum salivary flow rate increase and age. PMID:29682540
NASA Astrophysics Data System (ADS)
Swanpalmer, John; Johansson, Karl-Axel
2011-11-01
In the late 1970s, Johansson et al (1978 Int. Symp. National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) reported experimentally determined displacement correction factors (pdis) for cylindrical ionization chamber dosimetry in 60Co and high-energy photon beams. These pdis factors have been implemented and are currently in use in a number of dosimetry protocols. However, the accuracy of these factors has recently been questioned by Wang and Rogers (2009a Phys. Med. Biol. 54 1609-20), who performed Monte Carlo simulations of the experiments performed by Johansson et al. They reported that the inaccuracy of the pdis factors originated from the normalization procedure used by Johansson et al. In their experiments, Johansson et al normalized the measured depth-ionization curves at the depth of maximum ionization for each of the different ionization chambers. In this study, we experimentally investigated the effect of air cavity size of cylindrical ionization chambers in a PMMA phantom and 60Co γ-beam. Two different pairs of air-filled cylindrical ionization chambers were used. The chambers in each pair had identical construction and materials but different air cavity volume (diameter). A 20 MeV electron beam was utilized to determine the ratio of the mass of air in the cavity of the two chambers in each pair. This ratio of the mass of air in each pair was then used to compare the ratios of the ionizations obtained at different depths in the PMMA phantom and 60Co γ-beam using the two pairs of chambers. The diameter of the air cavity of cylindrical ionization chambers influences both the depth at which the maximum ionization is observed and the ionization per unit mass of air at this depth. The correction determined at depths of 50 mm and 100 mm is smaller than the correction currently used in many dosimetry protocols. The results presented here agree with the findings of Wang and Rogers' Monte Carlo simulations and show that the normalization procedure employed by Johansson et al is not correct.
NASA Astrophysics Data System (ADS)
Morjean, M.; Hinde, D. J.; Simenel, C.; Jeung, D. Y.; Airiau, M.; Cook, K. J.; Dasgupta, M.; Drouart, A.; Jacquet, D.; Kalkal, S.; Palshetkar, C. S.; Prasad, E.; Rafferty, D.; Simpson, E. C.; Tassan-Got, L.; Vo-Phuoc, K.; Williams, E.
2017-12-01
The atomic numbers and the masses of fragments formed in quasifission reactions are simultaneously measured at scission in 48Ti + 238U reactions at a laboratory energy of 286 MeV. The atomic numbers are determined from measured characteristic fluorescence x rays, whereas the masses are obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasifission fragments on a broad angular range, the important role of the proton shell closure at Z =82 is evidenced by the associated maximum production yield, a maximum predicted by time-dependent Hartree-Fock calculations. This new experimental approach gives now access to precise studies of the time dependence of the N /Z (neutron over proton ratios of the fragments) evolution in quasifission reactions.
NASA Astrophysics Data System (ADS)
Daan, Rogier
In laboratory tests food intake by the hydromedusa Sarsia tubulosa, which feeds on copepods, was quantified. Estimates of maximum predation are presented for 10 size classes of Sarsia. Growth rates, too, were determined in the laboratory, at 12°C under ad libitum food conditions. Mean gross food conversion for all size classes averaged 12%. From the results of a frequent sampling programme, carried out in the Texelstroom (a tidal inlet of the Dutch Wadden Sea) in 1983, growth rates of Sarsia in the field equalled maximum growth under experimental conditions, which suggests that Sarsia in situ can feed at an optimum level. Two estimates of predation pressure in the field matched very closely and lead to the conclusion that the impact of Sarsia predation on copepod standing stocks in the Dutch coastal area, including the Wadden Sea, is generally negligible.
Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji
2017-01-01
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landau, David B., E-mail: david.landau@kcl.ac.uk; Hughes, Laura; Baker, Angela
2016-08-01
Purpose: To report toxicity and early survival data for IDEAL-CRT, a trial of dose-escalated concurrent chemoradiotherapy (CRT) for non-small cell lung cancer. Patients and Methods: Patients received tumor doses of 63 to 73 Gy in 30 once-daily fractions over 6 weeks with 2 concurrent cycles of cisplatin and vinorelbine. They were assigned to 1 of 2 groups according to esophageal dose. In group 1, tumor doses were determined by an experimental constraint on maximum esophageal dose, which was escalated following a 6 + 6 design from 65 Gy through 68 Gy to 71 Gy, allowing an esophageal maximum tolerated dose to be determined from early and late toxicities. Tumormore » doses for group 2 patients were determined by other tissue constraints, often lung. Overall survival, progression-free survival, tumor response, and toxicity were evaluated for both groups combined. Results: Eight centers recruited 84 patients: 13, 12, and 10, respectively, in the 65-Gy, 68-Gy, and 71-Gy cohorts of group 1; and 49 in group 2. The mean prescribed tumor dose was 67.7 Gy. Five grade 3 esophagitis and 3 grade 3 pneumonitis events were observed across both groups. After 1 fatal esophageal perforation in the 71-Gy cohort, 68 Gy was declared the esophageal maximum tolerated dose. With a median follow-up of 35 months, median overall survival was 36.9 months, and overall survival and progression-free survival were 87.8% and 72.0%, respectively, at 1 year and 68.0% and 48.5% at 2 years. Conclusions: IDEAL-CRT achieved significant treatment intensification with acceptable toxicity and promising survival. The isotoxic design allowed the esophageal maximum tolerated dose to be identified from relatively few patients.« less
Golombeck, M A; Dössel, O; Raiser, J
2003-09-01
Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.
NASA Astrophysics Data System (ADS)
Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki
2018-06-01
The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.
Metainference: A Bayesian inference method for heterogeneous systems.
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.
McMahon, Jeffrey M; Henry, Anne-Isabelle; Wustholz, Kristin L; Natan, Michael J; Freeman, R Griffith; Van Duyne, Richard P; Schatz, George C
2009-08-01
Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.
An experimental analysis of electricity conservation procedures1
Palmer, Michael H.; Lloyd, Margaret E.; Lloyd, Kenneth E.
1977-01-01
Daily electricity consumption of four families was recorded for 106 days. A reversal design, consisting of various experimental conditions interspersed between repeated baseline conditions, was used. During experimental conditions, daily prompts (written conservation slogans attached to front doors) and/or daily feedback (daily kilowatts consumed and daily cost information) were in effect. Maximum consumption occurred during the initial baseline; minimum consumption occurred during different experimental conditions for different families. The mean decrease from the maximum to the minimum for all families was 35%. Reversals in consumption were demonstrated in three families, although successive baselines tended to decrease. No clear differences in effectiveness between prompting and feedback conditions were apparent. The procedures used resulted in considerable dollar savings for the families. PMID:16795572
Bogucki, Artur J
2014-01-01
The knee joint is a bicondylar hinge two-level joint with six degrees of freedom. The location of the functional axis of flexion-extension motion is still a subject of research and discussions. During the swing phase, the femoral condyles do not have direct contact with the tibial articular surfaces and the intra-articular space narrows with increasing weight bearing. The geometry of knee movements is determined by the shape of articular surfaces. A digital recording of the gait of a healthy volunteer was analysed. In the first experimental variant, the subject was wearing a knee orthosis controlling flexion and extension with a hinge-type single-axis joint. In the second variant, the examination involved a hinge-type double-axis orthosis. Statistical analysis involved mathematically calculated values of displacement P. Scatter graphs with a fourth-order polynomial trend line with a confidence interval of 0.95 due to noise were prepared for each experimental variant. In Variant 1, the average displacement was 15.1 mm, the number of tests was 43, standard deviation was 8.761, and the confidence interval was 2.2. The maximum value of displacement was 30.9 mm and the minimum value was 0.7 mm. In Variant 2, the average displacement was 13.4 mm, the number of tests was 44, standard deviation was 7.275, and the confidence interval was 1.8. The maximum value of displacement was 30.2 mm and the minimum value was 3.4 mm. An analysis of moving averages for both experimental variants revealed that displacement trends for both types of orthosis were compatible from the mid-stance to the mid-swing phase. 1. The method employed in the experiment allows for determining the alignment between the axis of the knee joint and that of shin and thigh orthoses. 2. Migration of the single and double-axis orthoses during the gait cycle exceeded 3 cm. 3. During weight bearing, the double-axis orthosis was positioned more correctly. 4. The study results may be helpful in designing new hinge-type knee joints.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Daniel, B. R.; Zinn, B. T.
1979-01-01
The results of an experimental investigation that was concerned with the quantitative determination of the capabilities of combustion processes associated with coaxial injectors to amplify and sustain combustor oscillations was described. The driving provided by the combustion process was determined by employing the modified standing-wave method utilizing coaxial injectors and air-acetylene mixtures. Analyses of the measured data indicate that the investigated injectors are capable of initiating and amplifying combustion instabilities under favorable conditions of injector-combustion coupling and over certain frequency ranges. These frequency ranges and the frequency at which an injector's driving capacity is maximum are observed to depend upon the equivalence ratio, the pressure drop across the injector orifices and the number of injector elements. The characteristic combustion times of coaxial injectors were determined from steady state temperature measurements.
Consideration of wear rates at high velocity
NASA Astrophysics Data System (ADS)
Hale, Chad S.
The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models were used to determine the state of stress within the slipper and the pressure distribution along the bottom. Local submodel collisions between the slipper and a 6 mum radius hemispherical asperity were analyzed to determine mechanical and melt wear rates. A simplified damage criterion of maximum Mises stress was used to determine the damaged volume during the slipper and asperity collision. Overall, the model predicts a total wear volume that is approximately 36% of the total wear measured during the metallographic analysis.
An investigation of rugby scrimmaging posture and individual maximum pushing force.
Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen
2007-02-01
Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.
[Effect of training intensity on the fat oxidation rate].
Ulloa, David; Feriche, Belén; Barboza, Paola; Padial, Paulino
2014-01-01
Physical exercise is a key modulator of the maximum fat oxidation rate (MFO). However, the metabolic transition zones in the MFO-exercise relationship are not generally considered for training prescription. Objective. To examine the effects of training in different metabolic transition zones on the kinetics of MFO and its localization (Fatmax) in young physically active men. 97 men were divided into 4 similar sized groups, 3 experimental groups and a control group (CG). Subjects in each experimental group undertook an 8-week running program. Training was continuous at the intensity of the aerobic threshold or VT1 (CCVT1); or performed as intervals at the intensity of the anaerobic threshold or VT2 (ITVT2); or at maximum aerobic power VO2max (ITVO2max). Before and after the training intervention, expired gases were monitored in each subject to determine VO2max, VT1, VT2, MFO (by indirect calorimetry) and Fatmax. In response to training, experimental groups showed an increase in MFO (from 16,49 to 18,51%; p<0,01) and a mean reduction in Fatmax of 60,72±10,52 to 52,35±7,61 %VO2max (p<0,01). No changes of interest were observed in the control subjects. Intergroup comparisons revealed no differences in MFO and Fatmax among the experimental groups, though compared to the CG, a greater reduction in Fatmax was observed in CCVT1 (p<0,05). No changes were detected in performance except a drop in VO2max in the GC (p<0,05). 8 weeks of training led to an increase in MFO and reduction in Fatmax irrespective of training intensity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
NASA Astrophysics Data System (ADS)
Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.
2014-12-01
Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.
Faria-E-Silva, André L; Pfeifer, Carmem S
2017-10-01
1) to determine the moment during the redox polymerization reaction of dual cure cements at which to photo-activate the material in order to reduce the polymerization stress, and 2) to evaluate possible synergistic effects between adding chain transfer agents and delayed photo-activation. The two pastes of an experimental dual-cure material were mixed, and the polymerization kinetics of the redox phase was followed. The moment when the material reached its maximum rate of redox polymerization (MRRP) of cement was determined. The degree of conversion (DC) and maximum rates of polymerization (Rp max ) were assessed for materials where: the photoactivation immediately followed material mixing, at MRRP, 1min before and 1min after MRRP. Thio-urethane (TU) additives were synthesized and added to the cement (20% wt), which was then cured under the same conditions. The polymerization kinetics was evaluated for both cements photo-activated immediately or at MRRP, followed by measurements of polymerization stress, flexural strength (FS) and elastic modulus (EM). Knoop hardness was measured before and after ethanol storage. Photo-activating the cement at or after MRRP reduced the Rp max and the polymerization stress. Addition of TU promoted additional and more significant reduction, while not affecting the Rp max . Greater hardness loss was observed for cements with TU, but the final hardness was similar for all experimental conditions. Addition of TU slightly reduced the EM and did not affect the FS. Delayed photo-activation and addition of TU significantly reduce the polymerization stress of dual-cured cements. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Theobald, M. A.
1977-01-01
The outdoor propagation of spherically spreading sound waves of finite amplitude was investigated. The main purpose of the experiments was to determine the extent to which the outdoor environment, mainly random inhomogeneity of the medium, affects finite amplitude propagation. Periodic sources with fundamental frequencies in the range 6 to 8 kHz and source levels SPLlm from 140 to 149 dB were used. The sources were an array of 7 to 10 horn drivers and a siren. The propagation path was vertical and parallel to an 85 m tower, whose elevator carried the traveling microphone. The general conclusions drawn from the experimental results were as follows. The inhomogeneities caused significant fluctuations in the instantaneous acoustic signal, but with sufficient time averaging of the measured harmonic levels, the results were comparable to results expected for propagation in a quiet medium. Propagation data for the fundamental of the siren approached within 1 dB of the weak shock saturation levels. Extra attenuation on the order of 8 dB was observed. The measurements generally confirmed the predictions of several theoretical models. The maximum propagation distance was 36 m. The narrowbeam arrays were much weaker sources. Nonlinear propagation distortion was produced, but the maximum value of extra attenuation measured was 1.5 dB. The maximum propagation distance was 76 m. The behavior of the asymetric waveforms received in one experiment qualitatively suggested that beam type diffraction effects were present. The role of diffraction of high intensity sound waves in radiation from a single horn was briefly investigated.
Dynamics of nitrogen in subtropical wetland and its uptake and storage by Pistia stratiotes.
Irfan, Sufia; Shardendu
2009-11-01
The paper describes the dynamics of nitrogen in different components (water, soil and plants) of Kabar wetland situated in Begusarai district of Bihar. Contents of nitrogen in the natural components were determined and were compared with the rate of uptake and accumulation under the experimental conditions. Physico-chemical characteristics of natural water and of test basins were quite similar. The trend of seasonal variation of NO3(-)-N in water and total N in soil and P. stratiotes tissue was almost similar but content of nitrogen differed significantly in the different components. The accumulation of nitrogen in the tissues of P. stratiotes was 5 to 15 fold higher than the concentration of nitrogen in the water and 2 to 3 fold higher than the nitrogen content measured in the soil. Maximum accumulation of nitrogen in P. stratiotes was 15.25 mg g(-1) when the concentration of NO3(-)-N in water was 0.86 mg l(-1). Under experimental conditions six different nitrogen concentrations were supplied and determined the uptake and accumulation of nitrogen in P. stratiotes. Maximum uptake and accumulation was 82.87 g m(-2) at the end of 60 days after starting the experiment but still the rate of accumulation was in rising trend. In another part of experiment no nitrogen was left in the basins of low concentrations (0.5 and 5 mg N l(-1)) at the end of 60 days of experiment but at higher concentrations (50 and 65 mg N l(-1)) significant amount of N was left in the test basin. The biomass enhancement was parallel with nitrogen supply till 15 mg N l(-1). This was opposite to the relationship between the nitrogen accumulation in the tissues and nitrogen supply in the experimental basins. Though, potassium was added as an essential growth nutrient but its accumulation was 95g m(-2) at 5 mg l(-1).
Modeling internal ballistics of gas combustion guns.
Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias
2016-05-01
Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steudle, Gesine A.; Knauer, Sebastian; Herzog, Ulrike
2011-05-15
We present an experimental implementation of optimum measurements for quantum state discrimination. Optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon polarization states were performed. For the latter the states of rank 2 in a four-dimensional Hilbert space are prepared using both path and polarization encoding. Linear optics and single photons from a true single-photon source based on a semiconductor quantum dot are utilized.
Treatment of hazardous waste landfill leachate using Fenton oxidation process
NASA Astrophysics Data System (ADS)
Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei
2018-03-01
The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.
Liu, Benguo; Zeng, Jie; Chen, Chen; Liu, Yonglan; Ma, Hanjun; Mo, Haizhen; Liang, Guizhao
2016-03-01
Cyclodextrins (CDs) can be used to improve the solubility and stability of cinnamic acid derivatives (CAs). However, there was no detailed report about understanding the effects of the substituent groups in the benzene ring on the inclusion behavior between CAs and CDs in aqueous solution. Here, the interaction of β-CD with CAs, including caffeic acid, ferulic acid, and p-coumaric acid, in water was investigated by phase-solubility method, UV, fluorescence, and (1)H NMR spectroscopy, together with ONIOM (our Own N-layer Integrated Orbital molecular Mechanics)-based QM/MM (Quantum Mechanics/Molecular Mechanics) calculations. Experimental results demonstrated that CAs could form 1:1 stoichiometric inclusion complex with β-CD by non-covalent bonds, and that the maximum apparent stability constants were found in caffeic acid (176M(-1)) followed by p-coumaric acid (160M(-1)) and ferulic acid (133M(-1)). Moreover, our calculations reasonably illustrated the binding orientations of β-CD with CAs determined by experimental observations. Copyright © 2015. Published by Elsevier Ltd.
Wang, Quanfu; Hou, Yanhua; Yan, Peisheng
2012-06-01
Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes. © 2012 Institute of Food Technologists®
Grante, Ilze; Actins, Andris; Orola, Liana
2014-08-14
An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Schweikhhard, W. G.; Chen, Y. S.
1983-01-01
Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.
Specific heat and related thermophysical properties of liquid Fe-Cu-Mo alloy
NASA Astrophysics Data System (ADS)
Wang, Haipeng; Luo, Bingchi; Chang, Jian; Wei, Bingbo
2007-08-01
The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calorimeter over a wide temperature range from 1482 to 1818 K. A maximum undercooling of 221 K (0.13 T m) was achieved and the specific heat was determined as 44.71 J·mol-1·K-1. The excess specific heat, enthalpy change, entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results. It was found that the calculated results by traditional estimating methods can only describe the solidification process under low undercooling conditions. Only the experimental results can reflect the reality under high undercooling conditions. Meanwhile, the thermal diffusivity, thermal conductivity, and sound speed were derived from the present experimental results. Furthermore, the solidified microstructural morphology was examined, which consists of (Fe) and (Cu) phases. The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.
NASA Astrophysics Data System (ADS)
Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut
2018-05-01
Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.
Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.
Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.
2017-12-01
Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.
NASA Astrophysics Data System (ADS)
Chen, Linzhi; Lu, Xilin; Jiang, Huanjun; Zheng, Jianbo
2009-06-01
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests of ten column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.
A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials.
Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S; Kang, Dong-Joong; Park, Sungchan; Park, Seonghun
2013-01-01
A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6-47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.
Poole, P. L.; Obst, L.; Cochran, G. E.; ...
2018-01-11
Here we present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasma mirror) laser interaction (~2.65 J, 30 fs, I>1 x 10 21 W cm -2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nm indicate the influence ofmore » relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-in-cell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.« less
Complete temperature profiles in ultra-high-pressure liquid chromatography columns.
Gritti, Fabrice; Guiochon, Georges
2008-07-01
The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, P. L.; Obst, L.; Cochran, G. E.
Here we present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasma mirror) laser interaction (~2.65 J, 30 fs, I>1 x 10 21 W cm -2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nm indicate the influence ofmore » relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-in-cell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.« less
Cader, Samária Ali; de Souza Vale, Rodrigo Gomes; Zamora, Victor Emmanuel; Costa, Claudia Henrique; Dantas, Estélio Henrique Martin
2012-01-01
The purpose of this study was to evaluate the extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training (IMT) and identify predictors of successful weaning. Twenty-eight elderly intubated patients in an intensive care unit were randomly assigned to an experimental group (n = 14) that received conventional physiotherapy plus IMT with a Threshold IMT(®) device or to a control group (n = 14) that received only conventional physiotherapy. The experimental protocol for muscle training consisted of an initial load of 30% maximum inspiratory pressure, which was increased by 10% daily. The training was administered for 5 minutes, twice daily, 7 days a week, with supplemental oxygen from the beginning of weaning until extubation. Successful extubation was defined by the ventilation time measurement with noninvasive positive pressure. A vacuum manometer was used for measurement of maximum inspiratory pressure, and the patients' Tobin index values were measured using a ventilometer. The maximum inspiratory pressure increased significantly (by 7 cm H(2)O, 95% confidence interval [CI] 4-10), and the Tobin index decreased significantly (by 16 breaths/ min/L, 95% CI -26 to 6) in the experimental group compared with the control group. The Chi-squared distribution did not indicate a significant difference in weaning success between the groups (χ(2) = 1.47; P = 0.20). However, a comparison of noninvasive positive pressure time dependence indicated a significantly lower value for the experimental group (P = 0.0001; 95% CI 13.08-18.06). The receiver-operating characteristic curve showed an area beneath the curve of 0.877 ± 0.06 for the Tobin index and 0.845 ± 0.07 for maximum inspiratory pressure. The IMT intervention significantly increased maximum inspiratory pressure and significantly reduced the Tobin index; both measures are considered to be good extubation indices. IMT was associated with a reduction in noninvasive positive pressure time in the experimental group.
