Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.
Load Measurement in Structural Members Using Guided Acoustic Waves
NASA Astrophysics Data System (ADS)
Chen, Feng; Wilcox, Paul D.
2006-03-01
A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.
Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas
2018-03-26
In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.
Lim, Se-Ho; Kim, Yeon-Ho; Kim, Moon-Key; Nam, Woong; Kang, Sang-Hoon
2016-12-01
We examined whether cutting a fibula graft with a surgical guide template, prepared with computer-aided design/computer-aided manufacturing (CAD/CAM), would improve the precision and accuracy of mandibular reconstruction. Thirty mandibular rapid prototype (RP) models were allocated to experimental (N = 15) and control (N = 15) groups. Thirty identical fibular RP models were assigned randomly, 15 to each group. For reference, we prepared a reconstructed mandibular RP model with a three-dimensional printer, based on surgical simulation. In the experimental group, a stereolithography (STL) surgical guide template, based on simulation, was used for cutting the fibula graft. In the control group, the fibula graft was cut manually, with reference to the reconstructed RP mandible model. The mandibular reconstructions were compared to the surgical simulation, and errors were calculated for both the STL surgical guide and the manual methods. The average differences in three-dimensional, minimum distances between the reconstruction and simulation were 9.87 ± 6.32 mm (mean ± SD) for the STL surgical guide method and 14.76 ± 10.34 mm (mean ± SD) for the manual method. The STL surgical guide method incurred less error than the manual method in mandibular reconstruction. A fibula cutting guide improved the precision of reconstructing the mandible with a fibula graft.
Experimental Validation of a Fast Forward Model for Guided Wave Tomography of Pipe Elbows.
Brath, Alex J; Simonetti, Francesco; Nagy, Peter B; Instanes, Geir
2017-05-01
Ultrasonic guided wave tomography (GWT) methods for the detection of corrosion and erosion damage in straight pipe sections are now well advanced. However, successful application of GWT to pipe bends has not yet been demonstrated due to the computational burden associated with the complex forward model required to simulate guided wave propagation through the bend. In a previous paper [Brath et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 61, pp. 815-829, 2014], we have shown that the speed of the forward model can be increased by replacing the 3-D pipe bend with a 2-D rectangular domain in which guided wave propagation is formulated based on an artificially inhomogeneous and elliptically anisotropic (INELAN) acoustic model. This paper provides further experimental validation of the INLEAN model by studying the traveltime shifts caused by the introduction of shallow defects on the elbow of a pipe bend. Comparison between experiments and simulations confirms that a defect can be modeled as a phase velocity perturbation to the INLEAN velocity field with accuracy that is within the experimental error of the measurements. In addition, it is found that the sensitivity of traveltime measurements to the presence of damage decreases as the damage position moves from the interior side of the bend (intrados) to the exterior one (extrados). This effect is due to the nonuniform ray coverage obtainable when transmitting the guided wave signals with one ring array of sources on one side of the elbow and receiving with a second array on the other side.
ERIC Educational Resources Information Center
Armstrong, Richard; And Others
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
ERIC Educational Resources Information Center
Harpel, Jim; And Others
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
ERIC Educational Resources Information Center
Harpel, Jim; And Others
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
Elastic solitons in delaminated bars: splitting leads to fission
NASA Astrophysics Data System (ADS)
Samsonov, A. M.; Dreiden, G. V.; Khusnutdinova, K. R.; Semenova, I. V.
2008-06-01
Recent theoretical and successful experimental studies confirmed existence and demonstrated main properties of bulk strain solitary waves in nonlinearly elastic solid wave guides. Our current research is devoted to nonlinear wave processes in layered elastic wave guides with inhomogeneities modelling delamination. We present first theoretical and experimental results showing the influence of delamination on the parameters of the longitudinal strain solitary wave.
ERIC Educational Resources Information Center
Heidema, Clare; Schweitzer, Janis
This guide represents the final experimental version of a pilot project conducted in the United States between 1973 and 1976. The ideas and manner of presentation are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings ("papygrams") and models of our numeration system (the…
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
ERIC Educational Resources Information Center
Heidema, Clare; Schweitzer, Janis
This guide represents the final experimental version of a pilot project conducted in the United States between 1973 and 1976. The ideas and manner of presentation are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings ("papygrams") and models of our numeration system (the…
Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills
NASA Astrophysics Data System (ADS)
Amida, N.; Supriyanti, F. M. T.; Liliasari
2017-02-01
This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of a pilot project conducted in the Unites States between 1973 and 1976. The ideas and manner of presentation are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings ("papygrams") and models of our numeration system (the…
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
Millimeter Wave Radar Clutter Program
1989-10-30
conduct experimental measurments and develop theoretical models to Improve our understanding of electromagnetic wave interaction with terrain at...various types of terrain under a variety of conditions. The experimental data servos to guide the development of the models as well as to verify their... experimental measurement. Task 4 - Examination of Bistatic Scattering from Surfaces and Volumes: Prior to this program, no millimeter-wave bistatic
ERIC Educational Resources Information Center
Sundberg, Donald C.; Someshwar, Arun V.
1989-01-01
Describes the structure of an in-depth laboratory project chemical engineering. Provides modeling work to guide experimentation and experimental work on heat transfer analysis. Discusses the experimental results and evaluation of the project. (YP)
The effect of inquiry-flipped classroom model toward students' achievement on chemical reaction rate
NASA Astrophysics Data System (ADS)
Paristiowati, Maria; Fitriani, Ella; Aldi, Nurul Hanifah
2017-08-01
The aim of this research is to find out the effect of Inquiry-Flipped Classroom Models toward Students' Achievement on Chemical Reaction Rate topic. This study was conducted at SMA Negeri 3 Tangerang in Eleventh Graders. The Quasi Experimental Method with Non-equivalent Control Group design was implemented in this study. 72 students as the sample was selected by purposive sampling. Students in experimental group were learned through inquiry-flipped classroom model. Meanwhile, in control group, students were learned through guided inquiry learning model. Based on the data analysis, it can be seen that there is significant difference in the result of the average achievement of the students. The average achievement of the students in inquiry-flipped classroom model was 83,44 and the average achievement of the students in guided inquiry learning model was 74,06. It can be concluded that the students' achievement with inquiry-flipped classroom better than guided inquiry. The difference of students' achievement were significant through t-test which is tobs 3.056 > ttable 1.994 (α = 0.005).
Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-03-01
The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Experimental Model for the Study of Periodontal Wound Healing
1991-05-01
the soft tissue over the submerged root may occur. Models that communicate with the oral cavity (i.e., experimentally produced and naturally...membranes have been successfully utilized to demonstrate regeneration of periodontal tissues . Membranes made of collagen (Pitaru etal., 1987, 1988 a & b...1988. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wounds. J Periodont Res 23:107. Isidor, F., Karring, T
Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta.
André, Ingemar
2018-01-01
Determining high-resolution structures of proteins with helical symmetry can be challenging due to limitations in experimental data. In such instances, structure-based protein simulations driven by experimental data can provide a valuable approach for building models of helical assemblies. This chapter describes how the Rosetta macromolecular package can be used to model homomeric protein assemblies with helical symmetry in a range of modeling scenarios including energy refinement, symmetrical docking, comparative modeling, and de novo structure prediction. Data-guided structure modeling of helical assemblies with experimental information from electron density, X-ray fiber diffraction, solid-state NMR, and chemical cross-linking mass spectrometry is also described.
Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.
Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A
2008-03-01
In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.
Hage, Maria Cristina F N S; Massaferro, Ana Beatriz; Lopes, Érika Rondon; Beraldo, Carolina Mariano; Daniel, Jéssika
2016-03-01
Pericardial effusion can lead to cardiac tamponade, which endangers an animal's life. Ultrasound-guided pericardiocentesis is used to remove abnormal liquid; however, it requires technical expertise. In veterinary medical education, the opportunity to teach this procedure to save lives during emergencies is rare; therefore, simulators are recommended for this practice. The present study aimed to create a model that can be made "at home" at low cost for ultrasound-guided pericardiocentesis training and to gather feedback about this model through questionnaires given to the participants. Eighteen professionals and thirty-six students were introduced to the simulator in pairs. After the simulation training session, participants filled out the questionnaire. Participants considered the model strong in the following areas: visualization of the pericardium, the heart, fluid in the pericardium, and fluid decrease during fictitious pericardiocentesis and its realism. They considered the model weak or moderate in the following areas: visualization of the surrounding tissues, difficulty of pericardial puncture, and visualization of the catheter. The professionals classified the realism of the experimental heart as moderate, whereas the undergraduate students classified it as strong. All participants believed that the experimental model could be useful in preparing for a future real situation. This model fulfills the need for a practical, realistic, and cost-effective model for ultrasound-guided pericardiocentesis training. Copyright © 2016 The American Physiological Society.
Lin, Chih-Tin; Meyhofer, Edgar; Kurabayashi, Katsuo
2010-01-01
Directional control of microtubule shuttles via microfabricated tracks is key to the development of controlled nanoscale mass transport by kinesin motor molecules. Here we develop and test a model to quantitatively predict the stochastic behavior of microtubule guiding when they mechanically collide with the sidewalls of lithographically patterned tracks. By taking into account appropriate probability distributions of microscopic states of the microtubule system, the model allows us to theoretically analyze the roles of collision conditions and kinesin surface densities in determining how the motion of microtubule shuttles is controlled. In addition, we experimentally observe the statistics of microtubule collision events and compare our theoretical prediction with experimental data to validate our model. The model will direct the design of future hybrid nanotechnology devices that integrate nanoscale transport systems powered by kinesin-driven molecular shuttles.
Promoting the Development of Mentor Teachers: Theory and Research Programs Using Guided Reflection.
ERIC Educational Resources Information Center
Reiman, Alan J.; Thies-Sprinthall, Lois
1993-01-01
Describes theory and a research program that uses guided reflection to promote the development of mentor teachers. Significant findings from a quasi-experimental study and a replication study are presented. The paper can assist teacher educators, policymakers, and school personnel who are searching for a teacher induction model. (GLR)
Gaseous Sulfate Solubility in Glass: Experimental Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bliss, Mary
2013-11-30
Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature tomore » guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.« less
Study on the leakage flow through a clearance gap between two stationary walls
NASA Astrophysics Data System (ADS)
Zhao, W.; Billdal, J. T.; Nielsen, T. K.; Brekke, H.
2012-11-01
In the present paper, the leakage flow in the clearance gap between stationary walls was studied experimentally, theoretically and numerically by the computational fluid dynamics (CFD) in order to find the relationship between leakage flow, pressure difference and clearance gap. The experimental set-up of the clearance gap between two stationary walls is the simplification of the gap between the guide vane faces and facing plates in Francis turbines. This model was built in the Waterpower laboratory at Norwegian University of Science and Technology (NTNU). The empirical formula for calculating the leakage flow rate between the two stationary walls was derived from the empirical study. The experimental model is simulated by computational fluid dynamics employing the ANSYS CFX commercial software in order to study the flow structure. Both numerical simulation results and empirical formula results are in good agreement with the experimental results. The correction of the empirical formula is verified by experimental data and has been proven to be very useful in terms of quickly predicting the leakage flow rate in the guide vanes for hydraulic turbines.
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
NASA Astrophysics Data System (ADS)
Ladpli, Purim; Kopsaftopoulos, Fotis; Chang, Fu-Kuo
2018-04-01
This work presents the feasibility of monitoring state of charge (SoC) and state of health (SoH) of lithium-ion pouch batteries with acousto-ultrasonic guided waves. The guided waves are propagated and sensed using low-profile, built-in piezoelectric disc transducers that can be retrofitted onto off-the-shelf batteries. Both experimental and analytical studies are performed to understand the relationship between guided waves generated in a pitch-catch mode and battery SoC/SoH. The preliminary experiments on representative pouch cells show that the changes in time of flight (ToF) and signal amplitude (SA) resulting from shifts in the guided wave signals correlate strongly with the electrochemical charge-discharge cycling and aging. An analytical acoustic model is developed to simulate the variations in electrode moduli and densities during cycling, which correctly validates the absolute values and range of experimental ToF. It is further illustrated via a statistical study that ToF and SA can be used in a prediction model to accurately estimate SoC/SoH. Additionally, by using multiple sensors in a network configuration on the same battery, a significantly more reliable and accurate SoC/SoH prediction is achieved. The indicative results from this study can be extended to develop a unified guided-wave-based framework for SoC/SoH monitoring of many lithium-ion battery applications.
ERIC Educational Resources Information Center
Bailey, Cheryl P.
2009-01-01
This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations…
NASA Astrophysics Data System (ADS)
Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David
2018-04-01
Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.
Constitutive Modeling of the Mechanical Properties of Optical Fibers
NASA Technical Reports Server (NTRS)
Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.
1998-01-01
Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.
Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.
Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M
2010-03-01
In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.
Model-Based IN SITU Parameter Estimation of Ultrasonic Guided Waves in AN Isotropic Plate
NASA Astrophysics Data System (ADS)
Hall, James S.; Michaels, Jennifer E.
2010-02-01
Most ultrasonic systems employing guided waves for flaw detection require information such as dispersion curves, transducer locations, and expected propagation loss. Degraded system performance may result if assumed parameter values do not accurately reflect the actual environment. By characterizing the propagating environment in situ at the time of test, potentially erroneous a priori estimates are avoided and performance of ultrasonic guided wave systems can be improved. A four-part model-based algorithm is described in the context of previous work that estimates model parameters whereby an assumed propagation model is used to describe the received signals. This approach builds upon previous work by demonstrating the ability to estimate parameters for the case of single mode propagation. Performance is demonstrated on signals obtained from theoretical dispersion curves, finite element modeling, and experimental data.
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie
2016-01-01
Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
Beyond effective teaching: Enhancing students’ metacognitive skill through guided inquiry
NASA Astrophysics Data System (ADS)
Adnan; Bahri, Arsad
2018-01-01
This research was quasi experimental with pretest posttes non-equivalent control group design. This research aimed to compare metacognitive skill of students between tought by guided inquiry and traditional teaching. Sample of this research was the students at even semester at the first year, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Indonesia. The data of students’ metacognitive skill was measured by essay test. The data was analyzed by inferential statistic of ANCOVA test. The result of research showed that there was the effect of teaching model towards metacognitive skill of students. Students were tought by guided inquiry had higher metacognitive skill than tought by traditional teaching. The lecturer can use the guided inquiry model in others courses with considering the course materials and also student characteristics.
ERIC Educational Resources Information Center
Mabry, Ann; Kaufman, Martin J.
Presented is Stage I of the Comprehensive Approach to Pupil Planning (CAPP) System, a three-stage model for planning educational interventions in the regular and special education classrooms and for guiding placement decisions. The guide consists of the following: an overview of the CAPP System; an introduction to Stage I on classroom support…
ERIC Educational Resources Information Center
Vlasak, Frances Stetson; Kaufman, Martin J.
Presented is Stage II of the Comprehensive Approach to Pupil Planning (CAPP) System, a three-stage model for planning educational interventions in the regular and special education classrooms and for guiding placement decisions. The guide focuses on the evaluation services performed by the Planning and Placement Team (PPT) with sections on the…
Is Substance Abuse an Issue for Creative People?
ERIC Educational Resources Information Center
Mabee, Bev
1985-01-01
The author proposes a model for lessons on substance abuse that gives children alternative ways to satisfy the natural desire for altered states of consciousness. The model incorporates stages of progressive relaxation, visualization/guided fantasy, sensory experiences, information, and experimentation. (CL)
Investigation of guided waves propagation in pipe buried in sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less
Model-Based Reasoning in Upper-division Lab Courses
NASA Astrophysics Data System (ADS)
Lewandowski, Heather
2015-05-01
Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.
Guided wave propagation and spectral element method for debonding damage assessment in RC structures
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping
2009-07-01
A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.
Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Experimental Investigation
NASA Astrophysics Data System (ADS)
Zeng, Wei; Yang, Jiandong; Hu, Jinhong; Tang, Renbo
2017-05-01
A pumped storage stations model was set up and introduced in the previous paper. In the model station, the S-shaped characteristic curves was measured at the load rejection condition with the guide vanes stalling. Load rejection tests where guide-vane closed linearly were performed to validate the effect of the S-shaped characteristics on hydraulic transients. Load rejection experiments with different guide vane closing schemes were also performed to determine a suitable scheme considering the S-shaped characteristics. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure.
ERIC Educational Resources Information Center
Vlasak, Frances Stetson; Kaufman, Martin J.
Presented is Stage III of the Comprehensive Approach to Pupil Planning (CAPP) System, a three-stage model for planning educational interventions in the regular and special education classrooms and for guiding placement decisions. The guide focuses on the instructional planning team with sections on the following: Stage III personnel; roles and…
Sys, Gwen; Eykens, Hannelore; Lenaerts, Gerlinde; Shumelinsky, Felix; Robbrecht, Cedric; Poffyn, Bart
2017-06-01
This study analyses the accuracy of three-dimensional pre-operative planning and patient-specific guides for orthopaedic osteotomies. To this end, patient-specific guides were compared to the classical freehand method in an experimental setup with saw bones in two phases. In the first phase, the effect of guide design and oscillating versus reciprocating saws was analysed. The difference between target and performed cuts was quantified by the average distance deviation and average angular deviations in the sagittal and coronal planes for the different osteotomies. The results indicated that for one model osteotomy, the use of guides resulted in a more accurate cut when compared to the freehand technique. Reciprocating saws and slot guides improved accuracy in all planes, while oscillating saws and open guides lead to larger deviations from the planned cut. In the second phase, the accuracy of transfer of the planning to the surgical field with slot guides and a reciprocating saw was assessed and compared to the classical planning and freehand cutting method. The pre-operative plan was transferred with high accuracy. Three-dimensional-printed patient-specific guides improve the accuracy of osteotomies and bony resections in an experimental setup compared to conventional freehand methods. The improved accuracy is related to (1) a detailed and qualitative pre-operative plan and (2) an accurate transfer of the planning to the operation room with patient-specific guides by an accurate guidance of the surgical tools to perform the desired cuts.
ERIC Educational Resources Information Center
Blank, Rolf K.; Smithson, John; Porter, Andrew; Nunnaley, Diana; Osthoff, Eric
2006-01-01
The instructional improvement model Data on Enacted Curriculum was tested with an experimental design using randomized place-based trials. The improvement model is based on using data on instructional practices and achievement to guide professional development and decisions to refocus on instruction. The model was tested in 50 U.S. middle schools…
Analytical and regression models of glass rod drawing process
NASA Astrophysics Data System (ADS)
Alekseeva, L. B.
2018-03-01
The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.
Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing
2017-01-01
Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM) model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.
Lee, Jae-Won; Lim, Se-Ho; Kim, Moon-Key; Kang, Sang-Hoon
2015-12-01
We examined the precision of a computer-aided design/computer-aided manufacturing-engineered, manufactured, facebow-based surgical guide template (facebow wafer) by comparing it with a bite splint-type orthognathic computer-aided design/computer-aided manufacturing-engineered surgical guide template (bite wafer). We used 24 rapid prototyping (RP) models of the craniofacial skeleton with maxillary deformities. Twelve RP models each were used for the facebow wafer group and the bite wafer group (experimental group). Experimental maxillary orthognathic surgery was performed on the RP models of both groups. Errors were evaluated through comparisons with surgical simulations. We measured the minimum distances from 3 planes of reference to determine the vertical, lateral, and anteroposterior errors at specific measurement points. The measured errors were compared between experimental groups using a t test. There were significant intergroup differences in the lateral error when we compared the absolute values of the 3-D linear distance, as well as vertical, lateral, and anteroposterior errors between experimental groups. The bite wafer method exhibited little lateral error overall and little error in the anterior tooth region. The facebow wafer method exhibited very little vertical error in the posterior molar region. The clinical precision of the facebow wafer method did not significantly exceed that of the bite wafer method. Copyright © 2015 Elsevier Inc. All rights reserved.
Modelling ultrasound guided wave propagation for plate thickness measurement
NASA Astrophysics Data System (ADS)
Malladi, Rakesh; Dabak, Anand; Murthy, Nitish Krishna
2014-03-01
Structural Health monitoring refers to monitoring the health of plate-like walls of large reactors, pipelines and other structures in terms of corrosion detection and thickness estimation. The objective of this work is modeling the ultrasonic guided waves generated in a plate. The piezoelectric is excited by an input pulse to generate ultrasonic guided lamb waves in the plate that are received by another piezoelectric transducer. In contrast with existing methods, we develop a mathematical model of the direct component of the signal (DCS) recorded at the terminals of the piezoelectric transducer. The DCS model uses maximum likelihood technique to estimate the different parameters, namely the time delay of the signal due to the transducer delay and amplitude scaling of all the lamb wave modes due to attenuation, while taking into account the received signal spreading in time due to dispersion. The maximum likelihood estimate minimizes the energy difference between the experimental and the DCS model-generated signal. We demonstrate that the DCS model matches closely with experimentally recorded signals and show it can be used to estimate thickness of the plate. The main idea of the thickness estimation algorithm is to generate a bank of DCS model-generated signals, each corresponding to a different thickness of the plate and then find the closest match among these signals to the received signal, resulting in an estimate of the thickness of the plate. Therefore our approach provides a complementary suite of analytics to the existing thickness monitoring approaches.
Guided-inquiry laboratory experiments to improve students' analytical thinking skills
NASA Astrophysics Data System (ADS)
Wahyuni, Tutik S.; Analita, Rizki N.
2017-12-01
This study aims to improve the experiment implementation quality and analytical thinking skills of undergraduate students through guided-inquiry laboratory experiments. This study was a classroom action research conducted in three cycles. The study has been carried out with 38 undergraduate students of the second semester of Biology Education Department of State Islamic Institute (SII) of Tulungagung, as a part of Chemistry for Biology course. The research instruments were lesson plans, learning observation sheets and undergraduate students' experimental procedure. Research data were analyzed using quantitative-descriptive method. The increasing of analytical thinking skills could be measured using gain score normalized and statistical paired t-test. The results showed that guided-inquiry laboratory experiments model was able to improve both the experiment implementation quality and the analytical thinking skills. N-gain score of the analytical thinking skills was increased, in spite of just 0.03 with low increase category, indicated by experimental reports. Some of undergraduate students have had the difficulties in detecting the relation of one part to another and to an overall structure. The findings suggested that giving feedback the procedural knowledge and experimental reports were important. Revising the experimental procedure that completed by some scaffolding questions were also needed.
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of a pilot project which was conducted in the United States between 1973 and 1976. The ideas and the manner of presentation are based on the works of Georges and Frederique Papy. They are recognized for having introduced colored arrow drawings ("papygrams") and models of our numeration…
ERIC Educational Resources Information Center
Abelson, Hal; Goldenberg, Paul
This experimental curriculum unit suggests how dramatic innovations in classroom content may be achieved through use of computers. The computational perspective is viewed as one which can enrich and transform traditional curricula, act as a focus for integrating insights from diverse disciplines, and enable learning to become more active and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Zumwalt, Hannah Ruth; Clark, Andrew Jordan
2016-03-01
Hydrogen Risk Assessment Models (HyRAM) is a prototype software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards, including thermal effects from jet fires and thermal pressure effects from deflagration. HyRAM version 1.0 incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impact of heat flux on humans and structures, with computationally and experimentally validated models of various aspects of gaseous hydrogen releasemore » and flame physics. This document provides an example of how to use HyRAM to conduct analysis of a fueling facility. This document will guide users through the software and how to enter and edit certain inputs that are specific to the user-defined facility. Description of the methodology and models contained in HyRAM is provided in [1]. This User’s Guide is intended to capture the main features of HyRAM version 1.0 (any HyRAM version numbered as 1.0.X.XXX). This user guide was created with HyRAM 1.0.1.798. Due to ongoing software development activities, newer versions of HyRAM may have differences from this guide.« less
A musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. Musculotendon parameters and the skeletal geometry were determined for the musculoskeletal model in the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing both isometric and ballistic elbow joint complex movements. In general, the model predicted kinematic and muscle excitation patterns similar to what was experimentally measured.
Rappel, Wouter-Jan; Loomis, William F.
2009-01-01
During eukaryotic chemotaxis, external chemical gradients guide the crawling motion of cells. This process plays an important role in a large variety of biological systems and has wide ranging medical implications. New experimental techniques including confocal microscopy and microfluidics have advanced our understanding of chemotaxis while numerical modeling efforts are beginning to offer critical insights. In this short review, we survey the current experimental status of the field by dividing chemotaxis into three distinct “modules”: directional sensing, polarity and motility. For each module, we attempt to point out potential new directions of research and discuss how modeling studies interact with experimental investigations. PMID:20648241
Assessment and Decision-Making in Early Childhood Education and Intervention
ERIC Educational Resources Information Center
Strand, Paul S.; Cerna, Sandra; Skucy, Jim
2007-01-01
Assessment within the fields of early childhood education and early childhood intervention is guided by the "deductive-psychometric model", which is a framework for legitimizing constructs that arise from theories. An alternative approach, termed the "inductive-experimental model", places significantly more restrictions on what constitutes a…
Accuracy of computer-guided implantation in a human cadaver model.
Yatzkair, Gustavo; Cheng, Alice; Brodie, Stan; Raviv, Eli; Boyan, Barbara D; Schwartz, Zvi
2015-10-01
To examine the accuracy of computer-guided implantation using a human cadaver model with reduced experimental variability. Twenty-eight (28) dental implants representing 12 clinical cases were placed in four cadaver heads using a static guided implantation template. All planning and surgeries were performed by one clinician. All radiographs and measurements were performed by two examiners. The distance of the implants from buccal and lingual bone and mesial implant or tooth was analyzed at the apical and coronal levels, and measurements were compared to the planned values. No significant differences were seen between planned and implanted measurements. Average deviation of an implant from its planning radiograph was 0.8 mm, which is within the range of variability expected from CT analysis. Guided implantation can be used safely with a margin of error of 1 mm. © 2014 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.
Interpretation reduces ecological impacts of visitors to world heritage site.
Littlefair, Carolyn; Buckley, Ralf
2008-07-01
Minimal-impact interpretation is widely used to reduce the ecological impacts of visitors to protected areas. We tested whether verbal appeals and/or role-model demonstrations of minimal-impact behavior by a trained guide reduced noise, litter, and trampling impacts on hiking trails in a subtropical rainforest. Interpretation did reduce impacts significantly. Different interpretive techniques were more effective for different impacts. The experimental groups were mature, well-educated professionals; interpretation may differ in effectiveness for different visitors. Interpretation by skilled guides can indeed reduce visitor impacts in protected areas, especially if role modeling is combined with verbal appeals.
Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves.
Gao, Huidong; Rose, Joseph L
2009-02-01
Ice accumulation on airfoils has been identified as a primary cause of many accidents in commercial and military aircraft. To improve aviation safety as well as reduce cost and environmental threats related to aircraft icing, sensitive, reliable, and aerodynamically compatible ice detection techniques are in great demand. Ultrasonic guided-wave-based techniques have been proved reliable for "go" and "no go" types of ice detection in some systems including the HALO system, in which the second author of this paper is a primary contributor. In this paper, we propose a new model that takes the ice layer into guided-wave modeling. Using this model, the thickness and type of ice formation can be determined from guided-wave signals. Five experimental schemes are also proposed in this paper based on some unique features identified from the guided- wave dispersion curves. A sample experiment is also presented in this paper, where a 1 mm thick glaze ice on a 2 mm aluminum plate is clearly detected. Quantitative match of the experiment data to theoretical prediction serves as a strong support for future implementation of other testing schemes proposed in this paper.
Visible Machine Learning for Biomedicine.
Yu, Michael K; Ma, Jianzhu; Fisher, Jasmin; Kreisberg, Jason F; Raphael, Benjamin J; Ideker, Trey
2018-06-14
A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology. Copyright © 2018. Published by Elsevier Inc.
Impact of Model-Based Teaching on Argumentation Skills
ERIC Educational Resources Information Center
Ogan-Bekiroglu, Feral; Belek, Deniz Eren
2014-01-01
The purpose of this study was to examine effects of model-based teaching on students' argumentation skills. Experimental design guided to the research. The participants of the study were pre-service physics teachers. The argumentative intervention lasted seven weeks. Data for this research were collected via video recordings and written arguments.…
Histologic scoring of gastritis and gastric cancer in mouse models.
Rogers, Arlin B
2012-01-01
Histopathology is a defining endpoint in mouse models of experimental gastritis and gastric adenocarcinoma. Presented here is an overview of the histology of gastritis and gastric cancer in mice experimentally infected with Helicobacter pylori or H. felis. A modular histopathologic scoring scheme is provided that incorporates relevant disease-associated changes. Whereas the guide uses Helicobacter infection as the prototype challenge, features may be applied to chemical and genetically engineered mouse models of stomach cancer as well. Specific criteria included in the combined gastric histologic activity index (HAI) include inflammation, epithelial defects, oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia or neoplasia. Representative photomicrographs accompany descriptions for each lesion grade. Differentiation of genuine tumor invasion from pseudoinvasion is highlighted. A brief comparison of normal rodent versus human stomach anatomy and physiology is accompanied by an introduction to mouse-specific lesions including mucous metaplasia and eosinophilic droplets (hyalinosis). In conjunction with qualified pathology support, this guide is intended to assist research scientists, postdoctoral fellows, graduate students, and medical professionals from affiliated disciplines in the interpretation and histologic grading of chronic gastritis and gastric carcinoma in mouse models.
NASA Astrophysics Data System (ADS)
Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine
2017-02-01
Modeling and understanding the complex elastic-wave physics prevalent in solid-fluid cylindrically-layered structures is of importance in many NDE fields, and most pertinently in the domain of well integrity evaluation of cased holes in the oil and gas industry. Current sonic measurements provide viable techniques for well integrity evaluation yet their practical effectiveness is hampered by the current lack of knowledge of acoustic wave fields particularly in complicated cased-hole geometry where for instance two or more nested steel strings are present in the borehole. In this article, we propose and implement a Sweeping Frequency Finite Element Method (SFFEM) for acoustic guided waves simulation in complex geometries that include double steel strings cemented to each other and to the formation and where the strings may be non-concentric. Transient dynamic finite element models are constructed with sweeping frequency signals being applied as the excitation sources. The sources and receivers disposition simulate current sonic measurement tools deployed in the oilfield. Synthetic wavetrains are recorded and processed with modified matrix pencil method to isolate both the dispersive and non-dispersive propagating guided wave modes. Scaled experiments of fluid-filled double strings with dimensions mimicking the real ones encountered in the field have also been carried out to generate reference data. A comparison of the experimental and numerical results indicates that the SFFEM is capable of accurately reproducing the rich and intricate higher-order multiple wave fields observed experimentally in the fluid-filled double string geometries.
Mathematically guided approaches to distinguish models of periodic patterning
Hiscock, Tom W.; Megason, Sean G.
2015-01-01
How periodic patterns are generated is an open question. A number of mechanisms have been proposed – most famously, Turing's reaction-diffusion model. However, many theoretical and experimental studies focus on the Turing mechanism while ignoring other possible mechanisms. Here, we use a general model of periodic patterning to show that different types of mechanism (molecular, cellular, mechanical) can generate qualitatively similar final patterns. Observation of final patterns is therefore not sufficient to favour one mechanism over others. However, we propose that a mathematical approach can help to guide the design of experiments that can distinguish between different mechanisms, and illustrate the potential value of this approach with specific biological examples. PMID:25605777
Vergu, Elisabeta; Mallet, Alain; Golmard, Jean-Louis
2004-02-01
Because treatment failure in many HIV-infected persons may be due to multiple causes, including resistance to antiretroviral agents, it is important to better tailor drug therapy to individual patients. This improvement requires the prediction of treatment outcome from baseline immunological or virological factors, and from results of resistance tests. Here, we review briefly the available clinical factors that have an impact on therapy outcome, and discuss the role of a predictive modelling approach integrating these factors proposed in a previous work. Mathematical and statistical models could become essential tools to address questions that are difficult to study clinically and experimentally, thereby guiding decisions in the choice of individualized drug regimens.
Using IMPRINT to Guide Experimental Design with Simulated Task Environments
2015-06-18
USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK ENVIRONMENTS THESIS Gregory...ENG-MS-15-J-052 USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN WITH SIMULATED TASK ENVIRONMENTS THESIS Presented to the Faculty Department...Civilian, USAF June 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-J-052 USING IMPRINT
An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey
2014-11-03
We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.
Adams, Matthew T.; Cleveland, Robin O.; Roy, Ronald A.
