Sample records for experiments response surface

  1. Response Surface Model Building Using Orthogonal Arrays for Computer Experiments

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Braun, Robert D.; Moore, Arlene A.; Lepsch, Roger A.

    1997-01-01

    This study investigates response surface methods for computer experiments and discusses some of the approaches available. Orthogonal arrays constructed for computer experiments are studied and an example application to a technology selection and optimization study for a reusable launch vehicle is presented.

  2. Investigation of models for large-scale meteorological prediction experiments

    NASA Technical Reports Server (NTRS)

    Spar, J.

    1973-01-01

    Studies are reported of the long term responses of the model atmosphere to anomalies in snow cover and sea surface temperature. An abstract of a previously issued report on the computed response to surface anomalies in a global atmospheric model is presented, and the experiments on the effects of transient sea surface temperature on the Mintz-Arakawa atmospheric model are reported.

  3. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    PubMed

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Modeling Study of Oceanic Response to Daily and Monthly Surface Forcing

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Li, Xiao-Fan; Rienecker, Michele M.; Lau, William K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The goal of this study is to investigate the effect of high-frequency surface forcing (wind stresses and heat fluxes) on upper-ocean response. We use the reduced-gravity quasi-isopycnal ocean model by Schopf and Loughe (1995) for this study. Two experiments are performed: one with daily and the other with monthly surface forcing. The two experiments are referred to as DD and MM, respectively. The daily surface wind stress is produced from the SSM/I wind data (Atlas et al. 1991) using the drag coefficient of Large and Pond (1982). The surface latent and sensible heat fluxes are estimated using the atmospheric mixed layer model by Seager et al. (1995) with the time-varying air temperature and specific humidity from the NCEP-NCAR reanalysis (Kalnay et al. 1996). The radiation is based on climatological shortwave radiation from the Earth Radiation Budget Experiment (ERBE) [Harrison et al. 1993] and the daily GEWEX SRB data. The ocean model domain is restricted to the Pacific Ocean with realistic land boundaries. At the southern boundary the model temperature and salinity are relaxed to the Levitus (1994) climatology. The time-mean SST distribution from MM is close to the observed SST climatology while the mean SST field from DD is about 1.5 C cooler. To identify the responsible processes, we examined the mean heat budgets and the heat balance during the first year (when the difference developed) in the two experiments. The analysis reveals that this is contributed by two factors. One is the difference in latent heat flux. The other is the difference in mixing processes. To further evaluate the responsible processes, we repeated the DD experiment by reducing the based vertical diffusion from 1e-4 to 0.5e-5. The resultant SST field becomes quite closer to the observed SST field. SST variability from the two experiments is generally similar, but the equatorial SST differences between the two experiments show interannual variations. We are investigating the possible mechanisms responsible for the different responses.

  5. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  6. Bayesian Revision of Residual Detection Power

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2013-01-01

    This paper addresses some issues with quality assessment and quality assurance in response surface modeling experiments executed in wind tunnels. The role of data volume on quality assurance for response surface models is reviewed. Specific wind tunnel response surface modeling experiments are considered for which apparent discrepancies exist between fit quality expectations based on implemented quality assurance tactics, and the actual fit quality achieved in those experiments. These discrepancies are resolved by using Bayesian inference to account for certain imperfections in the assessment methodology. Estimates of the fraction of out-of-tolerance model predictions based on traditional frequentist methods are revised to account for uncertainty in the residual assessment process. The number of sites in the design space for which residuals are out of tolerance is seen to exceed the number of sites where the model actually fails to fit the data. A method is presented to estimate how much of the design space in inadequately modeled by low-order polynomial approximations to the true but unknown underlying response function.

  7. Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions

    NASA Technical Reports Server (NTRS)

    Favaregh, Noah M.

    2010-01-01

    The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.

  8. Ferrate (IV) as a Possible Oxidant on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Tsapin, Alexandre; Goldfeld, M. G.; McDonald, G. D.; Nealson, K. H.; Mohnke, J.; Moskovitz, B.; Solheid, P.; Kemner, K. H.; Orlandini, K.

    Viking experiments showed that Martian soil has a very strong oxidant, which could be responsible for the results of experiments performed on Viking landers. These experiments were designed specifically to detect life on Mars. The nature of that oxidant was not determined during Viking mission. Later several groups tried to reconstruct Viking experiments and find out the nature of Martian oxidant. None of these attempts were completely successful. The general perception was that there are several chemically different oxidants on Martian surface. In this study we suggested that potassium ferrate K_2FeO_4 can be Martian oxidant responsible at least partially for the results of experiments on Viking landers. We characterized liquid and powder preparation of Fe (VI) with EPR, optical spectroscopy, Mossbauer spectroscopy, and by Fe-XANES. All properties of our preparations of (FeVI) are consistent with the proposal role of that compound as a strong oxidant on Martian surface.

