Sample records for experiments measuring particle

  1. Improved non-invasive method for aerosol particle charge measurement employing in-line digital holography

    NASA Astrophysics Data System (ADS)

    Tripathi, Anjan Kumar

    Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage applied where reliable particle charges can be measured was also quantified by taking into account the rebound effect of highly charged particles. Finally, in the enclosed chamber experiment, it was found that using carbon conductive coating on the inner walls of the chamber minimized the charge generation inside the chamber when glass bubble particles were used. The value of electric charges obtained in calibration experiment through the improved method was found to have the same order as reported in the existing work (Y.C Ahn et al. 2004 [2]), indicating that the method is indeed effective.

  2. Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Chase, L. M.; Lin, R. P.; Mccoy, J. E.; Mcguire, R. E.

    1974-01-01

    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance.

  3. Solid Hydrogen Experiments for Atomic Propellants: Image Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  4. Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve

    2015-11-01

    Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.

  5. Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments

    NASA Astrophysics Data System (ADS)

    Monfared, S. K.; Buttler, W. T.; Frayer, D. K.; Grover, M.; LaLone, B. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Schauer, M. M.

    2015-06-01

    We report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. We describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.

  6. LET spectra measurements of charged particles in the P0006 experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1993-01-01

    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.

  7. Correcting For Seed-Particle Lag In LV Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Gartrell, Luther R.; Kamemoto, Derek Y.

    1994-01-01

    Two experiments conducted to evaluate effects of sizes of seed particles on errors in LV measurements of mean flows. Both theoretical and conventional experimental methods used to evaluate errors. First experiment focused on measurement of decelerating stagnation streamline of low-speed flow around circular cylinder with two-dimensional afterbody. Second performed in transonic flow and involved measurement of decelerating stagnation streamline of hemisphere with cylindrical afterbody. Concluded, mean-quantity LV measurements subject to large errors directly attributable to sizes of particles. Predictions of particle-response theory showed good agreement with experimental results, indicating velocity-error-correction technique used in study viable for increasing accuracy of laser velocimetry measurements. Technique simple and useful in any research facility in which flow velocities measured.

  8. Laboratory light scattering measurements on "natural" particles with the PROGRA2 experiment: an overview

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Rrenard, J.; Levasseur-Regourd, A. C.; Worms, J. C.

    Polarimetric phase curves were obtained with the PROGRA2 instrument for different particles: glass beads, polyhedral solids, rough particles, dense aggregates and aggregates with porosity higher than 90 %. The main purpose of these measurements is to build a large database, which allows interpreting remote sensing observations of solar system bodies. For some samples numerical or experimental models (i.e. DDA, stochastically built particles, microwave analogue) and laboratory experiments are compared to better disentangle the involved physical properties. This paper gives some main results of the experiment, and their applications to Earth atmosphere, comets and asteroids.

  9. The LDCE Particle Impact Experiment as flown on STS-46. [limited duration space environment candidate materials exposure (LDCE)

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1992-01-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.

  10. Immersion Freezing of Total Ambient Aerosols and Ice Residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Gourihar

    This laboratory study reports pre-activation measurements of the size-selected un-activated ambient or total aerosols at the temperature range from -26 to -34°C using two continuous-flow diffusion chamber style ice nucleation chambers. Two different experiments (A and B) were performed in immersion freezing mode. In experiment A, frozen fraction of total aerosol was measured, whereas in experiment B frozen fraction of ice residuals (IR) obtained through sublimation of nucleated ice crystals was measured. Frozen fractions at respective temperatures from experiment B were observed to be higher than A, and therefore it was concluded that ambient particles show pre-activation phenomenon. Furthermore, single-particlemore » elemental composition analyses of the total aerosols showed that majority of the particles are dust particles coated by organic matter. In general, this study suggests that such internally mixed complex total aerosols are efficient ice nucleating particles (INPs) and motivates further research to examine the physio-chemical properties of IR particles to explain the phenomenon of pre-activation.« less

  11. Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments

    DOE PAGES

    Monfared, Shabnam Khalighi; Buttler, William Tillman; Frayer, Daniel K.; ...

    2015-06-11

    In this paper, we report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. Finally, we describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.

  12. Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Louis, Cédric; Liu, Yao; Martinet, Simon; D'Anna, Barbara; Valiente, Alvaro Martinez; Boreave, Antoinette; R'Mili, Badr; Tassel, Patrick; Perret, Pascal; André, Michel

    2017-11-01

    Dilution and temperature used during sampling of vehicle exhaust can modify particle number concentration and size distribution. Two experiments were performed on a chassis dynamometer to assess exhaust dilution and temperature on particle number and particle size distribution for Euro 5 and Euro 6 vehicles. In the first experiment, the effects of dilution (ratio from 8 to 4 000) and temperature (ranging from 50 °C to 150 °C) on particle quantification were investigated directly from tailpipe for a diesel and a gasoline Euro 5 vehicles. In the second experiment, particle emissions from Euro 6 diesel and gasoline vehicles directly sampled from the tailpipe were compared to the constant volume sampling (CVS) measurements under similar sampling conditions. Low primary dilutions (3-5) induced an increase in particle number concentration by a factor of 2 compared to high primary dilutions (12-20). Low dilution temperatures (50 °C) induced 1.4-3 times higher particle number concentration than high dilution temperatures (150 °C). For the Euro 6 gasoline vehicle with direct injection, constant volume sampling (CVS) particle number concentrations were higher than after the tailpipe by a factor of 6, 80 and 22 for Artemis urban, road and motorway, respectively. For the same vehicle, particle size distribution measured after the tailpipe was centred on 10 nm, and particles were smaller than the ones measured after CVS that was centred between 50 nm and 70 nm. The high particle concentration (≈106 #/cm3) and the growth of diameter, measured in the CVS, highlighted aerosol transformations, such as nucleation, condensation and coagulation occurring in the sampling system and this might have biased the particle measurements.

  13. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  14. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.

  15. Particle Aggregation During Fe(III) Bioreduction in Nontronite

    NASA Astrophysics Data System (ADS)

    Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.

    2005-12-01

    This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for the particles size of 0.12-0.22 and 1.42-1.8 mm, respectively. The particle aggregation was limited in control experiment to the factor of 2.8 and 2.1 for these two size fractions, respectively. The measured electrophoretic mobility decreased with increase in the extent of bioreduction and aggregation, but the rate of decrease was greatest in the finest size fraction. The EPS measurements showed the increase in the carbohydrate and protein fractions as a result of bioreduction. Separate experiments were performed to understand the relative contribution of Fe(III) reduction and EPS production in controlling nontronite particle aggregation The rate of particle aggregation was measured for nontronite that was chemically pre-reduced by dithionite to various extents, both with and without addition of dextran, a neutral and pure EPS. The aggregation rate was greater in the nontronite that were pre-reduced to a higher extent than those with a lower extent of reduction. The relative contribution to particle aggregation due to Fe(III) reduction and polysaccharide bridging was about 4:1. However, in the real system where bacterial cells are involved, and amount of EPS production and extent of Fe(III) bioreduction increase with time, the relative contribution may be different than in this simple system. In summary, we conclude that both Fe(III) reduction and microbial production of EPS contribute to the observed nontronite particle aggregation with Fe(III) reduction playing more dominant role.

  16. High Fidelity Measurement of Free Space Solar Particle Event and Galactic Cosmic Ray Environments at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Leitgab, M.

    2018-02-01

    A charged particle measurement experiment mounted externally to the Deep Space Gateway is proposed, contributing to improving astronaut radiation exposure management during Solar Particle Events and Extra Vehicular Activities.

  17. Identifying events with prominent fluctuations common to particle and wave observations by the ERG/Arase satellite

    NASA Astrophysics Data System (ADS)

    Chiang, C. Y.; Tam, S. W. Y.; Chang, T. F.; Syugu, W. J.; Kazama, Y.; Wang, S. Y.; Wang, B. J.; Asamura, K.; Higashio, N.; Kasahara, S.; Kasahara, Y.; Matsuoka, A.; Mitani, T.; Yokota, S.; Miyoshi, Y.; Shinohara, I.

    2017-12-01

    The Energization and Radiation in Geospace (ERG) satellite, launched in December 2016 and also known as "Arase" since then, began its regular observations of the inner magnetosphere in March 2017. On board the satellite are various instruments for the measurements of electrons and ions of various energy ranges, and electric and magnetic fields at various frequencies. The electron instruments include the Low-Energy Particle Experiments - Electron Analyzer (LEP-e), which performs measurements of electrons in the energy range between 20 eV and 19 keV, and three other experiments, Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP) and Extremely High-Energy Electron Experiments (XEP), respectively covering the medium, high, and extremely high energy ranges up to 20 MeV. Ion measurements are performed by Low-Energy Particle Experiments - Ion Mass Analyzer (LEP-i) and Medium-Energy Particle Experiments - Ion Mass Analyzer (MEP-i) together for energies between 10 eV and 180 keV per unit charge, while the electric and magnetic fields are observed by Plasma Wave Experiment (PWE) and Magnetic Field Experiment (MGF).As LEP-e focuses on the lowest energy range among the electron sensors, it is expected to cover the largest electron population in the observations. Hence, significant variations in the LEP-e measurements are indicators of physical processes that affect a majority of electrons. Over several months, LEP-e has observed a number of events in which the measured electron counts exhibit prominent fluctuations at regular time scales. These events are examined also using measurements of the other aforementioned experiments, and it is found that similar prominent fluctuations are also observed by all of those instruments in quite a few events. In this presentation, we focus on such events and discuss the similarities and differences among them.

  18. Comparison of mineral dust and droplet residuals measured with two single particle aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar

    2017-04-01

    Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.

  19. The joint NASA/Goddard-University of Maryland research program in charged particle and high energy photon detector technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Progress made in the following areas is discussed: low energy ion and electron experiments; instrument design for current experiments; magnetospheric measurement of particles; ion measurement in the earth plasma sheet; abundance measurement; X-ray data acquisition; high energy physics; extragalactic astronomy; compact object astrophysics; planetology; and high energy photon detector technology.

  20. Decoupling the Role of Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Rogers, Chris; Squires, Kyle

    1996-01-01

    Turbulent gas flows laden with small, dense particles are encountered in a wide number of important applications in both industrial settings and aerodynamics applications. Particle interactions with the underlying turbulent flow are exceedingly complex and, consequently, difficult to accurately model. The difficulty arises primarily due to the fact that response of a particle to the local environment is dictated by turbulence properties in the reference frame moving with the particle (particle-Lagrangian). The particle-Lagrangian reference frame is in turn dependent upon the particle relaxation time (time constant) as well as gravitational drift. The combination of inertial and gravitational effects in this frame complicates our ability to accurately predict particle-laden flows since measurements in the particle-Lagrangian reference frame are difficult to obtain. Therefore, in this work we will examine separately the effects of inertia and gravitational drift on particle dispersion through a combination of physical and numerical experiments. In this study, particle-Lagrangian measurements will be obtained in physical experiments using stereo image velocimetry. Gravitational drift will be varied in the variable-g environments of the NASA DC-9 and in the zero-g environment at the drop tower at NASA-Lewis. Direct numerical simulations will be used to corroborate the measurements from the variable-g experiments. We expect that this work will generate new insight into the underlying physics of particle dispersion and will, in turn, lead to more accurate models of particle transport in turbulent flows.

  1. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  2. Particle and Smoke Detection on ISS for Next Generation Smoke Detectors

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary; Yuan, Zeng-guang; Sheredy, William; Funk, Greg

    2007-01-01

    Rapid fire detection requires the ability to differentiate fire signatures from background conditions and nuisance sources. Proper design of a fire detector requires detailed knowledge of all of these signal sources so that a discriminating detector can be designed. Owing to the absence of microgravity smoke data, all current spacecraft smoke detectors were designed based upon normal-g conditions. The removal of buoyancy reduces the velocities in the high temperature zones in flames, increasing the residence time of smoke particles and consequently allowing longer growth time for the particles. Recent space shuttle experiments confirmed that, in some cases, increased particles sizes are seen in low-gravity and that the relative performance of the ISS (International Space Station) and space-shuttle smoke-detectors changes in low-gravity; however, sufficient particle size information to design new detectors was not obtained. To address this issue, the SAME (Smoke Aerosol Measurement Experiment) experiment is manifested to fly on the ISS in 2007. The SAME experiment will make measurements of the particle size distribution of the smoke particulate from several typical spacecraft materials providing quantitative design data for spacecraft smoke detectors. A precursor experiment (DAFT: Dust Aerosol measurement Feasibility Test) flew recently on the ISS and provided the first measurement of the background smoke particulate levels on the ISS. These background levels are critical to the design of future smoke detectors. The ISS cabin was found to be a very clean environment with particulate levels substantially below the space shuttle and typical ground-based environments.

  3. Structure of colloidosomes with tunable particle density: Simulation versus experiment

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo; Salari, Johannes W. O.; Klumperman, Bert

    2012-06-01

    Colloidosomes are created in the laboratory from a Pickering emulsion of water droplets in oil. The colloidosomes have approximately the same diameter and by choosing (hairy) particles of different diameters it is possible to control the particle density on the droplets. The experiment is performed at room temperature. The radial distribution function of the assembly of (primary) particles on the water droplet is measured in the laboratory and in a computer experiment of a fluid model of particles with pairwise interactions on the surface of a sphere.

  4. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  5. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Andrew J.

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experimentsmore » investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.« less

  6. Mechanism of travelling-wave transport of particles

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-03-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency.

  7. Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.

    2013-01-01

    The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.

  8. Electric field measurements during the blowing snow in a cryogenic wind tunnel by a non-contact voltmeter

    NASA Astrophysics Data System (ADS)

    Sato, A.; Omiya, S.

    2011-12-01

    It is known that the average atmospheric electric field is +100V/m in fair weather (positive electric field vector points downward). An increase of atmospheric electric field is reported when the blowing snow occurred. This phenomenon is mainly explained by the fact that the blowing snow particles have negative charge in average. It is suggested that an electrostatic force, given by the product of the electric field and the charge of the particle, may influence the particle trajectory and change those movements, saltation and suspension. The purpose of this experiment is to clarify the characteristics of the electric field during blowing snow event. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center, NIED. A non-contact voltmeter was used to measure the electric field. An artificial blowing snow was generated by a snow particle supply machine. The rolling brushes of the machine scratch the snow surface and supply snow particles into the airflow. This machine made it possible to supply the snow particles at an arbitrary rate. This experiment was conducted in the following experimental conditions; wind speed of 5 to 7 m/s (3 patterns), supply snow quantity of 8.7 to 34.9 g/m/s (4 patterns), air temperature of -10 degree Celsius, fetch of 10 m and hard snow surface. Measured electric field was all negative, which is opposite direction to the previous measurements. This means that the blowing snow particles had positive charges. The negative electric field tended to increase with increase of the wind speed and the mass flux. These results can be explained from the previous experiment by Omiya and Sato (2010). The snow particles gain positive charges by the friction with the rolling brush which is made from polypropylene, however the particles accumulate negative charges gradually with increase of the collisions to the snow surface. Probably, the positive charges might have remained on the snow particles that had passed over the measurement point. Moreover, it is thought that because the saltation length is longer when the wind speed is higher, fewer collision frequencies left the particles more positive charges. REFERENCE:Omiya and Sato(2010): Measurement of electrostatic charge of blowing snow particles in a wind tunnel focusing on collision frequency to the snow surface. Hokkaido University Collection of Scholarly and Academic Papers

  9. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  10. Solid Hydrogen Experiments for Atomic Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2001-01-01

    This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  11. Ternary particle yields in 249Cf(nth,f)

    NASA Astrophysics Data System (ADS)

    Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.

    2003-03-01

    An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.

  12. A Study of Particle Production in Proton Induced Collisions Using the MIPP Detector at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahajan, Sonam

    2015-01-01

    The Main Injector Particle Production (MIPP) experiment is a fixed target hadron production experiment at Fermilab. MIPP is a high acceptance spectrometer which provides excellent charged particle identification using Time Projection Chamber (TPC), Time of Flight (ToF), multicell Cherenkov (Ckov), ring imaging Cherenkov (RICH) detectors, and Calorimeter for neutrons. The MIPP experiment is designed to measure particle production in interactions of 120 GeV/c primary protons from the Main Injector and secondary beams ofmore » $$\\pi^{\\pm}, \\rm{K}^{\\pm}$$, p and $$\\bar{\\rm{p}}$$ from 5 to 90 GeV/c on nuclear targets which include H, Be, C, Bi and U, and a dedicated run with the NuMI target. The goal of the experiment is to measure hadron production cross sections or yields using these beams and targets. These hadronic interaction data can have a direct impact on the detailed understanding of the neutrino fluxes of several accelerator-based neutrino experiments like MINOS, MINER$$\

  13. The Demonstration and Science Experiments (DSX) Mission

    NASA Astrophysics Data System (ADS)

    McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.

    2015-12-01

    In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.

  14. Quasi-particle Interference of Heavy Fermions in Resonant X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyenis, Andras; da Silva Neto, Eduardo H.; Sutarto, Ronny

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and elementmore » selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.« less

  15. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy Todd

    2014-09-01

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challengingmore » microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.« less

  16. Quasi-particle interference of heavy fermions in resonant x-ray scattering

    PubMed Central

    Gyenis, András; da Silva Neto, Eduardo H.; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-01-01

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique. PMID:27757422

  17. Quasi-particle Interference of Heavy Fermions in Resonant X-ray Scattering

    DOE PAGES

    Gyenis, Andras; da Silva Neto, Eduardo H.; Sutarto, Ronny; ...

    2016-10-14

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and elementmore » selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce-M4 edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.« less

  18. Quasi-particle interference of heavy fermions in resonant x-ray scattering.

    PubMed

    Gyenis, András; da Silva Neto, Eduardo H; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E; Thompson, Joe D; Bauer, Eric D; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor

    2016-10-01

    Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound Ce M In 5 ( M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce- M 4 edge show a broad scattering enhancement that correlates with the appearance of heavy f -electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.

  19. Time-resolved double-slit interference pattern measurement with entangled photons

    PubMed Central

    Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas

    2014-01-01

    The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360

  20. Fluid Flow in An Evaporating Droplet

    NASA Technical Reports Server (NTRS)

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  1. Properties of jet engine combustion particles during the PartEmis experiment: Particle size spectra (d > 15 nm) and volatility

    NASA Astrophysics Data System (ADS)

    Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Hitzenberger, R.; Petzold, A.; Wilson, C. W.

    2004-09-01

    Size distributions (d > 15 nm) and volatile properties of combustion particles were measured during test-rig experiments on a jet engine, consisting of a combustor and three simulated turbine stages (HES). The combustor was operated to simulate legacy (inlet temperature 300°C) and contemporary (500°C) cruise conditions, using kerosene with three different fuel sulfur contents (FSC; 50, 400 and 1300 μg g-1). Measurements found that contemporary cruise conditions resulted in lower number emission indices (EIN15) and higher geometric mean particle diameter (dG) than for legacy conditions. Increasing FSC resulted in an overall increase in EIN15 and decrease in dG. The HES stages or fuel additive (APA101) had little influence on EIN15 or dG, however, this is uncertain due to the measurement variability. EIN15 for non-volatile particles was largely independent of all examined conditions.

  2. Measurements of micron-scale meteoroids and orbital debris with the Space Dust (SPADUS) instrument on the upcoming ARGOS P91-1 mission

    NASA Technical Reports Server (NTRS)

    McKibben, R. B.; Simpson, J. A.; Tuzzolino, A. J.

    1997-01-01

    The space dust (SPADUS) experiment, to be launched into a sun-synchronous polar orbit at an altitude of 833 km onboard the USAF ARGOS P91-1 mission, will provide time-resolved measurements of the intensity, size spectrum and geocentric trajectories of dust particles encountered during the nominal three year mission. The experiment uses polyvinylidene fluoride dust sensors with a total detector area of 576 sq cm. The SPADUS will measure particle sizes between 2 and 200 microns, particle velocities between 1 and 10 km/s to better than 4 percent, and the direction of incidence with a mean error of 7 percent. These data will identify the particles as being debris or of natural origin.

  3. Observations of condensation nuclei in the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Smith, S. D.; Ferry, G. V.; Loewenstein, M.

    1988-01-01

    The condensation nucleus counter (CNC) flown of the NASA ER-2 in the Airborne Antarctic Ozone Experiment provides a measurement of the number mixing ratio of particles which can be grown by exposure to supersaturated n-butyl alcohol vapor to diameters of a few microns. Such particles are referred to as condensation nuclei (CN). The ER-2 CNC was calibrated with aerosols of known size and concentration and was found to provide an accurate measure of the number concentration of particles larger than about 0.02 micron. Since the number distribution of stratospheric aerosols is usually dominated by particles less than a few tenths of micron in diameter, the upper cutoff of the ER-2 CNC has not been determined experimentally. However, theory suggests that the sampling and counting efficiency should remain near one for particles as large as 1 micron in diameter. Thus, the CN mixing ratio is usually a good measure of the mixing ratio of submicron particles.

  4. Particle Identification in Nuclear Emulsion by Measuring Multiple Coulomb Scattering

    NASA Astrophysics Data System (ADS)

    Than Tint, Khin; Nakazawa, Kazuma; Yoshida, Junya; Kyaw Soe, Myint; Mishina, Akihiro; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; E07 Collaboration

    2014-09-01

    We are developing particle identification techniques for single charged particles such as Xi, proton, K and π by measuring multiple Coulomb scattering in nuclear emulsion. Nuclear emulsion is the best three dimensional detector for double strangeness (S = -2) nuclear system. We expect to accumulate about 10000 Xi-minus stop events which produce double lambda hypernucleus in J-PARC E07 emulsion counter hybrid experiment. The purpose of this particle identification (PID) in nuclear emulsion is to purify Xi-minus stop events which gives information about production probability of double hypernucleus and branching ratio of decay mode. Amount of scattering parameterized as angular distribution and second difference is inversely proportional to the momentum of particle. We produced several thousands of various charged particle tracks in nuclear emulsion stack via Geant4 simulation. In this talk, PID with some measuring methods for multiple scattering will be discussed by comparing with simulation data and real Xi-minus stop events in KEK-E373 experiment.

  5. Software-type Wave-Particle Interaction Analyzer on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Kojima, H.; Hikishima, M.; Takashima, T.; Asamura, K.; Miyoshi, Y.; Kasahara, Y.; Kasahara, S.; Mitani, T.; Higashio, N.; Matsuoka, A.; Ozaki, M.; Yagitani, S.; Yokota, S.; Matsuda, S.; Kitahara, M.; Shinohara, I.

    2017-12-01

    Wave-Particle Interaction Analyzer (WPIA) is a new type of instrumentation recently proposed by Fukuhara et al. (2009) for direct and quantitative measurements of wave-particle interactions. WPIA computes an inner product W(ti) = qE(ti)·vi, where ti is the detection timing of the i-th particle, E(ti) is the wave electric field vector at ti, and q and vi is the charge and the velocity vector of the i-th particle, respectively. Since W(ti) is the gain or the loss of the kinetic energy of the i-th particle, by accumulating W for detected particles, we obtain the net amount of the energy exchange in the region of interest. Software-type WPIA (S-WPIA) is installed in the ARASE satellite as a software function running on the mission data processor. S-WPIA on board the ARASE satellite uses electromagnetic field waveform measured by Waveform Capture (WFC) of Plasma Wave Experiment (PWE) and velocity vectors detected by Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP), and Extremely High-Energy Electron Experiment (XEP). The prime target of S-WPIA is the measurement of the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for S-WPIA to synchronize instruments in the time resolution better than the time scale of wave-particle interactions. Since the typical frequency of chorus emissions is a few kHz in the inner magnetosphere, the time resolution better than 10 micro-sec should be realized so as to measure the relative phase angle between wave and velocity vectors with the accuracy enough to detect the sign of W correctly. In the ARASE satellite, a dedicated system has been developed in order to realize the required time resolution for the inter-instruments communications. In this presentation, we show the principle of the WPIA and its significance as well as the implementation of S-WPIA on the ARASE satellite.

  6. Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)

    NASA Astrophysics Data System (ADS)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana

    2017-09-01

    Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.

  7. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  8. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE PAGES

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    2017-01-13

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  9. First data with the Hybrid Array of Gamma Ray Detector (HAGRiD)

    NASA Astrophysics Data System (ADS)

    Smith, K.; Baugher, T.; Burcher, S.; Carter, A. B.; Cizewski, J. A.; Chipps, K. A.; Febbraro, M.; Grzywacz, R.; Jones, K. L.; Munoz, S.; Pain, S. D.; Paulauskas, S. V.; Ratkiewicz, A.; Schmitt, K. T.; Thornsberry, C.; Toomey, R.; Walter, D.; Willoughby, H.

    2018-01-01

    The structure of nuclei provides insight into astrophysical reaction rates that are difficult to measure directly. These studies are often performed with transfer reactions and β-decay measurements. These experiments benefit from particle-γ coincidence measurements which provide information beyond that of particle detection alone. The Hybrid Array of Gamma Ray Detectors (HAGRiD) of LaBr3(Ce) scintillators has been designed with this purpose in mind. The design of the array permits it to be coupled with particle detector systems, such as the Oak Ridge Rutgers University Barrel Array (ORRUBA) of silicon detectors and the Versatile Array of Neutron Detectors at Low Energy (VANDLE). It is also designed to operate with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) advanced target system. HAGRiD's design avoids compromising the charged-particle angular resolution due to compact geometries which are often used to increase the γ efficiency in other systems. First experiments with HAGRiD coupled to VANDLE as well as ORRUBA and JENSA are discussed.

  10. A New Method to Obtain the Black Carbon Mixing State of Biomass and Combustion Aerosols

    NASA Astrophysics Data System (ADS)

    Irwin, M.; Liu, D.; Joshi, R.; Allan, J. D.; Coe, H.; Flynn, M.; Olfert, J. S.; Broda, K.; Fu, P.; Sun, Y.; Ge, X.; Wang, J.

    2017-12-01

    Black carbon particles (BC) significantly contribute to warming effects in the atmosphere, altering weather systems, and pose significant health risks. These impacts are especially efficient at regional hotspots with high emissions of pollutants, such as in fast-developing megacities. These urban environments have the most population exposure, and improving the understanding of the sources and the processing of pollutants in these environments is critical in guiding policy making. Here we present the results of BC characterization in Beijing during the winter of 2016 (10th Nov-10th Dec), as part of a large joint UK-China field experiment. During this experiment, we successfully gathered 4 weeks of continuous measurements, including several severe pollution events in Beijing. MethodologyThe mixing state of BC, which is how BC is associated with non-BC material (its coating) within a particle, is crucial to determine its lifetime in the atmosphere and also its optical properties. However precisely quantifying the BC mixing state has posed a challenge, in part due to complex particle morphology. We have applied morphology-independent measurements of BC mixing state on a single-particle basis throughout this experiment: mono-dispersed particle mass (MP) is selected using a Centrifugal Particle Mass Analyser (CPMA, Cambustion Ltd) and a single particle soot photometer (SP2, DMT inc.) was used downstream of the CPMA to measure the refractory BC mass (MrBC). The full scan of CPMA masses (21 mass bins covering most of MP) are performed every half hour, following polydispersed particles measured without running CPMA.

  11. Measurement of the Neutron Beta Decay Lifetime using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Adamek, Evan Robert

    The neutron lifetime is an important parameter in the Standard Model of particle physics, with influences on the electroweak interaction and on Big Bang nucleosynthesis. Measurements of this quantity in cold beam experiments and in experiments using ultracold neutrons (UCN) disagree; this discrepancy may indicate that these measurements possess unaccounted-for systematic errors. The UCNtau experiment at Los Alamos Neutron Science Center (LANSCe) utilizes an asymmetrical magneto-gravitational storage volume with an in-situ vanadium detector. This setup is designed to either avoid or control many of the weaknesses that reduce systematic precision in other UCN lifetime experiments. Controlling for the many measurable errors requires detailed calculation and simulation, aided, for example, by the Geant4 Monte Carlo particle transport toolkit, which has been used to create a high fidelity model of the UCNtau experiment for modeling UCN transport, storage, and detection. Through the course of running the experiment, improvements in knowledge of particle measurement have led to improvements to the transport and to the detectors used in various parts of the experiment. With the experimental setup optimized to account for the subtleties of the measurement, the 2014-2015 beam period at LANSCe generated 85 measurement runs from which we could calculate the storage lifetime. Careful analysis of the effects of background on the vanadium detector assembly allowed for elimination of undesired signal and allowed for the extraction of a preliminary value for the neutron lifetime and the determination of areas to improve for the following run cycle.

  12. In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation

    NASA Technical Reports Server (NTRS)

    Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.

    2002-01-01

    One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.

  13. Aging of Diesel and Wood Burning Emissions in Smogchamber Experiments

    NASA Astrophysics Data System (ADS)

    Prevot, Andre S. H.

    2010-05-01

    Photochemical aging experiments were performed for emissions of a diesel passenger car and logwood-burner at the smogchamber at the Paul Scherrer Institute in Switzerland. The measurements include black carbon measurements (with Aethalometer, Multi-Angle Absorption Photometer, Single Particle Soot Photometer (SP-2), and Photoacoustic Spectrometer), organic mass measurements with the Aerodyne high-resolution Aerosol mass spectrometer and off-line GC-MS measurements. Single particle composition was measured with the TSI-Aerosol time-of-flight mass spectrometer. The size distribution is characterized with a scanning mobility particle sizer, and the hygroscopicity with a hygroscopicity tandem differential mobility analyzer. The given overview of the results of experiments during the last 1.5 years will focus on the formation secondary organic aerosol and include the oxidation of primary organic aerosols and the change of optical and hygroscopic properties. A considerable variability of most results is found for different after treatment systems of diesel cars and for different burning conditions of the log-wood burner which will be discussed in detail.

  14. ALICE Masterclass on strangeness

    NASA Astrophysics Data System (ADS)

    Foka, Panagiota; Janik, Małgorzata

    2014-04-01

    An educational activity, the International Particle Physics Masterclasses, was developed by the International Particle Physics Outreach Group with the aim to bring the excitement of cutting-edge particle-physics research into the classroom. Thousands of pupils, every year since 2005, in many countries all over the world, are hosted in research centers or universities close to their schools and become "scientists for a day" as they are introduced to the mysteries of particle physics. The program of a typical day includes lectures that give insight to topics and methods of fundamental research followed by a "hands-on" session where the high-school students perform themselves measurements on real data from particle-physics experiments. The last three years data from the ALICE experiment at LHC were used. The performed measurement "strangeness enhancement" and the employed methodology are presented.

  15. Workshop on Particle Capture, Recovery and Velocity/Trajectory Measurement Technologies

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    A workshop on particle capture, recovery, and velocity/trajectory measurement technologies was held. The primary areas covered were: (1) parent-daughter orbit divergence; (2) trajectory sensing; (3) capture medium development: laboratory experiments, and (4) future flight opportunities.

  16. New particle formation events arising from painting materials in an indoor microenvironment

    NASA Astrophysics Data System (ADS)

    Lazaridis, Mihalis; Serfozo, Norbert; Chatoutsidou, Sofia Eirini; Glytsos, Thodoros

    2015-02-01

    Particulate matter (PM) number size distribution and mass concentration along with total volatile organic compounds (TVOC) were measured during emissions from painting materials inside an indoor microenvironment. The emission sources were derived from oil painting medium and turpentine used for painting. Two sets of measurements (10 experiments) were conducted in a laboratory room of 54 m3. New particle formation events were observed in all 10 experiments. The nucleation events lasted on average less than one hour with an average growth rate 33.9 ± 9.1 nm/h and average formation rate 21.1 ± 8.7 cm-3s-1. After the end of the nucleation event, a condensational growth of indoor particles followed with average growth rate 11.6 ± 2.8 nm/h and duration between 1.4 and 4.1 h. High concentrations up to 3.24 ppm were measured for the indoor TVOC concentrations during the experiments. Simultaneous mass and number size concentration measurements were performed outdoors where no new particle formation event was observed. It is the first time that high nucleation rates indoors were observed in conjunction with high TVOC concentrations originating from painting materials which resulted to high exposure concentration levels of particle number concentration.

  17. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  18. Probing the frontiers of particle physics with tabletop-scale experiments.

    PubMed

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Viscosity of particle laden films

    NASA Astrophysics Data System (ADS)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  20. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  1. Image-based Lagrangian Particle Tracking in Bed-load Experiments.

    PubMed

    Radice, Alessio; Sarkar, Sankar; Ballio, Francesco

    2017-07-20

    Image analysis has been increasingly used for the measurement of river flows due to its capabilities to furnish detailed quantitative depictions at a relatively low cost. This manuscript describes an application of particle tracking velocimetry (PTV) to a bed-load experiment with lightweight sediment. The key characteristics of the investigated sediment transport conditions were the presence of a covered flow and of a fixed rough bed above which particles were released in limited number at the flume inlet. Under the applied flow conditions, the motion of the individual bed-load particles was intermittent, with alternating movement and stillness terms. The flow pattern was preliminarily characterized by acoustic measurements of vertical profiles of the stream-wise velocity. During process visualization, a large field of view was obtained using two action-cameras placed at different locations along the flume. The experimental protocol is described in terms of channel calibration, experiment realization, image pre-processing, automatic particle tracking, and post-processing of particle track data from the two cameras. The presented proof-of-concept results include probability distributions of the particle hop length and duration. The achievements of this work are compared to those of existing literature to demonstrate the validity of the protocol.

  2. There are no particles, there are only fields

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2013-03-01

    Quantum foundations are still unsettled, with mixed effects on science and society. By now it should be possible to obtain consensus on at least one issue: Are the fundamental constituents fields or particles? As this paper shows, experiment and theory imply that unbounded fields, not bounded particles, are fundamental. This is especially clear for relativistic systems, implying that it's also true of nonrelativistic systems. Particles are epiphenomena arising from fields. Thus, the Schrödinger field is a space-filling physical field whose value at any spatial point is the probability amplitude for an interaction to occur at that point. The field for an electron is the electron; each electron extends over both slits in the two-slit experiment and spreads over the entire pattern; and quantum physics is about interactions of microscopic systems with the macroscopic world rather than just about measurements. It's important to clarify this issue because textbooks still teach a particles- and measurement-oriented interpretation that contributes to bewilderment among students and pseudoscience among the public. This article reviews classical and quantum fields, the two-slit experiment, rigorous theorems showing particles are inconsistent with relativistic quantum theory, and several phenomena showing particles are incompatible with quantum field theories.

  3. Fusion alpha-particle diagnostics for DT experiments on the joint European torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiptily, V. G.; Beaumont, P.; Syme, D. B.

    2014-08-21

    JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of α-particles in DT operation. The direct measurements of alphas are very difficult and α-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the α-particle source and its evolution in space and time, α-particle energy distribution, and α-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for α-particle measurements, and what options exist formore » keeping the essential α-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, α-particle diagnostics for ITER are discussed.« less

  4. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-componentmore » velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.« less

  5. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-componentmore » velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.« less

  6. Nonspherical particles in a pseudo-2D fluidized bed: Experimental study.

    PubMed

    Mahajan, Vinay V; Padding, Johan T; Nijssen, Tim M J; Buist, Kay A; Kuipers, J A M

    2018-05-01

    Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo-2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod-like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod-like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 64: 1573-1590, 2018.

  7. Nonspherical particles in a pseudo‐2D fluidized bed: Experimental study

    PubMed Central

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Buist, Kay A.; Kuipers, J. A. M.

    2018-01-01

    Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo‐2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod‐like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod‐like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1573–1590, 2018 PMID:29706659

  8. An Eulerian-Lagrangian description for fluvial coarse sediment transport: theory and verification with low-cost inertial sensors.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios

    2017-04-01

    Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. One reference frame descriptions (Eulerian or Lagrangian) yield useful results but restrict the theoretical understanding of the process as differences between the two phases (liquid and solid) are not explicitly accounted. Recently, affordable Inertial Measurement Units (IMUs) that can be embedded in coarse (100 mm diameter scale) natural or artificial particles became available. These sensors are subjected to technical limitations when deployed for natural sediment transport. However, they give us the ability to measure for the first time the inertial dynamics (acceleration and angular velocity) of moving sediment grains under fluvial transport. Theoretically, the assumption of an ideal (IMU), rigidly attached at the centre of the mass of a sediment particle can simplify greatly the derivation of a general Eulerian-Lagrangian (E-L) model. This approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. Simplified versions of the E-L model have been evaluated in laboratory experiments using real-IMUs [Maniatis et. al 2015]. Here, experimental results are presented relevant to the evaluation of the complete E-L model. Artificial particles were deployed in a series of laboratory and field experiments. The particles are equipped with an IMU capable of recording acceleration at ± 400 g and angular velocities at ± 1200 rads/sec ranges. The sampling frequency ranges from 50 to 200 Hz for the total IMU measurement. Two sets of laboratory experiments were conducted in a 0.9m wide laboratory flume. The first is a set of entrainment threshold experiments using two artificial particles: a spherical of D=90mm (A) and an ellipsoid with axes of 100, 70 and 30 mm (B). For the second set of experiments, a spherical artificial enclosure of D=75 mm (C) was released to roll freely in a (> threshold for entrainment) flow and over surfaces of different roughness. Finally, the coarser spherical and elliptical sensor- assemblies (A and B) were deployed in a steep mountain stream during active sediment transport flow conditions. The results include the calculation of the inertial acceleration, the instantaneous particle velocity and the total kinetic energy of the mobile particle (including the rotational component using gyroscope measurements). The comparison of the field deployments with the laboratory experiments suggests that E-L model can be generalised from laboratory to natural conditions. Overall, the inertia of individual coarse particles is a statistically significant effect for all the modes of sediment transport (entrainment, translation, deposition) in both natural and laboratory regimes. Maniatis et. al 2015: "Calculating the Explicit Probability of Entrainment Based on Inertial Acceleration Measurements", J. Hydraulic Engineering, 04016097

  9. Results from the HARP Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borghi, Silvia

    2006-07-11

    The HARP experiment at CERN performed extensive measurements of hadronic cross-sections and secondary particle yields in the momentum range 1.5-15 GeV/c aiming at full angular coverage and full particle identification. We report about the double-differential production cross-section for positive pions, for incident protons of 12.9 GeV/c momentum hitting an aluminum target of 5% nuclear interaction length. The measurement of this cross-section has direct application to the prediction of the neutrino flux of K2K experiment and in particular on the far-near neutrino flux ratio.

  10. A technique to measure the size of particles in laser Doppler velocimetry applications

    NASA Technical Reports Server (NTRS)

    Hess, C. F.

    1985-01-01

    A method to measure the size of particles in Laser Doppler Velocimeter (LDV) applications is discussed. Since in LDV the velocity of the flow is assocated with the velocity of particles to establish how well they follow the flow, in the present method the interferometric probe volume is surrounded by a larger beam of different polarization or wavelength. The particle size is then measured from the absolute intensity scattered from the large beam by particles crossing the fringes. Experiments using polystrene particles between 1.1 and 3.3 microns and larger glass beads are reported. It is shown that the method has an excellent size resolution and its accuracy is better than 10% for the particle size studied.

  11. Charging of Single Micron Sized Dust Grains by Secondary Electron Emission: A Laboratory Study

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Comfort, R. H.

    1998-01-01

    We present the details of a new laboratory study whose objective is to experimentally study the interaction of micron sized particles with plasmas and electromagnetic radiation. Specifically, to investigate under what conditions and to what extent do particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and ultraviolet radiation environment The emphasis is the study of the two charging mechanisms, secondary emission of electrons and photoelectric effect. The experiment uses a technique known as electrodynamic suspension of particles. With this technique, a single charged particle is electrodynamically levitated and then exposed to a controlled environment. Its charge to mass ratio is directly measured. Viscous drag measurements and the light scattering measurements characterize its size and optical characteristics. The environment to which the particle is expose may consist of room temperature and pressure or a rarefied atmosphere where only one major gaseous constituent is present, or, as in this case, a vacuum environment under electron bombardment or UV radiation . In addition, the environment can be cycled as part of the experiment. Therefore, using this technique, a single particle can be repeatedly exposed to a controlled environment and its response measured, or a single particle can be exposed to similar environments with minor differences and its response measured as a function of only the changed environmental conditions.

  12. The CONNIE experiment

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castaneda Vazquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernandez Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.

    2016-10-01

    The CONNIE experiment uses fully depleted, high resistivity CCDs as particle detectors in an attempt to measure for the first time the Coherent Neutrino-Nucleus Elastic Scattering of antineutrinos from a nuclear reactor with silicon nuclei. This talk, given at the XV Mexican Workshop on Particles and Fields (MWPF), discussed the potential of CONNIE to perform this measurement, the installation progress at the Angra dos Reis nuclear power plant, as well as the plans for future upgrades.

  13. The CONNIE experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Arevalo, A.; et al.

    2016-10-19

    The CONNIE experiment uses fully depleted, high resistivity CCDs as particle detectors in an attempt to measure for the first time the Coherent Neutrino-Nucleus Elastic Scattering of antineutrinos from a nuclear reactor with silicon nuclei.This talk, given at the XV Mexican Workshop on Particles and Fields (MWPF), discussed the potential of CONNIE to perform this measurement, the installation progress at the Angra dos Reis nuclear power plant, as well as the plans for future upgrades.