2017-01-01
Abstract. Real-time acousto-optic (AO) sensing has been shown to noninvasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposures. The technique is particularly appropriate for monitoring noncavitating lesions that offer minimal acoustic contrast. A numerical model is presented for an AO-guided HIFU system with an illumination wavelength of 1064 nm and an acoustic frequency of 1.1 MHz. To confirm the model’s accuracy, it is compared to previously published experimental data gathered during AO-guided HIFU in chicken breast. The model is used to determine an optimal design for an AO-guided HIFU system, to assess its robustness, and to predict its efficacy for the ablation of large volumes. It was found that a through transmission geometry results in the best performance, and an optical wavelength around 800 nm was optimal as it provided sufficient contrast with low absorption. Finally, it was shown that the strategy employed while treating large volumes with AO guidance has a major impact on the resulting necrotic volume and symmetry. PMID:28114454
Predicting bone strength with ultrasonic guided waves
Bochud, Nicolas; Vallet, Quentin; Minonzio, Jean-Gabriel; Laugier, Pascal
2017-01-01
Recent bone quantitative ultrasound approaches exploit the multimode waveguide response of long bones for assessing properties such as cortical thickness and stiffness. Clinical applications remain, however, challenging, as the impact of soft tissue on guided waves characteristics is not fully understood yet. In particular, it must be clarified whether soft tissue must be incorporated in waveguide models needed to infer reliable cortical bone properties. We hypothesize that an inverse procedure using a free plate model can be applied to retrieve the thickness and stiffness of cortical bone from experimental data. This approach is first validated on a series of laboratory-controlled measurements performed on assemblies of bone- and soft tissue mimicking phantoms and then on in vivo measurements. The accuracy of the estimates is evaluated by comparison with reference values. To further support our hypothesis, these estimates are subsequently inserted into a bilayer model to test its accuracy. Our results show that the free plate model allows retrieving reliable waveguide properties, despite the presence of soft tissue. They also suggest that the more sophisticated bilayer model, although it is more precise to predict experimental data in the forward problem, could turn out to be hardly manageable for solving the inverse problem. PMID:28256568
A prestorage method to measure neutron transmission of ultracold neutron guides
NASA Astrophysics Data System (ADS)
Blau, B.; Daum, M.; Fertl, M.; Geltenbort, P.; Göltl, L.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Schmidt-Wellenburg, P.; Zsigmond, G.
2016-01-01
There are worldwide efforts to search for physics beyond the Standard Model of particle physics. Precision experiments using ultracold neutrons (UCN) require very high intensities of UCN. Efficient transport of UCN from the production volume to the experiment is therefore of great importance. We have developed a method using prestored UCN in order to quantify UCN transmission in tubular guides. This method simulates the final installation at the Paul Scherrer Institute's UCN source where neutrons are stored in an intermediate storage vessel serving three experimental ports. This method allowed us to qualify UCN guides for their intended use and compare their properties.
Simulated Students and Classroom Use of Model-Based Intelligent Tutoring
NASA Technical Reports Server (NTRS)
Koedinger, Kenneth R.
2008-01-01
Two educational uses of models and simulations: 1) Students create models and use simulations ; and 2) Researchers create models of learners to guide development of reliably effective materials. Cognitive tutors simulate and support tutoring - data is crucial to create effective model. Pittsburgh Science of Learning Center: Resources for modeling, authoring, experimentation. Repository of data and theory. Examples of advanced modeling efforts: SimStudent learns rule-based model. Help-seeking model: Tutors metacognition. Scooter uses machine learning detectors of student engagement.
NASA Technical Reports Server (NTRS)
Benson, T.; Galica, C.; McCredie, P.; Storm, R.
2003-01-01
This guide was produced by the NASA Glenn Research Center Office of Educational Programs in Cleveland, OH, and the NASA Aerospace Educational Coordinating Committee. It includes activity modules for students, including the history of the Wright Brothers and their family in Dayton, Ohio and flight experimentation in Kitty Hawk, North Carolina. Student activities such as building models of the Wright Brothers glider and writing press releases of the initial flight are included.
NASA Astrophysics Data System (ADS)
Heiss, Walter Dieter; Wunner, Günter
2017-12-01
A matrix model that has been used to describe essential features of a parity-time symmetric set-up of three coupled wave guides is investigated. The emphasis of the study lies on the occurrence of an exceptional point of third order. It is demonstrated that the eigenfunctions in close vicinity of the exceptional point have a distinctive chiral behaviour. Using data describing realistic situations it is argued that such chiral behaviour can be tested experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaesun; Cho, Younho; Park, Jun-Pil
Guided wave was widely studied for plate and pipe due to the great application area. Guided wave has advantage on long distance inspection for an inaccessible area and apart from transducer. Quite often shrink fit structures were found in nuclear power facilities. In this paper, two pipes were designed with perfect shrink fit condition for Stainless Steel 316. The displacement distribution was calculated with boundary condition. The interface wave propagation pattern was analyzed by the numerical modeling. The experimental results show a possibility of weld delamination and defect detection.
Molecular mechanisms of system responses to novel stimuli are predictable from public data
Danziger, Samuel A.; Ratushny, Alexander V.; Smith, Jennifer J.; Saleem, Ramsey A.; Wan, Yakun; Arens, Christina E.; Armstrong, Abraham M.; Sitko, Katherine; Chen, Wei-Ming; Chiang, Jung-Hsien; Reiss, David J.; Baliga, Nitin S.; Aitchison, John D.
2014-01-01
Systems scale models provide the foundation for an effective iterative cycle between hypothesis generation, experiment and model refinement. Such models also enable predictions facilitating the understanding of biological complexity and the control of biological systems. Here, we demonstrate the reconstruction of a globally predictive gene regulatory model from public data: a model that can drive rational experiment design and reveal new regulatory mechanisms underlying responses to novel environments. Specifically, using ∼1500 publically available genome-wide transcriptome data sets from Saccharomyces cerevisiae, we have reconstructed an environment and gene regulatory influence network that accurately predicts regulatory mechanisms and gene expression changes on exposure of cells to completely novel environments. Focusing on transcriptional networks that induce peroxisomes biogenesis, the model-guided experiments allow us to expand a core regulatory network to include novel transcriptional influences and linkage across signaling and transcription. Thus, the approach and model provides a multi-scalar picture of gene dynamics and are powerful resources for exploiting extant data to rationally guide experimentation. The techniques outlined here are generally applicable to any biological system, which is especially important when experimental systems are challenging and samples are difficult and expensive to obtain—a common problem in laboratory animal and human studies. PMID:24185701
NASA Astrophysics Data System (ADS)
Neves, Marco A. C.; Simões, Sérgio; Sá e Melo, M. Luisa
2010-12-01
CXCR4 is a G-protein coupled receptor for CXCL12 that plays an important role in human immunodeficiency virus infection, cancer growth and metastasization, immune cell trafficking and WHIM syndrome. In the absence of an X-ray crystal structure, theoretical modeling of the CXCR4 receptor remains an important tool for structure-function analysis and to guide the discovery of new antagonists with potential clinical use. In this study, the combination of experimental data and molecular modeling approaches allowed the development of optimized ligand-receptor models useful for elucidation of the molecular determinants of small molecule binding and functional antagonism. The ligand-guided homology modeling approach used in this study explicitly re-shaped the CXCR4 binding pocket in order to improve discrimination between known CXCR4 antagonists and random decoys. Refinement based on multiple test-sets with small compounds from single chemotypes provided the best early enrichment performance. These results provide an important tool for structure-based drug design and virtual ligand screening of new CXCR4 antagonists.
NASA Astrophysics Data System (ADS)
Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong
2016-11-01
The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.
A call for virtual experiments: accelerating the scientific process.
Cooper, Jonathan; Vik, Jon Olav; Waltemath, Dagmar
2015-01-01
Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide model reuse and composition; and for quality assurance in the translational application of models. A key step towards achieving this is that models and experimental protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would enable a "continuous integration" of biological knowledge, transforming our approach to systems biology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Title: Experimental and analytical study of frictional anisotropy of nanotubes
NASA Astrophysics Data System (ADS)
Riedo, Elisa; Gao, Yang; Li, Tai-De; Chiu, Hsiang-Chih; Kim, Suenne; Klinke, Christian; Tosatti, Erio
The frictional properties of Carbon and Boron Nitride nanotubes (NTs) are very important in a variety of applications, including composite materials, carbon fibers, and micro/nano-electromechanical systems. Atomic force microscopy (AFM) is a powerful tool to investigate with nanoscale resolution the frictional properties of individual NTs. Here, we report on an experimental study of the frictional properties of different types of supported nanotubes by AFM. We also propose a quantitative model to describe and then predict the frictional properties of nanotubes sliding on a substrate along (longitudinal friction) or perpendicular (transverse friction) their axis. This model provides a simple but general analytical relationship that well describes the acquired experimental data. As an example of potential applications, this experimental method combined with the proposed model can guide to design better NTs-ceramic composites, or to self-assemble the nanotubes on a surface in a given direction. M. Lucas et al., Nature Materials 8, 876-881 (2009).
Plane Wave SH₀ Piezoceramic Transduction Optimized Using Geometrical Parameters.
Boivin, Guillaume; Viens, Martin; Belanger, Pierre
2018-02-10
Structural health monitoring is a prominent alternative to the scheduled maintenance of safety-critical components. The nondispersive nature as well as the through-thickness mode shape of the fundamental shear horizontal guided wave mode (SH 0 ) make it a particularly attractive candidate for ultrasonic guided wave structural health monitoring. However, plane wave excitation of SH 0 at a high level of purity remains challenging because of the existence of the fundamental Lamb modes (A 0 and S 0 ) below the cutoff frequency thickness product of high-order modes. This paper presents a piezoelectric transducer concept optimized for plane SH 0 wave transduction based on the transducer geometry. The transducer parameter exploration was initially performed using a simple analytical model. A 3D multiphysics finite element model was then used to refine the transducer design. Finally, an experimental validation was conducted with a 3D laser Doppler vibrometer system. The analytical model, the finite element model, and the experimental measurement showed excellent agreement. The modal selectivity of SH 0 within a 20 ∘ beam opening angle at the design frequency of 425 kHz in a 1.59 mm aluminum plate was 23 dB, and the angle of the 6 dB wavefront was 86 ∘ .
Teacher's Guide to SERAPHIM Software I. Chemistry: Experimental Foundations.
ERIC Educational Resources Information Center
Bogner, Donna J.
Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the first in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: Experimental Foundations." Program suggestions are…
Development and numerical analysis of low specific speed mixed-flow pump
NASA Astrophysics Data System (ADS)
Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.
2012-11-01
With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.
Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis
2017-01-01
Recent progress in the synthesis and characterization of metal–organic frameworks (MOFs) has opened the door to an increasing number of possible catalytic applications. The great versatility of MOFs creates a large chemical space, whose thorough experimental examination becomes practically impossible. Therefore, computational modeling is a key tool to support, rationalize, and guide experimental efforts. In this outlook we survey the main methodologies employed to model MOFs for catalysis, and we review selected recent studies on the functionalization of their nodes. We pay special attention to catalytic applications involving natural gas conversion. PMID:29392172
Kwok, T; Smith, K A
2000-09-01
The aim of this paper is to study both the theoretical and experimental properties of chaotic neural network (CNN) models for solving combinatorial optimization problems. Previously we have proposed a unifying framework which encompasses the three main model types, namely, Chen and Aihara's chaotic simulated annealing (CSA) with decaying self-coupling, Wang and Smith's CSA with decaying timestep, and the Hopfield network with chaotic noise. Each of these models can be represented as a special case under the framework for certain conditions. This paper combines the framework with experimental results to provide new insights into the effect of the chaotic neurodynamics of each model. By solving the N-queen problem of various sizes with computer simulations, the CNN models are compared in different parameter spaces, with optimization performance measured in terms of feasibility, efficiency, robustness and scalability. Furthermore, characteristic chaotic neurodynamics crucial to effective optimization are identified, together with a guide to choosing the corresponding model parameters.
Benchmarking of Computational Models for NDE and SHM of Composites
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna
2016-01-01
Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H; Elias, Jeff; Pauly, Kim Butts
2016-09-01
In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. The simulated skull efficiency using individual-specific heterogeneous models predicts well (R(2) = 0.84) the experimental energy efficiency. This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H.; Elias, Jeff; Pauly, Kim Butts
2016-01-01
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R2 = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible. PMID:27587047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni,
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen humanmore » subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.« less
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.
1976-01-01
A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.
Bioassay-guided isolation of wound healing active compounds from Echium species growing in Turkey.
Eruygur, Nuraniye; Yılmaz, Gülderen; Kutsal, Osman; Yücel, Gözde; Üstün, Osman
2016-06-05
The roots and root barks of Echium sp. have been used to treat ulcers, burns and wounds in traditional Turkish medicine. On the basis of them traditional use and literature references, four Echium species were selected for evaluation of them wound healing potential. Isolation of active component(s) from the active extracts through the bioassay guided fractionation procedures. In vivo the wound healing activity of the plants was evaluated by linear incision experimental models. The chloroform extract of Echium italicum L. was fractionated by successive chromatographic techniques. Wound healing activity of each fraction was investigated following the bioassay-guided fractionation procedures. Moreover, the tissue samples of isolated compounds were examined histopathologically. The healing potential was comparatively assessed with a reference ointment Madecassol®, which contains 1% extract of Centella asiatica. Significant wound healing activity was observed from the ointment prepared with ethanol extract at 1% concentration. The ethanol root extract treated in groups of animals showed a significant increase (37.38%, 40.97% and 35.29% separately for E. italicum L, Echium vulgare L. and Echium angustifolium Miller) wound tensile strength in the incision wound model. Subfractions showed significant but reduced wound healing activity on in vivo wound models. Shikonin derivatives "Acetylshikonin", "Deoxyshikonin" and "2-methyl-n-butyrylshikonin+Isovalerylshikonin", were isolated and determined as active components of active final subfraction from E. italicum L. roots. The results of histopathological examination supported the outcome of linear incision wound models. The experimental study revealed that Echium species display remarkable wound healing activity. Copyright © 2016. Published by Elsevier Ireland Ltd.
Supporting Scientific Experimentation and Reasoning in Young Elementary School Students
NASA Astrophysics Data System (ADS)
Varma, Keisha
2014-06-01
Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.
Time Reversal Method for Pipe Inspection with Guided Wave
NASA Astrophysics Data System (ADS)
Deng, Fei; He, Cunfu; Wu, Bin
2008-02-01
The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.
Development and evaluation of a musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Integration of Multidisciplinary Sensory Data:
Miller, Perry L.; Nadkarni, Prakash; Singer, Michael; Marenco, Luis; Hines, Michael; Shepherd, Gordon
2001-01-01
The paper provides an overview of neuroinformatics research at Yale University being performed as part of the national Human Brain Project. This research is exploring the integration of multidisciplinary sensory data, using the olfactory system as a model domain. The neuroinformatics activities fall into three main areas: 1) building databases and related tools that support experimental olfactory research at Yale and can also serve as resources for the field as a whole, 2) using computer models (molecular models and neuronal models) to help understand data being collected experimentally and to help guide further laboratory experiments, 3) performing basic neuroinformatics research to develop new informatics technologies, including a flexible data model (EAV/CR, entity-attribute-value with classes and relationships) designed to facilitate the integration of diverse heterogeneous data within a single unifying framework. PMID:11141511
Fox, W.; Sciortino, F.; v. Stechow, A.; ...
2017-03-21
We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less
Pulse cleaning flow models and numerical computation of candle ceramic filters.
Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang
2002-04-01
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.
A Model of Differential Growth-Guided Apical Hook Formation in Plants
Žádníková, Petra; Wabnik, Krzysztof; Abuzeineh, Anas; Prusinkiewicz, Przemysław
2016-01-01
Differential cell growth enables flexible organ bending in the presence of environmental signals such as light or gravity. A prominent example of the developmental processes based on differential cell growth is the formation of the apical hook that protects the fragile shoot apical meristem when it breaks through the soil during germination. Here, we combined in silico and in vivo approaches to identify a minimal mechanism producing auxin gradient-guided differential growth during the establishment of the apical hook in the model plant Arabidopsis thaliana. Computer simulation models based on experimental data demonstrate that asymmetric expression of the PIN-FORMED auxin efflux carrier at the concave (inner) versus convex (outer) side of the hook suffices to establish an auxin maximum in the epidermis at the concave side of the apical hook. Furthermore, we propose a mechanism that translates this maximum into differential growth, and thus curvature, of the apical hook. Through a combination of experimental and in silico computational approaches, we have identified the individual contributions of differential cell elongation and proliferation to defining the apical hook and reveal the role of auxin-ethylene crosstalk in balancing these two processes. PMID:27754878
Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J
2018-01-01
Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M
2012-11-01
We describe how computational models can be useful to cognitive and behavioral neuroscience, and discuss some guidelines for deciding whether a model is useful. We emphasize that because instantiating a cognitive theory as a computational model requires specification of an explicit mechanism for the function in question, it often produces clear and novel behavioral predictions to guide empirical research. However, computational modeling in cognitive and behavioral neuroscience remains somewhat rare, perhaps because of misconceptions concerning the use of computational models (in particular, connectionist models) in these fields. We highlight some common misconceptions, each of which relates to an aspect of computational models: the problem space of the model, the level of biological organization at which the model is formulated, and the importance (or not) of biological plausibility, parsimony, and model parameters. Careful consideration of these aspects of a model by empiricists, along with careful delineation of them by modelers, may facilitate communication between the two disciplines and promote the use of computational models for guiding cognitive and behavioral experiments. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan
2011-01-01
Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.
ERIC Educational Resources Information Center
Cambridge Conference on School Mathematics, Newton, MA.
This teachers' guide was written to be used in conjunction with the student text, An Experimental Text in Transformational Geometry. The guide is intended to help teachers who have responsibility for teaching the topics Motions and Transformations in the Plane. Each section commences with a general discussion concerning the major ideas which are…
Numerical modelling and experimental analysis of acoustic emission
NASA Astrophysics Data System (ADS)
Gerasimov, S. I.; Sych, T. V.
2018-05-01
In the present paper, the authors report on the application of non-destructive acoustic waves technologies to determine the structural integrity of engineering components. In particular, a finite element (FE) system COSMOS/M is used to investigate propagation characteristics of ultrasonic waves in linear, plane and three-dimensional structures without and with geometric concentrators. In addition, the FE results obtained are compared to the analytical and experimental ones. The study illustrates the efficient use of the FE method to model guided wave propagation problems and demonstrates the FE method’s potential to solve problems when an analytical solution is not possible due to “complicated” geometry.
Quantitative critical thinking: Student activities using Bayesian updating
NASA Astrophysics Data System (ADS)
Warren, Aaron R.
2018-05-01
One of the central roles of physics education is the development of students' ability to evaluate proposed hypotheses and models. This ability is important not just for students' understanding of physics but also to prepare students for future learning beyond physics. In particular, it is often hoped that students will better understand the manner in which physicists leverage the availability of prior knowledge to guide and constrain the construction of new knowledge. Here, we discuss how the use of Bayes' Theorem to update the estimated likelihood of hypotheses and models can help achieve these educational goals through its integration with evaluative activities that use hypothetico-deductive reasoning. Several types of classroom and laboratory activities are presented that engage students in the practice of Bayesian likelihood updating on the basis of either consistency with experimental data or consistency with pre-established principles and models. This approach is sufficiently simple for introductory physics students while offering a robust mechanism to guide relatively sophisticated student reflection concerning models, hypotheses, and problem-solutions. A quasi-experimental study utilizing algebra-based introductory courses is presented to assess the impact of these activities on student epistemological development. The results indicate gains on the Epistemological Beliefs Assessment for Physical Science (EBAPS) at a minimal cost of class-time.
NASA Astrophysics Data System (ADS)
Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi
2014-09-01
Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.
Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo
2017-12-16
In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.
Development of an analytical-numerical model to predict radiant emission or absorption
NASA Technical Reports Server (NTRS)
Wallace, Tim L.
1994-01-01
The development of an analytical-numerical model to predict radiant emission or absorption is discussed. A voigt profile is assumed to predict the spectral qualities of a singlet atomic transition line for atomic species of interest to the OPAD program. The present state of this model is described in each progress report required under contract. Model and code development is guided by experimental data where available. When completed, the model will be used to provide estimates of specie erosion rates from spectral data collected from rocket exhaust plumes or other sources.
NASA Astrophysics Data System (ADS)
Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco
2018-03-01
Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.
Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien
2005-07-15
Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.
BioQ: tracing experimental origins in public genomic databases using a novel data provenance model.
Saccone, Scott F; Quan, Jiaxi; Jones, Peter L
2012-04-15
Public genomic databases, which are often used to guide genetic studies of human disease, are now being applied to genomic medicine through in silico integrative genomics. These databases, however, often lack tools for systematically determining the experimental origins of the data. We introduce a new data provenance model that we have implemented in a public web application, BioQ, for assessing the reliability of the data by systematically tracing its experimental origins to the original subjects and biologics. BioQ allows investigators to both visualize data provenance as well as explore individual elements of experimental process flow using precise tools for detailed data exploration and documentation. It includes a number of human genetic variation databases such as the HapMap and 1000 Genomes projects. BioQ is freely available to the public at http://bioq.saclab.net.
Kirschner, Denise E; Linderman, Jennifer J
2009-04-01
In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or 'in silico' deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions.
Ambient multi-perceptive system with electronic mail for a residential health monitoring system.
Noury, N; Villemazet, C; Fleury, A; Barralon, P; Rumeau, P; Vuillerme, N; Baghai, R
2006-01-01
Based on several years of experiments, we propose a model of information systems for residential healthcare, and technical guide to select available hard and software technologies. An implementation is described, based on Emails. The system is under experimentation within the framework of the French national project AILISA.
2015-01-30
intracel- lular replication. Two classic replication modes have been described for single-stranded RNA viruses: the ‘stamping machine’ mode ( Stent ...Journal of Theoretical Biology 218:309–321. doi: 10.1006/jtbi.2002.3078. Stent GS. 1963. Molecular Biology of Bacterial Viruses. San Francisco, Calif: W H
Snitkin, Evan S; Dudley, Aimée M; Janse, Daniel M; Wong, Kaisheen; Church, George M; Segrè, Daniel
2008-01-01
Background Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored. Results In this study, we measured growth phenotypes of 465 Saccharomyces cerevisiae gene deletion mutants under 16 metabolically relevant conditions and integrated them with the corresponding flux balance model predictions. We first used discordance between experimental results and model predictions to guide a stage of experimental refinement, which resulted in a significant improvement in the quality of the experimental data. Next, we used discordance still present in the refined experimental data to assess the reliability of yeast metabolism models under different conditions. In addition to estimating predictive capacity based on growth phenotypes, we sought to explain these discordances by examining predicted flux distributions visualized through a new, freely available platform. This analysis led to insight into the glycerol utilization pathway and the potential effects of metabolic shortcuts on model results. Finally, we used model predictions and experimental data to discriminate between alternative raffinose catabolism routes. Conclusions Our study demonstrates how a new level of integration between high throughput measurements and flux balance model predictions can improve understanding of both experimental and computational results. The added value of a joint analysis is a more reliable platform for specific testing of biological hypotheses, such as the catabolic routes of different carbon sources. PMID:18808699
Elastic guided wave propagation in electrical cables.
Mateo, Carlos; Talavera, Juan A; Muñoz, Antonio
2007-07-01
This article analyzes the propagation modes of ultrasound waves inside an electrical cable in order to assess its behavior as an acoustic transmission channel. A theoretical model for propagation of elastic waves in electric power cables is presented. The power cables are represented as viscoelastic-layered cylindrical structures with a copper core and a dielectric cover. The model equations then have been applied and numerically resolved for this and other known structures such as solid and hollow cylinders. The results are compared with available data from other models. Several experimental measures were carried out and were compared with results from the numerical simulations. Experimental and simulated results showed a significant difference between elastic wave attenuation inside standard versus bare, low-voltage power cables.
Radiated Emissions from a Remote-Controlled Airplane-Measured in a Reverberation Chamber
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Koppen, Sandra V.; Nguyen, Truong X.; Dudley, Kenneth L.; Szatkowski, George N.; Quach, Cuong C.; Vazquez, Sixto L.; Mielnik, John J.; Hogge, Edward F.; Hill, Boyd L.;
2011-01-01
A full-vehicle, subscale all-electric model airplane was tested for radiated emissions, using a reverberation chamber. The mission of the NASA model airplane is to test in-flight airframe damage diagnosis and battery prognosis algorithms, and provide experimental data for other aviation safety research. Subscale model airplanes are economical experimental tools, but assembling their systems from hobbyist and low-cost components may lead to unforseen electromagnetic compatibility problems. This report provides a guide for accommodating the on-board radio systems, so that all model airplane systems may be operated during radiated emission testing. Radiated emission data are provided for on-board systems being operated separately and together, so that potential interferors can be isolated and mitigated. The report concludes with recommendations for EMI/EMC best practices for subscale model airplanes and airships used for research.
Parkes, Christina; Kamal, Areege; Valentijn, Anthony J; Alnafakh, Rafah; Gross, Stephane R; Barraclough, Roger; Moss, Diana; Kirwan, John; Hapangama, Dharani K
2018-01-01
Translational endometrial cancer (EC) research benefits from an in vitro experimental approach using EC cell lines. We demonstrated the steps that are required to examine estrogen-induced proliferative response, a simple yet important research question pertinent to EC, and devised a pragmatic methodological workflow for using EC cell lines in experimental models. Comprehensive review of all commercially available EC cell lines was carried out, and Ishikawa cell line was selected to study the estrogen responsiveness with HEC1A, RL95-2, and MFE280 cell lines as comparators where appropriate, examining relevant differential molecular (steroid receptors) and functional (phenotype, anchorage-independent growth, hormone responsiveness, migration, invasion, and chemosensitivity) characteristics in 2-dimensional and 3-dimensional cultures in vitro using immunocytochemistry, immunofluorescence, quantitative polymerase chain reaction, and Western blotting. In vivo tumor, formation, and chemosensitivity were also assessed in a chick chorioallantoic membrane model. Short tandem repeat analysis authenticated the purchased cell lines, whereas gifted cells deviated significantly from the published profile. We demonstrate the importance of prior assessment of the suitability of each cell line for the chosen in vitro experimental technique. Prior establishment of baseline, nonenriched conditions was required to induce a proliferative response to estrogen. The chorioallantoic membrane model was a suitable in vivo multicellular animal model for EC for producing rapid and reproducible data. We have developed a methodological guide for EC researchers when using endometrial cell lines to answer important translational research questions (exemplified by estrogen-responsive cell proliferation) to facilitate robust data, while saving time and resources.
NASA Astrophysics Data System (ADS)
Koksal, Ela Ayse; Berberoglu, Giray
2014-01-01
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M; Beretvas, S Natasha; Van den Noortgate, Wim
2014-09-01
The quantitative methods for analyzing single-subject experimental data have expanded during the last decade, including the use of regression models to statistically analyze the data, but still a lot of questions remain. One question is how to specify predictors in a regression model to account for the specifics of the design and estimate the effect size of interest. These quantitative effect sizes are used in retrospective analyses and allow synthesis of single-subject experimental study results which is informative for evidence-based decision making, research and theory building, and policy discussions. We discuss different design matrices that can be used for the most common single-subject experimental designs (SSEDs), namely, the multiple-baseline designs, reversal designs, and alternating treatment designs, and provide empirical illustrations. The purpose of this article is to guide single-subject experimental data analysts interested in analyzing and meta-analyzing SSED data. © The Author(s) 2014.
Ultrasonic isolation of buried pipes
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2016-02-01
Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.
Challenges for Preclinical Investigations of Human Biofield Modalities
Gronowicz, Gloria; Bengston, William
2015-01-01
Preclinical models for studying the effects of the human biofield have great potential to advance our understanding of human biofield modalities, which include external qigong, Johrei, Reiki, therapeutic touch, healing touch, polarity therapy, pranic healing, and other practices. A short history of Western biofield studies using preclinical models is presented and demonstrates numerous and consistent examples of human biofields significantly affecting biological systems both in vitro and in vivo. Methodological issues arising from these studies and practical solutions in experimental design are presented. Important questions still left unanswered with preclinical models include variable reproducibility, dosing, intentionality of the practitioner, best preclinical systems, and mechanisms. Input from the biofield practitioners in the experimental design is critical to improving experimental outcomes; however, the development of standard criteria for uniformity of practice and for inclusion of multiple practitioners is needed. Research in human biofield studies involving preclinical models promises a better understanding of the mechanisms underlying the efficacy of biofield therapies and will be important in guiding clinical protocols and integrating treatments with conventional medical therapies. PMID:26665042
Predictions of the residue cross-sections for the elements Z = 113 and Z = 114
NASA Astrophysics Data System (ADS)
Bouriquet, B.; Abe, Y.; Kosenko, G.
2004-10-01
A good reproduction of experimental excitation functions is obtained for the 1 n reactions producing the elements with Z = 108, 110, 111 and 112 by the combined usage of the two-step model for fusion and the statistical decay code KEWPIE. Furthermore, the model provides reliable predictions of productions of the elements with Z = 113 and Z = 114 which will be a useful guide for plannings of experiments.
Calcium dynamics and signaling in vascular regulation: computational models
Tsoukias, Nikolaos Michael
2013-01-01
Calcium is a universal signaling molecule with a central role in a number of vascular functions including in the regulation of tone and blood flow. Experimentation has provided insights into signaling pathways that lead to or affected by Ca2+ mobilization in the vasculature. Mathematical modeling offers a systematic approach to the analysis of these mechanisms and can serve as a tool for data interpretation and for guiding new experimental studies. Comprehensive models of calcium dynamics are well advanced for some systems such as the heart. This review summarizes the progress that has been made in modeling Ca2+ dynamics and signaling in vascular cells. Model simulations show how Ca2+ signaling emerges as a result of complex, nonlinear interactions that cannot be properly analyzed using only a reductionist's approach. A strategy of integrative modeling in the vasculature is outlined that will allow linking macroscale pathophysiological responses to the underlying cellular mechanisms. PMID:21061306
3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field
NASA Astrophysics Data System (ADS)
Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.
1999-11-01
The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.
Modelling and analysis of a direct ascorbic acid fuel cell
NASA Astrophysics Data System (ADS)
Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping
L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.
Jin, Xue; Tang, Chuyang Y; Gu, Yangshuo; She, Qianhong; Qi, Saren
2011-03-15
Forward osmosis (FO) is attracting increasing interest for its potential applications in desalination. In FO, permeation of contaminants from feed solution into draw solution through the semipermeable membrane can take place simultaneously with water diffusion. Understanding the contaminants transport through and rejection by FO membrane has significant technical implications in the way to separate clean water from the diluted draw solution. In this study, a model was developed to predict boron flux in FO operation. A strong agreement between modeling results and experimental data indicates that the model developed in this study can accurately predict the boron transport through FO membranes. Furthermore, the model can guide the fabrication of improved FO membranes with decreased boron permeability and structural parameter to minimize boron flux. Both theoretical model and experimental results demonstrated that when membrane active layer was facing draw solution, boron flux was substantially greater compared to the other membrane orientation due to more severe internal concentration polarization. In this investigation, for the first time, rejection of contaminants was defined in FO processes. This is critical to compare the membrane performance between different membranes and experimental conditions.
Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi
2003-01-01
The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.
Introduction to the Plant World, Science (Experimental): 5311.11.
ERIC Educational Resources Information Center
Payne, Leonard O.
This unit of instruction was designed as a laboratory-oriented course for very low achievers to show how plants are involved in every aspect of their lives. Detailed practical experience in handling and investigating plants, and the use of films, models, and field trips are combined with basic minimal research to guide the student to a better…
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Bamberger; L.M. Liljegren; P.S. Lowery
This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less
Application of scanning laser Doppler vibrometry for delamination detection in composite structures
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw
2017-12-01
In this paper application of scanning laser Doppler vibrometry for delamination detection in composite structures was presented. Delamination detection was based on a guided wave propagation method. In this papers results from numerical and experimental research were presented. In the case of numerical research, the Spectral Element Method (SEM) was utilized, in which a mesh was composed of 3D spectral elements. SEM model included also a piezoelectric transducer. In the experimental research guided waves were excited using the piezoelectric transducer whereas the sensing process was conducted using scanning laser Doppler vibrometer (SLDV). Analysis of guided wave propagation and its interaction with delamination was based on a full wavefield approach. Attention was focused on interactions of guided waves with delamination manifested by A0 mode reflection, A0 mode entrapment, and S0/A0 mode conversion. Delamination was simulated by a teflon insert located between plies of composite material. Results of interaction with symmetrically and nonsymmetrical placed delamination (in respect to the composite sample thickness) were presented. Moreover, the authors investigated different size of delaminations. Damage detection was based on a new signal processing algorithm proposed by the authors. In this approach the weighted RMS was utilized selectively. It means that the summation in RMS formula was performed only for a specially selected time instances. Results for simple composite panels, panel with honeycomb core, and real stiffened composite panel from the aircraft were presented.
Simulating Human Cognition in the Domain of Air Traffic Control
NASA Technical Reports Server (NTRS)
Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.
PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves
Mujica, Luis; Ruiz, Magda; Camacho, Johanatan
2017-01-01
Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2″) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1″) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application. PMID:29194384
NASA Astrophysics Data System (ADS)
Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.
2016-04-01
Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.
Fostering synergy between cell biology and systems biology.
Eddy, James A; Funk, Cory C; Price, Nathan D
2015-08-01
In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
[Construction of EZH2 Knockout Animal Model by CRISPR/Cas9 Technology].