Assessing the MR compatibility of dental retainer wires at 7 Tesla.
Wezel, Joep; Kooij, Bert Jan; Webb, Andrew G
2014-10-01
To determine the MR compatibility of common dental retainer wires at 7 Tesla in terms of potential RF heating and magnetic susceptibility effects. Electromagnetic simulations and experimental results were compared for dental retainer wires placed in tissue-mimicking phantoms. Simulations were then performed for a human model with wire in place. Finally, image quality was assessed for different scanning protocols and wires. Simulations and experimental data in phantoms agreed well, with the length of the wire correlating to maximum heating in phantoms being approximately 47 mm. Even in this case, no substantial heating occurs when scanning within the specific absorption rate (SAR) guidelines for the head. Image distortions from the most ferromagnetic dental wire were not significant for any brain region. Dental retainer wires appear to be MR compatible at 7 Tesla. Copyright © 2013 Wiley Periodicals, Inc.
Evaluation of large girth LDPC codes for PMD compensation by turbo equalization.
Minkov, Lyubomir L; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Kueppers, Franko
2008-08-18
Large-girth quasi-cyclic LDPC codes have been experimentally evaluated for use in PMD compensation by turbo equalization for a 10 Gb/s NRZ optical transmission system, and observing one sample per bit. Net effective coding gain improvement for girth-10, rate 0.906 code of length 11936 over maximum a posteriori probability (MAP) detector for differential group delay of 125 ps is 6.25 dB at BER of 10(-6). Girth-10 LDPC code of rate 0.8 outperforms the girth-10 code of rate 0.906 by 2.75 dB, and provides the net effective coding gain improvement of 9 dB at the same BER. It is experimentally determined that girth-10 LDPC codes of length around 15000 approach channel capacity limit within 1.25 dB.
A mathematical model for ethanol fermentation from oil palm trunk sap using Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Sultana, S.; Jamil, Norazaliza Mohd; Saleh, E. A. M.; Yousuf, A.; Faizal, Che Ku M.
2017-09-01
This paper presents a mathematical model and solution strategy of ethanol fermentation for oil palm trunk (OPT) sap by considering the effect of substrate limitation, substrate inhibition product inhibition and cell death. To investigate the effect of cell death rate on the fermentation process we extended and improved the current mathematical model. The kinetic parameters of the model were determined by nonlinear regression using maximum likelihood function. The temporal profiles of sugar, cell and ethanol concentrations were modelled by a set of ordinary differential equations, which were solved numerically by the 4th order Runge-Kutta method. The model was validated by the experimental data and the agreement between the model and experimental results demonstrates that the model is reasonable for prediction of the dynamic behaviour of the fermentation process.
Dynamic modelling and experimental study of asymmetric optothermal microactuator
NASA Astrophysics Data System (ADS)
Wang, Shuying; Chun, Qin; You, Qingyang; Wang, Yingda; Zhang, Haijun
2017-01-01
This paper reports the dynamic modelling and experimental study of an asymmetric optothermal microactuator (OTMA). According to the principle of thermal flux, a theoretical model for instantaneous temperature distribution of an expansion arm is established and the expression of expansion increment is derived. Dynamic expansion properties of the arm under laser pulse irradiation are theoretically analyzed indicating that both of the maximum expansion and expansion amplitude decrease with the pulse frequency increasing. Experiments have been further carried out on an OTMA fabricated by using an excimer laser micromachining system. It is shown that the OTMA deflects periodically with the same frequency of laser pulse irradiation. Experimental results also prove that both OTMA's maximum deflection and deflection amplitude (related to maximum expansion and expansion amplitude of the arm) decrease as frequency increases, matching with the theoretical model quite well. Even though the OTMA's deflection decrease at higher frequency, it is still capable of generating 8.2 μm maximum deflection and 4.2 μm deflection amplitude under 17 Hz/2 mW laser pulse irradiation. This work improves the potential applications of optothermal microactuators in micro-opto-electro-mechanical system (MOEMS) and micro/nano-technology fields.
The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials
NASA Astrophysics Data System (ADS)
Aliha, Mohammad Reza Mohammad; Mahdavi, Eqlima; Ayatollahi, Majid Reza
2017-03-01
Up to now, several methods have been proposed to determine the mode I fracture toughness of rocks. In this research, different cylindrical and disc shape samples, namely: chevron bend (CB), short rod (SR), cracked chevron notched Brazilian disc (CCNBD), and semi-circular bend (SCB) specimens were considered for investigating mode I fracture behavior of a marble rock. It is shown experimentally that the fracture toughness values of the tested rock material obtained from different test specimens are not consistent. Indeed, depending on the geometry and loading type of the specimen, noticeable discrepancies can be observed for the fracture toughness of a same rock material. The difference between the experimental mode I fracture resistance results is related to the magnitude and sign of T-stress that is dependent on the geometry and loading configuration of the specimen. For the chevron-notched samples, the critical value of T-stress corresponding to the critical crack length was determined using the finite element method. The CCNBD and SR specimens had the most negative and positive T-stress values, respectively. The dependency of mode I fracture resistance to the T-stress was shown using the extended maximum tangential strain (EMTSN) criterion and the obtained experimental rock fracture toughness data were predicted successfully with this criterion.
Lim, Ho-Nam; Kim, Seong-Hwan; Yu, Bin; Lee, Yong-Keun
2009-01-01
The purpose of this study was to determine the influence of incrementally added uncured HEMA in experimental HEMA-added glass ionomer cement (HAGICs) on the mechanical and shear bond strength (SBS) of these materials. Increasing contents of uncured HEMA (10-50 wt.%) were added to a commercial glass ionomer cement liquid (Fuji II, GC, Japan), and the compressive and diametral tensile strengths of the resulting HAGICs were measured. The SBS to non-precious alloy, precious alloy, enamel and dentin was also determined after these surfaces were subjected to either airborne-particle abrasion (Aa) or SiC abrasive paper grinding (Sp). Both strength properties of the HAGICs first increased and then decreased as the HEMA content increased, with a maximum value obtained when the HEMA content was 20% for the compressive strength and 40% for the tensile strength. The SBS was influenced by the HEMA content, the surface treatment, and the type of bonding surface (p<0.05). These results suggest that addition of an appropriate amount of HEMA to glass ionomer cement would increase diametral tensile strength as well as bond strength to alloys and teeth. These results also confirm that the optimal HEMA content ranged from 20 to 40% within the limitations of this experimental condition. PMID:19668995
NASA Astrophysics Data System (ADS)
Güth, Dirk; Erbis, Vadim; Schamoni, Markus; Maas, Jürgen
2014-04-01
High rotational speeds for brakes and clutches based on magnetorheological fluids represent a remaining challenge for the industrial or automotive application. Beside particle centrifugation effects and rotational speed-depending no-load losses, the torque characteristic is an important property that needs to considered in the design process of actuators. Due to missing experimental data for these operating conditions, in this paper the shear rate and flux depending yield stress behavior of magnetorheological uids is experimentally investigated for high rotational speeds or respectively high shear rates. Therefore a brake actuator with variable shear gap heights up to 4 mm is designed, realized and used for the experimental investigation, which are performed for a maximum shear rate of ƴ= 34; 000 s-1 under large magnetic elds. The measurement results point out a strong dependency between shear rate, magnetic ux density and resulting yield stress. For low shear gap heights, a significant reduction in the yield stress up to 10 % can be determined. Additionally the development of Taylor vortices is determined, which will not only occur in viscous case without an applied magnetic field. The measurement results are important for a reliable actuator design which should be used in application with high rotational speeds.
Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Omidi, Nazanin
In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.
NASA Astrophysics Data System (ADS)
Choi, S.; Jung, H.
2017-12-01
Various seismic anisotropy has been observed in the world, especially along subduction zones, and a part of the seismic anisotropy can be caused by the subducting slab, which is poorly understood. One of the main rocks at the top of the subducting slab in cold subduction zones is lawsonite blueschist, which has been rarely studied experimentally. Since lawsonite blueschist is composed of elastically anisotropic minerals such as glaucophane and lawsonite, development of the lattice preferred orientation (LPO) of these minerals can cause a large seismic anisotropy. Therefore, to understand deformation microstructures (i.e., LPOs) of lawsonite and glaucophane and the resultant seismic anisotropy, we conducted deformation experiments of lawsonite blueschist in simple shear using a modified Griggs apparatus. The experiments were performed under the pressures (P = 1 - 2 GPa), temperatures (T = 230 - 400 °), shear strain (γ = 1 - 4), and shear strain rates (10-6 - 10-4 s-1). LPOs of minerals were determined by SEM/EBSD technique. LPO of glaucophane after experiments at the shear strain (1 < γ ≤ 4.0) showed that the maxima of (110) poles and [100] axes were aligned subnormal to the shear plane and the maximum of [001] axes subparallel to the shear direction. LPO of lawsonite showed that at low strain (γ ≤ 1.4) the maximum of [010] axes were aligned sub-parallel to the shear direction, but at high strain (γ ≥ 2.1) the maximum of [100] axes were aligned sub-parallel to the direction with the [001] axes aligned subnormal to the shear plane. Using the LPO data, seismic properties of each minerals were calculated. Glaucophane showed a high P-wave anisotropy (7.7 - 16.9 %) and relatively low maximum S-wave anisotropy (4.4 - 9.2 %). In contrast, lawsonite showed much higher maximum S-wave anisotropy (8.3 - 20.7 %) than glaucophane, but showed a low P-wave anisotropy in the range of 4.7 - 10.3 %. Our results indicate that seismic anisotropy observed at the top of cold subducting slabs and at the slab-mantle interfaces can be attributed to the LPOs of lawsonite & glaucophane in the deformed blueschist facies rocks.
NASA Astrophysics Data System (ADS)
Chee Siang, GO
2017-07-01
Experimental test was carried out to determine the coefficient of thermal expansion (CTE) value of 20MPa mass concrete using granite aggregate. The CTE value was established using procedure proposed by Kada et al. 2002 in determining the magnitude of early-ages CTE through laboratory test which is a rather accurate way by eliminating any possible superimposed effect of others early-age thermal deformation shrinkages such as autogenous, carbonation, plastic and drying shrinkage. This was done by submitting granite concrete block samples instrumented with ST4 vibrating wire extensometers to thermal shocks. The response of the concrete samples to this shock results in a nearly instantaneous deformation, which are measured by the sensor. These deformations, as well as the temperature signal, are used to calculate the CTE. By repeating heat cycles, the variation in the early-ages of concrete CTE over time was monitored and assessed for a period of upto 7 days. The developed CTE value facilitating the verification and validation of actual maximum permissible critical temperature differential limit (rather than arbitrarily follow published value) of cracking potential. For thick sections, internal restraint is dominant and this is governed by differentials mainly. Of the required physical properties for thermal modelling, CTE is of paramount importance that with given appropriate internal restraint factor the condition of cracking due to internal restraint is governs by equation, ΔTmax= 3.663ɛctu / αc. Thus, it can be appreciated that an increase in CTE will lower the maximum allowable differential for cracking avoidance in mass concrete while an increase of tensile strain capacity will increase the maximum allowable temperature differential.
Analysis of mixed-mode crack propagation using the boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.; Ghosn, L. J.
1986-01-01
Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.
Adsorption of bacteriophages on clay minerals
Chattopadhyay, Sandip; Puls, Robert W.
1999-01-01
The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.
Yuan, Li-Li; Li, Ya-Qian; Wang, Yi; Zhang, Xue-Hong; Xu, Yu-Quan
2008-03-01
The optimal flask-shaking batch fermentation medium for phenazine-1-carboxylic acid (PCA) production by Pseudomonas sp. M-18Q, a qscR chromosomal inactivated mutant of the strain M18 was studied using statistical experimental design and analysis. The Plackett-Burman design (PBD) was used to evaluate the effects of eight medium components on the production of PCA, which showed that glucose and soytone were the most significant ingredients (P<0.05). The steepest ascent experiment was adopted to determine the optimal region of the medium composition. The optimum composition of the fermentation medium for maximum PCA yield, as determined on the basis of a five-level two-factor central composite design (CCD), was obtained by response surface methodology (RSM). The high correlation between the predicted and observed values indicated the validity of the model. A maximum PCA yield of 1240 mg/l was obtained at 17.81 g/l glucose and 11.47 g/l soytone, and the production was increased by 65.3% compared with that using the original medium, which was at 750 mg/l.
Hou, Zhiguang; Wang, Xiumei; Zhao, Xiaofeng; Wang, Xinhong; Yuan, Xing; Lu, Zhongbin
2016-07-01
The maximum residue limit (MRL) for fungicide azoxystrobin in ginseng has not yet been established in China. This is partially due to the lack of its dissipation and residue data at China's main ginseng production areas. In this work, the dissipation rates and residue levels of azoxystrobin in ginseng roots, plant parts (stems and leaves), and soil in Beijing and Jilin Province, China were determined using gas chromatograph-mass spectrometry (GC-MS). The mean half-life of azoxystrobin in ginseng plant parts was 1.6 days with a dissipation rate of 90 % over 21 days. The mean half-life in soil was 2.8 days with a dissipation rate of 90 % over 30 days. Dissipation rates from two geographically separated experimental fields differed, suggesting that these were affected by local soil characteristics and climate. Maximum final residues of azoxystrobin in ginseng roots, plant parts, and soil were determined to be 0.343, 9.40, and 0.726 mg kg(-1), respectively. Our results, particularly the high residues of azoxystrobin observed in ginseng plant parts, provide a quantitative basis for revising the application of this pesticide to ginseng.
Duarte, Felipe Coutinho Kullmann; Kolberg, Carolina; Barros, Rodrigo R; Silva, Vivian G A; Gehlen, Günter; Vassoler, Jakson M; Partata, Wania A
2014-05-01
This study was designed to assess the peak force of a manually operated chiropractic adjusting instrument, the Activator Adjusting Instrument 4 (AAI 4), with an adapter for use in animals, which has a 3- to 4-fold smaller contact surface area than the original rubber tip. Peak force was determined by thrusting the AAI 4 with the adapter or the original rubber tip onto a load cell. First, the AAI 4 was applied perpendicularly by a doctor of chiropractic onto the load cell. Then, the AAI 4 was fixed in a rigid framework and applied to the load cell. This procedure was done to prevent any load on the load cell before the thrust impulse. In 2 situations, trials were performed with the AAI 4 at all force settings (settings I, II, III, and IV, minimum to maximum, respectively). A total of 50000 samples per second over a period of 3 seconds were collected. In 2 experimental protocols, the use of the adapter in the AAI 4 increased the peak force only with setting I. The new value was around 80% of the maximum value found for the AAI 4. Nevertheless, the peak force values of the AAI 4 with the adapter and with the original rubber tip in setting IV were similar. The adapter effectively determines the maximum peak force value at force setting I of AAI 4. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes
2015-11-19
The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.
Increases in maximum stream temperatures after slash burning in a small experimental watershed.
Al Levno; Jack Rothacher
1969-01-01
The first year after slash was burned on a 237-acre clearcut watershed in the Cascade Range of Oregon, average maximum water temperatures increased 13°, 14°, and 12°F, during June, July, and August. A maximum stream temperature of 75°F. persisted for 3 hours on a day in July.
Joining by plating: optimization of occluded angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dini, J.W.; Johnson, H.R.; Kan, Y.R.
1978-11-01
An empirical method has been developed for predicting the minimum angle required for maximum joint strength for materials joined by plating. This is done through a proposed power law failure function, whose coefficients are taken from ring shear and conical head tensile data for plating/substrate combinations and whose exponent is determined from one set of plated-joint data. Experimental results are presented for Al-Ni-Al (7075-T6) and AM363-Ni-AM363 joints, and the failure function is used to predict joint strengths for Al-Ni-Al (2024-T6), UTi-Ni-UTi, and Be-Ti-Be.
Fourier transform spectroscopy of the nu3 band of the N3 radical
NASA Technical Reports Server (NTRS)
Brazier, C. R.; Bernath, P. F.; Burkholder, James B.; Howard, Carleton J.
1988-01-01
The nu3 transitions of N3 radicals produced by HN3-Cl reactions in a multipass cell (effective path length 100 m) are investigated experimentally using a Fourier-transform spectrometer with maximum resolution 0.004/cm. A total of 176 rotation-vibration lines are listed in a table and used, in combination with published data on 240 optical lines (Douglas and Jones, 1965), to determine the nu3 molecular constants. The lower-than-expected value of the nu3 fundamental frequency (1644.6784/cm) is attributed to the vibronic interaction discussed by Kawaguchi et al. (1981).
NASA Technical Reports Server (NTRS)
Hess, Robert V; Gardner, Clifford S
1947-01-01
By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.
Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.
2007-01-01
Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.
Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.
2006-01-01
Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.
Cheng, Lan; Gauss, Jürgen; Ruscic, Branko; ...
2017-01-12
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015, 11, 2036) are reported in this paper. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of themore » latter discrepancies, the analysis used to determine the experimental dissociation energies for VH and CrH is revisited. It is shown that, if improved values are used for the heterolytic C–H dissociation energies of di- and trimethylamine involved in the experimental determination, the experimental values for the dissociation energies of VH and CrH are increased by 18 kJ/mol, such that D 0(VH) = 223 ± 7 kJ/mol and D 0(CrH) = 204 ± 7 kJ/mol (or D e(VH) = 233 ± 7 kJ/mol and D e(CrH) = 214 ± 7 kJ/mol). Finally, the new experimental values agree quite well with the calculated values, showing the consistency of the computation and the measured reaction thresholds.« less
Murdande, Sharad B; Pikal, Michael J; Shanker, Ravi M; Bogner, Robin H
2010-12-01
To quantitatively assess the solubility advantage of amorphous forms of nine insoluble drugs with a wide range of physico-chemical properties utilizing a previously reported thermodynamic approach. Thermal properties of amorphous and crystalline forms of drugs were measured using modulated differential calorimetry. Equilibrium moisture sorption uptake by amorphous drugs was measured by a gravimetric moisture sorption analyzer, and ionization constants were determined from the pH-solubility profiles. Solubilities of crystalline and amorphous forms of drugs were measured in de-ionized water at 25°C. Polarized microscopy was used to provide qualitative information about the crystallization of amorphous drug in solution during solubility measurement. For three out the nine compounds, the estimated solubility based on thermodynamic considerations was within two-fold of the experimental measurement. For one compound, estimated solubility enhancement was lower than experimental value, likely due to extensive ionization in solution and hence its sensitivity to error in pKa measurement. For the remaining five compounds, estimated solubility was about 4- to 53-fold higher than experimental results. In all cases where the theoretical solubility estimates were significantly higher, it was observed that the amorphous drug crystallized rapidly during the experimental determination of solubility, thus preventing an accurate experimental assessment of solubility advantage. It has been demonstrated that the theoretical approach does provide an accurate estimate of the maximum solubility enhancement by an amorphous drug relative to its crystalline form for structurally diverse insoluble drugs when recrystallization during dissolution is minimal.
Relationship between input power and power density of SMA spring
NASA Astrophysics Data System (ADS)
Park, Cheol Hoon; Ham, Sang Yong; Son, Young Su
2016-04-01
The important required characteristics of an artificial muscle for a human arm-like manipulator are high strain and high power density. From this viewpoint, an SMA (shape memory alloy) spring is a good candidate for the actuator of a robotic manipulator that utilizes an artificial muscle. In this study, the maximum power density of an SMA spring was evaluated with respect to the input power. The spring samples were fabricated from SMA wires of different diameters ranging between 0.1 and 0.3 mm. For each diameter, two types of wires with different transition temperatures were used. The relationship between the transition temperature and maximum power density was also evaluated. Each SMA spring was stretched downward by an attached weight and the temperature was increased through the application of an electric current. The displacement, velocity, and temperature of the SMA spring were measured by laser displacement sensors and a thermocouple. Based on the experimental data, it was determined that the maximum power densities of the different SMA springs ranged between 1,300 and 5,500 W/kg. This confirmed the applicability of an SMA spring to human arm-like robotic manipulators. The results of this study can be used as reference for design.