  14. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel; Decaris, Lionel

    2009-12-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the von Neumann spike and early part of the reaction zone make these measurements difficult. Here, we report results obtained from detonation experiments using VISAR (velocity interferometer system for any reflector) and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating nitromethane/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments. The experiments had either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation methods and the velocimetry systems were somewhat different. Some differences were observed in the peak particle velocity because of the ˜2 ns time resolution of the techniques—in all cases the peak was lower than the expected von Neumann spike. This is thought to be because the measurements were not high enough time resolution to resolve the spike.

  15. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  16. Theoretical Study of Wave Particle Correlation Measurement via 1-D Electromagnetic Particle Simulation

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshikatsu; Omura, Yoshiharu; Kojima, Hiro

    Spacecraft observation is essentially "one-point measurement", while numerical simulation can reproduce a whole system of physical processes on a computer. By performing particle simulations of plasma wave instabilities and calculating correlation of waves and particles observed at a single point, we examine how well we can infer the characteristics of the whole system by a one-point measurement. We perform various simulation runs with different plasma parameters using one-dimensional electromagnetic particle code (KEMPO1) and calculate 'E dot v' or other moments at a single point. We find good correlation between the measurement and the macroscopic fluctuations of the total simulation region. We make use of the results of the computer experiments in our system design of new instruments 'One-chip Wave Particle Interaction Analyzer (OWPIA)'.

  17. On the existence of debris clouds in the Space Station orbit: Final results of the EuroMir 1995 impact detector

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Deshpande, Sunil P.; Johnson, Nicholas L.

    1997-01-01

    A flight experiment flown onboard the Mir space station as a part of the Euromir 95 mission is considered. The aim of the experiment was to develop a greater understanding of the effects of the space environment on materials. In addition to the active enumeration of particle impacts and trajectories, the aim was to capture hypervelocity particles for their return to earth. Postflight measurements were performed to determine the flux density, diameters and subsequent effects on various optical thermal control and structural materials. Sensors actively measured the atomic oxygen flux, the contamination depostion and their effects during the mission. Two clouds of small particles were detected during a period of 100 days onboard Mir. It is concluded that the measured momenta of these particles suggests that their size and velocity are such that they cause damage to optics and thermal control surfaces.

  18. The Feasibility of Performing Particle Tracking Based Flow Measurements with Acoustic Cameras

    DTIC Science & Technology

    2017-08-01

    particles that cannot be assumed to follow the fluid motion) affected by grid-generated turbulent flow in a wind tunnel to compare the particle...over other flow measurements systems, such as hot- wire anemometry, laser Doppler velocimetry, or acoustic Doppler velocimetry, is that PIV produces...Velocimetry Measurements of the Flow around a Rushton Turbine .” Experiments in Fluids 29(5): 478–485. doi:10.1007/s003480000116. Hjemfelt, A. T., and L. F

  19. Experimental investigation of the effect of inlet particle properties on the capture efficiency in an exhaust particulate filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Sandeep; Rothamer, David; Zelenyuk, Alla

    The impact of inlet particle properties on the filtration performance of clean and particulate matter (PM) laden cordierite filter samples was evaluated using PM generated by a spark-ignition direct-injection (SIDI) engine fuelled with tier II EEE certification gasoline. Prior to the filtration experiments, a scanning mobility particle spectrometer (SMPS) was used to measure the electrical-mobility based particle size distribution (PSD) in the SIDI exhaust from distinct engine operating conditions. An advanced aerosol characterization system that comprised of a centrifugal particle mass analyser (CPMA), a differential mobility analyser (DMA), and a single particle mass spectrometer (SPLAT II) was used to obtainmore » additional information on the SIDI particulate, including particle composition, mass, and dynamic shape factors (DSFs) in the transition () and free-molecular () flow regimes. During the filtration experiments, real-time measurements of PSDs upstream and downstream of the filter sample were used to estimate the filtration performance and the total trapped mass within the filter using an integrated particle size distribution method. The filter loading process was paused multiple times to evaluate the filtration performance in the partially loaded state. The change in vacuum aerodynamic diameter () distribution of mass-selected particles was examined for flow through the filter to identify whether preferential capture of particles of certain shapes occurred in the filter. The filter was also probed using different inlet PSDs to understand their impact on particle capture within the filter sample. Results from the filtration experiment suggest that pausing the filter loading process and subsequently performing the filter probing experiments did not impact the overall evolution of filtration performance. Within the present distribution of particle sizes, filter efficiency was independent of particle shape potentially due to the diffusion-dominant filtration process. Particle mobility diameter and trapped mass within the filter appeared to be the dominant parameters that impacted filter performance.« less

  20. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    PubMed

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

  1. Influence of gravity on inertial particle clustering in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, J.; Nordsiek, H.; Saw, E. W.; Fugal, J. P.; Shaw, R. A.

    2008-11-01

    We report results from experiments aimed at studying inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. Conditions are selected to investigate the transition from negligible role of gravity to gravitationally dominated, as is expected to occur in atmospheric clouds. We measure droplet clustering, relative velocities, and the distribution of collision angles in this range. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence. The turbulence is characterized using LDV and 2-frame holographic particle tracking velocimetry. We seed the flow with particles of various Stokes and Froude numbers and use digital holography to obtain 3D particle positions and velocities. From particle positions, we investigate the impact of gravity on inertial clustering through the calculation of the radial distribution function and we compare to computational results and other recent experiments.

  2. Particle image velocimetry experiments for the IML-I spaceflight. [International Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Trolinger, J. D.; Lal, R. B.; Batra, A. K.; Mcintosh, D.

    1991-01-01

    The first International Microgravity Laboratory (IML-1), scheduled for spaceflight in early 1992 includes a crystal-growth-from-solution experiment which is equipped with an array of optical diagnostics instrumentation which includes transmission and reflection holography, tomography, schlieren, and particle image displacement velocimetry. During the course of preparation for this spaceflight experiment we have performed both experimentation and analysis for each of these diagnostics. In this paper we describe the work performed in the development of holographic particle image displacement velocimetry for microgravity application which will be employed primarily to observe and quantify minute convective currents in the Spacelab environment and also to measure the value of g. Additionally, the experiment offers a unique opportunity to examine physical phenomena which are normally negligible and not observable. A preliminary analysis of the motion of particles in fluid was performed and supporting experiments were carried out. The results of the analysis and the experiments are reported.

  3. Particle drag history in a subcritical post-shock flow - data analysis method and uncertainty

    NASA Astrophysics Data System (ADS)

    Ding, Liuyang; Bordoloi, Ankur; Adrian, Ronald; Prestridge, Kathy; Arizona State University Team; Los Alamos National Laboratory Team

    2017-11-01

    A novel data analysis method for measuring particle drag in an 8-pulse particle tracking velocimetry-accelerometry (PTVA) experiment is described. We represented the particle drag history, CD(t) , using polynomials up to the third order. An analytical model for continuous particle position history was derived by integrating an equation relating CD(t) with particle velocity and acceleration. The coefficients of CD(t) were then calculated by fitting the position history model to eight measured particle locations in the sense of least squares. A preliminary test with experimental data showed that the new method yielded physically more reasonable particle velocity and acceleration history compared to conventionally adopted polynomial fitting. To fully assess and optimize the performance of the new method, we performed a PTVA simulation by assuming a ground truth of particle motion based on an ensemble of experimental data. The results indicated a significant reduction in the RMS error of CD. We also found that for particle locating noise between 0.1 and 3 pixels, a range encountered in our experiment, the lowest RMS error was achieved by using the quadratic CD(t) model. Furthermore, we will also discuss the optimization of the pulse timing configuration.

  4. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Hall, Elise Munz

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  5. Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography.

    PubMed

    Hall, Elise M; Thurow, Brian S; Guildenbecher, Daniel R

    2016-08-10

    Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.

  6. Proposal for a Universal Particle Detector Experiment

    NASA Technical Reports Server (NTRS)

    Lesho, J. C.; Cain, R. P; Uy, O. M.

    1993-01-01

    The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.

  7. Proposal for a universal particle detector experiment

    NASA Astrophysics Data System (ADS)

    Lesho, J. C.; Cain, R. P.; Uy, O. M.

    The Universal Particle Detector Experiment (UPDE), which consists of parallel planes of two diode laser beams of different wavelengths and a large surface metal oxide semiconductor (MOS) impact detector, is proposed. It will be used to perform real-time monitoring of contamination particles and meteoroids impacting the spacecraft surface with high resolution of time, position, direction, and velocity. The UPDE will discriminate between contaminants and meteoroids, and will determine their velocity and size distribution around the spacecraft environment. With two different color diode lasers, the contaminant and meteroid composition will also be determined based on laboratory calibration with different materials. Secondary particles dislodged from the top aluminum surface of the MOS detector will also be measured to determine the kinetic energy losses during energetic meteoroid impacts. The velocity range of this instrument is 0.1 m/s to more than 14 km/s, while its size sensitivity is from 0.2 microns to millimeter-sized particles. The particulate measurements in space of the kind proposed will be the first simultaneous multipurpose particulate experiment that includes velocities from very slow to hypervelocities, sizes from submicrometer- to pellet-sized diameters, chemical analysis of the particulate composition, and measurements of the kinetic energy losses after energetic impacts of meteroids. The experiment will provide contamination particles and orbital debris data that are critically needed for our present understanding of the space environment. The data will also be used to validate contamination and orbital debris models for predicting optimal configuration of future space sensors and for understanding their effects on sensitive surfaces such as mirrors, lenses, paints, and thermal blankets.

  8. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement

    PubMed

    Pan; Bouwmeester; Daniell; Weinfurter; Zeilinger

    2000-02-03

    Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

  9. Experimental study on inter-particle acoustic forces.

    PubMed

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  10. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    NASA Astrophysics Data System (ADS)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  11. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  12. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    NASA Astrophysics Data System (ADS)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  13. The Bgo-Od Experiment at Elsa

    NASA Astrophysics Data System (ADS)

    Bantes, B.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bieling, J.; Böse, S.; Braglieri, A.; Brinkmann, K.; Burdeynyi, D.; Curciarello, F.; de Leo, V.; di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Frese, T.; Friedrick, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Glazier, D.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, O.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Nanova, M.; Nedorezov, V.; Noviskiy, D.; Pedroni, P.; Romaniuk, M.; Rostomyan, T.; Schaerf, C.; Schmieden, H.; Sumachev, V.; Tarakonov, V.; Vegna, V.; Vlasov, P.; Walther, D.; Watts, D.; Zaunick, H.-G.; Zimmermann, T.

    2014-01-01

    Meson photoproduction is a key tool for the experimental investigation of the nucleon excitation spectrum. To disentangle the specific couplings of resonances, in addition to the rather well measured pion and eta photoproduction channels it is mandatory to obtain information on channels involving strange and vector mesons and higher mass pseudoscalar mesons, and the associated multi-particle final states with both charged and neutral particles. In this respect, the new BGO-OD experiment at the ELSA accelerator of the University of Bonn's Physikalisches Institut provides unique instrumentation. We describe the experiment, present its status and the initial program of measurements.

  14. Quantifying Particle Numbers and Mass Flux in Drifting Snow

    NASA Astrophysics Data System (ADS)

    Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael

    2016-12-01

    We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93) and good correlation for the drifting snow experiments (r ≥slant 0.81). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.

  15. Particle Morphology and Size Results from the Smoke Aerosol Measurement Experiment-2

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Greenberg, Paul S.; Fischer, David; Meyer, Marit; Mulholland, George; Yuan, Zeng-Guang; Bryg, Victoria; Cleary, Thomas; Yang, Jiann

    2012-01-01

    Results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME-2) which was conducted during Expedition 24 (July-September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The smoke was initially collected in an aging chamber to simulate the transport time from the smoke source to the detector. This effective transport time was varied by holding the smoke in the aging chamber for times ranging from 11 to 1800 s. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis. The TEM grids were analyzed to observe the particle morphology and size parameters. The diagnostics included a prototype two-moment smoke detector and three different measures of moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and, by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations can also be calculated. Overall the majority of the average smoke particle sizes were found to be in the 200 nm to 400 nm range with the quiescent cases producing some cases with substantially larger particles.

  16. Composition of Cosmic Ray Particles in the Atmosphere as Measured by the CAPRICE98 Balloon Borne Apparatus

    NASA Astrophysics Data System (ADS)

    Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.

    2003-07-01

    We report a measurement of the composition and spectra of both the primary and secondary cosmic ray particles at different depths in the atmosphere. The data were collected by the balloon-b orne experiment CAPRICE98 during the ascent of the payload on 28 May 1998 from Fort Sumner, New Mexico. The identification of various kinds of particles, such as, protons, deuterons, helium nuclei, electrons and positrons was possible in various energy ranges depending on the kind of particle and the particle background at different residual atmosphere. These measurements, together with the atmospheric muon spectra, will allow fine-tuning of models used in air shower simulations.

  17. Interactions between meteoric smoke particles and the stratospheric aerosol layer

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Marshall, L.; Brooke, J. S. A.; Dhomse, S.; Plane, J. M. C.; Feng, W.; Neely, R.; Bardeen, C.; Bellouin, N.; Dalvi, M.; Johnson, C.; Abraham, N. L.; Schmidt, A.; Carslaw, K. S.; Chipperfield, M.; Deshler, T.; Thomason, L. W.

    2017-12-01

    In-situ measurements in the Arctic, Antarctic and at mid-latitudes suggest a widespread presence of meteoric smoke particles (MSPs), as an inclusion within a distinct class of stratospheric aerosol particles. We apply the UM-UKCA stratosphere-troposphere composition-climate model, with interactive aerosol microphysics, to map the global distribution of these "meteoric-sulphuric particles" and explore the implications of their presence. Comparing to balloon-borne stratospheric aerosol measurements, we indirectly constrain the uncertain MSP flux into the upper mesosphere, and assess whether meteoric inclusion can explain observed refractory/non-volatile particle concentrations. Our experiments suggest meteoric-sulphuric particles are present at all latitudes, the Junge layer transitioning from mostly homogeneously nucleated particles at the bottom, to mostly meteoric-sulphuric particles at the top. We find MSPs exert a major influence on the quiescent Junge layer, with meteoric-sulphuric particles generally bigger than homogeneously nucleated particles, and therefore more rapidly removed into the upper troposphere. Resolving the smoke interactions weakens homogeneous nucleation in polar spring, reduces the quiescent sulphur burden, and improves comparisons to a range of different stratospheric aerosol measurements. The refractory nature of meteoric-sulphuric particles also means they "survive" ascent through the uppermost Junge layer, whereas homogeneously nucleated particles evaporate completely. Simulations through the Pinatubo-perturbed period are more realistic, with greater volcanic enhancement of effective radius, causing faster decay towards quiescent conditions, both effects matching better with observations. Overall, our experiments suggest meteoric-sulphuric particles are an important component of the Junge layer, strongly influential in both quiescent and volcanically perturbed conditions.

  18. MEASUREMENTS OF VOLATILE ORGANIC COMPOUNDS AND PARTICLES DURING APPLICATION OF LATEX PAINT WITH AN AIRLESS SPRAYER

    EPA Science Inventory

    The paper discusses experiments, conducted at EPA's Indoor Air Quality Research House, to measure airborne concentrations of volatile organic compounds (VOCs) and particles during and following the spray-application of latex wall paint. (NOTE: Paint may be applied indoors by a v...

  19. Assessment of velocity/trajectory measurement technologies during a particle capture event

    NASA Technical Reports Server (NTRS)

    Tanner, William G.; Maag, Carl R.; Alexander, W. M.; Stephenson, Stepheni

    1994-01-01

    Since the early 1960s, the means to measure the time of flight (TOF) of dust grain within a mechanical detection array has existed, first in the laboratory and then in space experiments. Laboratory hypervelocity dust particle accelerators have used electrostatic detection of charge on accelerated particles for TOF and particle mass detections. These laboratory studies have led to the development of ultra-thin-film sensors that have been used for TOF measurements in dust particle space experiments. The prototypes for such devices were ultra-thin-film capacitors that were used in the OGO series of satellites. The main goal of the experimental work to be described is the development of the capability to determine the velocity vector or trajectory of a dust grain traversing an integrated dust detection array. The results of these studies have shown that the capability of detecting the charge liberated by hypervelocity dust grains with diameters in the micrometer range can be detected. Based on these results, detection systems have been designed to provide a precise analysis of the physical and dynamic properties of micrometer and submicrometer dust grains, namely the design verification unit (DVU). Through unique combinations of in situ detection systems, direct measurements of particle surface charge, velocity, momentum, kinetic energy, and trajectory have been achieved. From these measurements, the remaining physical parameters of mass, size, and density can be determined.

  20. Bed particle entrainment and motion in turbulent open-channel flows: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Nikora, Vladimir; Cameron, Stuart; Amir, Mohammad; Stewart, Mark; Witz, Matthew

    2015-04-01

    In spite of significant efforts of geoscientists and engineers, the exact mechanics of sediment entrainment and transport by turbulent flows remains unclear and continues to be the focus of many research groups worldwide. The talk outlines current developments in this direction at the University of Aberdeen, where an extensive experimental programme has recently been completed. The experiments were conducted in the Aberdeen Open Channel Facility (AOCF, 20 m long, 1.18 m wide) over wide ranges of flow submergence (1.9-8.0), bulk Reynolds number (4400-83000), and channel aspect ratio (9-39). The flume bed was covered by hexagonally-packed glass beads 16 mm in diameter. For entrainment experiments, selected glass particles were replaced with lighter particles (nylon and delrin). Instantaneous velocity fields before, during, and after entrainment were measured with an advanced multi-mode Particle Image Velocimetry (PIV) system developed by S. Cameron. This system was also used for 3D particle tracking in the entrainment experiments. The main types of experiments included: (1) multi-mode turbulence measurements with fixed-bed conditions to assess the background flow structure (10 min to 120 min duration of velocity records); (2) simultaneous measurements of fluctuating differential pressure acting on 23 fixed particles with in-built pressure sensors, synchronously with PIV; (3) measurements of waiting times for particle entrainment, employing a specially designed system (SMC-1) for automatic placement of the particles on the bed and subsequent measurement of the time before entrainment; (4) long-term direct measurements of the instantaneous drag force acting on a single particle (attached to the bed) at different protrusions, synchronously with PIV; and (5) synchronous measurements of the flow field around a particle before, at, and during entrainment, supplemented with 3D particle tracking. The key results include: (1) the refined turbulence structure of a rough-bed open-channel flow assessed with multiple-order bulk velocity statistics, spectra, correlations, and structure functions; (2) identification and quantification of coherent motions, with particular focus on 'superstructures' (or 'very large scale motions' up to 40 flow depths in length); (3) assessment of secondary current effects on the flow structure; (4) statistical characteristics of fluctuating pressure acting on multiple bed particles, including spatial pressure correlations and their relations to the coherent structures; (5) estimates and statistical tests of waiting time distributions; (6) statistics of particle trajectories with particular focus on the initial stages of motion; and (7) identification of typical flow features accompanying particle entrainment. Among other findings, it has been shown, for the first time, that particle entrainment is likely to be associated with interactions between flow superstructures. The 'collisions' of superstructures, 'meandering' across the flow, generate regions of a particular velocity pattern leading to the particle entrainment. This study was supported by an EPSRC (UK) Grant EP/G056404/1, which was directly linked to DFG (Germany) Grants FR 1593/5-1/2, focus of which was on direct numerical simulations of mobile-bed flows. The authors are grateful to M. Uhlmann and C. Chan-Braun (Karlsruhe Institute of Technology) and J. Frohlich and B. Vowinckel (Dresden Technical University) for their useful suggestions and insightful discussions throughout the course of this project.

  1. Experimental Study of Inertial Particle-Pair Relative Velocity in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Dou, Zhongwang

    The investigation of turbulence-enhanced inertial particle collision in isotropic turbulence could improve our understanding and modeling of many particle-laden turbulent flows in engineering and nature. In this study, we investigate one of the most critical factors of particle collision - particle-pair relative velocity (RV) in three major steps. First, to generate a reliable homogeneous and isotropic turbulence (HIT) field, we have designed and implemented a high Reynolds number (R lambda), enclosed, fan-driven HIT chamber in the shape of 'soccer ball', conducive for studying inertial particle dynamics using whole-field imaging techniques. The characterization of turbulence in this near-zero-mean flow chamber was performed using a new two-scale particle imaging velocimetry (PIV) approach. The measurement results showed that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48mm diameter) of the chamber with minimized gravity effect. A maximum Rlambda of 384 was achieved. Second, to measure particle-pair RV accurately, we have employed numerical experiments to systemically analyze the measurement error in the previous particle-pair RV measurement by holographic PIV. We found that accurate RV measurement requires high accuracy of both particle positioning and particle pairing. To meet these requirements, we have devised a novel planar 4-frame particle tracking velocimetry technique (4F-PTV) combining two PIV systems. It tracks particles in four consecutive frames in high speed to increase particle pairing accuracy. Furthermore, the particles are tracked only in a thin laser light sheet, thus negating the intrinsic position uncertainty in the depth direction in holographic PIV. In addition, we have studied the laser thickness effect on the RV measurement and attempted to use Monte Carlo analysis to correct this effect. Third, and most importantly, to better understand turbulence-enhanced inertial particle collision, we have systematically investigated the effects of Reynolds number and Stokes number (St) on particle-pair RV using the planar 4F-PTV technique in the HIT chamber. Two experiments were performed: varying Rlambda between 246 and 357 at six fixed St values, and varying St between 0.02 and 4.63 at five fixed Rlambda values. Measured mean inward particle-pair RV as a function of separation distance r were compared against DNS under closely matched conditions. At all experimental conditions, an excellent agreement was achieved except when particle separation distance r<˜10eta (eta : Kolmogorov length scale), where experimental was consistently higher, possibly due to particle polydispersity and finite laser thickness in experiment. Through these three steps, we found that, at any fixed St, the mean inward particle-pair RV, was essentially independent of Rlambda, echoing DNS findings by Ireland et al. (2016a). At any fixed R lambda, increased with St at small r, showing dominance of the path-history effect in the dissipation range when St ≥ O(1), but decreased with St at large r, indicating dominance of the inertial filtering effect. What I provided here are the first experimental observation of the independence of mean inward particle-pair RV on Reynolds number, and the first experimental observation of these two mechanisms on the mean inward particle-pair RV over a large range of particle separation distances.

  2. Experimental Assessment of the Effects of Temperature and Food Availability on Particle Mixing by the Bivalve Abra alba Using New Image Analysis Techniques

    PubMed Central

    Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine

    2016-01-01

    The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition. PMID:27115148

  3. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    PubMed Central

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.
RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.
CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.


Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045

  4. Experimental Assessment of the Effects of Temperature and Food Availability on Particle Mixing by the Bivalve Abra alba Using New Image Analysis Techniques.

    PubMed

    Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine

    2016-01-01

    The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition.

  5. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  6. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments

    NASA Astrophysics Data System (ADS)

    Kepten, Eldad; Bronshtein, Irena; Garini, Yuval

    2013-05-01

    The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

  7. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

    ERIC Educational Resources Information Center

    Rice, Charles V.; Giffin, Guinevere A.

    2008-01-01

    Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

  8. Application of Medical Magnetic Resonance Imaging for Particle Concentration Measurement

    NASA Astrophysics Data System (ADS)

    Borup, Daniel; Elkins, Christopher; Eaton, John

    2014-11-01

    Particle transport and deposition in internal flows is important in a range of applications such as dust aggregation in turbine engines and aerosolized medicine deposition in human airways. Unlike optical techniques, Magnetic Resonance Imaging (MRI) is well suited for complex applications in which optical access is not possible. Here we present efforts to measure 3D particle concentration distribution using MRI. Glass particles dispersed in water flow reduce MRI signal from a spin-echo or gradient-echo scanning sequence by decreasing spin density and dephasing the spins present in the fluid. A preliminary experiment was conducted with a particle streak injected at the centerline of a turbulent round pipe flow with a U bend. Measurements confirmed that signal strength was related to particle concentration and showed the effects of gravitational settling and turbulent dispersion. Next, measurements of samples in a mixing chamber were taken. Particle volume fraction was varied and sensitivity to particle/fluid velocity was investigated. These results give a relationship between MRI signal, particle volume fraction, MRI sequence echo time, and spin relaxation parameters that can be used to measure local particle volume fraction in other turbulent flows of interest.

  9. Study with a multi-threshold HZE-particle dosimeter using plastic detectors.

    PubMed

    Beaujean, R; Enge, W; Herrmann, W; Bartholoma, K P

    1976-01-01

    During the Apollo 16 and 17 missions two units of the Biostack experiment were exposed to cosmic radiation. In this experiment plastic detector sheets were used for recording and tracing the heavy ions. In some of these sheets the integral energy loss spectrum was measured. The measurements were performed in two different cellulose nitrate materials and in Lexan polycarbonate under 4 g cm-2 and 20 g cm-2 absorber thickness. The individual materials have different energy loss thresholds for the registration of heavy ions. The measured number of particles per cm2 with an restricted energy loss REL greater than REL0, follows a power law a REL(b) with b= -2.18 +/- 0.1 while the value of a depends on the exposure time and the absorber thickness. Calculations show that more than 70% of the fluence in the measured REL region is coming from particles with Z> or =20.

  10. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Santis, C; Di Felice, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S A; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Potgieter, M S; Vos, E E

    2016-06-17

    Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.

  11. Measuring particle charge in an rf dusty plasma

    NASA Astrophysics Data System (ADS)

    Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir

    2004-11-01

    A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.

  12. Studies of Fundamental Particle Dynamics in Microgravity

    NASA Technical Reports Server (NTRS)

    Rangel, Roger; Trolinger, James D.; Coimbra, Carlos F. M.; Witherow, William; Rogers, Jan; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This work summarizes theoretical and experimental concepts used to design the flight experiment mission for SHIVA - Spaceflight Holography Investigation in a Virtual Apparatus. SHIVA is a NASA project that exploits a unique, holography-based, diagnostics tool to understand the behavior of small particles subjected to transient accelerations. The flight experiments are designed for testing model equations, measuring g, g-jitter, and other microgravity phenomena. Data collection will also include experiments lying outside of the realm of existing theory. The regime under scrutiny is the low Reynolds number, Stokes regime or creeping flow, which covers particles and bubbles moving at very low velocity. The equations describing this important regime have been under development and investigation for over 100 years and yet a complete analytical solution of the general equation had remained elusive yielding only approximations and numerical solutions. In the course of the ongoing NASA NRA, the first analytical solution of the general equation was produced by members of the investigator team using the mathematics of fractional derivatives. This opened the way to an even more insightful and important investigation of the phenomena in microgravity. Recent results include interacting particles, particle-wall interactions, bubbles, and Reynolds numbers larger than unity. The Space Station provides an ideal environment for SHIVA. Limited ground experiments have already confirmed some aspects of the theory. In general the space environment is required for the overall experiment, especially for cases containing very heavy particles, very light particles, bubbles, collections of particles and for characterization of the space environment and its effect on particle experiments. Lightweight particles and bubbles typically rise too fast in a gravitational field and heavy particles sink too fast. In a microgravity environment, heavy and light particles can be studied side-by-side for long periods of time.

  13. Instellar Gas Experiment (IGE): Testing interstellar gas particles to provide information on the processes of nucleosynthesis in the big bang stars and supernova

    NASA Technical Reports Server (NTRS)

    Lind, Don

    1985-01-01

    The Interstellar Gas Experiment (IGE) is designed to collect particles of the interstellar gas - a wind of interstellar media particles moving in the vicinity of the solar system. These particles will be returned to earth where the isotopic ratios of the noble gases among these particles will be measured. IGE was designed and programmed to expose 7 sets of six copper-beryllium metallic collecting foils to the flux of neutral interstellar gas particles which penetrate the heliosphere to the vicinity of the earth's orbit. These particles are trapped in the collecting foils and will be returned to earth for mass-spectrographic analysis when Long Duration Exposure Facility (LDEF) on which IGE was launched, is recovered.

  14. Electrostatic Charging of Polymers by Particle Impact at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.

  15. Relative distance between tracers as a measure of diffusivity within moving aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Zaburdaev, Vasily

    2018-02-01

    Tracking of particles, be it a passive tracer or an actively moving bacterium in the growing bacterial colony, is a powerful technique to probe the physical properties of the environment of the particles. One of the most common measures of particle motion driven by fluctuations and random forces is its diffusivity, which is routinely obtained by measuring the mean squared displacement of the particles. However, often the tracer particles may be moving in a domain or an aggregate which itself experiences some regular or random motion and thus masks the diffusivity of tracers. Here we provide a method for assessing the diffusivity of tracer particles within mobile aggregates by measuring the so-called mean squared relative distance (MSRD) between two tracers. We provide analytical expressions for both the ensemble and time averaged MSRD allowing for direct identification of diffusivities from experimental data.

  16. Double Shock Experiments on PBX Explosive JOB-9003

    NASA Astrophysics Data System (ADS)

    Zhang, Xu

    2017-06-01

    One-dimensional plate impact experiments have been performed to study the double shock to detonation transition and Hugoniot state in the HMX-based explosive JOB-9003. The flyer was a combination with sapphire and Kel-F which could pass two different pressure waves into PBX Explosive JOB-9003 sample after impact. The particle velocities at interface and different depths in the PBX JOB-9003 sample were measured with Al-based electromagnetic particle velocity gauge technique, thus obtaining particle velocity - time diagram. According to the diagram, the corresponding Hugoniot state can be determined based on the particle velocity and shock wave velocity in the sample. Comparing with the single shock experiments, PBX Explosive JOB-9003 shows desensitization features due to the pre-pressed shock wave, the shock to detonation transition distance is longer than those single shock experiments.

  17. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    PubMed

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. PROGRA2 experiment: New results for dust clouds and regoliths analogs

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Levasseur-Regourd, A. C.; Worms, J.-C.

    2006-01-01

    With the PROGRA2 experience, linear polarization of scattered light is measured on various types of dust clouds lifted by microgravity, or by an air-draught. The aim is to compare the phase curves for dust analogs with those obtained in the Solar System (cometary comae, and solid particles in planetary atmospheres) by remote-sensing and in situ techniques. Measurements are also performed on layers of particles (on the ground) and compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves have been obtained, e.g., for quartz samples, crystals, fluffy mixtures of silica and carbon blacks and a high porosity regolith analog made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the ICAPS experiment onboard the ISS and on the precursor experiment.

  19. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  20. Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.

    NASA Astrophysics Data System (ADS)

    Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.

    2015-12-01

    Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.

  1. Determining the refractive index of particles using glare-point imaging technique

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Ge, Baozhen; Lu, Qieni; Yu, Xiaoxue

    2018-04-01

    A method of measuring the refractive index of a particle is presented from a glare-point image. The space of a doublet image of a particle can be determined with high accuracy by using auto-correlation and Gaussian interpolation, and then the refractive index is obtained from glare-point separation, and a factor that may influence the accuracy of glare-point separation is explored. Experiments are carried out for three different kinds of particles, including polystyrene latex particles, glass beads, and water droplets, whose measuring accuracy is improved by the data fitting method. The research results show that the method presented in this paper is feasible and beneficial to applications such as spray and atmospheric composition measurements.

  2. Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

    DOE PAGES

    Hall, Elise M.; Thurow, Brian S.; Guildenbecher, Daniel R.

    2016-08-08

    Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. Furthermore, this includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. Formore » the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1–2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.« less

  3. The fragmentation of 670A MeV neon-20 as a function of depth in water. I. Experiment

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Miller, J.; Wong, M.; Rapkin, M.; Howard, J.; Spieler, H. G.; Jarret, B. V.

    1989-01-01

    We present the final analysis of an experiment to study the interaction of a beam of 670A MeV neon ions incident on a water column set to different thicknesses. The atomic number Z (and, in some cases, the isotopic mass A) of primary beam particles and of the products of nuclear interactions emerging from the water column close to the central axis of the beam was obtained for nuclei between Be (Z = 4) and Ne (Z = 10) using a time-of-flight telescope to measure the velocity and a set of silicon detectors to measure the energy loss of each particle. The fluence of particles of a given charge was obtained and normalized to the incident beam intensity. Corrections were made for accidental coincidences between multiple particles triggering the TOF telescope and for interactions in the detector. The background due to beam particles interacting in beam line elements upstream of the detector was calculated. Sources of experimental artifacts and background in particle identification experiments designed to characterize heavy ion beams for radiobiological research are summarized, and some of the difficulties inherent in this work are discussed. Complete tables of absolutely normalized fluence spectra as a function of LET are included for reference purposes.

  4. A class of ejecta transport test problems

    NASA Astrophysics Data System (ADS)

    Oro, David M.; Hammerberg, J. E.; Buttler, William T.; Mariam, Fesseha G.; Morris, Christopher L.; Rousculp, Chris; Stone, Joseph B.

    2012-03-01

    Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function of particulate masses and velocities, f0(m,u;t). Some properties of this source distribution function have been determined from Taylor- and supported-shockwave experiments. Such experiments measure the mass moment of f0 under vacuum conditions assuming weak particle-particle interactions and, usually, fully inelastic scattering (capture) of ejecta particles from piezoelectric diagnostic probes. Recently, planar ejection of W particles into vacuum, Ar, and Xe gas atmospheres have been carried out to provide benchmark transport data for transport model development and validation. We present those experimental results and compare them with modeled transport of the W-ejecta particles in Ar and Xe.

  5. Bilocal current densities and mean trajectories in a Young interferometer with two Gaussian slits and two detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, L. P., E-mail: lpwithers@mitre.org; Narducci, F. A., E-mail: francesco.narducci@navy.mil

    2015-06-15

    The recent single-photon double-slit experiment of Steinberg et al., based on a weak measurement method proposed by Wiseman, showed that, by encoding the photon’s transverse momentum behind the slits into its polarization state, the momentum profile can subsequently be measured on average, from a difference of the separated fringe intensities for the two circular polarization components. They then integrated the measured average velocity field, to obtain the average trajectories of the photons enroute to the detector array. In this paper, we propose a modification of their experiment, to demonstrate that the average particle velocities and trajectories change when the modemore » of detection changes. The proposed experiment replaces a single detector by a pair of detectors with a given spacing between them. The pair of detectors is configured so that it is impossible to distinguish which detector received the particle. The pair of detectors is then analogous to the simple pair of slits, in that it is impossible to distinguish which slit the particle passed through. To establish the paradoxical outcome of the modified experiment, the theory and explicit three-dimensional formulas are developed for the bilocal probability and current densities, and for the average velocity field and trajectories as the particle wavefunction propagates in the volume of space behind the Gaussian slits. Examples of these predicted results are plotted. Implementation details of the proposed experiment are discussed.« less

  6. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlig, W. Casey; Heine, Andreas, E-mail: andreas.heine@emi.fraunhofer.de

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signalmore » to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.« less

  7. A totally active scintillator calorimeter for the Muon Ionization Cooling Experiment (MICE). Design and construction

    NASA Astrophysics Data System (ADS)

    Asfandiyarov, Ruslan

    2013-12-01

    The Electron-Muon Ranger (EMR) is a totally active scintillator detector to be installed in the muon beam of the Muon Ionization Cooling Experiment (MICE) [1] - the main R&D project for the future neutrino factory. It is aimed at measuring the properties of the low energy beam composed of muons, electrons and pions, performing the identification particle by particle. The EMR is made of 48 stacked layers alternately measuring the X- and the Y-coordinate. Each layer consists of 59 triangular scintillator bars. It is shown that the granularity of the detector permits to identify tracks and to measure particle ranges and shower shapes. The read-out is based on FPGA custom made electronics and commercially available modules. Currently it is being built at the University of Geneva.

  8. Flux of high-LET cosmic-ray particles in manned space flight.

    PubMed

    Benton, E V; Henke, R P; Peterson, D D; Bailey, J V; Tobias, C A

    1975-01-01

    On the Apollo and Skylab missions the high energy heavy ion (HZE) flux was measured by means of plastic nuclear track detectors. Measurements involve the fluxes of high linear energy transfer (LET), 6 < or approximately Z < or approximately 26 particles incident on astronauts and on several biological experiments. Partial results of these measurements are presented; the effects of shielding and solar modulation are discussed.

  9. Flux of high-LET cosmic-ray particles in manned space flight

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.; Peterson, D. D.; Bailey, J. V.; Tobias, C. A.

    1975-01-01

    On the Apollo and Skylab missions the high-energy heavy ion (HZE) flux was measured by means of plastic nuclear track detectors. Measurements involved the fluxes of high linear energy transfer (LET), particles with Z between 6 and 26 incident on astronauts and on several biological experiments. Partial results of these measurements are presented; the effects of shielding and solar modulation are discussed.-

  10. A "TEST OF CONCEPT" COMPARISON OF AERODYNAMIC AND MECHANICAL RESUSPENSION MECHANISMS FOR PARTICLES DEPOSITED ON FIELD RYE GRASS (SECALS CERCELE). PART 2. THRESHOLD MECHANICAL ENERGIES FOR RESUSPENSION PARTICLE FLUXES

    EPA Science Inventory

    Kinetic energy from the oscillatory impacts of the grass stalk against a stationary object was measured with a kinetic energy measuring device. These energy inputs were measured as part of a resuspension experiment of uniform latex microspheres deposited on a single rye grass see...

  11. Sedimentation from Particle-Laden Plumes in Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Hong, Youn Sub

    2015-11-01

    Laboratory experiments are performed in which a mixture of particles, water and a small amount of dye is continuously injected upwards from a localized source into a uniformly stratified ambient. The particle-fluid mixture initially rises as a forced plume (which in most cases is buoyant, though in some cases due to high particle concentration is negative-buoyant at the source), reaches a maximum height, collapses upon itself and then spreads as a radial intrusion. The particles are observed to rain out of the descending intrusion and settle upon the floor of the tank. Using light attenuation, the depth of the particle mound is measured after the experiment has run for a fixed amount of time. In most experiments the distribution of particles is found to be approximately axisymmetric about the source with a near Gaussian structure for height as a function of radius. The results are compared with a code that combines classical plume theory with an adaptation to stratified fluids of the theory of Carey, Sigurdsson and Sparks (JGR, 1988) for the spread and fall of particles from a particle-laden plume impacting a rigid ceiling. Re-entrainment of particles into the plume is also taken into account.

  12. Influence of the weighing bar position in vessel on measurement of cement’s particle size distribution by using the buoyancy weighing-bar method

    NASA Astrophysics Data System (ADS)

    Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.

    2018-02-01

    The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.

  13. Experiments testing macroscopic quantum superpositions must be slow

    PubMed Central

    Mari, Andrea; De Palma, Giacomo; Giovannetti, Vittorio

    2016-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation. PMID:26959656

  14. The drag and terminal velocity of volcanic ash and lapilli with 3D shape obtained by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-04-01

    New experiments of falling volcanic particles were performed in order to define drag and terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity and fractal dimension were obtained, the latter used for quantifying the aerodynamic drag of irregular particles for the first time. With this method, the measure of particle shape descriptors proved to be easier and less operator dependent than previously used 2D image particle analyses. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3x10-2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column and pyroclastic density currents, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of 3D sphericity and fractal dimension of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions. Some volcanological application examples are finally presented.

  15. Compact 3D Camera for Shake-the-Box Particle Tracking

    NASA Astrophysics Data System (ADS)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  16. Measurements of primary cosmic-ray hydrogen and helium by the WiZard collaboration

    NASA Astrophysics Data System (ADS)

    Circella, M.; Ambriola, M.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Francke, T.; Grimani, C.; Grinstein, S.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.

    We present the measurements of primary protons and helium nuclei performed by the WiZard Collaboration in different balloon-borne campaigns. A superconducting magnet spectrometer was used in these experiments together with detectors for particle recognition. These combinations of detectors made it possible to perform accurate particle measurements over a large (up to 200 GV for protons) energy interval. We focus in particular on the results from the MASS91 and CAPRICE94 experiments: We find a very good agreement between these two sets of measurements, also in comparison to other recent results. All these results seem to suggest that the normalization of primary cosmic rays may be significantly lower than previously estimated.

  17. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in √{sNN} = 5.02 TeVp + Pb collisions measured by the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration

    2016-12-01

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p + Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √{sNN} = 5.02TeV. Charged particles are reconstructed over pseudorapidity | η | < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb-1. The results are presented in the form of charged-particle nuclear modification factors, where the p + Pb charged-particle multiplicities are compared between central and peripheral p + Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p + Pb collision centrality is characterized by the total transverse energy measured in - 4.9 < η < - 3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p + Pb collision are carried out using the Glauber model and two Glauber-Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.

  18. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    NASA Astrophysics Data System (ADS)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the volatility of the aerosol, and compare observed SOA yields to other OFR and smog chamber SOA generation methods. Additionally, estimates of OH radical exposure in the OFR during different vehicle experiments of varying fuel type and speed were observed to vary as determined from a high-NOx and variable humidity calibration set.