  9. Comparison of Resource Requirements for a Wind Tunnel Test Designed with Conventional vs. Modern Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Micol, John R.

    2011-01-01

    The factors that determine data volume requirements in a typical wind tunnel test are identified. It is suggested that productivity in wind tunnel testing can be enhanced by managing the inference error risk associated with evaluating residuals in a response surface modeling experiment. The relationship between minimum data volume requirements and the factors upon which they depend is described and certain simplifications to this relationship are realized when specific model adequacy criteria are adopted. The question of response model residual evaluation is treated and certain practical aspects of response surface modeling are considered, including inference subspace truncation. A wind tunnel test plan developed by using the Modern Design of Experiments illustrates the advantages of an early estimate of data volume requirements. Comparisons are made with a representative One Factor At a Time (OFAT) wind tunnel test matrix developed to evaluate a surface to air missile.

  10. Response surface method in geotechnical/structural analysis, phase 1

    NASA Astrophysics Data System (ADS)

    Wong, F. S.

    1981-02-01

    In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.

  11. Numbers of center points appropriate to blocked response surface experiments

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1979-01-01

    Tables are given for the numbers of center points to be used with blocked sequential designs of composite response surface experiments as used in empirical optimum seeking. The star point radii for exact orthogonal blocking is presented. The center point options varied from a lower limit of one to an upper limit equal to the numbers proposed by Box and Hunter for approximate rotatability and uniform variance, and exact orthogonal blocking. Some operating characteristics of the proposed options are described.

  12. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh

    1998-01-01

    In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.

  13. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology

    USDA-ARS?s Scientific Manuscript database

    Streptococcus thermophilus normally exhibits different survival rates in different bacteria medium during freeze-drying. In this study, response surface methodology (RSM) was applied on the design of experiments for optimizing the cryoprotective medium. Results showed that the most significant facto...

  14. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis

    PubMed Central

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163

  15. The influence of tennis court surfaces on player perceptions and biomechanical response.

    PubMed

    Starbuck, Chelsea; Damm, Loïc; Clarke, James; Carré, Matt; Capel-Davis, Jamie; Miller, Stuart; Stiles, Victoria; Dixon, Sharon

    2016-09-01

    This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (P < 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players' perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion.

  16. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  17. Optimization of Thick, Large Area YBCO Film Growth Through Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Porzio, J.; Mahoney, C. H.; Sullivan, M. C.

    2014-03-01

    We present our work on the optimization of thick, large area YB2C3O7-δ (YBCO) film growth through response surface methods. Thick, large area films have commercial uses and have recently been used in dramatic demonstrations of levitation and suspension. Our films are grown via pulsed laser deposition and we have optimized growth parameters via response surface methods. Response surface methods is a statistical tool to optimize selected quantities with respect to a set of variables. We optimized our YBCO films' critical temperatures, thicknesses, and structures with respect to three PLD growth parameters: deposition temperature, laser energy, and deposition pressure. We will present an overview of YBCO growth via pulsed laser deposition, the statistical theory behind response surface methods, and the application of response surface methods to pulsed laser deposition growth of YBCO. Results from the experiment will be presented in a discussion of the optimized film quality. Supported by NFS grant DMR-1305637

  18. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert.

    PubMed

    Ignace, Danielle D; Huxman, Travis E; Weltzin, Jake F; Williams, David G

    2007-06-01

    Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C(4) bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO(2) response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.

  19. Fatigue Debonding of the Roughened Stem–Cement Interface: Effects of Surface Roughness and Stem Heating Conditions

    PubMed Central

    Damron, Leatha A.; Kim, Do-Gyoon; Mann, Kenneth A.