1073 K (800 °C) Isothermal Section of the Co-Al-V System
NASA Astrophysics Data System (ADS)
Liao, Guangjing; Yin, Fucheng; Liu, Ye; Zhao, Manxiu
2017-08-01
The isothermal section of the Co-Al-V ternary system at 1073 K (800 °C) has been determined by means of X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Thirteen three-phase regions have been confirmed experimentally. A new ternary compound named `T' phase (Al2CoV) is found in this study which possesses a face-centered cubic (fcc) structure with a lattice parameter of 11.7224 Å. The T phase can be in equilibrium with Al3V, Al8V5, α-V, Al5Co2, and AlCo. The maximum solubility of Al in Co3V, σ-CoV, and CoV3 is 5.6, 6.3, and 4 at. pct, respectively. The maximum solubility of Co in Al3V, Al8V5, and α-V is 1.1, 2.5, and 24.9 at. pct, respectively. The maximum solubility of V in Al9Co2, Al13Co4, Al3Co, Al5Co2, AlCo, and α-Co is 0.3, 0.2, 0.1, 2.1, 35.0, and 16.4 at. pct, respectively.
Miyamoto, Ikuya; Yoshida, Kazuya; Bessho, Kazuhisa
2009-04-01
A shortened dental arch without posterior occlusal support has been thought to maintain sufficient oral function. The mechanism of occlusal adaptation with a shortened dental arch is unclear. For a better understanding of the effects of molar teeth on brain function, the authors combined experimentally-shortened dental arches and a neuro-imaging technique. Regional cerebral blood volume was measured using near-infrared optical topography during maximum voluntary clenching tasks from 10 subjects on individually fabricated oral appliances, which can create experimentally complete and shortened dental arches. Results suggested that clenching on the complete dental arch showed a significantly higher brain blood volume than that on the shortened dental arch. Moreover, there were no differences between the two splints in the latency to the maximum oxyhemoglobin concentration. These findings suggest that occlusal status is closely related to brain blood flow and lack of occlusal molar support rapidly reduces cerebral blood volume in the maximum voluntary clenching condition.
Determination of detonation parameters for liquid High Explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2011-06-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.
Determination of detonation parameters for liquid high explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2012-03-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted by means of laser interferometer VISAR. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. The parameters of Von Neumann spike were determined for these HE. The different methods for C-J point determination were used for each HE. For FEFO reaction time t was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ≈ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ≈ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump.
[Assessment of local and systemic inflammatory parameters of peripheral burn in an animal model].
Torres, Wilmary; Mendoza, Liseth; Vicci, Hember; Eblen-Zajjur, Antonio; Navarro, María
2016-01-01
To evaluate the edema volume and leukocyte, platelet, and fibrinogen count of peripheral burn in an animal model. The back left leg of Rattus norvegicus (experimental group) was placed in water at 60 °C for 60 seconds or at room temperature (control group). An analysis was carried out before and after the induced burn (at 4, 8, 12, and 24 h). The edema volume was determined by an orthogonal photo, the leukocyte and platelet counts were determined using automated equipment, and the fibrinogen count was determined using the gravimetric method. The maximum value of the edema was recorded at 4 h and leukocytes at 24 h. The platelet count did not vary at different post-edema time intervals. The fibrinogen level increased at 4 h and 24 h. In this animal model we induced systemic inflammation characterized by leukocytosis and elevated fibrinogen levels, combined with edema located at the induction area.
Haslam, S Alexander; Reicher, Stephen D; Millard, Kathryn
2015-01-01
Attempts to revisit Milgram's 'Obedience to Authority' (OtA) paradigm present serious ethical challenges. In recent years new paradigms have been developed to circumvent these challenges but none involve using Milgram's own procedures and asking naïve participants to deliver the maximum level of shock. This was achieved in the present research by using Immersive Digital Realism (IDR) to revisit the OtA paradigm. IDR is a dramatic method that involves a director collaborating with professional actors to develop characters, the strategic withholding of contextual information, and immersion in a real-world environment. 14 actors took part in an IDR study in which they were assigned to conditions that restaged Milgrams's New Baseline ('Coronary') condition and four other variants. Post-experimental interviews also assessed participants' identification with Experimenter and Learner. Participants' behaviour closely resembled that observed in Milgram's original research. In particular, this was evidenced by (a) all being willing to administer shocks greater than 150 volts, (b) near-universal refusal to continue after being told by the Experimenter that "you have no other choice, you must continue" (Milgram's fourth prod and the one most resembling an order), and (c) a strong correlation between the maximum level of shock that participants administered and the mean maximum shock delivered in the corresponding variant in Milgram's own research. Consistent with an engaged follower account, relative identification with the Experimenter (vs. the Learner) was also a good predictor of the maximum shock that participants administered.
NASA Astrophysics Data System (ADS)
Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.
2011-04-01
This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.
NASA Astrophysics Data System (ADS)
Duman, M. S.; Kaplan, E.; Cuvalcı, O.
2018-01-01
The present paper is based on experimental studies and numerical simulations on the surface fatigue failure of the PTFE-bronze layered journal bearings under real-time loading. ‘Permaglide Plain Bearings P10’ type journal bearings were experimentally tested under different real time dynamic loadings by using real time journal bearing test system in our laboratory. The journal bearing consists of a PTFE-bronze layer approximately 0.32 mm thick on the steel support layer with 2.18 mm thick. Two different approaches have been considered with in experiments: (i) under real- time constant loading with varying bearing widths, (ii) under different real-time loadings at constant bearing widths. Fatigue regions, micro-crack dispersion and stress distributions occurred at the journal bearing were experimentally and theoretically investigated. The relation between fatigue region and pressure distributions were investigated by determining the circumferential pressure distribution under real-time dynamic loadings for the position of every 10° crank angles. In the theoretical part; stress and deformation distributions at the surface of the journal bearing analysed by using finite element methods to determine the relationship between stress and fatigue behaviour. As a result of this study, the maximum oil pressure and fatigue cracks were observed in the most heavily loaded regions of the bearing surface. Experimental results show that PTFE-Bronze layered journal bearings fatigue behaviour is better than the bearings include white metal alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickens, J.K.
1988-04-01
This document provides a discussion of the development of the FORTRAN Monte Carlo program SCINFUL (for scintillator full response), a program designed to provide a calculated full response anticipated for either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator. The program may also be used to compute angle-integrated spectra of charged particles (p, d, t, /sup 3/He, and ..cap alpha..) following neutron interactions with /sup 12/C. Extensive comparisons with a variety of experimental data are given. There is generally overall good agreement (<10% differences) of results from SCINFUL calculations with measured detector responses, i.e., N(E/sub r/) vs E/sub r/more » where E/sub r/ is the response pulse height, reproduce measured detector responses with an accuracy which, at least partly, depends upon how well the experimental configuration is known. For E/sub n/ < 16 MeV and for E/sub r/ > 15% of the maximum pulse height response, calculated spectra are within +-5% of experiment on the average. For E/sub n/ up to 50 MeV similar good agreement is obtained with experiment for E/sub r/ > 30% of maximum response. For E/sub n/ up to 75 MeV the calculated shape of the response agrees with measurements, but the calculations underpredicts the measured response by up to 30%. 65 refs., 64 figs., 3 tabs.« less
[Ultrasound physiotherapy treatment of prostatitis].
Talberg, P I; Andryukhin, M I; Mazina, S E; Nikolaev, A L
2016-12-01
Develop a method of treatment of prostatitis based on the use of a standard antibiotic, immunomodulatory therapy, and transrectal ultrasound physiotherapy. The dynamics of the accumulation of the antibiotic was investigated in male rats. Sonication was performed immediately before the administration of the antibiotic and its accumulation in the process at 10, 20, 40, 60, 80, 100 min after dosing. The clinical study included 138 patients with chronic prostatitis. Patients of the experimental group, in addition to standard therapy, 10 sessions of transrectal ultrasound physical therapy was performed. The efficacy of treatment was assessed after 14 and 28 days after initiation. and its discussion. Experiments on laboratory animals have shown that the highest concentration and the residence time of antibiotic in the prostate tissue is noted ultrasonic treatment in the period of maximum blood concentration of the test drug. The data obtained allow to determine that the ultrasonic treatment must be performed considering the pharmacokinetics of the antibiotic. In conducting clinical trials on day 14 of treatment and clinical manifestations of prostatitis bacterial microflora in prostatic secretions were no patients in both groups. In 15% of patients of the experimental group the number of leukocytes decreased to the normal range. After 28 days the amount of leukocytes was normal in 51% of patients in the control and 85% in the experimental group. In animal experiments defined the optimal time interval separating the moment of injection of the antibiotic from the beginning of sonication. Clinical studies have shown that the transrectal ultrasound exposure during the period of maximum concentration of the antibiotic in the blood, improves patient outcomes by 33.8%.
Valenti, Davide; Denaro, Giovanni; Spagnolo, Bernardo; Conversano, Fabio; Brunet, Christophe
2015-01-01
During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons) of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species. PMID:25629963
Experimental investigation of the Peregrine Breather of gravity waves on finite water depth
NASA Astrophysics Data System (ADS)
Dong, G.; Liao, B.; Ma, Y.; Perlin, M.
2018-06-01
A series of laboratory experiments were performed to study the Peregrine Breather (PB) evolution in a wave flume of finite depth and deep water. Experimental cases were selected with water depths k0h (k0 is the wave number and h is the water depth) varying from 3.11 to 8.17 and initial steepness k0a0 (a0 is the background wave amplitude) in the range 0.06 to 0.12, and the corresponding initial Ursell number in the range 0.03 to 0.061. Experimental results indicate that the water depth plays an important role in the formation of the extreme waves in finite depth; the maximum wave amplification of the PB packets is also strongly dependent on the initial Ursell number. For experimental cases with the initial Ursell number larger than 0.05, the maximum crest amplification can exceed three. If the initial Ursell number is nearly 0.05, a shorter propagation distance is needed for maximum amplification of the height in deeper water. A time-frequency analysis using the wavelet transform reveals that the energy of the higher harmonics is almost in-phase with the carrier wave. The contribution of the higher harmonics to the extreme wave is significant for the cases with initial Ursell number larger than 0.05 in water depth k0h < 5.0. Additionally, the experimental results are compared with computations based on both the nonlinear Schrödinger (NLS) equation and the Dysthe equation, both with a dissipation term. It is found that both models with a dissipation term can predict the maximum amplitude amplification of the primary waves. However, the Dysthe equation also can predict the group horizontal asymmetry.
Preparation of SS316L MIM feedstock with biopolymer as a binder
NASA Astrophysics Data System (ADS)
Abdullah, A. A.; Norita, H.; Azlina, H. N.; Sulong, A. B.; Mas'ood, N. N.
2018-01-01
This paper focus on feedstock preparation for SS316L metal injection molding (MIM) part. The primary step of feedstock preparation, critical powder loading determined by two method; maximum filled volume calculation model and torque analysis. The critical powder loading determined by calculation was 70 vol% to 77 vol% while for experimental approaches shows the value of 75 vol%. The feedstock was prepared by mixing SS316L powder and polymer binder with ratio 70:30 at 175 °C with speed of 50 rpm. The feedstock was analyzed by thermogravimetric analysis (TGA) and Scanning electron microscope (SEM). The composition for the feedstock after preparation step was confirmed by TGA. It was found that the prepared feedstock component was compatible to each other and composition is maintain along the mixing step.
Bohlen, S.R.; Eckert, J.O.; Hankins, W.B.
1995-01-01
The phase relationships of melting of synthetic granite in the presence of an H2O-CO2 fluid were determined. These results provide constraints on the maximum temperatures of regional metamorphism attainable in vapor-saturated metapelitic and quartzofeldspathic rocks that escaped widespread melting. At pressures below 10 kbar, a fluid phase of XH2O = 0.75, 0.5, and 0.25 limits temperatures to below ~700-725, ~800-825, and ~850-875??C, respectively. As a consequence, the formation of granulite does not require CO2 concentrations in a coexisting fluid to exceed an XCO2 of 0.25-0.5. -from Authors
Bäumer, F; Henrich, H A; Ussmüller, J
1986-02-01
The present experiments try to answer the question as to the time-dependent extent of the after-burning process after full-thickness burn (third degree). For an early plastic surgical treatment it was of interest to determine the most early time of escharotomy. The time-dependent spreading of the after-burning area reached its maximum five days after the burn injury. The after-burning area was marked by intravenous injections of Patentblau which caused distinct intravital colouring. Subsequently no further progress could be observed. In the present experiments we suggest this time as the earliest time for plastic covering in case it would be dependent upon the end of the after-burning process.
Energy determination in industrial X-ray processing facilities
NASA Astrophysics Data System (ADS)
Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.
2005-12-01
In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2010 CFR
2010-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your remediation...
Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4
NASA Technical Reports Server (NTRS)
Rice, Tharen
2002-01-01
Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.
Thermophysical properties of multi-shock compressed dense argon.
Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J
2014-02-21
In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.
Thermophysical properties of multi-shock compressed dense argon
NASA Astrophysics Data System (ADS)
Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.
2014-02-01
In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.
Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catchpole, O.J.; Kamp, J.C. von; Grey, J.B.
1997-10-01
Continuous extraction of squalene from shark liver oil using supercritical carbon dioxide was carried out in both laboratory and pilot scale plant. The shark liver oil contained around 50% by weight squalene, which was recovered as the main extract stream. The other major components in the oil were triglycerides, which were recovered as raffinate, and pristane, which was recovered as a second extract stream. Separation performance was determined as a function of temperature; pressure; oil to carbon dioxide flow rate ratio, packed height and type of packing; and reflux ratio. The pressure, temperature, and feed oil concentration of squalene determinedmore » the maximum loading of oil in carbon dioxide. The oil to carbon dioxide ratio determined the squalene concentration in both the product stream and raffinate stream. The ratio of oil flow rate to the flow rate of squalene required to just saturate carbon dioxide was found to be a useful correlating parameter for the oil loadings and product compositions. Of the three packings investigated, wire wool gave the best separation efficiency and Raschig rings the worst efficiency. Mass transfer correlations from the literature were used to estimate the number of transfer units (NTU) from experimental data and literature correlations. NTU`s from the experimental data were comparable to predictions at a pilot scale but were underpredicted at the laboratory scale. The use of reflux at the pilot scale enabled the concentration of squalene in the product stream to be increased from 92% by mass to a maximum of 99% by mass at fractionation conditions of 250 bar and 333 K.« less
Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers.
Vyas, N; Dehghani, H; Sammons, R L; Wang, Q X; Leppinen, D M; Walmsley, A D
2017-11-01
Cavitation is a potentially effective and less damaging method of removing biofilm from biomaterial surfaces. The aim of this study is to characterise individual microbubbles around ultrasonic scaler tips using high speed imaging and image processing. This information will provide improved understanding on the disruption of dental biofilm and give insights into how the instruments can be optimised for ultrasonic cleaning. Individual cavitation microbubbles around ultrasonic scalers were analysed using high speed recordings up to a million frames per second with image processing of the bubble movement. The radius and rate of bubble growth together with the collapse was calculated by tracking multiple points on bubbles over time. The tracking method to determine bubble speed demonstrated good inter-rater reliability (intra class correlation coefficient: 0.993) and can therefore be a useful method to apply in future studies. The bubble speed increased over its oscillation cycle and a maximum of 27ms -1 was recorded during the collapse phase. The maximum bubble radii ranged from 40 to 80μm. Bubble growth was observed when the ultrasonic scaler tip receded from an area and similarly bubble collapse was observed when the tip moved towards an area, corresponding to locations of low pressure around the scaler tip. Previous work shows that this cavitation is involved in biofilm removal. Future experimental work can be based on these findings by using the protocols developed to experimentally analyse cavitation around various clinical instruments and comparing with theoretical calculations. This will help to determine the main cleaning mechanisms of cavitation and how clinical instruments such as ultrasonic scalers can be optimised. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
7 CFR 3570.66 - Determining the maximum grant assistance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maximum grant assistance. (a) Responsibility. State Directors are responsible for determining the....63(b); (2) Minimum amount sufficient to provide for economic feasibility as determined in accordance...
Fancher, C. M.; Brewer, S.; Chung, C. C.; ...
2016-12-27
Here, the contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectricmore » permittivity of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less
Amin, A S
2001-03-01
A fairly sensitive, simple and rapid spectrophotometric method for the determination of some beta-lactam antibiotics, namely ampicillin (Amp), amoxycillin (Amox), 6-aminopenicillanic acid (6APA), cloxacillin (Clox), dicloxacillin (Diclox) and flucloxacillin sodium (Fluclox) in bulk samples and in pharmaceutical dosage forms is described. The proposed method involves the use of pyrocatechol violet as a chromogenic reagent. These drugs produce a reddish brown coloured ion pair with absorption maximum at 604, 641, 645, 604, 649 and 641 nm for Amp, Amox, 6APA, Clox, Diclox and Flucolx, respectively. The colours produced obey Beer's law and are suitable for the quantitative determination of the named compounds. The optimization of different experimental conditions is described. The molar ratio of the ion pairs was established and a proposal for the reaction pathway is given. The procedure described was applied successfully to determine the examined drugs in dosage forms and the results obtained were comparable to those obtained with the official methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fancher, C. M.; Brewer, S.; Chung, C. C.
2017-03-01
The contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectric permittivitymore » of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less
Lee, Sheila; McMullen, D.; Brown, G. L.; Stokes, A. R.
1965-01-01
1. A theoretical analysis of the errors in multicomponent spectrophotometric analysis of nucleoside mixtures, by a least-squares procedure, has been made to obtain an expression for the error coefficient, relating the error in calculated concentration to the error in extinction measurements. 2. The error coefficients, which depend only on the `library' of spectra used to fit the experimental curves, have been computed for a number of `libraries' containing the following nucleosides found in s-RNA: adenosine, guanosine, cytidine, uridine, 5-ribosyluracil, 7-methylguanosine, 6-dimethylaminopurine riboside, 6-methylaminopurine riboside and thymine riboside. 3. The error coefficients have been used to determine the best conditions for maximum accuracy in the determination of the compositions of nucleoside mixtures. 4. Experimental determinations of the compositions of nucleoside mixtures have been made and the errors found to be consistent with those predicted by the theoretical analysis. 5. It has been demonstrated that, with certain precautions, the multicomponent spectrophotometric method described is suitable as a basis for automatic nucleotide-composition analysis of oligonucleotides containing nine nucleotides. Used in conjunction with continuous chromatography and flow chemical techniques, this method can be applied to the study of the sequence of s-RNA. PMID:14346087
Bleeker, H J; Lewin, P A
2000-01-01
A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.
Zhang, Li; Li, Zhenhua; Hu, Zheng; Chang, Xijun
2011-09-01
The first study on the high efficiency of triocarbohydrazide modified attapulgite as solid-phase extractant for preconcentration of trace Au(III) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES) has been reported. Experimental conditions for effective adsorption of trace levels of Au(III) were optimized with respect to different experimental parameters using batch and column procedures in detail. At pH 3, Au(III) could be quantitatively adsorbed on the new sorbent, and the adsorbed Au(III) could be completely eluted from the sorbent surface by 2.0mL 1.0molL(-1) of HCl+2% CS(NH(2))(2) solution. An enrichment factor of 150 was accomplished. Moreover, common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the sorbent for Au(III) was found to be 66.7mgg(-1). The detection limit (3σ) of this method was 0.32μgL(-1) and the relative standard deviation (RSD) was 3.3% (n=8). The method, with high selectivity, sensitivity and reproducibility, was validated using certified reference materials, and had been applied for the determination of trace Au(III) with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, W
1980-06-01
The effect of a variety of plasma cleaning procedures on the level of bulk and interfacial contaminants in the films is analyzed by secondary ion mass spectrometry. Bulk levels of 0 have been reduced considerably by N/sub 2/ plasma cleaning, but no reproducible reductions in interfacial contamination have been achieved. A method is described of determining the gap state density N(epsilon) of a-Si:H from field effect, in which no assumptions are made about the form of the band bending in the semiconductor. The problem is reduced to three successive integrals over an assumed N(epsilon) by change of variable from distancemore » to applied voltage and the best fit to the experimental data is obtained by iteration of the assumed state density. The method is shown to be no less rigorous and considerably more economical than the recent analysis of Goodman, Fritzsche and Ozaki. In addition, an experimental means of determining the flat-band voltage to within 5% of the maximum gate voltage V/sub g/ used is demonstrated, by finding the value of V/sub g/ for which (kT/e)dlog I/sub SD//dV/sub g/ is independent of temperature.« less
Continuum Damage Modeling for Dynamic Fracture Toughness of Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Lee, Intaek; Ochi, Yasuo; Bae, Sungin; Song, Jungil
Short fiber reinforced metal-matrix composites (MMCs) have widely adopted as structural materials and many experimental researches have been performed to study fracture toughness of it. Fracture toughness is often referred as the plane strain(maximum constraint) fracture toughness KIc determined by the well-established standard test method, such as ASTM E399. But the application for dynamic fracture toughness KId has not been popular yet, because of reliance in capturing the crack propagating time. This paper deals with dynamic fracture toughness testing and simulation using finite element method to evaluate fracture behaviors of MMCs manufactured by squeeze casting process when material combination is varied with the type of reinforcement (appearance, size), volume fraction and combination of reinforcements, and the matrix alloy. The instrumented Charphy impact test was used for KId determination and continuum damage model embedded in commercial FE program is used to investigate the dynamic fracture toughness with the influence of elasto-visco-plastic constitutive relation of quasi-brittle fracture that is typical examples of ceramics and some fibre reinforced composites. With Compared results between experimental method and FE simulation, the determination process for KId is presented. FE simulation coupled with continuum damage model is emphasized single shot simulation can predict the dynamic fracture toughness, KId and real time evolution of that directly.