  19. Measurement of nanoparticle size, suspension polydispersity, and stability using near-field optical trapping and light scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2017-02-01

    Nanoparticles are becoming ubiquitous in applications including diagnostic assays, drug delivery and therapeutics. However, there remain challenges in the quality control of these products. Here we present methods for the orthogonal measurement of these parameters by tracking the motion of the nanoparticle in all three special dimensions as it interacts with an optical waveguide. These simultaneous measurements from a single particle basis address some of the gaps left by current measurement technologies such as nanoparticle tracking analysis, ζ-potential measurements, and absorption spectroscopy. As nanoparticles suspended in a microfluidic channel interact with the evanescent field of an optical waveguide, they experience forces and resulting motion in three dimensions: along the propagation axis of the waveguide (x-direction) they are propelled by the optical forces, parallel to the plane of the waveguide and perpendicular to the optical propagation axis (y-direction) they experience an optical gradient force generated from the waveguide mode profile which confines them in a harmonic potential well, and normal to the surface of the waveguide they experience an exponential downward optical force balanced by the surface interactions that confines the particle in an asymmetric well. Building on our Nanophotonic Force Microscopy technique, in this talk we will explain how to simultaneously use the motion in the y-direction to estimate the size of the particle, the comparative velocity in the x-direction to measure the polydispersity of a particle population, and the motion in the z-direction to measure the potential energy landscape of the interaction, providing insight into the colloidal stability.

  20. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.

  1. The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-01-01

    New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.

  2. Future particle-physics projects in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, D. S., E-mail: denisovd@fnal.gov

    2015-07-15

    Basic proposals of experiments aimed at precision measurements of Standard Model parameters and at searches for new particles, including dark-matter particles, are described along with future experimental projects considered by American Physical Society at the meeting in the summer of 2013 and intended for implementation within the next ten to twenty years.

  3. Future particle-physics projects in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, D. S.

    2015-08-25

    Basic proposals of experiments aimed at precision measurements of Standard Model parameters and at searches for new particles, including dark-matter particles, are described along with future experimental projects considered by American Physical Society at the meeting in the summer of 2013 and intended for implementation within the next ten to twenty years.

  4. Combustion/particle sizing experiments at the Naval Postgraduate School Combustion Research Laboratory

    NASA Technical Reports Server (NTRS)

    Powers, John; Netzer, David

    1987-01-01

    Particle behavior in combustion processes is an active research area at NPS. Currently, four research efforts are being conducted: (1) There is a long standing need to better understand the soot production and combustion processes in gas turbine combustors, both from a concern for improved engine life and to minimize exhaust particulates. Soot emissions are strongly effected by fuel composition and additives; (2) A more recent need for particle sizing/behavior measurements is in the combustor of a solid fuel ramjet which uses a metallized fuel. High speed motion pictures are being used to study rather large burning particles; (3) In solid propellant rocket motors, metals are used to improve specific impulse and/or to provide damping for combustion pressure oscillations. Particle sizing experiments are being conducted using diode arrays to measure the light intensity as a function of scattering angle; (4) Once a good quality hologram is attained, a need exists for obtaining the particle distributions from hologram in a short period of time. A Quantimet 720 Image Analyzer is being used to reconstruct images.

  5. Setup for irradiation and characterization of materials and Si particle detectors at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Väyrynen, S.; Pusa, P.; Sane, P.; Tikkanen, P.; Räisänen, J.; Kuitunen, K.; Tuomisto, F.; Härkönen, J.; Kassamakov, I.; Tuominen, E.; Tuovinen, E.

    2007-03-01

    A novel facility for proton irradiation with sample cryocooling has been developed at the Accelerator Laboratory of Helsinki University (equipped with a 5 MV tandem accelerator). The setup enables unique experiments to be carried out within the temperature range of 10-300 K. The setup has been constructed for "on-line" studies of vacancies with positron annihilation spectroscopy (PAS) including the option for optical ionization of the vacancies, and for current-voltage ( IV) measurements of irradiated silicon particle detectors. The setup is described in detail and typical performance characteristics are provided. The facility functionality was tested by performing PAS experiments with high-resistivity silicon and by IV measurements for two types of irradiated silicon particle detectors.

  6. Initial results from the LAPD wave-particle experiment and simulation

    NASA Astrophysics Data System (ADS)

    Bortnik, J.; Tao, X.; Albert, J. M.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.; Van Compernolle, B.

    2011-12-01

    We present the initial results obtained from a unique experiment-theory project. This project is designed to study the detailed nature of the wave-particle interactions between energetic electrons and whistler-mode waves. Using the Large-Plasma device at UCLA, whistler mode waves are injected into one end of the machine and a beam of energetic electrons is injected at the opposite ends. When the first-order resonance condition is met, the electron beam is scattered, which is measured with a novel energy-pitch-angle analyzer. To support the experiment, a flexible test-particle code is constructed which is able to quantify the scattering of charged particles in response to any distribution of waves, in an arbitrary field geometry. The results of the experiment are discussed and placed into the context of space physics and specifically the upcoming Radiation Belt Storm Probes mission.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Seong Lee

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see whichmore » factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75 microns) under open environment, two factors were that considered as the affecting factors. They were the open rate and observation ranges. In this experiment, there was no significant effect on the lower limit. On the upper limit, the observation range had a significant effect. In addition, the interaction of open rate and observation range had a significant effect for the source of variation with 95% of confidence based on analysis of variance (ANOVA) results.« less

  8. Low-pT spectra of identified charged particles in √ {sNN} = 200 GeV Au+Au collisions from PHOBOS experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    The PHOBOS experiment at the Relativistic Heavy Ion Collider (RHIC), comprising the spectrometer with multiple layers of silicon wafers, is an excellent detector for very low transverse momentum (pT) particles. Transverse momentum distributions of π-+π+, K-+K+ and p+/line{p} produced at mid-rapidity are presented for the 15% most central Au-Au collisions at √ {sNN} = 200 GeV. The momentum ranges for measured particles are from 30 to 50 MeV/c for pions, 90 to 130 MeV/c for kaons and 140 to 210 MeV/c for protons and antiprotons. The measurement method is briefly described. A comparison of the pT spectra to experimental results at higher particle momenta and to model predictions is discussed. PACS: 25.75.-q

  9. Considerations on the Retrieval of Plume Particle Properties from the AFRPL Transmissometer and Polarization-Scattering Experiments.

    DTIC Science & Technology

    1984-08-01

    transmissometer experiment. In these measure - ments, simple transmission measurements of laser radiation through a diameter of the plume are made. With...Air Force Rocket Propulsion Laboratory4{AFRPL). In one experiment, simple laser transmission measurements are made over a full diameter line of sight...consist of measure - ments of the polarization of laser radiation which has been scattered by plume particulates. The analysis is presented in Section

  10. The Capabilities of the upgraded MIPP experiment with respect to Hypernuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, Rajendran

    2012-01-01

    We describe the state of analysis of the MIPP experiment, its plans to upgrade the experiment and the impact such an upgraded experiment will have on hypernuclear physics. The upgraded MIPP experiment is designed to measure the properties of strong interaction spectra form beams {pi}{sup {+-}}, K{sup {+-}}, and p{sup {+-}}, for momenta ranging from 1 GeV/c to 120 GeV/c. The layout of the apparatus in the data taken so far can be seen in Figure 1. The centerpiece of the experiment is the time projection chamber, which is followed by the time of flight counter, a multi-cell Cerenkov detectormore » and the RICH detector. The TPC can identify charged particles with momenta less than 1 GeV/c using dE/dx, the time of flight will identify particles below approximately 2 GeV/c, the multi-cell Cerenkov detector is operational from 2.5 GeV/c to 14 GeV/c and the RICH detector can identify particles up to 120 GeVc. Following this is an EM and hadronic calorimeter capable of detecting forward going neutrons and photons. The experiment has been busy analyzing its data taken on various nuclei and beam conditions. The table 2 shows the data taken by MIPP I to date. We have almost complete acceptance in the forward hemisphere in the lab using the TPC. The reconstruction capabilities of the TPC can be seen in Figure 3. The particle identification capabilities of the TPC can be seen in Figure 4. The time of flight system provides further measurement of the particles with momenta less than 2 GeV/c. Figure 5 shows the time of flight data where a kaon peak is clearly visible.« less

  11. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a comparison of the distribution of the most prevalent reaction products relative to the expected distribution derived using chemical kinetics simulations based on the Master Chemical Mechanism (MCM) limonene mechanism will be discussed.

  12. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-01-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the particles to become shifted. For both experiments, reference and test images are acquired before and after the induced shifts, respectively, and then processed using PIV software. The controlled manual translation of the disk resulted in detection of the particle displacements accurate to 1.75% of full scale and the thermal expansion experiment resulted in successful detection of the disk's thermal growth as compared to the calculated thermal expansion results. After validation of the technique through the induced shift experiments, the technique is implemented in the Rotordynamics Lab for preliminary assessment in a simulated engine environment. The discussion of the findings and plans for future work to improve upon the results are addressed in the paper.

  13. The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Hansen, P.; Mocchiutti, E.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C. N.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Stephens, S. A.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2003-08-01

    A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV n -1. The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy spectra at the top of the atmosphere can be represented by (1.27±0.09)×10 4E-2.75±0.02 particles (m 2 GeV sr s) -1, where E is the kinetic energy in GeV, for protons between 20 and 350 GeV and (4.8±0.8)×10 2E-2.67±0.03 particles (m 2 GeV n -1 sr s) -1, where E is the kinetic energy in GeV per nucleon, for helium nuclei between 15 and 150 GeV n -1.

  14. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron size silica particles exposed to UV radiation in the 120-200 nm spectral region will be presented.

  15. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  16. Simulations of Shock Wave Interaction with a Particle Cloud

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  17. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-03-18

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.

  18. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  19. A New Optical Aerosol Spectrometer

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)

    1998-01-01

    An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.

  20. Intercomparisons of Lidar Backscatter Measurements and In-situ Data from GLOBE

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Spinhirne, James D.

    1992-01-01

    The Global Backscatter Experiment (GLOBE) took place during Nov. 1989 and May - Jun. 1990 and involved flight surveys of the Pacific region by the NASA DC-8 aircraft. The experimental instruments were lidars operating at wavelengths ranging from the visible to the thermal infrared and various optical particle counters for in-situ measurements. The primary motivation for GLOBE was the development of spaceborne wind sensing lidar. This paper will concern a comparison of direct backscatter measurements and backscatter calculated from particle counter data. Of special interest is that the particle measurements provided data on composition, and thus refractive index variation may be included in the analysis.

  1. Single particle dynamics in a radio-frequency produced plasma sheath

    NASA Astrophysics Data System (ADS)

    Rubin-Zuzic, M.; Nosenko, V.; Zhdanov, S.; Ivlev, A.; Thomas, H.; Khrapak, S.; Couedel, L.

    2018-01-01

    Recently different research groups have investigated the motion of a single dust particle levitated in a rf plasma. Here we describe a highly resolved experiment where a single spherical melamine formaldehyde microparticle is suspended in the plasma sheath above the lower electrode of a capacitively coupled radio-frequency discharge at controlled pressure, power and neutral gas flow rate. The particle's horizontal oscillation is investigated, from which its neutral gas damping rate, kinetic temperature and eigenfrequency of the potential trap are measured. Compared to prior experiments we report about inhomogeneous and anisotropic velocity variations.

  2. Rigorous theoretical framework for particle sizing in turbid colloids using light refraction.

    PubMed

    García-Valenzuela, Augusto; Barrera, Rubén G; Gutierrez-Reyes, Edahí

    2008-11-24

    Using a non-local effective-medium approach, we analyze the refraction of light in a colloidal medium. We discuss the theoretical grounds and all the necessary precautions to design and perform experiments to measure the effective refractive index in dilute colloids. As an application, we show that it is possible to retrieve the size of small dielectric particles in a colloid by measuring the complex effective refractive index and the volume fraction occupied by the particles.

  3. Apollo 17 lunar surface cosmic ray experiment - Measurement of heavy solar wind particles

    NASA Technical Reports Server (NTRS)

    Zinner, E.; Walker, R. M.; Borg, J.; Maurette, M.

    1974-01-01

    During the Apollo 17 mission a series of metal foils and nuclear track detectors were exposed both in the sun and in the shade on the surface of the moon. Here we give the analysis of the mica detectors which were used to measure the flux of solar wind particles of Fe-group and heavier elements. These particles register as shallow pits after etching in hydrofluoric acid. Calibration experiments were performed to determine the registration properties of different ions and to simulate the lunar environment. We obtain an Fe-group flux of 39,000 per sec per sq cm, which together with the H flux measured on IMP-7 gives an Fe/H ratio of 0.000041. For elements with Z exceeding 45 we can set only an upper limit on the abundance, ruling out an overabundance of extremely heavy elements relative to iron by a factor of 4.

  4. Results of nDOSE and HiDOSE Experiments for Dosimetric Evaluation During STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Pugliese, M.; Loffredo, F.; Quarto, M.; Roca, V.; Mattone, C.; Borla, O.; Zanini, A.

    2014-07-01

    HiDOSE (Heavy ion DOSimetry Experiment) and nDOSE (neutron DOSimetry Experiment) experiments conducted as a part of BIOKIS (Biokon in Space) payload were designed to measure the dose equivalent due to charged particles and to neutron field, on the entire energy range, during STS-134 mission. Given the complexity of the radiation field in space environment, dose measurements should be considered an asset of any space mission, and for this reason HiDOSE and nDOSE experiments represent an important contribution to the radiation environment assessment during this mission, a short duration flight. The results of these experiments, obtained using Thermo Luminescence Dosimeters (TLDs) to evaluate the charged particles dosimetry and neutron bubbles dosimeters and stack bismuth track dosimeters for neutron dosimetry, indicate that the dose equivalent rate due to space radiation exposure during the STS-134 mission is in accordance with the results obtained from long duration flights.

  5. Three-Dimensional Stereoscopic Tracking Velocimetry and Experimental/Numerical Comparison of Directional Solidification

    NASA Technical Reports Server (NTRS)

    Lee, David; Ge, Yi; Cha, Soyoung Stephen; Ramachandran, Narayanan; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. It has great freedom in illuminating and observing volumetric fields from arbitrary directions. STV is based on stereoscopic observation of particles-Seeded in a flow by CCD sensors. In the approach, part of the individual particle images that provide data points is likely to be lost or cause errors when their images overlap and crisscross each other especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle overlap decomposition, the back propagation neural network is utilized because of its ability in pattern recognition with pertinent particle image feature parameters. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. As an initial assessment of the diagnostic technology performance, laminar water jets with and without pulsation are measured. The jet tip velocity profiles are in good agreement with analytical predictions. Finally, for testing in material processing applications, a simple directional solidification apparatus is built for experimenting with a metal analog of succinonitrile. Its 3-D velocity field at the liquid phase is then measured to be compared with those from numerical computation. Our theoretical, numerical, and experimental investigations have proven STV to be a viable candidate for reliably measuring 3-D flow velocities. With current activities are focused on further improving the processing efficiency, overall accuracy, and automation, the eventual efforts of broad experimental applications and concurrent numerical modeling validation will be vital to many areas in fluid flow and materials processing.

  6. Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2002-03-01

    Weak values as introduced by Aharonov, Albert, and Vaidman (AAV) are ensemble-average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. It is shown that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). The quantum-trajectory theory is used to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (nonprojective) final measurement, and (d) a non-back-action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating wave particle duality [G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000)]. It is shown that the ``fractional-order'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.

  7. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    NASA Astrophysics Data System (ADS)

    Yao, Shunchun; Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping; Lu, Jidong

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment.

  8. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  9. Measuring asymmetry load pairs of top quarks-antitop in the final states dileptoniques from D0 and ATLAS detectors (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapelain, Antoine

    Particle physics aims to give a coherent description of the nature and the behavior of elementary particles of matter. Particle accelerators (colliders) allow pushing back our know- ledge in this domain producing particles that cannot be observed by other means. This thesis work contributes to this research eld and focuses on the study of the top quark which is the latest brick of matter discovered and the heaviest known elementary particle. The property of the top quark studied here, the charge asymmetry of the top quark-antiquark pairs, has driven a lot of attention in 2011 because of measurements released bymore » Tevatron experiments. These measurements showed deviations with the predictions made in the framework of the standard model of particle physics. New measurements of the charge asymmetry performed at the Tevatron (with the D0 detector) and at the LHC (with the ATLAS detector) are presented in this thesis.« less

  10. Environmental tobacco smoke particles in multizone indoor environments

    NASA Astrophysics Data System (ADS)

    Miller, S. L.; Nazaroff, W. W.

    Environmental tobacco smoke (ETS) is a major source of human exposure to airborne particles. To better understand the factors that affect exposure, and to investigate the potential effectiveness of technical control measures, a series of experiments was conducted in a two-room test facility. Particle concentrations, size distributions, and airflow rates were measured during and after combustion of a cigarette. Experiments were varied to obtain information about the effects on exposure of smoker segregation, ventilation modification, and air filtration. The experimental data were used to test the performance of an analytical model of the two-zone environment and a numerical multizone aerosol dynamics model. A respiratory tract particle deposition model was also applied to the results to estimate the mass of ETS particles that would be deposited in the lungs of a nonsmoker exposed in either the smoking or nonsmoking room. Comparisons between the experimental data and model predictions showed good agreement. For time-averaged particle mass concentration, the average bias between model and experiments was less than 10%. The average absolute error was typically 35%, probably because of variability in particle emission rates from cigarettes. For the conditions tested, the use of a portable air filtration unit yielded 65-90% reductions in predicted lung deposition relative to the baseline scenario. The use of exhaust ventilation in the smoking room reduced predicted lung deposition in the nonsmoking room by more than 80%, as did segregating the smoker from nonsmokers with a closed door.

  11. Laser Interferometry Measurements of Cold-Sprayed Copper Thermite Shocked to 30 GPa

    NASA Astrophysics Data System (ADS)

    Neel, Christopher; Lacina, David

    2015-06-01

    Plate impact experiments were conducted on a cold-sprayed Al-CuO thermite at peak stresses varying between 5-30 GPa to determine the Hugoniot and characterize any shock induced energetic reaction. Photon Doppler Velocimetry (PDV) measurements were used to obtain particle velocity histories and shock speed information for both the shock loading and unloading behavior of the material. Low stress experiments (<20GPa) exhibited a linearly increasing shock speed with increasing particle velocity. However, an obvious change in slope (i.e. a ``kink'') is present in the Hugoniot at stresses above ~ 20 GPa which follow a linear increase up to the highest stresses attained in this work. The change in Hugoniot curve suggests a volume-increasing reaction occurs in this shocked Al-CuO thermite near 20 GPa, but an analysis of the measured particle velocity histories does not support this assertion. To better characterize any shock-induced thermite reactions, emission spectroscopy measurements were obtained at stresses above and below 20 GPa.

  12. The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M. G.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-08-01

    The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.

  13. Positively charged particles in dusty plasmas.

    PubMed

    Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F

    2001-11-01

    The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.

  14. Optical proposals for controlled delayed-choice experiment based on weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Dong, Li; Lin, Yan-Fang; Li, Qing-Yang; Xiu, Xiao-Ming; Dong, Hai-Kuan; Gao, Ya-Jun

    2017-05-01

    Employing polarization modes of a photon, we propose two theoretical proposals to exhibit the wave-particle duality of the photon with the assistance of weak cross-Kerr nonlinearities. The first proposal is a classical controlled delayed-choice experiment (that is, Wheeler's delayed-choice experiment), where we can observe selectively wave property or particle property of the photon relying on the experimenter's selection, whereas the second proposal is a quantum controlled delayed-choice experiment, by which the mixture phenomenon of a wave and a particle will be exhibited. Both of them can be realized with near-unity probability and embody the charming characteristics of quantum mechanics. The employment of the mature techniques and simple operations (e.g., Homodyne measurement, classical feed forward, and single-photon transformations) provides the feasibility of the delayed-choice experiment proposals presented here.

  15. Measurement-induced decoherence and information in double-slit interference.

    PubMed

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-07-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which "path" the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels.

  16. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    USGS Publications Warehouse

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  17. A study of sedimentation and aggregation of volcanic particles based on experiments carried out with a vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Bagheri, G.; Bonadonna, C.; Manzella, I.; Pontelandolfo, P.; Haas, P.

    2012-12-01

    A complete understanding and parameterization of both particle sedimentation and particle aggregation require systematic and detailed laboratory investigations performed in controlled conditions. For this purpose, a dedicated 4-meter-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques (CMEFE). Final design is a result of Computational Fluid Dynamics simulations combined with laboratory tests. With its diverging test section, the tunnel is designed to suspend particles of different shapes and sizes in order to study the aero-dynamical behavior of volcanic particles and their collision and aggregation. In current set-up, velocities between 5.0 to 27 ms-1 can be obtained, which correspond to typical volcanic particles with diameters between 10 to 40 mm. A combination of Particle Tracking Velocimetry (PTV) and statistical methods is used to derive particle terminal velocity. The method is validated using smooth spherical particles with known drag coefficient. More than 120 particles of different shapes (i.e. spherical, regular and volcanic) and compositions are 3D-scanned and almost 1 million images of their suspension in the test section of wind tunnel are recorded by a high speed camera and analyzed by a PTV code specially developed for the wind tunnel. Measured values of terminal velocity for tested particles are between 3.6 and 24.9 ms-1 which corresponds to Reynolds numbers between 8×103 and 1×105. In addition to the vertical wind tunnel, an apparatus with height varying between 0.5 and 3.5 m has been built to measure terminal velocity of micrometric particles in Reynolds number between 4 and 100. In these experiments, particles are released individually in the air at top of the apparatus and their terminal velocities are measured at the bottom of apparatus by a combination of high-speed camera imaging and PTV post-analyzing. Effects of shape, porosity and orientation of the particles on their terminal velocity are studied. Various shape factors are measured based on different methods, such as 3D-scanning, 2D-image processing, SEM image analysis, caliper measurements, pycnometer and buoyancy tests. Our preliminary experiments on non-smooth spherical particles and irregular particles reveal some interesting aspects. First, the effect of surface roughness and porosity is more important for spherical particles than for regular non-spherical and irregular particles. Second, results underline how, the aero-dynamical behavior of individual irregular particles is better characterized by a range of values of drag coefficients instead of a single value. Finally, since all the shape factors are calculated precisely for each individual particle, the resulted database can provide important information to benchmark and improve existing terminal-velocity models. Modifications of the wind tunnel, i.e. very low air speed (0.03-5.0 ms-1) for suspension of micrometric particles, and of the PTV code, i.e. multiple particle tracking and collision counting, have also been performed in combination to the installation of a particle charging device, a controlled humidifier and a high-power chiller (to reach values down to -20 °C) in order to investigate both wet and dry aggregation of volcanic particles.

  18. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in s NN = 5.02   TeV p+Pb collisions measured by the ATLAS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √s NN =5.02TeV. Charged particles are reconstructed over pseudorapidity |η| < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb -1 . The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle crossmore » sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in -4.9 < η < -3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.« less

  19. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in s NN = 5.02   TeV p+Pb collisions measured by the ATLAS experiment

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-10-29

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √s NN =5.02TeV. Charged particles are reconstructed over pseudorapidity |η| < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb -1 . The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle crossmore » sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in -4.9 < η < -3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.« less

  20. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements

    NASA Astrophysics Data System (ADS)

    Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D.

    2016-05-01

    This study addresses, through two types of experiments, the potential for the oceans to act as a source of atmospheric ice-nucleating particles (INPs). The INP concentration via deposition mode nucleation was measured in situ at a coastal site in British Columbia in August 2013. The INP concentration at conditions relevant to cirrus clouds (i.e., -40 °C and relative humidity with respect to ice, RHice = 139%) ranged from 0.2 L-1 to 3.3 L-1. Correlations of the INP concentrations with levels of anthropogenic tracers (i.e., CO, SO2, NOx, and black carbon) and numbers of fluorescent particles do not indicate a significant influence from anthropogenic sources or submicron bioaerosols, respectively. Additionally, the INPs measured in the deposition mode showed a poor correlation with the concentration of particles with sizes larger than 500 nm, which is in contrast with observations made in the immersion freezing mode. To investigate the nature of particles that could have acted as deposition INP, laboratory experiments with potential marine aerosol particles were conducted under the ice-nucleating conditions used in the field. At -40 °C, no deposition activity was observed with salt aerosol particles (sodium chloride and two forms of commercial sea salt: Sigma-Aldrich and Instant Ocean), particles composed of a commercial source of natural organic matter (Suwannee River humic material), or particle mixtures of sea salt and humic material. In contrast, exudates from three phytoplankton (Thalassiosira pseudonana, Nanochloris atomus, and Emiliania huxleyi) and one marine bacterium (Vibrio harveyi) exhibited INP activity at low RHice values, down to below 110%. This suggests that the INPs measured at the field site were of marine biological origins, although we cannot rule out other sources, including mineral dust.

  1. Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at √s NN = 2.76  TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2014-11-26

    ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √s NN = 2.76 TeV are shown using a dataset of approximately 7 μb –1 collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta 0.5 < p T < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, v n, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence ofmore » the v n coefficients are presented. The elliptic flow, v 2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v 3 and v 4, are determined with two- and four-particle cumulants. Flow harmonics v n measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. As a result, models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.« less

  2. The microphysics of ash tribocharging: New insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Joshua, M. S.; Dufek, J.

    2014-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this device allows us to methodically to characterize charges on particles with diameters down to 100 microns. Employing this instrument, we quantify the effect of particle pre-charging, mineralogy, and impact energy on the charge exchange between two colliding particles.

  3. The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion

    NASA Astrophysics Data System (ADS)

    Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René

    The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.

  4. Formation of semisolid, oligomerized aqueous SOA: lab simulations of cloud processing.

    PubMed

    Hawkins, Lelia N; Baril, Molly J; Sedehi, Nahzaneen; Galloway, Melissa M; De Haan, David O; Schill, Gregory P; Tolbert, Margaret A

    2014-02-18

    Glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone form N-containing and oligomeric compounds during simulated cloud processing with small amines. Using a novel hygroscopicity tandem differential mobility analysis (HTDMA) system that allows varied humidification times, the hygroscopic growth (HG) of each of the resulting products of simulated cloud processing was measured. Continuous water uptake (gradual deliquescence) was observed beginning at ∼ 40% RH for all aldehyde-methylamine products. Particles containing ionic reaction products of either glyoxal or glycine were most hygroscopic, with HG between 1.16 and 1.20 at 80% RH. Longer humidification times (up to 20 min) produced an increase in growth factors for glyoxal-methylamine (19% by vol) and methylglyoxal-methylamine (8% by vol) aerosol, indicating that unusually long equilibration times can be required for HTDMA measurements of such particles. Glyoxal- and methylglyoxal-methylamine aerosol particles shattered in Raman microscopy impact-flow experiments, revealing that the particles were semisolid. Similar experiments on glycolaldehyde- and hydroxyacetone-methylamine aerosol found that the aerosol particles were liquid when dried for <1 h, but semisolid when dried for 20 h under ambient conditions. The RH required for flow (liquification) during humidification experiments followed the order methylglyoxal > glyoxal > glycolaldehyde = hydroxyacetone, likely caused by the speed of oligomer formation in each system.

  5. Tracking Detectors in the STAR Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Wieman, Howard

    2015-04-01

    The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.

  6. [Research on the measurement range of particle size with total light scattering method in vis-IR region].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Dai, Jing-min

    2008-12-01

    The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.

  7. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  8. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    NASA Astrophysics Data System (ADS)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  9. Accelerator Science: Collider vs. Fixed Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  10. Computer measurement of particle sizes in electron microscope images

    NASA Technical Reports Server (NTRS)

    Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.

    1976-01-01

    Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.

  11. Accelerator Science: Collider vs. Fixed Target

    ScienceCinema

    Lincoln, Don

    2018-01-16

    Particle physics experiments employ high energy particle accelerators to make their measurements. However there are many kinds of particle accelerators with many interesting techniques. One important dichotomy is whether one takes a particle beam and have it hit a stationary target of atoms, or whether one takes two counter rotating beams of particles and smashes them together head on. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of these two powerful methods of exploring the rules of the universe.

  12. The Energetic Particles Acceleration, Composition, and Transport (EPACT) experiment on the ISTP/wind spacecraft

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Von Rosenvinge, T. T.; Ramaty, R.; Mason, G. M.; Hamilton, D. C.; Forman, M. A.; Webber, W. R.

    1990-01-01

    The EPACT experiment will measure abundances, spectra, and angular distributions of particles from 20 keV/amu to 500 MeV/amu. At high energies, isotopes will be resolved up through Z = 26, at intermediate energies elements with Z between 1 and 82 will be observed, and at low energies element abundances above Z = 2 will be resolved for the first time.

  13. Autonomous sensor particle for parameter tracking in large vessels

    NASA Astrophysics Data System (ADS)

    Thiele, Sebastian; Da Silva, Marco Jose; Hampel, Uwe

    2010-08-01

    A self-powered and neutrally buoyant sensor particle has been developed for the long-term measurement of spatially distributed process parameters in the chemically harsh environments of large vessels. One intended application is the measurement of flow parameters in stirred fermentation biogas reactors. The prototype sensor particle is a robust and neutrally buoyant capsule, which allows free movement with the flow. It contains measurement devices that log the temperature, absolute pressure (immersion depth) and 3D-acceleration data. A careful calibration including an uncertainty analysis has been performed. Furthermore, autonomous operation of the developed prototype was successfully proven in a flow experiment in a stirred reactor model. It showed that the sensor particle is feasible for future application in fermentation reactors and other industrial processes.

  14. High multiplicity α-particle breakup measurements to study α-condensate states

    NASA Astrophysics Data System (ADS)

    Bishop, J.; Kokalova, Tz; Freer, M.; Assie, M.; Acosta, L.; Bailey, S.; Cardella, G.; Curtis, N.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Rizzo, F.; Russotto, P.; Quattrocchi, L.; Smith, R.; Stefan, I.; Trifirò, A.; Trimarchì, M.; Verde, G.; Vigilante, M.; Wheldon, C.

    2017-06-01

    An experiment was performed to investigate α-condensate states via high α-particle multiplicity breakup. The nucleus of interest was 28Si therefore to measure multiplicity 7 particle breakup events, a highly granular detector with a high solid angle coverage was required. For this purpose, the CHIMERA and FARCOS detectors at INFN LNS were employed. Particle identification was achieved through ΔE-E energy loss. The α-particle multiplicity was measured at three beam energies to investigate different excitation regimes in 28Si. At a beam energy where the energy is sufficient to provide the 7 α-particles with enough energy to be identified using the ΔE-E method, multiplicity 7 events can be seen. Given these high multiplicity events, the particles can be reconstructed to investigate the breakup of α-condensate states. Analysing the decay paths of these states can elucidate whether the state of interest corresponds to a non-cluster, clustered or condensed state.

  15. Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles.

    PubMed

    Bagheri, G H; Bonadonna, C; Manzella, I; Pontelandolfo, P; Haas, P

    2013-05-01

    A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.

  16. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge

    2014-04-01

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.

  17. Charged Particle lunar Environment Experiment (CPLEE)

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1974-01-01

    Research development in the Charged Particle Lunar Environment Experiment (CPLEE) is reported. The CPLEE is ion-electron spectrometer placed on the lunar surface for the purpose of measuring charged particle fluxes impacting the moon from a variety of regions and to study the interactions between space plasmas and the lunar surface. The principal accomplishments reported include: (1) furnishing design specifications for construction of the CPLEE instruments; (2) development of an advanced computer-controlled facility for automated instrument calibration; (3) active participation in the deployment and past-deployment operational phases with regard to data verification and operational mode selection; and (4) publication of research papers, including a study of lunar photoelectrons, a study of plasmas resulting from man-made lunar impart events, a study of magnetotail and magnetosheath particle populations, and a study of solar-flare interplanetary particles.

  18. The PHOBOS detector at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  19. Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell

    USGS Publications Warehouse

    Ji, S.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    In this study, we report a direct comparison between a physical test and a computer simulation of rapidly sheared granular materials. An annular shear cell experiment was conducted. All parameters were kept the same between the physical and the computational systems to the extent possible. Artificially softened particles were used in the simulation to reduce the computational time to a manageable level. Sensitivity study on the particle stiffness ensured such artificial modification was acceptable. In the experiment, a range of normal stress was applied to a given amount of particles sheared in an annular trough with a range of controlled shear speed. Two types of particles, glass and Delrin, were used in the experiment. Qualitatively, the required torque to shear the materials under different rotational speed compared well with those in the physical experiments for both the glass and the Delrin particles. However, the quantitative discrepancies between the measured and simulated shear stresses were nearly a factor of two. Boundary conditions, particle size distribution, particle damping and friction, including a sliding and rolling, contact force model, were examined to determine their effects on the computational results. It was found that of the above, the rolling friction between particles had the most significant effect on the macro stress level. This study shows that discrete element simulation is a viable method for engineering design for granular material systems. Particle level information is needed to properly conduct these simulations. However, not all particle level information is equally important in the study regime. Rolling friction, which is not commonly considered in many discrete element models, appears to play an important role. ?? 2009 Elsevier Ltd.

  20. Development of an on-line aqueous particle sensor to study the performance of inclusions in a 12 tonne, delta shaped full scale water model tundish

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek

    Detection of particulate matter thinly dispersed in a fluid medium with the aid of the difference in electrical conductivity between the pure fluid and the particles has been practiced at least since the last 50 to 60 years. The first such instruments were employed to measure cell counts in samples of biological fluid. Following a detailed study of the physics and principles operating within the device, called the Electric Sensing Zone (ESZ) principle, a new device called the Liquid Metal Cleanliness Analyzer (LiMCA) was invented which could measure and count particles of inclusions in molten metal. It provided a fast and fairly accurate tool to make online measurement of the quality of steel during refining and casting operations. On similar lines of development as the LiMCA, a water analogue of the device called, the Aqueous Particle Sensor (APS) was developed for physical modeling experiments of metal refining operations involving water models. The APS can detect and measure simulated particles of inclusions added to the working fluid (water). The present study involves the designing, building and final application of a new and improved APS in water modeling experiments to study inclusion behavior in a tundish operation. The custom built instrument shows superior performance and applicability in experiments involving physical modeling of metal refining operations, compared to its commercial counterparts. In addition to higher accuracy and range of operating parameters, its capability to take real-time experimental data for extended periods of time helps to reduce the total number of experiments required to reach a result, and makes it suitable for analyzing temporal changes occurring in unsteady systems. With the modern impetus on the quality of the final product of metallurgical operations, the new APS can prove to be an indispensable research tool to study and put forward innovative design and parametric changes in industrially practised metallurgical operations.

  1. Software-type Wave-Particle Interaction Analyzer on board the Arase satellite

    NASA Astrophysics Data System (ADS)

    Katoh, Yuto; Kojima, Hirotsugu; Hikishima, Mitsuru; Takashima, Takeshi; Asamura, Kazushi; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Ozaki, Mitsunori; Yagitani, Satoshi; Yokota, Shoichiro; Matsuda, Shoya; Kitahara, Masahiro; Shinohara, Iku

    2018-01-01

    We describe the principles of the Wave-Particle Interaction Analyzer (WPIA) and the implementation of the Software-type WPIA (S-WPIA) on the Arase satellite. The WPIA is a new type of instrument for the direct and quantitative measurement of wave-particle interactions. The S-WPIA is installed on the Arase satellite as a software function running on the mission data processor. The S-WPIA on board the Arase satellite uses an electromagnetic field waveform that is measured by the waveform capture receiver of the plasma wave experiment (PWE), and the velocity vectors of electrons detected by the medium-energy particle experiment-electron analyzer (MEP-e), the high-energy electron experiment (HEP), and the extremely high-energy electron experiment (XEP). The prime objective of the S-WPIA is to measure the energy exchange between whistler-mode chorus emissions and energetic electrons in the inner magnetosphere. It is essential for the S-WPIA to synchronize instruments to a relative time accuracy better than the time period of the plasma wave oscillations. Since the typical frequency of chorus emissions in the inner magnetosphere is a few kHz, a relative time accuracy of better than 10 μs is required in order to measure the relative phase angle between the wave and velocity vectors. In the Arase satellite, a dedicated system has been developed to realize the time resolution required for inter-instrument communication. Here, both the time index distributed over all instruments through the satellite system and an S-WPIA clock signal are used, that are distributed from the PWE to the MEP-e, HEP, and XEP through a direct line, for the synchronization of instruments within a relative time accuracy of a few μs. We also estimate the number of particles required to obtain statistically significant results with the S-WPIA and the expected accumulation time by referring to the specifications of the MEP-e and assuming a count rate for each detector.

  2. 3D-shape recognition and size measurement of irregular rough particles using multi-views interferometric out-of-focus imaging.

    PubMed

    Ouldarbi, L; Talbi, M; Coëtmellec, S; Lebrun, D; Gréhan, G; Perret, G; Brunel, M

    2016-11-10

    We realize simplified-tomography experiments on irregular rough particles using interferometric out-of-focus imaging. Using two angles of view, we determine the global 3D-shape, the dimensions, and the 3D-orientation of irregular rough particles whose morphologies belong to families such as sticks, plates, and crosses.

  3. Evaluating the Radiation Damage to Quartz Rods in the ATLAS Zero Degree Calorimeter

    NASA Astrophysics Data System (ADS)

    Goodale, Kathryn

    2017-09-01

    At the Large Hadron Collider, the ATLAS experiment studies particle collisions to explore the fundamental particles of nature. A key instrumentation technology used by the ATLAS experiment are calorimeters for particle energy measurements. UIUC is developing a new Zero-Degree Calorimeter; a hadronic calorimeter located at zero-degrees from the collision axis. It consists of alternating layers of tungsten and oil; passive and active layers, respectively. The passive layers cause intense showers of secondary particles. These particles then produce Cherenkov radiation in the active layer. The oil in the active layer is replaced at a constant rate allowing for very high radiation doses in the detector without deteriorating the radiator material. The active layer includes wavelength shifters that absorb and re-emit isotropically the Cherenkov radiation. In this way, some of the photons arrive at two, hollow quartz rods which are filled by a second stage wavelength shifter. Here the light is absorbed and re-directed to a Silicon Photomultiplier for detection. In this paper, the impact of ionizing radiation on quartz rods will be discussed and the results from attenuation measurements will be presented.

  4. Colloidal diffusion over a quasicrystalline-patterned substrate

    NASA Astrophysics Data System (ADS)

    Su, Yun; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger

    We report a systematic study of colloidal diffusion over a quasicrystalline-patterned substrate. The sample substrate is made of a flat thin layer of photoresist and contains identical cylindrical holes of diameter dh, which are arranged on a quasicrystal lattice. A monolayer of silica spheres of diameter comparable to dh diffuse over the rugged quasicrystalline-patterned substrate and experience a gravitational potential U (x , y) . With optical microscopy and the particle tracking method, we measure U (x , y) and particle's diffusion trajectories, which are found to undergo two distinct states: a trapped state when the particles are inside the holes and a free diffusion state when they are over the flat portion of the substrate. The dynamic properties of the diffusing particle, such as its mean dwell time, mean square displacement, and long-time diffusion coefficient DL are obtained from the particle trajectories. The measured DL is found to be in good agreement with the prediction of two theoretical models proposed for diffusion over a quasicrystal lattice. The experiment demonstrates the applications of this newly constructed colloidal potential landscape. This work was supported by the Research Grants Council of Hong Kong SAR.

  5. RAPID COMMUNICATIONS: Long-distance quantum teleportation assisted with free-space entanglement distribution

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Gang; Yang, Bin; Yi, Zhen-Huan; Zhou, Fei; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei

    2009-08-01

    Faithful long-distance quantum teleportation necessitates prior entanglement distribution between two communicated locations. The particle carrying on the unknown quantum information is then combined with one particle of the entangled states for Bell-state measurements, which leads to a transfer of the original quantum information onto the other particle of the entangled states. However in most of the implemented teleportation experiments nowadays, the Bell-state measurements are performed even before successful distribution of entanglement. This leads to an instant collapse of the quantum state for the transmitted particle, which is actually a single-particle transmission thereafter. Thus the true distance for quantum teleportation is, in fact, only in a level of meters. In the present experiment we design a novel scheme which has overcome this limit by utilizing fiber as quantum memory. A complete quantum teleportation is achieved upon successful entanglement distribution over 967 meters in public free space. Active feed-forward control techniques are developed for real-time transfer of quantum information. The overall experimental fidelities for teleported states are better than 89.6%, which signify high-quality teleportation.

  6. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  7. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  8. Medium-Energy Particle experiments (MEPs) for the Exploration of energization and Radiation in Geospace (ERG) mission

    NASA Astrophysics Data System (ADS)

    Kasahara, S.; Yokota, S.; Mitani, T.; Asamura, K.; Hirahara, M.; Shibano, Y.; Yamamoto, K.; Takashima, T.