    2007-01-01

    The aim of this study was to determine the effects of cyclic loading on the debond process of a roughened stem– cement interface used in total hip arthroplasty. The specific goals were to assess the effects of two surgeon-controlled variables (stem heating and degree of stem surface roughness) and to determine if an independent finite element-based fracture mechanics model could be used to predict the debond response. A clamped cantilever beam geometry was used to determine the fatigue debond response of the stem– cement interface and was created using an experimental mold that simulated in vivo cementing conditions. A second experiment was performed using a torsion-loading model representative of the stem– cement–bone composite. For both experiments, two stem heating (room temperature and 50°C) and surface roughness conditions (grit blasted: Ra = 2.3 and 5.1 μm) were used. Finally, a finite element model of the torsion experiment with provision for crack growth was developed and compared with the experimental results. Results from both experiments revealed that neither stem preheating nor use of a stem with a greater surface roughness had a marked effect on the fatigue debond response. There was substantial variability in the debond response for all cases; this may be due to microscopic gaps at the interface for all interface conditions. The debond rate from the finite element simulation (10−7.31 m/cycle) had a magnitude similar to the experimental torsion model (10− (6.77 ± 1.25) m/cycle). This suggests that within the context of the experimental conditions studied here that the debond response could be assessed using a linear elastic fracture mechanics-type approach. PMID:16292769

  20. Properties of piezoresistive silicon nano-scale cantilevers with applications to BioNEMS

    NASA Astrophysics Data System (ADS)

    Arlett, Jessica Lynn

    Over the last decade a great deal of interest has been raised in applications of Microelectromechanical Sensors [MEMS] for the detection of biological molecules and to the study of their forces of interaction. Experiments in these areas have included Force Spectroscopy (Chemical Force Microscopy), MEMS patch clamp technology, and surface stress sensors. All of these technologies suffer from limitations on temporal response and involve devices with active surface areas that are large compared to molecular dimensions. Biofunctionalized nanoelectromechanical systems (BioNEMS) have the potential to overcome both of these hurdles, offering important new prospects for single-molecule force assays that are amenable to large scale integration. Results are presented here on the characterization of piezoresistive silicon cantilevers with applications to BioNEMS devices. The cantilevers were characterized by studying their response in gaseous ambients under a number of drive conditions including magnetic, piezoelectric, and thermal actuation, in addition to passive detection of the thermomechanical response. The measurements were performed at liquid helium temperature, at room temperature, and over a range of pressures (atmospheric pressure to 30mT). Theoretical studies have been performed on the response of these devices to Brownian fluctuations in fluid, on the feasibility of these devices as surface stress sensors, and on improvements in device design as compared to piezoresistive surface stress sensors currently discussed in the literature. The devices were encapsulated in microfluidics and measurements were performed to show the noise floor in fluid. The piezoresistive response of the device in fluid was shown through the use of pulsatory fluidic drive. As a proof of concept, biodetection experiments are presented for biotin labeled beads. The biofunctionalization for the latter experiment was performed entirely within the microfluidics. A discussion of how these experiments can be extended to other cells, spores, and molecules is presented.

  1. Great Expectations: How Role Expectations and Role Experiences Relate to Perceptions of Group Cohesion.

    PubMed

    Benson, Alex J; Eys, Mark A; Irving, P Gregory

    2016-04-01

    Many athletes experience a discrepancy between the roles they expect to fulfill and the roles they eventually occupy. Drawing from met expectations theory, we applied response surface methodology to examine how role expectations, in relation to role experiences, influence perceptions of group cohesion among Canadian Interuniversity Sport athletes (N = 153). On the basis of data from two time points, as athletes approached and exceeded their role contribution expectations, they reported higher perceptions of task cohesion. Furthermore, as athletes approached and exceeded their social involvement expectations, they reported higher perceptions of social cohesion. These response surface patterns-pertaining to task and social cohesion-were driven by the positive influence of role experiences. On the basis of the interplay between athletes' role experiences and their perception of the group environment, efforts to improve team dynamics may benefit from focusing on improving the quality of role experiences, in conjunction with developing realistic role expectations.

  2. Calculations of Helium Bubble Evolution in the PISCES Experiments with Cluster Dynamics

    NASA Astrophysics Data System (ADS)

    Blondel, Sophie; Younkin, Timothy; Wirth, Brian; Lasa, Ane; Green, David; Canik, John; Drobny, Jon; Curreli, Davide

    2017-10-01

    Plasma surface interactions in fusion tokamak reactors involve an inherently multiscale, highly non-equilibrium set of phenomena, for which current models are inadequate to predict the divertor response to and feedback on the plasma. In this presentation, we describe the latest code developments of Xolotl, a spatially-dependent reaction diffusion cluster dynamics code to simulate the divertor surface response to fusion-relevant plasma exposure. Xolotl is part of a code-coupling effort to model both plasma and material simultaneously; the first benchmark for this effort is the series of PISCES linear device experiments. We will discuss the processes leading to surface morphology changes, which further affect erosion, as well as how Xolotl has been updated in order to communicate with other codes. Furthermore, we will show results of the sub-surface evolution of helium bubbles in tungsten as well as the material surface displacement under these conditions.

  3. Urban Stream Ecology

    EPA Science Inventory

    Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...