Meng, Fanrong; Zhao, Dan; Zhou, Qinghua; Liu, Zhe
2018-05-20
It has been proven that CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system was the modern gene-editing technology through the constitutive expression of nucleases Cas9 in the mammalian, which binds to the specific site in the genome mediated by single-guide RNA (sgRNA) at desired genomic loci. The aim of this study is that the animal model of EZH2 gene knockout was constructed using CRISPR/Cas9 technology. In this study, we designed two single-guide RNAs targeting the Exon3 and Exon4 of EZH2 gene. Then, their gene-targeting efficiency were detected by SURVEYOR assay. The lentivirus was perfused into the lungs of mice by using a bronchial tube and detected by immunohistochemistry and qRT-PCR. The experimental results of NIH-3T3 cells verify that the designed sgEZH2 can efficiently effect the cleavage of target DNA by Cas9 in vitro. The immunohistochemistry and qRT-PCR results showed that the EZH2 expression in experimental group was significantly decreased in the mouse lung tissue. The study successfully designed two sgRNA which can play a knock-out EZH2 function. An EZH2 knockout animal model was successfully constructed by CRISPR/Cas9 system, and it will be an effective animal model for studying the functions and mechanisms of EZH2.
Hayward, Gordon; Hyslop, Jamie
2006-02-01
A theoretical and experimental approach for extraction of guided wave dispersion data in plate structures is described. Finite element modeling is used to calculate the surface displacement data (in-plane and out-of-plane) when the plate is subject to either symmetrical or antisymmetrical impulsive force stimulation at one or both of the parallel faces. Fourier transformation of the resultant space-time displacement histories is then employed to obtain phase velocity as a function of frequency. Experimental verification in the case of antisymmetrical stimulation is provided by means of a high-power Q-switched laser source that is used to excite guided waves in the plate. The subsequent out-of-plane displacement data were then obtained by means of a scanning laser vibrometer, and good agreement between theory and experiment is demonstrated. Examples of dispersion data are provided for aluminum, and excellent correlation between the data sets and conventional Rayleigh-Lamb theory for plate structures was obtained. This was then extended to lossy polymeric plates, in addition to both unpolarized and polarized piezoelectric ceramic plates, again with good agreement between the finite element modeling and optical experiments. The last set of results prepares the way for a detailed investigation of the nonhomogeneous piezoelectric composite waveguides described in a companion paper (Part II).
Li, Li; Li, Yinglan; Long, Yanfang; Zhou, Yang; Lu, Jingmei; Wu, Ying
2013-07-01
To experimentally intervene safe injection by medical staff in basic-level hospitals and observe the recent and long-term effect after the intervention and to provide practical measures to improve safe injection. We used random sampling methods to set up groups in county hospitals and township hospitals of Hunan Province, and offered lectures, delivered safe injection guide, brochure and on-site guidance in the experimental group. We surveyed the 2 groups after the intervention at 1 month and 6 months to compare the effect of unsafe injection behaviors and safe injection behaviors. One month after the intervention, the unsafe injection rate in the experimental group decreased from 27.8% to 21.7%, while in the control group injection the unsafe injection rate rose from 26.0% to 27.9%, with significant difference (P<0.01). Six months after the intervention, the unsafe injection rate in the experimental group declined to 18.4% while the unsafe injection rate in the control group also dropped to 22.4%, with significant difference (P<0.01). Unsafe injection rate was decreased in the experimental group at different intervention points, with significant difference (P<0.01). The safe injection behavior scores in the experimental group were higher than those in the control group after the intervention of 1 month and 6 month intervention (P<0.01); the experimental group got higher scores after the intervention (P<0.01). Training of safe injection, distribution of safe injection guide, and comprehensive intervention model can significantly change the primary care practitioners' behaviors in unsafe injections and it is worth promoting.
NASA Astrophysics Data System (ADS)
Jahani, Matin; Sarkardeh, Hamed; Jabbari, Ebrahim
2018-03-01
In the present paper, the effect of guide wall and pier geometry on the flow pattern of a dam spillway was studied. Different scenarios were numerically simulated to optimize the geometry of the guide walls and piers of the spillway in different hydraulic conditions. The RNG and VOF models were used for turbulence and free surface simulations, respectively. Numerical results were validated with experimental data and good agreement was found with an average relative deviation of less than 10%. Results showed that the vertical inclination of the guide wall and pier was the main affecting factor in the approach flow condition through the spillway. A 44% increase in the vertical inclination of the guide wall resulted in a 43% reduction of the turbulence factor and in a 13% increment of the discharge coefficient of the spillway. By increasing the vertical inclination of the piers of the spillway by 28%, the flow behaviour becomes more uniform and the discharge coefficient increases by as much as 11%. Moreover, the results indicate that increasing the straight length of the guide wall leads to a reduction of the depth-averaged velocity and of the turbulence energy in the approach channel.
NASA Astrophysics Data System (ADS)
Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang
2017-03-01
In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.
Object Segmentation Methods for Online Model Acquisition to Guide Robotic Grasping
NASA Astrophysics Data System (ADS)
Ignakov, Dmitri
A vision system is an integral component of many autonomous robots. It enables the robot to perform essential tasks such as mapping, localization, or path planning. A vision system also assists with guiding the robot's grasping and manipulation tasks. As an increased demand is placed on service robots to operate in uncontrolled environments, advanced vision systems must be created that can function effectively in visually complex and cluttered settings. This thesis presents the development of segmentation algorithms to assist in online model acquisition for guiding robotic manipulation tasks. Specifically, the focus is placed on localizing door handles to assist in robotic door opening, and on acquiring partial object models to guide robotic grasping. First, a method for localizing a door handle of unknown geometry based on a proposed 3D segmentation method is presented. Following segmentation, localization is performed by fitting a simple box model to the segmented handle. The proposed method functions without requiring assumptions about the appearance of the handle or the door, and without a geometric model of the handle. Next, an object segmentation algorithm is developed, which combines multiple appearance (intensity and texture) and geometric (depth and curvature) cues. The algorithm is able to segment objects without utilizing any a priori appearance or geometric information in visually complex and cluttered environments. The segmentation method is based on the Conditional Random Fields (CRF) framework, and the graph cuts energy minimization technique. A simple and efficient method for initializing the proposed algorithm which overcomes graph cuts' reliance on user interaction is also developed. Finally, an improved segmentation algorithm is developed which incorporates a distance metric learning (DML) step as a means of weighing various appearance and geometric segmentation cues, allowing the method to better adapt to the available data. The improved method also models the distribution of 3D points in space as a distribution of algebraic distances from an ellipsoid fitted to the object, improving the method's ability to predict which points are likely to belong to the object or the background. Experimental validation of all methods is performed. Each method is evaluated in a realistic setting, utilizing scenarios of various complexities. Experimental results have demonstrated the effectiveness of the handle localization method, and the object segmentation methods.
Eigensystem realization algorithm user's guide forVAX/VMS computers: Version 931216
NASA Technical Reports Server (NTRS)
Pappa, Richard S.
1994-01-01
The eigensystem realization algorithm (ERA) is a multiple-input, multiple-output, time domain technique for structural modal identification and minimum-order system realization. Modal identification is the process of calculating structural eigenvalues and eigenvectors (natural vibration frequencies, damping, mode shapes, and modal masses) from experimental data. System realization is the process of constructing state-space dynamic models for modern control design. This user's guide documents VAX/VMS-based FORTRAN software developed by the author since 1984 in conjunction with many applications. It consists of a main ERA program and 66 pre- and post-processors. The software provides complete modal identification capabilities and most system realization capabilities.
Preliminary investigation of flow dynamics during the start-up of a bulb turbine model
NASA Astrophysics Data System (ADS)
Coulaud, M.; Fraser, R.; Lemay, J.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.
2016-11-01
Nowadays, the electricity network undergoes more perturbations due to the market demand. Additionally, an increase of the production from alternative resources such as wind or solar also induces important variations on the grid. Hydraulic power plants are used to respond quickly to these variations to stabilize the network. Hydraulic turbines have to face more frequent start-up and stop sequences that might shorten significantly their life time. In this context, an experimental analysis of start-up sequences has been conducted on the bulb turbine model of the BulbT project at the Hydraulic Machines Laboratory (LAMH) of Laval University. Maintaining a constant head, guide vanes are opened from 0 ° to 30 °. Three guide vanes opening speed have been chosen from 5 °/s to 20 °/s. Several repetitions were done for each guide vanes opening speed. During these sequences, synchronous time resolved measurements have been performed. Pressure signals were recorded at the runner inlet and outlet and along the draft tube. Also, 25 pressure measurements and strain measurements were obtained on the runner blades. Time resolved particle image velocimetry were used to evaluate flowrate during start-up for some repetitions. Torque fluctuations at shaft were also monitored. This paper presents the experimental set-up and start-up conditions chosen to simulate a prototype start-up. Transient flowrate methodology is explained and validation measurements are detailed. The preliminary results of global performances and runner pressure measurements are presented.
The effects of guided inquiry instruction on student achievement in high school biology
NASA Astrophysics Data System (ADS)
Vass, Laszlo
The purpose of this quantitative, quasi-experimental study was to measure the effect of a student-centered instructional method called guided inquiry on the achievement of students in a unit of study in high school biology. The study used a non-random sample of 109 students, the control group of 55 students enrolled in high school one, received teacher centered instruction while the experimental group of 54 students enrolled at high school two received student-centered, guided inquiry instruction. The pretest-posttest design of the study analyzed scores using an independent t-test, a dependent t-test (p = <.001), an ANCOVA (p = .007), mixed method ANOVA (p = .024) and hierarchical linear regression (p = <.001). The experimental group that received guided inquiry instruction had statistically significantly higher achievement than the control group.
A neural model of figure-ground organization.
Craft, Edward; Schütze, Hartmut; Niebur, Ernst; von der Heydt, Rüdiger
2007-06-01
Psychophysical studies suggest that figure-ground organization is a largely autonomous process that guides--and thus precedes--allocation of attention and object recognition. The discovery of border-ownership representation in single neurons of early visual cortex has confirmed this view. Recent theoretical studies have demonstrated that border-ownership assignment can be modeled as a process of self-organization by lateral interactions within V2 cortex. However, the mechanism proposed relies on propagation of signals through horizontal fibers, which would result in increasing delays of the border-ownership signal with increasing size of the visual stimulus, in contradiction with experimental findings. It also remains unclear how the resulting border-ownership representation would interact with attention mechanisms to guide further processing. Here we present a model of border-ownership coding based on dedicated neural circuits for contour grouping that produce border-ownership assignment and also provide handles for mechanisms of selective attention. The results are consistent with neurophysiological and psychophysical findings. The model makes predictions about the hypothetical grouping circuits and the role of feedback between cortical areas.
Analytical modeling of the structureborne noise path on a small twin-engine aircraft
NASA Technical Reports Server (NTRS)
Cole, J. E., III; Stokes, A. Westagard; Garrelick, J. M.; Martini, K. F.
1988-01-01
The structureborne noise path of a six passenger twin-engine aircraft is analyzed. Models of the wing and fuselage structures as well as the interior acoustic space of the cabin are developed and used to evaluate sensitivity to structural and acoustic parameters. Different modeling approaches are used to examine aspects of the structureborne path. These approaches are guided by a number of considerations including the geometry of the structures, the frequency range of interest, and the tractability of the computations. Results of these approaches are compared with experimental data.
Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemos, N.; Cardoso, L.; Geada, J.
We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less
Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses
Lemos, N.; Cardoso, L.; Geada, J.; ...
2018-02-16
We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less
GUIDE-0: An Experimental Information System.
ERIC Educational Resources Information Center
Murai, Shinnichi
A description is provided of GUIDE-0, an experimental information system. The system serves as a bibliographic aid for students who are taking introductory computer science courses whose material is at least partially implemented via PLATO-IV lessons. Following a brief introduction to the system in Chapter I, the second Chapter describes the…
Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design
ERIC Educational Resources Information Center
Schlueter, Mark A.; D'Costa, Allison R.
2013-01-01
Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…
Analysis of the pump-turbine S characteristics using the detached eddy simulation method
NASA Astrophysics Data System (ADS)
Sun, Hui; Xiao, Ruofu; Wang, Fujun; Xiao, Yexiang; Liu, Weichao
2015-01-01
Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.
Investigation of Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane
NASA Astrophysics Data System (ADS)
Casaday, Brian Patrick
Experimental and computational studies were conducted regarding particle deposition in the internal film cooling cavities of nozzle guide vanes. An experimental facility was fabricated to simulate particle deposition on an impingement liner and upstream surface of a nozzle guide vane wall. The facility supplied particle-laden flow at temperatures up to 1000°F (540°C) to a simplified impingement cooling test section. The heated flow passed through a perforated impingement plate and impacted on a heated flat wall. The particle-laden impingement jets resulted in the buildup of deposit cones associated with individual impingement jets. The deposit growth rate increased with increasing temperature and decreasing impinging velocities. For some low flow rates or high flow temperatures, the deposit cones heights spanned the entire gap between the impingement plate and wall, and grew through the impingement holes. For high flow rates, deposit structures were removed by shear forces from the flow. At low temperatures, deposit formed not only as individual cones, but as ridges located at the mid-planes between impinging jets. A computational model was developed to predict the deposit buildup seen in the experiments. The test section geometry and fluid flow from the experiment were replicated computationally and an Eulerian-Lagrangian particle tracking technique was employed. Several particle sticking models were employed and tested for adequacy. Sticking models that accurately predicted locations and rates in external deposition experiments failed to predict certain structures or rates seen in internal applications. A geometry adaptation technique was employed and the effect on deposition prediction was discussed. A new computational sticking model was developed that predicts deposition rates based on the local wall shear. The growth patterns were compared to experiments under different operating conditions. Of all the sticking models employed, the model based on wall shear, in conjunction with geometry adaptation, proved to be the most accurate in predicting the forms of deposit growth. It was the only model that predicted the changing deposition trends based on flow temperature or Reynolds number, and is recommended for further investigation and application in the modeling of deposition in internal cooling cavities.
Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders
Shin; Rose
1999-06-01
Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.
Mathematical modeling for novel cancer drug discovery and development.
Zhang, Ping; Brusic, Vladimir
2014-10-01
Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments. This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment. Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.
Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A
2018-03-01
Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.
BioQ: tracing experimental origins in public genomic databases using a novel data provenance model
Saccone, Scott F.; Quan, Jiaxi; Jones, Peter L.
2012-01-01
Motivation: Public genomic databases, which are often used to guide genetic studies of human disease, are now being applied to genomic medicine through in silico integrative genomics. These databases, however, often lack tools for systematically determining the experimental origins of the data. Results: We introduce a new data provenance model that we have implemented in a public web application, BioQ, for assessing the reliability of the data by systematically tracing its experimental origins to the original subjects and biologics. BioQ allows investigators to both visualize data provenance as well as explore individual elements of experimental process flow using precise tools for detailed data exploration and documentation. It includes a number of human genetic variation databases such as the HapMap and 1000 Genomes projects. Availability and implementation: BioQ is freely available to the public at http://bioq.saclab.net Contact: ssaccone@wustl.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22426342
Establishing the first institutional animal care and use committee in Egypt.
Fahmy, Sohair R; Gaafar, Khadiga
2016-04-09
Although animal research ethics committees (AREC) are well established in Western countries, this field is weakly developed and its concept is poorly understood in the Middle East and North Africa region. Our main objective was to introduce the concept and requirements of ethical approaches in dealing with experimental animal in research and teaching in Egypt. Due to its very recent inception, Cairo University, Faculty of Science IACUC decided to operate in accordance with Guide for the Care and Use of Laboratory Animals 8th Edition 2011 (the Guide) since Egypt has not yet compiled its own guide. Fifty protocols were reviewed in 2013-2014. Only ten protocols were reviewed in 2013, but in 2014, forty protocols were reviewed. In 2013 all protocols were approved and in 2014, number of approvals were 35, the number of deferrals were 4, and one refused protocol. Master's theses (MSc) research protocols constituted the majority of the total reviewed protocols. This is attributed to the decision of the Board of the Faculty of Science, Cairo University in September, 2013 that the approval of the IACUC is mandatory before conducting any research involving animals or theses registration. The first IACUC was established in the Cairo University, Faculty of Science, since 2012. The challenges encountered by the committee were diverse, such as the absence of laws that control the use of animal models in scientific research, lack of guidelines (protocols for experimental animals in research) and, mandatory ethical approval for any experimental animal research.
Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement
Leaver-Fay, Andrew; O’Meara, Matthew J.; Tyka, Mike; Jacak, Ron; Song, Yifan; Kellogg, Elizabeth H.; Thompson, James; Davis, Ian W.; Pache, Roland A.; Lyskov, Sergey; Gray, Jeffrey J.; Kortemme, Tanja; Richardson, Jane S.; Havranek, James J.; Snoeyink, Jack; Baker, David; Kuhlman, Brian
2013-01-01
Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low energy structures generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool optimizes the weights on the different components of the energy function by maximizing the recapitulation of a wide range of experimental observations. We use the tools to examine three proposed modifications to the Rosetta energy function: improving the unfolded state energy model (reference energies), using bicubic spline interpolation to generate knowledge based torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov and Dunbrack, 2011). PMID:23422428
A guide to experimental particle physics literature, 1991-1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B.
1996-10-01
We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper`s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web.
Challenging Density Functional Theory Calculations with Hemes and Porphyrins.
de Visser, Sam P; Stillman, Martin J
2016-04-07
In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.
Wen, Ji; Xie, Xi-Sheng; Zhang, Ming-Hua; Mao, Nan; Zhang, Cheng-Long; Xie, Lin-Shen; Cheng, Yuan; Zhang, Zi-Yuan; Fan, Jun-Ming
2014-01-01
To determine the impact of Traditional Chinese Medicine on patients with chronic kidney disease (CKD). A total of 225 CKD patients in an outpatient department were recruited for this study, among whom 170 received regular Western and Chinese medicine treatments (control group) and 55 received treatments guided by the theory of Traditional Chinese Medicine (experimental group). The effectiveness of the treatments was determined through a pre-post comparison. Significant pre-intervention differences in age (P < 0.01), stage of glomerular filtration rate (GFR) (P = 0.007) and urine protein (P < 0.01) were found between the two groups of patients. But age, gender and proteinuria were not significant predictors on clinical outcomes of the patients in the multivariate regression models. The experimental group had a greater level of decrease in blood urea nitrogen (P < 0.01) and serum creatine (P < 0. 01) than the control group. No significant differences between the groups were found in changes of uric acid (P = 0.475), urine protein (P = 0.058), urine red cells (P = 0.577), and urine white cells (P = 0.01). A greater level of increase in estimated glomerular filtration rate was found in the experimental group compared with the control (P < 0.001). The multivariate linear regression analysis identified group (B = 0.395, P < 0.001) and stage of GFR (B = 0.165, P = 0.008) as significant predictors on the outcomes of treatment. The treatment of CKD patients guided by the theory of Traditional Chinese Medicine can improve renal function through influencing glomerular filtration rate. The effect is more prominent than the regular treatment regime.
DOT2: Macromolecular Docking With Improved Biophysical Models
Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten
2015-01-01
Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987
Origins of hydrodynamic forces on centrifugal pump impellers
NASA Technical Reports Server (NTRS)
Adkins, Douglas R.; Brennen, Christopher E.
1987-01-01
Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.
Biology, Environmental Education Guide.
ERIC Educational Resources Information Center
Project I-C-E, Green Bay, WI.
This biology guide, for use at the secondary level, is one of a series of guides, K-12, which were developed by teachers to help introduce environmental education into the total curriculum. The guides are supplementary in design, containing a series of episodes (minilessons) that emphasize experimentation and discussion relating to environmental…
NASA Astrophysics Data System (ADS)
Wang, Shaofeng; Xiang, Xiao; Zhou, Conghua; Zhai, Yiwei; Quan, Runai; Wang, Mengmeng; Hou, Feiyan; Zhang, Shougang; Dong, Ruifang; Liu, Tao
2017-01-01
In this paper, a model for simulating the optical response and noise performances of photodetectors with L-C coupling and transimpedance amplification circuit is presented. To verify the simulation, two kinds of photodetectors, which are based on the same printed-circuit-board (PCB) designing and PIN photodiode but different operational amplifiers, are developed and experimentally investigated. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the model provides a highly efficient guide for the development of a high signal to noise ratio photodetector. Furthermore, the parasite capacitances on the developed PCB, which are always hardly measured but play a non-negligible influence on the photodetectors' performances, are estimated.
Wang, Shaofeng; Xiang, Xiao; Zhou, Conghua; Zhai, Yiwei; Quan, Runai; Wang, Mengmeng; Hou, Feiyan; Zhang, Shougang; Dong, Ruifang; Liu, Tao
2017-01-01
In this paper, a model for simulating the optical response and noise performances of photodetectors with L-C coupling and transimpedance amplification circuit is presented. To verify the simulation, two kinds of photodetectors, which are based on the same printed-circuit-board (PCB) designing and PIN photodiode but different operational amplifiers, are developed and experimentally investigated. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the model provides a highly efficient guide for the development of a high signal to noise ratio photodetector. Furthermore, the parasite capacitances on the developed PCB, which are always hardly measured but play a non-negligible influence on the photodetectors' performances, are estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashman, Derek J.; Zhu, Tuo; Simmerman, Richard F.
2014-08-01
The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X-ray and NMR structures of PSI and Fd, respectively. Moreover, predictions of potential protein-protein interaction regions are based on experimental site-directed mutagenesis and cross-linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory tomore » bring together regions of high energetic frustration on each of the interacting proteins. Results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. Our study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies.« less
Anesthesia in Experimental Stroke Research
Hoffmann, Ulrike; Sheng, Huaxin; Ayata, Cenk; Warner, David S.
2016-01-01
Anesthetics have enabled major advances in development of experimental models of human stroke. Yet their profound pharmacologic effects on neural function can confound the interpretation of experimental stroke research. Anesthetics have drug and dose-specific effects on cerebral blood flow and metabolism, neurovascular coupling, autoregulation, ischemic depolarizations, excitotoxicity, inflammation, neural networks, and numerous molecular pathways relevant for stroke outcome. Both pre- and post-conditioning properties have been described. Anesthetics also modulate systemic arterial blood pressure, lung ventilation, and thermoregulation, all of which may interact with the ischemic insult as well as the therapeutic interventions. These confounds present a dilemma. Here, we provide an overview of the anesthetic mechanisms of action and molecular and physiologic effects on factors relevant to stroke outcomes that can guide the choice and optimization of the anesthetic regimen in experimental stroke. PMID:27534542
Neuroinflammatory targets and treatments for epilepsy validated in experimental models.
Aronica, Eleonora; Bauer, Sebastian; Bozzi, Yuri; Caleo, Matteo; Dingledine, Raymond; Gorter, Jan A; Henshall, David C; Kaufer, Daniela; Koh, Sookyong; Löscher, Wolfgang; Louboutin, Jean-Pierre; Mishto, Michele; Norwood, Braxton A; Palma, Eleonora; Poulter, Michael O; Terrone, Gaetano; Vezzani, Annamaria; Kaminski, Rafal M
2017-07-01
A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Model-Based Estimation of Knee Stiffness
Pfeifer, Serge; Vallery, Heike; Hardegger, Michael; Riener, Robert; Perreault, Eric J.
2013-01-01
During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step towards our ultimate goal of quantifying knee stiffness during gait. PMID:22801482
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, J.; Xue, X.
A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design,more » the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.« less
Bicycle Safety, Grades K-6. Experimental Curriculum Bulletin.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This experimental curriculum guide for bicycle safety begins with a chapter listing vehicle and traffic laws pertaining to bicycling. Chapter 2 of the guide is organized by grade level. Appropriate lesson plans for bicycle safety are presented with aims, concepts activities and behavioral objectives. A 24-item list of activities summarizes these…
CSMP Mathematics for Kindergarten, Teacher's Guide [and] Worksheets. Final Experimental Version.
ERIC Educational Resources Information Center
Vandeputte, Christiane
This guide represents the final experimental version of an extended pilot project which was conducted in the United States between 1973 and 1976. The manner of presentation and the pedagogical ideas and tools are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings…
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the…
ERIC Educational Resources Information Center
Hsieh, Bi-Jen
2015-01-01
This study explored whether guided reflection using predetermined prompts can enhance preservice teachers' development of technology integration self-efficacy (TISE) beliefs. A quantitative approach and a quasi-experimental, pre- and posttest design with two experimental groups and a control group were used. Two types of guided reflection prompts…
Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C
2015-03-18
Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Yijie; Gong, Mali; Fu, Xing
2018-05-01
Beam quality improvement with pump power increasing in an end-pumped laser oscillator is experimentally realized for the first time, to the best of our knowledge. The phenomenon is caused by the population-dynamic-coupled combined guiding effect, a comprehensive theoretical model of which has been well established, in agreement with the experimental results. Based on an 888 nm in-band dual-end-pumped oscillator using four tandem Nd:YVO4 crystals, the output beam quality of M^2= 1.1/1.1 at the pump power of 25 W is degraded to M^2 = 2.5/1.8 at 75 W pumping and then improved to M^2= 1.8/1.3 at 150 W pumping. The near-TEM_{00} mode is obtained with the highest continuous-wave output power of 72.1 W and the optical-to-optical efficiency of 48.1%. This work demonstrates great potential to further scale the output power of end-pumped laser oscillator while keeping good beam quality.
Numerical and Experimental Study of a Cooling for Vanes in a Small Turbine Engine
NASA Astrophysics Data System (ADS)
Šimák, Jan; Michálek, Jan
2016-03-01
This paper is concerned with a cooling system for inlet guide vanes of a small turbine engine which are exposed to a high temperature gas leaving a combustion chamber. Because of small dimensions of the vanes, only a simple internal cavity and cooling holes can be realized. The idea was to utilize a film cooling technique. The proposed solution was simulated by means of a numerical method based on a coupling of CFD and heat transfer solvers. The numerical results of various scenarios (different coolant temperature, heat transfer to surroundings) showed a desired decrease of the temperature, especially on the most critical part - the trailing edge. The numerical data are compared to results obtained by experimental measurements performed in a test facility in our institute. A quarter segment model of the inlet guide vanes wheel was equipped with thermocouples in order to verify an effect of cooling. Despite some uncertainty in the results, a verifiable decrease of the vane temperature was observed.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto
2018-07-01
In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.
The TEF modeling and analysis approach to advance thermionic space power technology
NASA Astrophysics Data System (ADS)
Marshall, Albert C.
1997-01-01
Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.
Rhodes, Ryan E; Yao, Christopher A
2015-02-07
There is a growing concern among researchers with the limited effectiveness and yet subsequent stagnation of theories applied to physical activity (PA). One of the most highlighted areas of concern is the established gap between intention and PA, yet the considerable use of models that assume intention is the proximal antecedent of PA. The objective of this review was to: 1) provide a guide and thematic analysis of the available models that include constructs that address intention-behavior discordance and 2) highlight the evidence for these structures in the PA domain. A literature search was conducted among 13 major databases to locate relevant models and PA studies published before August 2014. Sixteen models were identified and nine overall themes for post-intentional constructs were created. Of the 16 models, eight were applied to 36 PA studies. Early evidence supported maintenance self-efficacy, behavioral regulation strategies, affective judgments, perceived control/opportunity, habit, and extraversion as reliable predictors of post-intention PA. Several intention-behavior discordance models exist within the literature, but are not used frequently. Further efforts are needed to test these models, preferably with experimental designs.
A behavioral framework to guide research on central auditory development and plasticity
Sanes, Dan H.; Woolley, Sarah M. N.
2011-01-01
The auditory CNS is influenced profoundly by sounds heard during development. Auditory deprivation and augmented sound exposure can each perturb the maturation of neural computations as well as their underlying synaptic properties. However, we have learned little about the emergence of perceptual skills in these same model systems, and especially how perception is influenced by early acoustic experience. Here, we argue that developmental studies must take greater advantage of behavioral benchmarks. We discuss quantitative measures of perceptual development, and suggest how they can play a much larger role in guiding experimental design. Most importantly, including behavioral measures will allow us to establish empirical connections among environment, neural development, and perception. PMID:22196328
Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2003-01-01
Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice
2014-03-01
In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.
Finding viable models in SUSY parameter spaces with signal specific discovery potential
NASA Astrophysics Data System (ADS)
Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi
2013-08-01
Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.
Demodulation processes in auditory perception
NASA Astrophysics Data System (ADS)
Feth, Lawrence L.
1994-08-01
The long range goal of this project is the understanding of human auditory processing of information conveyed by complex, time-varying signals such as speech, music or important environmental sounds. Our work is guided by the assumption that human auditory communication is a 'modulation - demodulation' process. That is, we assume that sound sources produce a complex stream of sound pressure waves with information encoded as variations ( modulations) of the signal amplitude and frequency. The listeners task then is one of demodulation. Much of past. psychoacoustics work has been based in what we characterize as 'spectrum picture processing.' Complex sounds are Fourier analyzed to produce an amplitude-by-frequency 'picture' and the perception process is modeled as if the listener were analyzing the spectral picture. This approach leads to studies such as 'profile analysis' and the power-spectrum model of masking. Our approach leads us to investigate time-varying, complex sounds. We refer to them as dynamic signals and we have developed auditory signal processing models to help guide our experimental work.
Guided wave tomography in anisotropic media using recursive extrapolation operators
NASA Astrophysics Data System (ADS)
Volker, Arno
2018-04-01
Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.
NASA Astrophysics Data System (ADS)
Choi, Jin-Ha; Lee, Jaewon; Shin, Woojung; Choi, Jeong-Woo; Kim, Hyun Jung
2016-10-01
Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.
A 3D virtual reality simulator for training of minimally invasive surgery.
Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin
2014-01-01
For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.
Shvets, Alexey A; Kolomeisky, Anatoly B
2017-10-03
The ability to precisely edit and modify a genome opens endless opportunities to investigate fundamental properties of living systems as well as to advance various medical techniques and bioengineering applications. This possibility is now close to reality due to a recent discovery of the adaptive bacterial immune system, which is based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that utilize RNA to find and cut the double-stranded DNA molecules at specific locations. Here we develop a quantitative theoretical approach to analyze the mechanism of target search on DNA by CRISPR RNA-guided Cas9 proteins, which is followed by a selective cleavage of nucleic acids. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the target search is presented. It is found that the location of specific sites on DNA by CRISPR Cas9 proteins is governed by binding first to protospacer adjacent motif sequences on DNA, which is followed by reversible transitions into DNA interrogation states. In addition, the search dynamics is strongly influenced by the off-target cutting. Our theoretical calculations allow us to explain the experimental observations and to give experimentally testable predictions. Thus, the presented theoretical model clarifies some molecular aspects of the genome interrogation by CRISPR RNA-guided Cas9 proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The Effectiveness of Guided Inquiry Learning for Comparison Topics
NASA Astrophysics Data System (ADS)
Asnidar; Khabibah, S.; Sulaiman, R.
2018-01-01
This research aims at producing a good quality learning device using guided inquiry for comparison topics and describing the effectiveness of guided inquiry learning for comparison topics. This research is a developmental research using 4-D model. The result is learning device consisting of lesson plan, student’s worksheet, and achievement test. The subjects of the study were class VII students, each of which has 46 students. Based on the result in the experimental class, the learning device using guided inquiry for comparison topics has good quality. The learning device has met the valid, practical, and effective aspects. The result, especially in the implementation class, showed that the learning process with guided inquiry has fulfilled the effectiveness indicators. The ability of the teacher to manage the learning process has fulfilled the criteria good. In addition, the students’ activity has fulfilled the criteria of, at least, good. Moreover, the students’ responses to the learning device and the learning activities were positive, and the students were able to complete the classical learning. Based on the result of this research, it is expected that the learning device resulted can be used as an alternative learning device for teachers in implementing mathematic learning for comparison topics.
Model-guided control of hippocampal discharges by local direct current stimulation.
Mina, Faten; Modolo, Julien; Recher, Fanny; Dieuset, Gabriel; Biraben, Arnaud; Benquet, Pascal; Wendling, Fabrice
2017-05-10
Neurostimulation is an emerging treatment for drug-resistant epilepsies when surgery is contraindicated. Recent clinical results demonstrate significant seizure frequency reduction in epileptic patients, however the mechanisms underlying this therapeutic effect are largely unknown. This study aimed at gaining insights into local direct current stimulation (LDCS) effects on hyperexcitable tissue, by i) analyzing the impact of electrical currents locally applied on epileptogenic brain regions, and ii) characterizing currents achieving an "anti-epileptic" effect (excitability reduction). First, a neural mass model of hippocampal circuits was extended to accurately reproduce the features of hippocampal paroxysmal discharges (HPD) observed in a mouse model of epilepsy. Second, model predictions regarding current intensity and stimulation polarity were confronted to in vivo mice recordings during LDCS (n = 8). The neural mass model was able to generate realistic hippocampal discharges. Simulation of LDCS in the model pointed at a significant decrease of simulated HPD (in duration and occurrence rate, not in amplitude) for cathodal stimulation, which was successfully verified experimentally in epileptic mice. Despite the simplicity of our stimulation protocol, these results contribute to a better understanding of clinical benefits observed in epileptic patients with implanted neurostimulators. Our results also provide further support for model-guided design of neuromodulation therapy.
Models to teach lung sonopathology and ultrasound-guided thoracentesis.