    2017-12-01

    ERG (Exploration of energization and Radiation in Geospace) is the geospace exploration spacecraft, which was launched on 20 December 2016. The mission goal is to unveil the physics behind the drastic radiation belt variability during space storms. One of key observations is the measurement of ions and electrons in the medium-energy range (10-200 keV), since these particles excite EMIC, magnetosonic, and whistler waves, which are theoretically suggested to play significant roles in the relativistic electron acceleration and loss. Medium-Energy Particle experiments - electron analyser (MEP-e) measures the energy and the direction of each incoming electron in the range of 7 to 87 keV. The sensor covers 2π radian disk-like field-of-view with 16 detectors, and the solid angle coverage is achieved by using spacecraft spin motion. The electron energy is independently measured by an electrostatic analyser and avalanche photodiodes, enabling the significant background reduction. Medium-Energy Particle experiments - ion mass analyzer (MEP-i) measures the energy, mass, and charge state of the direction of each incoming ion in the medium-energy range (<10 to >180 keV/q). MEP-i thus provides the velocity distribution functions of medium-energy ions (e.g., protons and oxygens), from which we can obtain significant information on local ion energization and pitch angle scattering in the inner magnetosphere. Heavy ion measurements can also play an important role to restrict global mass transport including the ionosphere and the plasmasheet. Here we show the technical approaches, data output, and highlights of initial observations.

  9. Magnetic biosensor using a high transition temperature SQUID

    NASA Astrophysics Data System (ADS)

    Grossman, Helene Lila

    A high transition temperature (Tc) Superconducting QUantum Interference Device (SQUID) is used to detect magnetically-labeled microorganisms. The targets are identified and quantified by means of magnetic relaxation measurements, with no need for unbound magnetic labels to be washed away. The binding rate between antibody-linked magnetic particles and targets can be measured with this technique. Installed in a "SQUID microscope," a YBa2Cu 3O7-delta SQUID is mounted on a sapphire rod thermally linked to a liquid nitrogen can; these components are enclosed in a fiberglass vacuum chamber. A thin window separates the vacuum chamber from the sample, which is at room temperature and atmospheric pressure. In one mode of the experiment, targets are immobilized on a substrate and immersed a suspension of ˜50 nm diameter superparamagnetic particles, coated with antibodies. A pulsed magnetic field aligns the magnetic dipole moments, and the SQUID measures the magnetic relaxation signal each time the field is turned off. Unbound particles relax within ˜50 mus by Brownian rotation, too fast for the SQUID system to measure. In contrast, particles bound to targets have their Brownian motion inhibited. These particles relax in ˜1 s by rotation of the internal dipole moment, and this Neel relaxation process is detected by the SQUID. This assay is demonstrated with a model system of liposomes carrying the FLAG epitope; the detection limit is (2.7 +/- 0.2) x 105 particles. The replacement of the SQUID with a gradiometer improves the detection limit to (7.0 +/- 0.7) x 103 particles. In an alternate mode of the experiment, freely suspended targets (larger than ˜1 mum diameter) are detected. Since the Brownian relaxation time of the targets is longer than the measurement time, particles bound to targets are effectively immobilized and exhibit Neel relaxation. Listeria monocytogenes are detected using this method; the sensitivity is (1.1 +/- 0.2) x 105 bacteria in 20 muL. For a 1 nL sample volume, the detection limit is expected to be 230 +/- 40 bacteria. Time-resolved measurements, which yield the binding rate between particles and bacteria, are reported. Also, potential improvements to the system and possible applications are discussed.

  10. First measurement of Bose-Einstein correlations in proton-proton collisions at √s=0.9 and 2.36 TeV at the LHC.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Ceard, L; De Wolf, E A; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; Devroede, O; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Marage, P E; Vander Velde, C; Vanlaer, P; Wickens, J; Costantini, S; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Cabrera, A; Carrillo Montoya, C A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Fereos, R; Galanti, M; Mousa, J; Nicolaou, C; Papadakis, A; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Zinonos, Z; Mahmoud, M; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Kalinowski, A; Miné, P; Paganini, P; Sabes, D; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J-L; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Speck, J; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Roinishvili, V; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Actis, O; Ata, M; Bender, W; Biallass, P; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Parenti, A; Raspereza, A; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Stein, M; Tomaszewska, J; Volyanskyy, D; Wissing, C; Autermann, C; Draeger, J; Eckstein, D; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Buege, V; Cakir, A; Chwalek, T; Daeuwel, D; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Renz, M; Sabellek, A; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Horvath, D; Kapusi, A; Krajczar, K; Laszlo, A; Sikler, F; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Bansal, S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Sharma, R; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Suggisetti, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Dimitrov, A; Fedele, F; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Grandi, C; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; Cerati, G B; De Guio, F; Di Matteo, L; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cimmino, A; De Cosa, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Noli, P; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Carlin, R; Checchia, P; Conti, E; De Mattia, M; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Giubilato, P; Gresele, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Santocchia, A; Servoli, L; Valdata, M; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Dagnolo, R T; Dell'orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Palmonari, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Rahatlou, S; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trocino, D; Vilela Pereira, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Son, D C; Kim, Zero; Kim, J Y; Song, S; Hong, B; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Choi, S; Choi, Y; Choi, Y K; Goh, J; Lee, J; Lee, S; Seo, H; Yu, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; De La Cruz Burelo, E; Lopez-Fernandez, R; Sánchez Hernández, A; Villaseñor-Cendejas, L M; Carrillo Moreno, S; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Allfrey, P; Krofcheck, D; Tam, J; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Cwiok, M; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Mini, G; Musella, P; Nayak, A; Raposo, L; Ribeiro, P Q; Seixas, J; Silva, P; Soares, D; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Finger, M; Finger, M; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Bondar, N; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Dremin, I; Kirakosyan, M; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Datsko, K; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Maletic, D; Milosevic, J; Puzovic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Willmott, C; Albajar, C; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Baillon, P; Ball, A H; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Breuker, H; Brona, G; Bunkowski, K; Camporesi, T; Cano, E; Cattai, A; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Covarelli, R; Curé, B; Dahms, T; De Roeck, A; Elliott-Peisert, A; Funk, W; Gaddi, A; Gennai, S; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Gomez-Reino Garrido, R; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Henderson, C; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Lecoq, P; Leonidopoulos, C; Lourenço, C; Macpherson, A; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Mavromanolakis, G; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Racz, A; Rolandi, G; Rovelli, C; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Tsirou, A; Veres, G I; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Caminada, L; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Meridiani, P; Milenovic, P; Moortgat, F; Nardulli, A; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M-C; Schinzel, D; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Weber, M; Wehrli, L; Weng, J; Amsler, C; Chiochia, V; De Visscher, S; Ivova Rikova, M; Millan Mejias, B; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, K H; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Liu, M H; Lu, Y J; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lin, S W; Lu, R-S; Shiu, J G; Tzeng, Y M; Ueno, K; Wang, C C; Wang, M; Wei, J T; Adiguzel, A; Ayhan, A; Bakirci, M N; Cerci, S; Demir, Z; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gökbulut, G; Güler, Y; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Kayis Topaksu, A; Nart, A; Onengüt, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sahin, O; Sengul, O; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Zorbilmez, C; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bell, P; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Kreczko, L; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Teodorescu, L; Bose, T; Clough, A; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sulak, L; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Borgia, M A; Breedon, R; Calderon De La Barca Sanchez, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Erhan, S; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Muelmenstaedt, J; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Würthwein, F; Yagil, A; Barge, D; Blume, M; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Bornheim, A; Bunn, J; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Chatterjee, A; Das, S; Eggert, N; Fields, L J; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Nicolas Kaufman, G; Patterson, J R; Puigh, D; Riley, D; Ryd, A; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Demarteau, M; Eartly, D P; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; James, E; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Kilminster, B; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Limon, P; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; McCauley, T; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Popescu, S; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Lacroix, F; Shabalina, E; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Cankocak, K; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Chakaberia, I; Ivanov, A; Kaadze, K; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, D; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Mignerey, A; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Sumorok, K; Sung, K; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Zanetti, M; Cole, P; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Zennamo, J; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Reucroft, S; Swain, J; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Valls, N; Warchol, J; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Lopes Pegna, D; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatzerklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Potamianos, K; Shipsey, I; Silvers, D; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Morales, J; Padley, B P; Redjimi, R; Roberts, J; Betchart, B; Bodek, A; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Garcia-Bellido, A; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Velkovska, J; Arenton, M W; Balazs, M; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Dutta, S; Efron, J; Gray, L; Grogg, K S; Grothe, M; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Lomidze, D; Loveless, R; Mohapatra, A; Polese, G; Reeder, D; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2010-07-16

    Bose-Einstein correlations have been measured using samples of proton-proton collisions at 0.9 and 2.36 TeV center-of-mass energies, recorded by the CMS experiment at the CERN Large Hadron Collider. The signal is observed in the form of an enhancement of pairs of same-sign charged particles with small relative four-momentum. The size of the correlated particle emission region is seen to increase significantly with the particle multiplicity of the event.

  11. Cross Section Measurements Using the Zero Degree Detector

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Adams, J. H., Jr.; Heilbronn, L.; Kuznetsov, E. N.; Miller, J.; Zeitlin, C.

    2007-01-01

    The Zero Degree Detector (ZDD) is an instrument that has been used in accelerator exposures to measure the angular dependence of particles produced in heavy ion fragmentation experiments. The ZDD uses two identical layers of pixelated silicon detectors that make coincident measurements over the active area of the instrument. The angular distribution of secondary particle produced in nuclear interactions for several heavy ions: and target materials will be presented along with performance characteristic of the instrument.

  12. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    NASA Astrophysics Data System (ADS)

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  13. Dense Suspension Splash

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  14. Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Kohn, M.; Pekour, M. S.; Nelson, D. A.; Shilling, J. E.; Cziczo, D. J.

    2011-10-01

    Droplets produced in a cloud condensation nuclei chamber (CCNC) as a function of supersaturation have been separated from unactivated aerosol particles using counterflow virtual impaction. Residual material after droplets were evaporated was chemically analyzed with an Aerodyne Aerosol Mass Spectrometer (AMS) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Experiments were initially conducted to verify activation conditions for monodisperse ammonium sulfate particles and to determine the resulting droplet size distribution as a function of supersaturation. Based on the observed droplet size, the counterflow virtual impactor cut-size was set to differentiate droplets from unactivated interstitial particles. Validation experiments were then performed to verify that only droplets with sufficient size passed through the counterflow virtual impactor for subsequent analysis. A two-component external mixture of monodisperse particles was also exposed to a supersaturation which would activate one of the types (hygroscopic salts) but not the other (polystyrene latex spheres or adipic acid). The mass spectrum observed after separation indicated only the former, validating separation of droplets from unactivated particles. Results from ambient measurements using this technique and AMS analysis were inconclusive, showing little chemical differentiation between ambient aerosol and activated droplet residuals, largely due to low signal levels. When employing as single particle mass spectrometer for compositional analysis, however, we observed enhancement of sulfate in droplet residuals.

  15. Simulation of particle motion in a closed conduit validated against experimental data

    NASA Astrophysics Data System (ADS)

    Dolanský, Jindřich

    2015-05-01

    Motion of a number of spherical particles in a closed conduit is examined by means of both simulation and experiment. The bed of the conduit is covered by stationary spherical particles of the size of the moving particles. The flow is driven by experimentally measured velocity profiles which are inputs of the simulation. Altering input velocity profiles generates various trajectory patterns. The lattice Boltzmann method (LBM) based simulation is developed to study mutual interactions of the flow and the particles. The simulation enables to model both the particle motion and the fluid flow. The entropic LBM is employed to deal with the flow characterized by the high Reynolds number. The entropic modification of the LBM along with the enhanced refinement of the lattice grid yield an increase in demands on computational resources. Due to the inherently parallel nature of the LBM it can be handled by employing the Parallel Computing Toolbox (MATLAB) and other transformations enabling usage of the CUDA GPU computing technology. The trajectories of the particles determined within the LBM simulation are validated against data gained from the experiments. The compatibility of the simulation results with the outputs of experimental measurements is evaluated. The accuracy of the applied approach is assessed and stability and efficiency of the simulation is also considered.

  16. Results and Outlook of The Aluminum Capture Experiment (AlCap)

    NASA Astrophysics Data System (ADS)

    Quirk, John R.; Miller, James; ALCap Collaboration Collaboration

    2016-03-01

    Observation of neutrinoless muon-to-electron conversion in the presence of a nucleus would be unambiguous evidence of physics Beyond the Standard Model. Two experiments, COMET at J-PARC and Mu2e at Fermilab, will search for this process in the coming decade. Barring discovery, these experiments will provide upper-limits on this branching ratio up to 10,000 times better than previously published. COMET/Mu2e developed a joint venture, the AlCap Experiment, to measure particle emission spectra from muonic interactions in a number of materials. As a major source of background hits in COMET/Mu2e detectors, AlCap sought to measure the charged particle and neutron spectra following nuclear capture on the candidate target materials aluminum and titanium. Additionally, COMET/Mu2e are exploring normalization schemes via AlCap's measurement of the photon spectra following both atomic and nuclear capture. Over the course of 2013 and 2015, AlCap performed three runs at the Paul Scherrer Institut in Switzerland. The first acquired preliminary data for all spectra, the second run collected only neutron and photon data, and the third primarily charged particle data. Preliminary analyses of the first two runs, already impactful for COMET/Mu2e, is presented along with a summary of the third.

  17. Effect of the particle to fluid density ratio on bedform development: An application of PTV

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, C. L.; Gordon, M. D.

    2009-05-01

    The particle to fluid density ratio plays a key role in sediment transport and strongly governs the relative importance of the transport mode. In aeolian systems, this ratio is three orders of magnitude larger than for the transport of sedimentary particles in water, such that saltation is the dominant mode for diameters (250 microns) commonly found in ripples and dunes. The partitioning of fluid momentum to saltators, and therefore to the surface upon impact, is extremely important to the entrainment of sediment, the maintenance of transport, and the scaling of aeolian bedforms. This paper demonstrates the use of Particle Tracking Velocimetry in measuring the partitioning of momentum associated with particle collisions on beds of quartz sand (2630 kg m-3) typical of aeolian dunes, and acrylic particles (1210 kg m-3) similar to blowing snow (920 kg m-3). The experiments were carried out in the boundary layer wind tunnel at Trent University on full beds that were 13.8 m in length and 0.71 m in width. In the majority of experiments, the wind speeds were either at or just above the threshold for saltation so that we could distinguish discrete particle trajectories. Surface ripples formed in the majority of experiments and passed through the camera's field of view so that the height, length and rate of migration could be measured in relation to the distributions of particle impact speed and angle, as well as those for the number, speed and angle of the particles ejected. Although similar in height, the ripples comprised of acrylic particles were 2 to 4 times longer, much more asymmetric, and migrated significantly faster than those in sand. The particle impact and ejection speeds were very similar, although the sand particles approached and left the bed at substantially larger angles than observed for the lighter acrylic particles of similar diameter. In a separate experiment, glass beads were flung onto each bed material at 4 ms-1 in still air. It was discovered that 90 per cent of the impact energy was lost to the acrylic bed, as compared to 78 per cent for the sand bed. This evidence suggests that at smaller density ratios than investigated here, ballistic ripples likely cannot be maintained in air.

  18. Aerosol Inlet Characterization Experiment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullard, Robert L.; Kuang, Chongai; Uin, Janek

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  19. Identifying the T=5 states in 48Ca

    NASA Astrophysics Data System (ADS)

    Upadhyayula, Sriteja; Ahn, Sunghoon; Anastasiou, Maria; Bedoor, Shadi; Browne, Justin; Blackmon, Jeffrey; Deibel, Catherine; Hood, Ashley; Hooker, Joshua; Hunt, Curtis; Koshchiy, Yevgen; Lighthall, Jon; Ong, Wei Jia; Rijal, Nabin; Rogachev, Grigory; Santiago-Gonzalez, Daniel; Nscl, Michigan State University, Ingo

    2017-09-01

    Particle-hole excitations near closed shells carry information on single-particle energies and on two-body interactions. The particle-hole excitations near the doubly magic nuclei are of special interest. Information on the charge-changing particle-hole excitations (T=5 negative parity states) in 48Ca is not available. We performed an experiment to establish the level scheme of the low-lying negative parity T=5 states in 48Ca. Excitation functions for the 1H(47K,p)47K(g.s.) and 1H(47K,p)47K(3/2+) reactions in the c.m. energy range from 1 MeV to 4.5 MeV were measured. The T=5 states are expected to show up in the p+47K excitation function as narrow resonances. This experiment was performed at NSCL using the ReA3 beam of 47K at energy of 4.6 MeV/u. ANASEN, set in active target mode, was used for this experiment. Experimental results from this experiment will be presented.

  20. UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick

    2016-01-01

    In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.

  1. Laboratory Studies Of Titan Haze: Simultaneous In Situ Detection Of Gas And Particle Species

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; Li, R.; Yoon, H.; Hicks, R.; de Gouw, J.; Tolbert, M.

    2012-10-01

    Analyses of data obtained by multiple instruments carried by Cassini and Huygens have increased our knowledge of the composition of Titan’s atmosphere. While a wealth of new information about the aerosols in Titan’s atmosphere was obtained, their composition is still not well constrained. Laboratory experiments will therefore play a key role in furthering our understanding of the chemical processes resulting in the formation of haze in Titan’s atmosphere and its possible composition. We have obtained simultaneous in situ measurements of the gas- and particle-phase compositions produced by our Titan atmosphere simulation experiments (see e.g. [1]). The gas phase composition was measured using a Proton-Transfer Ion-Trap Mass Spectrometer (PIT-MS) and the aerosol composition was measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). This complementary set of measurements will allow us to address the partitioning of gas- and aerosol-phase species. Knowledge of the gas phase composition in which the particles in our experiments form allows both for better comparison to the chemistry that is occurring in Titan’s atmosphere and for enabling more accurate determination of the possible pathways involved in the transition from gas phase to aerosol. We will compare the results from experiments that used two different initial gas mixtures (98% N2/2% CH4 and 98%N2/2%CH4/50 ppm CO) and two different energy sources to initiate the chemical reactions that result in particle formation (spark discharge using a Tesla coil or FUV irradiation from a deuterium lamp (115-400 nm)). [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326. SMH is supported by NSF Astronomy and Astrophysics Postdoctoral Fellowship AST-1102827.

  2. Design of experiments and data analysis challenges in calibration for forensics applications

    DOE PAGES

    Anderson-Cook, Christine M.; Burr, Thomas L.; Hamada, Michael S.; ...

    2015-07-15

    Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statistical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as temperature, nitric acid concentration, and Pu concentration, using measured features of the product Pu oxide powder. The measured features, Y, include trace chemical concentrations and particle morphology such as particle size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that were usedmore » to create nuclear materials having particular characteristics, Y, is an inverse problem. Therefore, statistical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a model (or models) such as Υ = f(Χ) + error, for each of the responses, based on a calibration experiment and then “invert” to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data to consider aspects of data collection and experiment design for the calibration data to maximize the quality of the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures between the responses. In addition, we also briefly review recent advances in metrology issues related to characterizing particle morphology measurements used in the response vector, Y.« less

  3. Design of experiments and data analysis challenges in calibration for forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine M.; Burr, Thomas L.; Hamada, Michael S.

    Forensic science aims to infer characteristics of source terms using measured observables. Our focus is on statistical design of experiments and data analysis challenges arising in nuclear forensics. More specifically, we focus on inferring aspects of experimental conditions (of a process to produce product Pu oxide powder), such as temperature, nitric acid concentration, and Pu concentration, using measured features of the product Pu oxide powder. The measured features, Y, include trace chemical concentrations and particle morphology such as particle size and shape of the produced Pu oxide power particles. Making inferences about the nature of inputs X that were usedmore » to create nuclear materials having particular characteristics, Y, is an inverse problem. Therefore, statistical analysis can be used to identify the best set (or sets) of Xs for a new set of observed responses Y. One can fit a model (or models) such as Υ = f(Χ) + error, for each of the responses, based on a calibration experiment and then “invert” to solve for the best set of Xs for a new set of Ys. This perspectives paper uses archived experimental data to consider aspects of data collection and experiment design for the calibration data to maximize the quality of the predicted Ys in the forward models; that is, we assume that well-estimated forward models are effective in the inverse problem. In addition, we consider how to identify a best solution for the inferred X, and evaluate the quality of the result and its robustness to a variety of initial assumptions, and different correlation structures between the responses. In addition, we also briefly review recent advances in metrology issues related to characterizing particle morphology measurements used in the response vector, Y.« less

  4. Aerosol Particle Interfacial Thermodynamics and Phase Partitioning Measurements Using Biphasic Microfluidics

    NASA Astrophysics Data System (ADS)

    Dutcher, Cari; Metcalf, Andrew

    2015-03-01

    Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.

  5. Measurement-induced decoherence and information in double-slit interference

    PubMed Central

    Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael

    2016-01-01

    The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which “path” the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels. PMID:27807373

  6. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  7. Apollo 17 Lunar Surface Experiment: Lunar Ejecta and Meteorites Experiment

    NASA Image and Video Library

    1972-11-30

    S72-37257 (November 1972) --- The Lunar Ejecta and Meteorites Experiment (S-202), one of the experiments of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. The purpose of this experiment is to measure the physical parameters of primary and secondary particles impacting the lunar surface.

  8. Laboratory studies of the growth, sublimation, and light- scattering properties of single levitated ice particles

    NASA Astrophysics Data System (ADS)

    Bacon, Neil Julian

    2001-12-01

    I describe experiments to investigate the properties of microscopic ice particles. The goal of the work was to measure parameters that are important in cloud processes and radiative transfer, using a novel technique that avoids the use of substrates. The experiments were conducted in two separate electrodynamic balance chambers. Single, charged ice particles were formed from frost particles or from droplets frozen either homogeneously or heteroge neously with a bionucleant. The particles were trapped at temperatures between -38°C and -4°C and grown or sublimated according to the temperature gradient in the cham ber. I describe observations of breakup of sublimating frost particles, measurements of light scattering by hexagonal crystals, and observations of the morphology of ice particles grown from frozen water droplets and frost particles. The breaking strength of frost particles was an order of magnitude less than that of bulk ice. Light scattering features not previously observed were analyzed and related to crystal dimension. Initial results from a computer model failed to reproduce these features. The widths of scattering peaks suggest that surface roughness may play a role in determining the angular distribution of scattered light. Ice particle mass evolution was found to be consistent with diffusion- limited growth. Crystals grown slowly from frozen droplets adopted isometric habits, while faster growth resulted in thin side-planes, although there was not an exact correspondence between growth conditions and particle morphology. From the morphological transition, I infer lower limits for the critical supersaturation for layer nucleation on the prism face of 2.4% at -15°C, 4.4% at -20°C, and 3.1% at -25°C. Analytic expressions for the size dependence of facet stability are developed, indicating a strong dependence of stability on both crystal size and surface kinetics, and compared with data. I discuss the role of complex particle morphologies in radiative transfer and highlight the need for further measurements.

  9. Radio detection of cosmic-ray air showers and high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2017-03-01

    In the last fifteen years radio detection made it back to the list of promising techniques for extensive air showers, firstly, due to the installation and successful operation of digital radio experiments and, secondly, due to the quantitative understanding of the radio emission from atmospheric particle cascades. The radio technique has an energy threshold of about 100 PeV, which coincides with the energy at which a transition from the highest-energy galactic sources to the even more energetic extragalactic cosmic rays is assumed. Thus, radio detectors are particularly useful to study the highest-energy galactic particles and ultra-high-energy extragalactic particles of all types. Recent measurements by various antenna arrays like LOPES, CODALEMA, AERA, LOFAR, Tunka-Rex, and others have shown that radio measurements can compete in precision with other established techniques, in particular for the arrival direction, the energy, and the position of the shower maximum, which is one of the best estimators for the composition of the primary cosmic rays. The scientific potential of the radio technique seems to be maximum in combination with particle detectors, because this combination of complementary detectors can significantly increase the total accuracy for air-shower measurements. This increase in accuracy is crucial for a better separation of different primary particles, like gamma-ray photons, neutrinos, or different types of nuclei, because showers initiated by these particles differ in average depth of the shower maximum and in the ratio between the amplitude of the radio signal and the number of muons. In addition to air-shower measurements, the radio technique can be used to measure particle cascades in dense media, which is a promising technique for detection of ultra-high-energy neutrinos. Several pioneering experiments like ARA, ARIANNA, and ANITA are currently searching for the radio emission by neutrino-induced particle cascades in ice. In the next years these two sub-fields of radio detection of cascades in air and in dense media will likely merge, because several future projects aim at the simultaneous detection of both, high-energy cosmic-rays and neutrinos. SKA will search for neutrino and cosmic-ray initiated cascades in the lunar regolith and simultaneously provide unprecedented detail for air-shower measurements. Moreover, detectors with huge exposure like GRAND, SWORD or EVA are being considered to study the highest energy cosmic rays and neutrinos. This review provides an introduction to the physics of radio emission by particle cascades, an overview on the various experiments and their instrumental properties, and a summary of methods for reconstructing the most important air-shower properties from radio measurements. Finally, potential applications of the radio technique in high-energy astroparticle physics are discussed.

  10. Science Results and Lessons Learned from CubeSat: Colorado Space Weather Experiment (CSSWE)

    NASA Astrophysics Data System (ADS)

    Li, Xinlin

    The Relativistic Electron and Proton Telescope integrated little experiment (REPTile) is a loaded-disc collimated solid-state particle telescope, designed, built, tested, and operated by a team of students at the University of Colorado. It is the only science payload onboard the Colorado Student Space Weather Experiment (CSSWE), a 3U CubeSat (10cm x 10cm x 30cm) launched into a low-Earth, 480km x 780km, and highly inclined (65 deg) orbit on 13 September 2012. REPTile measures differential fluxes of 0.58 to >3.8 MeV electrons and 9-40 MeV protons. These measurements, by themselves and in conjunction with other larger missions, are critical to understand the dynamics of these energetic particles. Miniaturizing a power- and mass-hungry particle telescope to return clean measurements from a CubeSat platform is challenging. To overcome these challenges, REPTile underwent a rigorous design and testing phase. Despite the limitations inherent with CubeSats, REPTile to date (still in operation) has returned more than 300 days of valuable science data, more than tripling its nominal mission lifetime of 90 days. The data are clean, as REPTile is able to clearly distinguish between particle species. Important science results using REPTile data, some of which have been published in peer-reviewed journals, will be presented in this presentation.

  11. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  12. Direct Numerical Simulation of Oscillatory Flow Over a Wavy, Rough, and Permeable Bottom

    NASA Astrophysics Data System (ADS)

    Mazzuoli, Marco; Blondeaux, Paolo; Simeonov, Julian; Calantoni, Joseph

    2018-03-01

    The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to reproduce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles are set equal to the experimental values and the computed velocity field is compared with the measured velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting on sediment particles). In particular, attention is focused on the coherent vortex structures generated by the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bottom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was found that forces capable of mobilizing surface particles are strongly correlated with the particle position above the mean bed elevation and the passage of coherent vortices above them.

  13. Hugoniot-based equations of state for two filled EPDM rubbers

    NASA Astrophysics Data System (ADS)

    Pacheco, Adam; Dattelbaum, Dana; Orler, E.; Gustavsen, R.

    2013-06-01

    The shock response of silica filled and Kevlar filled ethylene-propylene-diene (EPDM) rubbers was studied using gas gun-driven plate impact experiments. Both materials are proprietary formulations made by Kirkhill-TA, Brea CA USA, and are used for ablative internal rocket motor insulation. Two types of experiments were performed. In the first, the filled-EPDM sample was mounted on the front of the projectile and impacted a Lithium Fluoride (LiF) window. The Hugoniot state was determined from the measured projectile velocity, the EPDM/LiF interface velocity (measured using VISAR) and impedance matching to LiF. In the second type of experiment, electromagnetic particle velocity gauges were embedded between layers of filled-EPDM. These provided in situ particle velocity and shock velocity measurements. Experiments covered a pressure range of 0.34 - 14 GPa. Hugoniot-based equations of state were obtained for both materials, and will be compared to those of other filled elastomers such as silica-filled polydimethylsiloxane and adiprene. Work performed while at Los Alamos National Laboratory.

  14. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  15. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  16. Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Martins, T. Dos Reis; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Zito, G.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Primavera, F.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, T. A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Da Cruz E Silva, C. Beir ao; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; Moon, D. H.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.

    2015-05-01

    Transverse momentum spectra of charged particles are measured by the CMS experiment at the CERN LHC in pPb collisions at , in the range and pseudorapidity in the proton-nucleon center-of-mass frame. For , the charged-particle production is asymmetric about , with smaller yield observed in the direction of the proton beam, qualitatively consistent with expectations from shadowing in nuclear parton distribution functions (nPDF). A pp reference spectrum at is obtained by interpolation from previous measurements at higher and lower center-of-mass energies. The distribution measured in pPb collisions shows an enhancement of charged particles with compared to expectations from the pp reference. The enhancement is larger than predicted by perturbative quantum chromodynamics calculations that include antishadowing modifications of nPDFs.

  17. Sixfold improved single particle measurement of the magnetic moment of the antiproton.

    PubMed

    Nagahama, H; Smorra, C; Sellner, S; Harrington, J; Higuchi, T; Borchert, M J; Tanaka, T; Besirli, M; Mooser, A; Schneider, G; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S

    2017-01-18

    Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement g p /2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20.

  18. Sixfold improved single particle measurement of the magnetic moment of the antiproton

    PubMed Central

    Nagahama, H.; Smorra, C.; Sellner, S.; Harrington, J.; Higuchi, T.; Borchert, M. J.; Tanaka, T.; Besirli, M.; Mooser, A.; Schneider, G.; Blaum, K.; Matsuda, Y.; Ospelkaus, C.; Quint, W.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2017-01-01

    Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.792847350(9), and therefore agrees with the fundamental charge, parity, time (CPT) invariance of the Standard Model of particle physics. Additionally, our result improves coefficients of the standard model extension which discusses the sensitivity of experiments with respect to CPT violation by up to a factor of 20. PMID:28098156

  19. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2011-03-01

    Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.

  20. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under the fixed fetch (12m). The number of collisions of particle was converted from the wind velocity using an equation obtained by Kosugi et al. (2004). Blowing snow particles tend to accumulate negative charges gradually with increase of the number of collisions to the snow surface. As a result, it is demonstrated that the gaps between the field values and the wind tunnel ones were due to difference of the collision frequency of snow particles. Assuming a logarithmic relationship as first approximation between the measured charges and the number of collisions, the charge-to-mass ratios will reach roughly the same value which was obtained in the field with several hundreds collisions. For instance, fetch is needed roughly 200m for blowing snow particles to gain -30 μC/kg under the following conditions: air temperature -20 degrees Celsius, wind velocity 7m/s and hard snow surface. REFERENCE: Kosugi et al., (2004): Dependence of drifting snow saltation length on snow surface hardness. Cold Reg. Sci. Technol., 39, 133-139.

  1. Charged-particle distributions in √s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.

    2016-04-27

    Charged-particle distributions are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb -1 , recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. In this study, the measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particlemore » satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. Finally, the results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.« less

  2. A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.

    2018-01-01

    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

  3. Dark Matter Interpretation of the Neutron Decay Anomaly

    NASA Astrophysics Data System (ADS)

    Fornal, Bartosz; Grinstein, Benjamín

    2018-05-01

    There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments. We propose to explain this anomaly by a dark decay channel for the neutron, involving one or more dark sector particles in the final state. If any of these particles are stable, they can be the dark matter. We construct representative particle physics models consistent with all experimental constraints.

  4. Dark Matter Interpretation of the Neutron Decay Anomaly.

    PubMed

    Fornal, Bartosz; Grinstein, Benjamín

    2018-05-11

    There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments. We propose to explain this anomaly by a dark decay channel for the neutron, involving one or more dark sector particles in the final state. If any of these particles are stable, they can be the dark matter. We construct representative particle physics models consistent with all experimental constraints.

  5. Diamond detectors for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of thesemore » methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.« less

  7. Experimental investigations of mechanical and reaction responses for drop-weight impacted energetic particles

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Wei; Wu, Yan-Qing; Wang, Ming-Yang; Huang, Feng-Lei

    2017-02-01

    Low-velocity drop-weight impact experiments on individual and multiple Cyclotetramethylene tetranitramine (HMX) energetic particles were performed using a modified drop-weight machine equipped with high-speed photography components. Multiple particles experienced more severe burning reactions than an individual particle. Comparisons between impacted salt and HMX particle show that jetting in HMX is mainly due to the motion of fragmented particles driven by gaseous reaction products. Velocity of jetting, flame propagation, and area expansion were measured via image processing, making it possible to quantify the chemical reaction or mechanical deformation violence at different stages.

  8. Stress and temperature distributions of individual particles in a shock wave propagating through dry and wet sand mixtures

    NASA Astrophysics Data System (ADS)

    Schumaker, Merit G.; Kennedy, Gregory; Thadhani, Naresh; Hankin, Markos; Stewart, Sarah T.; Borg, John P.

    2017-01-01

    Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, the researcher cannot easily observe particle interactions during a planar shock experiment. By using mesoscale simulations, we can unravel granular particle interactions. Unlike homogenous materials, the averaged Hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments for dry and water-saturated Oklahoma sand, we constructed simulations using Sandia National Laboratory code known as CTH and then compared these simulated results to the experimental results. This document compares and presents stress and temperature distributions from simulations, with a discussion on the difference between Hugoniot measurements and distribution peaks for dry and water-saturated sand.

  9. Results from the PHOBOS experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Tonjes, Marguerite Belt; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; G´A, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; H´Ski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; W´Niak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.; Phobos Collaboration

    2004-04-01

    PHOBOS is one of the four experiments at the Relativistic Heavy Ion Collider measuring p + p, d + Au, and Au + Au collisions over a broad range of energies. PHOBOS is a silicon-pad based detector with a 4π multiplicity detector and a high resolution mid-rapidity spectrometer, along with other detectors (time-of-flight walls, proton and zero degree calorimeters). PHOBOS is able to measure particles at low transverse momentum, spectra, flow, particle ratios, and multiplicity over a large region of phase space. A comparison of results for Au + Au and d + Au collisions at √S NN = 220GeV will be discussed.

  10. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Krivets, Vitaliy V.; Sewell, Everest G.; Jacobs, Jeffrey W.

    2016-11-01

    A vertical shock tube is used to perform experiments on the single-mode three-dimensional Richtmyer-Meshkov Instability (RMI). The light gas (Air) and the heavy gas (SF6) enter from the top and the bottom of the shock tube driven section to form the interface. The initial perturbation is then generated by oscillating the gases vertically. Both gases are seeded with particles generated through vaporizing propylene glycol. An incident shock wave (M 1.2) impacts the interface to create an impulsive acceleration. The seeded particles are illuminated by a dual cavity 75W, Nd: YLF laser. Three high-speed CMOS cameras record time sequences of image pairs at a rate of 2 kHz. The initial perturbation used is that of a single, square-mode perturbation with either a single spike or a single bubble positioned at the center of the shock tube. The full time dependent velocity field is obtained allowing the determination of the circulation versus time. In addition, the evolution of time dependent amplitude is also determined. The results are compared with PIV measurements from previous two-dimensional single mode experiments along with PLIF measurements from previous three-dimensional single mode experiments.

  11. Track reconstruction in the inhomogeneous magnetic field for Vertex Detector of NA61/SHINE experiment at CERN SPS

    NASA Astrophysics Data System (ADS)

    Merzlaya, Anastasia; NA61/SHINE Collaboration

    2017-01-01

    The heavy-ion programme of the NA61/SHINE experiment at CERN SPS is expanding to allow precise measurements of exotic particles with lifetime few hundred microns. A Vertex Detector for open charm measurements at the SPS is being constructed by the NA61/SHINE Collaboration to meet the challenges of high spatial resolution of secondary vertices and efficiency of track registration. This task is solved by the application of the coordinate sensitive CMOS Monolithic Active Pixel Sensors with extremely low material budget in the new Vertex Detector. A small-acceptance version of the Vertex Detector is being tested this year, later it will be expanded to a large-acceptance version. Simulation studies will be presented. A method of track reconstruction in the inhomogeneous magnetic field for the Vertex Detector was developed and implemented. Numerical calculations show the possibility of high precision measurements in heavy ion collisions of strange and multi strange particles, as well as heavy flavours, like charmed particles.

  12. Improved flotation performance of hematite fines using citric acid as a dispersant

    NASA Astrophysics Data System (ADS)

    Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan

    2016-10-01

    In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.

  13. Measurements of Intensive Aerosol Optical Properties During TexAQS II

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Wright, M. E.

    2007-12-01

    Time-resolved measurements of the bulk extensive aerosol optical properties - particle extinction coefficient (bext) and particle scattering coefficient (bscat) - and particle number concentrations were made as part of the six-week TRAMP experiment during the TexAQS II (2006) study. These measurements were done at a nominal surface site (the roof of an 18 story building) on the University of Houston campus near downtown Houston, Texas. Our ground-based tandem cavity ring-down transmissometer/nephelometer instrument (CRDT/N) provided the aerosol optical property measurements. A commercial Condensation Particle Counter (TSI 3007) was used to measure the number concentrations during part of the study period. The optical data was used to construct the intensive aerosol optical properties single scattering albedo ω0 at 532 nm and the Angstrom exponent for extinction between 532 nm and 1064 nm. Recent validation studies of size- selected laboratory generated aerosols are presented to illustrate the soundness of this approach using our instrument. The Angstrom exponent is compared to values from other instruments operating in the area and is found to be a characteristic of the regional air mass under some conditions. Size distributions measured during the study were used to create a new empirical adjustment to scattering measured by the Radiance Research nephelometer, resulting in improved results for particle absorption coefficient and single scattering albedo. The study average value of ω0(532 nm) = 0.78 is lower than expected from comparable field studies and even lower values are experienced during the study. Possible causes of this discrepancy are examined and the utility of using the current version of the CRDT/N instrument to measure the key radiative property ω0 is assessed. Observed episodes of rapid increases in particle number concentration with little corresponding growth in the optical properties can presumably be used to signal the occurrence of particle nucleation or growth via gas-phase condensation. These results may be confirmed by other data taken during the TRAMP experiment. These results will be discussed in the context of aerosol effects on regional and larger scale climate.

  14. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian

    The Richtmyer-Meshkov Instability (RMI) (Commun. Pure Appl. Math 23, 297-319, 1960; Izv. Akad. Nauk. SSSR Maekh. Zhidk. Gaza. 4, 151-157, 1969) occurs due to an impulsive acceleration acting on a perturbed interface between two fluids of different densities. In the experiments presented in this thesis, single mode 3D RMI experiments are performed. An oscillating speaker generates a single mode sinusoidal initial perturbation at an interface of two gases, air and SF6. A Mach 1.19 shock wave accelerates the interface and generates the Richtmyer-Meshkov Instability. Both gases are seeded with propylene glycol particles which are illuminated by an Nd: YLF pulsed laser. Three high-speed video cameras record image sequences of the experiment. Particle Image Velocimetry (PIV) is applied to measure the velocity field. Measurements of the amplitude for both spike and bubble are obtained, from which the growth rate is measured. For both spike and bubble experiments, amplitude and growth rate match the linear stability theory at early time, but fall into a non-linear region with amplitude measurements lying between the modified 3D Sadot et al. model ( Phys. Rev. Lett. 80, 1654-1657, 1998) and the Zhang & Sohn model (Phys. Fluids 9. 1106-1124, 1997; Z. Angew. Math Phys 50. 1-46, 1990) at late time. Amplitude and growth rate curves are found to lie above the modified 3D Sadot et al. model and below Zhang & Sohn model for the spike experiments. Conversely, for the bubble experiments, both amplitude and growth rate curves lie above the Zhang & Sohn model, and below the modified 3D Sadot et al. model. Circulation is also calculated using the vorticity and velocity fields from the PIV measurements. The calculated circulation are approximately equal and found to grow with time, a result that differs from the modified Jacobs and Sheeley's circulation model (Phys. Fluids 8, 405-415, 1996).

  15. The ONR-602 experiment and investigation of particle precipitation near the equator

    NASA Technical Reports Server (NTRS)

    Miah, M. A.

    1991-01-01

    The global precipitation of radiation belt particles at low altitude was investigated, using the ONR-602 experiment on board U.S. Air Force mission S81-1. A combination of a main telescope, beginning analysis at a few MeV/nucleon, and a monitor system, giving results below 1 MeV/nucleon, was designed for measuring particle phenomena characterized by almost any energy spectrum. The monitor provides an indication of the presence of the particles at low energy, while the main telescope gives detailed flux and composition data for the higher energy events. Results of the instrument performance analysis indicate that, at the equator, the monitor telescope has the peak efficiency for particles of about 90 deg pitch angles. The large opening angle of 75 deg makes it possible to detect omnidirectional flux of quasi-trapped particles. The high-energy cosmic-ray background count is found to be very insignificant. It is demonstrated that the particle counting rates for the low-energy threshold have been almost entirely due to protons.

  16. Measurements of phoretic velocities of aerosol particles in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Prodi, F.; Santachiara, G.; Travaini, S.; Vedernikov, A.; Dubois, F.; Minetti, C.; Legros, J. C.