A maximum likelihood convolutional decoder model vs experimental data comparison
NASA Technical Reports Server (NTRS)
Chen, R. Y.
1979-01-01
This article describes the comparison of a maximum likelihood convolutional decoder (MCD) prediction model and the actual performance of the MCD at the Madrid Deep Space Station. The MCD prediction model is used to develop a subroutine that has been utilized by the Telemetry Analysis Program (TAP) to compute the MCD bit error rate for a given signal-to-noise ratio. The results indicate that that the TAP can predict quite well compared to the experimental measurements. An optimal modulation index also can be found through TAP.
Drag reduction by polymers in wall bounded turbulence.
L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil
2004-06-18
We elucidate the mechanism of drag reduction by polymers in turbulent wall-bounded flows: while momentum is produced at a fixed rate by the forcing, polymer stretching results in the suppression of momentum flux to the wall. On the basis of the equations of fluid mechanics we develop the phenomenology of the "maximum drag reduction asymptote" which is the maximum drag reduction attained by polymers. Based on Newtonian information only we demonstrate the existence of drag reduction, and with one experimental parameter we reach agreement with the experimental measurements.
The electromagnetic properties of plasma produced by hypervelocity impact
NASA Astrophysics Data System (ADS)
Zhang, Qingming; Gong, Liangfei; Ma, Yuefen; Long, Renrong; Gong, Zizheng
2018-02-01
The change of electron density in moving plasma in this paper is empirically determined according to multiple ground-based experimental results and the assumption of the Maxwell distribution. Moreover, the equation of the magnetic field intensity, dominated by the current due to the collective electron movement during the expansion, is presented on the basis of the Biot-Savart law, and its relationship with time and space is subsequently depicted. In addition, hypervelocity impact experiments on a 2AL12 target have been carried out using a two-stage light gas gun to accelerate a 2AL12 projectile of 6.4 mm to 6.2 km/s. Spiral coils are designed to measure the intensity of the electromagnetic field induced by this impact. The experimental results show that the magnetic field strength is an alternate pulse maintaining nearly 1 ms and its maximum is close to 15 μT, which is strong enough to interfere with the communication circuit and chip in spacecrafts. Lastly, numerical simulation of the magnetic field intensity using this experimental parameter reveals that the intensity in our estimation from our theory tends to be well consistent with the experimental data in the first peak of the pulse signal.
Diarra, Harona; Mazel, Vincent; Busignies, Virginie; Tchoreloff, Pierre
2013-09-10
This work studies the influence of visco-elastic behavior in the finite element method (FEM) modeling of die compaction of pharmaceutical products and how such a visco-elastic behavior may improve the agreement between experimental and simulated compression curves. The modeling of the process was conducted on a pharmaceutical excipient, microcrystalline cellulose (MCC), by using Drucker-Prager cap model coupled with creep behavior in Abaqus(®) software. The experimental data were obtained on a compaction simulator (STYLCAM 200R). The elastic deformation of the press was determined by performing experimental tests on a calibration disk and was introduced in the simulation. Numerical optimization was performed to characterize creep parameters. The use of creep behavior in the simulations clearly improved the agreement between the numerical and experimental compression curves (stresses, thickness), mainly during the unloading part of the compaction cycle. For the first time, it was possible to reproduce numerically the fact that the minimum tablet thickness is not obtained at the maximum compression stress. This study proves that creep behavior must be taken into account when modeling the compaction of pharmaceutical products using FEM methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Metainference: A Bayesian inference method for heterogeneous systems
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300
Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter.
Cayzac, W; Frank, A; Ortner, A; Bagnoud, V; Basko, M M; Bedacht, S; Bläser, C; Blažević, A; Busold, S; Deppert, O; Ding, J; Ehret, M; Fiala, P; Frydrych, S; Gericke, D O; Hallo, L; Helfrich, J; Jahn, D; Kjartansson, E; Knetsch, A; Kraus, D; Malka, G; Neumann, N W; Pépitone, K; Pepler, D; Sander, S; Schaumann, G; Schlegel, T; Schroeter, N; Schumacher, D; Seibert, M; Tauschwitz, An; Vorberger, J; Wagner, F; Weih, S; Zobus, Y; Roth, M
2017-06-01
The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang
2001-01-01
Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.
Theoretical Study of the Electric Dipole Moment Function of the CIO Molecule
NASA Technical Reports Server (NTRS)
Pettersson, Lars G. M.; Langhoff, Stephen R.; Chong, Delano P.
1986-01-01
The potential energy function and electric dipole moment function (EDMF) are computed for CIO Chi(sup 2)Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. Remaining questions concerning the position of the maximum of the EDMF may be resolved through experimental measurement of dipole moments of higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 +/- 2 /sq cm atm in good agreement with three experimental values, but larger than a recent value of 5 /sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.
Effect and interaction study of acetamiprid photodegradation using experimental design.
Tassalit, Djilali; Chekir, Nadia; Benhabiles, Ouassila; Mouzaoui, Oussama; Mahidine, Sarah; Merzouk, Nachida Kasbadji; Bentahar, Fatiha; Khalil, Abbas
2016-10-01
The methodology of experimental research was carried out using the MODDE 6.0 software to study the acetamiprid photodegradation depending on the operating parameters, such as the initial concentration of acetamiprid, concentration and type of the used catalyst and the initial pH of the medium. The results showed the importance of the pollutant concentration effect on the acetamiprid degradation rate. On the other hand, the amount and type of the used catalyst have a considerable influence on the elimination kinetics of this pollutant. The degradation of acetamiprid as an environmental pesticide pollutant via UV irradiation in the presence of titanium dioxide was assessed and optimized using response surface methodology with a D-optimal design. The acetamiprid degradation ratio was found to be sensitive to the different studied factors. The maximum value of discoloration under the optimum operating conditions was determined to be 99% after 300 min of UV irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L.; Zhu, Y.; Zhong, H.
2009-08-01
The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less
NASA Astrophysics Data System (ADS)
Medvedeva, Maria F.; Doubrovski, Valery A.
2017-03-01
The resolution of the acousto-optical method for blood typing was estimated experimentally by means of two types of reagents: monoclonal antibodies and standard hemagglutinating sera. The peculiarity of this work is the application of digital photo images processing by pixel analysis previously proposed by the authors. The influence of the concentrations of reagents, of blood sample, which is to be tested, as well as of the duration of the ultrasonic action on the biological object upon the resolution of acousto-optical method were investigated. The optimal experimental conditions to obtain maximum of the resolution of the acousto-optical method were found, it creates the prerequisites for a reliable blood typing. The present paper is a further step in the development of acousto-optical method for determining human blood groups.
Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter
NASA Astrophysics Data System (ADS)
Cayzac, W.; Frank, A.; Ortner, A.; Bagnoud, V.; Basko, M. M.; Bedacht, S.; Bläser, C.; Blažević, A.; Busold, S.; Deppert, O.; Ding, J.; Ehret, M.; Fiala, P.; Frydrych, S.; Gericke, D. O.; Hallo, L.; Helfrich, J.; Jahn, D.; Kjartansson, E.; Knetsch, A.; Kraus, D.; Malka, G.; Neumann, N. W.; Pépitone, K.; Pepler, D.; Sander, S.; Schaumann, G.; Schlegel, T.; Schroeter, N.; Schumacher, D.; Seibert, M.; Tauschwitz, An.; Vorberger, J.; Wagner, F.; Weih, S.; Zobus, Y.; Roth, M.
2017-06-01
The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.
Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter
Cayzac, W.; Frank, A.; Ortner, A.; Bagnoud, V.; Basko, M. M.; Bedacht, S.; Bläser, C.; Blažević, A.; Busold, S.; Deppert, O.; Ding, J.; Ehret, M.; Fiala, P.; Frydrych, S.; Gericke, D. O.; Hallo, L.; Helfrich, J.; Jahn, D.; Kjartansson, E.; Knetsch, A.; Kraus, D.; Malka, G.; Neumann, N. W.; Pépitone, K.; Pepler, D.; Sander, S.; Schaumann, G.; Schlegel, T.; Schroeter, N.; Schumacher, D.; Seibert, M.; Tauschwitz, An.; Vorberger, J.; Wagner, F.; Weih, S.; Zobus, Y.; Roth, M.
2017-01-01
The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions. PMID:28569766
Inference of missing data and chemical model parameters using experimental statistics
NASA Astrophysics Data System (ADS)
Casey, Tiernan; Najm, Habib
2017-11-01
A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.
Decazes, J M; Ernst, J D; Sande, M A
1983-01-01
Ceftriaxone was highly active in eliminating Escherichia coli from the cerebrospinal fluid of rabbits infected with experimental meningitis. However, concentrations equal to or greater than 10 times the minimal bactericidal concentration had to be achieved to ensure optimal efficacy (rate of kill, 1.5 log10 CFU/ml per h). In contrast to other beta-lactams studied in this model, ceftriaxone concentrations in cerebrospinal fluid progressively increased, whereas serum steady state was obtained by constant infusion. The percent penetration was 2.1% after 1 h of therapy, in contrast to 8.9% after 7 h (P less than 0.001). In vitro time-kill curves done in cerebrospinal fluid or broth more closely predicted the drug concentrations required for a maximum cidal effect in vivo than that predicted by determinations of minimal inhibitory or bactericidal concentrations. PMID:6316841
NASA Technical Reports Server (NTRS)
Wright, William B.; Chung, James
1999-01-01
Aerodynamic performance calculations were performed using WIND on ten experimental ice shapes and the corresponding ten ice shapes predicted by LEWICE 2.0. The resulting data for lift coefficient and drag coefficient are presented. The difference in aerodynamic results between the experimental ice shapes and the LEWICE ice shapes were compared to the quantitative difference in ice shape geometry presented in an earlier report. Correlations were generated to determine the geometric features which have the most effect on performance degradation. Results show that maximum lift and stall angle can be correlated to the upper horn angle and the leading edge minimum thickness. Drag coefficient can be correlated to the upper horn angle and the frequency-weighted average of the Fourier coefficients. Pitching moment correlated with the upper horn angle and to a much lesser extent to the upper and lower horn thicknesses.
Transmission sputtering under diatomic molecule bombardment. Model calculations
NASA Astrophysics Data System (ADS)
Bitensky, I. S.
1996-04-01
Transmission sputtering means that emission of secondary particles is studied from the downstream side of a bombarded foil. Nonlinear effects in sputtering manifest themselves as a deviation of sputtering yield under molecular ion bombardment from the sum of the yields induced by the constituents at the same velocity. In the reflection geometry the overlap of the spike regions reaches maximum, while in transmission the degree of overlap depends on the projectile and on the foil thickness. It has been shown that the transmission sputtering yield can be described by a function of a scaling parameter determined by beam-foil characteristics and a mechanism of nonlinear sputtering. Calculations of the transmission yield have been made in the thermal spike and shock wave models. The results of calculations are compared with experimental data on phenylalanine molecular ion desorption from organic targets induced by Au + and Au 2+ impact. Suggestions for further experimental study are made.
Piezoelectric Power Requirements for Active Vibration Control
NASA Technical Reports Server (NTRS)
Brennan, Matthew C.; McGowan, Anna-Maria Rivas
1997-01-01
This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.
Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source
NASA Technical Reports Server (NTRS)
Jeong, Seong-Il; Didion, Jeffrey
2004-01-01
The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.
Michalek, Lukas; Barner, Leonie; Barner-Kowollik, Christopher
2018-03-07
Well-defined polymer strands covalently tethered onto solid substrates determine the properties of the resulting functional interface. Herein, the current approaches to determine quantitative grafting densities are assessed. Based on a brief introduction into the key theories describing polymer brush regimes, a user's guide is provided to estimating maximum chain coverage and-importantly-examine the most frequently employed approaches for determining grafting densities, i.e., dry thickness measurements, gravimetric assessment, and swelling experiments. An estimation of the reliability of these determination methods is provided via carefully evaluating their assumptions and assessing the stability of the underpinning equations. A practical access guide for comparatively and quantitatively evaluating the reliability of a given approach is thus provided, enabling the field to critically judge experimentally determined grafting densities and to avoid the reporting of grafting densities that fall outside the physically realistic parameter space. The assessment is concluded with a perspective on the development of advanced approaches for determination of grafting density, in particular, on single-chain methodologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
30 CFR 7.87 - Test to determine the maximum fuel-air ratio.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...
30 CFR 7.87 - Test to determine the maximum fuel-air ratio.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...
30 CFR 7.87 - Test to determine the maximum fuel-air ratio.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...
30 CFR 7.87 - Test to determine the maximum fuel-air ratio.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...
30 CFR 7.87 - Test to determine the maximum fuel-air ratio.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test to determine the maximum fuel-air ratio. 7... Use in Underground Coal Mines § 7.87 Test to determine the maximum fuel-air ratio. (a) Test procedure... range that will be used during this test. (3) While running the engine, the following shall apply: (i...
Nakano, Jinichiro
2013-02-01
The thermodynamic properties of the Fe-Mn-C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T 0 , independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T 0 . The driving force for the fcc to hcp transition, defined as a dimensionless value -d G m /( RT ), was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed.
NASA Technical Reports Server (NTRS)
Burrage, M. D.; Abreu, V. J.; Fesen, C. G.
1990-01-01
Atmosphere Explorer E (AE-E) measurements of the O(1D) 6300-A emission in the nighttime equatorial thermosphere are used to infer the height of the F2 layer peak as a function of latitude and local time. The investigation is conducted both for northern hemisphere winter solstice and for spring equinox, under solar maximum conditions. The layer heights are used to derive magnetic meridional components of the transequatorial neutral wind, in conjunction with the MSIS-86 model and previous Jicamarca incoherent scatter measurements of the zonal electric field. The AE-E wind estimates indicate a predominant summer to winter flow for the winter solstice case. Comparisons are made with the empirical horizontal wind model HWM87 and with winds generated by the thermospheric general circulation model. The model predictions and experimental results are generally in good agreement, confirming the applicability of visible airglow data to studies of the global neutral wind pattern.
Implications of the principle of maximum conformality for the QCD strong coupling
Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang; ...
2017-08-14
The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less
Vazquez, Alexei; de Menezes, Marcio A; Barabási, Albert-László; Oltvai, Zoltan N
2008-10-01
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo.
Vazquez, Alexei; de Menezes, Marcio A.; Barabási, Albert-László; Oltvai, Zoltan N.
2008-01-01
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. PMID:18846199
Induced subgraph searching for geometric model fitting
NASA Astrophysics Data System (ADS)
Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi
2017-11-01
In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.
Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gapinski, Jacek, E-mail: gapinski@amu.edu.pl; Patkowski, Adam; NanoBioMedical Center, A. Mickiewicz University, Umultowska 85, 61-614 Poznań
Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shownmore » to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.« less
NASA Astrophysics Data System (ADS)
Neba, Yasuhiko
This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.
Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Turner, T. N.
1979-01-01
Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.
Absorption spectrum of the firefly luciferin anion isolated in vacuo.
Støchkel, Kristian; Milne, Bruce F; Brøndsted Nielsen, Steen
2011-03-24
The excited-state physics of the firefly luciferin anion depends on its chemical environment, and it is therefore important to establish the intrinsic behavior of the bare ion. Here we report electronic absorption spectra of the anion isolated in vacuo obtained at an electrostatic ion storage ring and an accelerator mass spectrometer where ionic dissociation is monitored on a long time scale (from 33 μs and up to 3 ms) and on a short time scale (0-3 μs), respectively. In the ring experiment the yield of all neutrals (mainly CO(2)) as a function of wavelength was measured whereas in the single pass experiment, the abundance of daughter ions formed after loss of CO(2) was recorded to provide action spectra. We find maxima at 535 and 265 nm, and that the band shape is largely determined by the sampling time interval, which is due to the kinetics of the dissociation process. Calculations at the TD-B3LYP/TZVPP++ level predict maximum absorption at 533 and 275 nm for the carboxylate isomer in excellent agreement with the experimental findings. The phenolate isomer lies higher in energy by 0.22 eV, and also its absorption maximum is calculated to be at 463 nm, which is far away from the experimental value. Our data serve to benchmark future theoretical models for bioluminescence from fireflies.
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Boyd, John W.
1959-01-01
The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.
Local sample thickness determination via scanning transmission electron microscopy defocus series.
Beyer, A; Straubinger, R; Belz, J; Volz, K
2016-05-01
The usable aperture sizes in (scanning) transmission electron microscopy ((S)TEM) have significantly increased in the past decade due to the introduction of aberration correction. In parallel with the consequent increase of convergence angle the depth of focus has decreased severely and optical sectioning in the STEM became feasible. Here we apply STEM defocus series to derive the local sample thickness of a TEM sample. To this end experimental as well as simulated defocus series of thin Si foils were acquired. The systematic blurring of high resolution high angle annular dark field images is quantified by evaluating the standard deviation of the image intensity for each image of a defocus series. The derived dependencies exhibit a pronounced maximum at the optimum defocus and drop to a background value for higher or lower values. The full width half maximum (FWHM) of the curve is equal to the sample thickness above a minimum thickness given by the size of the used aperture and the chromatic aberration of the microscope. The thicknesses obtained from experimental defocus series applying the proposed method are in good agreement with the values derived from other established methods. The key advantages of this method compared to others are its high spatial resolution and that it does not involve any time consuming simulations. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A
2001-10-01
Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations <40 nmol/L, no differentiation from the background was possible. The transitional area between the contrast-free edge of the phantom and the central contrast-containing part appeared in the profiles as a steep increase with a width of 4.2 +/- 1.8 mm. The experimental tumors were detectable in nonenhanced images as well as contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption profiles, a 44.1% +/- 11.3% greater absorption increase was seen in tumor tissue compared with normal tissue. The laser wavelength lambda1 of the prototype laser mammography device was not situated at maximum absorption of the contrast agent NIR96010 but on the descending shoulder of the absorption spectrum. This implies a 20% signal loss for contrast detection. Despite the nonideal measurement conditions, concentrations as low as 40 nmol/L were detectable in vitro. In vivo, all tumors were detectable in color-coded nonenhanced scans as well as in contrast-enhanced scans, with better delineation after contrast administration.
Non-Contact Acousto-Thermal Signatures of Plastic Deformation in TI-6AL-4V
NASA Astrophysics Data System (ADS)
Welter, J. T.; Malott, G.; Schehl, N.; Sathish, S.; Jata, K. V.; Blodgett, M. P.
2010-02-01
Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.