Wojtczak, Jacek A
2014-12-01
Lung sonography allows rapid diagnosis of lung emergencies such as pulmonary edema, hemothorax or pneumothorax. The ability to timely diagnose an intraoperative pneumothorax is an important skill for the anesthesiologist. However, lung ultrasound exams require an interpretation of not only real images but also complex acoustic artifacts such as A-lines and B-lines. Therefore, appropriate training to gain proficiency is important. Simulated environment using ultrasound phantom models allows controlled, supervised learning. We have developed hybrid models that combine dry or wet polyurethane foams, porcine rib cages and human hand simulating a rib cage. These models simulate fairly accurately pulmonary sonopathology and allow supervised teaching of lung sonography with the immediate feedback. In-vitro models can also facilitate learning of procedural skills, improving transducer and needle positioning and movement, rapid recognition of thoracic anatomy and hand - eye coordination skills. We described a new model to teach an ultrasound guided thoracentesis. This model consists of the experimenter's hand placed on top of the water-filled container with a wet foam. Metacarpal bones of the human hand simulate a rib cage and a wet foam simulates a diseased lung immersed in the pleural fluid. Positive fluid flow offers users feedback when a simulated pleural effusion is accurately assessed.
Cepeda Rubio, M. F. J.; Leija, L.
2018-01-01
Microwave ablation (MWA) by using coaxial antennas is a promising alternative for breast cancer treatment. A double short distance slot coaxial antenna as a newly optimized applicator for minimally invasive treatment of breast cancer is proposed. To validate and to analyze the feasibility of using this method in clinical treatment, a computational model, phantom, and breast swine in vivo experimentation were carried out, by using four microwave powers (50 W, 30 W, 20 W, and 10 W). The finite element method (FEM) was used to develop the computational model. Phantom experimentation was carried out in breast phantom. The in vivo experimentation was carried out in a 90 kg swine sow. Tissue damage was estimated by comparing control and treated micrographs of the porcine mammary gland samples. The coaxial slot antenna was inserted in swine breast glands by using image-guided ultrasound. In all cases, modeling, in vivo and phantom experimentation, and ablation temperatures (above 60°C) were reached. The in vivo experiments suggest that this new MWA applicator could be successfully used to eliminate precise and small areas of tissue (around 20–30 mm2). By modulating the power and time applied, it may be possible to increase/decrease the ablation area. PMID:29854360
Template-guided vs. non-guided drilling in site preparation of dental implants.
Scherer, Uta; Stoetzer, Marcus; Ruecker, Martin; Gellrich, Nils-Claudius; von See, Constantin
2015-07-01
Clinical success of oral implants is related to primary stability and osseointegration. These parameters are associated with delicate surgical techniques. We herein studied whether template-guided drilling has a significant influence on drillholes diameter and accuracy in an in vitro model. Fresh cadaveric porcine mandibles were used for drilling experiments of four experimental groups. Each group consisted of three operators, comparing guide templates for drilling with free-handed procedure. Operators without surgical knowledge were grouped together, contrasting highly experienced oral surgeons in other groups. A total of 180 drilling actions were performed, and diameters were recorded at multiple depth levels, with a precision measuring instrument. Template-guided drilling procedure improved accuracy on a very significant level in comparison with free-handed drilling operation (p ≤ 0.001). Inaccuracy of free-handed drilling became more significant in relation to measurement depth. High homogenic uniformity of template-guided drillholes was significantly stronger than unguided drilling operations by highly experienced oral surgeons (p ≤ 0.001). Template-guided drilling procedure leads to significantly enhanced accuracy. Significant results compared to free-handed drilling actions were achieved, irrespective of the clinical experience level of the operator. Template-guided drilling procedures lead to a more predictable clinical diameter. It shows that any set of instruments has to be carefully chosen to match the specific implant system. The current in vitro study is implicating an improvement of implant bed preparation but needs to be confirmed in clinical studies.
Mishra, Bud; Daruwala, Raoul-Sam; Zhou, Yi; Ugel, Nadia; Policriti, Alberto; Antoniotti, Marco; Paxia, Salvatore; Rejali, Marc; Rudra, Archisman; Cherepinsky, Vera; Silver, Naomi; Casey, William; Piazza, Carla; Simeoni, Marta; Barbano, Paolo; Spivak, Marina; Feng, Jiawu; Gill, Ofer; Venkatesh, Mysore; Cheng, Fang; Sun, Bing; Ioniata, Iuliana; Anantharaman, Thomas; Hubbard, E Jane Albert; Pnueli, Amir; Harel, David; Chandru, Vijay; Hariharan, Ramesh; Wigler, Michael; Park, Frank; Lin, Shih-Chieh; Lazebnik, Yuri; Winkler, Franz; Cantor, Charles R; Carbone, Alessandra; Gromov, Mikhael
2003-01-01
We collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems. To achieve this ambitious goal, ideas and concepts are combined from many different fields: biological experimentation, applied mathematical modeling, computational reasoning schemes, and large-scale numerical and symbolic simulations. From a biological viewpoint, the basic issues are many: (i) understanding common and shared structural motifs among biological processes; (ii) modeling biological noise due to interactions among a small number of key molecules or loss of synchrony; (iii) explaining the robustness of these systems in spite of such noise; and (iv) cataloging multistatic behavior and adaptation exhibited by many biological processes.
Vortex modeling for rotor aerodynamics - The 1991 Alexander A. Nikolsky Lecture
NASA Technical Reports Server (NTRS)
Gray, Robin B.
1992-01-01
The efforts toward realistic vortex modeling for rotary wings which began under the guidance of professor A. A. Nikolsky of Princeton University in 1955-1956 are discussed. Attention is given to Nikolsky's flow-visualization studies and major theoretical considerations for vortex modeling. More recent efforts by other researchers have led to models of increasing complexity. The neglect of compressibility and viscous effects in the classical approach is noted to be a major limiting factor in full-scale rotor applications of the classical vortex theory; it has nevertheless been valuable for the delineation of problem areas and the guiding of both experimental and theoretical investigations.
Augmented Reality-Guided Lumbar Facet Joint Injections.
Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda
2018-05-08
The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.
Modeling of the Thermoelectric Properties of p-Type IrSb(sub 3)
NASA Technical Reports Server (NTRS)
Fleurial, J.
1994-01-01
IrSb(sub 3) is a compound of the skutterudite family of materials now being investigated at JPL. A combination of experimental and theoretical approaches has been recently applied at JPL to evaluate the potential of several thermoelectric materials such as n-type and p-type Si(sub 80) Ge(sub 20) alloys, n-type and p-type Bi(sub 2) Te(sub 3)-based alloys and p-type Ru(sub 2) Ge(sub 3) compound. The use of a comprehensive model for the thermal and electrical transport properties of a given material over its full temperature range of usefulness is a powerful tool for guiding experimental optimization of the composition, temperature and doping level as well as for predicting the maximum ZT value likely to be achieved.
Dynamic conductivity and partial ionization in dense fluid hydrogen
NASA Astrophysics Data System (ADS)
Zaghoo, Mohamed
2018-04-01
A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.
Multiscale simulations of the early stages of the growth of graphene on copper
NASA Astrophysics Data System (ADS)
Gaillard, P.; Chanier, T.; Henrard, L.; Moskovkin, P.; Lucas, S.
2015-07-01
We have performed multiscale simulations of the growth of graphene on defect-free copper (111) in order to model the nucleation and growth of graphene flakes during chemical vapour deposition and potentially guide future experimental work. Basic activation energies for atomic surface diffusion were determined by ab initio calculations. Larger scale growth was obtained within a kinetic Monte Carlo approach (KMC) with parameters based on the ab initio results. The KMC approach counts the first and second neighbours to determine the probability of surface diffusion. We report qualitative results on the size and shape of the graphene islands as a function of deposition flux. The dominance of graphene zigzag edges for low deposition flux, also observed experimentally, is explained by its larger dynamical stability that the present model fully reproduced.
Investigation of guided wave propagation and attenuation in pipe buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2015-07-01
Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.
ERIC Educational Resources Information Center
Kaufman, Burt; And Others
This guide represents the final experimental version of an extended pilot project which was conducted in the United States between 1973 and 1976. The manner of presentation and pedagogical ideas and tools are based on the works of George and Frederique Papy. They are recognized as having introduced colored arrow drawings ("papygrams")…
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of an extended pilot project which was conducted in the United States between 1973 and 1976. The manner of presentation and pedagogical ideas and tools are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings ("papygrams")…
ERIC Educational Resources Information Center
Stiles, Philip G.; And Others
The project developed an experimental curriculum guide for training persons at the high school and post-high school levels in food handling and distribution. Data were gathered through interviews with over 200 food industries in Connecticut. Courses and curriculums were obtained from six secondary schools and seven post-secondary schools. Some of…
Courivaud, Frédéric; Kazaryan, Airazat M; Lund, Alice; Orszagh, Vivian C; Svindland, Aud; Marangos, Irina Pavlik; Halvorsen, Per Steinar; Jebsen, Peter; Fosse, Erik; Hol, Per Kristian; Edwin, Bjørn
2014-07-01
The aim of this study was to investigate experimental conditions for efficient and controlled in vivo liver tissue ablation by magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) in a swine model, with the ultimate goal of improving clinical treatment outcome. Histological changes were examined both acutely (four animals) and 1 wk after treatment (five animals). Effects of acoustic power and multiple sonication cycles were investigated. There was good correlation between target size and observed ablation size by thermal dose calculation, post-procedural MR imaging and histopathology, when temperature at the focal point was kept below 90°C. Structural histopathology investigations revealed tissue thermal fixation in ablated regions. In the presence of cavitation, mechanical tissue destruction occurred, resulting in an ablation larger than the target. Complete extra-corporeal MR-guided HIFU ablation in the liver is feasible using high acoustic power. Nearby large vessels were preserved, which makes MR-guided HIFU promising for the ablation of liver tumors adjacent to large veins. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernadowski, Timothy Adam, Jr.
Carbon dioxide in the Martian atmosphere can be converted to oxygen during high temperature electrolysis for use in life-support and fuel systems on manned missions to the red planet. During electrolysis of carbon dioxide to produce oxygen, carbon can deposit on the electrolysis cell resulting in lower efficiency and possibly cell damage. This would be detrimental, especially when the oxygen product is used as the key element of a space life support system. In this thesis, a theoretical model was developed to predict hazardous carbon deposition conditions under various operating conditions within the Martian atmosphere. The model can be used as a guide to determine the ideal operating conditions of the high-temperature oxygen production system. A parallel experimental investigation is underway to evaluate the accuracy of the theoretical model. The experimental design, cell fabrication, and some preliminary results as well as future work recommendations are also presented in this thesis.
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.
1996-01-01
Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.
Ultrasonic guided wave interpretation for structural health inspections
NASA Astrophysics Data System (ADS)
Bingham, Jill Paisley
Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.
Modeling the process of interaction of 10 keV electrons with a plane dielectric surface
NASA Astrophysics Data System (ADS)
Vokhmyanina, Kristina; Sotnikova, Valentina; Sotnikov, Alexey; Kaplii, Anna; Nikulicheva, Tatyana; Kubankin, Alexandr; Kishin, Ivan
2018-05-01
The effect of guiding of charged particles by dielectric channels is of noticeable interest at the present time. The phenomenon is widely studied experimentally and theoretically but some points still need to be clarified. A previously developed model of interaction of fast electrons with dielectric surface at grazing incidence is used to study the independence of electron deflection on the value of electron beam current. The calculations were performed assuming a smooth dependence of the surface conductivity on the beam current in the 40-3000 nA range.
CFD Models of a Serpentine Inlet, Fan, and Nozzle
NASA Technical Reports Server (NTRS)
Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.
2010-01-01
Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan
Computational modeling of epidermal cell fate determination systems.
Ryu, Kook Hui; Zheng, Xiaohua; Huang, Ling; Schiefelbein, John
2013-02-01
Cell fate decisions are of primary importance for plant development. Their simple 'either-or' outcome and dynamic nature has attracted the attention of computational modelers. Recent efforts have focused on modeling the determination of several epidermal cell types in the root and shoot of Arabidopsis where many molecular components have been defined. Results of integrated modeling and molecular biology experimentation in these systems have highlighted the importance of competitive positive and negative factors and interconnected feedback loops in generating flexible yet robust mechanisms for establishing distinct gene expression programs in neighboring cells. These models have proven useful in judging hypotheses and guiding future research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning
Zhang, Yue; Song, Bin; Zhang, Ying; Du, Xiaojiang; Guizani, Mohsen
2016-01-01
Emerging sensor networks (ESNs) are an inevitable trend with the development of the Internet of Things (IoT), and intend to connect almost every intelligent device. Therefore, it is critical to study resource allocation in such an environment, due to the concern of efficiency, especially when resources are limited. By viewing ESNs as multi-agent environments, we model them with an agent-based modelling (ABM) method and deal with resource allocation problems with market models, after describing users’ patterns. Reinforcement learning methods are introduced to estimate users’ patterns and verify the outcomes in our market models. Experimental results show the efficiency of our methods, which are also capable of guiding topology management. PMID:27916841
Multicellular Self-Organization of P. aeruginosa due to Interactions with Secreted Trails.
Gelimson, Anatolij; Zhao, Kun; Lee, Calvin K; Kranz, W Till; Wong, Gerard C L; Golestanian, Ramin
2016-10-21
Guided movement in response to slowly diffusing polymeric trails provides a unique mechanism for self-organization of some microorganisms. To elucidate how this signaling route leads to microcolony formation, we experimentally probe the trajectory and orientation of Pseudomonas aeruginosa that propel themselves on a surface using type IV pili motility appendages, which preferentially attach to deposited exopolysaccharides. We construct a stochastic model by analyzing single-bacterium trajectories and show that the resulting theoretical prediction for the many-body behavior of the bacteria is in quantitative agreement with our experimental characterization of how cells explore the surface via a power-law strategy.
High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting
Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K. W.
2015-01-01
We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (<400°C) thermal dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries. PMID:25858792
High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting.
Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K W
2015-04-10
We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (<400°C) thermal dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries.
Wojnarowicz, Mark W.; Fisher, Andrew M.; Minaeva, Olga; Goldstein, Lee E.
2017-01-01
Animal models of concussion, traumatic brain injury (TBI), and chronic traumatic encephalopathy (CTE) are widely available and routinely deployed in laboratories around the world. Effective animal modeling requires careful consideration of four basic principles. First, animal model use must be guided by clarity of definitions regarding the human disease or condition being modeled. Concussion, TBI, and CTE represent distinct clinical entities that require clear differentiation: concussion is a neurological syndrome, TBI is a neurological event, and CTE is a neurological disease. While these conditions are all associated with head injury, the pathophysiology, clinical course, and medical management of each are distinct. Investigators who use animal models of these conditions must take into account these clinical distinctions to avoid misinterpretation of results and category mistakes. Second, model selection must be grounded by clarity of purpose with respect to experimental questions and frame of reference of the investigation. Distinguishing injury context (“inputs”) from injury consequences (“outputs”) may be helpful during animal model selection, experimental design and execution, and interpretation of results. Vigilance is required to rout out, or rigorously control for, model artifacts with potential to interfere with primary endpoints. The widespread use of anesthetics in many animal models illustrates the many ways that model artifacts can confound preclinical results. Third, concordance between key features of the animal model and the human disease or condition being modeled is required to confirm model biofidelity. Fourth, experimental results observed in animals must be confirmed in human subjects for model validation. Adherence to these principles serves as a bulwark against flawed interpretation of results, study replication failure, and confusion in the field. Implementing these principles will advance basic science discovery and accelerate clinical translation to benefit people affected by concussion, TBI, and CTE. PMID:28620350
High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures
NASA Technical Reports Server (NTRS)
Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.
2011-01-01
High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.
Research on Modeling Technology of Virtual Robot Based on LabVIEW
NASA Astrophysics Data System (ADS)
Wang, Z.; Huo, J. L.; Y Sun, L.; Y Hao, X.
2017-12-01
Because of the dangerous working environment, the underwater operation robot for nuclear power station needs manual teleoperation. In the process of operation, it is necessary to guide the position and orientation of the robot in real time. In this paper, the geometric modeling of the virtual robot and the working environment is accomplished by using SolidWorks software, and the accurate modeling and assembly of the robot are realized. Using LabVIEW software to read the model, and established the manipulator forward kinematics and inverse kinematics model, and realized the hierarchical modeling of virtual robot and computer graphics modeling. Experimental results show that the method studied in this paper can be successfully applied to robot control system.
Sun, W; Adams, R N; Miagkov, A; Lu, Y; Juon, H-S; Drachman, D B
2012-10-15
Current immunotherapy of myasthenia gravis (MG) is often effective, but entails risks of infection and neoplasia. The "Guided Missile" strategy described here is designed to target and eliminate the individual's unique AChR-specific T cell repertoire, without otherwise interfering with the immune system. We genetically engineered dendritic cells to present AChR epitopes and simultaneously express Fas ligand in an ongoing EAMG model. In both in vitro and in vivo experiments, these engineered cells specifically killed AChR-responsive T cells without otherwise damaging the immune system. AChR antibodies were markedly reduced in the treated mice. Translation of this method to treat human MG is possible. Copyright © 2012 Elsevier B.V. All rights reserved.
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less
Data driven modeling of plastic deformation
Versino, Daniele; Tonda, Alberto; Bronkhorst, Curt A.
2017-05-01
In this paper the application of machine learning techniques for the development of constitutive material models is being investigated. A flow stress model, for strain rates ranging from 10 –4 to 10 12 (quasi-static to highly dynamic), and temperatures ranging from room temperature to over 1000 K, is obtained by beginning directly with experimental stress-strain data for Copper. An incrementally objective and fully implicit time integration scheme is employed to integrate the hypo-elastic constitutive model, which is then implemented into a finite element code for evaluation. Accuracy and performance of the flow stress models derived from symbolic regression are assessedmore » by comparison to Taylor anvil impact data. The results obtained with the free-form constitutive material model are compared to well-established strength models such as the Preston-Tonks-Wallace (PTW) model and the Mechanical Threshold Stress (MTS) model. Here, preliminary results show candidate free-form models comparing well with data in regions of stress-strain space with sufficient experimental data, pointing to a potential means for both rapid prototyping in future model development, as well as the use of machine learning in capturing more data as a guide for more advanced model development.« less
Data driven modeling of plastic deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Tonda, Alberto; Bronkhorst, Curt A.
In this paper the application of machine learning techniques for the development of constitutive material models is being investigated. A flow stress model, for strain rates ranging from 10 –4 to 10 12 (quasi-static to highly dynamic), and temperatures ranging from room temperature to over 1000 K, is obtained by beginning directly with experimental stress-strain data for Copper. An incrementally objective and fully implicit time integration scheme is employed to integrate the hypo-elastic constitutive model, which is then implemented into a finite element code for evaluation. Accuracy and performance of the flow stress models derived from symbolic regression are assessedmore » by comparison to Taylor anvil impact data. The results obtained with the free-form constitutive material model are compared to well-established strength models such as the Preston-Tonks-Wallace (PTW) model and the Mechanical Threshold Stress (MTS) model. Here, preliminary results show candidate free-form models comparing well with data in regions of stress-strain space with sufficient experimental data, pointing to a potential means for both rapid prototyping in future model development, as well as the use of machine learning in capturing more data as a guide for more advanced model development.« less
Challenging Density Functional Theory Calculations with Hemes and Porphyrins
de Visser, Sam P.; Stillman, Martin J.
2016-01-01
In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578
NASA Astrophysics Data System (ADS)
Ye, Hu; Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Wu, Ping; Song, Zhimin; Cao, Yibing; Du, Zhaoyu
2015-12-01
This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.
Balachandran, Prasanna V; Kowalski, Benjamin; Sehirlioglu, Alp; Lookman, Turab
2018-04-26
Experimental search for high-temperature ferroelectric perovskites is a challenging task due to the vast chemical space and lack of predictive guidelines. Here, we demonstrate a two-step machine learning approach to guide experiments in search of xBi[Formula: see text]O 3 -(1 - x)PbTiO 3 -based perovskites with high ferroelectric Curie temperature. These involve classification learning to screen for compositions in the perovskite structures, and regression coupled to active learning to identify promising perovskites for synthesis and feedback. The problem is challenging because the search space is vast, spanning ~61,500 compositions and only 167 are experimentally studied. Furthermore, not every composition can be synthesized in the perovskite phase. In this work, we predict x, y, Me', and Me″ such that the resulting compositions have both high Curie temperature and form in the perovskite structure. Outcomes from both successful and failed experiments then iteratively refine the machine learning models via an active learning loop. Our approach finds six perovskites out of ten compositions synthesized, including three previously unexplored {Me'Me″} pairs, with 0.2Bi(Fe 0.12 Co 0.88 )O 3 -0.8PbTiO 3 showing the highest measured Curie temperature of 898 K among them.
Stem cell origins and animal models of hepatocellular carcinoma.
Aravalli, Rajagopal N; Steer, Clifford J; Sahin, M Behnan; Cressman, Erik N K
2010-05-01
Hepatocellular carcinoma (HCC) is a common malignant tumor that almost always occurs within a preexisting background of chronic liver disease and cirrhosis. Currently, medical therapy is not effective in treating most HCC, and the only hope of cure is either resection or liver transplantation. A small minority of patients is eligible for these therapies, which entail major morbidity at the very least. In spite of immense scientific advances during the past 3 decades, patient survival has improved very little. In order to reduce morbidity and mortality from HCC, improvements in early diagnosis and development of novel local and systemic therapies for advanced disease are essential, in addition to efforts geared towards primary prevention. Studies with experimental animal models that closely mimic human disease are very valuable in understanding physiological, cellular and molecular mechanisms underlying the disease. Furthermore, appropriate animal models have the potential to increase our understanding of the effects of image-guided minimally invasive therapies and thereby help to improve such therapies. In this review, we examine the evidence for stem cell origins of such tumors, critically evaluate existing models and reflect on how to develop new models for minimally invasive, image-guided treatment of HCC.
A guide to the use of the pressure disk rotor model as implemented in INS3D-UP
NASA Technical Reports Server (NTRS)
Chaffin, Mark S.
1995-01-01
This is a guide for the use of the pressure disk rotor model that has been placed in the incompressible Navier-Stokes code INS3D-UP. The pressure disk rotor model approximates a helicopter rotor or propeller in a time averaged manner and is intended to simulate the effect of a rotor in forward flight on the fuselage or the effect of a propeller on other aerodynamic components. The model uses a modified actuator disk that allows the pressure jump across the disk to vary with radius and azimuth. The cyclic and collective blade pitch angles needed to achieve a specified thrust coefficient and zero moment about the hub are predicted. The method has been validated with experimentally measured mean induced inflow velocities as well as surface pressures on a generic fuselage. Overset grids, sometimes referred to as Chimera grids, are used to simplify the grid generation process. The pressure disk model is applied to a cylindrical grid which is embedded in the grid or grids used for the rest of the configuration. This document will outline the development of the method, and present input and results for a sample case.
An exploration for research-oriented teaching model in biology teaching.
Xing, Wanjin; Mo, Morigen; Su, Huimin
2014-07-01
Training innovative talents, as one of the major aims for Chinese universities, needs to reform the traditional teaching methods. The research-oriented teaching method has been introduced and its connotation and significance for Chinese university teaching have been discussed for years. However, few practical teaching methods for routine class teaching were proposed. In this paper, a comprehensive and concrete research-oriented teaching model with contents of reference value and evaluation method for class teaching was proposed based on the current teacher-guiding teaching model in China. We proposed that the research-oriented teaching model should include at least seven aspects on: (1) telling the scientific history for the skills to find out scientific questions; (2) replaying the experiments for the skills to solve scientific problems; (3) analyzing experimental data for learning how to draw a conclusion; (4) designing virtual experiments for learning how to construct a proposal; (5) teaching the lesson as the detectives solve the crime for learning the logic in scientific exploration; (6) guiding students how to read and consult the relative references; (7) teaching students differently according to their aptitude and learning ability. In addition, we also discussed how to evaluate the effects of the research-oriented teaching model in examination.
Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2014-03-01
This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. Copyright © 2013 Elsevier B.V. All rights reserved.
Wilmoth, Jared L; Doak, Peter W; Timm, Andrea; Halsted, Michelle; Anderson, John D; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T; Fuentes-Cabrera, Miguel
2018-01-01
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P . aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.
Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; Halsted, Michelle; Anderson, John D.; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T.; Fuentes-Cabrera, Miguel
2018-01-01
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models. PMID:29467721
Chen, Shu-Fen; Wang, Hsiu-Ho; Yang, Hsing-Yu; Chung, Ue-Lin
2015-11-01
Breast cancer patients frequently experience psychological distress during the chemotherapy period. This study aimed to evaluate the effect of relaxation with guided imagery on patients with breast cancer. A two-group, pretest-posttest, quasi-experimental design with a randomized controlled trial was conducted. Sixty-five breast cancer patients from one medical center in Taiwan were enrolled in the study. These patients were randomly assigned to the experimental group (n = 32) or to the control group (n = 33). Both groups received chemotherapy self-care education, but the experimental group also received relaxation with guided imagery training. The training on relaxation with guided imagery was conducted before chemotherapy, and the patients were supplied with a compact disc detailing the performance of relaxation with guided imagery for 20 minutes daily at home for 7 days after chemotherapy. The experimental group showed significant decreases in insomnia (-0.34 ± 0.83, P < 0.05), pain (-0.28 ± 0.58, P < 0.05), anxiety (-3.56 ± 2.94, P < 0.00), and depression (-2.38 ± 2.70, P < 0.00) between the pretest and the posttest. Comparing the two groups, statistically significant differences were found in the overall symptom distress (B = 0.11, P < 0.05), insomnia (B = 0.50, P <0.05), depression (B = 0.38, P < 0.05), and numbness in physical symptoms (B = 0.38, P < 0.05), as well as in anxiety (B = 3.08, P < 0.00) and depression (B = 1.86, P < 0.00) in psychological distress. One week of relaxation with guided imagery can significantly improve the overall symptoms of distress, insomnia, depression, physical symptoms, and anxiety, and can decrease psychological distress. Relaxation with guided imagery had a positive effect on mediating anxiety and depression in breast cancer patients.
Endoscopic hyperspectral imaging: light guide optimization for spectral light source
NASA Astrophysics Data System (ADS)
Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.
2018-02-01
Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.
NASA Astrophysics Data System (ADS)
Madhavi Latha, T.; Peddi Naidu, P.; Madhusudhana Rao, D. N.; Indira Devi, M.
2012-11-01
Electron density profiles for the International Reference Ionosphere (IRI) 2001 and 2007 models have been utilized in evaluating the D-region conductivity parameter in earth ionosphere wave guide calculations. The day to night shift in reflection height of very low frequency (VLF) waves has been calculated using D-region conductivities derived from IRI models and the results are compared with those obtained from phase variation measurements of VLF transmissions from Rugby (England) made at Visakhapatnam (India). The values derived from the models are found to be much lower than those obtained from the experimental measurements. The values derived from the IRI models are in good agreement with those obtained from exponential conductivity model.
Global Quantitative Modeling of Chromatin Factor Interactions
Zhou, Jian; Troyanskaya, Olga G.
2014-01-01
Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896
A comparison of time domain boundary conditions for acoustic waves in wave guides
NASA Technical Reports Server (NTRS)
Banks, H. T.; Propst, G.; Silcox, R. J.
1991-01-01
Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.
ERIC Educational Resources Information Center
Çoruhlu, Tülay Senel; Er Nas, Sibel
2017-01-01
The aim of this research is to determine the effect of the use of guidance material based on the 5E model on students' conceptual understanding of a topic entitled "What is the earth's crust composed of?" The sample consists of 40 students from the 5th grade (experimental group 20, control group 20). A concept test, a drawing test, and…
Dillon, C R; Borasi, G; Payne, A
2016-01-01
For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one. PMID:26741344
NASA Astrophysics Data System (ADS)
Munin, Egberto; Lupato Conrado, Luis A.; Alves, Leandro P.; Zangaro, Renato A.
2004-05-01
The sealing cements used in endodontics are commonly of the type activated by chemical reactions. During polymerization, mechanical contractions are not uncommon, leading to non-perfect sealing or treatment failure. Photopolymerizable cements usually presents superior performance as compared to those chemically activated. However, difficulties in carrying-up the light to difficult-to-reach regions like the dental apex preclude those material of being accepted in the dental office routine. Recently, a novel technique for the light curing of photopolymerizable cements in endodontic applications has been proposed. Such a technique makes use of a polymeric light guide to deliver the curing light to the apex region, for a single step polymerization of the canal filler. For this work, a 28 mm long polymer light-guide, has been produced. The polymer surface was roughened to produce light scattering and allow the light to escape from the guide. The light scattering profile along the body of the guide is an important property for the proposed application. We used an integrating sphere to measure the irradiation profile for the proposed endodontic device. It was found that the experimental data for the amount of light coupled into the integrating sphere as a function of the length of the cone inside the sphere fits to a double exponential model.
ERIC Educational Resources Information Center
CEMREL, Inc., St. Ann, MO.
This guide represents the final experimental version of an extended pilot project which was conducted in the United States between 1973 and 1976. The manner of presentation and the pedagogical ideas and tools are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings…
DIUx Commercial Solutions Opening: How to Guide
2016-11-30
Secretary Carter charged the Defense Innovation Unit Experimental (DIUx) to “develop new partnerships with the private sector in communities in Silicon...founded the Defense Innovation Unit Experimental (DIUx) to accelerate innovation to the warfighter. In the past, government funding spurred significant...philosophy on OTs. These are guiding principles through which DIUx designed the CSO that can easily be adopted by others as an additional tool in the
Predictive modeling of low solubility semiconductor alloys
NASA Astrophysics Data System (ADS)
Rodriguez, Garrett V.; Millunchick, Joanna M.
2016-09-01
GaAsBi is of great interest for applications in high efficiency optoelectronic devices due to its highly tunable bandgap. However, the experimental growth of high Bi content films has proven difficult. Here, we model GaAsBi film growth using a kinetic Monte Carlo simulation that explicitly takes cation and anion reactions into account. The unique behavior of Bi droplets is explored, and a sharp decrease in Bi content upon Bi droplet formation is demonstrated. The high mobility of simulated Bi droplets on GaAsBi surfaces is shown to produce phase separated Ga-Bi droplets as well as depressions on the film surface. A phase diagram for a range of growth rates that predicts both Bi content and droplet formation is presented to guide the experimental growth of high Bi content GaAsBi films.
Scientific, statistical, practical, and regulatory considerations in design space development.
Debevec, Veronika; Srčič, Stanko; Horvat, Matej
2018-03-01
The quality by design (QbD) paradigm guides the pharmaceutical industry towards improved understanding of products and processes, and at the same time facilitates a high degree of manufacturing and regulatory flexibility throughout the establishment of the design space. This review article presents scientific, statistical and regulatory considerations in design space development. All key development milestones, starting with planning, selection of factors, experimental execution, data analysis, model development and assessment, verification, and validation, and ending with design space submission, are presented and discussed. The focus is especially on frequently ignored topics, like management of factors and CQAs that will not be included in experimental design, evaluation of risk of failure on design space edges, or modeling scale-up strategy. Moreover, development of a design space that is independent of manufacturing scale is proposed as the preferred approach.
How to become a top model: impact of animal experimentation on human Salmonella disease research.
Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J
2011-05-01
Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.
A simulation technique for 3D MR-guided acoustic radiation force imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Allison, E-mail: apayne@ucair.med.utah.edu; Bever, Josh de; Farrer, Alexis
2015-02-15
Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation forcemore » field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.« less
Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet
NASA Astrophysics Data System (ADS)
Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian
The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.
Laser guidance of mesoscale particles
NASA Astrophysics Data System (ADS)
Underdown, Frank Hartman, Jr.
Mesoscale particles are guided and trapped in hollow optical fibers using radiation pressure forces. Laser light from a 0.4W, 780nm diode laser is guided in a low- loss fiber mode and used to generate the guidance forces. Laser scattering and absorption forces propels particles along the fiber and polarization gradient forces attract them to the fiber's axial center. Using two counter propagating laser beams, inside the fiber, particles can be trapped in three dimensions. Measuring the spring constant of the trap gives the gradient force. This dissertation describes Rayleigh and Mie scattering models for calculating guidance forces. Calculated forces as a function of particle size and composition (i.e. dielectric, semiconductor, and metals) will be presented. For example, under typical experimental conditions 100nm Au particles are guided by a 2 × 10-14 N propulsive force in a water filled fiber. In comparison, the measured force, obtained from the particle's velocity and Stokes' law, is 7.98 × 10-14 N.