    2006-11-01

    Measurements of thermo- and diffusio-phoretic velocities of aerosol particles (carnauba wax, paraffin and sodium chloride) were performed in microgravity conditions (Drop Tower facility, in Bremen, and Parabolic Flights, in Bordeaux). In the case of thermophoresis, a temperature gradient was obtained by heating the upper plate of the cell, while the lower one was maintained at environmental temperature. For diffusiophoresis, the water vapour gradient was obtained with sintered plates imbued with a water solution of MgCl 2 and distilled water, at the top and at the bottom of the cell, respectively. Aerosol particles were observed through a digital holographic velocimeter, a device allowing the determination of 3-D coordinates of particles from the observed volume. Particle trajectories and consequently particle velocities were reconstructed through the analysis of the sequence of particle positions. The experimental values of reduced thermophoretic velocities are between the theoretical values of Yamamoto and Ishihara [Yamamoto, K., Ishihara, Y., 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids. 31, 3618-3624] and Talbot et al. [Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737-758], and do not show a clear dependence on the thermal conductivity of the aerosol. The existence of negative thermophoresis is not confirmed in our experiments. Concerning diffusiophoretic experiments, the results obtained show a small increase of reduced diffusiophoretic velocity with the Knudsen number.

  17. KASCADE-Grande experiment measurements of the cosmic ray spectrum and large scale anisotropy

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.; KASCADE-Grande Collaboration

    2016-10-01

    The KASCADE-Grande experiment operated at KIT from January 2004 to November 2012, measuring Extensive Air Showers (EAS) generated by primary cosmic rays in the 1016-1018 eV energy range. The experiment measured, for each single event, with a high resolution, the total number of charged particles (Nch) and of muons (Nμ). In this contribution we summarize the results obtained about: (i) the measurement of the all particle energy spectrum, discussing the influence of the hadronic interaction model used to derive the energy calibration of the experimental data. (ii) The energy spectra derived separating the events according to the Nμ /Nch ratio. This technique allowed us to unveil a steepening of the spectrum of heavy primaries at E ˜10 16.92 ± 0.04 eV and a hardening of the spectrum of light primaries at E ˜10 17.08 ± 0.08 eV. (ii) A search for large scale anisotropies.

  18. Search for new physics in a precise 20F beta spectrum shape measurement

    NASA Astrophysics Data System (ADS)

    George, Elizabeth; Voytas, Paul; Chuna, Thomas; Naviliat-Cuncic, Oscar; Gade, Alexandra; Hughes, Max; Huyan, Xueying; Liddick, Sean; Minamisono, Kei; Paulauskas, Stanley; Weisshaar, Dirk; Ban, Gilles; Flechard, Xavier; Lienard, Etienne

    2015-10-01

    We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. We aim to achieve a relative precision below 3%, representing an order of magnitude improvement compared to previous experiments. This level of precision will enable a test of the so-called strong form of the conserved vector current (CVC) hypothesis, and should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in a scintillation detector deep enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the beam implantation. Ancillary detectors are used to tag the 1.633-MeV γ-rays following the β decay for coincidence measurements in order to reduce backgrounds. We will give an overview and report on the status of the experiment.

  19. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  20. The Cold Land Processes Experiment (CLPX-1): Analysis and Modelling of LSOS Data (IOP3 Period)

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Hardy, Janet; Armstrong, Richard; Brodzik, Mary

    2004-01-01

    Microwave brightness temperatures at 18.7,36.5, and 89 GHz collected at the Local-Scale Observation Site (LSOS) of the NASA Cold-Land Processes Field Experiment in February, 2003 (third Intensive Observation Period) were simulated using a Dense Media Radiative Transfer model (DMRT), based on the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). Inputs to the model were averaged from LSOS snow pit measurements, although different averages were used for the lower frequencies vs. the highest one, due to the different penetration depths and to the stratigraphy of the snowpack. Mean snow particle radius was computed as a best-fit parameter. Results show that the model was able to reproduce satisfactorily brightness temperatures measured by the University of Tokyo s Ground Based Microwave Radiometer system (CBMR-7). The values of the best-fit snow particle radii were found to fall within the range of values obtained by averaging the field-measured mean particle sizes for the three classes of Small, Medium and Large grain sizes measured at the LSOS site.

  1. Search for gluon saturation at Bjorken-x of 10-6-10-5 with the LHCb detector

    NASA Astrophysics Data System (ADS)

    da Silva, Cesar; LHCb Collaboration

    2017-09-01

    Gluon saturation at small Byorken- x has been in the minds of particle and nuclear physicists for decades. This state can explain several recent observations such as 1) particle collectivity observed in p+p, p+A and A+A collisions at RHIC and LHC; and 2) depleted yield of particles coming from soft gluons. Previous results from DIS experiments at HERA show a fast increase of gluons as their fractional momentum x decreases. The LHCb experiment is a forward spectrometer with vertexing, tracking, p, K, pi , e, μ identification and calorimetry in the rapidity region 1.6 < η < 4.9. LHCb is the only experiment in the world which can probe x 10-6 -10-5 , up to two orders of magnitude smaller than HERA. A direct probe of gluons at small-x and small Q2 can be performed with γ+jet correlation measurements. The current detector acceptance is not optimized for soft particles coming from Q2 < 10 [GeV/c]2 processes, where gluon saturation is expected. R&D is underway for a new tracking detector to be placed inside the LHCb magnet, the Magnet Station (MS), which will enable measurements of these soft particles. This talk is going to report the status of the analysis efforts aimed at finding the gluon saturation scale at LHCb, and details of the MS. Los Alamos National Lab LDRD program.

  2. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of Southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Chan, T. W.; Brook, J. R.; Smallwood, G. J.; Lu, G.

    2010-08-01

    In this study a photoacoustic spectrometer (PA), a laser-induced incandescence instrument system (LII) and an aerosol mass spectrometer were operated in parallel for in situ measurements of black carbon (BC) light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by particle coating while the PA response is enhanced and also that the nature of this enhancement is influenced by particle morphology. Comparisons of ambient PA and LII measurements at four different locations (suburban Toronto; a street canyon with heavy diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario), show that the different meteorological conditions and atmospheric processes result in different particle light absorption enhancement and hence the specific attenuation coefficient (SAC). Depending upon location of measurement and the BC spherule diameter (primary particle size - PPS) measurement from the LII, the SAC varies from 2.6±0.04 to 22.5±0.7 m2 g-1. Observations from this study also show the active surface area of the BC aggregate, inferred from PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. The predictability of the overall BC light absorption enhancement in the atmosphere depends not only on the coating mass but also on the source of the BC and on our ability to predict or measure the change in particle morphology as particles evolve.

  3. Estimation of settling velocity of sediment particles in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Nasiha, Hussain J.; Shanmugam, Palanisamy

    2018-04-01

    A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can be easily adopted for various scientific and operational applications since the required parameters are readily measurable with the commercially available instrumentations.

  4. Particle-laden weakly swirling free jets: Measurements and predictions. Ph.D. Thesis - Pennsylvania State Univ.

    NASA Technical Reports Server (NTRS)

    Bulzan, Daniel L.

    1988-01-01

    A theoretical and experimental investigation of particle-laden, weakly swirling, turbulent free jets was conducted. Glass particles, having a Sauter mean diameter of 39 microns, with a standard deviation of 15 microns, were used. A single loading ratio (the mass flow rate of particles per unit mass flow rate of air) of 0.2 was used in the experiments. Measurements are reported for three swirl numbers, ranging from 0 to 0.33. The measurements included mean and fluctuating velocities of both phases, and particle mass flux distributions. Measurements were also completed for single-phase non-swirling and swirling jets, as baselines. Measurements were compared with predictions from three types of multiphase flow analysis, as follows: (1) locally homogeneous flow (LHF) where slip between the phases was neglected; (2) deterministic separated flow (DSF), where slip was considered but effects of turbulence/particle interactions were neglected; and (3) stochastic separated flow (SSF), where effects of both interphase slip and turbulence/particle interactions were considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. Single-phase weakly swirling jets were considered first. Predictions using a standard k-epsilon turbulence model, as well as two versions modified to account for effects of streamline curvature, were compared with measurements. Predictions using a streamline curvature modification based on the flux Richardson number gave better agreement with measurements for the single-phase swirling jets than the standard k-epsilon model. For the particle-laden jets, the LHF and DSF models did not provide very satisfactory predictions. The LHF model generally overestimated the rate of decay of particle mean axial and angular velocities with streamwise distance, and predicted particle mass fluxes also showed poor agreement with measurements, due to the assumption of no-slip between phases. The DSF model also performed quite poorly for predictions of particle mass flux because turbulent dispersion of the particles was neglected. The SSF model, which accounts for both particle inertia and turbulent dispersion of the particles, yielded reasonably good predictions throughout the flow field for the particle-laden jets.

  5. Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at √{sNN} = 2.76 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Chen, Y.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Debbe, R.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, Hs.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-04-01

    The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over | η | < 2 in lead-lead collisions at a nucleon-nucleon centre-of-mass energy of √{sNN} = 2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point "tracklets" and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2 < | η | < 4.9. Measurements are presented of the per-event charged particle pseudorapidity distribution, dNch / dη, and the average charged particle multiplicity in the pseudorapidity interval | η | < 0.5 in several intervals of collision centrality. The results are compared to previous mid-rapidity measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with lower √{sNN} results. The shape of the dNch / dη distribution is found to be independent of centrality within the systematic uncertainties of the measurement.

  6. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  7. Constraining ejecta particle size distributions with light scattering

    NASA Astrophysics Data System (ADS)

    Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William

    2017-06-01

    The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.

  8. Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultrarelativistic energies

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kotuła, J.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2011-02-01

    Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |η|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dNch/dη and the total charged-particle multiplicity Nch are found to factorize into a product of independent functions of collision energy, sNN, and centrality given in terms of the number of nucleons participating in the collision, Npart. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lnsNN)2 over the full range of collision energy of sNN=2.7-200 GeV.

  9. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  10. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  11. Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Vaughan, O. H.

    1978-01-01

    In measuring the size distribution of artificial fog particles, it is important that the natural state of the particles not be disturbed by the measuring device, such as occurs when samples are drawn through tubes. This paper describes a method for carrying out such a measurement by allowing the fog particles to settle in quiet air inside an enclosure through which traverses a parallel beam of light for measuring the optical depth as a function of time. An analytic function fit to the optical depth time decay curve can be directly inverted to yield the size distribution. Results of one such experiment performed on artificial fogs are shown as an example. The forwardscattering corrections to the measured extinction coefficient are also discussed with the aim of optimizing the experimental design so that the error due to forwardscattering is minimized.

  12. Time of flight in MUSE at PIM1 at Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Lin, Wan; Gilman, Ronald; MUSE Collaboration

    2016-09-01

    The MUSE experiment at PIM1 at Paul Scherrer Institute in Villigen, Switzerland, measures elastic scattering of electrons and muons from a liquid hydrogen target. The intent of the experiment is to deduce whether the radius of the proton is the same when determined from the two different particle types. Precision timing is an important aspect of the experiment, used to determine particle types, reaction types, and beam momentum. Here we present results for a test setup measuring time of flight between prototypes of two detector systems to be used in the experiment, compared to Geant4 simulations. The results demonstrate time of flight resolution better than 100 ps, and beam momentum determination at the level of a few tenths of a percent. Douglass Project for Rutgers Women in Math, Science & Engineering, National Science Foundation Grant 1306126 to Rutgers University.

  13. g Dependent particle concentration due to sedimentation

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D.

    2012-11-01

    Sedimentation of particles in a fluid has long been used to characterize particle size distribution. Stokes' law is used to determine an unknown distribution of spherical particle sizes by measuring the time required for the particles to settle a known distance in a fluid of known viscosity and density. In this paper, we study the effects of gravity on sedimentation by examining the resulting particle concentration distributed in an equilibrium profile of concentration C m, n above the bottom of a container. This is for an experiment on the surface of the Earth and therefore the acceleration of gravity had been corrected for the oblateness of the Earth and its rotation. Next, at the orbital altitude of the spacecraft in orbit around Earth the acceleration due to the central field is corrected for the oblateness of the Earth. Our results show that for experiments taking place in circular or elliptical orbits of various inclinations around the Earth the concentration ratio C m, n / C m, ave , the inclination seems to be the most ineffective in affecting the concentration among all the orbital elements. For orbital experiment that use particles of diameter d p =0.001 μm the concentration ratios for circular and slightly elliptical orbits in the range e=0-0.1 exhibit a 0.009 % difference. The concentration ratio increases with the increase of eccentricity, which increases more for particles of larger diameters. Finally, for particles of the same diameter concentration ratios between Earth and Mars surface experiments are related in the following way C_{(m,n)_{mathit{Earth}}} = 0.99962 C_{(m,n)_{mathit{Mars}}}.

  14. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  15. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2003-01-01

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  16. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  17. Simultaneous Concentration and Velocity Maps in Particle Suspensions under Shear from Rheo-Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Saint-Michel, Brice; Bodiguel, Hugues; Meeker, Steven; Manneville, Sébastien

    2017-07-01

    We extend a previously developed ultrafast ultrasonic technique [T. Gallot et al., Rev. Sci. Instrum. 84, 045107 (2013), 10.1063/1.4801462] to concentration-field measurements in non-Brownian particle suspensions under shear. The technique provides access to time-resolved concentration maps within the gap of a Taylor-Couette cell simultaneously to local velocity measurements and standard rheological characterization. Benchmark experiments in homogeneous particle suspensions are used to calibrate the system. We then image heterogeneous concentration fields that result from centrifugation effects, from the classical Taylor-Couette instability, and from sedimentation or shear-induced resuspension.

  18. Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Bradford, Deborah G.

    1999-01-01

    This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of NOAA's Office of Global Programs and NASA's AEAP and measures particle size distributions in the 4-100 nm range.

  19. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N. G.

    The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. Our work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. Additionally, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. In using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collectedmore » at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.« less

  20. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry

    DOE PAGES

    Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N. G.; ...

    2017-05-05

    The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. Our work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. Additionally, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. In using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collectedmore » at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.« less

  1. Uranus science planning. [considering Mariner Jupiter-Uranus mission

    NASA Technical Reports Server (NTRS)

    Moore, J.

    1974-01-01

    Recommendations for a 1979 Mariner Jupiter-Uranus mission are discussed with the possibility of launching the first outer planet atmospheric entry probe. Measurement categories considered for the mission include conducting imaging experiments, observations in both the IR and UV spectral range, experiments associated with magnetic fields, plasma, charged particles, and S- and X-band occultation measurements.

  2. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  3. Comparison of GEANT4 Physics Models with Measured Beta Particle Data in Aluminum using a Strontium-90 Source

    NASA Astrophysics Data System (ADS)

    Everett, Samantha

    2010-10-01

    A transmission curve experiment was carried out to measure the range of beta particles in aluminum in the health physics laboratory located on the campus of Texas Southern University. The transmission count rate through aluminum for varying radiation lengths was measured using beta particles emitted from a low activity (˜1 μCi) Sr-90 source. The count rate intensity was recorded using a Geiger Mueller tube (SGC N210/BNC) with an active volume of 61 cm^3 within a systematic detection accuracy of a few percent. We compared these data with a realistic simulation of the experimental setup using the Geant4 Monte Carlo toolkit (version 9.3). The purpose of this study was to benchmark our Monte Carlo for future experiments as part of a more comprehensive research program. Transmission curves were simulated based on the standard and low-energy electromagnetic physics models, and using the radioactive decay module for the electrons primary energy distribution. To ensure the validity of our measurements, linear extrapolation techniques were employed to determine the in-medium beta particle range from the measured data and was found to be 1.87 g/cm^2 (˜0.693 cm), in agreement with literature values. We found that the general shape of the measured data and simulated curves were comparable; however, a discrepancy in the relative count rates was observed. The origin of this disagreement is still under investigation.

  4. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  5. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp(RH) at a certain RH divided by sp at a dry value, was used to evaluate the aerosol hygroscopicity. Different empirical fits were evaluated using the f(RH) data. The widely used gamma model was found inappropriate, as it overestimates f(RH) for RH<75%. Abetter empirical fit with two power-law curve-fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass (OMC) and the species that are affected by RH and f(RH) was also studied and categorized between the sites. A second experiment is reported where the first two elements of the scattering matrix of laboratory generated particles were studied under different humidity conditions. The non-spherical particles generated were ammonium sulfate, sodium chloride, and ammonium nitrate. The optical measurements were performed with a polarized imaging nephelometer (PI-Neph) installed in series with the humidifier dryer apparatus. The inorganic salts experienced low (80%) RH levels so that the observations could contrast the differences when the salts were crystallized (low RH) and when the particles turned to aqueous solutions after deliquesence (high RH). The measurements with the PI-Neph produce the aerosol phase function and the polarized phase function in a range of angles that go from 3 to 177. The results showed significant changes in the phase function and polarized phase function due to the hygroscopic growth. Although the inorganic salts used inthe experiments were non-spherical, the dry measurements were successfully reproduced with the Mie theory using literature values for the dry index of refraction. Moreover, the changes in the particle size distribution and index of refraction were evaluated through classic thermodynamic equilibrium theory producing comparable results with the simulations performed with Mie formalism. The final experiment consisted in the measurements of phase function and degree of linear polarization of ambient aerosols sampled in Baltimore, MD with the PI-Neph. This study was centered on specific case studies where different aerosol conditions were experienced such as clean, haze episode, and transported smoke event. The approach employed consisted of dry and humid observations of ambient aerosols to compare them with total column products by AERONET. A relatively low difference between the phase function and the degree of linear polarization was measured at high and low RH. The small difference found in the scattering elements and their retrievals is attributed to the general aerosol composition in the region. It was observed that a RH increase causes the particles to scatter more light uniformly over all the scattering angles, and also, that the water uptake did not change markedly the particle's polarization properties. The comparison between in-situ and total column derived observations were highly correlated for most of the cases. The size distribution retrievals from the in-situ measurements were very comparable to the size distributions reported by AERONET, but only for the fine modes.

  6. Momentum and particle transport in a nonhomogenous canopy

    NASA Astrophysics Data System (ADS)

    Gould, Andrew W.

    Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.

  7. A rocket-borne electrostatic analyzer for measurement of energetic particle flux

    NASA Technical Reports Server (NTRS)

    Pozzi, M. A.; Smith, L. G.; Voss, H. D.

    1979-01-01

    A rocket-borne electrostatic analyzer experiment is described. It is used to measure energetic particle flux (0.9 to 14 keV) in the nighttime midlatitude E region. Energetic particle precipitation is believed to be a significant nighttime ionization source, particularly during times of high geomagnetic activity. The experiment was designed for use in the payload of a Nike Apache sounding rocket. The electrostatic analyzer employs two cylindrical parallel plates subtending a central angle of 90 deg. The voltage waveform supplied to the plates is a series of steps synchronized to the spin of the payload during flight. Both positive and negative voltages are provided, extending the detection capabilities of the instrument to both electrons and protons (and positive ions). The development, construction and operation of the instrument is described together with a preliminary evaluation of its performance in a rocket flight.

  8. Using field-particle correlations to study auroral electron acceleration in the LAPD

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2017-10-01

    Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.

  9. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    NASA Astrophysics Data System (ADS)

    Petkov, T.; Yang, M.; Ren, K. F.; Pouligny, B.; Loudet, J.-C.

    2017-07-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the "primary" oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods.

  10. Characterization of Imposed Ordered Structures in MDPX

    NASA Astrophysics Data System (ADS)

    Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyn, Rodney K.; Department of Chemistry, University of Ottawa, Ottawa; Kennedy, David C.

    Research highlights: {yields} Hepatitis C virus uses lipid droplets (LD) onto which HCV core proteins bind. {yields} HCV core proteins on LDs facilitate viral particle assembly. {yields} We used a novel combination of CARS, two-photon fluorescence, and DIC microscopies. {yields} Particle tracking experiments show that core slowly affects LD localization. {yields} Particle tracking measured the change in speed and directionality of LD movement. -- Abstract: The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV coremore » proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies. Results show that the HCV core protein induces rapid increases in LD size. Particle tracking experiments show that HCV core protein slowly affects LD localization by controlling the directionality of LD movement on microtubules. These dynamic processes ultimately aid HCV in propagating and the molecules and interactions involved represent novel targets for potential therapeutic intervention.« less

  12. On-the-fly cross flow laser guided separation of aerosol particles

    NASA Astrophysics Data System (ADS)

    Lall, A. A.; Terray, A.; Hart, S. J.

    2010-08-01

    Laser separation of particles is achieved using forces resulting from the momentum exchange between particles and photons constituting the laser radiation. Particles can experience different optical forces depending on their size and/or optical properties, such as refractive index. Thus, particles can move at different speeds in the presence of an optical force, leading to spatial separations. Several studies for aqueous suspension of particles have been reported in the past. In this paper, we present extensive analysis for optical forces on non-absorbing aerosol particles. We used a loosely focused Gaussian 1064 nm laser to simultaneously hold and deflect particles entrained in flow perpendicular to their direction of travel. The gradient force is used to hold the particles against the viscous drag for a short period of time. The scattering force simultaneously pushes the particles during this period. Theoretical calculations are used to simulate particle trajectories and to determine the net deflection: a measure of the ability to separate. We invented a novel method for aerosol generation and delivery to the flow cell. Particle motion was imaged using a high speed camera working at 3000+ frames per second with a viewing area up to a few millimeters. An 8W near-infrared 1064 nm laser was used to provide the optical force to the particles. Theoretical predictions were corroborated with measurements using polystyrene latex particles of 20 micron diameter. We measured particle deflections up to about 1500 microns. Such large deflections represent a new milestone for optical chromatography in the gas phase.

  13. Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui

    2018-02-01

    The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.

  14. Simulation of large particle transport near the surface under stable conditions: comparison with the Hanford tracer experiments

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Larson, Timothy

    A plume model is presented describing the downwind transport of large particles (1-100 μm) under stable conditions. The model includes both vertical variations in wind speed and turbulence intensity as well as an algorithm for particle deposition at the surface. Model predictions compare favorably with the Hanford single and dual tracer experiments of crosswind integrated concentration (for particles: relative bias=-0.02 and 0.16, normalized mean square error=0.61 and 0.14, for the single and dual tracer experiments, respectively), whereas the US EPA's fugitive dust model consistently overestimates the observed concentrations at downwind distances beyond several hundred meters (for particles: relative bias=0.31 and 2.26, mean square error=0.42 and 1.71, respectively). For either plume model, the measured ratio of particle to gas concentration is consistently overestimated when using the deposition velocity algorithm of Sehmel and Hodgson (1978. DOE Report PNL-SA-6721, Pacific Northwest Laboratories, Richland, WA). In contrast, these same ratios are predicted with relatively little bias when using the algorithm of Kim et al. (2000. Atmospheric Environment 34 (15), 2387-2397).

  15. Scattering of 42-MeV alpha particles from Cu-65

    NASA Technical Reports Server (NTRS)

    Stewart, W. M.; Seth, K. K.

    1972-01-01

    The extended particle-core coupling model was used to predict the properties of low-lying levels of Cu-65. A 42-MeV alpha particle cyclotron beam was used for the experiment. The experiment included magnetic analysis of the incident beam and particle detection by lithium-drifted silicon semiconductors. Angular distributions were measured for 10 to 50 degrees in the center of mass system. Data was reduced by fitting the peaks with a skewed Gaussian function using a least squares computer program with a linear background search. The energy calibration of each system was done by pulsar, and the excitation energies are accurate to + or - 25 keV. The simple weak coupling model cannot account for the experimentally observed quantities of the low-lying levels of Cu-65. The extended particle-core calculation showed that the coupling is not weak and that considerable configuration mixing of the low-lying states results.

  16. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  17. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-01

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  18. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment.

    PubMed

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-27

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  19. A Study of the quality of CsI detectors and pulse-shape discrimination of scintillators for ?[U+0251]-particles, ?[U+0263]-particles, and neutrons

    NASA Astrophysics Data System (ADS)

    Salyer, Kaitlin; Rogachev, Grigory; Hooker, Joshua

    2016-09-01

    This project studied the capabilities of two different scintillators, Cesium Iodide (CsI) and p-Terphenyl. First, the resolution of a CsI detector was investigated by exposing only very small areas of its surface at a time to an alpha source. Second, the abilities of p-Terphenyl to detect alpha particles, gamma particles, and neutrons were analyzed through pulse shape discrimination. p-Terphenyl is of particular interest because it will be used in the Mitchell Institute Neutrino Experiment at Reactor (MINER) at Texas A&M University for measuring background data. The information learned from conducting these tests will be useful in understanding and expanding the limits of the experiments in which these detectors will ultimately be used.

  20. Quantum mechanical which-way experiment with an internal degree of freedom

    PubMed Central

    Banaszek, Konrad; Horodecki, Paweł; Karpiński, Michał; Radzewicz, Czesław

    2013-01-01

    For a particle travelling through an interferometer, the trade-off between the available which-way information and the interference visibility provides a lucid manifestation of the quantum mechanical wave–particle duality. Here we analyse this relation for a particle possessing an internal degree of freedom such as spin. We quantify the trade-off with a general inequality that paints an unexpectedly intricate picture of wave–particle duality when internal states are involved. Strikingly, in some instances which-way information becomes erased by introducing classical uncertainty in the internal degree of freedom. Furthermore, even imperfect interference visibility measured for a suitable set of spin preparations can be sufficient to infer absence of which-way information. General results are illustrated with a proof-of-principle single-photon experiment. PMID:24161992

  1. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.; Miller, D.

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods.more » Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory, and coordinated with modeling efforts underway at Idaho National Laboratory.« less

  2. Calibration of the LHAASO-KM2A electromagnetic particle detectors using charged particles within the extensive air showers

    NASA Astrophysics Data System (ADS)

    Lv, Hongkui; He, Huihai; Sheng, Xiangdong; Liu, Jia; Chen, Songzhan; Liu, Ye; Hou, Chao; Zhao, Jing; Zhang, Zhongquan; Wu, Sha; Wang, Yaping; Lhaaso Collaboration

    2018-07-01

    In the Large High Altitude Air Shower Observatory (LHAASO), one square kilometer array (KM2A), with 5242 electromagnetic particle detectors (EDs) and 1171 muon detectors (MDs), is designed to study ultra-high energy gamma-ray astronomy and cosmic ray physics. The remoteness and numerous detectors extremely demand a robust and automatic calibration procedure. In this paper, a self-calibration method which relies on the measurement of charged particles within the extensive air showers is proposed. The method is fully validated by Monte Carlo simulation and successfully applied in a KM2A prototype array experiment. Experimental results show that the self-calibration method can be used to determine the detector time offset constants at the sub-nanosecond level and the number density of particles collected by each ED with an accuracy of a few percents, which are adequate to meet the physical requirements of LHAASO experiment. This software calibration also offers an ideal method to realtime monitor the detector performances for next generation ground-based EAS experiments covering an area above square kilometers scale.

  3. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  4. A novel inversion method to calculate the mass fraction of coated refractory black carbon using a centrifugal particle mass analyzer and single particle soot photometer

    NASA Astrophysics Data System (ADS)

    Irwin, M.; Broda, K.; Olfert, J. S.; Schill, G. P.; McMeeking, G. R.; Schnitzler, E.; Jäger, W.

    2016-12-01

    Refractory black carbon (rBC) has important atmospheric impacts due to its ability to absorb light, and its interactions with light are partly governed by the acquisition of coatings or other mixing processes. Here, a novel inversion method is presented which derives the mass fraction of coated rBC using a coupled centrifugal particle mass analyzer (CPMA) and single particle soot photometer (SP2). The CPMA selects particles of a known mass-­to-­charge ratio, and the SP2 detects the mass of rBC in each individual particle. The results of the inversion are the simultaneous number distributions of both rBC mass and total particle mass. Practically, the distribution can be integrated to find properties of the total aerosol population, for example, i) mass fraction of coating and ii) mass of coating on a particle of known total mass. This was demonstrated via smog chamber experiments. Initially, particles in the chamber were pure rBC, produced from a methane burner and passed through a diffusion dryer and thermal denuder. An organic (non-rBC) coating was then grown onto the aerosol over several hours via photooxidation with p-xylene. The CPMA-SP2 coupled system sampled the aerosol over the reaction period as the coating grew. The CPMA was sequentially stepped over a mass range from 0.3 to 28 fg and the SP2 measured the mass of rBC in each individual CPMA-classified particle. The number and mass distributions were constructed using the inversion. As expected, the mass and number distributions of rBC and total mass were equivalent for uncoated particles. As the non-rBC coating thickness increased over time, a shift in the number distribution towards higher total mass was observed. At the end of the experiment, fresh rBC (i.e. uncoated, bare particles) was injected into the chamber, creating an external mixture of coated and uncoated particles. This external mixture was clearly resolved in the number distribution of rBC and total particle mass. It is expected that the CPMA-SP2 methodology and inversion technique would be useful for field measurements where the rBC mass fraction, and mixing state of rBC-containing particles, could be accurately measured continuously. This methodology is not limited to evaluating coating mass—unlike SP2 only methods, it gives an unambiguous measure of any non-rBC material mixed with the particle.

  5. Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin; Cohen, E. G. D.

    2011-10-01

    The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty plasma experiment, micron-sized dust particles are introduced into a partially ionized argon plasma, where they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation function. This calculation also requires the interparticle potential, which was not measured experimentally but was obtained using a Debye-Hückel-type model with experimentally determined parameters. Integrating the autocorrelation function over time yields the viscosity for shearing motion among dust particles. The viscosity so obtained is found to agree with results from a previous experiment using a hydrodynamical Navier-Stokes equation. This comparison serves as a test of the Green-Kubo relation for viscosity. Our result is also compared to the predictions of several simulations.

  6. A neural network device for on-line particle identification in cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.

    2004-05-01

    On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.

  7. Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 - Evidence from measurements

    NASA Astrophysics Data System (ADS)

    Wex, H.; Petters, M. D.; Carrico, C. M.; Hallbauer, E.; Massling, A.; McMeeking, G. R.; Poulain, L.; Wu, Z.; Kreidenweis, S. M.; Stratmann, F.

    2009-01-01

    Secondary Organic Aerosols (SOA) studied in laboratory experiments generally was found to show only slight hygroscopic growth, but a much better activity as a CCN (Cloud Condensation Nucleus) than indicated by the hygroscopic growth. This discrepancy was examined at LACIS (Leipzig Aerosol Cloud Interaction Simulator), using a portable generator that produced SOA particles from the ozonolysis of α-pinene, and adding butanol or butanol and water vapor during some of the experiments. The light scattering signal of dry SOA-particles was measured by the LACIS optical particle spectrometer and was used to derive a refractive index for SOA of 1.45. LACIS also measured the hygroscopic growth of SOA particles up to 99.6% relative humidity (RH), and a CCN counter was used to measure the particle activation. SOA-particles were CCN active with critical diameters of e.g. 100 and 55 nm at supersaturations of 0.4 and 1.1%, respectively. But only slight hygroscopic growth with hygroscopic growth factors ≤1.05 was observed at RH<98% RH. The hygroscopic growth increased slightly with the OH concentration present during the SOA-generation. At RH>98%, the hygroscopic growth increased stronger than would be expected if a constant hygroscopicity parameter for the particle/droplet solution was assumed. An increase of the hygroscopicity parameter by a factor of 4-6 was observed in the RH-range from below 90 to 99.6%, and this increase continued for increasingly diluted particle solutions for activating particles. This explains an observation already made in the past: that the relation between critical supersaturation and dry diameter for activation is steeper than what would be expected for a constant value of the hygroscopicity. The increase in the hygroscopicity parameter could be explained by either an increase in the number of ions/molecules in solution (e.g. due to the presence of slightly soluble particles with deliquescence RHs above 98%), or a change in the non-ideal behaviour (see companion paper Petters et al., 2008). Combining measurements of hygroscopic growth and activation, it was found that the surface tension that has to be assumed to interpret the measurements consistently is greater than 55 mN/m, possibly close to that of pure water, depending on the different SOA-types produced, and therefore only in part accounts for the discrepancy between hygroscopic growth and CCN activity observed for SOA particles in the past.

  8. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study.

    PubMed

    Holtzer, Gretchen L; Velegol, Darrell

    2005-10-25

    Differential electrophoresis experiments are often used to measure subpiconewton forces between two spheres of a heterodoublet. The experiments have been interpreted by solving the electrokinetic equations to obtain a simple Stokes law-type equation. However, for nanocolloids, the effects of Brownian motion alter the interpretation: (1) Brownian translation changes the rate of axial separation. (2) Brownian rotation reduces the alignment of the doublet with the applied electric field. (3) Particles can reaggregate by Brownian motion after they break, forming either heterodoublets or homodoublets, and because homodoublets cannot be broken by differential electrophoresis, this effectively terminates the experiment. We tackle points 1 and 2 using Brownian dynamics simulations (BDS) with electrophoresis as an external force, accounting for convective translation and rotation as well as Brownian translation and rotation. Our simulations identify the lower particle size limit of differential electrophoresis to be about 1 microm for desired statistical accuracy. Furthermore, our simulations predict that particles around 10 nm in size and at ambient conditions will break primarily by Brownian motion, with a negligible effect due to the electric field.

  9. Attenuation of Gas Turbulence by a Nearly Stationary Dispersion of Fine Particles

    NASA Technical Reports Server (NTRS)

    Paris, A. D.; Eaton, J. K.; Hwang, W.

    1999-01-01

    Turbulence attenuation by greater than a factor of two has been observed in many practical gas flows carrying volume fractions as small as 0.01% of dispersed particles. Particles which cause such attenuation usually are smaller than the smallest scales of the turbulence and have time constants 5 to 10 times greater than the time scale of a typical turbulent eddy. That is, strongly attenuating particles usually have Stokes numbers in the range of 5 to 10, indicating that they do not respond to the turbulent fluctuations, but instead just fall through the flow responding only to the mean flow. There are two mechanisms by which free falling particles may attenuate turbulence. First, the unresponsive particles act as a drag on the turbulent eddies, passing energy from the turbulent eddies to the small scale wakes of the particles where it is quickly dissipated by viscosity. The second mechanism is more complicated. Particles falling under gravity convert gravitational potential energy to turbulent velocity fluctuations. If the particles are large, this mechanism increases the overall turbulence level. However, with moderate size particles, the small scale turbulence generated apparently distorts the turbulent eddies leading to more rapid dissipation. Unfortunately, this conclusion is supported only by circumstantial evidence to date. The objectives of the experiment are to use microgravity to separate the two mechanisms. A region of nearly-isotropic decaying turbulence with zero mean flow will be formed in a box in the microgravity environment. Different sets of particles with Stokes numbers in the range of 2 to 20 will be dispersed in the flow. With zero gravity and no mean fluid velocity the particles will have zero mean velocity. With the large Stokes numbers, the fluctuating velocities will also be small. Therefore, the only attenuation mechanism will be the direct action of the particles on the turbulence. Control experiments will also be done in which the particles fall through the measurement volume. Measurements will be acquired using a high resolution image velocimetry (PIV) system being developed specifically for work in particle-laden flows. The measurements will include the decay of the turbulence kinetic energy under various particle loadings. The spatial spectra of the turbulence will also be measured. In a second set of experiments, the interaction of a single eddy with a collection of nearly stationary particles will be examined. The eddy will be a vortex ring emitted by a jet pulse through an orifice. The distortion of the vortex under the influence of the particles will be examined to gain a better understanding of how fine particles can cause such large reductions in turbulence levels. This experiment could not be conducted in terrestrial gravity because the high particle velocities would overwhelm the relatively low speed motion of the vortex ring. This experimental program is just getting underway. The initial challenge is to build a closed facility containing reasonably homogeneous and isotropic turbulence with zero mean velocity. Our approach is to use a set of synthetic jets mounted on the periphery of a transparent plexiglass box to create the turbulence. A synthetic jet is a plenum chamber with an orifice open to the volume of interest. The volume of the chamber fluctuates periodically so alternately a jet is ejected from the volume or flow is drawn back in as a sink. The asymmetry of this situation results in a net transport of momentum and kinetic energy into the volume of interest. The present apparatus includes eight synthetic jets each powered independently by a six inch loudspeaker. The synthetic jets discharge through ejector tubes to increase the scale of the turbulence. Construction of the apparatus is now complete and preliminary flow visualization studies have been conducted. The PIV system is also under development. A compact dual-pulse YAG laser has been acquired as the light source and special software is under development to allow simultaneous measurements of both the particle phase and the fluid phase (marked by fine tracers).

  10. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  11. Calculations of low-frequency radio emission by cosmic-ray-induced particle showers

    NASA Astrophysics Data System (ADS)

    García-Fernández, Daniel; Revenu, Benoît; Charrier, Didier; Dallier, Richard; Escudie, Antony; Martin, Lilian

    2018-05-01

    The radio technique for the detection of high-energy cosmic rays consists in measuring the electric field created by the particle showers created inside a medium by the primary cosmic ray. The electric field is then used to infer the properties of the primary particle. Nowadays, the radio technique is a standard, well-established technique. While most current experiments measure the field at frequencies above 20 MHz, several experiments have reported a large emission at low frequencies, below 10 MHz. The EXTASIS experiment aims at measuring again and understanding this low-frequency electric field. Since at low frequencies the standard far-field approximation for the calculation of the electric field does not necessarily hold, in order to comprehend the low-frequency emission we need to go beyond the far-field approximation. We present in this work a formula for the electric field created by a particle track inside a dielectric medium that is valid for all frequencies. We then implement this formula in the SELFAS Monte Carlo code and calculate the low-frequency electric field of the extensive air shower (EAS). We also study the electric field of a special case of the transition radiation mechanism when the EAS particles cross the air-soil boundary. We introduce the sudden death pulse, the direct emission caused by the coherent deceleration of the shower front at the boundary, as a first approximation to the whole electric field for the air-soil transition, and study its properties. We show that at frequencies larger than 20 MHz and distances larger than 100 m, the standard far-field approximation for the horizontal polarizations of the field is always accurate at the 1% level.

  12. Recent results from milagro and prospects for HAWC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretz, John R; Westerhoff, Stefan

    2011-01-28

    The High Altitude Water Cherenkov (HAWC) observatory is a new experiment for observing 50 GeV to 100 TeV photons from high energy gamma ray sources. The experiment is under construction at Sierra Negra, Mexico and will be comprised of 300 large water tanks instrumenting an area of 150 x 150 meters. HAWC is the next generation of the Milagro experiment which measured multi-TeV emission from the Galactic plane resolving sources and measuring diffuse emission. HAWC will feature approximately 15 times the sensitivity of the Milagro experiment and will be used to measure and constrain particle acceleration in the Galaxy.

  13. Determining the interparticle force laws in amorphous solids from a visual image.

    PubMed

    Gendelman, Oleg; Pollack, Yoav G; Procaccia, Itamar

    2016-06-01

    We consider the problem of how to determine the force laws in an amorphous system of interacting particles. Given the positions of the centers of mass of the constituent particles we propose an algorithm to determine the interparticle force laws. Having n different types of constituents we determine the coefficients in the Laurent polynomials for the n(n+1)/2 possibly different force laws. A visual providing the particle positions in addition to a measurement of the pressure is all that is required. The algorithm proposed includes a part that can correct for experimental errors in the positions of the particles. Such a correction of unavoidable measurement errors is expected to benefit many experiments in the field.

  14. Near real-time measurement of forces applied by an optical trap to a rigid cylindrical object

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph; Hoeprich, David; Resnick, Andrew

    2014-07-01

    An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance.

  15. Particle-image Velocimetry (PIV)

    NASA Image and Video Library

    2015-05-12

    Particle-image velocimetry (PIV) is performed on the upper surface of a pitching airfoil in the NASA Glenn Icing Research Tunnel. PIV is a laser-based flow velocity measurement technique used widely in wind tunnels. These experiments were conducted as part of a research project focused on enhancing rotorcraft speed, efficiency and maneuverability by suppressing dynamic stall.

  16. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.

    PubMed

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  17. Deposition of biomass combustion aerosol particles in the human respiratory tract.

    PubMed

    Löndahl, Jakob; Pagels, Joakim; Boman, Christoffer; Swietlicki, Erik; Massling, Andreas; Rissler, Jenny; Blomberg, Anders; Bohgard, Mats; Sandström, Thomas

    2008-08-01

    Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient ("complete") combustion and low-temperature (incomplete) combustion simulating "wood smoke." The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21-0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.

  18. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    NASA Astrophysics Data System (ADS)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  19. Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows

    PubMed Central

    Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore

    2010-01-01

    In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres’ fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall. PMID:22163540

  20. Characterization of buoyant fluorescent particles for field observations of water flows.

    PubMed

    Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore

    2010-01-01

    In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres' fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall.

  1. Do all pure entangled states violate Bell's inequalities for correlation functions?

    PubMed

    Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin

    2002-05-27

    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.

  2. Phase Doppler Anemometry as an Ejecta Diagnostic

    NASA Astrophysics Data System (ADS)

    Bell, David; Chapman, David

    2015-06-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from the surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the size and velocity of the individual shock induced ejecta particles. The measurements will provide an insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. The experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and the current state of the art of the technique are discussed along with the future improvements required to further improve performance and increase usability.

  3. The emerging understanding of magnetic reconnection through laboratory experiments, theory and modeling and in situ satellite measurements

    NASA Astrophysics Data System (ADS)

    Drake, James F.