Haslam, S. Alexander; Reicher, Stephen D.; Millard, Kathryn
2015-01-01
Attempts to revisit Milgram’s ‘Obedience to Authority’ (OtA) paradigm present serious ethical challenges. In recent years new paradigms have been developed to circumvent these challenges but none involve using Milgram’s own procedures and asking naïve participants to deliver the maximum level of shock. This was achieved in the present research by using Immersive Digital Realism (IDR) to revisit the OtA paradigm. IDR is a dramatic method that involves a director collaborating with professional actors to develop characters, the strategic withholding of contextual information, and immersion in a real-world environment. 14 actors took part in an IDR study in which they were assigned to conditions that restaged Milgrams’s New Baseline (‘Coronary’) condition and four other variants. Post-experimental interviews also assessed participants’ identification with Experimenter and Learner. Participants’ behaviour closely resembled that observed in Milgram’s original research. In particular, this was evidenced by (a) all being willing to administer shocks greater than 150 volts, (b) near-universal refusal to continue after being told by the Experimenter that “you have no other choice, you must continue” (Milgram’s fourth prod and the one most resembling an order), and (c) a strong correlation between the maximum level of shock that participants administered and the mean maximum shock delivered in the corresponding variant in Milgram’s own research. Consistent with an engaged follower account, relative identification with the Experimenter (vs. the Learner) was also a good predictor of the maximum shock that participants administered. PMID:25730318
The RAI DBS experiment with Olympus
NASA Astrophysics Data System (ADS)
Castelli, Enzo
The Italian broadcasting network (RAI) has studied the development of a national DBS service in an effort to outline a proposal for a space segment configuration compatible with development of new services, including HDTV. Proposals so far considered feature the integration of RAI's channel on Olympus in a future operational system and after extensive experimental use. Contents of the experimental program are discussed, and need for a broadcasting standard which considers projected introduction of HDTV is noted. The debate between RAI and consumer electronic industries on the use of broadcasting standards is outlined. The position of RAI in the context of HDTV and DBS is defined and the issue of determining the most effective transmission standard during the experimental stage is raised. It is pointed out that, in the absence of new production facilities for HDTV, the maximum quality which MAC will yield will be that of PAL since programs must be produced in PAL and then converted into MAC. Two alternatives for strategy on the use of broadcasting standards for DBS are offered. Finally, technical experiments and a market survey are discussed.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
NASA Astrophysics Data System (ADS)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.
2018-05-01
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.
The dynamic flexural response of propeller blades. M.S. Thesis
NASA Technical Reports Server (NTRS)
Djordjevic, S. Z.
1982-01-01
The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...
2018-05-04
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing.
Finfrock, Y Zou; Stern, Edward A; Alkire, R W; Kas, Joshua J; Evans-Lutterodt, Kenneth; Stein, Aaron; Duke, Norma; Lazarski, Krzysztof; Joachimiak, Andrzej
2013-08-01
Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.
Singh, Kunwar P; Rai, Premanjali; Pandey, Priyanka; Sinha, Sarita
2012-01-01
The present research aims to investigate the individual and interactive effects of chlorine dose/dissolved organic carbon ratio, pH, temperature, bromide concentration, and reaction time on trihalomethanes (THMs) formation in surface water (a drinking water source) during disinfection by chlorination in a prototype laboratory-scale simulation and to develop a model for the prediction and optimization of THMs levels in chlorinated water for their effective control. A five-factor Box-Behnken experimental design combined with response surface and optimization modeling was used for predicting the THMs levels in chlorinated water. The adequacy of the selected model and statistical significance of the regression coefficients, independent variables, and their interactions were tested by the analysis of variance and t test statistics. The THMs levels predicted by the model were very close to the experimental values (R(2) = 0.95). Optimization modeling predicted maximum (192 μg/l) TMHs formation (highest risk) level in water during chlorination was very close to the experimental value (186.8 ± 1.72 μg/l) determined in laboratory experiments. The pH of water followed by reaction time and temperature were the most significant factors that affect the THMs formation during chlorination. The developed model can be used to determine the optimum characteristics of raw water and chlorination conditions for maintaining the THMs levels within the safe limit.
NASA Astrophysics Data System (ADS)
Seguini, Gabriele; Zanenga, Fabio; Laus, Michele; Perego, Michele
2018-05-01
This paper reports the experimental determination of the growth exponents and activation enthalpies for the ordering process of standing cylinder-forming all-organic polystyrene-block-poly (methyl methacrylate) block copolymer (BCP) thin films as a function of the BCP degree of polymerization (N). The maximum growth exponent of 1/3 is observed for the BCP with the lowest N at the border of the order-disorder transition. Both the growth exponents and the activation enthalpies exponentially decrease with the BCP segregation strength (χN) following the same path of the diffusivity.
A Combined Experimental/Computational Investigation of a Rocket Based Combined Cycle Inlet
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Trexler, Carl A.; Goldman, Allen L.
2001-01-01
A rocket based combined cycle inlet geometry has undergone wind tunnel testing and computational analysis with Mach 4 flow at the inlet face. Performance parameters obtained from the wind tunnel tests were the mass capture, the maximum back-pressure, and the self-starting characteristics of the inlet. The CFD analysis supplied a confirmation of the mass capture, the inlet efficiency and the details of the flowfield structure. Physical parameters varied during the test program were cowl geometry, cowl position, body-side bleed magnitude and ingested boundary layer thickness. An optimum configuration was determined for the inlet as a result of this work.
Efficient ionisation of calcium, strontium and barium by resonant laser pumping
NASA Technical Reports Server (NTRS)
Skinner, C. H.
1980-01-01
Efficient ionization has been observed when an atomic vapor of strontium, barium or calcium was illuminated with a long pulse tunable laser at the frequency of the atomic resonance line. The variation in the degree of ionization with neutral density and laser intensity has been measured using the 'hook' method. The maximum ionization observed was 94%. Excited state populations were measured yielding an excitation temperature (depending on exact experimental conditions) in the region of 0.4 eV. The decay of ion density after the laser pulse was monitored and the recombination coefficients determined. The results are interpreted in terms of an electron heating model.
Widely tunable chaotic fiber laser for WDM-PON detection
NASA Astrophysics Data System (ADS)
Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian
2014-05-01
A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.
Nanohardness and Residual Stress in TiN Coatings.
Hernández, Luis Carlos; Ponce, Luis; Fundora, Abel; López, Enrique; Pérez, Eduardo
2011-05-17
TiN films were prepared by the Cathodic arc evaporation deposition method under different negative substrate bias. AFM image analyses show that the growth mode of biased coatings changes from 3D island to lateral when the negative bias potential is increased. Nanohardness of the thin films was measured by nanoindentation, and residual stress was determined using Grazing incidence X ray diffraction. The maximum value of residual stress is reached at -100 V substrate bias coinciding with the biggest values of adhesion and nanohardness. Nanoindentation measurement proves that the force-depth curve shifts due to residual stress. The experimental results demonstrate that nanohardness is seriously affected by the residual stress.
Maximum-likelihood estimation of parameterized wavefronts from multifocal data
Sakamoto, Julia A.; Barrett, Harrison H.
2012-01-01
A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282
Cathode fall measurement in a dielectric barrier discharge in helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Yanpeng; Zheng, Bin; Liu, Yaoge
2013-11-15
A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golyshev, A A; Malikov, A G; Orishich, A M
Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)
NASA Astrophysics Data System (ADS)
Sosnowski, M.; Eager, G. S., Jr.
1983-06-01
Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.
Materials for high-temperature thermoelectric conversion
NASA Technical Reports Server (NTRS)
Feigelson, R. S.; Elwell, D.
1983-01-01
High boron materials of high efficiency for thermoelectric power generation and capable of prolonged operation at temperatures over 1200 C are discussed. Background theoretical studies indicated that the low carrier mobility of materials with beta boron and related structures is probably associated with the high density of traps. Experimental work was mainly concerned with silicon borides in view of promising data from European laboratories. A systematic study using structure determination and lattice constant measurements failed to confirm the existence of an SiBn phase. Only SiB6 and a solid solution of silicon in beta boron with a maximum solid solubility of 5.5-6 at % at 1650 C were found.
Water droplet impingement on airfoils and aircraft engine inlets for icing analysis
NASA Technical Reports Server (NTRS)
Papadakis, Michael; Elangovan, R.; Freund, George A., Jr.; Breer, Marlin D.
1991-01-01
This paper includes the results of a significant research program for verification of computer trajectory codes used in aircraft icing analysis. Experimental water droplet impingement data have been obtained in the NASA Lewis Research Center Icing Research Tunnel for a wide range of aircraft geometries and test conditions. The body whose impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper and then exposed to an airstream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips by measuring the optical reflectance of the dye deposit on the strips with an automated reflectometer. Impingement characteristics for all test geometries have also been calculated using two recently developed trajectory computer codes. Good agreement is obtained with experimental data. The experimental and analytical data show that maximum impingement efficiency and impingement limits increase with mean volumetric diameter for all geometries tested. For all inlet geometries tested, as the inlet mass flow is reduced, the maximum impingement efficiency is reduced and the location of the maximum impingement shifts toward the inlet inner cowl.
Orthotopic bladder substitution in men revisited: identification of continence predictors.
Koraitim, M M; Atta, M A; Foda, M K
2006-11-01
We determined the impact of the functional characteristics of the neobladder and urethral sphincter on continence results, and determined the most significant predictors of continence. A total of 88 male patients 29 to 70 years old underwent orthotopic bladder substitution with tubularized ileocecal segment (40) and detubularized sigmoid (25) or ileum (23). Uroflowmetry, cystometry and urethral pressure profilometry were performed at 13 to 36 months (mean 19) postoperatively. The correlation between urinary continence and 28 urodynamic variables was assessed. Parameters that correlated significantly with continence were entered into a multivariate analysis using a logistic regression model to determine the most significant predictors of continence. Maximum urethral closure pressure was the only parameter that showed a statistically significant correlation with diurnal continence. Nocturnal continence had not only a statistically significant positive correlation with maximum urethral closure pressure, but also statistically significant negative correlations with maximum contraction amplitude, and baseline pressure at mid and maximum capacity. Three of these 4 parameters, including maximum urethral closure pressure, maximum contraction amplitude and baseline pressure at mid capacity, proved to be significant predictors of continence on multivariate analysis. While daytime continence is determined by maximum urethral closure pressure, during the night it is the net result of 2 forces that have about equal influence but in opposite directions, that is maximum urethral closure pressure vs maximum contraction amplitude plus baseline pressure at mid capacity. Two equations were derived from the logistic regression model to predict the probability of continence after orthotopic bladder substitution, including Z1 (diurnal) = 0.605 + 0.0085 maximum urethral closure pressure and Z2 (nocturnal) = 0.841 + 0.01 [maximum urethral closure pressure - (maximum contraction amplitude + baseline pressure at mid capacity)].
Determinants of woody encroachment and cover in African savannas.
Devine, Aisling P; McDonald, Robbie A; Quaife, Tristan; Maclean, Ilya M D
2017-04-01
Savanna ecosystems are an integral part of the African landscape and sustain the livelihoods of millions of people. Woody encroachment in savannas is a widespread phenomenon but its causes are widely debated. We review the extensive literature on woody encroachment to help improve understanding of the possible causes and to highlight where and how future scientific efforts to fully understand these causes should be focused. Rainfall is the most important determinant of maximum woody cover across Africa, but fire and herbivory interact to reduce woody cover below the maximum at many locations. We postulate that woody encroachment is most likely driven by CO 2 enrichment and propose a two-system conceptual framework, whereby mechanisms of woody encroachment differ depending on whether the savanna is a wet or dry system. In dry savannas, the increased water-use efficiency in plants relaxes precipitation-driven constraints and increases woody growth. In wet savannas, the increase of carbon allocation to tree roots results in faster recovery rates after disturbance and a greater likelihood of reaching sexual maturity. Our proposed framework can be tested using a mixture of experimental and earth observational techniques. At a local level, changes in precipitation, burning regimes or herbivory could be driving woody encroachment, but are unlikely to be the explanation of this continent-wide phenomenon.
Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Malzbender, J.; Steinbrech, R. W.
Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.
NASA Astrophysics Data System (ADS)
Craciunescu, Teddy; Peluso, Emmanuele; Murari, Andrea; Gelfusa, Michela; JET Contributors
2018-05-01
The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.
Light transmission coefficients by subwavelength aluminum gratings with dielectric layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blinov, L. M., E-mail: lev39blinov@gmail.com; Lazarev, V. V.; Yudin, S. G.
2016-11-15
Spectral positions of plasmon resonances related to boundaries between a thin aluminum layer and dielectrics (air, glass, VDF–TrFE 65/35 ferroelectric copolymer, and indium tin oxide (ITO)) have been determined in the transmission spectra of aluminum gratings of three types with 30 × 30 μm{sup 2} dimensions and 350-, 400-, and 450-nm line periods. Experimental results agree well with spectral positions of plasmon resonances calculated for the normal incidence of TM-polarized light. In addition, maximum values of transmission coefficients in the region of λ ≈ 900–950 nm have been determined for glass–Al–copolymer and glass–ITO–Al–copolymer structures. These values are close to 100%,more » which shows that the effective optical aperture is two times greater than the geometric areas of slits.« less
X-Ray Fluorescence to Determine Zn in Bolivian Children using Hair Samples
NASA Astrophysics Data System (ADS)
Tellería Narvaez, C. A.; Fernández Alcázar, S.; Barrientos Zamora, F. G.; Chungara Castro, J.; Luna Lauracia, I.; Mamani Tola, H.; Mita Peralta, E.; Muñoz Gosálvez, A. O.; Romero Bolaños, L. E.; Ramírez Ávila, G. M.
2014-06-01
As a first step in the evaluation of nutritional levels in Bolivian children (8-13 years-old), we carried out X-Ray Fluorescence measurements in hair samples of children belonging to different social classes and living either in rural areas or in cities. The aim of this study is to contribute to health policies tending to improve the global health of children and consequently avoid malnutrition. Our method intends to have maximum reliability and at the same time be as simple as possible from an experimental point of view. Additionally, we use this method to determine some other elements such as Fe, Cu, Pb, As and Hg, the latter three considered as contaminants that could be present in children living in areas which neighbor mines and industries. This work will be complemented by some biological and medical tests.
High field pulsed microwiggler comprising a conductive tube with periodically space slots
Warren, R.W.
1992-09-01
A microwiggler assembly produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180[degree] relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube. 10 figs.
High field pulsed microwiggler comprising a conductive tube with periodically space slots
Warren, Roger W.
1992-01-01
A microwiggler assembly produces large magnetic fields for oscillating ched particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180.degree. relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.
Design, analysis, and testing of a flexure-based vibration-assisted polishing device
NASA Astrophysics Data System (ADS)
Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan
2018-05-01
A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.
A first-principles model for orificed hollow cathode operation
NASA Technical Reports Server (NTRS)
Salhi, A.; Turchi, P. J.
1992-01-01
A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.
Kune, Christopher; Far, Johann; De Pauw, Edwin
2016-12-06
Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (μ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between μ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.
Three-Dimensional Effects in Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.
2003-01-01
In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
Three-Dimensional Effects on Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.
2002-01-01
In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim
2014-12-28
Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less
Shear thinning effects on blood flow in straight and curved tubes
NASA Astrophysics Data System (ADS)
Cherry, Erica M.; Eaton, John K.
2013-07-01
Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.
Dual fuel diesel engine operation using LPG
NASA Astrophysics Data System (ADS)
Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.
2016-08-01
Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.
NASA Astrophysics Data System (ADS)
Muzafri, A.; Julianti, E.; Rusmarilin, H.
2018-02-01
Andaliman (Zanthoxylum acanthopodium DC.) is a well known wild species in North Sumatera and used for seasoning in Batak’s traditional cuisine. This study was aimed to examine the phytochemical constituents of andaliman fruit extracts after simple macerated in water, methanol, ethyl acetate and hexana using qualitative phytochemical analysis, and to determine its potential antimicrobial activity against Staphylococus aureus, Escherichia coli and Salmonella sp by using agar well difussion method and minimum inhibitory concentration (MIC). Phytochemicals such as alkaloids, flavonoid, glycosides, saponins, tannins, triterpene/steroid and glycoside anthroquinones were detected in the methanol extracts, but steroids and glycisode antraquinones were absent in the ethyl acetate extract. The ethyl acetate extracts showed maximum zone of inhibition and minimum inhibitory concentration against all the experimental microorganisms. The minimum zone of inhibition was determined in hexane extracts showing less antimicrobial activity against all the experimental microorganisms. The MIC of the ethyl acetate extracts was 0,5% w/v for all tested bacteria. Apllication of ethyl acetate extracts of andaliman fruits showed effective for catfish (Pangasius Sutchi) fillet stored in refrigerator (5 °C) for 3 days.
X-Ray Spectrometer For ROSAT II (SPECTROSAT)
NASA Astrophysics Data System (ADS)
Predehl, Peter; Brauninger, Heinrich
1986-01-01
The objective transmission grating was one of the earliest inventions in the field of X-ray astronomy and has been incorporated into Skylab, HERO-P, and EXOTAT. In recent years there have been advances in grating technology and spectrometer design. A high precision mechanical ruling and replication process for manufacturing large self-supporting transmission gratings has been developed by an industrial manufacturer in cooperation with the Max-Planck-Institute (MPI). Theoretical analyses have determined the optimum configuration of the grating facets and the grating surface in order to correct third order aberations and obtain maximum resolving power. We have verified experimentally that the predicted efficiencies may be achieved. In addition, an experimental study of large grating assemblies for space telescopes was made in industry with scientific guidance by MPI. Main objectives of this study were the determination of mechanical loads during launch, as well as the design, construction and fabrication of a representative model of a ROSAT grating ring. Performancy studies including instrument pro-perties as well as the simulated radiation from hot plasmas have shown the ability of SPECTROSAT to perform high efficiency, high resolution line-spectroscopy on a wide variety of cosmic X-ray sources.
Efthimiou, George C; Bartzis, John G; Berbekar, Eva; Hertwig, Denise; Harms, Frank; Leitl, Bernd
2015-06-26
The capability to predict short-term maximum individual exposure is very important for several applications including, for example, deliberate/accidental release of hazardous substances, odour fluctuations or material flammability level exceedance. Recently, authors have proposed a simple approach relating maximum individual exposure to parameters such as the fluctuation intensity and the concentration integral time scale. In the first part of this study (Part I), the methodology was validated against field measurements, which are governed by the natural variability of atmospheric boundary conditions. In Part II of this study, an in-depth validation of the approach is performed using reference data recorded under truly stationary and well documented flow conditions. For this reason, a boundary-layer wind-tunnel experiment was used. The experimental dataset includes 196 time-resolved concentration measurements which detect the dispersion from a continuous point source within an urban model of semi-idealized complexity. The data analysis allowed the improvement of an important model parameter. The model performed very well in predicting the maximum individual exposure, presenting a factor of two of observations equal to 95%. For large time intervals, an exponential correction term has been introduced in the model based on the experimental observations. The new model is capable of predicting all time intervals giving an overall factor of two of observations equal to 100%.
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
Radiation pressure acceleration: The factors limiting maximum attainable ion energy
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2016-04-15
Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case,more » finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.« less
Kinetic study on anaerobic oxidation of methane coupled to denitrification.
Yu, Hou; Kashima, Hiroyuki; Regan, John M; Hussain, Abid; Elbeshbishy, Elsayed; Lee, Hyung-Sool
2017-09-01
Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ max ) 0.121/d, maximum substrate-utilization rate (q max ) 28.8mmol CH 4 /g cells-d, half maximum-rate substrate concentration (K s ) 83μΜ CH 4 , growth yield (Y) 4.76gcells/mol CH 4 , decay coefficient (b) 0.031/d, and threshold substrate concentration (S min ) 28.8μM CH 4 . Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High μ max and q max , and low K s for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems
Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Yang, Rongsheng
2012-01-01
A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro. For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C. The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.
Human fibrinogen adsorption on positively charged latex particles.
Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał
2014-09-23
Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and confirmed the decisive role of electrostatic interactions in this process.
14 CFR 440.7 - Determination of maximum probable loss.
Code of Federal Regulations, 2010 CFR
2010-01-01
... determine the maximum probable loss (MPL) from covered claims by a third party for bodily injury or property... licensee, or permittee, if interagency consultation may delay issuance of the MPL determination. (c... after the MPL determination is issued. Any change in financial responsibility requirements as a result...
Pignon, Charles P.; Jaiswal, Deepak; McGrath, Justin M.
2017-01-01
Abstract The wild progenitors of major C4 crops grew as individuals subjected to little shading. Today they are grown in dense stands where most leaves are shaded. Do they maintain photosynthetic efficiency in these low light conditions produced by modern cultivation? The apparent maximum quantum yield of CO2 assimilation (ΦCO2max,app), a key determinant of light-limited photosynthesis, has not been systematically studied in field stands of C4 crops. ΦCO2max,app was derived from the initial slope of the response of leaf CO2 uptake (A) to photon flux (Q). Leaf fractional light absorptance (α) was measured to determine the absolute maximum quantum yield of CO2 assimilation on an absorbed light basis (ΦCO2max,abs). Light response curves were determined on sun and shade leaves of 49 field plants of Miscanthus × giganteus and Zea mays following canopy closure. ΦCO2max,app and ΦCO2max,abs declined significantly by 15–27% (P<0.05) with canopy depth. Experimentally, leaf age was shown unlikely to cause this loss. Modeling canopy CO2 assimilation over diurnal courses suggested that the observed decline in ΦCO2max,app with canopy depth costs 10% of potential carbon gain. Overcoming this limitation could substantially increase the productivity of major C4 crops. PMID:28110277
Determination of carboxyhaemoglobin in humans following low-level exposures to carbon monoxide.