  4. Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.

    1998-01-01

    The use of response surface models and kriging models are compared for approximating non-random, deterministic computer analyses. After discussing the traditional response surface approach for constructing polynomial models for approximation, kriging is presented as an alternative statistical-based approximation method for the design and analysis of computer experiments. Both approximation methods are applied to the multidisciplinary design and analysis of an aerospike nozzle which consists of a computational fluid dynamics model and a finite element analysis model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations. Four optimization problems are formulated and solved using both approximation models. While neither approximation technique consistently outperforms the other in this example, the kriging models using only a constant for the underlying global model and a Gaussian correlation function perform as well as the second order polynomial response surface models.

  5. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE PAGES

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...

    2017-11-30

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  6. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.

    2018-01-01

    The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.

  7. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai

    Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less

  8. Influence of Surface Sorption Processes on Spectral Induced Polarization Evaluated Using in-Situ Monitoring of a Na-22 Tracer

    NASA Astrophysics Data System (ADS)

    Hao, N.; Moysey, S. M.; Powell, B. A.; Ntarlagiannis, D.

    2014-12-01

    Spectral Induced Polarization (SIP) has been used to monitor subsurface biogeochemical processes in a variety of lab and field studies. However, there are several competing mechanisms that have been proposed to explain the SIP effect. This work targets the influence of ion sorption to mineral surfaces as a controlling factor on SIP utilizing a pH dependent surface adsorption experiment. In this experiment we use silica gel as an idealized medium where the number of available sites for cation sorption, which in this case is limited to Na+ and H+ ions, is influenced by changes in pH via protonation/deprotonation of silanol groups. The experiment uses 22Na as an in situ tracer as the radioactive decay of this nuclide can be continuously and non-invasively monitored using sensors placed outside of a column. The experiment was conducted by continuously pumping a 0.01M NaCl solution spiked with of 1μCi/L 22Na in to the column under three pH conditions (pH 5.0, 6.0 and 8.0). In the experiment, we observed an increasing number of gamma counts caused by the accumulation of sorbed 22Na in the column as we increased the pH from 5.0 to 6.5, and finally to 8.0. Simultaneously, we observed a linearly correlated (R2 = 0.99) rise in the imaginary conductivity response of the SIP measurements. Using the triple layer electrochemical polarization model for grain polarization to simulate our experimental SIP responses, we found that the estimated surface site density is within a factor of two of that estimated from the mass accumulation of sodium. Since the accumulation of sodium on the silica gel surface is responsible for both the increase in gamma radiation and the change in the electrical response, these observations support the theory that mobile ions in the Stern layer of mineral surfaces provide the primary control on SIP signals in silicate materials.

  9. Modeling and Identification for Vector Propulsion of an Unmanned Surface Vehicle: Three Degrees of Freedom Model and Response Model.

    PubMed

    Mu, Dongdong; Wang, Guofeng; Fan, Yunsheng; Sun, Xiaojie; Qiu, Bingbing

    2018-06-08

    This paper presents a complete scheme for research on the three degrees of freedom model and response model of the vector propulsion of an unmanned surface vehicle. The object of this paper is “Lanxin”, an unmanned surface vehicle (7.02 m × 2.6 m), which is equipped with a single vector propulsion device. First, the “Lanxin” unmanned surface vehicle and the related field experiments (turning test and zig-zag test) are introduced and experimental data are collected through various sensors. Then, the thrust of the vector thruster is estimated by the empirical formula method. Third, using the hypothesis and simplification, the three degrees of freedom model and the response model of USV are deduced and established, respectively. Fourth, the parameters of the models (three degrees of freedom model, response model and thruster servo model) are obtained by system identification, and we compare the simulated turning test and zig-zag test with the actual data to verify the accuracy of the identification results. Finally, the biggest advantage of this paper is that it combines theory with practice. Based on identified response model, simulation and practical course keeping experiments are carried out to further verify feasibility and correctness of modeling and identification.