Non-invasive MR-guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas
2012-07-01
AD_________________ Award Number: W81XWH-11-1-0299 TITLE: Non- invasive MR-guided HIFU Therapy...3. DATES COVERED 1 July 2011-30 June 2012 4. TITLE AND SUBTITLE Non- invasive MR-guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas 5a... focused on technological development for thermal ablation in mice. Our goal was to establish a small-animal MR-guided HIFU experimental system that
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Prykhozhij, Sergey V; Rajan, Vinothkumar; Berman, Jason N
2016-02-01
The development of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology for mainstream biotechnological use based on its discovery as an adaptive immune mechanism in bacteria has dramatically improved the ability of molecular biologists to modify genomes of model organisms. The zebrafish is highly amenable to applications of CRISPR/Cas9 for mutation generation and a variety of DNA insertions. Cas9 protein in complex with a guide RNA molecule recognizes where to cut the homologous DNA based on a short stretch of DNA termed the protospacer-adjacent motif (PAM). Rapid and efficient identification of target sites immediately preceding PAM sites, quantification of genomic occurrences of similar (off target) sites and predictions of cutting efficiency are some of the features where computational tools play critical roles in CRISPR/Cas9 applications. Given the rapid advent and development of this technology, it can be a challenge for researchers to remain up to date with all of the important technological developments in this field. We have contributed to the armamentarium of CRISPR/Cas9 bioinformatics tools and trained other researchers in the use of appropriate computational programs to develop suitable experimental strategies. Here we provide an in-depth guide on how to use CRISPR/Cas9 and other relevant computational tools at each step of a host of genome editing experimental strategies. We also provide detailed conceptual outlines of the steps involved in the design and execution of CRISPR/Cas9-based experimental strategies, such as generation of frameshift mutations, larger chromosomal deletions and inversions, homology-independent insertion of gene cassettes and homology-based knock-in of defined point mutations and larger gene constructs.
Learning to apply models of materials while explaining their properties
NASA Astrophysics Data System (ADS)
Karpin, Tiia; Juuti, Kalle; Lavonen, Jari
2014-09-01
Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.
Fundamental Activity Constraints Lead to Specific Interpretations of the Connectome.
Schuecker, Jannis; Schmidt, Maximilian; van Albada, Sacha J; Diesmann, Markus; Helias, Moritz
2017-02-01
The continuous integration of experimental data into coherent models of the brain is an increasing challenge of modern neuroscience. Such models provide a bridge between structure and activity, and identify the mechanisms giving rise to experimental observations. Nevertheless, structurally realistic network models of spiking neurons are necessarily underconstrained even if experimental data on brain connectivity are incorporated to the best of our knowledge. Guided by physiological observations, any model must therefore explore the parameter ranges within the uncertainty of the data. Based on simulation results alone, however, the mechanisms underlying stable and physiologically realistic activity often remain obscure. We here employ a mean-field reduction of the dynamics, which allows us to include activity constraints into the process of model construction. We shape the phase space of a multi-scale network model of the vision-related areas of macaque cortex by systematically refining its connectivity. Fundamental constraints on the activity, i.e., prohibiting quiescence and requiring global stability, prove sufficient to obtain realistic layer- and area-specific activity. Only small adaptations of the structure are required, showing that the network operates close to an instability. The procedure identifies components of the network critical to its collective dynamics and creates hypotheses for structural data and future experiments. The method can be applied to networks involving any neuron model with a known gain function.
Capturing the semiotic relationship between terms
NASA Astrophysics Data System (ADS)
Hargood, Charlie; Millard, David E.; Weal, Mark J.
2010-04-01
Tags describing objects on the web are often treated as facts about a resource, whereas it is quite possible that they represent more subjective observations. Existing methods of term expansion expand terms based on dictionary definitions or statistical information on term occurrence. Here we propose the use of a thematic model for term expansion based on semiotic relationships between terms; this has been shown to improve a system's thematic understanding of content and tags and to tease out the more subjective implications of those tags. Such a system relies on a thematic model that must be made by hand. In this article, we explore a method to capture a semiotic understanding of particular terms using a rule-based guide to authoring a thematic model. Experimentation shows that it is possible to capture valid definitions that can be used for semiotic term expansion but that the guide itself may not be sufficient to support this on a large scale. We argue that whilst the formation of super definitions will mitigate some of these problems, the development of an authoring support tool may be necessary to solve others.
Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices
NASA Astrophysics Data System (ADS)
Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration
2016-11-01
Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.
Wolverton, Christopher; Hattrick-Simpers, Jason; Mehta, Apurva
2018-01-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, but there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict. PMID:29662953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fang; Ward, Logan; Williams, Travis
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
Ren, Fang; Ward, Logan; Williams, Travis; ...
2018-04-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2016-12-01
Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.
Compact divided-pupil line-scanning confocal microscope for investigation of human tissues
NASA Astrophysics Data System (ADS)
Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind
2013-03-01
Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.
You are lost without a map: Navigating the sea of protein structures.
Lamb, Audrey L; Kappock, T Joseph; Silvaggi, Nicholas R
2015-04-01
X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density. Copyright © 2014 Elsevier B.V. All rights reserved.
Kinetic modeling of cell metabolism for microbial production.
Costa, Rafael S; Hartmann, Andras; Vinga, Susana
2016-02-10
Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.
Micro-porous layer stochastic reconstruction and transport parameter determination
NASA Astrophysics Data System (ADS)
El Hannach, Mohamed; Singh, Randhir; Djilali, Ned; Kjeang, Erik
2015-05-01
The Micro-Porous Layer (MPL) is a porous, thin layer commonly used in fuel cells at the interfaces between the catalyst layers and gas diffusion media. It is generally made from spherical carbon nanoparticles and PTFE acting as hydrophobic agent. The scale and brittle nature of the MPL structure makes it challenging to study experimentally. In the present work, a 3D stochastic model is developed to virtually reconstruct the MPL structure. The carbon nanoparticle and PTFE phases are fully distinguished by the algorithm. The model is shown to capture the actual structural morphology of the MPL and is validated by comparing the results to available experimental data. The model shows a good capability in generating a realistic MPL successfully using a set of parameters introduced to capture specific morphological features of the MPL. A numerical model that resolves diffusive transport at the pore scale is used to compute the effective transport properties of the reconstructed MPLs. A parametric study is conducted to illustrate the capability of the model as an MPL design tool that can be used to guide and optimize the functionality of the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathers, M.B.; Bache, G.E.; Rainsberger, R.
1996-04-01
The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. Themore » experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.« less
Computational studies of steering nanoparticles with magnetic gradients
NASA Astrophysics Data System (ADS)
Aylak, Sultan Suleyman
Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.
Closed-Loop and Activity-Guided Optogenetic Control
Grosenick, Logan; Marshel, James H.; Deisseroth, Karl
2016-01-01
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490
Analysis of Computational Models of Shaped Charges for Jet Formation and Penetration
NASA Astrophysics Data System (ADS)
Haefner, Jonah; Ferguson, Jim
2016-11-01
Shaped charges came into use during the Second World War demonstrating the immense penetration power of explosively formed projectiles and since has become a tool used by nearly every nation in the world. Penetration is critically dependent on how the metal liner is collapsed into a jet. The theory of jet formation has been studied in depth since the late 1940s, based on simple models that neglect the strength and compressibility of the metal liner. Although attempts have been made to improve these models, simplifying assumptions limit the understanding of how the material properties affect the jet formation. With a wide range of material and strength models available for simulation, a validation study was necessary to guide code users in choosing models for shaped charge simulations. Using PAGOSA, a finite-volume Eulerian hydrocode designed to model hypervelocity materials and strong shock waves developed by Los Alamos National Laboratory, and experimental data, we investigated the effects of various equations of state and material strength models on jet formation and penetration of a steel target. Comparing PAGOSA simulations against modern experimental data, we analyzed the strengths and weaknesses of available computational models. LA-UR-16-25639 Los Alamos National Laboratory.
NASA Technical Reports Server (NTRS)
Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.
2016-01-01
A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.
Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation
Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.
2013-01-01
This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809
Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.
2002-01-01
An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.
Beyond the Dedicated Education Unit: Using Cognitive Load Theory to Guide Clinical Placement.
Mulcock, Pamela McPhie; Grassley, Jane; Davis, Michael; White, Kathryn
2017-02-01
Navigating multiple instructors and clinical agencies can impair students' learning by increasing their cognitive load and perceived stress. This study used cognitive load theory to guide the home base clinical model (HBCM), which assigned students to the same faculty and hospital unit for two consecutive medical-surgical clinical courses. The study used a quasi-experimental three-group design to evaluate the effects of the HBCM on students' perceived stress, compared with groups who changed hospital or instructor. A 10-point visual analog scale measured students' perceived stress on nine clinical tasks. The study recruited 140 participants. Reductions in mean stress were greater for the HBCM groups than the other two groups. The study findings challenge the current practice of placing students with changing faculty and facilities. The HBCM demonstrates potential as an effective model for increasing students' ability to learn by decreasing their cognitive load and subsequent stress in their clinical placements. [J Nurs Educ. 2017;56(2):105-109.]. Copyright 2017, SLACK Incorporated.
Neural-Fuzzy model Based Steel Pipeline Multiple Cracks Classification
NASA Astrophysics Data System (ADS)
Elwalwal, Hatem Mostafa; Mahzan, Shahruddin Bin Hj.; Abdalla, Ahmed N.
2017-10-01
While pipes are cheaper than other means of transportation, this cost saving comes with a major price: pipes are subject to cracks, corrosion etc., which in turn can cause leakage and environmental damage. In this paper, Neural-Fuzzy model for multiple cracks classification based on Lamb Guide Wave. Simulation results for 42 sample were collected using ANSYS software. The current research object to carry on the numerical simulation and experimental study, aiming at finding an effective way to detection and the localization of cracks and holes defects in the main body of pipeline. Considering the damage form of multiple cracks and holes which may exist in pipeline, to determine the respective position in the steel pipe. In addition, the technique used in this research a guided lamb wave based structural health monitoring method whereas piezoelectric transducers will use as exciting and receiving sensors by Pitch-Catch method. Implementation of simple learning mechanism has been developed specially for the ANN for fuzzy the system represented.
Epigenetic chromatin silencing: bistability and front propagation
NASA Astrophysics Data System (ADS)
Sedighi, Mohammad; Sengupta, Anirvan M.
2007-12-01
The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.
[Three-dimensional finite element analysis on cell culture membrane under mechanical load].
Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai
2002-01-01
A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.
Guided Note Taking and Student Achievement in a Media Law Course
ERIC Educational Resources Information Center
Blom, Robin
2017-01-01
In a quasi-experimental setting, a group of U.S. college students in an introductory media law course had higher test scores when the instructor provided access to guided worksheets than a group of students without access to guided worksheets. It also allows educators in journalism and mass communication to cover more materials during courses…
ERIC Educational Resources Information Center
Gillespie, Judith A.; Lazarus, Stuart
This teacher's guide to unit 5 of the 12th-grade second-semester "Comparing Political Experiences" course provides specific objectives and instructional procedures for each of the five activities that focus on the case study of the Cummins Engine Company. In addition, the guide provides instructions for coordinating the use of the…
ERIC Educational Resources Information Center
Long, Deanna; Szabo, Susan
2016-01-01
This quasi-experimental mixed methods study examined the use of e-readers during guided reading instruction and its impact on 5th grade students' reading motivation, attitude toward reading, and reading comprehension. For 10 weeks, 19 students received guided reading instruction by means of the traditional paper/text format, while 16 students…
ERIC Educational Resources Information Center
Stone, Elisa M.
2014-01-01
New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific…
Nonlinear Reduced-Order Simulation Using An Experimentally Guided Modal Basis
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2012-01-01
A procedure is developed for using nonlinear experimental response data to guide the modal basis selection in a nonlinear reduced-order simulation. The procedure entails using nonlinear acceleration response data to first identify proper orthogonal modes. Special consideration is given to cases in which some of the desired response data is unavailable. Bases consisting of linear normal modes are then selected to best represent the experimentally determined transverse proper orthogonal modes and either experimentally determined inplane proper orthogonal modes or the special case of numerically computed in-plane companions. The bases are subsequently used in nonlinear modal reduction and dynamic response simulations. The experimental data used in this work is simulated to allow some practical considerations, such as the availability of in-plane response data and non-idealized test conditions, to be explored. Comparisons of the nonlinear reduced-order simulations are made with the surrogate experimental data to demonstrate the effectiveness of the approach.
Guided wave attenuation in coated pipes buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.
2016-02-01
Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.
Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling
NASA Astrophysics Data System (ADS)
Poprawe, Reinhart; Schulz, Wolfgang; Schmitt, Robert
With the introduction of fiber-guided radiation at 1 μ wavelength emitting in the milti-kW range at better beam quality than CO2-lasers the most established application in laser processing, namely laser fusion cutting, came back into the industrial and scientific focus. Laser sources with extraordinary optical and economical properties - disk and fiber lasers - in a stormy way enter the market of cutting machines so far reserved for the 10 μ radiation source and led to a volatile situation. The new laser sources can already address a market-relevant class of applications, namely, fusion cutting of steel up to a sheet thickness of 2 mm with pronounced advantages in productivity. However, there is a significant lack of cut quality for larger sheet thickness. The main reason for the drawback and its physical background are given. With the availability of cutting machines with 1 μ fiber-guided radiation the race for the worldwide market regarding the larger sheet thickness is opened and the priority issues to improve the cut quality are related to the three levels: wavelength, beam delivery and the application stage of the machine. The stability model called QuCut is presented which for the first time allows to analyze stability of cutting with fiber-guided radiation. Experimental ripple patterns and ripple spectra resolved with respect to the cutting depth are well reproduced by the new stability model. A number of different experimental methods towards an improved understanding of the dynamics in laser drilling are developed, however, there are gaps related to in-situ observation which is obscured by the hole walls. There are four novel experimental methods resolving the dynamics from a μms-down to a ns-time scale having a spatial resolution with respect to transient drilling depth on the μm scale. As result, the different mechanisms contributing to recast formation and dynamical features of drilling are revealed in more detail. In particular, the action of double pulses and its changes depending on the evolving drill are investigated.
Modeling sediment transport after ditch network maintenance of a forested peatland
NASA Astrophysics Data System (ADS)
Haahti, K.; Marttila, H.; Warsta, L.; Kokkonen, T.; Finér, L.; Koivusalo, H.
2016-11-01
Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for 2 years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies.
3D Ultrasonic Wave Simulations for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.
2011-01-01
Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.
Martino, Maria Luisa; Freda, Maria Francesca; Camera, Flavia
2013-06-01
This study assesses the effects of Guided Written Disclosure Protocol on psychological distress in mothers and fathers of off-therapy acute lymphoblastic leukemia children. An experimental group participated in the writing intervention with a control group subject only to test-taking standards. The Symptom Questionnaire and Profile of Mood States were administered at baseline, post-intervention, and follow-up. Guided Written Disclosure Protocol had significant effects on the progressive reduction of anxiety, depression, somatic symptoms, hostility, tension-anxiety, and fatigue-inertia within the experimental group. However, the control group distress levels tended to worsen over time. The mediating role of emotional processing was highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024
2015-12-15
This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use ofmore » the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.« less
Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M
2011-05-15
Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.
A Guide to Neurotoxic Animal Models of Parkinson’s Disease
Tieu, Kim
2011-01-01
Parkinson’s disease (PD) is a neurological movement disorder primarily resulting from damage to the nigrostriatal dopaminergic pathway. To elucidate the pathogenesis, mechanisms of cell death, and to evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. The primary objectives of this article are twofold: First, to assist new investigators who are contemplating embarking on PD research to navigate through the available animal models. Emphasis will be placed on common neurotoxic murine models in which toxic molecules are used to lesion the nigrostriatal dopaminergic system. And second, to provide an overview of basic technical requirements for assessing the pathology, structure, and function of the nigrostriatal pathway. PMID:22229125
A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism.
Mauvais-Jarvis, Franck; Arnold, Arthur P; Reue, Karen
2017-06-06
In animal models, the physiological systems involved in metabolic homeostasis exhibit a sex difference. Investigators often use male rodents because they show metabolic disease better than females. Thus, females are not used precisely because of an acknowledged sex difference that represents an opportunity to understand novel factors reducing metabolic disease more in one sex than the other. The National Institutes of Health (NIH) mandate to consider sex as a biological variable in preclinical research places new demands on investigators and peer reviewers who often lack expertise in model systems and experimental paradigms used in the study of sex differences. This Perspective discusses experimental design and interpretation in studies addressing the mechanisms of sex differences in metabolic homeostasis and disease, using animal models and cells. We also highlight current limitations in research tools and attitudes that threaten to delay progress in studies of sex differences in basic animal research. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Anderson, William J; Macks, E Fred; Nemeth, Zolton N
1954-01-01
The results of two investigations, one to determine the relative merits of four experimental and two conventional design 75-millimeter-bore (size 215) cylindrical roller bearings and one to determine the relative merits of nodular iron and bronze as cage materials for this size and type of bearing, are presented in this report. Nine test bearings were operated over a range of dn values (product of bearing bore in mm and shaft speed in r.p.m) from 0.3 x 10(6) to 2.3 x 20(6), radial loads for 7 to 1613 pounds, and oil flows from 2 to 8 pounds per minute with a single-jet circulatory oil feed. Of the six bearings used to evaluate designs, four were experimental types with outer-race-riding cages and inner-race-guided rollers, and two were conventional types, one with outer-race-guided rollers and cage and one with inner-race-guided rollers and cage. Each of these six test bearings was equipped with a different design cage made of nodular iron. The experimental combination of an outer-race-riding cage with a straight-through outer race and inner-race-guided rollers was found to give the best over-all performance based on limiting dn values and bearing temperatures.
Jeong, Seung Uk; Aizan, Hassanuddin; Song, Tae Jun; Seo, Dong Wan; Kim, Su-Hui; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan
2013-01-01
AIM: To evaluate the feasibility of diagnostic and therapeutic transgastric (TG) peritoneoscopic interventions with a forward-viewing endoscopic ultrasound (FV-EUS). METHODS: This prospective endoscopic experimental study used an animal model. Combined TG peritoneoscopic interventions and EUS examination of the intra-abdominal organs were performed using an FV-EUS on 10 animal models (1 porcine and 9 canine). The procedures carried out include EUS evaluation and endoscopic biopsy of intraperitoneal organs, EUS-guided fine needle aspiration (EUS-FNA), EUS-guided radiofrequency ablation (EUS-RFA), and argon plasma coagulation (APC) for hemostatic control. The animals were kept alive for 7 d, and then necropsy was performed to evaluate results and complications. RESULTS: In all 10 animals, TG peritoneoscopy, followed by endoscopic biopsy for the liver, spleen, abdominal wall, and omentum, was performed successfully. APC helped control minor bleeding. Visualization of intra-abdominal solid organs with real-time EUS was accomplished with ease. Intraperitoneal EUS-FNA was successfully performed on the liver, spleen, and kidney. Similarly, a successful outcome was achieved with EUS-RFA of the hepatic parenchyma. No adverse events were recorded during the study. CONCLUSION: Peritoneoscopic natural orifice transluminal endoscopic surgery (NOTES) interventions through FV-EUS were feasible in providing evaluation and performing endoscopic procedures. It promises potential as a platform for future EUS-based NOTES. PMID:24222961
Testing of a novel pin array guide for accurate three-dimensional glenoid component positioning.
Lewis, Gregory S; Stevens, Nicole M; Armstrong, April D
2015-12-01
A substantial challenge in total shoulder replacement is accurate positioning and alignment of the glenoid component. This challenge arises from limited intraoperative exposure and complex arthritic-driven deformity. We describe a novel pin array guide and method for patient-specific guiding of the glenoid central drill hole. We also experimentally tested the hypothesis that this method would reduce errors in version and inclination compared with 2 traditional methods. Polymer models of glenoids were created from computed tomography scans from 9 arthritic patients. Each 3-dimensional (3D) printed scapula was shrouded to simulate the operative situation. Three different methods for central drill alignment were tested, all with the target orientation of 5° retroversion and 0° inclination: no assistance, assistance by preoperative 3D imaging, and assistance by the pin array guide. Version and inclination errors of the drill line were compared. Version errors using the pin array guide (3° ± 2°) were significantly lower than version errors associated with no assistance (9° ± 7°) and preoperative 3D imaging (8° ± 6°). Inclination errors were also significantly lower using the pin array guide compared with no assistance. The new pin array guide substantially reduced errors in orientation of the central drill line. The guide method is patient specific but does not require rapid prototyping and instead uses adjustments to an array of pins based on automated software calculations. This method may ultimately provide a cost-effective solution enabling surgeons to obtain accurate orientation of the glenoid. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; ...
2018-02-06
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less
The GENIE Neutrino Monte Carlo Generator: Physics and User Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreopoulos, Costas; Barry, Christopher; Dytman, Steve
2015-10-20
GENIE is a suite of products for the experimental neutrino physics community. This suite includes i) a modern software framework for implementing neutrino event generators, a state-of-the-art comprehensive physics model and tools to support neutrino interaction simulation for realistic experimental setups (the Generator product), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and software to produce a comprehensive set of data/MC comparisons (the Comparisons product), and iii) a generator tuning framework and fitting applications (the Tuning product). This book provides the definite guide for the GENIE Generator: It presents the software architecture and a detailed description of itsmore » physics model and official tunes. In addition, it provides a rich set of data/MC comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on how to install and configure the Generator, run its applications and analyze its outputs are also included.« less
NASA Astrophysics Data System (ADS)
Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.
2018-05-01
The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.
Altering rainfall patterns through aerosol dispersion
NASA Astrophysics Data System (ADS)
Emetere, M. E.; Bakeko, M.; Onyechekwa, L.; Ayara, W.
2017-05-01
The possibility of recirculation mechanism on rainfall patterns is salient for sustenance of the human race through agricultural produce. The peculiarity of the lower atmosphere of south west region of Nigeria was explored using theoretical and experimental approach. In the theoretical approach, the reconstruction of 1D model as an extraction from the 3D aerosol dispersion model was used to examine the physics of the recirculation theory. The experimental approach which consists of obtaining dataset from ground instruments was used to provide on-site guide for developing the new recirculation theories. The data set was obtained from the Davis weather station, Nigeria Meteorological agency and Multi-angle Imaging Spectro-radiometer (MISR). We looked at the main drivers of recirculation and propounded that recirculation is a complex process which triggers a reordering of the mixing layer- a key factor for initiating the type of rainfall in this region.
Earthquake sequence simulations with measured properties for JFAST core samples
NASA Astrophysics Data System (ADS)
Noda, Hiroyuki; Sawai, Michiyo; Shibazaki, Bunichiro
2017-08-01
Since the 2011 Tohoku-Oki earthquake, multi-disciplinary observational studies have promoted our understanding of both the coseismic and long-term behaviour of the Japan Trench subduction zone. We also have suggestions for mechanical properties of the fault from the experimental side. In the present study, numerical models of earthquake sequences are presented, accounting for the experimental outcomes and being consistent with observations of both long-term and coseismic fault behaviour and thermal measurements. Among the constraints, a previous study of friction experiments for samples collected in the Japan Trench Fast Drilling Project (JFAST) showed complex rate dependences: a and a-b values change with the slip rate. In order to express such complexity, we generalize a rate- and state-dependent friction law to a quadratic form in terms of the logarithmic slip rate. The constraints from experiments reduced the degrees of freedom of the model significantly, and we managed to find a plausible model by changing only a few parameters. Although potential scale effects between lab experiments and natural faults are important problems, experimental data may be useful as a guide in exploring the huge model parameter space. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.
Zoellner, Jamie M; Porter, Kathleen J; Chen, Yvonnes; Hedrick, Valisa E; You, Wen; Hickman, Maja; Estabrooks, Paul A
2017-05-01
Guided by the theory of planned behaviour (TPB) and health literacy concepts, SIPsmartER is a six-month multicomponent intervention effective at improving SSB behaviours. Using SIPsmartER data, this study explores prediction of SSB behavioural intention (BI) and behaviour from TPB constructs using: (1) cross-sectional and prospective models and (2) 11 single-item assessments from interactive voice response (IVR) technology. Quasi-experimental design, including pre- and post-outcome data and repeated-measures process data of 155 intervention participants. Validated multi-item TPB measures, single-item TPB measures, and self-reported SSB behaviours. Hypothesised relationships were investigated using correlation and multiple regression models. TPB constructs explained 32% of the variance cross sectionally and 20% prospectively in BI; and explained 13-20% of variance cross sectionally and 6% prospectively. Single-item scale models were significant, yet explained less variance. All IVR models predicting BI (average 21%, range 6-38%) and behaviour (average 30%, range 6-55%) were significant. Findings are interpreted in the context of other cross-sectional, prospective and experimental TPB health and dietary studies. Findings advance experimental application of the TPB, including understanding constructs at outcome and process time points and applying theory in all intervention development, implementation and evaluation phases.
NASA Astrophysics Data System (ADS)
Carman, Gregory P.
2015-09-01
Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.
Earthquake sequence simulations with measured properties for JFAST core samples.
Noda, Hiroyuki; Sawai, Michiyo; Shibazaki, Bunichiro
2017-09-28
Since the 2011 Tohoku-Oki earthquake, multi-disciplinary observational studies have promoted our understanding of both the coseismic and long-term behaviour of the Japan Trench subduction zone. We also have suggestions for mechanical properties of the fault from the experimental side. In the present study, numerical models of earthquake sequences are presented, accounting for the experimental outcomes and being consistent with observations of both long-term and coseismic fault behaviour and thermal measurements. Among the constraints, a previous study of friction experiments for samples collected in the Japan Trench Fast Drilling Project (JFAST) showed complex rate dependences: a and a - b values change with the slip rate. In order to express such complexity, we generalize a rate- and state-dependent friction law to a quadratic form in terms of the logarithmic slip rate. The constraints from experiments reduced the degrees of freedom of the model significantly, and we managed to find a plausible model by changing only a few parameters. Although potential scale effects between lab experiments and natural faults are important problems, experimental data may be useful as a guide in exploring the huge model parameter space.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Author(s).
Yuenyongviwat, Varah; Tuntarattanapong, Pakjai; Tangtrakulwanich, Boonsin
2016-01-11
Internal fixation is one treatment for femoral neck fracture. Some devices and techniques reported improved accuracy and decreased fluoroscopic time. However, these are not widely used nowadays due to the lack of available special instruments and techniques. To improve the surgical procedure, the authors designed a new adjustable drill guide and tested the efficacy of the device. The authors developed a new adjustable drill guide for cannulated screw guide wire insertion for multiple screw fixation. Eight orthopaedic surgeons performed the experimental study to evaluate the efficacy of this device. Each surgeon performed guide wire insertion for multiple screw fixation in six synthetic femurs: three times with the new device and three times with the conventional technique. The fluoroscopic time, operative time and surgeon satisfaction were evaluated. In the operations with the new adjustable drill guide, the fluoroscopic and operative times were significantly lower than the operations with the conventional technique (p < 0.05). The mean score for the level of satisfaction of this device was also statistically significantly better (p = 0.02) than the conventional technique. The fluoroscopic and operative times with the new adjustable drill guide were reduced for multiple screw fixation of femoral neck fracture and the satisfaction of the surgeons was good.
NASA Astrophysics Data System (ADS)
Catig, G. C.; Figueroa, S.; Moore, M. J.
2015-08-01
Ojective. Axons are guided toward desired targets through a series of choice points that they navigate by sensing cues in the cellular environment. A better understanding of how microenvironmental factors influence neurite growth during development can inform strategies to address nerve injury. Therefore, there is a need for biomimetic models to systematically investigate the influence of guidance cues at such choice points. Approach. We ran an adapted in silico biased turning axon growth model under the influence of nerve growth factor (NGF) and compared the results to corresponding in vitro experiments. We examined if growth simulations were predictive of neurite population behavior at a choice point. We used a biphasic micropatterned hydrogel system consisting of an outer cell restrictive mold that enclosed a bifurcated cell permissive region and placed a well near a bifurcating end to allow proteins to diffuse and form a gradient. Experimental diffusion profiles in these constructs were used to validate a diffusion computational model that utilized experimentally measured diffusion coefficients in hydrogels. The computational diffusion model was then used to establish defined soluble gradients within the permissive region of the hydrogels and maintain the profiles in physiological ranges for an extended period of time. Computational diffusion profiles informed the neurite growth model, which was compared with neurite growth experiments in the bifurcating hydrogel constructs. Main results. Results indicated that when applied to the constrained choice point geometry, the biased turning model predicted experimental behavior closely. Results for both simulated and in vitro neurite growth studies showed a significant chemoattractive response toward the bifurcated end containing an NGF gradient compared to the control, though some neurites were found in the end with no NGF gradient. Significance. The integrated model of neurite growth we describe will allow comparison of experimental studies against growth cone guidance computational models applied to axon pathfinding at choice points.
NASA Astrophysics Data System (ADS)
Ash-Shiddieqy, M. H.; Suparmi, A.; Sunarno, W.
2018-04-01
The purpose of this research is to understand the effectiveness of module based on guided inquiry method to improve students’ logical thinking ability. This research only evaluate the students’ logical ability after follows the learning activities that used developed physics module based on guided inquiry method. After the learning activities, students This research method uses a test instrument that adapts TOLT instrument. There are samples of 68 students of grade XI taken from SMA Negeri 4 Surakarta.Based on the results of the research can be seen that in the experimental class and control class, the posttest value aspect of probabilistic reasoning has the highest value than other aspects, whereas the posttest value of the proportional reasoning aspect has the lowest value. The average value of N-gain in the experimental class is 0.39, while in the control class is 0.30. Nevertheless, the N-gain values obtained in the experimental class are larger than the control class, so the guided inquiry-based module is considered more effective for improving students’ logical thinking. Based on the data obtained from the research shows the modules available to help teachers and students in learning activities. The developed Physics module is integrated with every syntax present in guided inquiry method, so it can be used to improve students’ logical thinking ability.
Adaptive segmentation of cerebrovascular tree in time-of-flight magnetic resonance angiography.
Hao, J T; Li, M L; Tang, F L
2008-01-01
Accurate segmentation of the human vasculature is an important prerequisite for a number of clinical procedures, such as diagnosis, image-guided neurosurgery and pre-surgical planning. In this paper, an improved statistical approach to extracting whole cerebrovascular tree in time-of-flight magnetic resonance angiography is proposed. Firstly, in order to get a more accurate segmentation result, a localized observation model is proposed instead of defining the observation model over the entire dataset. Secondly, for the binary segmentation, an improved Iterative Conditional Model (ICM) algorithm is presented to accelerate the segmentation process. The experimental results showed that the proposed algorithm can obtain more satisfactory segmentation results and save more processing time than conventional approaches, simultaneously.
4D Visualization of Experimental Procedures in Rock Physics
NASA Astrophysics Data System (ADS)
Vanorio, T.; di Bonito, C.
2010-12-01
Engaging students in laboratory classes in geophysics is becoming more and more difficult. This is primarily because of an ever-widening gap between the less appealing aspects that characterize these courses (e.g., lengthiness of the experimental operations, high student/instrument ratio, limited time associated with lack of previous hands-on experiences, and logistical and safety concerns) and the life style of the 21st century generations (i.e., extensive practice to high-tech tools, high-speed communications and computing, 3D graphics and HD videos). To bridge the gap and enhance the teaching strategy of laboratory courses in geophysics, we have created simulator-training tools for use in preparation for the actual experimental phase. We are using a modeling, animation, and rendering package to create (a) 3D models that accurately reproduce actual scenarios and instruments used for the measurement of rock physics properties and (b) 4D interactive animations that simulate hands-on demonstrations of the experimental procedures. We present here a prototype describing step-by-step the experimental protocol and the principles behind the measurement of rock porosity. The tool reproduces an actual helium porosimeter and makes use of interactive animations, guided text, and a narrative voice guiding the audience through the different phases of the experimental process. Our strategy is to make the most of new technologies while preserving the accuracy of classical laboratory methods and practices. These simulations are not intended to replace traditional lab work; rather they provide students with the opportunity for review and repetition. The primary goal is thus to help students familiarize themselves during their earlier curricula with lab methodologies, thus minimizing apparent hesitation and frustration in later classes. This may also increase the level of interest and involvement of undergraduate students and, in turn, enhance their keenness to pursue their curriculum with graduate studies. The intellectual merit of this project lies in exploring tools that are creative, keep pace with the times, and are potentially transformative of the teaching strategy of laboratory courses in geophysics. 3D reconstruction of the Helium Porosimeter. Top left panel - General overview of the instrument's components: helium cylinder, pressure transducer, core holder, helium reservoirs, and pressure indicator. Top right and bottom panels - Different phases of the experimental procedure for measuring rock porosity.
ERIC Educational Resources Information Center
Kubinger, Klaus D.; Wiesflecker, Sabine; Steindl, Renate
2008-01-01
An interview guide for children and adolescents, which is based on systemic therapy, has recently been added to the collection of published instruments for psychological interviews. This article aims to establish the amount of information gained during a psychological investigation using the Systemic-based Interview Guide rather than an intuitive,…
NASA Astrophysics Data System (ADS)
Du, Tuanjie; Wan, Xiaojiao; Yang, Runhua; Li, Weiwei; Ruan, Qiujun; Chen, Nan; Luo, Zhengqian
2018-01-01
In recent years, several kinds of nanomaterials have been discovered, and successfully used as saturable absorbers (SAs) for passively mode-locked fiber lasers. However, it is found that most of nanomaterials-based SAs cannot stably generate gain-guide solitons in positive group-dispersion fiber lasers, which is urgently expected to fully understand the inherent reasons. In this paper, we numerically and experimentally investigate the effects of nanomaterial saturable absorption (e.g. modulation depth and saturation optical power) on gain-guide soliton in positive group-dispersion Er3+-doped fiber laser (PGD-EDFL). By numerically solving the Ginzburg-Landau equation, the evolutions of both the mode-locked optical spectrum and pulse duration as a function of modulation depth and saturation optical power are analyzed, respectively. In experiment, we firstly prepare five nanomaterial SAs with the similar insertion loss, which have the different modulation depth from 1.80% to 23.36%, and the different saturation optical power from 8.8 to 536 W. We then perform the experimental comparison by incorporating the five SAs in a same PGD-EDFL cavity, respectively. The experimental results are in good agreement with the numerical ones. Our result reveals that: (1) a low modulation depth cannot support the formation of gain-guide soliton, (2) as the modulation depth increases, the spectral bandwidth of gain-guide soliton increases, the pulse duration decreases and the pulse chirp becomes large, (3) the saturation optical power has the weak influences on the gain-guide soliton performances.