Gosselin, Nathalie H; Brunet, Robert C; Carrier, Gaétan
2009-11-01
This study proposes to estimate carboxyhaemoglobin (COHb) levels in the blood of men and women of various ages exposed to common concentrations of carbon monoxide (CO) using a model with only one free parameter while integrating alveoli-blood and blood-tissue CO exchanges. The model retained is essentially that of Coburn et al. (1965) with two important additions: an alveoli compartment for the dynamics of CO exchanges between alveoli and blood, and a compartment for the significant amounts of CO bound to heme proteins in extravascular spaces. The model was validated by comparing its simulations with various published data sets for the COHb time profiles of volunteers exposed to known CO concentrations. Once the model was validated, it was used to simulate various situations of interest for their impact on public health. This approach yields reliable estimations of the time profiles of COHb levels resulting from different levels of CO exposure over various periods of time and under various conditions (resting, exercise, working, and smoking). The non-linear kinetics of CO, observed experimentally, were correctly reproduced by simulations with the model. Simulations were also carried out iteratively to determine the exposure times and CO concentrations in ambient air needed to reach the maximum levels of COHb recommended by Health Canada, the U.S. Environmental Protection Agency (EPA), and the World Health Organisation (WHO) for each age group of the general population. The lowest CO concentrations leading to maximum COHb levels of 1.5, 2, and 2.5% were determined.
A deployment of broadband seismic stations in two deep gold mines, South Africa
McGarr, Arthur F.; Boettcher, Margaret S.; Fletcher, Jon Peter B.; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.
2009-01-01
In-mine seismic networks throughout the TauTona and Mponeng gold mines provide precise locations and seismic source parameters of earthquakes. They also support small-scale experimental projects, including NELSAM (Natural Earthquake Laboratory in South African Mines), which is intended to record, at close hand, seismic rupture of a geologic fault that traverses the project region near the deepest part of TauTona. To resolve some questions regarding the in-mine and NELSAM networks, we deployed four portable broadband seismic stations at deep sites within TauTona and Mponeng for one week during September 2007 and recorded ground acceleration. Moderately large earthquakes within our temporary network were recorded with sufficiently high signal-to-noise that we were able to integrate the acceleration to ground velocity and displacement, from which moment tensors could be determined. We resolved the questions concerning the NELSAM and in-mine networks by using these moment tensors to calculate synthetic seismograms at various network recording sites for comparison with the ground motion recorded at the same locations. We also used the peak velocity of the S wave pulse, corrected for attenuation with distance, to estimate the maximum slip within the rupture zone of an earthquake. We then combined the maximum slip and seismic moment with results from laboratory friction experiments to estimate maximum slip rates within the same high-slip patches of the rupture zone. For the four largest earthquakes recorded within our network, all with magnitudes near 2, these inferred maximum slips range from 4 to 27 mm and the corresponding maximum slip rates range from 1 to 6 m/s. These results, in conjunction with information from previous ground motion studies, indicate that underground support should be capable of withstanding peak ground velocities of at least 5 m/s.
Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.
Lubbers, Brad; Baudenbacher, Franz
2011-10-15
We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 μm SiN membrane and 79 pW/(Hz)(1/2) for a 1 μm polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun
2014-01-01
A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.
Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun
2014-01-03
A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g(-1), respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L(-1) EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
Liebl, Hans; Garcia, Eduardo Grande; Holzner, Fabian; Noel, Peter B.; Burgkart, Rainer; Rummeny, Ernst J.; Baum, Thomas; Bauer, Jan S.
2015-01-01
Purpose To experimentally validate a non-linear finite element analysis (FEA) modeling approach assessing in-vitro fracture risk at the proximal femur and to transfer the method to standard in-vivo multi-detector computed tomography (MDCT) data of the hip aiming to predict additional hip fracture risk in subjects with and without osteoporosis associated vertebral fractures using bone mineral density (BMD) measurements as gold standard. Methods One fresh-frozen human femur specimen was mechanically tested and fractured simulating stance and clinically relevant fall loading configurations to the hip. After experimental in-vitro validation, the FEA simulation protocol was transferred to standard contrast-enhanced in-vivo MDCT images to calculate individual hip fracture risk each for 4 subjects with and without a history of osteoporotic vertebral fractures matched by age and gender. In addition, FEA based risk factor calculations were compared to manual femoral BMD measurements of all subjects. Results In-vitro simulations showed good correlation with the experimentally measured strains both in stance (R2 = 0.963) and fall configuration (R2 = 0.976). The simulated maximum stress overestimated the experimental failure load (4743 N) by 14.7% (5440 N) while the simulated maximum strain overestimated by 4.7% (4968 N). The simulated failed elements coincided precisely with the experimentally determined fracture locations. BMD measurements in subjects with a history of osteoporotic vertebral fractures did not differ significantly from subjects without fragility fractures (femoral head: p = 0.989; femoral neck: p = 0.366), but showed higher FEA based risk factors for additional incident hip fractures (p = 0.028). Conclusion FEA simulations were successfully validated by elastic and destructive in-vitro experiments. In the subsequent in-vivo analyses, MDCT based FEA based risk factor differences for additional hip fractures were not mirrored by according BMD measurements. Our data suggests, that MDCT derived FEA models may assess bone strength more accurately than BMD measurements alone, providing a valuable in-vivo fracture risk assessment tool. PMID:25723187
Effects of Uygur sand therapy on the mechanical properties of femurs in osteoarthritic rabbits.
Maitirouzi, Julaiti; Yanna, Li; Abulizi, Adinaer; Aihemaitiniyazi, Aizezi; Kuerban, Shataer; Shaojun, Huang
2017-01-01
To investigate the effects of Uygur sand therapy on the mechanical properties of the femur bone of osteoarthritic rabbits. Sixteen rabbits were injected with papain in the right posterior femoral articular cavity on the first, fourth and seventh day to establish the osteoarthritis (OA) rabbit model. Animals were divided into the experimental group and control group (8 rabbits each). The experimental group was treated with sand therapy, and the control group received no sand therapy treatment. Computed tomography (CT) scanning was used to collect the data of the femur before modeling, after modeling and 14 and 28 days after sand treatment. A 3D model of the femur was generated with the MIMIC software the bone layer was divided according to the different gray values and the change of the bone volume was analyzed. The body mesh is divided, and the material properties are given, then the three-point bending simulation is performed in Ansys. Additionally, the three-point bending test was performed on all the rabbits' femur to obtain the deflection and maximum stress values. And the effects of the sand treatment on the volume and mechanical properties of the bone were analyzed. Finally, the simulation results are compared with the experimental results, and the effects of sand treatment on the volume and mechanical properties of the bone are analyzed. (1) there is a tendency in the control group to convert the hard bone into dense bone and soft bone, while in the experimental group, the soft bone is converted into dense bone and hard bone obviously; (2) the morphological parameters of the experimental group are lower than those of the control group, whereas the maximum load, maximum normal stress, maximum shear stress of the experimental group are higher than those of the control group. (3) The mechanical test of three-point bending test was carried out using the three dimensional finite element model of rabbit femur. The sand therapy has positive effects on the volume distribution of bone layer and the mechanical properties of the femur of adult osteoarthritic rabbits.
An Experimental Study of Shear-Dominated Failure in the 2013 Sandia Fracture Challenge Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo; Deibler, Lisa Anne; Reedlunn, Benjamin
2015-04-01
This report presents an experimental study motivated by results obtained during the 2013 Sandia Fracture Challenge. The challenge involved A286 steel, shear-dominated compression specimens whose load-deflection response contained a load maximum fol- lowed by significant displacement under decreasing load, ending with a catastrophic fracture. Blind numerical simulations deviated from the experiments well before the maximum load and did not predict the failure displacement. A series of new tests were conducted on specimens machined from the original A286 steel stock to learn more about the deformation and failure processes in the specimen and potentially improve future numerical simulations. The study consistedmore » of several uniaxial tension tests to explore anisotropy in the material, and a set of new tests on the compression speci- men. In some compression specimen tests, stereo digital image correlation (DIC) was used to measure the surface strain fields local to the region of interest. In others, the compression specimen was loaded to a given displacement prior to failure, unloaded, sectioned, and imaged under the microscope to determine when material damage first appeared and how it spread. The experiments brought the following observations to light. The tensile tests revealed that the plastic response of the material is anisotropic. DIC during the shear- dominated compression tests showed that all three in-plane surface strain components had maxima in the order of 50% at the maximum load. Sectioning of the specimens revealed no signs of material damage at the point where simulations deviated from the experiments. Cracks and other damage did start to form approximately when the max- imum load was reached, and they grew as the load decreased, eventually culminating in catastrophic failure of the specimens. In addition to the steel specimens, a similar study was carried out for aluminum 7075-T651 specimens. These specimens achieved much lower loads and displacements, and failure occurred very close to the maximum in the load-deflection response. No material damage was observed in these specimens, even when failure was imminent. In the future, we plan to use these experimental results to improve numerical simu- lations of the A286 steel experiments, and to improve plasticity and failure models for the Al 7075 stock. The ultimate goal of our efforts is to increase our confidence in the results of numerical simulations of elastic-plastic structural behavior and failure.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Wei, Liang
2010-01-01
A simple, rapid and sensitive method was proposed for online determination of tannic acid in colored tannery wastewater by automatic reference flow injection analysis. Based on the tannic acid reduction phosphotungstic acid to form blue compound in pH 12.38 alkaline solutions, the shade of blue compound is in a linear relation to the content of tannic acid at the point of the maximum absorption peak of 760 nm. The optimal experimental conditions had been obtained. The linear range of the proposed method was between 200 μg L−1 to 80 mg L−1 and the detection limit was 0.58 μg L−1. The relative standard deviation was 3.08% and 2.43% for 500 μg L−1 and 40 mg L−1 of tannic acid standard solution, respectively, (n = 10). The method had been successfully applied to determination of tannic acid in colored tannery wastewaters and the analytical results were satisfactory. PMID:20508812
Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman
2014-01-01
Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230
Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman
2014-01-01
Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
Leonhartsberger, S; Lafferty, R M; Korneti, L
1993-09-01
Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression.
Finlay, Nessa; Hahnel, Sebastian; Dowling, Adam H; Fleming, Garry J P
2013-04-01
To investigate the short- and long-term in vitro wear resistance of experimental resin-based composites (RBCs) derived from a commercial formulation. Six experimental RBCs were manufactured by manipulating the monomeric resin composition and the filler characteristics of Grandio (Voco GmbH, Cuxhaven, Germany). The Oregon Health Sciences University (OHSU) oral wear simulator was used in the presence of a food-like slurry to simulate three-body abrasion and attrition wear for 50,000, 150,000 and 300,000 cycles. A three-dimensional image of each wear facet was created and the total volumetric wear (mm(3)) and maximum wear depth (μm) were quantified for the RBC and antagonist. Statistical analyses of the total volumetric wear and maximum wear depth data (two- and one-way analyses of variance (ANOVA), with Tukey's post hoc tests where required) and regression analyses, were conducted at p=0.05. Two-way ANOVAs identified a significant effect of RBC material×wear cycles, RBC material and wear cycles (all p<0.0001). Regression analyses showed significant increases in the total volumetric wear (p≤0.001) and maximum wear depth data (p≤0.004) for all RBCs with increasing wear cycles. Differences between all RBC materials were evident after ≥150,000 wear cycles and antagonist wear provided valuable information to support the experimental findings. Wear simulating machines can provide an indication of the clinical performance but clinical performance is multi-factorial and wear is only a single facet. Employing experimental RBCs provided by a dental manufacturer rather than using self-manufactured RBCs or dental products provides increased experimental control by limiting the variables involved. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A New MPPT Control for Photovoltaic Panels by Instantaneous Maximum Power Point Tracking
NASA Astrophysics Data System (ADS)
Tokushima, Daiki; Uchida, Masato; Kanbei, Satoshi; Ishikawa, Hiroki; Naitoh, Haruo
This paper presents a new maximum power point tracking control for photovoltaic (PV) panels. The control can be categorized into the Perturb and Observe (P & O) method. It utilizes instantaneous voltage ripples at PV panel output terminals caused by the switching of a chopper connected to the panel in order to identify the direction for the maximum power point (MPP). The tracking for the MPP is achieved by a feedback control of the average terminal voltage of the panel. Appropriate use of the instantaneous and the average values of the PV voltage for the separate purposes enables both the quick transient response and the good convergence with almost no ripples simultaneously. The tracking capability is verified experimentally with a 2.8 W PV panel under a controlled experimental setup. A numerical comparison with a conventional P & O confirms that the proposed control extracts much more power from the PV panel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Maximum achievable control technology (MACT) determinations for affected sources subject to case-by-case determination of equivalent emission... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...
Determination of boundary layer top on the basis of the characteristics of atmospheric particles
NASA Astrophysics Data System (ADS)
Liu, Boming; Ma, Yingying; Gong, Wei; Zhang, Ming; Yang, Jian
2018-04-01
The planetary boundary layer (PBL) is the lowest layer of the atmosphere that can be directly influenced with the Earth's surface. This layer can also respond to surface forcing. The determination of the PBL is significant to environmental and climate research. PBL can also serve as an input parameter for further data processing with atmospheric models. Traditional detection algorithms are susceptible to errors associated with the vertical distribution of aerosol concentrations. To overcome this limitation, a maximum difference search (MDS) algorithm was proposed to calculate the top of the boundary layer based on differences in particle characteristics. The top positions of the PBL from MDS algorithm under different convection states were compared with those from conventional methods. Experimental results demonstrated that the MDS method can determine the top of the boundary layer precisely. The proposed algorithm can also be used to calculate the top of the PBL accurately under weak convection conditions where the traditional methods cannot be applied. Finally, experimental data from June 2015 to December 2015 were analysed to verify the reliability of the MDS algorithm. The correlation coefficients R2 (RMSE) between the results of MDS algorithm and radiosonde measurements were 0.53 (115 m), 0.79 (141 m) and 0.96 (43 m) under weak, moderate and strong convections, respectively. These findings indicated that the proposed method possessed a good feasibility and stability.
Kinetics of the head-neck complex in low-speed rear impact.
Stemper, Brian D; Yoganandan, Naryan; Pintar, Frank A
2003-01-01
A comprehensive characterization of the biomechanics of the cervical spine in rear impact will lead to an understanding of the mechanisms of whiplash injury. Cervical kinematics have been experimentally described using human volunteers, full-body cadaver specimens, and isolated and intact head-neck specimens. However, forces and moments at the cervico-thoracic junction have not been clearly delineated. An experimental investigation was performed using ten intact head-neck complexes to delineate the loading at the base of the cervical spine and angular acceleration of the head in whiplash. A pendulum-minisled apparatus was used to simulate whiplash acceleration of the thorax at four impact severities. Lower neck loads were measured using a six-axis load cell attached between the minisled and head-neck specimens, and head angular motion was measured with an angular rate sensor attached to the lateral side of the head. Shear and axial force, extension moment, and head angular acceleration increased with impact severity. Shear force was significantly larger than axial force (p < 0.0001). Shear force reached its maximum value at 46 msec. Maximum extension moment occurred between 7 and 22 msec after maximum shear force. Maximum angular acceleration of the head occurred 2 to 18 msec later. Maximum axial force occurred last (106 msec). All four kinetic components reached maximum values during cervical S-curvature, with maximum shear force and extension moment occurring before the attainment of maximum S-curvature. Results of the present investigation indicate that shear force and extension moment at the cervico-thoracic junction drive the non-physiologic cervical S-curvature responsible for whiplash injury and underscore the importance of understanding cervical kinematics and the underlying kinetics.
de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie
2011-12-14
We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics
Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models
Grün, Sonja; Helias, Moritz
2017-01-01
Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition. PMID:28968396
Combining Experiments and Simulations Using the Maximum Entropy Principle
Boomsma, Wouter; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, Kresten
2014-01-01
A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges. PMID:24586124
Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models.
Rostami, Vahid; Porta Mana, PierGianLuca; Grün, Sonja; Helias, Moritz
2017-10-01
Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition.
Yang, Hongli; Downs, J. Crawford; Burgoyne, Claude F.
2009-01-01
Purpose To characterize physiologic inter-eye differences in optic nerve head (ONH) architecture within six normal rhesus monkeys and compare them to inter-eye differences within three previously-reported cynomolgus monkeys with early experimental glaucoma (EEG). Methods Trephinated ONH and peripapillary sclera from both eyes of six normal monkeys were serial sectioned, 3D reconstructed, 3D delineated and parameterized. For each normal animal, and each parameter, physiologic inter-eye difference (PID) was calculated (both overall and regionally) by converting all OS data to OD configuration and subtracting the OS from the OD value and Physiologic Inter-eye Percent Difference (PIPD) was calculated as the PID divided by the measurement mean of the two eyes. For each EEG monkey, inter-eye (EEG minus normal) differences and percent differences for each parameter overall and regionally were compared to the PID and PIPD Maximums. Results For all parameters the PID Maximums were relatively small overall. Compared to overall PID maximums, overall inter-eye differences in EEG monkeys were greatest for laminar deformation and thickening, posterior scleral canal enlargement, cupping and prelaminar neural tissue thickening. Compared to the regional PID Maximums, the lamina cribrosa was posteriorly deformed centrally, inferiorly, inferonasally and superiorly and was thickened centrally. The prelaminar neural tissues were thickened inferiorly, inferonasally and superiorly. Conclusion These data provide the first characterization of PID/PIPD maximums for ONH neural and connective tissue parameters in normal monkeys and serve to further clarify the location and character of early ONH change in experimental glaucoma. However, because of the species differences, the findings in EEG need to be confirmed within EEG rhesus monkey eyes. PMID:18775866
Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon
2011-04-04
A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sogukpinar, Haci; Bozkurt, Ismail
2018-02-01
Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.
Experimental and analytical study of high velocity impact on Kevlar/Epoxy composite plates
NASA Astrophysics Data System (ADS)
Sikarwar, Rahul S.; Velmurugan, Raman; Madhu, Velmuri
2012-12-01
In the present study, impact behavior of Kevlar/Epoxy composite plates has been carried out experimentally by considering different thicknesses and lay-up sequences and compared with analytical results. The effect of thickness, lay-up sequence on energy absorbing capacity has been studied for high velocity impact. Four lay-up sequences and four thickness values have been considered. Initial velocities and residual velocities are measured experimentally to calculate the energy absorbing capacity of laminates. Residual velocity of projectile and energy absorbed by laminates are calculated analytically. The results obtained from analytical study are found to be in good agreement with experimental results. It is observed from the study that 0/90 lay-up sequence is most effective for impact resistance. Delamination area is maximum on the back side of the plate for all thickness values and lay-up sequences. The delamination area on the back is maximum for 0/90/45/-45 laminates compared to other lay-up sequences.
NASA Astrophysics Data System (ADS)
Zhao, Enjin; Shi, Bing; Qu, Ke; Dong, Wenbin; Zhang, Jing
2018-04-01
As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.
NASA Astrophysics Data System (ADS)
Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.
2013-09-01
We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.
Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial
NASA Astrophysics Data System (ADS)
Reinhold, J.; Shcherbakov, M. R.; Chipouline, A.; Panov, V. I.; Helgert, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Kley, E.-B.; Tünnermann, A.; Fedyanin, A. A.; Pertsch, T.
2012-09-01
We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically that when the magnetic resonance is excited by a pump beam, the angular dependence of the third harmonic signal has a local maximum at an incidence angle of θ≃20∘. This maximum is shown to be a fingerprint of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results. This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of the metamaterial.
A rod type linear ultrasonic motor utilizing longitudinal traveling waves: proof of concept
NASA Astrophysics Data System (ADS)
Wang, Liang; Wielert, Tim; Twiefel, Jens; Jin, Jiamei; Wallaschek, Jörg
2017-08-01
This paper proposes a non-resonant linear ultrasonic motor utilizing longitudinal traveling waves. The longitudinal traveling waves in the rod type stator are generated by inducing longitudinal vibrations at one end of the waveguide and eliminating reflections at the opposite end by a passive damper. Considering the Poisson’s effect, the stator surface points move on elliptic trajectories and the slider is driven forward by friction. In contrast to many other flexural traveling wave linear ultrasonic motors, the driving direction of the proposed motor is identical to the wave propagation direction. The feasibility of the motor concept is demonstrated theoretically and experimentally. First, the design and operation principle of the motor are presented in detail. Then, the stator is modeled utilizing the transfer matrix method and verified by experimental studies. In addition, experimental parameter studies are carried out to identify the motor characteristics. Finally, the performance of the proposed motor is investigated. Overall, the results indicate very dynamic drive characteristics. The motor prototype achieves a maximum mean velocity of 115 mm s-1 and a maximum load of 0.25 N. Thereby, the start-up and shutdown times from the maximum speed are lower than 5 ms.