    2015-08-01

    Magnetic reconnection is the driver of explosive energy release in laboratory, space and astrophysical plasma systems. It plays a centralrole in such diverse phenomena as solar and stellar flares, flares in pulsar nebulae, gamma ray bursts and possibly even in the productionof energetic particles in supernova shocks. The close interaction of scientists doing laboratory experiments, in situ satellite measurements and theory and modeling has led to remarkable progress on key issues such as the mechanisms for fast energy release and heating and particle acceleration. There are, however, many open issues. The talk will address the emerging understanding of reconnection as well as areas where significant uncertainty remains. The role of new laboratory experiments such as FLARE at PPPL and the recently launched four-spacecraft MMS mission in resolving open issues will be discussed.

  4. Soot Particle Studies - Instrument Inter-Comparison – Project Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, E.; Sedlacek, A.; Onasch, T. B.

    2010-03-06

    An inter-comparison study of instruments designed to measure the microphysical and optical properties of soot particles was completed. The following mass-based instruments were tested: Couette Centrifugal Particle Mass Analyzer (CPMA), Time-of-Flight Aerosol Mass Spectrometer - Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Soot Particle-Aerosol Mass Spectrometer (SP-AMS) and Photoelectric Aerosol Sensor (PAS2000CE). Optical instruments measured absorption (photoacoustic, interferometric, and filter-based), scattering (in situ), and extinction (light attenuation within an optical cavity). The study covered an experimental matrix consisting of 318 runs that systematically tested the performance of instruments across a range of parameters including: fuel equivalence ratiomore » (1.8 {le} {phi} {le} 5), particle shape (mass-mobility exponent (D{sub f m}), 2.0 {le} D{sub f m} {le} 3.0), particle mobility size (30 {le} d{sub m} {le} 300 nm), black carbon mass (0.07 {le} m{sub BC} {le} 4.2 fg) and particle chemical composition. In selected runs, particles were coated with sulfuric acid or dioctyl sebacate (DOS) (0.5 {le} {Delta}r{sub ve} {le} 201 nm) where {Delta}r{sub ve} is the change in the volume equivalent radius due to the coating material. The effect of non-absorbing coatings on instrument response was determined. Changes in the morphology of fractal soot particles were monitored during coating and denuding processes and the effect of particle shape on instrument response was determined. The combination of optical and mass based measurements was used to determine the mass specific absorption coefficient for denuded soot particles. The single scattering albedo of the particles was also measured. An overview of the experiments and sample results are presented.« less

  5. Particle sizing of pharmaceutical aerosols via direct imaging of particle settling velocities.

    PubMed

    Fishler, Rami; Verhoeven, Frank; de Kruijf, Wilbur; Sznitman, Josué

    2018-02-15

    We present a novel method for characterizing in near real-time the aerodynamic particle size distributions from pharmaceutical inhalers. The proposed method is based on direct imaging of airborne particles followed by a particle-by-particle measurement of settling velocities using image analysis and particle tracking algorithms. Due to the simplicity of the principle of operation, this method has the potential of circumventing potential biases of current real-time particle analyzers (e.g. Time of Flight analysis), while offering a cost effective solution. The simple device can also be constructed in laboratory settings from off-the-shelf materials for research purposes. To demonstrate the feasibility and robustness of the measurement technique, we have conducted benchmark experiments whereby aerodynamic particle size distributions are obtained from several commercially-available dry powder inhalers (DPIs). Our measurements yield size distributions (i.e. MMAD and GSD) that are closely in line with those obtained from Time of Flight analysis and cascade impactors suggesting that our imaging-based method may embody an attractive methodology for rapid inhaler testing and characterization. In a final step, we discuss some of the ongoing limitations of the current prototype and conceivable routes for improving the technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Analysis of visible extinction spectrum of particle system and selection of optimal wavelength].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Yuan, Gui-bin

    2008-09-01

    In the total light scattering particle sizing technique, the extinction spectrum of particle system contains some information about the particle size and refractive index. The visible extinction spectra of the common monomodal and biomodal R-R particle size distribution were computed, and the variation in the visible extinction spectrum with the particle size and refractive index was analyzed. The corresponding wavelengths were selected as the measurement wavelengths at which the second order differential extinction spectrum was discontinuous. Furthermore, the minimum and the maximum wavelengths in the visible region were also selected as the measurement wavelengths. The genetic algorithm was used as the inversion method under the dependent model The computer simulation and experiments illustrate that it is feasible to make an analysis of the extinction spectrum and use this selection method of the optimal wavelength in the total light scattering particle sizing. The rough contour of the particle size distribution can be determined after the analysis of visible extinction spectrum, so the search range of the particle size parameter is reduced in the optimal algorithm, and then a more accurate inversion result can be obtained using the selection method. The inversion results of monomodal and biomodal distribution are all still satisfactory when 1% stochastic noise is put in the transmission extinction measurement values.

  7. A novel inverse method for determining the refractive indices of medium and dispersed particles simultaneously by turbidity measurement.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei; Zhang, Pu

    2008-10-01

    The refractive indices of particles and dispersion medium are important parameters in many colloidal experiments using optical techniques, such as turbidity and light scattering measurements. These data are in general wavelength-dependent and may not be available at some wavelengths fitting to the experimental requirement. In this study we present a novel approach to inversely determine the refractive indices of particles and dispersion medium by examining the consistency of measured extinction cross sections of particles with their theoretical values using a series of trial values of the refractive indices. The colloidal suspension of polystyrene particles dispersed in water was used as an example to demonstrate how this approach works and the data obtained via such a method are compared with those reported in literature, showing a good agreement between both. Furthermore, the factors that affect the accuracy of measurements are discussed. We also present some data of the refractive indices of polystyrene over a range of wavelengths smaller than 400 nm that have been not reported in the available literature.

  8. A model experiment of liquefaction and fluid transport: quantifying the effect of permeability discontinuity

    NASA Astrophysics Data System (ADS)

    Yasuda, N.; Sumita, I.

    2013-12-01

    Model experiments of liquefaction of a water-saturated sand (quick sand) is commonly conducted in class and in public. Various phenomena caused by liquefaction are reproduced within a closed bottle containing push-pins (Nohguchi, 2004). Experiments for tilted and layered case have also been conducted (Peacock, 2006). However quantitative measurements of liquid transport in these experiments have rarely been made. Here we show that such measurements are possible by analyzing the video images taken during such experiments. In addition, we show that a simple physical model is capable of explaining the time scales needed to expel the interstitial liquid. An experimental cell (cross section 22.0 mm x 99.4 mm, height 107.6 mm) is filled with a granular matter and water. The lower 33.0 mm consists of a two-layered granular medium, the upper layer consists of fine particles and the lower layer consists of coarse particles, with particle sizes of 0.05 mm and 0.2 mm, respectively. Since permeability depends on the square of the particle size, the upper layer becomes a low-permeability layer. We liquefy the cell by an impulsive vibration and study how the liquid migrates afterwards. We also vary the particle size combinations (upper layer: 0.05-0.15 mm, lower layer: 0.15-0.6 mm) and the thickness ratio of the 2 layers, and study how the time scale of the liquid migration depends on these changeable parameters. In a two-layered medium, we find that the pore water which originated from the bottom layer temporary accumulates at the interface of the two layers, and then ascends through the upper layer in the form of horizontal sheet or vertical channels. We find that these two different discharge styles are controlled by the permeability ratio of the two layers. We study the temporal change of the thicknesses of the two layers and find that there are three stages; 1: the slope of the upper surface is leveled by the impulse, 2: the pore water is discharged from the bottom layer and accumulates at the interface, after which it migrates upwards, 3: water discharge ends, and particles settle. We measured the relaxation time needed for the discharge and compaction to end. Because low-permeability layer inhibits pore water from rising, longer time is needed for a two-layer case compared to the one-layer case. When the particle size of the upper layer is about 1/3 or smaller than that of the lower layer, relaxation time becomes independent of the bottom particle size. We modeled the relaxation time by introducing the effective permeability of two-layered medium, and find that it explains the measurements well. References Nohguchi, Y., 2004, ICTAM04 Proceedings, Warsaw, Poland. Peacock, D. C. P., 2006, J. Geosci.Ed, 54, 550

  9. Self absorption of alpha and beta particles in a fiberglass filter.

    PubMed

    Luetzelschwab, J W; Storey, C; Zraly, K; Dussinger, D

    2000-10-01

    Environmental air sampling uses fiberglass filters to collect particulate matter from the air and then a gas flow detector to measure the alpha and beta activity on the filter. When counted, the filter is located close to the detector so the alpha and beta particles emerging from the filter travel toward the detector at angles ranging from zero to nearly 90 degrees to the normal to the filter surface. The particles at small angles can readily pass through the filter, but particles at large angles pass through a significant amount of filter material and can be totally absorbed. As a result, counting losses can be great. For 4 MeV alpha particles, the filter used in this experiment absorbs 43% of the alpha particles; for 7.5 MeV alphas, the absorption is 13%. The measured beta activities also can have significant counting losses. Beta particles with maximum energies of 0.2 and 2.0 MeV have absorptions of 44 and 2%, respectively.

  10. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hinton, J.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Cámara, D.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-12-01

    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground-based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken over 234 days between June 2016 and February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of -2.49 ±0.01 prior to a break at (45.7 ±0.1 ) TeV , followed by an index of -2.71 ±0.01 . The spectrum also represents a single measurement that spans the energy range between direct detection and ground-based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.

  11. Neutral strange particle production in neutrino and antineutrino charged-current interactions on neon

    NASA Astrophysics Data System (ADS)

    Deprospo, D.; Kalelkar, M.; Aderholz, M.; Akbari, H.; Allport, P. P.; Ammosov, V. V.; Andryakov, A.; Asratyan, A.; Badyal, S. K.; Ballagh, H. C.; Baton, J.-P.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Devanand; de Wolf, E.; Ermolov, P.; Erofeeva, I.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gapienko, G.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Ivanilov, A.; Jabiol, M.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kaftanov, V.; Kasper, P.; Kobrin, V.; Kohli, J. M.; Koller, E. L.; Korablev, V.; Kubantsev, M.; Lauko, M.; Lukina, O.; Lys, J. E.; Lyutov, S.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Moskalev, V.; Murzin, V.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Ryasakov, S.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Sivoklokov, S.; Smart, W.; Smirnova, L.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1994-12-01

    A study has been made of neutral strange particle production in νμNe and ν¯μNe charged-current interactions at a higher energy than any previous study. The experiment was done at the Fermilab Tevatron using the 15-ft. bubble chamber, and the data sample consists of 814(154) observed neutral strange particles from 6263(1115) ν(ν¯) charged-current events. For the ν beam (average event energy =150 GeV), the average multiplicities per charged-current event have been measured to be 0.408+/-0.048 for K0, 0.127+/-0.014 for Λ, and 0.015+/-0.005 for Λ¯, which are significantly greater than for lower-energy experiments. The dependence of rates on kinematical variables has been measured, and shows that both K0 and Λ production increase strongly with Eν, W2, Q2, and yB. Compared to lower-energy experiments, single-particle distributions indicate that there is much more K0 production for xF>-0.2, and the enhanced Λ production spans most of the kinematic region. Λ¯ production is mostly in the region ||xF||<0.3. The Lund model is shown to be in qualitative agreement with the data, but does not reproduce single-particle distributions in detail. For xF>-0.2 there is a significant excess of Λ production over the model's prediction. The Λ hyperons are found to be polarized in the production plane.

  12. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P. J.; Hader, J. D.; Hill, T. C. J.; Kanji, Z. A.; Kulkarni, G.; Levin, E. J. T.; McCluskey, C. S.; Murakami, M.; Murray, B. J.; Niedermeier, D.; Petters, M. D.; O'Sullivan, D.; Saito, A.; Schill, G. P.; Tajiri, T.; Tolbert, M. A.; Welti, A.; Whale, T. F.; Wright, T. P.; Yamashita, K.

    2015-03-01

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.

  13. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of seventeen ice nucleation measurement techniques

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.; Budke, C.; Curtius, J.; Danielczok, A.; Diehl, K.; Dreischmeier, K.; Ebert, M.; Frank, F.; Hoffmann, N.; Kandler, K.; Kiselev, A.; Koop, T.; Leisner, T.; Möhler, O.; Nillius, B.; Peckhaus, A.; Rose, D.; Weinbruch, S.; Wex, H.; Boose, Y.; DeMott, P. J.; Hader, J. D.; Hill, T. C. J.; Kanji, Z. A.; Kulkarni, G.; Levin, E. J. T.; McCluskey, C. S.; Murakami, M.; Murray, B. J.; Niedermeier, D.; Petters, M. D.; O'Sullivan, D.; Saito, A.; Schill, G. P.; Tajiri, T.; Tolbert, M. A.; Welti, A.; Whale, T. F.; Wright, T. P.; Yamashita, K.

    2014-08-01

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice nucleating particles (INPs). However, an inter-comparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nucleation research UnIT), we distributed an illite rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. Seventeen measurement methods were involved in the data inter-comparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while ten other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing dataset was evaluated using the ice nucleation active surface-site density (ns) to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers nine orders of magnitude in ns. Our inter-comparison results revealed a discrepancy between suspension and dry-dispersed particle measurements for this mineral dust. While the agreement was good below ~ -26 °C, the ice nucleation activity, expressed in ns, was smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples between about -26 and -18 °C. Only instruments making measurement techniques with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -26 and -18 °C is discussed. In general, the seventeen immersion freezing measurement techniques deviate, within the range of about 7 °C in terms of temperature, by three orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency (i.e., ns) of illite NX particles is relatively independent on droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature-dependence and weak time- and size-dependence of immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns (T) spectra, and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. A multiple exponential distribution fit is expressed as ns(T) = exp(23.82 × exp(-exp(0.16 × (T + 17.49))) + 1.39) based on the specific surface area and ns(T) = exp(25.75 × exp(-exp(0.13 × (T + 17.17))) + 3.34) based on the geometric area (ns and T in m-2 and °C, respectively). These new fits, constrained by using an identical reference samples, will help to compare IN measurement methods that are not included in the present study and, thereby, IN data from future IN instruments.

  14. Photoacoustic absorption spectroscopy of single optically trapped aerosol droplets

    NASA Astrophysics Data System (ADS)

    Covert, Paul A.; Cremer, Johannes W.; Signorell, Ruth

    2017-08-01

    Photoacoustics have been widely used for the study of aerosol optical properties. To date, these studies have been performed on particle ensembles, with minimal ability to control for particle size. Here, we present our singleparticle photoacoustic spectrometer. The sensitivity and stability of the instrument is discussed, along with results from two experiments that illustrate the unique capabilities of this instrument. In the first experiment, we present a measurement of the particle size-dependence of the photoacoustic response. Our results confirm previous models of aerosol photoacoustics that had yet to be experimentally tested. The second set of results reveals a size-dependence of photochemical processes within aerosols that results from the nanofocusing of light within individual droplets.

  15. Utilization of microparticles in next-generation assays for microflow cytometers.

    PubMed

    Kim, Jason S; Ligler, Frances S

    2010-11-01

    Micron-sized particles have primarily been used in microfabricated flow cytometers for calibration purposes and proof-of-concept experiments. With increasing frequency, microparticles are serving as a platform for assays measured in these small analytical devices. Light scattering has been used to measure the agglomeration of antibody-coated particles in the presence of an antigen. Impedance detection is another technology being integrated into microflow cytometers for microparticle-based assays. Fluorescence is the most popular detection method in flow cytometry, enabling highly sensitive multiplexed assays. Finally, magnetic particles have also been used to measure antigen levels using a magnetophoretic micro-device. We review the progress of microparticle-based assays in microflow cytometry in terms of the advantages and limitations of each approach.

  16. RF attenuation as a dusty plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Doyle, Brandon; Konopka, Uwe; Thomas, Edward

    2017-10-01

    When a dusty plasma is formed by adding dust to a plasma environment, the electron density of the background plasma is depleted as the dust particles acquire their negative charge. The magnitude of the electron depletion depends on the dust particle charge, and thus its properties, as well as the dust number density. A direct measurement of the electron density in a dusty plasma therefore contains information about the charging state of the dust particles. This measurement is difficult to obtain without influencing the system. For example, Langmuir probes influence the system by creating voids, or they become unreliable due to their potential contamination with dust. A less invasive diagnostic tool might be realized using plasma chamber electrodes for a plasma impedance measurement as it depends on the excitation frequency: the spatially averaged electron density is derived from the electron plasma frequency, which is related to the radio frequency attenuation characteristic. We present preliminary experiments using two impedance probe designs: probes immersed in a plasma and electrodes located at the edge of the plasma. We evaluate the potential application of this method for ground-based laboratory experiments and future microgravity experiment facilities aboard the ISS. This work was supported by JPL/NASA (JPL-RSA 1571699) the US Dept. of Energy (DE-SC0016330) and NSF (PHY-1613087).

  17. The Low-Recycling Lithium Boundary and Implications for Plasma Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granstedt, Erik Michael

    Pumping of incident hydrogen and impurity ions by lithium enables control of the particle inventory and fueling profile in magnetic-confined plasmas, and may raise the plasma temperature near the wall. As a result, the density gradient is expected to contribute substantially to the free-energy, affecting particle and thermal transport from micro-turbulence which is typically the dominant transport mechanism in high-temperature fusion experiments. Transport in gyrokinetic simulations of density-gradient-dominated profiles is characterized by a small linear critical gradient, large particle flux, and preferential diffusion of cold particles. As a result, the heat flux is below 5/2 or even 3/2 times themore » particle flux, usually assumed to be the minimum for convection. While surprising, this result is consistent with increasing entropy. Coupled TEM-ITG (ion-temperature- gradient) simulations using ηe = ηi find η = ∇T /∇n∼0.8 maximizes the linear critical pressure gradient, which suggests that experiments operating near marginal ITG stability with larger η would increase the linear critical pressure gradient by transferring free-energy from the temperature gradient to the density gradient. Simulations were performed with profiles predicted for the Lithium Tokamak Experiment (LTX) if ion thermal transport was neoclassical, while electron thermal transport and particle transport were a fixed ratio above the neoclassical level. A robust TEM instability was found for the outer half radius, while the ITG was found to be driven unstable as well during gas puff fueling. This suggests that TEM transport will be an important transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing mechanisms, may dominate over neoclassical transport. A diagnostic suite has been developed to measure hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can be achieved in a small tokamak using solid lithium coatings, assess its dependence on the operating condition of the lithium surface, and evaluate its impact on the discharge. Coatings on the close-fitting stainless-steel substrate produce a significant reduction in recyling, so that the effective particle confinement times are as low as 1 ms. Measurements of particle inventory in the plasma and hydrogen Lyman-α emission indicate that hydrogen recycling at the surface increases as subsequent discharges are performed; nevertheless, strong pumping of hydrogen is observed even after almost double the cumulative fueling is applied that should saturate the lithium coating to the penetration depth of hydrogen ions. Probe measurements show that when external fueling is terminated, the scrape-off-layer of discharges with fresh coatings decays to lower density and rises to higher electron temperature than for discharges with a partially-passivated surface, consistent with reduced edge cooling from recycled particles. Near the end of the discharge, higher plasma current correlates with reduced τp* and hydrogen emission, suggesting that discharges with fresh coatings achieve higher electron temperature in the core. A novel approach using neutral modeling was developed for the inverse problem of determining the distribution of recycled particle flux from PFC surfaces given a large number of emission measurements, revealing that extremely low levels of recycling (Rcore∼0.6 and Rplate∼0.8) have been achieved with solid lithium coatings. Together with impurity emission measurements, modeling suggests that during periods of particularly low electron density, influx of impurities from the walls contributes substantially to the global particle balance.« less

  18. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  19. Exposure Assessment of a High-energy Tensile Test With Large Carbon Fiber Reinforced Polymer Cables.

    PubMed

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Michel, Silvain; Terrasi, Giovanni; Wang, Jing

    2015-01-01

    This study investigated the particle and fiber release from two carbon fiber reinforced polymer cables that underwent high-energy tensile tests until rupture. The failing event was the source of a large amount of dust whereof a part was suspected to be containing possibly respirable fibers that could cause adverse health effects. The released fibers were suspected to migrate through small openings to the experiment control room and also to an adjacent machine hall where workers were active. To investigate the fiber release and exposure risk of the affected workers, the generated particles were measured with aerosol devices to obtain the particle size and particle concentrations. Furthermore, particles were collected on filter samples to investigate the particle shape and the fiber concentration. Three situations were monitored for the control room and the machine hall: the background concentrations, the impact of the cable failure, and the venting of the exposed rooms afterward. The results showed four important findings: The cable failure caused the release of respirable fibers with diameters below 3 μm and an average length of 13.9 μm; the released particles did migrate to the control room and to the machine hall; the measured peak fiber concentration of 0.76 fibers/cm(3) and the overall fiber concentration of 0.07 fibers/cm(3) in the control room were below the Permissible Exposure Limit (PEL) for fibers without indication of carcinogenicity; and the venting of the rooms was fast and effective. Even though respirable fibers were released, the low fiber concentration and effective venting indicated that the suspected health risks from the experiment on the affected workers was low. However, the effect of long-term exposure is not known therefore additional control measures are recommended.

  20. The LArIAT experiment: first measurement of the inclusive total pion cross-section in Argon

    NASA Astrophysics Data System (ADS)

    de María Blaszczyk, Flor

    2018-05-01

    In light of future large neutrino experiments such as DUNE, an excellent understanding of LArTPCs is required. The Liquid Argon In A Test-beam (LArIAT) experiment, located in the Fermilab Test Beam Facility, is designed to characterize the performance of LArTPCs and improve the reconstruction algorithms but also to measure the cross-sections of charged particles in Argon. The goals and experimental layout will be presented, as well as the world’s first inclusive total pion interaction cross-section on Argon measured by LArIAT.

  1. Passive non-linear microrheology for determining extensional viscosity

    NASA Astrophysics Data System (ADS)

    Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.

    2017-12-01

    Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.

  2. Experiment and simulation of the fabrication process of lithium-ion battery cathodes for determining microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Forouzan, Mehdi M.; Chao, Chien-Wei; Bustamante, Danilo; Mazzeo, Brian A.; Wheeler, Dean R.

    2016-04-01

    The fabrication process of Li-ion battery electrodes plays a prominent role in the microstructure and corresponding cell performance. Here, a mesoscale particle dynamics simulation is developed to relate the manufacturing process of a cathode containing Toda NCM-523 active material to physical and structural properties of the dried film. Particle interactions are simulated with shifted-force Lennard-Jones and granular Hertzian functions. LAMMPS, a freely available particle simulator, is used to generate particle trajectories and resulting predicted properties. To make simulations of the full film thickness feasible, the carbon binder domain (CBD) is approximated with μm-scale particles, each representing about 1000 carbon black particles and associated binder. Metrics for model parameterization and validation are measured experimentally and include the following: slurry viscosity, elasticity of the dried film, shrinkage ratio during drying, volume fraction of phases, slurry and dried film densities, and microstructure cross sections. Simulation results are in substantial agreement with experiment, showing that the simulations reasonably reproduce the relevant physics of particle arrangement during fabrication.

  3. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less

  4. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures

    PubMed Central

    Horodek, Paweł; Dryzek, Jerzy; Wróbel, Mirosław

    2017-01-01

    Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples. PMID:29168749

  5. Scattering Properties of Lunar Dust Analogs

    NASA Technical Reports Server (NTRS)

    Davis, S.; Marshall, J.; Richard, D.; Adler, D.; Adler, B.

    2013-01-01

    A number of space missions are planned to explore the lunar exosphere which may contain a small population of dust particles. The objective of this paper is to present preliminary results from scattering experiments on a suspension of lunar simulants to support one such mission. The intensity of the light scattered from a lunar simulant is measured with a commercial version of the spectrometer used in the forthcoming LADEE mission. Physical properties of the lunar simulant are described along with two similarly-sized reference microspheres. We confirm that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain general characteristic of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere from LADEE instrument data. Further analysis of particle properties from such remote sensing data will require measurements of polarization signatures.

  6. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2013-03-02

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of √s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K s and Λ particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scalemore » uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2–5 % for central isolated hadrons and 1–3 % for the final calorimeter jet energy scale.« less

  7. Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2015-12-01

    Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.

  8. Purification of lymphocystis disease virus (LDV) grown in tissue culture. Evidences for the presence of two types of viral particles.

    PubMed

    Robin, J; Berthiaume, L

    1981-12-01

    Lymphocystis disease virus was highly purified from host cells by precipitation with PEG-6000 and isopycnic centrifugation in a metrizamide gradient. Metrizamide gradient centrifugation produce two distinct bands at equilibrium. As calculated from reconstruction experiments, only 4 and 0.3% respectively of the host DNA and the host proteins were recovered at the position of the bands. The final recovery of infectivity was about 41%. Electron microscopy of the bands showed two types of particles: small and dense particles measuring 100-150 nm and lymphocystis virions that measured about 300-350 nm in diameter.

  9. Uncertainty propagation using the Monte Carlo method in the measurement of airborne particle size distribution with a scanning mobility particle sizer

    NASA Astrophysics Data System (ADS)

    Coquelin, L.; Le Brusquet, L.; Fischer, N.; Gensdarmes, F.; Motzkus, C.; Mace, T.; Fleury, G.

    2018-05-01

    A scanning mobility particle sizer (SMPS) is a high resolution nanoparticle sizing system that is widely used as the standard method to measure airborne particle size distributions (PSD) in the size range 1 nm–1 μm. This paper addresses the problem to assess the uncertainty associated with PSD when a differential mobility analyzer (DMA) operates under scanning mode. The sources of uncertainty are described and then modeled either through experiments or knowledge extracted from the literature. Special care is brought to model the physics and to account for competing theories. Indeed, it appears that the modeling errors resulting from approximations of the physics can largely affect the final estimate of this indirect measurement, especially for quantities that are not measured during day-to-day experiments. The Monte Carlo method is used to compute the uncertainty associated with PSD. The method is tested against real data sets that are monosize polystyrene latex spheres (PSL) with nominal diameters of 100 nm, 200 nm and 450 nm. The median diameters and associated standard uncertainty of the aerosol particles are estimated as 101.22 nm  ±  0.18 nm, 204.39 nm  ±  1.71 nm and 443.87 nm  ±  1.52 nm with the new approach. Other statistical parameters, such as the mean diameter, the mode and the geometric mean and associated standard uncertainty, are also computed. These results are then compared with the results obtained by SMPS embedded software.

  10. Experiment K-6-24, K-6-25, K-6-26. Radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A.; Benton, E. R.; Dudkin, V.; Marennyi, A.

    1990-01-01

    Radiation experiments flown by the University of San Francisco on the Cosmos 1887 spacecraft were designed to measure the depth dependence of both total dose and heavy particle flux, dose and dose equivalent, down to very thin shielding. Three experiments were flown and were located both inside and outside the Cosmos 1887 spacecraft. Tissue absorbed dose rates of 264 to 0.028 rad d(-1) under shielding of 0.013 to 3.4 g/sq cm of (7)LiF were found outside the spacecraft and 0.025 rad d(-1) inside. Heavy particle fluxes of 3.43 to 1.03 x 10 to the minus 3rd power cm -2 sub s -1 sub sr -1 under shielding of 0.195 to 1.33 g/sq cm plastic were found outside the spacecraft and 4.25 times 10 to the minus 4th power cm -2 sub s -1 sub sr -1 inside (LET infinity H2O greater than or equal to 4 keV/micron m). The corresponding heavy particle dose equivalent rates outside the spacecraft were 30.8 to 19.8 mrem d(-1) and 11.4 mrem d(-1) inside. The large dose and particle fluxes found at small shielding thicknesses emphasize the importance of these and future measurements at low shielding, for predicting radiation effects on space materials and experiments where shielding is minimal and on astronauts during EVA. The Cosmos 1887 mission contained a variety of international radiobiological investigations to which the measurements apply. The high inclination orbit (62 degrees) of this mission provided a radiation environment which is seldom available to U.S. investigators. The radiation measurements will be compared with those of other research groups and also with those performed on the Shuttle, and will be used to refine computer models employed to calculate radiation exposures on other spacecraft, including the Space Station.

  11. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    NASA Astrophysics Data System (ADS)

    Artíñano, B.; Gómez-Moreno, F. J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martín, F.; Guerra, A.; Luaces, J. A.; Basora, J.

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size (<2.5 μm). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 μm). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  12. Effect of drug load and plate coating on the particle size distribution of a commercial albuterol metered dose inhaler (MDI) determined using the Andersen and Marple-Miller cascade impactors.

    PubMed

    Nasr, M M; Ross, D L; Miller, N C

    1997-10-01

    The purpose of this study is to investigate the effect of drug load, the coating of impactor stages, and the design of cascade impactors on albuterol MDIs particle size distribution measurements. The results of the investigation will be used to explain the "loading effect" recently reported. Particle size distribution parameters of a commercial albuterol MDI were measured using both Andersen (AI) and Marple-Miller (MMI) Cascade Impactors, where plates were either left uncoated or coated with silicone or glycerin. A previously validated HPLC-EC method was used for the assay of albuterol collected by the impactor and in single spray content determinations. Coating impactor collection plates had an impact on measured MMAD and GSD values for single puff measurements but very little or no effect for the multi puff measurements. Due to particle bounce, the percent of albuterol fine particles deposited in the filter and impactor finer stages (< 1.10 microns in AI and < 1.25 microns in MMI) in uncoated single puff experiments was much higher in comparison to either coated single puff or multi-puff (coated and uncoated) measurements. Evaluation of drug load and plate coating are necessary to determine whether observed particle size distributions are representative of the generated aerosol or are the result of particle bounce and reentrainment. In order to minimize particle bounce, especially for single puff determinations, it may be useful to apply a thin layer of a sticky coating agent to the surfaces of impactor plates.

  13. Diagnosis of Acceleration, Reconnection, Turbulence, and Heating

    NASA Astrophysics Data System (ADS)

    Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.

    2017-10-01

    The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.

  14. Deviations from plane-wave Mie scattering and precise retrieval of refractive index for a single spherical particle in an optical cavity.

    PubMed

    Mason, Bernard J; Walker, Jim S; Reid, Jonathan P; Orr-Ewing, Andrew J

    2014-03-20

    The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.

  15. Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy.

    PubMed

    Cotterell, Michael I; Mason, Bernard J; Preston, Thomas C; Orr-Ewing, Andrew J; Reid, Jonathan P

    2015-06-28

    A new experiment is presented for the measurement of single aerosol particle extinction efficiencies, Qext, combining cavity ring-down spectroscopy (CRDS, λ = 405 nm) with a Bessel beam trap (λ = 532 nm) in tandem with phase function (PF) measurements. This approach allows direct measurements of the changing optical cross sections of individual aerosol particles over indefinite time-frames facilitating some of the most comprehensive measurements of the optical properties of aerosol particles so far made. Using volatile 1,2,6-hexanetriol droplets, Qext is measured over a continuous radius range with the measured Qext envelope well described by fitted cavity standing wave (CSW) Mie simulations. These fits allow the refractive index at 405 nm to be determined. Measurements are also presented of Qext variation with RH for two hygroscopic aqueous inorganic systems ((NH4)2SO4 and NaNO3). For the PF and the CSW Mie simulations, the refractive index, nλ, is parameterised in terms of the particle radius. The radius and refractive index at 532 nm are determined from PFs, while the refractive index at 405 nm is determined by comparison of the measured Qext to CSW Mie simulations. The refractive indices determined at the shorter wavelength are larger than at the longer wavelength consistent with the expected dispersion behaviour. The measured values at 405 nm are compared to estimates from volume mixing and molar refraction mixing rules, with the latter giving superior agreement. In addition, the first single-particle Qext measurements for accumulation mode aerosol are presented for droplets with radii as small as ∼300 nm.

  16. A DMA-train for precision measurement of sub-10 nm aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Dominik; Steiner, Gerhard; Winkler, Paul M.

    2017-05-01

    Measurements of aerosol dynamics in the sub-10 nm size range are crucially important for quantifying the impact of new particle formation onto the global budget of cloud condensation nuclei. Here we present the development and characterization of a differential mobility analyzer train (DMA-train), operating six DMAs in parallel for high-time-resolution particle-size-distribution measurements below 10 nm. The DMAs are operated at six different but fixed voltages and hence sizes, together with six state-of-the-art condensation particle counters (CPCs). Two Airmodus A10 particle size magnifiers (PSM) are used for channels below 2.5 nm while sizes above 2.5 nm are detected by TSI 3776 butanol-based or TSI 3788 water-based CPCs. We report the transfer functions and characteristics of six identical Grimm S-DMAs as well as the calibration of a butanol-based TSI model 3776 CPC, a water-based TSI model 3788 CPC and an Airmodus A10 PSM. We find cutoff diameters similar to those reported in the literature. The performance of the DMA-train is tested with a rapidly changing aerosol of a tungsten oxide particle generator during warmup. Additionally we report a measurement of new particle formation taken during a nucleation event in the CLOUD chamber experiment at CERN. We find that the DMA-train is able to bridge the gap between currently well-established measurement techniques in the cluster-particle transition regime, providing high time resolution and accurate size information of neutral and charged particles even at atmospheric particle concentrations.

  17. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    PubMed

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Magnetic trapping of neutrons

    PubMed

    Huffman; Brome; Butterworth; Coakley; Dewey; Dzhosyuk; Golub; Greene; Habicht; Lamoreaux; Mattoni; McKinsey; Wietfeldt; Doyle

    2000-01-06

    Accurate measurement of the lifetime of the neutron (which is unstable to beta decay) is important for understanding the weak nuclear force and the creation of matter during the Big Bang. Previous measurements of the neutron lifetime have mainly been limited by certain systematic errors; however, these could in principle be avoided by performing measurements on neutrons stored in a magnetic trap. Neutral-particle and charged-particle traps are widely used for studying both composite and elementary particles, because they allow long interaction times and isolation of particles from perturbing environments. Here we report the magnetic trapping of neutrons. The trapping region is filled with superfluid 4He, which is used to load neutrons into the trap and as a scintillator to detect their decay. Neutrons in the trap have a lifetime of 750(+330)(-200) seconds, mainly limited by their beta decay rather than trap losses. Our experiment verifies theoretical predictions regarding the loading process and magnetic trapping of neutrons. Further refinement of this method should lead to improved precision in the neutron lifetime measurement.

  19. Kneelike Structure in the Spectrum of the Heavy Component of Cosmic Rays Observed with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2011-10-01

    We report the observation of a steepening in the cosmic ray energy spectrum of heavy primary particles at about 8×1016eV. This structure is also seen in the all-particle energy spectrum, but is less significant. Whereas the “knee” of the cosmic ray spectrum at 3-5×1015eV was assigned to light primary masses by the KASCADE experiment, the new structure found by the KASCADE-Grande experiment is caused by heavy primaries. The result is obtained by independent measurements of the charged particle and muon components of the secondary particles of extensive air showers in the primary energy range of 1016 to 1018eV. The data are analyzed on a single-event basis taking into account also the correlation of the two observables.

  20. Effect of relative humidity on soot - secondary organic aerosol mixing: A case study from the Soot Aerosol Aging Study (PNNL-SAAS)

    NASA Astrophysics Data System (ADS)

    Sharma, N.; China, S.; Zaveri, R. A.; Shilling, J. E.; Pekour, M. S.; Liu, S.; Aiken, A. C.; Dubey, M. K.; Wilson, J. M.; Zelenyuk, A.; OBrien, R. E.; Moffet, R.; Gilles, M. K.; Gourihar, K.; Chand, D.; Sedlacek, A. J., III; Subramanian, R.; Onasch, T. B.; Laskin, A.; Mazzoleni, C.

    2014-12-01

    Atmospheric processing of fresh soot particles emitted by anthropogenic as well as natural sources alters their physical and chemical properties. For example, fresh and aged soot particles interact differently with incident solar radiation, resulting in different overall radiation budgets. Varying atmospheric chemical and meteorological conditions can result in complex soot mixing states. The Soot Aerosol Aging Study (SAAS) was conducted at the Pacific Northwest National Laboratory in November 2013 and January 2014 as a step towards understanding the evolution of mixing state of soot and its impact on climate-relevant properties. Aging experiments on diesel soot were carried out in a controlled laboratory chamber, and the effects of condensation and coagulation processes were systematically explored in separate sets of experiments. In addition to online measurement of aerosol properties, aerosol samples were collected for offline single particle analysis to investigate the evolution of the morphology, elemental composition and fine structure of sample particles from different experiments. Condensation experiments focused on the formation of α-pinene secondary organic aerosol on diesel soot aerosol seeds. Experiments were conducted to study the aging of soot under dry (RH < 2%) and humid conditions (RH ~ 80%). We present an analysis of the morphology of soot, its evolution, and its correlation with optical properties, as the condensation of α-pinene SOA is carried out for the two different RH conditions. The analysis was performed by using scanning electron microscopy, transmission electron microscopy, scanning transmission x-ray microscopy and atomic force microscopy for single particle characterization. In addition, particle size, mass, composition, shape, and density were characterized in-situ, as a function of organics condensed on soot seeds, using single particle mass spectrometer.

  1. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed Central

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-01-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer. PMID:11133393

  2. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-12-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer.

  3. Dense velocity reconstruction from tomographic PTV with material derivatives

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet experiment, where the vortex topology is retrieved with a small number of tracers indicate the potential utilization of VIC+ in low-concentration experiments as for instance occurring in large-scale volumetric PTV measurements.

  4. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  5. Design and evaluation of an inlet conditioner to dry particles for real-time particle sizers.

    PubMed

    Peters, Thomas M; Riss, Adam L; Holm, Ricky L; Singh, Manisha; Vanderpool, Robert W

    2008-04-01

    Real-time particle sizers provide rapid information about atmospheric particles, particularly peak exposures, which may be important in the development of adverse health outcomes. However, these instruments are subject to erroneous readings in high-humidity environments when compared with measurements from filter-based, federal reference method (FRM) samplers. Laboratory tests were conducted to evaluate the ability of three inlet conditioners to dry aerosol prior to entering a real-time particle sizer for measuring coarse aerosols (Model 3321 Aerodynamic Particle Sizer, APS) under simulated highly humid conditions. Two 30 day field studies in Birmingham, AL, USA were conducted to compare the response of two APSs operated with and without an inlet conditioner to that measured with FRM samplers. In field studies, the correlation of PM(10-2.5) derived from the APS and that measured with the FRM was substantially stronger with an inlet conditioner applied (r2 ranged from 0.91 to 0.99) than with no conditioner (r2 = 0.61). Laboratory experiments confirmed the ability of the heater and desiccant conditioner to remove particle-borne moisture. In field tests, water was found associated with particles across the sizing range of the APS (0.5 microm to 20 microm) when relative humidity was high in Birmingham. Certain types of inlet conditioners may substantially improve the correlation between particulate mass concentration derived from real-time particle sizers and filter-based samplers in humid conditions.

  6. The hyperion particle-γ detector array

    DOE PAGES

    Hughes, R. O.; Burke, J. T.; Casperson, R. J.; ...

    2017-03-08

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. In conclusion, this article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  7. Angle only tracking with particle flow filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.

  8. Review of the inverse scattering problem at fixed energy in quantum mechanics

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.

  9. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  10. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  11. Stanley Corrsin Award Lecture: Lagrangian Measurements in Turbulence: From Fundamentals to Applications

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard

    2014-11-01

    In my talk I shall present results from particle tracking experiments in turbulence. After a short review of the history of the field, I shall summarize the most recent technological advances that range form low and high-density particle tracking to direct measurements of the Lagrangian evolution of vorticity. I shall embark on a journey that describes the discoveries made possible by this new technology in the last 15 years. I present results that challenge our understanding of turbulence and show how Lagrangian particle tracking can help us ask questions on turbulent flows that so far were hidden. I shall show how Lagrangian particle tracking may provide important insights into the reversibility of turbulent flows, on vorticity generation, the energy cascade and turbulent mixing. I shall describe the consequences of inertial particle transport on rain formation and end with an outlook on how Lagrangian particle tracking experiments on non-stationary flows in real-world situations may provide high quality data that can support real world engineering problems. I am very thankful for the support by Cornell University, the National Science Foundation, the Research Corporation, the Alfred P. Sloan Foundation, the Kavli Institute for Theoretical Physics, the German Research Foundation, the European Union and the Max Planck Society. I very gratefully acknowledge the excellent partnership with many colleagues in the field of fluid mechanics and turbulence.

  12. Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Bencic, Timothy J.; Tsao, Jen-Ching; Fuleki, Dan; Knezevici, Daniel C.

    2013-01-01

    This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.

  13. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less

  14. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    DOE PAGES

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; ...

    2016-11-03

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less

  15. Performance study for a set of BLUE based Filters applied to amplitude estimation using as a reference the single photoelectron signal of the ν-Angra Experiment

    NASA Astrophysics Data System (ADS)

    Souza, D. M.; Costa, I. A.; Nóbrega, R. A.