Computationally Guided Design of Polymer Electrolytes for Battery Applications
NASA Astrophysics Data System (ADS)
Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas
We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.
Response to perturbations for granular flow in a hopper
NASA Astrophysics Data System (ADS)
Wambaugh, John F.; Behringer, Robert P.; Matthews, John V.; Gremaud, Pierre A.
2007-11-01
We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.
Yang, Jian; Feng, Jinfu; Hu, Junhua; Liu, An
2017-01-01
The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle’s attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process. PMID:28558012
Yang, Jian; Li, Yongli; Feng, Jinfu; Hu, Junhua; Liu, An
2017-01-01
The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle's attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process.
Roberts, Jack C; Ward, Emily E; Merkle, Andrew C; O'Connor, James V
2007-05-01
To assess the possibility of injury as a result of behind armor blunt trauma (BABT), a study was undertaken to determine the conditions necessary to produce the 44-mm clay deformation as set forth in the National Institute of Justice (NIJ) Standard 0101.04. These energy levels were then applied to a three-dimensional Human Torso Finite Element Model (HTFEM) with soft armor vest. An examination will be made of tissue stresses to determine the effects of the increased kinetic energy levels on the probability of injury. A clay finite element model (CFEM) was created with a material model that required nonlinear properties for clay. To determine these properties empirically, the results from the CFEM were matched with experimental drop tests. A soft armor vest was modeled over the clay to create a vest over clay block finite element model (VCFEM) and empirical methods were again used to obtain material properties for the vest from experimental ballistic testing. Once the properties for the vest and clay had been obtained, the kinetic energy required to produce a 44-mm deformation in the VCFEM was determined through ballistic testing. The resulting kinetic energy was then used in the HTFEM to evaluate the probability of BABT. The VCFEM, with determined clay and vest material properties, was exercised with the equivalent of a 9-mm (8-gm) projectile at various impact velocities. The 44-mm clay deformation was produced with a velocity of 785 m/s. This impact condition (9-mm projectile at 785 m/s) was used in ballistic exercises of the HTFEM, which was modeled with high-strain rate human tissue properties for the organs. The impact zones were over the sternum anterior to T6 and over the liver. The principal stresses in both soft and hard tissue at both locations exceeded the tissue tensile strength. This study indicates that although NIJ standard 0101.04 may be a good guide to soft armor failure, it may not be as good a guide in BABT, especially at large projectile kinetic energies. Further studies, both numerical and experimental, are needed to assist in predicting injury using the NIJ standard.
Disorder-induced losses in photonic crystal waveguides with line defects.
Gerace, Dario; Andreani, Lucio Claudio
2004-08-15
A numerical analysis of extrinsic diffraction losses in two-dimensional photonic crystal slabs with line defects is reported. To model disorder, a Gaussian distribution of hole radii in the triangular lattice of airholes is assumed. The extrinsic losses below the light line increase quadratically with the disorder parameter, decrease slightly with increasing core thickness, and depend weakly on the hole radius. For typical values of the disorder parameter the calculated loss values of guided modes below the light line compare favorably with available experimental results.
Programmable, automated transistor test system
NASA Technical Reports Server (NTRS)
Truong, L. V.; Sundburg, G. R.
1986-01-01
A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.
Ultrasonic Plate Waves for Fatigue Crack Detection in Multi-Layered Metallic Structures (Preprint)
2006-12-01
dispersion curves. Although the phase velocity of the guided waves in the glass plate were unaffected by the presence of a rough elastomer , the...attenuation of the transmitted A0 and S0 modes were found to be sensitive to the elastomer loading condition. The normal stiffness was found to more greatly...Dalton used FEM models to study the problem of coupling between the two layers and good agreement was found with experimental results for both adhesive
NASA Astrophysics Data System (ADS)
Marian, Jaime; Hoang, Tuan; Fluss, Michael; Hsiung, Luke L.
2015-07-01
Under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effects and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced simultaneously with helium and hydrogen implantation) and the synergistic effects of hydrogen.
Marian, Jaime; Hoang, Tuan; Fluss, Michael; ...
2014-12-29
Here, under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effectsmore » and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced simultaneously with helium and hydrogen implantation) and the synergistic effects of hydrogen.« less
NASA Astrophysics Data System (ADS)
Crowley, Christopher J.; Krygier, Michael; Grigoriev, Roman O.; Schatz, Michael F.
2017-11-01
Recent theoretical and experimental work suggests that the dynamics of turbulent flows are guided by unstable nonchaotic solutions to the Navier-Stokes equations. These solutions, known as exact coherent structures (ECS), play a key role in a fundamentally deterministic description of turbulence. In order to quantitatively demonstrate that actual turbulence in 3D flows is guided by ECS, high resolution, 3D-3C experimental measurements of the velocity need to be compared to solutions from direct numerical simulation of the Navier-Stokes equations. In this talk, we will present experimental measurements of fully time resolved, velocity measurements in a volume of turbulence in a counter-rotating, small aspect ratio Taylor-Couette flow. This work is supported by the Army Research Office (Contract # W911NF-16-1-0281).
Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames
NASA Astrophysics Data System (ADS)
Watkins, Ryan
Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and design SMA honeycombs.
NASA Astrophysics Data System (ADS)
Liagkouras, K.; Metaxiotis, K.
2017-01-01
Multi-objective evolutionary algorithms (MOEAs) are currently a dynamic field of research that has attracted considerable attention. Mutation operators have been utilized by MOEAs as variation mechanisms. In particular, polynomial mutation (PLM) is one of the most popular variation mechanisms and has been utilized by many well-known MOEAs. In this paper, we revisit the PLM operator and we propose a fitness-guided version of the PLM. Experimental results obtained by non-dominated sorting genetic algorithm II and strength Pareto evolutionary algorithm 2 show that the proposed fitness-guided mutation operator outperforms the classical PLM operator, based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it.
Guided waves and ultrasonic characterization of three-dimensional composites
NASA Astrophysics Data System (ADS)
Leymarie, Nicolas; Baste, Stéphane
2000-05-01
Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.
NASA Astrophysics Data System (ADS)
Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhalev, Yuri A.; Khakhaleva, Larisa V.; Chukalin, Andrei V.
2017-07-01
The numerical investigation of the turbulent flow with the impacts, based on a modified Prandtl mixing-length model with using of the analysis of pulsations of pressure, calculation of structure and a friction factor of a turbulent flow is made. These results under the study allowed us to propose a new design of a cooled turbine blade and gas turbine mobile. The turbine blade comprises a combined cooling and cylindrical cavity on the blade surface, and on the inner surfaces of the cooling channels too damping cavity located on the guide vanes of the compressor of a gas turbine engine, increase the supply of gas-dynamic stability of the compressor of a gas turbine engine, reduce the resistance of the guide blades, and increase the efficiency of the turbine engine.
Nair, K; Yan, K C; Sun, W
2008-01-01
Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.
Medlyn, Belinda E; De Kauwe, Martin G; Zaehle, Sönke; Walker, Anthony P; Duursma, Remko A; Luus, Kristina; Mishurov, Mikhail; Pak, Bernard; Smith, Benjamin; Wang, Ying-Ping; Yang, Xiaojuan; Crous, Kristine Y; Drake, John E; Gimeno, Teresa E; Macdonald, Catriona A; Norby, Richard J; Power, Sally A; Tjoelker, Mark G; Ellsworth, David S
2016-08-01
The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements. © 2016 John Wiley & Sons Ltd.
Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke; ...
2016-05-09
One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO 2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO 2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluatemore » data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke
One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO 2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO 2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluatemore » data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less
Yang, Ke; Wu, Jiandong; Xu, Guoqing; Xie, Dongxue; Peretz-Soroka, Hagit; Santos, Susy; Alexander, Murray; Zhu, Ling; Zhang, Michael; Liu, Yong; Lin, Francis
2017-04-18
Chemotaxis is a classic mechanism for guiding cell migration and an important topic in both fundamental cell biology and health sciences. Neutrophils are a widely used model to study eukaryotic cell migration and neutrophil chemotaxis itself can lead to protective or harmful immune actions to the body. While much has been learnt from past research about how neutrophils effectively navigate through a chemoattractant gradient, many interesting questions remain unclear. For example, while it is tempting to model neutrophil chemotaxis using the well-established biased random walk theory, the experimental proof was challenged by the cell's highly persistent migrating nature. A special experimental design is required to test the key predictions from the random walk model. Another question that has interested the cell migration community for decades concerns the existence of chemotactic memory and its underlying mechanism. Although chemotactic memory has been suggested in various studies, a clear quantitative experimental demonstration will improve our understanding of the migratory memory effect. Motivated by these questions, we developed a microfluidic cell migration assay (so-called dual-docking chip or D 2 -Chip) that can test both the biased random walk model and the memory effect for neutrophil chemotaxis on a single chip enabled by multi-region gradient generation and dual-region cell alignment. Our results provide experimental support for the biased random walk model and chemotactic memory for neutrophil chemotaxis. Quantitative data analyses provide new insights into neutrophil chemotaxis and memory by making connections to entropic disorder, cell morphology and oscillating migratory response.
Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Petit, O.; Mulu, B.; Nilsson, H.; Cervantes, M.
2010-08-01
The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Älvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.
Numerical Simulation of Dual-Mode Scramjet Combustors
NASA Technical Reports Server (NTRS)
Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.
2000-01-01
Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.
NASA Astrophysics Data System (ADS)
Barnard, Daniel; Chakrapani, Sunil Kishore; Dayal, Vinay
2013-01-01
Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. A good correlation between numerical and experimental results was observed.
Chen, Yongchao; Zhu, Youzhi; Zhang, Yu; Zhang, Zixuan; Lian, Juan; Luo, Fucheng; Deng, Xuefei; Wong, Kelvin K L
2016-02-06
Double injection of blood into cisterna magna using a rabbit model results in cerebral vasospasm. An unacceptably high mortality rate tends to limit the application of model. Ultrasound guided puncture can provide real-time imaging guidance for operation. The aim of this paper is to establish a safe and effective rabbit model of cerebral vasospasm after subarachnoid hemorrhage with the assistance of ultrasound medical imaging. A total of 160 New Zealand white rabbits were randomly divided into four groups of 40 each: (1) manual control group, (2) manual model group, (3) ultrasound guided control group, and (4) ultrasound guided model group. The subarachnoid hemorrhage was intentionally caused by double injection of blood into their cisterna magna. Then, basilar artery diameters were measured using magnetic resonance angiography before modeling and 5 days after modeling. The depth of needle entering into cisterna magna was determined during the process of ultrasound guided puncture. The mortality rates in manual control group and model group were 15 and 23 %, respectively. No rabbits were sacrificed in those two ultrasound guided groups. We found that the mortality rate in ultrasound guided groups decreased significantly compared to manual groups. Compared with diameters before modeling, the basilar artery diameters after modeling were significantly lower in manual and ultrasound guided model groups. The vasospasm aggravated and the proportion of severe vasospasms was greater in ultrasound guided model group than that of manual group. In manual model group, no vasospasm was found in 8 % of rabbits. The ultrasound guided double injection of blood into cisterna magna is a safe and effective rabbit model for treatment of cerebral vasospasm.
The halogen bond: Nature and applications
NASA Astrophysics Data System (ADS)
Costa, Paulo J.
2017-10-01
The halogen bond, corresponding to an attractive interaction between an electrophilic region in a halogen (X) and a nucleophile (B) yielding a R-X⋯B contact, found applications in many fields such as supramolecular chemistry, crystal engineering, medicinal chemistry, and chemical biology. Their large range of applications also led to an increased interest in their study using computational methods aiming not only at understanding the phenomena at a fundamental level, but also to help in the interpretation of results and guide the experimental work. Herein, a succinct overview of the recent theoretical and experimental developments is given starting by discussing the nature of the halogen bond and the latest theoretical insights on this topic. Then, the effects of the surrounding environment on halogen bonds are presented followed by a presentation of the available method benchmarks. Finally, recent experimental applications where the contribution of computational chemistry was fundamental are discussed, thus highlighting the synergy between the lab and modeling techniques.
Pattie. Jr., Robert Wayne; Adamek, Evan Robert; Brenner, Thomas; ...
2017-08-10
We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle wasmore » interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10 –4. In conclusion, we also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.« less
NASA Astrophysics Data System (ADS)
Pattie, R. W.; Adamek, E. R.; Brenner, T.; Brandt, A.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S. A.; Geltenbort, P.; Ito, T. M.; Lauer, T.; Liu, C. Y.; Majewski, J.; Makela, M.; Masuda, Y.; Morris, C. L.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Schroffenegger, J.; Tang, Z.; Wei, W.; Wang, Z.; Watkins, E.; Young, A. R.; Zeck, B. A.
2017-11-01
We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50 μm thick NiP coatings on stainless steel and aluminum substrates was measured to be VF = 213(5 . 2) neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle was interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1 . 3(1) × 10-4. We also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattie. Jr., Robert Wayne; Adamek, Evan Robert; Brenner, Thomas
We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle wasmore » interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10 –4. In conclusion, we also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.« less
Guide wire entrapment by inferior vena cava filters: an experimental study.
Rosen, Michael J; Burns, Justin M; Cobb, William S; Jacobs, David G; Heniford, B Todd; Sing, Ronald F
2005-09-01
In situ vena cava filters are at risk for complications with the use of J-tipped guide wires. The purpose of this study was to evaluate the impact of two commonly used J-tipped guide wires on the stability of the four most recently released vena cava filters in an in vitro flow model. Four filters (OptEase [F1], Günther Tulip [F2], Vena Tech LP [F3], and Recovery [F4]) were inserted into an in vitro flow model. Two J-tipped guide wires (0.032-inch [GW-1], 0.035-inch [GW-2]) were passed through each filter (n = 50 passes per wire) for a distance of 10 cm. The inserter was blind as to the effects of the wire. The filters were monitored by an independent observer for adverse events occurring between the filters and the guide wires. These were defined as: migrations (>1 cm), change of position (tilt>10 degrees), and entrapment of the wire (unable to remove wire). Descriptive statistics, chi-square, and Fisher's exact test were used (p < 0.05 considered significant). GW-1 resulted in a lower incidence of entrapment, migration, and tilt for all filters compared with GW-2 (F1, p = 0.003; F2, p < 0.0001; F3, p < 0.0001; F4, p = 0.0004). GW-1 resulted in entrapment in 0%, migration in 7.5%, and tilt in 10.5% of insertions. GW-2 resulted in entrapment in 1%, migration in 26.5%, and tilt in 5.5% of insertions. The incidence of adverse events for GW-1 was significantly different compared with all filters (F1, 0%; F2, 46%; F3, 4%; and F4, 22%; p < 0.0001). Similarly, the incidence of adverse events for GW-2 was significantly different when evaluating all filters (F1, 12%; F2, 48%; F3, 22%; F4 60%; p < 0.0001). The smaller-diameter guide wire resulted in a decreased incidence of adverse events for all filters, but there is still risk for complications. Knowledge of potential complications associated with vena cava filters and the postinsertion use of guide wires are essential to avoid potential mishaps.
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator
Moses, Matthew S.; Murphy, Ryan J.; Kutzer, Michael D. M.; Armand, Mehran
2016-01-01
This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy. PMID:27818607
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator.
Moses, Matthew S; Murphy, Ryan J; Kutzer, Michael D M; Armand, Mehran
2015-12-01
This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy.
Targeted training of the decision rule benefits rule-guided behavior in Parkinson's disease.
Ell, Shawn W
2013-12-01
The impact of Parkinson's disease (PD) on rule-guided behavior has received considerable attention in cognitive neuroscience. The majority of research has used PD as a model of dysfunction in frontostriatal networks, but very few attempts have been made to investigate the possibility of adapting common experimental techniques in an effort to identify the conditions that are most likely to facilitate successful performance. The present study investigated a targeted training paradigm designed to facilitate rule learning and application using rule-based categorization as a model task. Participants received targeted training in which there was no selective-attention demand (i.e., stimuli varied along a single, relevant dimension) or nontargeted training in which there was selective-attention demand (i.e., stimuli varied along a relevant dimension as well as an irrelevant dimension). Following training, all participants were tested on a rule-based task with selective-attention demand. During the test phase, PD patients who received targeted training performed similarly to control participants and outperformed patients who did not receive targeted training. As a preliminary test of the generalizability of the benefit of targeted training, a subset of the PD patients were tested on the Wisconsin card sorting task (WCST). PD patients who received targeted training outperformed PD patients who did not receive targeted training on several WCST performance measures. These data further characterize the contribution of frontostriatal circuitry to rule-guided behavior. Importantly, these data also suggest that PD patient impairment, on selective-attention-demanding tasks of rule-guided behavior, is not inevitable and highlight the potential benefit of targeted training.
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.
1994-01-01
This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim
2018-01-01
Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.
Masserey, Bernard; Raemy, Christian; Fromme, Paul
2014-09-01
Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
The Effects of Evidence Bounds on Decision-Making: Theoretical and Empirical Developments
Zhang, Jiaxiang
2012-01-01
Converging findings from behavioral, neurophysiological, and neuroimaging studies suggest an integration-to-boundary mechanism governing decision formation and choice selection. This mechanism is supported by sequential sampling models of choice decisions, which can implement statistically optimal decision strategies for selecting between multiple alternative options on the basis of sensory evidence. This review focuses on recent developments in understanding the evidence boundary, an important component of decision-making raised by experimental findings and models. The article starts by reviewing the neurobiology of perceptual decisions and several influential sequential sampling models, in particular the drift-diffusion model, the Ornstein–Uhlenbeck model and the leaky-competing-accumulator model. In the second part, the article examines how the boundary may affect a model’s dynamics and performance and to what extent it may improve a model’s fits to experimental data. In the third part, the article examines recent findings that support the presence and site of boundaries in the brain. The article considers two questions: (1) whether the boundary is a spontaneous property of neural integrators, or is controlled by dedicated neural circuits; (2) if the boundary is variable, what could be the driving factors behind boundary changes? The review brings together studies using different experimental methods in seeking answers to these questions, highlights psychological and physiological factors that may be associated with the boundary and its changes, and further considers the evidence boundary as a generic mechanism to guide complex behavior. PMID:22870070
Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei
2015-02-01
It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.
Thermodynamic assessment and binary nucleation modeling of Sn-seeded InGaAs nanowires
NASA Astrophysics Data System (ADS)
Ghasemi, Masoomeh; Selleby, Malin; Johansson, Jonas
2017-11-01
We have performed a thermodynamic assessment of the As-Ga-In-Sn system based on the CALculation of PHAse Diagram (CALPHAD) method. This system is part of a comprehensive thermodynamic database that we are developing for nanowire materials. Specifically, the As-Ga-In-Sn can be used in modeling the growth of GaAs, InAs, and InxGa1-xAs nanowires assisted by Sn liquid seeds. In this work, the As-Sn binary, the As-Ga-Sn, As-In-Sn, and Ga-In-Sn ternary systems have been thermodynamically assessed using the CALPHAD method. We show the relevant phase diagrams and property diagrams. They all show good agreement with experimental data. Using our optimized description we have modeled the nucleation of InxGa1-xAs in the zinc blende phase from a Sn-based quaternary liquid alloy using binary nucleation modeling. We have linked the composition of the solid nucleus to the composition of the liquid phase. Eventually, we have predicted the critical size of the nucleus that forms from InAs and GaAs pairs under various conditions. We believe that our modeling can guide future experimental realization of Sn-seeded InxGa1-xAs nanowires.
Simulation of an Impact Test of the All-Composite Lear Fan Aircraft
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)
2002-01-01
An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.
Grosse-Wortmann, Lars; Grabitz, Ralf; Seghaye, Marie-Christine
2007-04-01
Cardiovascular catheterization can be challenging whenever a stenosis or an abnormal vascular course interferes with probing the target vessel. This study addresses the feasibility of navigating a guide wire with a magnetic tip by an external magnetic field through pulmonary and systemic arteries in an experimental porcine model. We investigated six piglets using magnetic guide-wire navigation. Two pulmonary arteriograms were taken from different angles in order to reconstruct the three-dimensional vessel anatomy. A computer interface then calculated three-dimensional coordinates for the vessel in space. Using these coordinates, two external magnets were positioned to create magnetic vectors along the expected vessel course. Magnetically enabled guide wires were then navigated into the vessels using the magnetic field to orient the guide-wire tips. Aortic and renal branches were addressed in a similar fashion. Difficulty in reaching the target vessel was reflected by the number of attempts that were necessary. After 10 failed attempts, the maneuver was recorded to have failed. Thirty-five of 37 (94.6%) arteries with branches at acute angles were reached successfully using magnetic navigation. In two pigs, the left upper lobe artery could not be probed. Peripheral arteries of small diameter were easier to reach than large central arteries, requiring less attempts. Magnetic guide-wire navigation is feasible in the arteries of the lungs, the head and neck, and the kidneys. It is particularly useful in entering small arterial branches at acute angles and may facilitate interventional therapy in a variety of vascular diseases in children and adults.
Asfaram, Arash; Ghaedi, Mehrorang; Yousefi, Fakhri; Dastkhoon, Mehdi
2016-11-01
The manganese impregnated zinc sulfide nanoparticles deposited on activated carbon (ZnS: Mn-NPs-AC) which fully was synthesized and characterized successfully applied for simultaneous removal of malachite green and methylene blue in binary situation. The effects of variables such as pH (2.0-10.0), sonication time (1-5min), adsorbent mass (0.005-0.025g) and MB and MG concentration (4-20mgL(-1)) on their removal efficiency was studied dy central composite design (CCD) to correlate dyes removal percentage to above mention variables that guides amongst the maximum influence was seen by changing the sonication time and adsorbent mass. Sonication time, adsorbent mass and pH in despite of dyes concentrations has positive relation with removal percentage. Multiple regression analysis of the experimental results is associated with 3-D response surface and contour plots that guide setting condition at pH of 7.0, 3min sonication time, 0.025g Mn: ZnS-NPs-AC and 15mgL(-1) of MB and MG lead to achievement of removal efficiencies of 99.87% and 98.56% for MG and MB, respectively. The pseudo-second-order model as best choice efficiency describe the dyes adsorption behavior, while MG and MB maximum adsorption capacity according to Langmuir was 202.43 and 191.57mgg(-1). Copyright © 2016 Elsevier B.V. All rights reserved.
Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design
ERIC Educational Resources Information Center
D'Costa, Allison R.; Schlueter, Mark A.
2013-01-01
Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…
ERIC Educational Resources Information Center
Chicago Board of Education, IL. Dept. of Curriculum.
The curriculum guide for mathematics instruction in the bilingual education program of the Chicago public schools is designed to assist teachers in the instruction of limited-English-speaking students in their native language. The guide outlines, for each of two levels, lessons on absolute and relative values of numbers, whole number operations,…
Guided ultrasonic wave beam skew in silicon wafers
NASA Astrophysics Data System (ADS)
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2018-04-01
In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.
E.I. Kotok
1938-01-01
Experimental forests, watersheds, and ranges are the field laboratories in the research structure of the Forest Service. The California Forest and Range Experiment Station maintains four experimental forests representing the more important timber types in the Pine Region.The Blacks Mountain Experimental Forest represents the ponderosa pine...
Unsteady numerical simulation of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Javadi, Ardalan; Nilsson, Håkan
2014-03-01
The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.
Potential flow theory and operation guide for the panel code PMARC
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Dudley, Michael R.; Iguchi, Steve K.; Browne, Lindsey; Katz, Joseph
1991-01-01
The theoretical basis for PMARC, a low-order potential-flow panel code for modeling complex three-dimensional geometries, is outlined. Several of the advanced features currently included in the code, such as internal flow modeling, a simple jet model, and a time-stepping wake model, are discussed in some detail. The code is written using adjustable size arrays so that it can be easily redimensioned for the size problem being solved and the computer hardware being used. An overview of the program input is presented, with a detailed description of the input available in the appendices. Finally, PMARC results for a generic wing/body configuration are compared with experimental data to demonstrate the accuracy of the code. The input file for this test case is given in the appendices.
Residual Strength Predictions with Crack Buckling
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Gullerud, A. S.; Dodds, R. H., Jr.; Hampton, R. W.
1999-01-01
Fracture tests were conducted on middle crack tension, M(T), and compact tension, C(T), specimens of varying widths, constructed from 0.063 inch thick sheets of 2024-T3 aluminum alloy. Guide plates were used to restrict out-of-plane displacements in about half of the tests. Analyses using the three-dimensional, elastic-plastic finite element code WARP3D simulated the tests with and without guide plates using a critical CTOA fracture criterion. The experimental results indicate that crack buckling reduced the failure loads by up to 40%. Using a critical CTOA value of 5.5 deg., the WARP3D analyses predicted the failure loads for the tests with guide plates within +/- 10% of the experimentally measured values. For the M(T) tests without guide plates, the WARP3D analyses predicted the failure loads for the 12 and 24 inch tests within 10%, while over predicting the failure loads for the 40 inch wide tests by about 20%.
Apóstolo, João Luís Alves; Kolcaba, Katharine
2009-12-01
This article describes the efficacy of a guided imagery intervention for decreasing depression, anxiety, and stress and increasing comfort in psychiatric inpatients with depressive disorders. A quasi-experimental design sampled 60 short-term hospitalized depressive patients selected consecutively. The experimental group listened to a guided imagery compact disk once a day for 10 days. The Psychiatric Inpatients Comfort Scale and the Depression, Anxiety, and Stress Scales (DASS-21) were self-administered at two time points: prior to the intervention (T1) and 10 days later (T2). Comfort and DASS-21 were also assessed in the usual care group at T1 and T2. Repeated measures revealed that the treatment group had significantly improved comfort and decreased depression, anxiety, and stress over time.
Graphene-based perfect optical absorbers harnessing guided mode resonances.
Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A
2015-08-10
We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.
Chudasama, Vaishali L.; Ovacik, Meric A.; Abernethy, Darrell R.
2015-01-01
Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens. PMID:26163548
Computational Models and Emergent Properties of Respiratory Neural Networks
Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.
2012-01-01
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564
Thomas, Sean; Martinez, L L Isadora Trejo; Westenberger, Scott J; Sturm, Nancy R
2007-05-24
The structurally complex network of minicircles and maxicircles comprising the mitochondrial DNA of kinetoplastids mirrors the complexity of the RNA editing process that is required for faithful expression of encrypted maxicircle genes. Although a few of the guide RNAs that direct this editing process have been discovered on maxicircles, guide RNAs are mostly found on the minicircles. The nuclear and maxicircle genomes have been sequenced and assembled for Trypanosoma cruzi, the causative agent of Chagas disease, however the complement of 1.4-kb minicircles, carrying four guide RNA genes per molecule in this parasite, has been less thoroughly characterised. Fifty-four CL Brener and 53 Esmeraldo strain minicircle sequence reads were extracted from T. cruzi whole genome shotgun sequencing data. With these sequences and all published T. cruzi minicircle sequences, 108 unique guide RNAs from all known T. cruzi minicircle sequences and two guide RNAs from the CL Brener maxicircle were predicted using a local alignment algorithm and mapped onto predicted or experimentally determined sequences of edited maxicircle open reading frames. For half of the sequences no statistically significant guide RNA could be assigned. Likely positions of these unidentified gRNAs in T. cruzi minicircle sequences are estimated using a simple Hidden Markov Model. With the local alignment predictions as a standard, the HMM had an ~85% chance of correctly identifying at least 20 nucleotides of guide RNA from a given minicircle sequence. Inter-minicircle recombination was documented. Variable regions contain species-specific areas of distinct nucleotide preference. Two maxicircle guide RNA genes were found. The identification of new minicircle sequences and the further characterization of all published minicircles are presented, including the first observation of recombination between minicircles. Extrapolation suggests a level of 4% recombinants in the population, supporting a relatively high recombination rate that may serve to minimize the persistence of gRNA pseudogenes. Characteristic nucleotide preferences observed within variable regions provide potential clues regarding the transcription and maturation of T. cruzi guide RNAs. Based on these preferences, a method of predicting T. cruzi guide RNAs using only primary minicircle sequence data was created.
A method of emotion contagion for crowd evacuation
NASA Astrophysics Data System (ADS)
Cao, Mengxiao; Zhang, Guijuan; Wang, Mengsi; Lu, Dianjie; Liu, Hong
2017-10-01
The current evacuation model does not consider the impact of emotion and personality on crowd evacuation. Thus, there is large difference between evacuation results and the real-life behavior of the crowd. In order to generate more realistic crowd evacuation results, we present a method of emotion contagion for crowd evacuation. First, we combine OCEAN (Openness, Extroversion, Agreeableness, Neuroticism, Conscientiousness) model and SIS (Susceptible Infected Susceptible) model to construct the P-SIS (Personalized SIS) emotional contagion model. The P-SIS model shows the diversity of individuals in crowd effectively. Second, we couple the P-SIS model with the social force model to simulate emotional contagion on crowd evacuation. Finally, the photo-realistic rendering method is employed to obtain the animation of crowd evacuation. Experimental results show that our method can simulate crowd evacuation realistically and has guiding significance for crowd evacuation in the emergency circumstances.
Requirements for energy based constitutive modeling in tire mechanics
NASA Technical Reports Server (NTRS)
Luchini, John R.; Peters, Jim M.; Mars, Will V.
1995-01-01
The history, requirements, and theoretical basis of a new energy based constitutive model for (rubber) material elasticity, hysteresis, and failure are presented. Energy based elasticity is handled by many constitutive models, both in one dimension and in three dimensions. Conversion of mechanical energy to heat can be modeled with viscoelasticity or as structural hysteresis. We are seeking unification of elasticity, hysteresis, and failure mechanisms such as fatigue and wear. An energy state characterization for failure criteria of (rubber) materials may provide this unification and also help explain the interaction of temperature effects with failure mechanisms which are described as creation of growth of internal crack surface. Improved structural modeling of tires with FEM should result from such a unified constitutive theory. The theory will also guide experimental work and should enable better interpretation of the results of computational stress analyses.
In silico modeling of axonal reconnection within a discrete fiber tract after spinal cord injury.
Woolfe, Franco; Waxman, Stephen G; Hains, Bryan C
2007-02-01
Following spinal cord injury (SCI), descending axons that carry motor commands from the brain to the spinal cord are injured or transected, producing chronic motor dysfunction and paralysis. Reconnection of these axons is a major prerequisite for restoration of function after SCI. Thus far, only modest gains in motor function have been achieved experimentally or in the clinic after SCI, identifying the practical limitations of current treatment approaches. In this paper, we use an ordinary differential equation (ODE) to simulate the relative and synergistic contributions of several experimentally-established biological factors related to inhibition or promotion of axonal repair and restoration of function after SCI. The factors were mathematically modeled by the ODE. The results of our simulation show that in a model system, many factors influenced the achievability of axonal reconnection. Certain factors more strongly affected axonal reconnection in isolation, and some factors interacted in a synergistic fashion to produce further improvements in axonal reconnection. Our data suggest that mathematical modeling may be useful in evaluating the complex interactions of discrete therapeutic factors not possible in experimental preparations, and highlight the benefit of a combinatorial therapeutic approach focused on promoting axonal sprouting, attraction of cut ends, and removal of growth inhibition for achieving axonal reconnection. Predictions of this simulation may be of utility in guiding future experiments aimed at restoring function after SCI.
Zoellner, Jamie M.; Porter, Kathleen J.; Chen, Yvonnes; Hedrick, Valisa E.; You, Wen; Hickman, Maja; Estabrooks, Paul A.