In vivo Loads in the Lumbar L3-4 Disc during a Weight Lifting Extension
Wang, Shaobai; Park, Won Man; Kim, Yoon Hyuk; Cha, Thomas; Wood, Kirkham; Li, Guoan
2014-01-01
Background Knowledge of in vivo human lumbar loading is critical for understanding the lumbar function and for improving surgical treatments of lumbar pathology. Although numerous experimental measurements and computational simulations have been reported, non-invasive determination of in vivo spinal disc loads is still a challenge in biomedical engineering. The object of the study is to investigate the in vivo human lumbar disc loads using a subject-specific and kinematic driven finite element approach. Methods Three dimensional (3D) lumbar spine models of three living subjects were created using MR images. A 3D finite element model of the L3-4 disc, including the annulus fibrosus and nucleus pulposus, was built for each subject. The endplate kinematics of the L3-4 segment of each subject during a dynamic weight lifting extension was determined using a dual fluoroscopic imaging technique. The endplate kinematics was used as displacement boundary conditions of the subject specific finite element model of the L3-4 disc to calculate the in-vivo disc forces and moments during the weight lifting activity. Findings During the weight lifting extension, the L3-4 disc experienced maximum shear load of about 230 N or 0.34 bodyweight at the flexion position and maximum compressive load of 1500 N or 2.28 bodyweight at the upright position. The disc experienced a primary flexion-extension moment during the motion which reached a maximum of 4.2 Nm at upright position with stretched arms holding the weight. Interpretation This study provided quantitative data on in vivo disc loading that could help understand intrinsic biomechanics of the spine and improve surgical treatment of pathological discs using fusion or arthroplasty techniques. PMID:24345591
NASA Astrophysics Data System (ADS)
Wunderlich, Y.; Afzal, F.; Thiel, A.; Beck, R.
2017-05-01
This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum Lmax needed to achieve a good fit is determined. Then, recent polarization measurements for γ p → π0 p from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel γ p → π0 p, those are the N(1680)5/2+ and Δ(1950)7/2+, contributing to the F-waves.
Distance Determination by Gated Viewing Systems Taking into Account the Illuminating Pulse Shape
NASA Astrophysics Data System (ADS)
Gorobets, V. A.; Kuntsevich, B. F.; Shabrov, D. V.
2017-11-01
For gated viewing systems with triangular and trapezoidal illuminating pulses, we have obtained the range-intensity profiles (RIPs) of the signal as the time delay was varied between the leading edges of the gate pulse and the illuminating pulse. We have established that if the duration of the illuminating pulse Δtlas is less than or equal to the duration of the gate pulse ΔtIC, then the expressions for the characteristic distances are the same as for rectangular pulses and they can be used to determine the distance to objects. When Δtlas > ΔtIC, in the case of triangular illuminating pulses the RIP is bell-shaped. For trapezoidal pulses, the RIP is bell-shaped with or without a plateau section. We propose an empirical method for determining the characteristic distances to the RIP maximum and the boundary points for the plateau section, which we then use to calculate the distance to the object. Using calibration constants, we propose a method for determining the distance to an object and we have experimentally confirmed the feasibility of this method.
Flow behaviour of negatively buoyant jets in immiscible ambient fluid
NASA Astrophysics Data System (ADS)
Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.
2012-01-01
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.
An experimental investigation of a three dimensional wall jet. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Catalano, G. D.
1977-01-01
One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).
Thermal adaptation in North American cicadas (Hemiptera: Cicadidae).
Sanborn, Allen F; Heath, James E; Heath, Maxine S; Phillips, Polly K
2017-10-01
We determine and summarize the thermal responses for 118 species and subspecies of North American cicadas representing more than 50 years of fieldwork and experimentation. We investigate the role that habitat and behavior have on the thermal adaptation of the North American cicadas. There are general patterns of increasing thermal responses in warmer floristic provinces and increasing maximum potential temperature within a habitat. Altitude shows an inverse relationship with thermal responses. Comparison of thermal responses of species emerging early or late in the season within the same habitat show increases in the thermal responses along with the increasing environmental temperatures late in the summer. However, behavior, specifically the use of endothermy as a thermoregulatory strategy, can influence the values determined in a particular habitat. Subspecies generally do not differ in their thermal tolerances and thermal tolerances are consistent within a species over distances of more than 7600km. Copyright © 2017 Elsevier Ltd. All rights reserved.
Equation of state for technetium from X-ray diffraction and first-principle calculations
Mast, Daniel S.; Kim, Eunja; Siska, Emily M.; ...
2016-03-20
Here, the ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressure scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with anmore » ambient isothermal bulk modulus of B 0T = 288 GPa and a first pressure derivative of B' = 5.9(2) best represent the compression behavior of technetium metal.« less
NASA Astrophysics Data System (ADS)
Borella, Alessandro
2016-09-01
The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.
Arsenic uptake by Lemna minor in hydroponic system.
Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik
2014-01-01
Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.
Mercury exposure on potential plant Ludwigia octovalvis L. - Preliminary toxicological testing
NASA Astrophysics Data System (ADS)
Alrawiq, Huda S. M.; Mushrifah, I.
2013-11-01
The preliminary test in phytoremediation is necessaryto determine the ability of plant to survive in media with different concentrations of contaminant. It was conducted to determine the maximum concentration of the contaminant that isharmful to the plant and suppress the plant growth. This study showed the ability of Ludwigia octovalvisto resist mercury (Hg) contaminant in sand containing different concentrations of Hg (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experimental work wasperformed under greenhouse conditions for an observation period of 4 weeks. Throughout the 4 weeks duration, the resultsshowed that 66.66% of the plants withered for on exposure to Hg concentration of 4 mg/L and 100% withered at higher concentrations of 6 and 8 mg/L. The results of this study may serve as a basis for research that aims to study uptake and accumulation of Hg using potential phytoremediation plants.
Optimal wavelength band clustering for multispectral iris recognition.
Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi
2012-07-01
This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.
Equation of state for technetium from X-ray diffraction and first-principle calculations
NASA Astrophysics Data System (ADS)
Mast, Daniel S.; Kim, Eunja; Siska, Emily M.; Poineau, Frederic; Czerwinski, Kenneth R.; Lavina, Barbara; Forster, Paul M.
2016-08-01
The ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressureEquation of state for technetium from X-ray diffraction and first-principle calculations scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with an ambient isothermal bulk modulus of B0T=288 GPa and a first pressure derivative of B‧=5.9(2) best represent the compression behavior of technetium metal.
Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.
2011-05-01
Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.
Determining the number of fingers in the lifting Hele-Shaw problem
NASA Astrophysics Data System (ADS)
Miranda, Jose; Dias, Eduardo
2013-11-01
The lifting Hele-Shaw cell flow is a variation of the celebrated radial viscous fingering problem for which the upper cell plate is lifted uniformly at a specified rate. This procedure causes the formation of intricate interfacial patterns. Most theoretical studies determine the total number of emerging fingers by maximizing the linear growth rate, but this generates discrepancies between theory and experiments. In this work, we tackle the number of fingers selection problem in the lifting Hele-Shaw cell by employing the recently proposed maximum-amplitude criterion. Our linear stability analysis accounts for the action of capillary, viscous normal stresses, and wetting effects, as well as the cell confinement. The comparison of our results with very precise laboratory measurements for the total number of fingers shows a significantly improved agreement between theoretical predictions and experimental data. We thank CNPq (Brazilian Sponsor) for financial support.
X-Ray Fluorescence to Determine Zn in Bolivian Children using Hair Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tellería Narvaez, C.A.; Fernández Alcázar, S.; Barrientos Zamora, F.G.
As a first step in the evaluation of nutritional levels in Bolivian children (8–13 years-old), we carried out X-Ray Fluorescence measurements in hair samples of children belonging to different social classes and living either in rural areas or in cities. The aim of this study is to contribute to health policies tending to improve the global health of children and consequently avoid malnutrition. Our method intends to have maximum reliability and at the same time be as simple as possible from an experimental point of view. Additionally, we use this method to determine some other elements such as Fe, Cu,more » Pb, As and Hg, the latter three considered as contaminants that could be present in children living in areas which neighbor mines and industries. This work will be complemented by some biological and medical tests.« less
The mechanical behaviour of NBR/FEF under compressive cyclic stress strain
NASA Astrophysics Data System (ADS)
Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.
2006-06-01
Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.
Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu
2004-06-01
A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drakakis, E.; Karabourniotis, D.
For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousandmore » degrees difference was obtained between atomic and electron temperatures at the maximum current phase.« less
Universal Behavior of the Initial Stage of Drop Impact
NASA Astrophysics Data System (ADS)
Klaseboer, Evert; Manica, Rogerio; Chan, Derek Y. C.
2014-11-01
During the early stages of the impact of a drop on a solid surface, pressure builds up in the intervening thin lubricating air layer and deforms the drop. The extent of the characteristic deformation is determined by the competition between capillary, gravitational, and inertial forces that has been encapsulated in a simple analytic scaling law. For millimetric drops, variations of the observed deformation with impact velocity V exhibit a maximum defined by the Weber and Eötvös numbers: We =1 +Eo . The deformation scales as V1 /2 at the low-velocity capillary regime and as V-1 /2 at the high-velocity inertia regime, in excellent agreement with a variety of experimental systems.
Material For Self-Q-Switching Mirrors For Solid State Laser (MSMSSL)
NASA Astrophysics Data System (ADS)
Wolf, L.; Walocha, J.; Drobnik, A.
1983-09-01
Vanadium dioxide (V02) film exhibits semiconductor-to-metal transition at temperature, Tt near 340 K. The transition is accompanied by changes in optical transmission and relection. In this paper the reflected light spectra were experimentally determined at the two temperatures below and above Tt (300 and 360 K) using film thickness as the parameter. Then we calculated the ratio, Kλ , of reflection coefficient, Rm, in metallic phase to reflection coefficient, Rsc, in semiconductor phase. The film for which the maximum Kλ was observed at λ =1.06μm applied as a mirror in Nd:glass laser. The laser generated giant pulse with duration time at about 50 ns.
Fabric defect detection based on faster R-CNN
NASA Astrophysics Data System (ADS)
Liu, Zhoufeng; Liu, Xianghui; Li, Chunlei; Li, Bicao; Wang, Baorui
2018-04-01
In order to effectively detect the defects for fabric image with complex texture, this paper proposed a novel detection algorithm based on an end-to-end convolutional neural network. First, the proposal regions are generated by RPN (regional proposal Network). Then, Fast Region-based Convolutional Network method (Fast R-CNN) is adopted to determine whether the proposal regions extracted by RPN is a defect or not. Finally, Soft-NMS (non-maximum suppression) and data augmentation strategies are utilized to improve the detection precision. Experimental results demonstrate that the proposed method can locate the fabric defect region with higher accuracy compared with the state-of- art, and has better adaptability to all kinds of the fabric image.
Probability of stress-corrosion fracture under random loading.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
A method is developed for predicting the probability of stress-corrosion fracture of structures under random loadings. The formulation is based on the cumulative damage hypothesis and the experimentally determined stress-corrosion characteristics. Under both stationary and nonstationary random loadings, the mean value and the variance of the cumulative damage are obtained. The probability of stress-corrosion fracture is then evaluated using the principle of maximum entropy. It is shown that, under stationary random loadings, the standard deviation of the cumulative damage increases in proportion to the square root of time, while the coefficient of variation (dispersion) decreases in inversed proportion to the square root of time. Numerical examples are worked out to illustrate the general results.
Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)
NASA Technical Reports Server (NTRS)
Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael
1993-01-01
The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.
NASA Astrophysics Data System (ADS)
Bykovskii, Iu. A.; Kul'Chin, Iu. N.; Obukh, V. F.; Smirnov, V. L.
1990-08-01
The correlated tuning of the speckle pattern in the radiation field of a single-fiber multimode interferometer is investigated experimentally and analytically in the presence of external action. It is found that correlated changes in the speckle pattern are observed in both the near and the far emission fields of the waveguide. An expression is obtained which provides a way to determine the maximum size of the speckle correlation region. The use of spatial filtering for isolating the effect of correlated speckle pattern tuning is suggested. It is shown that the use of a spatial filter makes it possible to increase the efficiency of fiber-optic transducers.
Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ha, Tae Woong
1989-01-01
Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.
NASA Astrophysics Data System (ADS)
Chu, Y. X.; Liang, X. Y.; Yu, L. H.; Xu, L.; Lu, X. M.; Liu, Y. Q.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.
2013-05-01
Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration.
Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V
NASA Technical Reports Server (NTRS)
Elber, W.
1975-01-01
The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.
Positional stability as the light emission limit in sonoluminescence with sulfuric acid.
Urteaga, Raúl; Dellavale, Damián H; Puente, Gabriela F; Bonetto, Fabián J
2007-11-01
We studied a single bubble sonoluminescence system consisting of an argon bubble in a sulfuric acid aq. solution. We experimentally determined the relevant variables of the system. We also measured the bubble position, extent of the bubble orbits, and light intensity as a function of acoustic pressure for different argon concentrations. We find that the Bjerknes force is responsible for the bubble mean position and this imposes a limitation in the maximum acoustic pressure that can be applied to the bubble. The Rayleigh-Taylor instability does not play a role in this system and, at a given gas concentration, the SL intensity depends more on the bubble time of collapse than any other investigated parameter.
Polarization study about a telescope-based transmitter for quantum communication.
Wu, Jincai; He, Zhiping; Zhang, Liang; Yuan, Liyin; Wang, Tianhong; Jia, Jianjun; Shu, Rong; Wang, Jianyu
2017-10-20
We studied the polarization evolution of a reflective telescope designed for the quantum satellite Micius. The change in polarization extinction ratio (PER) of quantum light was derived and calculated. The PER deterioration caused by increase of incidence angle was calculated to determine the boundary conditions for the system design. The performance of the Micius prototype was evaluated both theoretically and experimentally to verify the viability of our optical design. Minimum and maximum PERs of 38 and 55 dB, respectively, were recorded, which were mostly in good agreement with the numerical calculations. Our investigations have contributed to the success of Micius, which is a significant milestone for building a global security network.
John F. Walker; Orson K. Miller; Tom Lei; Shawn Semones; Erik Nilsen; B.D. Clinton
1999-01-01
Thickets of Rhododendron maximum (Ericaceae) (Rm) is the southern Appalachians severely limit regeneration of hardwood and coniferous seedlings. Experimental blocks were established in and out of Rm thickets in a mature, mixed hardwood/conifer forest in Macon County, N.C. Litter and organic layer substrates were removed, cornposited and...
Kubiak, Katarzyna; Adamczyk, Zbigniew; Cieśla, Michał
2016-03-01
Adsorption kinetics of fibrinogen at a gold substrate at various pHs was thoroughly studied using the QCM-D method. The experimental were interpreted in terms of theoretical calculations performed according to the random sequential adsorption model (RSA). In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated at various pHs. It was revealed that for the lower range of fibrinogen coverage the hydration function were considerably lower than previously obtained for the silica sensor [33]. The lower hydration of fibrinogen monolayers on the gold sensor was attributed to its higher roughness. However, for higher fibrinogen coverage the hydration functions for both sensors became identical exhibiting an universal behavior. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γd vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.6mgm(-2) at pH 3.5 and 4.5mgm(-2) at pH 7.4 (for ionic strength of 0.15M). These results agree with theoretical eRSA modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data. These results allow one to develop a method for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation. Copyright © 2015 Elsevier B.V. All rights reserved.
Ma, T; Marangoni, R D; Flint, W
1997-02-01
The aim of this study was to develop a method to reduce the fracture of ceramic orthodontics brackets during debonding procedures. Lasers have been used to thermally soften the bonding resin, which reduces the tensile debonding force. Thermal effects of lasers may create adverse effects to the dental pulp. Previous studies have shown that no pulpal injury occurs when the maximum intrapulpal temperature rise stayed below 2 degrees C. This study investigated the effect of lasing time on intrapulpal temperature increase and tensile debonding force with a 18 watt carbon dioxide laser. Ceramic brackets were bonded to mandibular deciduous bovine teeth and human mandibular first premolars with a photoactivated bonding resin. Modified debonding pliers was used to accurately position the laser beam onto the ceramic bracket. Lasing time required to keep the maximum intrapulpal temperature rise below 2 degrees C was determined by the use of thermocouples inserted into the pulp chambers of the specimens. A tensile debonding force was applied on the control group without lasing and the experimental group was debonded after applying a predetermined lasing time with a carbon dioxide laser. It was found that there was a significance difference (P < 0.05) in tensile debonding force between the control group and the experimental group. It is feasible to use a laser for the debonding of ceramic brackets while keeping the intrapulpal temperature rise below the threshold of pulpal damage.
Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves
Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques
2015-01-01
Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36–45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125
An Experimental and Computational Study of Directional Solidification in Transparent Materials
NASA Technical Reports Server (NTRS)
Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.
1999-01-01
An experimental and numerical study of the horizontal Bridgman growth of pure succinonitrile (SCN) and of a succinonitrile- 1.0 mol.% acetone alloy (SCN- 1.0 mol.% ACE) has been performed. Experiments at growth rates of 0, 2 and 40 micron/s were investigated. The solid/liquid interface was stable (non-dendritic and non-cellular); however, it was not flat. Rather, it was significantly distorted by the influence of convection in the melt and, for the growth cases, by the moving temperature boundary conditions along the ampoule. For the alloy, the interface was.determined to be unstable at growth rates greater than 2.8 micron/s, but stable for the no-growth and 2 micron/s growth cases. When compared to the pure SCN interface, the alloy interface forms closer to the cold zone, indicating that the melting temperature has been suppressed by the addition of the alloying element. Two-dimensional computer simulations were performed for the no-growth case for both the pure and alloy materials. These simulations indicate that a primary longitudinal convective cell is formed in the melt. The maximum magnitude of velocity was calculated to be 1.515 mm/s for pure SCN and 1.724 mm/s for the alloy. The interface shape predicted by the computer simulation agrees well with the experimentally determined shape for the pure SCN case. In ongoing work, numerical simulations of the process during growth conditions are being performed.
Examining the Impact of Video Modeling Techniques on the Efficacy of Clinical Voice Assessment.
Werner, Cara; Bowyer, Samantha; Weinrich, Barbara; Gottliebson, Renee; Brehm, Susan Baker
2017-01-01
The purpose of the current study was to determine whether or not presenting patients with a video model improves efficacy of the assessment as defined by efficiency and decreased variability in trials during the acoustic component of voice evaluations. Twenty pediatric participants with a mean age of 7.6 years (SD = 1.50; range = 6-11 years), 32 college-age participants with a mean age of 21.32 years (SD = 1.61; range = 18-30 years), and 17 adult participants with a mean age of 54.29 years (SD = 2.78; range = 50-70 years) were included in the study and divided into experimental and control groups. The experimental group viewed a training video prior to receiving verbal instructions and performing acoustic assessment tasks, whereas the control group received verbal instruction only prior to completing the acoustic assessment. Primary measures included the number of clinician cues required and instructional time. Standard deviations of acoustic measurements (eg, minimum and maximum frequency) were also examined to determine effects on stability. Individuals in the experimental group required significantly less cues, P = 0.012, compared to the control group. Although some trends were observed in instructional time and stability of measurements, no significant differences were observed. The findings of this study may be useful for speech-language pathologists in regard to improving assessment of patients' voice disorders with the use of video modeling. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
3D reconstruction of the magnetic vector potential using model based iterative reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat, K. C.; Aditya Mohan, K.; Phatak, Charudatta
Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less
Investigation of Portevin-Le Chatelier effect in 5456 Al-based alloy using digital image correlation
NASA Astrophysics Data System (ADS)
Cheng, Teng; Xu, Xiaohai; Cai, Yulong; Fu, Shihua; Gao, Yue; Su, Yong; Zhang, Yong; Zhang, Qingchuan
2015-02-01
A variety of experimental methods have been proposed for Portevin-Le Chatelier (PLC) effect. They mainly focused on the in-plane deformation. In order to achieve the high-accuracy measurement, three-dimensional digital image correlation (3D-DIC) was employed in this work to investigate the PLC effect in 5456 Al-based alloy. The temporal and spatial evolutions of deformation in the full field of specimen surface were observed. The large deformation of localized necking was determined experimentally. The distributions of out-of-plane displacement over the loading procedure were also obtained. Furthermore, a comparison of measurement accuracy between two-dimensional digital image correlation (2D-DIC) and 3D-DIC was also performed. Due to the theoretical restriction, the measurement accuracy of 2D-DIC decreases with the increase of deformation. A maximum discrepancy of about 20% with 3D-DIC was observed in this work. Therefore, 3D-DIC is actually more essential for the high-accuracy investigation of PLC effect.