    2017-10-01

    This document presents a detailed study of the performance of a set of digital filters whose implementations are based on the best linear unbiased estimator theory interpreted as a constrained optimization problem that could be relaxed depending on the input signal characteristics. This approach has been employed by a number of recent particle physics experiments for measuring the energy of particle events interacting with their detectors. The considered filters have been designed to measure the peak amplitude of signals produced by their detectors based on the digitized version of such signals. This study provides a clear understanding of the characteristics of those filters in the context of particle physics and, additionally, it proposes a phase related constraint based on the second derivative of the Taylor expansion in order to make the estimator less sensitive to phase variation (phase between the analog signal shaping and its sampled version), which is stronger in asynchronous experiments. The asynchronous detector developed by the ν-Angra Collaboration is used as the basis for this work. Nevertheless, the proposed analysis goes beyond, considering a wide range of conditions related to signal parameters such as pedestal, phase, sampling rate, amplitude resolution, noise and pile-up; therefore crossing the bounds of the ν-Angra Experiment to make it interesting and useful for different asynchronous and even synchronous experiments.

  16. Study of flow around model of cooling tower by means of 2D Particle Image Velocimetry measurement

    NASA Astrophysics Data System (ADS)

    Barraclough, Veronika; Novotný, Jan; Šafařík, Pavel

    This paper deals with flow around a bluff body of hyperboloid shape. It combines results gathered in the course of research by means of Particle Image Velocimetry (PIV). The experiments were carried out by means of low-frequency 2D PIV and the Reynolds number was 43 000.

  17. Electron Calorimeter Experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H.

    2008-01-01

    Boron loaded scintillators are suitable for measuring secondary neutrons produced by high-energy particles: protons & electrons Neutron flux can be used to discriminate hadron and electro-magnetic particles Combined effectiveness of all e/p discriminators techniques employedTBD Only moderate improvement in detection efficiency for B-10 concentrations >few% in thick moderators Bottom scintillator might serve as cascade penetration counter (TBC)

  18. Comparisons of Particulate Size Distributions from Multiple Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Zhang, Yizhou

    In this study, a comparison of particle size distribution (PSD) measurements from eight different combustion strategies was conducted at four different load-speed points. The PSDs were measured using a scanning mobility particle sizer (SMPS) together with a condensation particle counter (CPC). To study the influence of volatile particles, PSD measurements were performed with and without a volatile particle remover (thermodenuder, TD) at both low and high dilution ratios. The common engine platform utilized in the experiment helps to eliminate the influence of background particulate and ensures similarity in dilution conditions. The results show a large number of volatile particles were present under LDR sample conditions for most of the operating conditions. The use of a TD, especially when coupled with HDR, was demonstrated to be effective at removing volatile particles and provided consistent measurements across all combustion strategies. The PSD comparison showed that gasoline premixed combustion strategies such as HCCI and GCI generally have low PSD magnitudes for particle sizes greater than the Particle Measurement Programme (PMP) cutoff diameter (23 nm), and the PSDs were highly nuclei-mode particle dominated. The strategies using diesel as the only fuel (DLTC and CDC) generally showed the highest particle number emissions for particles larger than 23 nm and had accumulation-mode particle dominated PSDs. A consistent correlation between the increase of the direct-injection of diesel fuel and a higher fraction of accumulation-mode particles was observed over all combustion strategies. A DI fuel substitution study and injector nozzle geometry study were conducted to better understand the correlation between PSD shape and DI fueling. It was found that DI fuel properties has a clear impact on PSD behavior for CDC and NG DPI. Fuel with lower density and lower sooting tendency led to a nuclei-mode particle dominated PSD shape. For NG RCCI, accumulation-mode particle concentration was found to be insensitive to DI fuel properties. Similar PSD behavior of increased nuclei-mode particle fraction was also observed when a smaller orifice nozzle was used for CDC and NG DPI operation. For NG DPI, a reduction of DI fuel fraction generally led to a reduction in accumulation-mode particles.

  19. Particle astronomy with a superconducting magnet.

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1972-01-01

    The magnetic spectrometer measures deflections of charged particles moving in a magnetic field and provides a direct means of determining the rigidity of charged primary cosmic rays up to about 100 GV/c rigidity. The underlying concepts of the method are reviewed, and factors delineating the applicable momentum range and accuracy are described along with calibration techniques. Previous experiments employing this technique are summarized, and prospects for future applications are evaluated with emphasis on separate measurement of electron and positron spectra and on isotopic separation.

  20. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    DOE PAGES

    Thurman-Keup, R.; Bhat, C.; Blokland, W.; ...

    2011-10-17

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This study describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  1. High resolution particle tracking method by suppressing the wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Chang, Xinyu; Yang, Yuan; Kou, Li; Jin, Lei; Lu, Junsheng; Hu, Xiaodong

    2018-01-01

    Digital in-line holographic microscopy is one of the most efficient methods for particle tracking as it can precisely measure the axial position of particles. However, imaging systems are often limited by detector noise, image distortions and human operator misjudgment making the particles hard to locate. A general method is used to solve this problem. The normalized holograms of particles were reconstructed to the pupil plane and then fit to a linear superposition of the Zernike polynomial functions to suppress the aberrations. Relative experiments were implemented to validate the method and the results show that nanometer scale resolution was achieved even when the holograms were poorly recorded.

  2. Hadronic expansion dynamics in central Pb+Pb collisions at 158 GeV per nucleon

    DOE PAGES

    Appelshäuser, H.

    1998-03-24

    Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and twomore » particle spectra are analysed separately. Lastly, the source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.« less

  3. Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Zykunov, V; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Sharma, A; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Micanovic, S; Sudic, L; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Lobelle Pardo, P; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Bylinkin, A; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Bravo, C; Cousins, R; Dasgupta, A; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Bruner, C; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kubik, A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Mc Donald, J; Medvedeva, T; Mei, K; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-03-24

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  4. Overview of results from PHOBOS experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Olszewski, Andrzej; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D. J.; Holzman, B.; Hollis, R. S.; Hoyński, R.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michaowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J. L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysouch, B.

    2002-07-01

    An overview of results for interactions of Au+Au ions at centre-of-mass energies of √sNN = 56, 130 and 200 GeV obtained by the PHOBOS collaboration at RHIC is given. Measurements of primary charged particle density near mid-rapidity indicate that particle production grows logarithmically with collision energy and faster than linearly with the number of interacting nucleons. Elliptic flow is found to be much stronger at RHIC than at SPS energy. The effect is strongest in peripheral events and decreases for more central collisions and emission angles |η| > 1. The measured anti-particle to particle ratios of production rates for pions, kaons and protons in central Au+Au interactions at √sNN = 130 GeV are compatible with the statistical model of particle production, showing an increasingly baryon-free region in mid-rapidity with the increase of collision energy.

  5. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging.

    PubMed

    Santarpia, Joshua L; Pan, Yong-Le; Hill, Steven C; Baker, Neal; Cottrell, Brian; McKee, Laura; Ratnesar-Shumate, Shanna; Pinnick, Ronald G

    2012-12-31

    A laboratory system for exposing aerosol particles to ozone and rapidly measuring the subsequent changes in their single-particle fluorescence is reported. The system consists of a rotating drum chamber and a single-particle fluorescence spectrometer (SPFS) utilizing excitation at 263 nm. Measurements made with this system show preliminary results on the ultra-violet laser-induced-fluorescence (UV-LIF) spectra of single aerosolized particles of Yersinia rohdei, and of MS2 (bacteriophage) exposed to ozone. When bioparticles are exposed in the chamber the fluorescence emission peak around 330 nm: i) decreases in intensity relative to that of the 400-550 nm band; and ii) shifts slightly toward shorter-wavelengths (consistent with further drying of the particles). In these experiments, changes were observed at exposures below the US Environmental Protection Agency (EPA) limits for ozone.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. We performed the measurement with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). We also observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, and found that they were of similar magnitude in p-Pbmore » and PbPb collisions at the same multiplicities. Our results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.« less

  7. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  8. Observation and Spectral Measurements of the Crab Nebula with Milagro

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Allen, B. T.; Aune, T.; Benbow, W.; Berley, D.; Chen, C.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Falcone, A.; hide

    2011-01-01

    The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between 1 and 100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a Te V steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit.

  9. Force measurements in stiff, 3D, opaque granular materials

    NASA Astrophysics Data System (ADS)

    Hurley, Ryan C.; Hall, Stephen A.; Andrade, José E.; Wright, Jonathan

    2017-06-01

    We present results from two experiments that provide the first quantification of inter-particle force networks in stiff, 3D, opaque granular materials. Force vectors between all grains were determined using a mathematical optimization technique that seeks to satisfy grain equilibrium and strain measurements. Quantities needed in the optimization - the spatial location of the inter-particle contact network and tensor grain strains - were found using 3D X-ray diffraction and X-ray computed tomography. The statistics of the force networks are consistent with those found in past simulations and 2D experiments. In particular, we observe an exponential decay of normal forces above the mean and a partition of forces into strong and weak networks. In the first experiment, involving 77 single-crystal quartz grains, we also report on the temporal correlation of the force network across two sequential load cycles. In the second experiment, involving 1099 single-crystal ruby grains, we characterize force network statistics at low levels of compression.

  10. The multiple Coulomb scattering of very heavy charged particles.

    PubMed

    Wong, M; Schimmerling, W; Phillips, M H; Ludewigt, B A; Landis, D A; Walton, J T; Curtis, S B

    1990-01-01

    An experiment was performed at the Lawrence Berkeley Laboratory BEVALAC to measure the multiple Coulomb scattering of 650-MeV/A uranium nuclei in 0.19 radiation lengths of a Cu target. Differential distributions in the projected multiple scattering angle were measured in the vertical and horizontal planes using silicon position-sensitive detectors to determine particle trajectories before and after target scattering. The results were compared with the multiple Coulomb scattering theories of Fermi and Molière, and with a modification of the Fermi theory, using a Monte Carlo simulation. These theories were in excellent agreement with experiment at the 2 sigma level. The best quantitative agreement is obtained with the Gaussian distribution predicted by the modified Fermi theory.

  11. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.

    PubMed

    Velimirovic, Milica; Carniato, Luca; Simons, Queenie; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen

    2014-04-15

    In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  13. The Luminosity Measurement for the DZERO Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Gregory R.

    Primary project objective: The addition of University of Nebraska-Lincoln (UNL) human resources supported by this grant helped ensure that Fermilab’s DZERO experiment had a reliable luminosity measurement through the end of Run II data taking and an easily-accessible repository of luminosity information for all collaborators performing physics analyses through the publication of its final physics results. Secondary project objective: The collaboration between the UNL Instrument Shop and Fermilab’s Scintillation Detector Development Center enhanced the University of Nebraska’s future role as a particle detector R&D and production facility for future high energy physics experiments. Overall project objective: This targeted project enhancedmore » the University of Nebraska’s presence in both frontier high energy physics research in DZERO and particle detector development, and it thereby served the goals of the DOE Office of Science and the Experimental Program to Stimulate Competitive Research (EPSCoR) for the state of Nebraska.« less

  14. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  15. Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera

    NASA Astrophysics Data System (ADS)

    Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.

    2017-12-01

    From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.

  16. Middle atmosphere electrical structure, dynamics and coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1984-01-01

    The ram current to ion traps and the insensitivity of ion conductivity to compressibility provide the basis of robust techniques for middle atmosphere measurements. Gerdien condensers are more difficult to implement but provide more information. Mesospheric electrical conductivity shows many orders of magnitude variability, with depressions below gas phase model values indicating dominance by aerosol particles. The mobility of these ions has been directly measured and indicates particles of thousands of AMU. Large mesospheric fields have come into question, and diagnostic measurements show that many such measurements may be artifacts. However, some measurements of V/m fields with symmetrical and redundant sensors appear to be real. These fields complicate the 'mapping' picture of electrical coupling and may also modulate the transport of aerosol particles. They are probably related to neutral atmospheric dynamics and/or the aerosol particles. Lightning couples much more energy to the middle atmosphere and above than previously suspected, primarily in the ELF-UHF range. There are many important unanswered questions in this relatively unexplored frontier area which may be answered with low cost balloon and sounding rocket experiments.

  17. Photothermal laser deflection, an innovative technique to measure particles in exhausts

    NASA Astrophysics Data System (ADS)

    Hess, Cecil F.

    1993-10-01

    Photothermal Laser Deflection (PLD) is an analytical technique to measure in real-time the mass concentration of particles and gaseous exhaust pollutants in a variety of combustion devices (e.g., gas turbine engines and rockets). PLD uses a pump laser to locally heat the particle or gaseous species, thus changing the refractive index of the surrounding gas to form a thermal lens. A probe laser beam travelling through the thermal lens is temporarily deflected, and the amount of deflection is proportional to the species mass concentration. The experiments and analyses conducted during phase 1 demonstrated the feasibility of PLD in measuring the mass concentration of both soot particles and NO2 at a repetition rate of 25 HZ. PLD response was linear at soot concentrations from 0.3 to 10 mg/cubic meters at NO2 concentrations from approximately 6 to 208 ppm. Strategies to measure lower concentrations have been defined and include focusing the probe beam onto the face of the bi-cell detector. The large dynamic range, fast acquisition rate, and ability to measure particulate and gaseous pollutants makes PLD superior to other available methods.

  18. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  19. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  20. The Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.

    1972-01-01

    The objectives of Apollo 15 X-ray fluorescence experiment were to obtain a partial chemical map of a large portion of the moon. Gamma ray and alpha particle experiments were also performed. Mapping information from approximately 150 deg east on the moon to about 50 deg west was secured. Secondary X-rays characteristic of silicon, aluminum, and magnesium were measured.

  1. Determining suspended sediment particle size information from acoustical and optical backscatter measurements

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Sherwood, Christopher R.; Agrawal, Yogesh C.

    1994-08-01

    During the winter of 1990-1991 an Acoustic BackScatter System (ABSS), five Optical Backscatterance Sensors (OBSs) and a Laser In Situ Settling Tube (LISST) were deployed in 90 m of water off the California coast for 3 months as part of the Sediment Transport Events on Shelves and Slopes (STRESS) experiment. By looking at sediment transport events with both optical (OBS) and acoustic (ABSS) sensors, one obtains information about the size of the particles transported as well as their concentration. Specifically, we employ two different methods of estimating "average particle size". First, we use vertical scattering intensity profile slopes (acoustical and optical) to infer average particle size using a Rouse profile model of the boundary layer and a Stokes law fall velocity assumption. Secondly, we use a combination of optics and acoustics to form a multifrequency (two frequency) inverse for the average particle size. These results are compared to independent observations from the LISST instrument, which measures the particle size spectrum in situ using laser diffraction techniques. Rouse profile based inversions for particle size are found to be in good agreement with the LISST results except during periods of transport event initiation, when the Rouse profile is not expected to be valid. The two frequency inverse, which is boundary layer model independent, worked reasonably during all periods, with average particle sizes correlating well with the LISST estimates. In order to further corroborate the particle size inverses from the acoustical and optical instruments, we also examined size spectra obtained from in situ sediment grab samples and water column samples (suspended sediments), as well as laboratory tank experiments using STRESS sediments. Again, good agreement is noted. The laboratory tank experiment also allowed us to study the acoustical and optical scattering law characteristics of the STRESS sediments. It is seen that, for optics, using the cross sectional area of an equivalent sphere is a very good first approximation whereas for acoustics, which is most sensitive in the region ka ˜ 1, the particle volume itself is best sensed. In concluding, we briefly interpret the history of some STRESS transport events in light of the size distribution and other information available. For one of the events "anomalous" suspended particle size distributions are noted, i.e. larger particles are seen suspended before finer ones. Speculative hypotheses for why this signature is observed are presented.

  2. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.

  3. FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

    2012-09-01

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall,more » biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.« less

  4. Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Camelia

    2013-06-14

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall,more » biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.« less

  5. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  6. Multiple angles on the sterile neutrino - a combined view of cosmological and oscillation limits

    NASA Astrophysics Data System (ADS)

    Guzowski, Pawel

    2017-09-01

    The possible existence of sterile neutrinos is an important unresolved question for both particle physics and cosmology. Data sensitive to a sterile neutrino is coming from both particle physics experiments and from astrophysical measurements of the Cosmic Microwave Background. In this study, we address the question whether these two contrasting data sets provide complementary information about sterile neutrinos. We focus on the muon disappearance oscillation channel, taking data from the MINOS, ICECUBE and Planck experiments, converting the limits into particle physics and cosmological parameter spaces, to illustrate the different regions of parameter space where the data sets have the best sensitivity. For the first time, we combine the data sets into a single analysis to illustrate how the limits on the parameters of the sterile-neutrino model are strengthened. We investigate how data from a future accelerator neutrino experiment (SBN) will be able to further constrain this picture.

  7. Hygroscopic Measurements of Aerosol Particles in the San Joaquin Valley California during the DRAGON and Discover AQ Campaign 2013

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2013-12-01

    In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f(RH), showed relatively low hygroscopic growth in the aerosol particles, especially in comparison to a similar experiment conducted in 2012 in the Baltimore-Washington area. In average, during January and early February, the f(RH=85%) was 1.57×0.16 in the sampling site, which leads to the conclusion that the particle loading was dominated by black carbon and remnants of biomass burning. We refer to concurrent speciation measurements by Zhang et al. (private communication) in Fresno, during the study. The implications for sunphotometer measurements in DRAGON are discussed.

  8. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Ideas are proposed for physics teachers to use in their classrooms. Subjects include: alpha particles, spectrometer experiments, refractive index of glass, measurement of surface tension, projectile motion, and radiant heat. (PS)

  9. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    NASA Astrophysics Data System (ADS)

    Forestieri, Sara D.; Cornwell, Gavin C.; Helgestad, Taylor M.; Moore, Kathryn A.; Lee, Christopher; Novak, Gordon A.; Sultana, Camille M.; Wang, Xiaofei; Bertram, Timothy H.; Prather, Kimberly A.; Cappa, Christopher D.

    2016-07-01

    The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative correlation with the SSA NR-OM volume fractions after the peak of the blooms (i.e., Chl a maxima); i.e., the GF(85 %) values generally decreased when the NR-OM volume fractions increased. The GF(85 %) vs. NR-OM volume fraction relationship was interpreted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and used to estimate the GF(85 %) of the organic matter in the nascent SSA. The estimated pure NR-OM GF(85 %) values were 1.16 ± 0.09 and 1.23 ± 0.10 for the indoor and outdoor MARTS, respectively. These measurements demonstrate a clear relationship between SSA particle composition and the sensitivity of light scattering to variations in relative humidity. The implications of these observations to the direct climate effects of SSA particles are discussed.

  10. The use of a quartz crystal microbalance as an analytical tool to monitor particle/surface and particle/particle interactions under dry ambient and pressurized conditions: a study using common inhaler components.

    PubMed

    Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I

    2016-12-19

    Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.

  11. Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry.

    PubMed

    Fischer, Andreas; König, Jörg; Haufe, Daniel; Schlüssler, Raimund; Büttner, Lars; Czarske, Jürgen

    2013-08-01

    To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time.

  12. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.

    PubMed

    Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan

    2010-03-29

    We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

  13. Research on the Stress and Material Flow with Single Particle—Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-04-01

    The scratching process of particle is a complex material removal process involving cutting, plowing, and rubbing. In this study, scratch experiments under different loads are performed on a multifunctional tester for material surface. Natural diamond and Fe-Cr-Ni stainless steel are chosen as indenter and workpiece material, respectively. The cutting depth and side flow height of scratch are measured using a white light interferometer. The finite element model is developed, and the numerical simulation of scratching is conducted using AdvantEdgeTM. The simulated forces and side flow height under different cutting depths correspond well with experimental results, validating the accuracy of the scratching simulation. The mises stress distribution of the particle is presented, with the maximum stress occurring inside the particle rather than on the surface. The pressure distribution of the particle is also given, and results show that the maximum pressure occurs on the contact surface of particle and workpiece. The material flow contour is presented, and material flow direction and velocity magnitude are analyzed.

  14. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    DOE PAGES

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; ...

    2015-08-22

    Here, the PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination measurements provided data on release of these fission products from fuel compactsmore » and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Moreover, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO.« less

  15. Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.

    2015-11-01

    The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of these fission products from fuel compacts and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO.

  16. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    PubMed

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014. Published by Elsevier B.V.

  17. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  18. Light Absorbing Particle (LAP) Measurements in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G. B.; Anderson, B.; Diskin, G.; Sachse, G.; Kok, G.

    2003-01-01

    This viewgraph presentation covers the capabilities and design of the Single Particle Soot Photometer (SP-2), and reviews its role on the Sage III Ozone Loss Validation Experiment (SOLVE II) field campaign during 2003. On SOLVE II the SP-2 was carried into the Arctic onboard a DC-8 aircraft, in order to determine the size distribution of light-absorbing and non light-absorbing particles in the stratosphere. Graphs and tables relate some of the results from SOLVE II.

  19. The QuarkNet CMS masterclass: bringing the LHC to students

    NASA Astrophysics Data System (ADS)

    Cecire, Kenneth; McCauley, Thomas

    2016-04-01

    QuarkNet is an educational program which brings high school teachers and their students into the particle physics research community. The program supports research experiences and professional development workshops and provides inquiry-oriented investigations, some using real experimental data. The CMS experiment at the LHC has released several thousand proton-proton collision events for use in education and outreach. QuarkNet, in collaboration with CMS, has developed a physics masterclass and e-Lab based on this data. A masterclass is a day-long educational workshop where high school students travel to nearby universities and research laboratories. There they learn from LHC physicists about the basics of particle physics and detectors. They then perform a simple measurement using LHC data, and share their results with other students around the world via videoconference. Since 2011 thousands of students from over 25 countries have participated in the CMS masterclass as organized by QuarkNet and the International Particle Physics Outreach Group (IPPOG).We describe here the masterclass exercise: the physics, the online event display and database preparation behind it, the measurement the students undertake, their results and experiences, and future plans for the exercise.

  20. The dispersion of particles in a separated backward-facing step flow

    NASA Astrophysics Data System (ADS)

    Ruck, B.; Makiola, B.

    1991-05-01

    Flows in technical and natural circuits often involve a particulate phase. To measure the dynamics of suspended, naturally resident or artificially seeded particles in the flow, optical measuring techniques, e.g., laser Doppler anemometry (LDA) can be used advantageously. In this paper the dispersion of particles in a single-sided backward-facing step flow is investigated by LDA. The investigation is of relevance for both, two-phase flow problems in separated flows with the associated particle diameter range of 1-70 μm and the accuracy of LDA with tracer particles of different sizes. The latter is of interest for all LDA applications to measure continuous phase properties, where interest for experimental restraints require tracer diameters in the upper micrometer range, e.g., flame resistant particles for measurements inside reactors, cylinders, etc. For the experiments, a closed-loop wind tunnel with a step expansion was used. Part of this tunnel, the test section, was made of glass. The step had a height H=25 mm (channel height before the step 25 mm, after 50 mm, i.e., an expansion ratio of 2). The width of the channel was 500 mm. The length of the glass test section was chosen as 116 step heights. The wind tunnel, driven by a radial fan, allowed flow velocities up to 50 m/sec which is equivalent to ReH=105. Seeding was performed with particles of well-known size: 1, 15, 30, and 70 μm in diameter. As 1 μm tracers oil droplets were used, whereas for the upper micron range starch particles (density 1.500 kg/m3) were chosen. Starch particles have a spherical shape and are not soluble in cold water. Particle velocities were measured locally using a conventional 1-D LDA system. The measurements deliver the resultant ``flow'' field information stemming from different particle size classes. Thus, the particle behavior in the separated flow field can be resolved. The results show that with increasing particle size, the particle velocity field differs increasingly from the flow field of the continuous phase (inferred from the smallest tracers used). The velocity fluctuations successively decrease with increasing particle diameter. In separation zones, bigger particles have a lower mean velocity than smaller ones. The opposite holds for the streamwise portions of the particle velocity field, where bigger particles show a higher velocity. The measurements give detailed insight into the particle dynamics in separated flow regions. LDA-measured dividing streamlines and lines of zero velocity of different particle classes in the recirculation region have been plotted and compared. In LDA the use of tracer particles in the upper micrometer size range leads to erroneous determinations of continuous phase flow characteristics. It turned out that the dimensions of the measured recirculation zones are reduced with increasing particle diameter. The physical reasons for these findings (relaxation time of particles, Stokes numbers, etc.) are explained in detail.

  1. DNA-tagged Microparticles for Tracing Water Flows and Travel Times in Natural Systems: The First results from Controlled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bogaard, T.; Bandyopadhyay, S.; Foppen, J. W.

    2017-12-01

    Societal demand for water safety is continuously increasing, being it resilient against flood/droughts, clean water for ecosystems, recreation or safe drinking water. Robust methods to measure temporal and spatial patterns of water and contaminant pathways are still lacking. Our research project aims to develop and apply (1) innovative, robust, and environmental-friendly silica-protected iron oxide micro-particles tagged with artificial DNA to trace contaminant movement and travel times of water in natural systems and (2) an innovative coupled model approach to capture dynamics in hydrological pathways and their effects on water quality. The exceptional property of DNA-tagging is the infinite number of unique tracers that can be produced and their detectability at extreme low concentrations. The advantage of the iron-core of the particle is the magnetic harvesting of the particles from water-samples. Such tracers are thought to give the water sector a unique tool for in-situ mapping of transport of contaminants and pathogenic microorganisms in water systems. However, the characteristics of the particle like magnetic property of the iron-core and surface potential of the silica layer, are of key importance for the behaviour of the particle in surface water and in soils. Furthermore, the application of such micro-particles requires strict protocols for the experiment, sampling and laboratory handling which are currently not available. We used two different types of silica-protected DNA-tagged micro-particles. We performed batch, column and flow experiments to assess the behaviour of the particles. We will present the first results of the controlled laboratory experiments for hydrological tracing. We will discuss the results and link it to the differences in particles design. Furthermore, we will draw conclusions and discuss knowledge gaps for future application of silica-protected DNA-tagged micro-particles in hydrological research.

  2. Single particle chemical composition and shape of fresh and aged Saharan dust in Morocco and at Cape Verde Islands during SAMUM I and II

    NASA Astrophysics Data System (ADS)

    Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical composition. At Tinfou, larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3. Evaluation of the Cape Verde data will show whether a significant difference exists between fresh and aged Saharan dust in aspect ratio.

  3. Project Physics Handbook 6, The Nucleus.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Five experiments and nine activities are presented in this Unit 6 handbook. The experiments are related to random events, ranges of alpha and beta particles, half-lives, and radioactive tracers. The activities are concerned with the energy measurement in beta radiation, demonstration with sugar cubes, ionization by radioactivity, magnetic…

  4. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    NASA Astrophysics Data System (ADS)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  5. Visualization of Air Particle Dynamics in an Engine Inertial Particle Separator

    NASA Astrophysics Data System (ADS)

    Wolf, Jason; Zhang, Wei

    2015-11-01

    Unmanned Aerial Vehicles (UAVs) are regularly deployed around the world in support of military, civilian and humanitarian efforts. Due to their unique mission profiles, these advanced UAVs utilize various internal combustion engines, which consume large quantities of air. Operating these UAVs in areas with high concentrations of sand and dust can be hazardous to the engines, especially during takeoff and landing. In such events, engine intake filters quickly become saturated and clogged with dust particles, causing a substantial decrease in the UAVs' engine performance and service life. Development of an Engine Air Particle Separator (EAPS) with high particle separation efficiency is necessary for maintaining satisfactory performance of the UAVs. Inertial Particle Separators (IPS) have been one common effective method but they experience complex internal particle-laden flows that are challenging to understand and model. This research employs an IPS test rig to simulate dust particle separation under different flow conditions. Soda lime glass spheres with a mean diameter of 35-45 microns are used in experiments as a surrogate for airborne particulates encountered during flight. We will present measurements of turbulent flow and particle dynamics using flow visualization techniques to understand the multiphase fluid dynamics in the IPS device. This knowledge can contribute to design better performing IPS systems for UAVs. Cleveland State University, Cleveland, Ohio, 44115.

  6. Irradiation experiment on ZrC-coated fuel particles for high-temperature gas-cooled reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minato, Kazuo; Ogawa, Toru; Sawa, Kazuhiro

    2000-06-01

    The ZrC coating layer is a candidate to replace the SiC coating layer of the Triso-coated fuel particle. To compare the irradiation performance of the ZrC Triso-coated fuel particles with that of the normal Triso-coated fuel particles at high temperatures, a capsule irradiation experiment was performed, where both types of the coated fuel particles were irradiated under identical conditions. The burnup was 4.5% FIMA and the irradiation temperature was 1,400 to 1,650 C. The postirradiation measurement of the through-coating failure fractions of both types of coated fuel particles revealed better irradiation performance of the ZrC Triso-coated fuel particles. The opticalmore » microscopy and electron probe microanalysis on the polished cross section of the ZrC Triso-coated fuel particles revealed no interaction of palladium with the ZrC coating layer nor accumulation of palladium at the inner surface of the ZrC coating layer, whereas severe corrosion of the SiC coating layer was observed in the normal Triso-coated fuel particles. Although no corrosion of the ZrC coating layer was observed, additional evaluations need to be made of this layer's ability to satisfactorily retain the fission product palladium.« less

  7. Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

    2015-09-01

    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.

  8. The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Valiev, R. R.

    2018-04-01

    In this work, the results on solid particle erosion of an ultrafine-grained Grade 5 titanium alloy, which was produced using high-pressure torsion (HPT) technique, are presented. In order to assess influence of the HPT treatment on material's behavior in erosive conditions, special experimental procedures were developed. The ultrafine-grained (UFG) alloy was tested alongside with a conventional coarse-grained (CG) Grade 5 titanium alloy in equal conditions. The experiments were conducted in a small-scale wind tunnel with corundum particles as an abrasive material. Both particle dimensions and particle velocities were varied in course of the experiments. Erosion resistance of the samples was evaluated in two ways—mass reduction measurements with subsequent gravimetric erosion rate calculations and investigation of samples' surface roughness after erosion tests. The UFG titanium alloy demonstrated considerable improvement of static mechanical properties (ultimate tensile strength, microhardness), whereas its CG counterpart appeared to be slightly more resistant to solid particle erosion, which might indicate the drop of dynamic strength properties for the HPT-processed material.

  9. The load-bearing ability of a particle raft under the transverse compression of a slender rod.

    PubMed

    Zuo, Pingcheng; Liu, Jianlin; Li, Shanpeng

    2017-03-22

    Liquid marbles and particle rafts are liquid interfaces covered with tiny particles, which are accompanied with many exotic behaviors. This study seeks to extend our understanding on the load-bearing ability of a particle raft under the transverse compression of a slender rod. At first, the interface morphologies of the particle raft and water are captured and compared with each other. Then the load-distance curves of the particle raft and water surface are measured using a self-developed device. For the particle raft, the hydrophobicity of the rod almost does not affect the interface morphology and the supporting load. To address the mechanism of this phenomenon, we perform the experiment and find that the surface tension of the particle raft is almost the same as that of water, but the equivalent contact angle of the rod attached to the particles is greatly enhanced. Finally, the model of an axisymmetrical rod pressing liquid is built, and the numerical result is in excellent agreement with the experimental data. These analyses may be beneficial to the measurement of mechanical behaviors for soft interfaces, separation of oil and water, flotation in minerals, and design of miniature boats.

  10. Measurements to Fill Knowledge Gaps on Ice Nucleating Particle Sources over Oceans

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Hill, T. C.; Ruppel, M. J.; Prather, K. A.; Collins, D. B.; Axson, J. L.; Lee, T.; Hwang, C. Y.; Sullivan, R. C.; McMeeking, G. R.; Mason, R.; Bertram, A. K.; Mayol-Bracero, O. L.; Lewis, E. R.

    2013-12-01

    Measurements of the temperature spectrum of ice nucleating particle concentrations by two methods in recent specialized laboratory sea spray studies and field campaigns in the Northern Hemisphere will be discussed and compared with historical data from over Southern Oceans. In general, new measurements of the condensation/immersion freezing activation spectra of realistically-generated laboratory sea spray particles (by wave generation or plunging water bubble production) are consistent with previous measurements made over oceans. The number concentrations of ice nuclei tend to be lower than are measured over land regions, at least for modestly supercooled cloud conditions. Certain but complex connections of ice nucleating particle production to ocean microbiological processes affecting the chemical composition of the sea surface microlayer are seen, but the nature of the ice nucleating units of particles remains to be identified. Associations of ice nucleating particle concentrations with heterotrophic bacterial concentrations were noted in some experiments, while correlation with chlorophyll-a concentration in seawater was clearly identified in laboratory simulations of phytoplankton blooms. These data may ultimately serve as the basis for parameterization development for ice initiation in numerical model simulations of mixed-phase clouds. Atmospheric measurements have been made at island sites, via aircraft, and from ship-based filter collections in the Northern Hemisphere. The immersion freezing spectra of these particles are similar to those found in recent laboratory studies and historical measurements, but show the expected natural variability by location. The majority of particles detected thus far as ice nuclei from sea spray and in marine air show minimal or episodic/variable direct participation of biological ice nucleating organisms on the basis of sensitivity to high temperatures (95°C). However, assembled measurements are still sparse, the nuclei could be a product of biological processes, and ship-collected particles from the Bering Sea showed a high labile fraction associated with the presence of a high proportion, based on pyrosequencing of DNA extracted from the collected particles, of species from the Gammaproteobacteria, the same class that contains the ice nucleating bacteria. These studies are ongoing, and new measurement plans, including ship-based aerosol collections over Southern Oceans, will be described.

  11. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    NASA Astrophysics Data System (ADS)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  12. Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties

    NASA Astrophysics Data System (ADS)

    Sullivan, Ryan Christopher

    Mineral dust particles are a major component of tropospheric aerosol mass and affect regional and global atmospheric chemistry and climate. Dust particles experience heterogeneous reactions with atmospheric gases that alter the gas and particle-phase chemistry. These in turn influence the warm and cold cloud nucleation ability and optical properties of the dust particles. This dissertation investigates the atmospheric chemistry of mineral dust particles and their role in warm cloud nucleation through a combination of synergistic field measurements, laboratory experiments, and theoretical modeling. In-situ measurements made with a single-particle mass spectrometer during the ACE-Asia field campaign in 2001 provide the motivation for this work. The observed mixing state of the individual ambient particles with secondary organic and inorganic components is described in Chapter 2. A large Asian dust storm occurred during the campaign and produced dramatic changes in the aerosol's composition and mixing state. The effect of particle size and mineralogy on the atmospheric processing of individual dust particles is explored in Chapters 3 & 4. Sulfate was found to accumulate preferentially in submicron iron and aluminosilicate-rich dust particles, while nitrate and chloride were enriched in supermicron calcite-rich dust. The mineral dust (and sea salt particles) were also enriched in oxalic acid, the dominant component of water soluble organic carbon. Chapter 5 explores the roles of gas-phase photochemistry and partitioning of the diacids to the alkaline particles in producing this unique behavior. The effect of the dust's mixing state with secondary organic and inorganic components on the dust particles' solubility, hygroscopicity, and thus warm cloud nucleation properties is explored experimentally and theoretically in Chapter 6. Cloud condensation nucleation (CCN) activation curves revealed that while calcium nitrate and calcium chloride particles were very hygroscopic and CCN-active, due to the high solubility of these compounds, calcium sulfate and calcium oxalate were not. Particles composed of these two sparingly soluble compounds had apparent hygroscopicities similar to pure calcium carbonate. This implies that the commonly made assumption that all dust particles become more hygroscopic after atmospheric processing must be revisited. Calcium sulfate and oxalate represent two forms of aged mineral dust particles that remain non-hygroscopic and thus have poor CCN nucleation ability. The particle generation method (dry versus wet) was found to significantly affect the chemistry and hygroscopicity of the aerosolized particles. Finally, in Chapter 7 the timescale for the atmospheric conversion of insoluble calcite particles to soluble, CCN-active calcium nitrate particles was derived from aerosol flow tube experiments. The reaction rate is rapid was used to estimate the conversion of calcite particles to very hygroscopic particles can occur in just a few hours of exposure to tropospheric levels of nitric acid. This process will therefore be controlled by the availability of nitric acid and its precursors, as opposed to the available atmospheric reaction time.

  13. Brownian Dynamics of Colloidal Particles in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martinez, Angel; Collings, Peter J.; Yodh, Arjun G.

    We employ video microscopy to study the Brownian dynamics of colloidal particles in the nematic phase of lyotropic chromonic liquid crystals (LCLCs). These LCLCs (in this case, DSCG) are water soluble, and their nematic phases are characterized by an unusually large elastic anisotropy. Our preliminary measurements of particle mean-square displacement for polystyrene colloidal particles (~5 micron-diameter) show diffusive and sub-diffusive behaviors moving parallel and perpendicular to the nematic director, respectively. In order to understand these motions, we are developing models that incorporate the relaxation of elastic distortions of the surrounding nematic field. Further experiments to confirm these preliminary results and to determine the origin of these deviations compared to simple diffusion theory are ongoing; our results will also be compared to previous diffusion experiments in nematic liquid crystals. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, and NASA NNX08AO0G.

  14. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  15. Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber

    NASA Astrophysics Data System (ADS)

    Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

    2012-12-01

    Biogenic VOCs are substantially emitted from vegetation to atmosphere. The oxidation of BVOCs by OH, O3, and NO3 in air generating less volatile compounds may lead to the formation and growth of secondary organic aerosol, and thus presents a link to the vegetation, aerosol, and climate interaction system (Kulmala et al, 2004). Studies including field observations, laboratory experiments and modelling have improved our understanding on the connection between BVOCs and new particle formation mechanism in some extent (see e.g. Tunved et al., 2006; Mentel et al., 2009). Nevertheless, the exact formation process still remains uncertain, especially from the perspective of BVOC contributions. The purpose of this work is using the MALTE aerosol dynamics and air chemistry box model to investigate aerosol formation from reactions of direct tree emitted VOCs in the presence of ozone, UV light and artificial solar light in an atmospheric simulation chamber. This model employs up to date air chemical reactions, especially the VOC chemistry, which may potentially allow us to estimate the contribution of BVOCs to secondary aerosol formation, and further to quantify the influence of terpenes to the formation rate of new particles. Experiments were conducted in the plant chamber facility at Forschungszentrum Jülich, Germany (Jülich Plant Aerosol Atmosphere Chamber, JPAC). The detail regarding to the chamber facility has been written elsewhere (Mentel et al., 2009). During the experiments, sulphuric acid was measured by CIMS. VOC mixing ratios were measured by two GC-MS systems and PTR-MS. An Airmodus Particle size magnifier coupled with a TSI CPC and a PH-CPC were used to count the total particle number concentrations with a detection limit close to the expected size of formation of fresh nanoCN. A SMPS measured the particle size distribution. Several other parameters including ozone, CO2, NO, Temperature, RH, and flow rates were also measured. MALTE is a modular model to predict new aerosol formation in the lower troposphere, developed by Boy, et al. (2006). We first evaluate the modelled results with measurements, and further we investigate the influence of different order of magnitude of terpene mixing ratios, especially isoprene and monoterpenes to the most important parameter of new particles formation, i.e. the formation rate (J1). Also, the influence of varying organic source rates on the sulphuric acid concentration available for particle formation is discussed. M. Boy et al., (2006). Atmos. Chem. Phys., 6, 4499-4517. M. Kulmala et al., (2004). Atmos. Chem. Phys., 4, 557-562. P. Tunved et al., (2006). Science, 14, 261-263. Th. F. Mentel et al., (2009). Atmos. Chem. Phys., 9, 4387-4406.

  16. Simulation of sediment settling in reduced gravity

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Gartmann, Andres

    2015-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, Stokes' Law or similar empirical models, the common way of estimating the terminal velocity of a particle settling in a gas or liquid, carry the notion of a drag as a property of a particle, rather than a force generated by the flow around the particle. For terrestrial applications, this simplifying assumption is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on other planetary bodies. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks, e.g. on Mars and the search for traces of life. Simulating sediment settling velocities on other planets based on a numeric simulation using Navier-Stokes equations and Computational Fluid Dynamics requires a prohibitive amount of time and lacks measurements to test the quality of the results. The aim of the experiments presented in this study was therefore to quantify the error incurred by using settling velocity models calibrated on Earth at reduced gravities, such as those on the Moon and Mars. In principle, the effect of lower gravity on settling velocity can be achieved by reducing the difference in density between particle and liquid. However, the use of such analogues creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under reduced gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling velocity measurements within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation, the results of the during the MarsSedEx I and II reduced gravity flights are reported, focusing both on the feasibility of experiments in reduced gravity as well as the error incurred when using terrestrial drag coefficients to calculate sediment settling on another planet.

  17. Characteristics and Influence of Biosmoke on the Fine-Particle Ionic Composition Measured in Asian Outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) Experiment

    NASA Technical Reports Server (NTRS)

    Ma, Y.; Weber, R. J.; Lee, Y.-N.; Orsini, D. A.; Maxwell-Meier, K.; Thornton, D. C.; Bandy, A. R.; Clarke, A. D.; Blake, D. R.; Sachse, G. W.