2017-01-01
Objective Guided by the theory of planned behaviour (TPB) and health literacy concepts, SIPsmartER is a six-month multicomponent intervention effective at improving SSB behaviours. Using SIPsmartER data, this study explores prediction of SSB behavioural intention (BI) and behaviour from TPB constructs using: (1) cross-sectional and prospective models and (2) 11 single-item assessments from interactive voice response (IVR) technology. Design Quasi-experimental design, including pre- and post-outcome data and repeated-measures process data of 155 intervention participants. Main Outcome Measures Validated multi-item TPB measures, single-item TPB measures, and self-reported SSB behaviours. Hypothesised relationships were investigated using correlation and multiple regression models. Results TPB constructs explained 32% of the variance cross sectionally and 20% prospectively in BI; and explained 13–20% of variance cross sectionally and 6% prospectively. Single-item scale models were significant, yet explained less variance. All IVR models predicting BI (average 21%, range 6–38%) and behaviour (average 30%, range 6–55%) were significant. Conclusion Findings are interpreted in the context of other cross-sectional, prospective and experimental TPB health and dietary studies. Findings advance experimental application of the TPB, including understanding constructs at outcome and process time points and applying theory in all intervention development, implementation and evaluation phases. PMID:28165771
Assessing Students' Experimentation Processes in Guided Inquiry
ERIC Educational Resources Information Center
Emden, Markus; Sumfleth, Elke
2016-01-01
In recent science education, experimentation features ever more strongly as a method of inquiry in science classes rather than as a means to illustrate phenomena. Ideas and materials to teach inquiry abound. Yet, tools for assessing students' achievement in their processes of experimentation are lacking. The present study assumes a basal,…
Analytic Guided-Search Model of Human Performance Accuracy in Target- Localization Search Tasks
NASA Technical Reports Server (NTRS)
Eckstein, Miguel P.; Beutter, Brent R.; Stone, Leland S.
2000-01-01
Current models of human visual search have extended the traditional serial/parallel search dichotomy. Two successful models for predicting human visual search are the Guided Search model and the Signal Detection Theory model. Although these models are inherently different, it has been difficult to compare them because the Guided Search model is designed to predict response time, while Signal Detection Theory models are designed to predict performance accuracy. Moreover, current implementations of the Guided Search model require the use of Monte-Carlo simulations, a method that makes fitting the model's performance quantitatively to human data more computationally time consuming. We have extended the Guided Search model to predict human accuracy in target-localization search tasks. We have also developed analytic expressions that simplify simulation of the model to the evaluation of a small set of equations using only three free parameters. This new implementation and extension of the Guided Search model will enable direct quantitative comparisons with human performance in target-localization search experiments and with the predictions of Signal Detection Theory and other search accuracy models.
Crohn's Disease and Ulcerative Colitis: A Guide for Parents
... for cures; participate in a clinical trial of experimental treatments. Interactive Disease Tracker Use GI Buddy to ... to target them and block inflammation. With many experimental treatments for IBD in clinical trials, experts predict ...
ERIC Educational Resources Information Center
Ontario Inst. for Studies in Education, Toronto.
Cooperating with the Canadian Commission for UNESCO, the Ontario Institute for Studies in Education has prepared boxes of experimental curriculum materials on the subject of ecology. This guide summarizes the design and contents of the boxes and provides instructions for those using the boxes--principals, teachers, parents, librarians, and…
de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye
2015-05-01
New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Rigano, Daniela; Formisano, Carmen; Senatore, Felice; Piacente, Sonia; Pagano, Ester; Capasso, Raffaele; Borrelli, Francesca; Izzo, Angelo A
2013-12-12
In the Mediterranean Area, the flowers of Helichrysum italicum ssp. italicum are a traditional remedy for the treatment of intestinal complaints and are used as herbal tea for curing digestive, stomachic and intestinal diseases. In order to find scientific evidence for the traditional utilization of this plant, the effect of an ethanolic extract of Helichrysum italicum was investigated by using in vivo and in vitro experimental models. Then, through bioassay-guided fractionation procedures, active component(s) were identified. Contractility in vitro was evaluated by stimulating the isolated ileum, in an organ bath, with acetylcholine and barium chloride; motility in vivo was evaluated by measuring upper gastrointestinal transit, both in control mice and in mice with experimental intestinal inflammation induced by croton oil. Chromatographic separation techniques such as HPLC and silica gel columns have yielded the active principles of Helichrysum italicum. We found that the ethanolic extract of Helichrysum italicum ssp. italicum flowers elicited antispasmodic actions in the isolated mouse ileum and inhibited transit preferentially in the inflamed gut. A bioassay guided fractionation of the extract yielded the known compounds 12-acetoxytremetone (1) and 2,3-dihydro-2-[1-(hydroxymethyl)ethenyl]-5-benzofuranyl]-ethanone (2). Present study supported the traditional use of Helichrysum italicum ssp. italicum flowers for intestinal complaints and through bioassay-guided fractionation procedures from the crude extract we showed that 12-acetoxytremetone (1) and 2,3-dihydro-2-[1-(hydroxymethyl)ethenyl]-5-benzofuranyl]-ethanone (2) acted in a synergistic way to produce an intestinal antispasmodic effect. © 2013 Elsevier Ireland Ltd. All rights reserved.
Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus
2018-06-01
Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.
The effect of conceptual metaphors through guided inquiry on student's conceptual change
NASA Astrophysics Data System (ADS)
Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana
2017-05-01
The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.
Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.
Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong
2018-02-28
The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.
An improved dehazing algorithm of aerial high-definition image
NASA Astrophysics Data System (ADS)
Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying
2016-01-01
For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.
The colibactin warhead crosslinks DNA
NASA Astrophysics Data System (ADS)
Vizcaino, Maria I.; Crawford, Jason M.
2015-05-01
Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.
Flipped Classroom: Do Students Perceive Readiness for Advanced Discussion?
Hoover, Carrie Ann; Dinndorf-Hogenson, Georgia Ann; Peterson, Jennifer Lee; Tollefson, Bethany Renae; Berndt, Jodi Lisbeth; Laudenbach, Nikki
2018-03-01
Use of the flipped classroom model is recognized as a popular method of instruction. Effective preclass preparation methods can create more time for instructors to reinforce application, evaluation, and analysis of information using active learning strategies. This quasi-experimental study used a convenience sample of 42 third-year baccalaureate nursing students. Students were randomized into two groups and received either a narrated video (vodcast) or guided readings for the preclass preparation. A quiz was administered to assess preparation prior to class, and students completed a survey following the classroom activities. Students preferred media preparation to guided readings. This preference translated to higher quiz scores. Positive correlations were noted between quiz scores and students' understanding and increased confidence. Students' preference for the vodcast translated to the perception of an increase in confidence and understanding of the material. [J Nurs Educ. 2018;57(3):163-165.]. Copyright 2018, SLACK Incorporated.
Numerical and Experimental Study of Wake Redirection Techniques in a Boundary Layer Wind Tunnel
NASA Astrophysics Data System (ADS)
Wang, J.; Foley, S.; Nanos, E. M.; Yu, T.; Campagnolo, F.; Bottasso, C. L.; Zanotti, A.; Croce, A.
2017-05-01
The aim of the present paper is to validate a wind farm LES framework in the context of two distinct wake redirection techniques: yaw misalignment and individual cyclic pitch control. A test campaign was conducted using scaled wind turbine models in a boundary layer wind tunnel, where both particle image velocimetry and hot-wire thermo anemometers were used to obtain high quality measurements of the downstream flow. A LiDAR system was also employed to determine the non-uniformity of the inflow velocity field. A high-fidelity large-eddy simulation lifting-line model was used to simulate the aerodynamic behavior of the system, including the geometry of the wind turbine nacelle and tower. A tuning-free Lagrangian scale-dependent dynamic approach was adopted to improve the sub-grid scale modeling. Comparisons with experimental measurements are used to systematically validate the simulations. The LES results are in good agreement with the PIV and hot-wire data in terms of time-averaged wake profiles, turbulence intensity and Reynolds shear stresses. Discrepancies are also highlighted, to guide future improvements.
NASA Technical Reports Server (NTRS)
Wadhams, T.P.; MacLean, M.; Holden, M.S.; Cassady, A.M.
2009-01-01
An experimental program has been completed by CUBRC exploring laminar, transitional, and turbulent flows over a 7.0% scale model of the Project ORION CEV geometry. This program was executed primarily to answer questions concerning the increase in heat transfer on the windward, or "hot shoulder" of the CEV heat shield from laminar to turbulent flow. To answer these questions CUBRC constructed and instrumented a 14.0 inch diameter Project ORION CEV model and ran a range of Reynolds numbers based on diameter from 1.0 to over 40 million at a Mach number of 8.0. These Reynolds numbers were selected to cover laminar to turbulent heating data on the "hot shoulder". Data obtained during these runs will be used to guide design decisions as they apply to heat shield thickness and extent. Several experiments at higher enthalpies were achieved to obtain data for code validation with real gas effects and transition. CUBRC also performed computation studies of these experiments to aid in the data reduction process and study turbulence modeling.
NASA Astrophysics Data System (ADS)
M, Ardiany; W, Wahyu; A, Supriatna
2017-09-01
The more students who feel less confident in learning, so doing things that are less responsible, such as brawl, drunkenness and others. So researchers need to do research related to student self efficacy in learning, in order to reduce unwanted things. This study aims to determine the effect of guided inquiry learning on improving self-efficacy of learners in the buffer solution topics. The method used is the mixed method which is the two group pretest postest design. The subjects of the study are 60 students of class XI AK in one of the SMKN in Bandung, consisting of 30 experimental class students and 30 control class students. The instruments used in this study mix method consist of self-efficacy questionnaire of pretest and posttest learners, interview guides, and observation sheet. Data analysis using t test with significant α = 0,05. Based on the result of inquiry of guided inquiry study, there is a significant improvement in self efficacy aspect of students in the topic of buffer solution. Data of pretest and posttest interview, observation, questionnaire showed significant result, that is improvement of experimental class with conventionally guided inquiry learning. The mean of self-efficacy of student learning there is significant difference of experiment class than control class equal to 0,047. There is a significant relationship between guided inquiry learning with self efficacy and guided inquiry learning. Each correlation value is 0.737. The learning process with guided inquiry is fun and challenging so that students can expose their ideas and opinions without being forced. From the results of questionnaires students showed an attitude of interest, sincerity and a good response of learning. While the results of questionnaires teachers showed that guided inquiry learning can make students learn actively, increased self-efficacy.
Defensive Operations in a Decisive Action Training Environment
2017-07-01
the alpha reduced the likelihood of mistaking a false result for a true finding/effect. Control Versus Experimental Group Comparisons Chi...was made between control and experimental groups. The experimental group received a Guide for DO with the intent of improving performance on...Planning, Execution, and Overall performance. There were no significant differences between control and experimental groups. Further analysis revealed
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
NASA Astrophysics Data System (ADS)
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-06-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies.
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-06-10
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people's adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics.
Modelling Adaptive Learning Behaviours for Consensus Formation in Human Societies
Yu, Chao; Tan, Guozhen; Lv, Hongtao; Wang, Zhen; Meng, Jun; Hao, Jianye; Ren, Fenghui
2016-01-01
Learning is an important capability of humans and plays a vital role in human society for forming beliefs and opinions. In this paper, we investigate how learning affects the dynamics of opinion formation in social networks. A novel learning model is proposed, in which agents can dynamically adapt their learning behaviours in order to facilitate the formation of consensus among them, and thus establish a consistent social norm in the whole population more efficiently. In the model, agents adapt their opinions through trail-and-error interactions with others. By exploiting historical interaction experience, a guiding opinion, which is considered to be the most successful opinion in the neighbourhood, can be generated based on the principle of evolutionary game theory. Then, depending on the consistency between its own opinion and the guiding opinion, a focal agent can realize whether its opinion complies with the social norm (i.e., the majority opinion that has been adopted) in the population, and adapt its behaviours accordingly. The highlight of the model lies in that it captures the essential features of people’s adaptive learning behaviours during the evolution and formation of opinions. Experimental results show that the proposed model can facilitate the formation of consensus among agents, and some critical factors such as size of opinion space and network topology can have significant influences on opinion dynamics. PMID:27282089
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick
The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge ismore » how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.« less
Iannazzo, Sergio; Colombatto, Piero; Ricco, Gabriele; Oliveri, Filippo; Bonino, Ferruccio; Brunetto, Maurizia R
2015-03-01
Rapid virologic response is the best predictor of sustained virologic response with dual therapy in genotype-1 chronic hepatitis C, and its evaluation was proposed to tailor triple therapy in F0-F2 patients. Bio-mathematical modelling of viral dynamics during dual therapy has potentially higher accuracy than rapid virologic in the identification of patients who will eventually achieve sustained response. Study's objective was the cost-effectiveness analysis of a personalized therapy in naïve F0-F2 patients with chronic hepatitis C based on a bio-mathematical model (model-guided strategy) rather than on rapid virologic response (guideline-guided strategy). A deterministic bio-mathematical model of the infected cell dynamics was validated in a cohort of 135 patients treated with dual therapy. A decision-analytic economic model was then developed to compare model-guided and guideline-guided strategies in the Italian setting. The outcomes of the cost-effectiveness analysis with model-guided and guideline-guided strategy were 19.1-19.4 and 18.9-19.3 quality-adjusted-life-years. Total per-patient lifetime costs were €25,200-€26,000 with model-guided strategy and €28,800-€29,900 with guideline-guided strategy. When comparing model-guided with guideline-guided strategy the former resulted more effective and less costly. The adoption of the bio-mathematical predictive criterion has the potential to improve the cost-effectiveness of a personalized therapy for chronic hepatitis C, reserving triple therapy for those patients who really need it. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor
NASA Astrophysics Data System (ADS)
Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik
2017-11-01
Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.
AGARD standard aeroelastic configurations for dynamic response. 1: Wing 445.6
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.
1988-01-01
This report contains experimental flutter data for the AGARD 3-D swept tapered standard configuration Wing 445.6, along with related descriptive data of the model properties required for comparative flutter calculations. As part of a cooperative AGARD-SMP program, guided by the Sub-Committee on Aeroelasticity, this standard configuration may serve as a common basis for comparison of calculated and measured aeroelastic behavior. These comparisons will promote a better understanding of the assumptions, approximations and limitations underlying the various aerodynamic methods applied, thus pointing the way to further improvements.
PomBase: The Scientific Resource for Fission Yeast.
Lock, Antonia; Rutherford, Kim; Harris, Midori A; Wood, Valerie
2018-01-01
The fission yeast Schizosaccharomyces pombe has become well established as a model species for studying conserved cell-level biological processes, especially the mechanics and regulation of cell division. PomBase integrates the S. pombe genome sequence with traditional genetic, molecular, and cell biological experimental data as well as the growing body of large datasets generated by emerging high-throughput methods. This chapter provides insight into the curation philosophy and data organization at PomBase, and provides a guide to using PomBase for infrequent visitors and anyone considering exploring S. pombe in their research.
2014-07-01
different value and pressing Enter. The PRC- Calc session can be saved for future use with these new values using the Save Session button in the upper...describe (a) how the PRC Correction Calculator (PRC- Calc ) uses the model of Fernandez et al. (2009), (b) how well its performance compares against...experimental data, (c) how the user may prepare their computer with software to use the PRC calculator, and then (d) how to use PRC- Calc to process PRC
Barriers to front propagation in laminar, three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.
2018-03-01
We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.
NASA Technical Reports Server (NTRS)
Schiller, David N.
1989-01-01
Science requirements are specified to guide experimental studies of transient heat transfer and fluid flow in an enclosure containing a two-layer gas-and-liquid system heated unevenly from above. Specifications are provided for experiments in three separate settings: (1) a normal gravity laboratory, (2) the NASA-LeRC Drop towers, and (3) a space-based laboratory (e.g., Shuttle, Space Station). A rationale is developed for both minimum and desired requirement levels. The principal objective of the experimental effort is to validate a computational model of the enclosed liquid fuel pool during the preignition phase and to determine via measurement the role of gravity on the behavior of the system. Preliminary results of single-phase normal gravity experiments and simulations are also presented.
The young person's guide to the PDB.
Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz
The Protein Data Bank (PDB), created in 1971 when merely seven protein crystal structures were known, today holds over 120, 000 experimentally-determined three-dimensional models of macromolecules, including gigantic structures comprised of hundreds of thousands of atoms, such as ribosomes and viruses. Most of the deposits come from X-ray crystallography experiments, with important contributions also made by NMR spectroscopy and, recently, by the fast growing Cryo-Electron Microscopy. Although the determination of a macromolecular crystal structure is now facilitated by advanced experimental tools and by sophisticated software, it is still a highly complicated research process requiring specialized training, skill, experience and a bit of luck. Understanding the plethora of structural information provided by the PDB requires that its users (consumers) have at least a rudimentary initiation. This is the purpose of this educational overview.
Sixth Grade: Fall and Winter Curriculum Guide.
ERIC Educational Resources Information Center
Jacobs, Joel Robert, Ed.
Activity plans for sixth grade outdoor education experiences comprise the bulk of this curriculum guide. Many of the outlines have been developed through practical application and experimentation by staff members of the Outdoor and Environmental Education Center (OEEC) of the Harrisburg, Pennsylvania, City Schools. Activities and studies for the…
Designing Classrooms that Work: Teacher Training Guide.
ERIC Educational Resources Information Center
Ramsey, Kimberly; Stasz, Cathleen; Ormseth, Tor; Eden, Rick; Co, Jennifer
This document is a guide for teachers and trainers participating in the initial experimental offering of a 6-week minisabbatical, Designing Classrooms that Work (CTW). The minisabbatical is designed to help teachers learn how to make the kinds of curricular and pedagogical changes implied by reforms to integrate vocational and academic education…
Science, Medicine, and Animals: Teacher's Guide
ERIC Educational Resources Information Center
Moran, Lisa C.
2005-01-01
"Science, Medicine, and Animals" explains the role that animals play in biomedical research and the ways in which scientists, governments, and citizens have tried to balance the experimental use of animals with a concern for all living creatures. An accompanying "Teacher's Guide" is available to help teachers of middle and high…
Fourth Grade: Late Fall and Early Spring Curriculum Guide.
ERIC Educational Resources Information Center
Jacobs, Joel Robert, Ed.
Activity plans for fourth grade outdoor education experiences comprise the bulk of this curriculum guide. Many of the outlines have been developed through practical application and experimentation by staff members of the Outdoor and Environmental Education Center (OEEC) of the Harrisburg, Pennsylvania, City Schools. Activities and studies for the…
Fifth Grade: Winter and Spring Curriculum Guide.
ERIC Educational Resources Information Center
Jacobs, Joel Robert, Ed.
Activity plans for fifth grade outdoor education experiences comprise the bulk of this curriculum guide. Many of the outlines have been developed through practical application and experimentation by staff members of the Outdoor and Environmental Education Center (OEEC) of the Harrisburg, Pennsylvania, City Schools. Activities and studies for the…
CUE (CULTURE, UNDERSTANDING, ENRICHMENT)--SOCIAL STUDIES.
ERIC Educational Resources Information Center
BROWN, ROBERT M.; AND OTHERS
THIS PUBLICATION IS A TEACHING GUIDE TO PROVIDE GUIDANCE FOR INTEGRATING CAREFULLY SELECTED AUDIOVISUAL ITEMS INTO EXISTING NINTH-GRADE CURRICULUMS IN SOCIAL STUDIES. IT IS ONE OF FIVE GUIDES PREPARED FOR USE IN PROJECT CUE. AN EXPERIMENTAL PROGRAM DESIGNED TO INCREASE CULTURAL UNDERSTANDING AND ENRICHMENT IN THE EDUCATIONAL PROGRAMS OF HIGH…
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. M. Robertson; A. Beaudoin; J. Lambros
2004-01-05
OAK-135 Development and validation of constitutive models for polycrystalline materials subjected to high strain rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions (foreign object damage, high-strain rate forging, high-speed sheet forming, deformation behavior during forming, response to extreme conditions, etc.). To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be closely coupled with precise and targeted experimental measurements that not only verify the predictions of the models, but also providemore » input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experimentation is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models, which will include dislocation-grain boundary interactions for polycrystalline systems. One aspect of the program will involve the dire ct observation of specific mechanisms of micro-plasticity, as these will indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an experimental and modeling viewpoint. In addition, our approach will minimize the need to fit model parameters to experimental data to obtain convergence. These are critical steps to reach the primary objective of simulating and modeling material performance under extreme loading conditions. In this annual report, we describe the progress made in the first year of this program.« less
Diet composition as a source of variation in experimental animal models of cancer cachexia.
Giles, Kaitlin; Guan, Chen; Jagoe, Thomas R; Mazurak, Vera
2016-05-01
A variety of experimental animal models are used extensively to study mechanisms underlying cancer cachexia, and to identify potential treatments. The important potential confounding effect of dietary composition and intake used in many preclinical studies of cancer cachexia is frequently overlooked. Dietary designs applied in experimental studies should maximize the applicability to human cancer cachexia, meeting the essential requirements of the species used in the study, matched between treatment and control groups as well as also being generally similar to human consumption. A literature review of scientific studies using animal models of cancer and cancer cachexia with dietary interventions was performed. Studies that investigated interventions using lipid sources were selected as the focus of discussion. The search revealed a number of nutrient intervention studies (n = 44), with the majority including n-3 fatty acids (n = 16), mainly eicosapentaenoic acid and/or docosahexaenoic acid. A review of the literature revealed that the majority of studies do not provide information about dietary design; food intake or pair-feeding is rarely reported. Further, there is a lack of standardization in dietary design, content, source, and overall composition in animal models of cancer cachexia. A model is proposed with the intent of guiding dietary design in preclinical studies to enable comparisons of dietary treatments within the same study, translation across different study designs, as well as application to human nutrient intakes. The potential for experimental endpoints to be affected by variations in food intake, macronutrient content, and diet composition is likely. Diet content and composition should be reported, and food intake assessed. Minimum standards for diet definition in cachexia studies would improve reproducibility of pre-clinical studies and aid the interpretation and translation of results to humans with cancer.
Diet composition as a source of variation in experimental animal models of cancer cachexia
Giles, Kaitlin; Guan, Chen; Jagoe, Thomas R.
2015-01-01
Abstract Background A variety of experimental animal models are used extensively to study mechanisms underlying cancer cachexia, and to identify potential treatments. The important potential confounding effect of dietary composition and intake used in many preclinical studies of cancer cachexia is frequently overlooked. Dietary designs applied in experimental studies should maximize the applicability to human cancer cachexia, meeting the essential requirements of the species used in the study, matched between treatment and control groups as well as also being generally similar to human consumption. Methods A literature review of scientific studies using animal models of cancer and cancer cachexia with dietary interventions was performed. Studies that investigated interventions using lipid sources were selected as the focus of discussion. Results The search revealed a number of nutrient intervention studies (n = 44), with the majority including n‐3 fatty acids (n = 16), mainly eicosapentaenoic acid and/or docosahexaenoic acid. A review of the literature revealed that the majority of studies do not provide information about dietary design; food intake or pair‐feeding is rarely reported. Further, there is a lack of standardization in dietary design, content, source, and overall composition in animal models of cancer cachexia. A model is proposed with the intent of guiding dietary design in preclinical studies to enable comparisons of dietary treatments within the same study, translation across different study designs, as well as application to human nutrient intakes. Conclusion The potential for experimental endpoints to be affected by variations in food intake, macronutrient content, and diet composition is likely. Diet content and composition should be reported, and food intake assessed. Minimum standards for diet definition in cachexia studies would improve reproducibility of pre‐clinical studies and aid the interpretation and translation of results to humans with cancer. PMID:27493865
The cerebellum and decision making under uncertainty.
Blackwood, Nigel; Ffytche, Dominic; Simmons, Andrew; Bentall, Richard; Murray, Robin; Howard, Robert
2004-06-01
This study aimed to identify the neural basis of probabilistic reasoning, a type of inductive inference that aids decision making under conditions of uncertainty. Eight normal subjects performed two separate two-alternative-choice tasks (the balls in a bottle and personality survey tasks) while undergoing functional magnetic resonance imaging (fMRI). The experimental conditions within each task were chosen so that they differed only in their requirement to make a decision under conditions of uncertainty (probabilistic reasoning and frequency determination required) or under conditions of certainty (frequency determination required). The same visual stimuli and motor responses were used in the experimental conditions. We provide evidence that the neo-cerebellum, in conjunction with the premotor cortex, inferior parietal lobule and medial occipital cortex, mediates the probabilistic inferences that guide decision making under uncertainty. We hypothesise that the neo-cerebellum constructs internal working models of uncertain events in the external world, and that such probabilistic models subserve the predictive capacity central to induction. Copyright 2004 Elsevier B.V.
Directed Nanopatterning with Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Tokel, Onur; Yavuz, Ozgun; Ergecen, Emre; Pavlov, Ihor; Makey, Ghaith; Ilday, Fatih Omer
In spite of the successes of maskless optical nanopatterning methods, it remains extremely challenging to create any isotropic, periodic nanopattern. Further, available optical techniques lack the long-range coverage and high periodicity demanded by photonics and photovoltaics applications. Here, we provide a novel solution with Nonlinear Laser Lithography (NLL) approach. Notably, we demonstrate that self-organized nanopatterns can be produced in all possible Bravais lattice types. Further, we show that carefully chosen defects or structued noise can direct NLL symmetries. Exploitation of directed self-organizatio to select or guide to predetermined symmetries is a new capability. Predictive capabilities for such far-from-equilibrium, dissipative systems is very limited due to a lack of experimental systems with predictive models. Here we also present a completely predictive model, and experimentally confirm that the emergence of motifs can be regulated by engineering defects, while the polarization of the ultrafast laser prescribes lattice symmetry, which in turn reinforces translational invariance. Thus, NLL enables a novel, maskless nanofabrication approach, where laser-induced nanopatterns can be rapidly created in any lattice symmetry
Modeling tunneling for the unconventional superconducting proximity effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.
Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less
3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds
NASA Technical Reports Server (NTRS)
Leckey, C.; Hinders, M.
2011-01-01
Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.
Modeling tunneling for the unconventional superconducting proximity effect
Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.; ...
2016-10-12
Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less
Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.
1993-01-01
Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.
Wood, R. M.; Saha, D.; McCarthy, L. A.; ...
2014-10-29
A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al 0.1Ga 0.9As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despitemore » the approximations made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals« less
BioNSi: A Discrete Biological Network Simulator Tool.
Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny
2016-08-05
Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.
Adhesion design maps for bio-inspired attachment systems.
Spolenak, Ralph; Gorb, Stanislav; Arzt, Eduard
2005-01-01
Fibrous surface structures can improve the adhesion of objects to other surfaces. Animals, such as flies and geckos, take advantage of this principle by developing "hairy" contact structures which ensure controlled and repeatable adhesion and detachment. Mathematical models for fiber adhesion predict pronounced dependencies of contact performance on the geometry and the elastic properties of the fibers. In this paper the limits of such contacts imposed by fiber strength, fiber condensation, compliance, and ideal contact strength are modeled for spherical contact tips. Based on this, we introduce the concept of "adhesion design maps" which visualize the predicted mechanical behavior. The maps are useful for understanding biological systems and for guiding experimentation to achieve optimum artificial contacts.
NASA Astrophysics Data System (ADS)
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-08-01
We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.
Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors
Avedian, Raffi S.; Gold, Garry; Ghanouni, Pejman; Pauly, Kim Butts
2015-01-01
This article reviews the fundamental principles and clinical experimental uses of magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) ablation of musculoskeletal tumors. MRgHIFU is a noninvasive treatment modality that takes advantage of the ability of magnetic resonance to measure tissue temperature and uses this technology to guide high-intensity focused ultrasound waves to a specific focus within the human body that results in heat generation and complete thermal necrosis of the targeted tissue. Adjacent normal tissues are spared because of the accurate delivery of thermal energy, as well as, local blood perfusion that provides a cooling effect. MRgHIFU is approved by the Food and Drug Administration for the treatment of uterine fibroids and is used on an experimental basis to treat breast, prostate, liver, bone, and brain tumors. PMID:26120376
Mechanisms, functions and ecology of colour vision in the honeybee.
Hempel de Ibarra, N; Vorobyev, M; Menzel, R
2014-06-01
Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.
Flora of the Fraser Experimental Forest, Colorado
Steve J. Popovich; Wayne D. Shepperd; Donald W. Reichert; Michael A. Cone
1993-01-01
This report lists 441 vascular plant taxa in 228 genera and 63 families encountered on the 9,300-ha Fraser Experimental Forest in central Colorado. Synonyms appearing in previous publications and other works pertaining to the Fraser Experimental Forest, as well as appropriate Colorado floras and less-technical field guides, are included. Plant communities and habitats...
Mosley, Garrett L; Nguyen, Phuong; Wu, Benjamin M; Kamei, Daniel T
2016-08-07
The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.
NASA Astrophysics Data System (ADS)
Kumar, P.; Singh, A.
2018-04-01
The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.
User's guide to the western spruce budworm modeling system
Nicholas L. Crookston; J. J. Colbert; Paul W. Thomas; Katharine A. Sheehan; William P. Kemp
1990-01-01
The Budworm Modeling System is a set of four computer programs: The Budworm Dynamics Model, the Prognosis-Budworm Dynamics Model, the Prognosis-Budworm Damage Model, and the Parallel Processing-Budworm Dynamics Model. Input to the first three programs and the output produced are described in this guide. A guide to the fourth program will be published separately....
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
Designed for use in the New York City public secondary schools, this guide was developed to assist the teacher and supervisor in using a three semester, eight theme, global history course. This guide, which covers "Economic, Political, and Cultural Changes in the Post-War World Affect Our Lives Today" is divided into eight sub-themes: (1)…
NASA Astrophysics Data System (ADS)
Kumar, A. Raj; Janardhana Raju, G.; Hemachandra Reddy, K.
2018-03-01
The current research work investigates the influence of helical guide vanes in to the intake runner of a D.I diesel engine operating by the high viscous Mamey Sapote biodiesel to enhance in-cylinder suction air flow features. Helical guide vanes of different number of vanes are produced from 3D printing and placed in the intake manifold to examine the air flow characteristics. Four different helical guide vane devices namely 3, 4, 5 and 6 vanes of the same dimensions are tested in a D.I diesel engine operating with Mamey Sapote biodiesel blend. As per the experimental results of engine performance and emission characteristics, it is found that 5 vanes helical guide vane swirl device exhibited in addition number of increased improvements such as the brake power and bake thermal efficiency by 2.4% and 8.63% respectively and the HC, NOx, Carbon monoxide and, Smoke densities are reduced by 15.62%, 4.23%, 14.27% and 9.6% at peak load operating conditions as collate with normal engine at the same load. Hence this investigation concluded that Helical Guide Vane Devices successfully enhanced the in-cylinder air flow to improve better addition of Mamey Sapote biodiesel with air leading in better performance of the engine than without vanes.
NASA Astrophysics Data System (ADS)
Sarwi, S.; Fauziah, N.; Astuti, B.
2018-03-01
This research is setting by the condition of students who have difficulty in ideas delivery, written scientific communication, and still need the development of student character. The objectives of the research are to determine the improvement of concept understanding, to analyze scientific communication skills and to develop the character of the students through guided inquiry learning. The design in this research is quasi experimental control group preposttest, with research subject of two group of grade X Senior High School in Semarang. One group of controller uses non tutorial and treatment group using tutorial in guided inquiry. Based on result of gain test analysis, obtained
NASA Astrophysics Data System (ADS)
Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton
2018-02-01
The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.
A family of hyperelastic models for human brain tissue
NASA Astrophysics Data System (ADS)
Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain
2017-09-01
Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.
Linking definitions, mechanisms, and modeling of drought-induced tree death.
Anderegg, William R L; Berry, Joseph A; Field, Christopher B
2012-12-01
Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain
Basak, Soubir; Brogan, David; Dietrich, Hans; Ritter, Rogers; Dacey, Ralph G; Biswas, Pratim
2009-01-01
A current advance in nanotechnology is the selective targeting of therapeutics by external magnetic field-guided delivery. This is an important area of research in medicine. The use of magnetic forces results in the formation of agglomerated structures in the field region. The transport characteristics of these agglomerated structures are explored. A nonintrusive method based on in situ light-scattering techniques is used to characterize the velocity of such particles in a magnetic field gradient. A transport model for the chain-like agglomerates is developed based on these experimental observations. The transport characteristics of magnetic nanoparticle drug carriers are then explored in gel-based simulated models of the brain. Results of such measurements demonstrate decreased diffusion of magnetic nanoparticles when placed in a high magnetic field gradient. PMID:19421367
Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell
2016-03-09
Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for multiaxial loadings.« less
Impact of guided reciprocal peer questioning on nursing students' self-esteem and learning.
Lakdizaji, Sima; Abdollahzadeh, Farahnaz; Hassankhanih, Hadi; Kalantari, Manizhe
2013-07-01
Self-esteem is essential for clinical judgments. Nursing students in clinical environments should make a bridge between theoretical education and clinical function. This study was aimed to survey the effect of guided questioning in peer groups on nursing students' self-esteem and clinical learning. In this quasi-experimental study, all nursing students in semester 4 (60) were selected. The autumn semester students (n = 28) were chosen as the control group, and the spring semester students (n = 32) as the experimental group. The experimental group underwent the course of cardiac medical surgical training by the Guided Reciprocal Peer Questioning. The control group was trained by lecture. After confirmation of the validity and reliability of tools including Rosenberg Self-esteem Scale and the researcher-made questionnaire, data were collected and analyzed by SPSS version 17.0. There was no significant difference concerning demographic and educational characteristics between the two groups. Mean score differences of self-esteem and learning were not significant before teaching, while they were significantly promoted after teaching in the experimental (P < 0.001) and control (P < 0.05) groups. Promotion in the experimental group was more considerable than in the control group. As revealed by the results, inquiry method, due to its more positive impact on self-esteem and students' learning, can be applied alone or in combination with the other methods. Conducting this study for other students and for theoretical courses is suggested.