Box-Behnken statistical design to optimize thermal performance of energy storage systems
NASA Astrophysics Data System (ADS)
Jalalian, Iman Joz; Mohammadiun, Mohammad; Moqadam, Hamid Hashemi; Mohammadiun, Hamid
2018-05-01
Latent heat thermal storage (LHTS) is a technology that can help to reduce energy consumption for cooling applications, where the cold is stored in phase change materials (PCMs). In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing RT25 as phase change material (PCM). Process optimization of the experimental conditions (inlet air temperature and velocity and number of slabs) was carried out by means of Box-Behnken design (BBD) of Response surface methodology (RSM). Two parameters (cooling time and COP value) were chosen to be the responses. Both of the responses were significantly influenced by combined effect of inlet air temperature with velocity and number of slabs. Simultaneous optimization was performed on the basis of the desirability function to determine the optimal conditions for the cooling time and COP value. Maximum cooling time (186 min) and COP value (6.04) were found at optimum process conditions i.e. inlet temperature of (32.5), air velocity of (1.98) and slab number of (7).
Xiao, Wei; Jin, Xianbo; Deng, Yuan; Wang, Dihua; Hu, Xiaohong; Chen, George Z
2006-08-11
The electrochemical reduction of solid SiO2 (quartz) to Si is studied in molten CaCl2 at 1173 K. Experimental observations are compared and agree well with a novel penetration model in relation with electrochemistry at the dynamic conductor|insulator|electrolyte three-phase interlines. The findings show that the reduction of a cylindrical quartz pellet at certain potentials is mainly determined by the diffusion of the O(2-) ions and also the ohmic polarisation in the reduction-generated porous silicon layer. The reduction rate increases with the overpotential to a maximum after which the process is retarded, most likely due to precipitation of CaO in the reaction region (cathodic passivation). Data are reported on the reduction rate, current efficiency and energy consumption during the electroreduction of quartz under potentiostatic conditions. These theoretical and experimental findings form the basis for an in-depth discussion on the optimisation of the electroreduction method for the production of silicon.
A novel L-shaped linear ultrasonic motor operating in a single resonance mode
NASA Astrophysics Data System (ADS)
Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu
2018-01-01
In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.
NASA Technical Reports Server (NTRS)
Schum, Harold J; Davison, Elmer H
1956-01-01
The over-all component performance characteristics of a J71 experimental three-stage turbine with 97 percent design stator areas were determined over a range of speed and pressure ratio at inlet-air conditions of approximately 35 inches of mercury absolute and 700 degrees R. The turbine break internal efficiency at design operating conditions was 0.877; the maximum efficiency of 0.886 occurred at a pressure ratio of 4.0 at 120 percent of design equivalent rotor speed. In general, the turbine yielded a wide range of efficient operation, permitting flexibility in the choice of different modes of engine operation. Limiting blade loading of the third rotor was approached but not obtained over the range of conditions investigated herein. At the design operating point, the turbine equivalent weight flow was approximately 105 percent of design. Choking of the third-rotor blades occurred at design speed and an over-all pressure ratio of 4.2.
NASA Astrophysics Data System (ADS)
Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.
2016-09-01
The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.
Identification of complex stiffness tensor from waveform reconstruction
NASA Astrophysics Data System (ADS)
Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.
2002-03-01
An inverse method is proposed in order to determine the viscoelastic properties of composite-material plates from the plane-wave transmitted acoustic field. Analytical formulations of both the plate transmission coefficient and its first and second derivatives are established, and included in a two-step inversion scheme. Two objective functions to be minimized are then designed by considering the well-known maximum-likelihood principle and by using an analytic signal formulation. Through these innovative objective functions, the robustness of the inversion process against high level of noise in waveforms is improved and the method can be applied to a very thin specimen. The suitability of the inversion process for viscoelastic property identification is demonstrated using simulated data for composite materials with different anisotropy and damping degrees. A study of the effect of the rheologic model choice on the elastic property identification emphasizes the relevance of using a phenomenological description considering viscosity. Experimental characterizations show then the good reliability of the proposed approach. Difficulties arise experimentally for particular anisotropic media.
Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.
Bottaro, Sandro; Bussi, Giovanni; Kennedy, Scott D; Turner, Douglas H; Lindorff-Larsen, Kresten
2018-05-01
RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.
Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs
NASA Astrophysics Data System (ADS)
Musseau, O.; Torres, A.; Campbell, A. B.; Knudson, A. R.; Buchner, S.; Fischer, B.; Schlogl, M.; Briand, P.
1999-12-01
We present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. We used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a nondestructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a sudden change in the charge collection image. "Hot spots" are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.
Control of Flowing Liquid Films by Electrostatic Fields in Space
NASA Technical Reports Server (NTRS)
Griffing, E. M.; Bankoff, S. G.; Schluter, R. A.; Miksis, M. J.
1999-01-01
The interaction of a spacially varying electric field and a flowing thin liquid film is investigated experimentally for the design of a proposed light weight space radiator. Electrodes are utilized to create a negative pressure at the bottom of a fluid film and suppress leaks if a micrometeorite punctures the radiator surface. Experimental pressure profiles under a vertical falling film, which passes under a finite electrode, show that fields of sufficient strength can be used safely in such a device. Leak stopping experiments demonstrate that leaks can be stopped with an electric field in earth gravity. A new type of electrohydrodynamic instability causes waves in the fluid film to develop into 3D cones and touch the electrode at a critical voltage. Methods previously used to calculate critical voltages for non moving films are shown to be inappropriate for this situation. The instability determines a maximum field which may be utilized in design, so the possible dependence of critical voltage on electrode length, height above the film, and fluid Reynolds number is discussed.
3D reconstruction of the magnetic vector potential using model based iterative reconstruction.
Prabhat, K C; Aditya Mohan, K; Phatak, Charudatta; Bouman, Charles; De Graef, Marc
2017-11-01
Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model for image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. A comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Yadav, Kaushlesh K; Garg, Neelima; Kumar, Devendra; Kumar, Sanjay; Singh, Achal; Muthukumar, M
2015-01-01
Polygalacturonase (PG) degrades pectin into D-galacturonic acid monomers and is used widely in food industry especially for juice clarification. In the present study,. fermentation conditions for polygalacturonase production by Asgergillus niger NAIMCCF-02958, using mango peel as substrate, were optimized using the 2(3) factorial design with central composite rotatable experimental design (CCRD) of response surface methodology (RSM). The maximum PG activity 723.66 U g(-1) was achieved under pH 4.0, temperature 30 degrees C and 2% inoculum by response surface curve. The experimental value of PG activity wkas higher 607.65 U g(-1) than the predicted value 511.75 U g(-1). Under the proposed optimized conditions, the determination coefficient (R2) was equal to 0.66 indicating that the model could explain 66% of the total variation as well as establish the relationship between the variables and the responses. ANOVA analysis and the three dimensional plots also confirmed interactions among the parameters.
Free vibrations of a pultruded GFRP frame with different rotational stiffnesses of bolted joints
NASA Astrophysics Data System (ADS)
Boscato, G.; Russo, S.
2013-01-01
Experimental and numerical results for the dynamic response of an all-FRP (fiber-reinforced polymer) twodimensional frame in free vibration are presented. The frame was assembled of pultruded glass-fiber-reinforced polymer (GFRP) profiles and bolted beam-to-column connections with GFRP angles. To give a variable rotational stiffness to the four beam-to-column major-axis joints, all bolts were tightened by a constant torque of 10, 25, or 40 N · m. Experimental measurements were performed on the three configurations to identify the natural frequencies of the first vibration mode in the plane of the frame and to determine the ability of each structure to dissipate the initial acceleration imposed on it through damping. The results obtained are compared with analytical and finite-element calculations. It was found that an increased bolt torque improved the dynamic response of the GFRP frame by reducing its vibration time and maximum displacements and by enhancing its dissipation capacity.
3D reconstruction of the magnetic vector potential using model based iterative reconstruction
Prabhat, K. C.; Aditya Mohan, K.; Phatak, Charudatta; ...
2017-07-03
Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less
A novel L-shaped linear ultrasonic motor operating in a single resonance mode.
Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu
2018-01-01
In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.
Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy
NASA Astrophysics Data System (ADS)
Srinath, M. K.; Prasad, M. S. Ganesha
2018-04-01
The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.
2002-01-01
The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.
Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.
Alfaro, N; Cano, R; Fdz-Polanco, F
2014-10-01
Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced Mathematical Tools in Metrology III
NASA Astrophysics Data System (ADS)
Ciarlini, P.
The Table of Contents for the book is as follows: * Foreword * Invited Papers * The ISO Guide to the Expression of Uncertainty in Measurement: A Bridge between Statistics and Metrology * Bootstrap Algorithms and Applications * The TTRSs: 13 Oriented Constraints for Dimensioning, Tolerancing & Inspection * Graded Reference Data Sets and Performance Profiles for Testing Software Used in Metrology * Uncertainty in Chemical Measurement * Mathematical Methods for Data Analysis in Medical Applications * High-Dimensional Empirical Linear Prediction * Wavelet Methods in Signal Processing * Software Problems in Calibration Services: A Case Study * Robust Alternatives to Least Squares * Gaining Information from Biomagnetic Measurements * Full Papers * Increase of Information in the Course of Measurement * A Framework for Model Validation and Software Testing in Regression * Certification of Algorithms for Determination of Signal Extreme Values during Measurement * A Method for Evaluating Trends in Ozone-Concentration Data and Its Application to Data from the UK Rural Ozone Monitoring Network * Identification of Signal Components by Stochastic Modelling in Measurements of Evoked Magnetic Fields from Peripheral Nerves * High Precision 3D-Calibration of Cylindrical Standards * Magnetic Dipole Estimations for MCG-Data * Transfer Functions of Discrete Spline Filters * An Approximation Method for the Linearization of Tridimensional Metrology Problems * Regularization Algorithms for Image Reconstruction from Projections * Quality of Experimental Data in Hydrodynamic Research * Stochastic Drift Models for the Determination of Calibration Intervals * Short Communications * Projection Method for Lidar Measurement * Photon Flux Measurements by Regularised Solution of Integral Equations * Correct Solutions of Fit Problems in Different Experimental Situations * An Algorithm for the Nonlinear TLS Problem in Polynomial Fitting * Designing Axially Symmetric Electromechanical Systems of Superconducting Magnetic Levitation in Matlab Environment * Data Flow Evaluation in Metrology * A Generalized Data Model for Integrating Clinical Data and Biosignal Records of Patients * Assessment of Three-Dimensional Structures in Clinical Dentistry * Maximum Entropy and Bayesian Approaches to Parameter Estimation in Mass Metrology * Amplitude and Phase Determination of Sinusoidal Vibration in the Nanometer Range using Quadrature Signals * A Class of Symmetric Compactly Supported Wavelets and Associated Dual Bases * Analysis of Surface Topography by Maximum Entropy Power Spectrum Estimation * Influence of Different Kinds of Errors on Imaging Results in Optical Tomography * Application of the Laser Interferometry for Automatic Calibration of Height Setting Micrometer * Author Index
NASA Astrophysics Data System (ADS)
Tan, Eugene Wie Loon
1999-09-01
The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation) analyses of the flexure and beam specimens were also performed. These progressive failure analyses more closely approximated flexural behavior under actual testing conditions by reducing the elastic moduli of elements that were considered to have partially or totally failed. Individual element failures were predicted using the maximum stress, Tsai-Hill and Tsai-Wu failure criteria. Excellent predictions of flexural behavior were attributed to the progressive failure analyses combined with an appropriate failure criterion, and the reliable input material properties that were generated.
Size-selective toxicity effects of the antimicrobial tylosin on estuarine phytoplankton communities.
Kline, Allison; Pinckney, James L
2016-09-01
The purpose of this study was to determine the lethal and sublethal effects of the antimicrobial tylosin on natural estuarine phytoplankton communities. Bioassays were used in experimental treatments with final concentrations of 5 to 1000 μg tylosin l(-1). Maximum percent inhibition ranged from 57 to 85% at concentrations of 200-400 μg tylosin l(-1). Half maximum inhibition concentrations of tylosin were ca. 5x lower for small phytoplankton (<20 μm) relative to larger phytoplankton (>20 μm) and suggests that small phytoplankton are more sensitive to tylosin exposure. Sublethal effects occurred at concentrations as low as 5 μg tylosin l(-1). Environmental concentrations of tylosin (e.g., 0.2-3 μg l(-1)) may have a significant sublethal effect that alters the size structure and composition of phytoplankton communities. The results of this study highlight the potential importance of cell size on toxicity responses of estuarine phytoplankton. Copyright © 2016 Elsevier Ltd. All rights reserved.
The free growth criterion for grain initiation in TiB 2 inoculated γ-titanium aluminide based alloys
NASA Astrophysics Data System (ADS)
Gosslar, D.; Günther, R.
2014-02-01
γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.
Baskar, Gurunathan; Sathya, Shree Rajesh K Lakshmi Jai; Jinnah, Riswana Begum; Sahadevan, Renganathan
2011-01-01
Response surface methodology was employed to optimize the concentration of four important cultivation media components such as cottonseed oil cake, glucose, NH4Cl, and MgSO4 for maximum medicinal polysaccharide yield by Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum MTCC 1039 in submerged culture. The second-order polynomial model describing the relationship between media components and polysaccharide yield was fitted in coded units of the variables. The higher value of the coefficient of determination (R2 = 0.953) justified an excellent correlation between media components and polysaccharide yield, and the model fitted well with high statistical reliability and significance. The predicted optimum concentration of the media components was 3.0% cottonseed oil cake, 3.0% glucose, 0.15% NH4Cl, and 0.045% MgSO4, with the maximum predicted polysaccharide yield of 819.76 mg/L. The experimental polysaccharide yield at the predicted optimum media components was 854.29 mg/L, which was 4.22% higher than the predicted yield.
Nakano, Jinichiro
2013-01-01
The thermodynamic properties of the Fe–Mn–C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T0, independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T0. The driving force for the fcc to hcp transition, defined as a dimensionless value –dGm/(RT), was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed. PMID:27877555
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Nakano, Jinichiro
2013-03-15
Thermodynamic properties of the Fe-Mn-C system were investigated by using an analytical model constructed by a CALPHAD approach. Stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T 0, independent of composition and temperature when the other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T 0. The driving force for the fcc to hcp transition, defined as a dimensionless value –dG m/(RT), was determined in the presence of Fe-rich and Mn-rich compositionmore » sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the studied compositions. The obtained results revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed.« less
Downstream processing of hyperforin from Hypericum perforatum root cultures.
Haas, Paul; Gaid, Mariam; Zarinwall, Ajmal; Beerhues, Ludger; Scholl, Stephan
2018-05-01
Hyperforin is a major metabolite of the medicinal plant Hypericum perforatum (St. John's Wort) and has recently been found in hormone induced root cultures. The objective of this study is to identify a downstream process for the production of a hyperforin-rich extract with maximum extraction efficiency and minimal decomposition. The maximum extraction time was found to be 60min. The comparison of two equipment concepts for the extraction and solvent evaporation was performed employing two different solvents. While the rotary mixer showed better results for the extraction efficiency than a stirred vessel, the latter set-up was able to handle larger volumes but did not meet all process requirements. For the evaporation the prompt evaporation of the extraction agent using nitrogen stripping led to minor decomposition. In a 5L stirred vessel, the highest specific extraction of hyperforin was 4.3mg hyperforin/g dry weight bio material. Parameters for the equipment design for extraction and solvent evaporation were determined based on the experimental data. Copyright © 2017 Elsevier B.V. All rights reserved.
The gas-phase absorption spectrum of a neutral GFP model chromophore.
Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H
2007-01-01
We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.
Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.
Deepanraj, B; Sivasubramanian, V; Jayaraj, S
2015-11-01
In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
Response surface methodology for cadmium biosorption on Pseudomonas aeruginosa.
Ahmady-Asbchin, Salman
2016-01-01
In this research the effects of various physicochemical factors on Cd(2+) biosorption such as initial metal concentration, pH and contact exposure time were studied. This study has shown a Cd(2+) biosorption, equilibrium time of about 5 min for Pseudomonas aeruginosa and the adsorption equilibrium data were well described by Langmuir equation. The maximum capacity for biosorption has been extrapolated to 0.56 mmol.g(-1) for P. aeruginosa. The thermodynamic properties ΔG(0), ΔH(0), and ΔS(0) of Cd(2+) for biosorption were analyzed by the equilibrium constant value obtained from experimented data at different temperatures. The results show that biosorption of Cd(2+) by P. aeruginosa are endothermic and spontaneous with ΔH value of 36.35 J.mol(-1). By response surface methodology, the quadratic model has adequately described the experimental data based on the adjusted determination coefficient (R(2) = 0.98). The optimum conditions for maximum uptake onto the biosorbent were established at 0.5 g.l(-1) biosorbent concentration, pH 6 for the aqueous solution, and a temperature of 30 °C.
Surface tension measurement of undercooled liquid Ni-based multicomponent alloys
NASA Astrophysics Data System (ADS)
Chang, J.; Wang, H. P.; Zhou, K.; Wei, B.
2012-09-01
The surface tensions of liquid ternary Ni-5%Cu-5%Fe, quaternary Ni-5%Cu-5%Fe-5%Sn and quinary Ni-5%Cu-5%Fe-5%Sn-5%Ge alloys were determined as a function of temperature by the electromagnetic levitation oscillating drop method. The maximum undercoolings obtained in the experiments are 272 (0.15T L), 349 (0.21T L) and 363 K (0.22T L), respectively. For all the three alloys, the surface tension decreases linearly with the rise of temperature. The surface tension values are 1.799, 1.546 and 1.357 N/m at their liquidus temperatures of 1719, 1644 and 1641 K. Their temperature coefficients are -4.972 × 10-4, -5.057 × 10-4 and -5.385 × 10-4 N/m/K. It is revealed that Sn and Ge are much more efficient than Cu and Fe in reducing the surface tension of Ni-based alloys. The addition of Sn can significantly enlarge the maximum undercooling at the same experimental condition. The viscosity of the three undercooled liquid alloys was also derived from the surface tension data.
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2017-05-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
Devi, Rani; Alemayehu, Esayas; Singh, Vijender; Kumar, Ashok; Mengistie, Embialle
2008-05-01
An attempt was made to investigate the removal of fluoride, arsenic and coliform bacteria from drinking water using modified homemade filter media. Batch mode experimental study was conducted to test the efficiency of modified homemade filter for reduction of impurities under the operating condition of treatment time. The physico-chemical and biological analysis of water samples had been done before and after the treatment with filter media, using standard methods. Optimum operating treatment time was determined for maximum removal of these impurities by running the experiment for 2, 4, 6, 8, 10 and 12h, respectively. The maximum reduction of fluoride, arsenic and coliform bacteria in percentage was 85.60%, 93.07% and 100% and their residual values were 0.72 mg/l, 0.009 mg/l and 0 coliform cells/100ml, respectively after a treatment time of 10h. These residual values were under the permissible limits prescribed by WHO. Hence this could be a cheap, easy and an efficient technique for removal of fluoride, arsenic and coliform bacteria from drinking water.
NASA Technical Reports Server (NTRS)
Cho, Y. I.; Back, L. H.; Crawford, D. W.
1985-01-01
Changes in an arterial flow field due to mild atherosclerosis were determined using a main coronary artery casting with a maximum obstruction of about 50 percent by area. Local pressure changes were measured using six pressure tap holes along the wall of the casting. The test-fluid was a 33 percent sugar-water solution of approximately the same viscosity as human blood. Flow visualization results were obtained by injecting blue-dye through the pressure tap holes. Measurement of local pressure demonstrated a significant Reynolds number effect. At Reynolds numbers of 80-710, a local pressure rise was observed downstream of the mild atherosclerotic constriction due to momentum changes. The Reynolds number necessary for flow separation in the divergent region of the coronary casting was about 330. The experimental results can be used to obtain a quantitative relation between coronary morphology and the fluid dynamic consequences of mild diffuse disease under conditions of maximum cardiac demand i.e., higher coronary flow rates and Reynolds numbers associated with space and atmospheric flight.