    2003-01-01

    We investigate the sources, prevalence, and fine-particle inorganic composition of biosmoke over the western Pacific Ocean between 24 February and 10 April 2001. The analysis is based on highly time-resolved airborne measurements of gaseous and fine- particle inorganic chemical composition made during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment. At latitudes below approximately 25 deg. N, relatively pure biomass burning plumes of enhanced fine-particle potassium, nitrate, ammonium, light-absorbing aerosols, and CO concentrations were observed in plumes that back trajectories and satellite fire map data suggest originated from biomass burning in southeast Asia. Fine-particle water-soluble potassium (K+) is confirmed to be a unique biosmoke tracer, and its prevalence throughout the experiment indicates that approximately 20% of the TRACE-P Asian outflow plumes were influenced, to some extent, by biomass or biofuel burning emissions. At latitudes above 25 deg. N, highly mixed urban/industrial and biosmoke plumes, indicated by SO(sup 2, sub 4) and K+, were observed in 5 out of 53 plumes. Most plumes were found in the Yellow Sea and generally were associated with much higher fine-particle loadings than plumes lacking a biosmoke influence. The air mass back trajectories of these mixed plumes generally pass through the latitude range of between 34 deg. and 40 deg. N on the eastern China coast, a region that includes the large urban centers of Beijing and Tianjin. A lack of biomass burning emissions based on fire maps and high correlations between K+ and pollution tracers (e.g., S(sup 2, sub 4) suggest biofuel sources. Ratios of fine-particle potassium to sulfate are used to provide an estimate of relative contributions of biosmoke emissions to the mixed Asian plumes. The ratio is highly correlated with fine-particle volume (r(sup 2) = 0.85) and predicts that for the most polluted plume encounter in TRACE-P, approximately 60% of the plume is associated with biosmoke emissions. On average, biosmoke contributes approximately 35-40% to the measured fine inorganic aerosol mass in the mixed TRACE-P plumes intercepted north of 25% latitude.

  18. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode particles of the same composition would allow proving that LLPS indeed occurs in particles of atmospheric relevant size ranges. Up to now this prove is missing. References: 1. Bertram, et al. Atmos. Chem & Phys, 11(21), 10995-11006, 2011. 2. Krieger, et al. Chemical Society Reviews, 41(19), 6631-6662, 2012 3. Song, M. et al. Geophys Res Lett, 39(19), 2012b 4. Smith et al. Atmos Chem & Phys, 12(20), 9613- 9628, 2012. 5. You, Y. et al. Proceedings of the National Academy of Sciences, 109(33), 13188-13193, 2012.

  19. An historical experiment: Los Angeles smog evolution observed by blimp.

    PubMed

    Hidy, G M

    2018-02-12

    Observations of smog over the Los Angeles Basin (LAB) links high oxidant mixing ratios with poor visibility, sometimes <5 km. By the 1970s, investigators recognized that most of the aerosol affecting visibility was from gaseous oxidation products, sulfate, nitrate, and organic carbon. This led to the 1972-1973 Aerosol Characterization Experiment (ACHEX), which included observations at the ground and from aircraft. Part of ACHEX was the measurement of smog by blimp in a Lagrangian-like format. The experiment on September 6, 1973, demonstrated that a blimp could travel with the wind across the LAB, observing ozone (O 3 ) and precursors, and particles of different size ranges. These included condensation nuclei (CN) concentrations dominated by particles of ≤ 0.1 µm diameter and light scattering coefficient (b sc ) representing mainly particles of 0.1-2.0 µm diameter. The results indicated a pollutant variation similar to that measured at a fixed site. Ozone was produced in an air mass, reaching a maximum of ~400 ppb in the presence of nitrogen oxides (NO x ) and nonmethane hydrocarbons (NMHCs), then declined. Although the photochemistry was developing, b sc grew with O 3 mixing ratio to a quasi-steady state at ~9-10 × 10 -4  m -1 , decreasing in value much later with decease in O 3 . The light scattering coefficient was found to be positively associated with the O 3 mixing ratio, whereas CN concentrations were negatively proportional to O 3 mixing ratio. The blimp experiment was supported with aircraft vertical profiles and ground-level observations from a mobile laboratory. The blimp flight obtained combined gas and particle changes aloft that could not be obtained by ground or fixed-wing aircraft measurements alone. The experiment was partially successful in achieving a true Lagrangian characterization of smog chemistry in a constrained or defined "open" air mass. The Los Angeles experiment demonstrated the use of a blimp as a platform for measurement of air pollution traveling with an air mass across an urban area. The method added unique data showing the relationship between photochemical smog chemistry and aerosol dynamics in smog. The method offers an alternative to reliance on smog chamber and modeling observations to designing air quality management strategies for reactive pollutants.

  20. Design and operation of the pellet charge exchange diagnostic for measurement of energetic confined alphas and tritons on TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.; Duong, H.H.; Fisher, R.K.

    1996-05-01

    Radially-resolved energy and density distributions of the energetic confined alpha particles in D-T experiments on TFTR are being measured by active neutral particle analysis using low-Z impurity pellet injection. When injected into a high temperature plasma, an impurity pellet (e.g. Lithium or Boron) rapidly ablates forming an elongated cloud which is aligned with the magnetic field and moves with the pellet. This ablation cloud provides a dense target with which the alpha particles produced in D-T fusion reactions can charge exchange. A small fraction of the alpha particles incident on the pellet ablation cloud will be converted to helium neutralsmore » whose energy is essentially unchanged by the charge transfer process. By measuring the resultant helium neutrals escaping from the plasma using a mass and energy resolving charge exchange analyzer, this technique offers a direct measurement of the energy distribution of the incident high-energy alpha particles. Other energetic ion species can be detected as well, such as tritons generated in D-D plasmas and H or He{sup 3} RF-driven minority ion tails. The diagnostic technique and its application on TFTR are described in detail.« less

  1. Charged-particle emission tomography

    PubMed Central

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H.

    2018-01-01

    Purpose Conventional charged-particle imaging techniques —such as autoradiography —provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Methods Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Results Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. Conclusions We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. PMID:28370094

  2. Charged-particle emission tomography.

    PubMed

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H

    2017-06-01

    Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Continuing Studies of Planetary Atmospheres Associated with Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.

  4. Experimental Studies on the Collision Behavior of Saturnian Ice Particles

    NASA Astrophysics Data System (ADS)

    Heißelmann, D.; Fraser, H. J.; Blum, J.

    2008-09-01

    The processes in the Saturnian rings are dominated by two effects. On the one hand there is a gravitational interaction of the ring particles with Saturn or its moons and moonlets increasing the eccentricity of the rings. On the other hand inelastic collisions between the ring particles occur and result in damping of the particles' motion and therefore circularizing the orbits and locally confining the rings [1]. As spectroscopic measurements of the Saturnian rings have shown, the ring particles consist of almost pure water ice (with little amounts of organic materials and carbon) [2]. The determination of the size distribution of the ring constituents from Cassini and Voyager data revealed typical particles sizes between 1 cm and 10m. In contrast to the numerous observational data obtained by spaceborne and ground-based methods only very little experimental data exist on the collision properties of icy particles. Up to now laboratory measurements were only performed for quasi-two-dimensional, central collisions of large icy spheres [3, 4, 5]. We will present results from parabolic flight experiments in which pairs of ice particles of spherical and irregular shape were collided in a microgravity environment. The projectiles with sizes of 3mm to 15mm were accelerated to velocities between 3 cm s-1 and 20 cm s-1 and gently collided inside a cryogenic high-vacuum chamber. The impacts were recorded by a high-speed, high-resolution digital imaging system which was equipped with a beamsplitter optics to obtain three-dimensional information about the impact parameters and the coefficients of restitution (the ratio of velocity after and before the collision). Additionally we will report on microgravity studies investigating collisions of an ensemble of one hundred cmsized spheres. The prototype experiments were conducted with solid glass beads with a rough surface colliding at relative velocities of 0.5 cm s-1 to 10 cm s-1. We will compare the results to the collisions of pairs of icy bodies and will report on future laboratory studies of similar experiments with rubber beads and ice particles.

  5. Continuing Studies of Planetary Atmospheres Associated With Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Goodman,Jindra; Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.

  6. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    NASA Astrophysics Data System (ADS)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  7. Chemical and isotopic measurements of micrometeoroids by secondary ion mass spectrometry (A0187-2)

    NASA Technical Reports Server (NTRS)

    Foote, J. H.; Swan, P. D.; Walker, R. M.; Zinner, E. K.; Bahr, D.; Fechtig, H.; Jessberger, E.; Igenbergs, E.; Kreitmayr, U.; Kuczera, H.

    1984-01-01

    The objective of this experiment is to measure the chemical and isotopic composition of interplanetary dust particles of mass greater than 10 to the minus 10 power G for most of thermator elements expected to be present.

  8. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  9. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE PAGES

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  10. Fundamental Research Applied To Enable Hardware Performance in Microgravity

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2005-01-01

    NASA sponsors microgravity research to generate knowledge in physical sciences. In some cases, that knowledge must be applied to enable future research. This article describes one such example. The Dust and Aerosol measurement Feasibility Test (DAFT) is a risk-mitigation experiment developed at the NASA Glenn Research Center by NASA and ZIN Technologies, Inc., in support of the Smoke Aerosol Measurement Experiment (SAME). SAME is an investigation that is being designed for operation in the Microgravity Science Glovebox aboard the International Space Station (ISS). The purpose of DAFT is to evaluate the performance of P-Trak (TSI Incorporated, Shoreview, MN)--a commercially available condensation nuclei counter and a key SAME diagnostic- -in long-duration microgravity because of concerns about its ability to operate properly in that environment. If its microgravity performance is proven, this device will advance the state of the art in particle measurement capabilities for space vehicles and facilities, such as aboard the ISS. The P-Trak, a hand-held instrument, can count individual particles as small as 20 nm in diameter in an aerosol stream. Particles are drawn into the device by a built-in suction pump. Upon entering the instrument, these particles pass through a saturator tube where they mix with an alcohol vapor (see the following figure). This mixture then flows through a cooled condenser tube where some of the alcohol condenses onto the sample particles, and the droplets grow in a controlled fashion until they are large enough to be counted. These larger droplets pass through an internal nozzle and past a focused laser beam, producing flashes of light that are sensed by a photodetector and then counted to determine particle number concentration. The operation of the instrument depends on the proper internal flow and recycling of isopropyl alcohol in both the vapor and liquid phases.

  11. A beam radiation monitor based on CVD diamonds for SuperB

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, Daniel J.

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  13. The International Cometary Explorer (ICE) mission to comet Giacobini-Zinner (G/Z)

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Farquhar, R. W.; Maran, S. P.; Niedner, M. B.; Von Rosenvinge, T.

    1985-01-01

    The primary objectives of the International Cometary Explorer (ICE) mission is to provide in situ data on the interaction between solar wind and the atmosphere of the P/Giacobini-Zinner comet (G/Z), making measurements of particles, fields, and waves while passing through the cometary tail of G/Z on September 11, 1985. Following the G/Z tail intercept, the ICE measurements will complement the later upstream measurements obtained by the Comet Halley probe. The major ICE payload includes a vector helium magnetometer, the plasma-wave experiment, the radio-wave experiment, the plasma-electron experiment, and the plasma ion experiment. Other experiments are intended to measure energetic protons, X-rays, low energy to high energy cosmic rays, cosmic ray electrons, and gamma-ray bursts. The ICE measurements of G/Z will be supplemented with ground-based measurements. Schematic diagrams are included.

  14. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh R.; Shaw, Marvin; Pound, Ryan; Kramer, Louisa J.; Price, Robin; Young, Stuart; Lewis, Alastair C.; Pope, Francis D.

    2018-02-01

    A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.

  15. Space qualification tests of the PAMELA instrument

    NASA Astrophysics Data System (ADS)

    Sparvoli, R.; Basili, A.; Bencardino, R.; Casolino, M.; de Pascale, M. P.; Furano, G.; Menicucci, A.; Minori, M.; Morselli, A.; Picozza, P.; Wischnewski, R.; Bakaldin, A.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Voronov, S. A.; Yurkin, Y.; Adriani, O.; Bonechi, L.; Bongi, M.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Vannuccini, E.; Castellini, G.; Boezio, M.; Bonvicini, M.; Mocchiutti, E.; Schiavon, P.; Vacchi, A.; Zampa, G.; Zampa, N.; Carlson, P.; Lund, J.; Lundquist, J.; Orsi, S.; Pearce, M.; Barbarino, G. C.; Campana, D.; Osteria, G.; Rossi, G.; Russo, S.; Boscherini, M.; Menn, W.; Simon, M.; Bongiorno, L.; Ricci, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Mirizzi, N.; Romita, M.; Spinelli, P.; Bogomolov, E.; Krutkov, S.; Vasiljev, G.; Bazilevskaja, G. A.; Kvashnin, A. N.; Logachev, V. I.; Makhmutov, V. S.; Maksumov, O. S.; Stozhkov, Yu. I.; Mitchell, J. W.; Streitmatter, R. E.; Stochaj, S. J.

    PAMELA is a satellite-borne experiment which will measure the antiparticle component of cosmic rays over an extended energy range and with unprecedented accuracy. The apparatus consists of a permanent magnetic spectrometer equipped with a double-sided silicon microstrip tracking system and surrounded by a scintillator anticoincidence system. A silicon tungsten imaging calorimeter, complemented by a scintillator shower tail catcher, and a transition radiation detector perform the particle identification task. Fast scintillators are used for Time-of-Flight measurements and to provide the primary trigger. A neutron detector is finally provided to extend the range of particle measurements to the TeV region. PAMELA will fly on-board of the Resurs-DK1 satellite, which will be put into a semi-polar orbit in 2005 by a Soyuz rocket. We give a brief review of the scientific issues of the mission and report about the status of the experiment few months before the launch.

  16. Scattering matrix elements of biological particles measured in a flow through system: theory and practice.

    PubMed

    Sloot, P M; Hoekstra, A G; van der Liet, H; Figdor, C G

    1989-05-15

    Light scattering techniques (including depolarization experiments) applied to biological cells provide a fast nondestructive probe that is very sensitive to small morphological differences. Until now quantitative measurement of these scatter phenomena were only described for particles in suspension. In this paper we discuss the symmetry conditions applicable to the scattering matrices of monodisperse biological cells in a flow cytometer and provide evidence that quantitative measurement of the elements of these scattering matrices is possible in flow through systems. Two fundamental extensions to the theoretical description of conventional scattering experiments are introduced: large cone integration of scattering signals and simultaneous implementation of the localization principle to account for scattering by a sharply focused laser beam. In addition, a specific calibration technique is proposed to account for depolarization effects of the highly specialized optics applied in flow through equipment.

  17. Quality of remote sensing measurements of cloud physical parameters in the cooperative convective precipitation experiment

    NASA Technical Reports Server (NTRS)

    Wu, M.-L.

    1985-01-01

    In order to develop the remote sensing techniques to infer cloud physical parameters, a multispectral cloud radiometer (MCR) was mounted on a NASA high-altitude aircraft in conjunction with the Cooperative Convective Precipitation Experiment in 1981. The MCR has seven spectral channels, of which three are centered near windows associated with water vapor bands in the near infrared, two are centered near the oxygen A band at 0.76 microns, one is centered at the 1.14-micron water vapor band, and one is centered in the thermal infrared. The reflectance and temperature measured on May 31, 1981, are presented together with theoretical calculations. The results indicate that the MCR produces quality measurements. Therefore several cloud parameters can be derived with good accuracy. The parameters are the cloud-scaled optical thickness, cloud top pressure, volume scattering coefficient, particle thermodynamic phase, effective mean particle size, and cloud-top temperature.

  18. Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle.

    PubMed

    Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico

    2018-06-01

    Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.

  19. Taus and the Trigger for Discovery at ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demers, Sarah

    This five year grant allowed Yale Professor Sarah Demers and her students and postdocs to contribute to the ATLAS Experiment at CERN's Large Hadron Collider. We worked on a particular mode of the Higgs Boson decay, contributing to the discovery of this particle as well as measuring the particle's properties. We also performed a "first of its kind" measurement at a hadron collider in the measurement of tau polarization, which increased the sensitivity of ATLAS in a number of exciting ways, both for making measurements of known particles and for hunting for new ones. We also contributed to the taumore » trigger - the real-time selection that chooses data that includes the signature of the tau lepton. Four PhD students in the Yale Physics Department received their PhDs during the term of this grant, with at least partial support from the grant.« less

  20. Three-Dimensional Measurement of the Helicity-Dependent Forces on a Mie Particle

    NASA Astrophysics Data System (ADS)

    Liu, Lulu; Di Donato, Andrea; Ginis, Vincent; Kheifets, Simon; Amirzhan, Arman; Capasso, Federico

    2018-06-01

    Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.

  1. A magnetic field cloak for charged particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less

  2. A magnetic field cloak for charged particle beams

    NASA Astrophysics Data System (ADS)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.

    2018-01-01

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.

  3. A magnetic field cloak for charged particle beams

    DOE PAGES

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; ...

    2017-10-02

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less

  4. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    NASA Astrophysics Data System (ADS)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.

    2011-10-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  5. Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

    1983-11-16

    It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.

  6. Flocculation and aggregation in a microgravity environment (FAME)

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Suh, Kwang I.

    1994-01-01

    An experiment to study flocculation phenomena in the constrained microgravity environment of a space shuttle or space station is described. The small size and light weight experiment easily fits in a Spacelab Glovebox. Using an integrated fiber optic dynamic light scattering (DLS) system we obtain high precision particle size measurements from dispersions of colloidal particles within seconds, needs no onboard optical alignment, no index matching fluid, and offers sample mixing and shear melting capabilities to study aggregation (flocculation and coagulation) phenomena under both quiescent and controlled agitation conditions. The experimental system can easily be adapted for other microgravity experiments requiring the use of DLS. Preliminary results of ground-based study are reported.

  7. Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Hoffmann, N.; Kiselev, A.; Dreyer, A.; Zhang, K.; Kulkarni, G.; Koop, T.; Möhler, O.

    2014-03-01

    In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface-area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary offline characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at -35.2 °C < T < -33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet freezing.

  8. Calocube-A highly segmented calorimeter for a space based experiment

    NASA Astrophysics Data System (ADS)

    D`Alessandro, R.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; Cauz, D.; Chiari, M.; Daddi, N.; Detti, S.; Fasoli, M.; Finetti, N.; Gregorio, A.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Miritello, M.; Mori, N.; Pacini, L.; Papini, P.; Pauletta, G.; Pirzio, F.; Rappazzo, G. F.; Rappoldi, A.; Ricciarini, S.; Santi, L. G.; Spillantini, P.; Starodubtsev, O.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifiro, A.; Trimarchi, M.; Vannuccini, E.; Vedda, A.; Zampa, G.; Zampa, N.; Zerbo, B.

    2016-07-01

    Future research in High Energy Cosmic Ray Physics concerns fundamental questions on their origin, acceleration mechanism, and composition. Unambiguous measurements of the energy spectra and of the composition of cosmic rays at the "knee" region could provide some of the answers to the above questions. Only ground based observations, which rely on sophisticated models describing high energy interactions in the earth's atmosphere, have been possible so far due to the extremely low particle rates at these energies. A calorimeter based space experiment can provide not only flux measurements but also energy spectra and particle identification, especially when coupled to a dE/dx measuring detector, and thus overcome some of the limitations plaguing ground based experiments. For this to be possible very large acceptances are needed if enough statistic is to be collected in a reasonable time. This contrasts with the lightness and compactness requirements for space based experiments. A novel idea in calorimetry is discussed here which addresses these issues while limiting the mass and volume of the detector. In fact a small prototype is currently being built and tested with ions. In this paper the results obtained will be presented in light of the simulations performed.

  9. Modification of homogeneous and isotropic turbulence by solid particles

    NASA Astrophysics Data System (ADS)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135 showed that the absence of particle potential energy loss and particle wakes caused greater levels of turbulence attenuation since there was no additional production due to mean particle motion. The relatively stationary dispersion of particles acted like a series of screens which produced forces opposing turbulent motions.

  10. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    DOE PAGES

    Cahill, J. F.; Fei, H.; Cohen, S. M.; ...

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less

  11. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis.

    PubMed

    Berkemeier, Thomas; Ammann, Markus; Mentel, Thomas F; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-06-21

    The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.

  12. Urban organic aerosols measured by single particle mass spectrometry in the megacity of London

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Harrison, R. M.

    2011-02-01

    During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were accompanied by Aerosol Mass Spectrometer (AMS) quantitative aerosol mass loading measurements (Dall'Osto et al., 2009a, b). In this manuscript the origins and properties of four particle types associated with locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species, and contains both primary and secondary components. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings. The fourth class (SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. Finally, a comparison of ATOFMS particle class data is made with factors obtained by Positive Matrix Factorization from AMS data.. Both the Ca-EC and OC particle types correlate with the AMS HOA primary organic fraction (R2 = 0.65 and 0.50 respectively), and Na-EC-OC, but not SOA-PAH, which correlates weakly with the AMS OOA secondary organic aerosol factor (R2 = 0.35). A detailed analysis was conducted to identify ATOFMS particle type(s) representative of the AMS COA cooking aerosol factor, but no convincing associations were found.

  13. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  14. HAMLET -Matroshka IIA and IIB experiments aboard the ISS: comparison of organ doses

    NASA Astrophysics Data System (ADS)

    Kato, Zoltan; Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Palfalvi, Jozsef K.; Hager, Luke; Burmeister, Soenke

    The Matroshka experiments and the related FP7 HAMLET project aimed to study the dose burden of the cosmic rays in the organs of the crew working inside and outside the ISS. Two of the experiments will be discussed. They were performed in two different locations inside the ISS: during the Matroshka 2A (in 2006) the phantom was stored in the Russian Docking Module (Pirs), while during the Matroshka 2B (in 2007-08) it was inside the Russian Service Module (Zvezda). Both experiments were performed in the decreasing phase of the solar cycle. Solid state nuclear track detectors (SSNTD) were applied to investigate the dose contribution of the high LET radiation above ˜10 keV/µm. Two configurations of SSNTDs stacks were constructed: one for the exposure in the so called organ dose boxes (in the lung and kidney), another one for the skin dose measurements, embedded in the nomex poncho of the Phantom. In addition a reference package was placed outside the phantom. After exposure the detectors were transferred to the Earth for data evaluation. Short and long etching procedures were applied to distinguish the high and low LET particles, respectively. The particle tracks were evaluated by a semi automated image analyzer. Addi-tionally manual track parameter measurements were performed on very long tracks. As the result of measurements the LET spectra were deduced. Based on these spectra, the absorbed dose, the dose equivalent and the mean quality factor were calculated. The configuration of the stacks, the methods of the calibration and evaluation and finally the results will be presented and compared. The multiple etching and the combined evaluation method allowed to determine the fraction of the dose originated from HZE particles (Z>2 and range > major axis). Further on, data eval-uation was performed to separate the secondary particles (target fragments) from the primary particles. Although the number of high LET particles above a ˜80 keV/µm was found to be higher during the Matroshka 2B experiment than in the previous phase it was not possible to attribute this observation to the lower Sun activity in 2008, since the locations inside the ISS were different. The HAMLET project is funded by the European Commission under the EUs Seventh Frame-work Programme (FP7) under Project Nr: 218817 and coordinated by the German Aerospace Center (DLR) http://www-fp7-hamlet.eu

  15. Investigation of the Influence of Microgravity on Transport Mechanism in a Virtual Spaceflight Chamber: A Flight Definition Program

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Rangel, Roger; Witherow, William; Rogers, Jan; Lal, Ravindra B.

    1999-01-01

    A need exists for understanding precisely how particles move and interact in a fluid in the absence of gravity. Such understanding is required, for example, for modeling and predicting crystal growth in space where crystals grow from solution around nucleation sites as well as for any study of particles or bubbles in liquids or in experiments where particles are used as tracers for mapping microconvection. We have produced an exact solution to the general equation of motion of particles at extremely low Reynolds number in microgravity that covers a wide range of interesting conditions. We have also developed diagnostic tools and experimental techniques to test the validity of the general equation . This program, which started in May, 1998, will produce the flight definition for an experiment in a microgravity environment of space to validate the theoretical model. We will design an experiment with the help of the theoretical model that is optimized for testing the model, measuring g, g-jitter, and other microgravity phenomena. This paper describes the goals, rational, and approach for the flight definition program. The first objective of this research is to understand the physics of particle interactions with fluids and other particles in low Reynolds number flows in microgravity. Secondary objectives are to (1) observe and quantify g-jitter effects and microconvection on particles in fluids, (2) validate an exact solution to the general equation of motion of a particle in a fluid, and (3) to characterize the ability of isolation tables to isolate experiments containing particle in liquids. The objectives will be achieved by recording a large number of holograms of particle fields in microgravity under controlled conditions, extracting the precise three-dimensional position of all of the particles as a function of time and examining the effects of all parameters on the motion of the particles. The feasibility for achieving these results has already been established in the ongoing ground-based NRA, which led to the "virtual spaceflight chamber" concept.

  16. Japan - USSR joint emulsion chamber experiment at Pamir

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The results are presented for the systematic measurement of cosmic ray showers in the first carbon chamber of Japan-USSR joint experiment at Pamir Plateau. The intensity and the energy distribution of electromagnetic particles, of hadrons and of families are in good agreement with the results of other mountain experiment if the relative error in energy estimation is taken into consideration.

  17. Position-sensitive ``movie'' in situ neutron detector for the UCN τ experiment

    NASA Astrophysics Data System (ADS)

    Weaver, Hannah; UCNTau Collaboration

    2016-09-01

    Precision measurements of neutron β-decay parameters provide tests of fundamental theories in elementary particle physics and cosmology such as the Standard Model and Big Bang nucleosynthesis. In particular, the UCN τ experiment aims to measure the mean lifetime of ultracold neutrons confined in an asymmetric magneto-gravitational trap using an in situ neutron detector. This detector consists of a 20 nm film of 10B on top of a ZnS:Ag scintillating screen. The screen is readout using two photomultipliers which view an array of wavelength shifting fibers optically coupled to the scintillator. When the detector is lowered into the loaded trap, light is emitted due to the charged particles recoiling into the ZnS:Ag when neutrons absorb on the 10B. Phase space evolution in the stored neutron population can lead to apparent shifts in the measured neutron lifetime with the detector height. In order to quantify this systematic uncertainty, we are implementing a supplemental 64-channel position-sensitive PMT module with high quantum efficiency and fast time response to image the entire detector in situ during measurements. We have characterized a prototype using a ZnS screen and an α-particle source along with a prototype lens system and will report the results and future plans.

  18. Plasma flow measurements in the Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) and comparison with B2.5-Eirene modeling

    NASA Astrophysics Data System (ADS)

    Kafle, N.; Owen, L. W.; Caneses, J. F.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2018-05-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory is a linear plasma device that combines a helicon plasma source with additional microwave and radio frequency heating to deliver high plasma heat and particle fluxes to a target. Double Langmuir probes and Thomson scattering are being used to measure local electron temperature and density at various radial and axial locations. A recently constructed Mach-double probe provides the added capability of simultaneously measuring electron temperatures ( T e), electron densities ( n e), and Mach numbers (M). With this diagnostic, it is possible to infer the plasma flow, particle flux, and heat flux at different locations along the plasma column in Proto-MPEX. Preliminary results show Mach numbers of 0.5 (towards the dump plate) and 1.0 (towards the target plate) downstream from the helicon source, and a stagnation point (no flow) near the source for the case where the peak magnetic field was 1.3 T. Measurements of particle flow and ne and Te profiles are discussed. The extensive coverage provided by these diagnostics permits data-constrained B2.5-Eirene modeling of the entire plasma column, and comparison with results of modeling in the high-density helicon plasmas will be presented.

  19. Effect of natural particles on the transport of lindane in saturated porous media: Laboratory experiments and model-based analysis

    NASA Astrophysics Data System (ADS)

    Ngueleu, Stéphane K.; Grathwohl, Peter; Cirpka, Olaf A.

    2013-06-01

    Colloidal particles can act as carriers for adsorbing pollutants, such as hydrophobic organic pollutants, and enhance their mobility in the subsurface. In this study, we investigate the influence of colloidal particles on the transport of pesticides through saturated porous media by column experiments. We also investigate the effect of particle size on this transport. The model pesticide is lindane (gamma-hexachlorocyclohexane), a representative hydrophobic insecticide which has been banned in 2009 but is still used in many developing countries. The breakthrough curves are analyzed with the help of numerical modeling, in which we examine the minimum model complexity needed to simulate such transport. The transport of lindane without particles can be described by advective-dispersive transport coupled to linear three-site sorption, one site being in local equilibrium and the others undergoing first-order kinetic sorption. In the presence of mobile particles, the total concentration of mobile lindane is increased, that is, lindane is transported not only in aqueous solution but also sorbed onto the smallest, mobile particles. The models developed to simulate separate and associated transport of lindane and the particles reproduced the measurements very well and showed that the adsorption/desorption of lindane to the particles could be expressed by a common first-order rate law, regardless whether the particles are mobile, attached, or strained.

  20. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel

    2009-06-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the features (von Neumann spike and sonic locus) of the reaction zone make these measurements difficult. Here, we report results obtained from using and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating HE (nitromethane)/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments, in either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation systems and the velocimetry systems were different. Some differences were observed in the von Neumann spike height because of the approximately 2 nanosecond time resolution of the techniques -- in some or all cases the spike top was truncated.

  1. Light scalar dark matter at neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Liao, Jiajun; Marfatia, Danny; Whisnant, Kerry

    2018-04-01

    Couplings between light scalar dark matter (DM) and neutrinos induce a perturbation to the neutrino mass matrix. If the DM oscillation period is smaller than ten minutes (or equivalently, the DM particle is heavier than 0.69×10-17 eV), the fast-averaging over an oscillation cycle leads to a modification of the measured oscillation parameters. We present a specific μ - τ symmetric model in which the measured value of θ 13 is entirely generated by the DM interaction, and which reproduces the other measured oscillation parameters. For a scalar DM particle lighter than 10-15 eV, adiabatic solar neutrino propagation is maintained. A suppression of the sensitivity to CP violation at long baseline neutrino experiments is predicted in this model. We find that DUNE cannot exclude the DM scenario at more than 3 σ C.L. for bimaximal, tribimaximal and hexagonal mixing, while JUNO can rule it out at more than 6 σ C.L. by precisely measuring both θ 12 and θ 13.

  2. Ultrafast electrokinetics.

    PubMed

    Rouhi Youssefi, Mehrnaz; Diez, Francisco Javier

    2016-03-01

    The influence of a high electric field applied on both fluid flow and particle velocities is quantified at large Peclet numbers. The experiments involved simultaneous particle image velocimetry and flow rate measurements. These are conducted in polydimethylsiloxane channels with spherical nonconducting polystyrene particles and DI water as the background flow. The high electric field tests produced up to three orders of magnitude higher electrokinetic velocities than any previous reports. The maximum electroosmotic velocity and electrophoretic velocity measured were 3.55 and 2.3 m/s. Electrophoretic velocities are measured over the range of 100 V/cm < E < 250 000 V/cm. The results are separated according to the different nonlinear theoretical models, including low and high Peclet numbers, and weak and strong concentration polarization. They show good agreement with the models. Such fast velocities could be used for flow separation, mixing, transport, control, and manipulation of suspended particles as well as microthrust generation among other applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Bianchi, G.; Sklar, L. S.

    2016-12-01

    Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.

  4. Dispersion and Filtration of Carbon Nanotubes (CNTs) and Measurement of Nanoparticle Agglomerates in Diesel Exhaust.

    PubMed

    Wang, Jing; Pui, David Y H

    2013-01-14

    Carbon nanotubes (CNTs) tend to form bundles due to their geometry and van der Walls forces, which usually complicates studies of the CNT properties. Dispersion plays a significant role in CNT studies and we summarize dispersion techniques to generate airborne CNTs from suspensions or powders. We describe in detail our technique of CNT aerosolization with controlled degree of agglomeration using an electrospray system. The results of animal inhalation studies using the electrosprayed CNTs are presented. We have performed filtration experiments for CNTs through a screen filter. A numerical model has been established to simulate the CNT filtration experiments. Both the modeling and experimental results show that the CNT penetration is less than the penetration for a sphere with the same mobility diameter, which is mainly due to the larger interception length of the CNTs. There is a need for instruments capable of fast and online measurement of gas-borne nanoparticle agglomerates. We developed an instrument Universal NanoParticle Analyzer (UNPA) and the measurement results for diesel exhaust particulates are presented. The results presented here are pertinent to non-spherical aerosol particles, and illustrate the effects of particle morphology on aerosol behaviors.

  5. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu

    2013-06-10

    The organic haze produced from complex CH{sub 4}/N{sub 2} chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, theirmore » densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH{sub 4} concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.« less

  6. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    PubMed

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  7. "Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow

    NASA Technical Reports Server (NTRS)

    Gorokhovski, M.; Chtab, A.

    2003-01-01

    The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.

  8. Effect of erodent particles on the erosion of metal specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razzaque, M. Mahbubur, E-mail: mmrazzaque@me.buet.ac.bd; Alam, M. Khorshed; Khan, M. Ishak, E-mail: ishak.buet@gmail.com

    2016-07-12

    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens aremore » examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.« less

  9. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity.

    PubMed

    Rindelaub, Joel D; Craig, Rebecca L; Nandy, Lucy; Bondy, Amy L; Dutcher, Cari S; Shepson, Paul B; Ault, Andrew P

    2016-02-18

    Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles.

  10. Effect of erodent particles on the erosion of metal specimens

    NASA Astrophysics Data System (ADS)

    Razzaque, M. Mahbubur; Alam, M. Khorshed; Khan, M. Ishak

    2016-07-01

    This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.

  11. Design requirements, challenges, and solutions for high-temperature falling particle receivers

    NASA Astrophysics Data System (ADS)

    Christian, Joshua; Ho, Clifford

    2016-05-01

    Falling particle receivers (FPR) utilize small particles as a heat collecting medium within a cavity receiver structure. Previous analysis for FPR systems include computational fluid dynamics (CFD), analytical evaluations, and experiments to determine the feasibility and achievability of this CSP technology. Sandia National Laboratories has fabricated and tested a 1 MWth FPR that consists of a cavity receiver, top hopper, bottom hopper, support structure, particle elevator, flux target, and instrumentation. Design requirements and inherent challenges were addressed to enable continuous operation of flowing particles under high-flux conditions and particle temperatures over 700 °C. Challenges include being able to withstand extremely high temperatures (up to 1200°C on the walls of the cavity), maintaining particle flow and conveyance, measuring temperatures and mass flow rates, filtering out debris, protecting components from direct flux spillage, and measuring irradiance in the cavity. Each of the major components of the system is separated into design requirements, associated challenges and corresponding solutions. The intent is to provide industry and researchers with lessons learned to avoid pitfalls and technical problems encountered during the development of Sandia's prototype particle receiver system at the National Solar Thermal Test Facility (NSTTF).

  12. Constraining the noise-free distribution of halo spin parameters

    NASA Astrophysics Data System (ADS)

    Benson, Andrew J.

    2017-11-01

    Any measurement made using an N-body simulation is subject to noise due to the finite number of particles used to sample the dark matter distribution function, and the lack of structure below the simulation resolution. This noise can be particularly significant when attempting to measure intrinsically small quantities, such as halo spin. In this work, we develop a model to describe the effects of particle noise on halo spin parameters. This model is calibrated using N-body simulations in which the particle noise can be treated as a Poisson process on the underlying dark matter distribution function, and we demonstrate that this calibrated model reproduces measurements of halo spin parameter error distributions previously measured in N-body convergence studies. Utilizing this model, along with previous measurements of the distribution of halo spin parameters in N-body simulations, we place constraints on the noise-free distribution of halo spins. We find that the noise-free median spin is 3 per cent lower than that measured directly from the N-body simulation, corresponding to a shift of approximately 40 times the statistical uncertainty in this measurement arising purely from halo counting statistics. We also show that measurement of the spin of an individual halo to 10 per cent precision requires at least 4 × 104 particles in the halo - for haloes containing 200 particles, the fractional error on spins measured for individual haloes is of order unity. N-body simulations should be viewed as the results of a statistical experiment applied to a model of dark matter structure formation. When viewed in this way, it is clear that determination of any quantity from such a simulation should be made through forward modelling of the effects of particle noise.

  13. Test results of modified electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.; Huang, K. H.

    1983-01-01

    Modifications to a charged particle generator for use in fog dispersal applications were made and additional testing carried out. The modified nozzle, however, did not work as planned, and reported results are the unmodified nozzle. The addition of a positive displacement pump to supply the liquid water was highly successful. Measurements of the generator output current were made with a cylindrical collector system as well as with the needle probe used in previous studies. Measurements with the cylindrical collector and the needle probe showed identical agreement within the variability of the experiment. A high-voltage prove was purchased, and measurements of the corona voltage as well as the voltage variation in the charged particle jet were made. Electric fields in the vertical direction on the order of 1,000,000 v/m were measured. The voltage distribution along the centerline of the jet was compared with the numerical solutions of the Poisson equation and showed very good agreement. Velocity measurements using a pitot tube were made. The resulting measurements were compared with theoretical and other reported experimental results. The measured data showed the appropriate trends and agreed well with reported results. Based on the measured current-to-mass ratio from the charged particle generator, a calculation of the average droplet size was made. Droplet sizes were estimated to range between 0.8 and 0.4 microns. Using measured data, an analysis of the height to which the droplet can be dispersed by the charged particle generator was made. Although the mathematical model is highly simplified, the results indicated that particles would achieve heights on the order of 80 m.

  14. AMS in payload bay viewed from Mir Space Station

    NASA Image and Video Library

    2016-08-24

    STS091-367-033 (2-12 June 1998) --- This photo of the Space Shuttle Discovery's aft section features the Alpha Magnetic Spectrometer (AMS), as seen from Russia's Mir space station, docked with Discovery at the time. AMS is the first large-magnet experiment ever placed in Earth orbit. The scientific goal of this high-energy physics experiment is to increase our understanding of the composition and origin of the universe. It is designed to search for and measure charged particles, including antimatter, outside Earth's atmosphere. The charge of such particles can be identified only by their trajectories in a magnetic field.

  15. A Horizontal Multi-Purpose Microbeam System.

    PubMed

    Xu, Y; Randers-Pehrson, G; Marino, S A; Garty, G; Harken, A; Brenner, D J

    2018-04-21

    A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.

  16. Light scattering calculations for the nephelometer experiment on the 1981/1982 Jupiter Orbiter-Probe mission

    NASA Technical Reports Server (NTRS)

    Grams, G. W.

    1982-01-01

    A variety of studies were carried out to help establish the accuracy of quantities describing physical characteristics of cloud particles (such as size, shape, and composition) that are to be inferred from light scattering data obtained with the nephelameter experiment on the Galileo spacecraft. The objectives were to provide data for validating and testing procedures for analyzing the Galileo nephelameter data with light scattering observations in a variety of on-going laboratory and field measurement programs for which simultaneous observations of the physical characteristics of the scattering particles were available.

  17. Results from the PHOBOS experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; GarcíA, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; HolyńSki, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; WoźNiak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2004-04-01

    PHOBOS is one of the four experiments at the Relativistic Heavy Ion Collider measuringp + p, d + Au, andAu + Au collisions over a broad range of energies. PHOBOS is a silicon-pad based detector with a 4π multiplicity detector and a high resolution mid-rapidity spectrometer, along with other detectors (time-of-flight walls, proton and zero degree calorimeters). PHOBOS is able to measure particles at low transverse momentum, spectra, flow, particle ratios, and multiplicity over a large region of phase space. A comparison of results forAu + Au andd + Au collisions at√SNN = 220GeV will be discussed.

  18. A horizontal multi-purpose microbeam system

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Randers-Pehrson, G.; Marino, S. A.; Garty, G.; Harken, A.; Brenner, D. J.

    2018-04-01

    A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.

  19. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.

  20. Laser diffraction particle sizing in STRESS

    NASA Astrophysics Data System (ADS)

    Agrawal, Y. C.; Pottsmith, H. C.

    1994-08-01

    An autonomous instrument system for measuring particle size spectra in the sea is described. The instrument records the small-angle scattering characteristics of the particulate ensemble present in water. The small-angle scattering distribution is inverted into size spectra. The discussion of the instrument in this paper is included with a review of the information content of the data. It is noted that the inverse problem is sensitive to the forward model for light scattering employed in the construction of the matrix. The instrument system is validated using monodisperse polystyrene and NIST standard distributions of glass spheres. Data from a long-term deployment on the California shelf during the field experiment Sediment Transport Events on Shelves and Slopes (STRESS) are included. The size distribution in STRESS, measured at a fixed height-above-bed 1.2 m, showed significant variability over time. In particular, the volume distribution sometimes changed from mono-modal to bi-modal during the experiment. The data on particle-size distribution are combined with friction velocity measurements in the current boundary layer to produce a size-dependent estimate of the suspended mass at 10 cm above bottom. It is argued that these concentrations represent the reference concentration at the bed for the smaller size classes. The suspended mass at all sizes shows a strong correlation with wave variance. Using the size distribution, corrections in the optical transmissometry calibration factor are estimated for the duration of the experiment. The change in calibration at 1.2 m above bed (mab) is shown to have a standard error of 30% over the duration of the experiment with a range of 1.8-0.8.

Top