NASA Astrophysics Data System (ADS)
Ren, Baiyang; Lissenden, Cliff J.
2018-04-01
Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.
Potrzebowski, Wojciech; André, Ingemar
2015-07-01
For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.
Failure monitoring in dynamic systems: Model construction without fault training data
NASA Technical Reports Server (NTRS)
Smyth, P.; Mellstrom, J.
1993-01-01
Advances in the use of autoregressive models, pattern recognition methods, and hidden Markov models for on-line health monitoring of dynamic systems (such as DSN antennas) have recently been reported. However, the algorithms described in previous work have the significant drawback that data acquired under fault conditions are assumed to be available in order to train the model used for monitoring the system under observation. This article reports that this assumption can be relaxed and that hidden Markov monitoring models can be constructed using only data acquired under normal conditions and prior knowledge of the system characteristics being measured. The method is described and evaluated on data from the DSS 13 34-m beam wave guide antenna. The primary conclusion from the experimental results is that the method is indeed practical and holds considerable promise for application at the 70-m antenna sites where acquisition of fault data under controlled conditions is not realistic.
A model that integrates eye velocity commands to keep track of smooth eye displacements.
Blohm, Gunnar; Optican, Lance M; Lefèvre, Philippe
2006-08-01
Past results have reported conflicting findings on the oculomotor system's ability to keep track of smooth eye movements in darkness. Whereas some results indicate that saccades cannot compensate for smooth eye displacements, others report that memory-guided saccades during smooth pursuit are spatially correct. Recently, it was shown that the amount of time before the saccade made a difference: short-latency saccades were retinotopically coded, whereas long-latency saccades were spatially coded. Here, we propose a model of the saccadic system that can explain the available experimental data. The novel part of this model consists of a delayed integration of efferent smooth eye velocity commands. Two alternative physiologically realistic neural mechanisms for this integration stage are proposed. Model simulations accurately reproduced prior findings. Thus, this model reconciles the earlier contradictory reports from the literature about compensation for smooth eye movements before saccades because it involves a slow integration process.
A structural model for surface-enhanced stabilization in some metallic glass formers
NASA Astrophysics Data System (ADS)
Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.
2013-01-01
A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.
Nonlinear-programming mathematical modeling of coal blending for power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Longhua; Zhou Junhu; Yao Qiang
At present most of the blending works are guided by experience or linear-programming (LP) which can not reflect the coal complicated characteristics properly. Experimental and theoretical research work shows that most of the coal blend properties can not always be measured as a linear function of the properties of the individual coals in the blend. The authors introduced nonlinear functions or processes (including neural network and fuzzy mathematics), established on the experiments directed by the authors and other researchers, to quantitatively describe the complex coal blend parameters. Finally nonlinear-programming (NLP) mathematical modeling of coal blend is introduced and utilized inmore » the Hangzhou Coal Blending Center. Predictions based on the new method resulted in different results from the ones based on LP modeling. The authors concludes that it is very important to introduce NLP modeling, instead of NL modeling, into the work of coal blending.« less
Bhaumik, Basabi; Mathur, Mona
2003-01-01
We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.
Yang, Shuang; Zhang, Guoqing; Liu, Wan; Wang, Zhen; Zhang, Jifeng; Yang, Dongshan; Chen, Y Eugene; Sun, Hong; Li, Yixue
2017-05-20
Animal models are increasingly gaining values by cross-comparisons of response or resistance to clinical agents used for patients. However, many disease mechanisms and drug effects generated from animal models are not transferable to human. To address these issues, we developed SysFinder (http://lifecenter.sgst.cn/SysFinder), a platform for scientists to find appropriate animal models for translational research. SysFinder offers a "topic-centered" approach for systematic comparisons of human genes, whose functions are involved in a specific scientific topic, to the corresponding homologous genes of animal models. Scientific topic can be a certain disease, drug, gene function or biological pathway. SysFinder calculates multi-level similarity indexes to evaluate the similarities between human and animal models in specified scientific topics. Meanwhile, SysFinder offers species-specific information to investigate the differences in molecular mechanisms between humans and animal models. Furthermore, SysFinder provides a user-friendly platform for determination of short guide RNAs (sgRNAs) and homology arms to design a new animal model. Case studies illustrate the ability of SysFinder in helping experimental scientists. SysFinder is a useful platform for experimental scientists to carry out their research in the human molecular mechanisms. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Practical Guide to Functional Literacy: A Method of Training for Development.
ERIC Educational Resources Information Center
Bellahsene, C.
The purpose of the publication is to disseminate, in circles directly concerned with the theory and practice of functional literacy training, the fundamental principles and essential pedagogical methods yielded by the pursuit of Unesco's Experimental World Literacy Program. The guide is an attempted synthesis of the many and various experiments…
Promoting, Guiding, and Surviving Change in School Districts.
ERIC Educational Resources Information Center
Deal, Terrence E.; Nutt, Samuel C.
Compiled for school administrators who must initiate or respond to external mandate for change, this guide draws on the experiences of 10 rural school districts that participated in the federally funded Experimental Schools (ES) program for perspectives that can be used in the successful management of change efforts in school districts. Organized…
General Science, Ninth Grade: Theme I and Theme II. Experimental.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This document was designed to assist teachers who are helping ninth grade students in New York City learn scientific concepts. In addition, the guide emphasizes basic reasoning skills which underlie problem-solving processes in scientific and nonscientific disciplines. The first section of the guide contains lessons on what a scientist does,…
Guide to testing insecticides on coniferous forest defoliators
Carroll B Jr. Williams; David A. Sharpnack; Liz Maxwell; Patrick J. Shea; Mark D. McGregor
1985-01-01
This report provides a guide to techniques for designing field tests of candidate insecticides, and for carrying out pilot tests and control projects. It describes experimental designs for testing hypotheses, and for sampling trees to estimate insect population densities and percent reduction after treatments. Directions for applying insecticides by aircraft and for...
A Constrained and Guided Approach for Managing Software Engineering Course Projects
ERIC Educational Resources Information Center
Cheng, Y.-P.; Lin, J. M.-C.
2010-01-01
This paper documents several years of experimentation with a new approach to organizing and managing projects in a software engineering course. The initial failure and subsequent refinements that the new approach has been through since 2004 are described herein. The "constrained and guided" approach, as it is called, has helped to reduce…
Project SMART: A Social Approach to Drug Abuse Prevention. Teacher's Guide.
ERIC Educational Resources Information Center
Johnson, C. Anderson; And Others
This document presents the teacher's guide for an experimental research and demonstration project which focuses on the prevention of drug abuse among youth through self-management and resistance training. The major purpose of the curriculum described in this document is to prevent and reduce the incidence of habitual cigarette smoking and of…
Rockets: A Teaching Guide for an Elementary Science Unit on Rocketry.
ERIC Educational Resources Information Center
Vogt, Gregory L.
Utilizing simple and inexpensive equipment, elementary and middle school science teachers can conduct interesting, exciting, and productive units on rockets, the oldest form of self-contained vehicles in existence. This teaching guide contains the following: (1) a brief history of experimentation and research on rockets and rocket propulsion from…
ERIC Educational Resources Information Center
Nagro, Sarah A.; deBettencourt, Laurie U.; Rosenberg, Michael S.; Carran, Deborah T.; Weiss, Margaret P.
2017-01-01
Internships are central to teacher preparation, but many novice teachers do not feel such student teaching experiences prepared them for teaching realities. The purpose of this quasi-experimental study was to understand the effects of guiding teacher candidates through common video-recording and self-reflection activities during student teaching…
Teacher-Guided Interactive Multimedia for Teaching English in an EFL Context
ERIC Educational Resources Information Center
Tsai, Roland; Jenks, Michael
2009-01-01
This quasi-experimental study explored the effect of a "Teacher Guided Multimedia" CD-ROM program as a supplement in teaching vocabulary acquisition to EFL students. Eighty seven juniors in the Food and Beverage Management Department at Yuanpei University in northern Taiwan participated in the study. Students from two intact classes were…
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco
2005-10-01
The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, J.K. Jr.
1980-05-01
The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone whomore » wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.« less
Application of RMS for damage detection by guided elastic waves
NASA Astrophysics Data System (ADS)
Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.
2011-07-01
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
NASA Astrophysics Data System (ADS)
Dallal, Kamel Salim
The effect of guided constructivism (bridging analogies) and expository instructional methods on the attitudes of students toward physics was investigated. A nonrandomize nonequivalent pretest-posttest control group quasi- experimental design was employed. The sample consisted of 127 eleventh-grade and twelfth-grade students from five selected classes from two private high schools in Beirut, Lebanon. Two intact classes were assigned to the control group and three classes to the experimental group. The experimental group was exposed to the bridging analogies instructional method, and the control group was taught using the traditional expository method. A Likert-type instrument, the Physics Attitude Index, was used to measure attitudes on four dimensions. The 40-item Physics Attitude Index (PAI) is a questionnaire using a five response scale. Performance in the assigned topics in physics, cognitive developmental levels, and gender were used as covariants and to examine interaction effects. The experimental groups had significantly higher means than the control groups on all criterion variables. A significant interaction was found between groups and performance levels in the following cases: (a) criterion variable of attitude toward physics; (b) views toward physics learning; and (c) enjoyment of physics. This result indicated that the low performing students among the experimental group had greater gain in attitude toward physics than the high performing students in same group. On the other hand, no interaction occurred between treatment groups and gender, which shows that in this study gender has no significant effect on attitude toward physics. Significant interactions between the treatment groups and cognitive levels were found on the criterion variable of beliefs about physics as a process of learning and enjoyment of physics. In both cases, the difference between the group means were widely different among students at the concrete and transitional levels, but narrowly different among students at the formal level.
Model year 2002 fuel economy guide
DOT National Transportation Integrated Search
2001-01-01
The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. The Guide is...
Biological plywood film formation from para-nematic liquid crystalline organization.
Aguilar Gutierrez, Oscar F; Rey, Alejandro D
2017-11-15
In vitro non-equilibrium chiral phase ordering processes of biomacromolecular solutions offer a systematic and reproducible way of generating material architectures found in Nature, such as biological plywoods. Accelerated progress in biomimetic engineering of mesoscopic plywoods and other fibrous structures requires a fundamental understanding of processing and transport principles. In this work we focus on collagen I based materials and structures to find processing conditions that lead to defect-free collagen films displaying the helicoidal plywood architecture. Here we report experimentally-guided theory and simulations of the chiral phase ordering of collagen molecules through water solvent evaporation of pre-aligned dilute collagen solutions. We develop, implement and a posteriori validate an integrated liquid crystal chiral phase ordering-water transport model that captures the essential features of spatio-temporal chiral structure formation in shrinking film domains due to directed water loss. Three microstructural (texture) modes are identified depending on the particular value of the time-scale ratio defined by collagen rotational diffusion to water translational diffusion. The magnitude of the time scale ratio provides the conditions for the synchronization of the helical axis morphogenesis with the increase in the mesogen concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected films. The predictions of the integrated model are in qualitative agreement with experimental results and can potentially guide solution processing of other bio-related mesogenic solutions that seek to mimic the architecture of biological fibrous composites.
NASA Astrophysics Data System (ADS)
Cox, Richard M.; Citir, Murat; Armentrout, P. B.; Battey, Samuel R.; Peterson, Kirk A.
2016-05-01
Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+-O) = 8.57 ± 0.14 eV and D0(Th+-C) = 4.82 ± 0.29 eV. The present value of D0 (Th+-O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0 (Th+-C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+, ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.
Does Guided Bone Regeneration Prevent Unfavorable Bone Shapes in Distraction Gap?
Demetoglu, Umut; Alkan, Alper; Kiliç, Erdem; Ozturk, Mustafa; Bilge, Suheyb
2018-03-01
Complications related to distraction osteogenesis can cause degradation of newly regenerated bone. Additionally, an unfavorable shape of the regenerated bone at the distraction gap can reduce the quantity of regenerated bone. The aim of the present study was to report on the prevention of unfavorable shapes of regenerated bone using guided bone regeneration during distraction. Bilateral alveolar distraction was performed in 10 beagle dog mandibles. One side of the mandible formed the experimental group and the other side served as the control group. In the experimental group, guided bone regeneration was performed simultaneously with distraction osteogenesis. In the control group, only alveolar distraction was applied. At the end of a 1-week latent period, all mandibles were distracted 10 mm (1 mm/day). After the distraction period, 3 months were allowed for consolidation. After consolidation, all the dogs were euthanized, and the shape of the regenerated bone was determined to be either favorable or unfavorable. Densitometric evaluation and area measurements were performed using computed tomography scans. Statistical evaluation was performed using the independent t test, with a significance level of P < .05. In the experimental group, no unfavorable bone shape developed in the distraction gap, and the new bone had a surface and volume similar to those of the segments. In contrast, in the control group, 4 mandibles had an unfavorable bone shape in the distraction gap and 4 showed favorable bone healing with no defect. The surface area of the regenerating bone in the experimental group was significantly greater than that in the control group. Also, the surface area differed significantly between the experimental and control groups (P < .05). However, the densitometric values did not differ between the 2 groups (P < .05). Concomitant use of guided bone regeneration with distraction osteogenesis could be an optimal method for generating a favorable bone shape within the distraction gap. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Development of burnup dependent fuel rod model in COBRA-TF
NASA Astrophysics Data System (ADS)
Yilmaz, Mine Ozdemir
The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.
A Julia set model of field-directed morphogenesis: developmental biology and artificial life.
Levin, M
1994-04-01
One paradigm used in understanding the control of morphogenetic events is the concept of positional information, where sub-organismic components (such as cells) act in response to positional cues. It is important to determine what kinds of spatiotemporal patterns may be obtained by such a method, and what the characteristics of such a morphogenetic process might be. This paper presents a computer model of morphogenesis based on gene activity driven by interpreting a positional information field. In this model, the interactions of mutually regulating developmental genes are viewed as a map from R2 to R2, and are modeled by the complex number algebra. Functions in complex variables are used to simulate genetic interactions resulting in position-dependent differentiation. This is shown to be equivalent to computing modified Julia sets, and is seen to be sufficient to produce a very rich set of morphologies which are similar in appearance and several important characteristics to those of real organisms. The properties of this model can be used to study the potential role of fields and positional information as guiding factors in morphogenesis, as the model facilitates the study of static images, time-series (movies) and experimental alterations of the developmental process. It is thus shown that gene interactions can be modeled as a multi-dimensional algebra, and that only two interacting genes are sufficient for (i) complex pattern formation, (ii) chaotic differentiation behavior, and (iii) production of sharp edges from a continuous positional information field. This model is meant to elucidate the properties of the process of positional information-guided biomorphogenesis, not to serve as a simulation of any particular organism's development. Good quantitative data are not currently available on the interplay of gene products in morphogenesis. Thus, no attempt is made to link the images produced with actual pictures of any particular real organism. A brief introduction to top-down models and positional information is followed by the formal definition of the model. Then, the implications of the resulting morphologies to biological development are discussed, in terms of static shapes, parametrization studies, time series (movies made from individual frames), and behavior of the model in light of experimental perturbations. All figures (in grayscale), formulas and parameter values needed to re-create the figures and movies are included.
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.
2017-01-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.
A comparative analysis of speed profile models for wrist pointing movements.
Vaisman, Lev; Dipietro, Laura; Krebs, Hermano Igo
2013-09-01
Following two decades of design and clinical research on robot-mediated therapy for the shoulder and elbow, therapeutic robotic devices for other joints are being proposed: several research groups including ours have designed robots for the wrist, either to be used as stand-alone devices or in conjunction with shoulder and elbow devices. However, in contrast with robots for the shoulder and elbow which were able to take advantage of descriptive kinematic models developed in neuroscience for the past 30 years, design of wrist robots controllers cannot rely on similar prior art: wrist movement kinematics has been largely unexplored. This study aimed at examining speed profiles of fast, visually evoked, visually guided, target-directed human wrist pointing movements. One thousand three-hundred ninety-eight (1398) trials were recorded from seven unimpaired subjects who performed center-out flexion/extension and abduction/adduction wrist movements and fitted with 19 models previously proposed for describing reaching speed profiles. A nonlinear, least squares optimization procedure extracted parameters' sets that minimized error between experimental and reconstructed data. Models' performances were compared based on their ability to reconstruct experimental data. Results suggest that the support-bounded lognormal is the best model for speed profiles of fast, wrist pointing movements. Applications include design of control algorithms for therapeutic wrist robots and quantitative metrics of motor recovery.
D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie
2015-01-01
Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654
NASA Astrophysics Data System (ADS)
Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki
2018-07-01
Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.
Guo, Liming; Shu, Ting; Li, Zhiqiang; Ju, Jinchuan; Fang, Xiaoting
2017-02-01
Among high power microwave (HPM) generators without guiding magnetic field, Cerenkov-type oscillator is expected to achieve a relatively high efficiency, which has already been realized in X-band in our previous simulation work. This paper presents the preliminary experimental investigations into an X-band Cerenkov-type HPM oscillator without guiding magnetic field. Based on the previous simulation structure, some modifications regarding diode structure were made. Different cathode structures and materials were tested in the experiments. By using a ring-shaped graphite cathode, microwave of about one hundred megawatt level was generated with a pure center frequency of 9.14 GHz, and an efficiency of about 1.3%. As analyzed in the paper, some practical issues reduce the efficiency in experiments, such as real features of the electron beam, probable breakdown regions on the cathode surface which can damage the diode, and so forth.
The Influence of Guided Error-Based Learning on Motor Skills Self-Efficacy and Achievement.
Chien, Kuei-Pin; Chen, Sufen
2018-01-01
The authors investigated the role of errors in motor skills teaching, specifically the influence of errors on skills self-efficacy and achievement. The participants were 75 undergraduate students enrolled in pétanque courses. The experimental group (guided error-based learning, n = 37) received a 6-week period of instruction based on the students' errors, whereas the control group (correct motion instruction, n = 38) received a 6-week period of instruction emphasizing correct motor skills. The experimental group had significantly higher scores in motor skills self-efficacy and outcomes than did the control group. Novices' errors reflect their schema in motor skills learning, which provides a basis for instructors to implement student-centered instruction and to facilitate the learning process. Guided error-based learning can effectively enhance beginners' skills self-efficacy and achievement in precision sports such as pétanque.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... Plant Fire Modeling Application Guide (NPP FIRE MAG)'' is available electronically under ADAMS Accession...
Pathophysiology, treatment, and animal and cellular models of human ischemic stroke
2011-01-01
Stroke is the world's second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to intensify efforts to ameliorate suffering and death from this common health catastrophe. This review aims to summarize both the present experimental and clinical state-of-the art, and to guide future research directions. PMID:21266064
Versatile module for experiments with focussing neutron guides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.; Pfleiderer, C.; Böni, P.
2014-09-22
We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effectsmore » of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.« less
Schomaker, Judith; Walper, Daniel; Wittmann, Bianca C; Einhäuser, Wolfgang
2017-04-01
In addition to low-level stimulus characteristics and current goals, our previous experience with stimuli can also guide attentional deployment. It remains unclear, however, if such effects act independently or whether they interact in guiding attention. In the current study, we presented natural scenes including every-day objects that differed in affective-motivational impact. In the first free-viewing experiment, we presented visually-matched triads of scenes in which one critical object was replaced that varied mainly in terms of motivational value, but also in terms of valence and arousal, as confirmed by ratings by a large set of observers. Treating motivation as a categorical factor, we found that it affected gaze. A linear-effect model showed that arousal, valence, and motivation predicted fixations above and beyond visual characteristics, like object size, eccentricity, or visual salience. In a second experiment, we experimentally investigated whether the effects of emotion and motivation could be modulated by visual salience. In a medium-salience condition, we presented the same unmodified scenes as in the first experiment. In a high-salience condition, we retained the saturation of the critical object in the scene, and decreased the saturation of the background, and in a low-salience condition, we desaturated the critical object while retaining the original saturation of the background. We found that highly salient objects guided gaze, but still found additional additive effects of arousal, valence and motivation, confirming that higher-level factors can also guide attention, as measured by fixations towards objects in natural scenes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes.
Sun, Hui; Xiao, Ruofu; Liu, Weichao; Wang, Fujun
2013-05-01
Growing environmental concerns and the need for better power balancing and frequency control have increased attention in renewable energy sources such as the reversible pump-turbine which can provide both power generation and energy storage. Pump-turbine operation along the S-shaped curve can lead to difficulties in loading the rejection process with unusual increases in water pressure, which lead to machine vibrations. Pressure fluctuations are the primary reason for unstable operation of pump-turbines. Misaligned guide vanes (MGVs) are widely used to control the stability in the S region. There have been experimental investigations and computational fluid dynamics (CFD) simulations of scale models with aligned guide vanes and MGVs with spectral analyses of the S curve characteristics and the pressure pulsations in the frequency and time-frequency domains at runaway conditions. The course of the S characteristic is related to the centrifugal force and the large incident angle at low flow conditions with large vortices forming between the guide vanes and the blade inlets and strong flow recirculation inside the vaneless space as the main factors that lead to the S-shaped characteristics. Preopening some of the guide vanes enables the pump-turbine to avoid the influence of the S characteristic. However, the increase of the flow during runaway destroys the flow symmetry in the runner leading to all asymmetry forces on the runner that leads to hydraulic system oscillations. The MGV technique also increases the pressure fluctuations in the draft tube and has a negative impact on stable operation of the unit.
Carballo-Molina, Oscar A.; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica
2016-01-01
Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503
Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya
In this study, proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based onmore » representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell.« less
Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries
Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya; ...
2016-09-30
In this study, proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based onmore » representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell.« less
NASA Astrophysics Data System (ADS)
Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.
2017-07-01
Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.
IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.
Huang, Lihan
2017-12-04
The objective of this work is to develop and validate a unified optimization algorithm for performing one-step global regression analysis of isothermal growth and survival curves for determination of kinetic parameters in predictive microbiology. The algorithm is incorporated with user-friendly graphical interfaces (GUIs) to develop a data analysis tool, the USDA IPMP-Global Fit. The GUIs are designed to guide the users to easily navigate through the data analysis process and properly select the initial parameters for different combinations of mathematical models. The software is developed for one-step kinetic analysis to directly construct tertiary models by minimizing the global error between the experimental observations and mathematical models. The current version of the software is specifically designed for constructing tertiary models with time and temperature as the independent model parameters in the package. The software is tested with a total of 9 different combinations of primary and secondary models for growth and survival of various microorganisms. The results of data analysis show that this software provides accurate estimates of kinetic parameters. In addition, it can be used to improve the experimental design and data collection for more accurate estimation of kinetic parameters. IPMP-Global Fit can be used in combination with the regular USDA-IPMP for solving the inverse problems and developing tertiary models in predictive microbiology. Published by Elsevier B.V.
Comparison of five-axis milling and rapid prototyping for implant surgical templates.
Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo
2014-01-01
This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.
The new Guidance in AQUATOX Setup and Application provides a quick start guide to introduce major model features, as well as being a type of cookbook to guide basic model setup, calibration, and validation.
Barreiro, Andrea K; Gautam, Shree Hari; Shew, Woodrow L; Ly, Cheng
2017-10-01
Determining how synaptic coupling within and between regions is modulated during sensory processing is an important topic in neuroscience. Electrophysiological recordings provide detailed information about neural spiking but have traditionally been confined to a particular region or layer of cortex. Here we develop new theoretical methods to study interactions between and within two brain regions, based on experimental measurements of spiking activity simultaneously recorded from the two regions. By systematically comparing experimentally-obtained spiking statistics to (efficiently computed) model spike rate statistics, we identify regions in model parameter space that are consistent with the experimental data. We apply our new technique to dual micro-electrode array in vivo recordings from two distinct regions: olfactory bulb (OB) and anterior piriform cortex (PC). Our analysis predicts that: i) inhibition within the afferent region (OB) has to be weaker than the inhibition within PC, ii) excitation from PC to OB is generally stronger than excitation from OB to PC, iii) excitation from PC to OB and inhibition within PC have to both be relatively strong compared to presynaptic inputs from OB. These predictions are validated in a spiking neural network model of the OB-PC pathway that satisfies the many constraints from our experimental data. We find when the derived relationships are violated, the spiking statistics no longer satisfy the constraints from the data. In principle this modeling framework can be adapted to other systems and be used to investigate relationships between other neural attributes besides network connection strengths. Thus, this work can serve as a guide to further investigations into the relationships of various neural attributes within and across different regions during sensory processing.
The young person’s guide to the PDB*
Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz
2017-01-01
The Protein Data Bank (PDB), created in 1971 when merely seven protein crystal structures were known, today holds over 120,000 experimentally-determined three-dimensional models of macromolecules, including gigantic structures comprised of hundreds of thousands of atoms, such as ribosomes and viruses. Most of the deposits come from X-ray crystallography experiments, with important contributions also made by NMR spectroscopy and, recently, by the fast growing Cryo-Electron Microscopy. Although the determination of a macromolecular crystal structure is now facilitated by advanced experimental tools and by sophisticated software, it is still a highly complicated research process requiring specialized training, skill, experience and a bit of luck. Understanding the plethora of structural information provided by the PDB requires that its users (consumers) have at least a rudimentary initiation. This is the purpose of this educational overview. PMID:28132477
Investigation on phase noise of the signal from a singly resonant optical parametric oscillator
NASA Astrophysics Data System (ADS)
Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang
2018-04-01
The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.
The Role of Gaze Direction and Mutual Exclusivity in Guiding 24-Month-Olds' Word Mappings
ERIC Educational Resources Information Center
Graham, Susan A.; Nilsen, Elizabeth S.; Collins, Sarah; Olineck, Kara
2010-01-01
In these studies, we examined how a default assumption about word meaning, the mutual exclusivity assumption and an intentional cue, gaze direction, interacted to guide 24-month-olds' object-word mappings. In Expt 1, when the experimenter's gaze was consistent with the mutual exclusivity assumption, novel word mappings were facilitated. When the…
ERIC Educational Resources Information Center
Cheung, Derek
2011-01-01
One of the characteristics of teaching chemistry through inquiry is that teachers need to encourage students to design their experimental procedures. Although the benefits of inquiry teaching are well documented in the literature, few teachers implement it in schools. The purpose of this study was to develop a guided-inquiry scale (GIS) to measure…
ERIC Educational Resources Information Center
Igbojinwaekwu, Patrick Chukwuemeka
2015-01-01
This study investigated, using pretest-posttest quasi-experimental research design, the effectiveness of guided multiple choice objective questions test on students' academic achievement in Senior School Mathematics, by school location, in Delta State Capital Territory, Nigeria. The sample comprised 640 Students from four coeducation secondary…
Introduction to Engineering. Course I: Challenges of Engineering. Course II: Engineering Projects.
ERIC Educational Resources Information Center
Barrier, Lynn P.
This guide, which is designed to be used in a two-course sequence, is intended to prepare college-bound high school juniors and seniors for engineering and related courses at the college level. The guide was developed as part of an experimental competency-based curriculum that integrates the high-tech applications of mathematics and science…
ERIC Educational Resources Information Center
Saunders, Kevin; Schweitzer, Janis
This Teacher's Guide for first-grade mathematics is an outgrowth of an extended pilot project conducted nationwide between 1973 and 1976. The manner of presentation and the pedagogical ideas and tools are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings ("papygrams") and…
ERIC Educational Resources Information Center
Saunders, Kevin; And Others
This Teacher's Guide for first-grade mathematics is an outgrowth of an extended pilot project conducted nationwide between 1973 and 1976. The manner of presentation and the pedagogical ideas and tools are based on the works of Georges and Frederique Papy. They are recognized as having introduced colored arrow drawings ("papygrams") and…
Guide to effective research-management collaboration at long-term environmental research sites
Frederick J. Swanson; Steve Eubanks; Mary Beth Adams; John C. Brissette
2010-01-01
The Forest Service system of experimental forests and ranges (EFRs) and other sites of long-term silvicultural, watershed, and ecological research have contributed to science and natural resource management for more than a century. An important aspect of the success of EFR programs is strong collaboration between the research and land manager communities. This guide...
ERIC Educational Resources Information Center
Redcay, Jessica D.; Preston, Sean M.
2016-01-01
Purpose: This study aims to examine the differences in second grade students' reading fluency and comprehension scores when using varying levels of teacher-guided iPad® app instruction to determine effective reading practices. Design/methodology/approach: This study reports the results of the quasi-experimental pre-post study by providing…
An Instructional System in Physical Science, Teacher's Guide and Keys.
ERIC Educational Resources Information Center
Washington State Univ., Pullman.
This manual is a teacher's guide to a self-instructional program in basic physical science, designed for high school students who have not had a course in chemistry or physics. There are six units in the manual relating to these areas: problem solving and experimental procedures; universal standards, metric system and conversion; mechanics; the…
ERIC Educational Resources Information Center
Byun, Tara McAllister; Hitchcock, Elaine R.; Ferron, John
2017-01-01
Purpose: Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of…
NASA Astrophysics Data System (ADS)
Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Kondtatyev, N. A.; Kuznetsova, E. A.; Shvetsov, V. N.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.; Pyatkov, Yu. V.; Jacobs, N.; Malaza, V.
2015-06-01
Motivation and status of the VEGA (Velocity-Energy Guide based Array) project is presented. One armed fission fragments spectrometer with an electrostatic guide system is proposed for installation at the vertical experimental channel of the IBR-2 reactor. Scientific program aimed at investigation of new multi-body decays of actinides, shapeisomeric states in fission fragments and fission modes is reported.
Ricks, Samantha L; Alt, Mary
2016-07-01
The purpose of this tutorial is to provide clinicians with a theoretically motivated and evidence-based approach to teaching adjectives to children who struggle with word learning. Given that there are almost no treatment studies to guide this topic, we have synthesized findings from experimental and theoretical literature to come up with a principles-based approach to treatment. We provide a sample lesson plan, incorporating our 3 theoretical principles, and describe the materials chosen and methods used during treatment and assessment. This approach is theoretically motivated, but it needs to be empirically tested.
The Performance of a Vaneless Diffuser Fan
NASA Technical Reports Server (NTRS)
Polikovsky, V.; Nevelson, M.
1942-01-01
The present paper is devoted to the theoretical and experimental investigation of one of the stationary elements of a fan, namely, the vaneless diffuser. The method of computation is based on the principles developed by Pfleiderer (Forschungsarbeiten No. 295). The practical interest of this investigation arises from the fact that the design of the fan guide elements - vaneless diffusers, guide vanes, spiral casing - is far behind the design of the impeller as regards accuracy and. reliability. The computations conducted by the method here presented have shown sufficiently good agreement with the experimental data and indicate the limits within which the values of the coefficient of friction lie.
Farasat, Iman; Salis, Howard M.
2016-01-01
The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
NASA Astrophysics Data System (ADS)
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Makowski, M. A.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu; Voskoboynikov, S. P.
2016-12-01
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width ({λq} ) for inter-ELM power exhaust. Guided by Goldston’s heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on {λq} in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D SOL) is scanned from 1 to 0.1 m2 s-1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (˜3-4 mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up-down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At {{D}\\text{SOL}}=0.1 m2 s-1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. This research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; ...
2016-11-02
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width (more » $${{\\lambda}_{q}}$$ ) for inter-ELM power exhaust. Guided by Goldston's heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on $${{\\lambda}_{q}}$$ in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D SOL) is scanned from 1 to 0.1 m2 s –1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (~3–4mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up–down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At $${{D}_{\\text{SOL}}}=0.1$$ m2 s –1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. Furthermore, this research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.« less
Lin, Zi-Jing; Li, Lin; Cazzell, Mary; Liu, Hanli
2014-08-01
Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain activity. Common methods used in DOT image analysis to define brain activation have limitations because the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex (DLPFC) during the active-choice mode and a different activation pattern between genders; these findings correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies. Copyright © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Heuristics guide the implementation of social preferences in one-shot Prisoner's Dilemma experiments
Capraro, Valerio; Jordan, Jillian J.; Rand, David G.
2014-01-01
Cooperation in one-shot anonymous interactions is a widely documented aspect of human behaviour. Here we shed light on the motivations behind this behaviour by experimentally exploring cooperation in a one-shot continuous-strategy Prisoner's Dilemma (i.e. one-shot two-player Public Goods Game). We examine the distribution of cooperation amounts, and how that distribution varies based on the benefit-to-cost ratio of cooperation (b/c). Interestingly, we find a trimodal distribution at all b/c values investigated. Increasing b/c decreases the fraction of participants engaging in zero cooperation and increases the fraction engaging in maximal cooperation, suggesting a role for efficiency concerns. However, a substantial fraction of participants consistently engage in 50% cooperation regardless of b/c. The presence of these persistent 50% cooperators is surprising, and not easily explained by standard models of social preferences. We present evidence that this behaviour is a result of social preferences guided by simple decision heuristics, rather than the rational examination of payoffs assumed by most social preference models. We also find a strong correlation between play in the Prisoner's Dilemma and in a subsequent Dictator Game, confirming previous findings suggesting a common prosocial motivation underlying altruism and cooperation. PMID:25348470
NASA Astrophysics Data System (ADS)
Symon, Keith R.
2005-04-01
In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.