  10. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  11. Summary of the SeaRISE Project's Experiments on Modeled Ice-Sheet Contributions to Future Sea Level: Linearities and Non-linearities

    NASA Astrophysics Data System (ADS)

    Bindschadler, Robert

    2013-04-01

    The SeaRISE (Sea-level Response to Ice Sheet Evolution) project achieved ice-sheet model ensemble responses to a variety of prescribed changes to surface mass balance, basal sliding and ocean boundary melting. Greenland ice sheet models are more sensitive than Antarctic ice sheet models to likely atmospheric changes in surface mass balance, while Antarctic models are most sensitive to basal melting of its ice shelves. An experiment approximating the IPCC's RCP8.5 scenario produces first century contributions to sea level of 22.3 and 7.3 cm from Greenland and Antarctica, respectively, with a range among models of 62 and 17 cm, respectively. By 200 years, these projections increase to 53.2 and 23.4 cm, respectively, with ranges of 79 and 57 cm. The considerable range among models was not only in the magnitude of ice lost, but also in the spatial pattern of response to identical forcing. Despite this variation, the response of any single model to a large range in the forcing intensity was remarkably linear in most cases. Additionally, the results of sensitivity experiments to single types of forcing (i.e., only one of the surface mass balance, or basal sliding, or ocean boundary melting) could be summed to accurately predict any model's result for an experiment when multiple forcings were applied simultaneously. This suggests a limited amount of feedback through the ice sheet's internal dynamics between these types of forcing over the time scale of a few centuries (SeaRISE experiments lasted 500 years).

  12. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption.

    PubMed

    Liu, Jiansheng; Lu, Yanyan

    2014-04-16

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data.

  13. Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine

    2013-11-14

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealizedmore » systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for spherical grains versus the actual geometry associated with the nano-pores in the silica gel, though other polarization processes, e.g., proton hopping along the surface (Skold et al., 2013), may also be a contributing factor. As an alternative model-independent approach to confirming the link between surface sorption and SIP we initiated a study that will continue (unfunded) beyond the completion of this project to independently measure the accumulation of gamma emitting isotopes on the silica gel during the SIP monitoring experiments. Though our analyses of the project data are ongoing, our preliminary analyses are generally supportive of the grain (Stern layer) polarization theory of SIP. Experiments focused on evaluating the impact of physical modifications of the medium on polarization included etching and biotic and abiotic facilitated precipitation of carbonate and iron oxides to alter the roughness and electrical conductivity of the surfaces. These experiments were performed for both silica gel and glass beads, the latter of which lacked the interior porosity and high surface area of the silica gel. The results appear to be more nuanced that the chemical modifications of the system. In general, however, it was found that deposition of iron oxides and etching had relatively minimal or negative impacts on the polarization response of the medium, whereas carbonate coatings increased the polarization response. These results were generally consistent with changes in surface charge observed via AFM. Abiotic and biotic column flow through experiments demonstrated that precipitation of carbonate within the medium significantly impacted the real and imaginary conductivity over time in a manner generally consistent with the carbonate precipitation as observed from the batch grain coating experiments. Biotic effects were not observed to provide distinctly different signatures, but may have contributed to differences in the rate of changes observed with SIP. AFM was used in a variety of different ways to investigate the grain surfaces throughout the course of the project. Standard imaging methods were used to evaluate surface roughness and charge density, which showed that these data could provide qualitative insights about consistency between surface trends and the electrical behavior at the column scale (for the case of glass beads). Polarization and conductive force microscopy (PCFM) measurements were developed by the original project PI (Treavor Kendall), which illustrated the importance of the initial few monolayers of water on the mineral surface for producing surface conductivity. The technique allowed for initial local estimates of complex electrical conductivity on mineral surfaces, but could not be pursued after Kendall left the project due to phase locking limitations with the AFM instrument at Clemson and an inability to perform measurements in solution, which limited their value for linking the measurements to column-scale SIP responses. As a result, co-PI Dean developed a new methodology for making AFM measurements within an externally applied electric field. In this method, the charged tip of an AFM probe is brought within the proximity of a polarization domain while an external electric field is applied to the sample. The premise of the approach is that the tip will be attracted to or rebound from charge accumulations on the surface, which allow for detection of the local polarization response. Initial experiments showed promise in terms of the general trends of responses observed, though we have not yet been able to develop a quantitative interpretation technique that can be applied to predicting column scale responses.« less

  14. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moysey, Stephen; Dean, Delphine; Dimitrios, Ntarlagiannis

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealizedmore » systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for spherical grains versus the actual geometry associated with the nano-pores in the silica gel, though other polarization processes, e.g., proton hopping along the surface (Skold et al., 2013), may also be a contributing factor. As an alternative model-independent approach to confirming the link between surface sorption and SIP we initiated a study that will continue (unfunded) beyond the completion of this project to independently measure the accumulation of gamma emitting isotopes on the silica gel during the SIP monitoring experiments. Though our analyses of the project data are ongoing, our preliminary analyses are generally supportive of the grain (Stern layer) polarization theory of SIP. Experiments focused on evaluating the impact of physical modifications of the medium on polarization included etching and biotic and abiotic facilitated precipitation of carbonate and iron oxides to alter the roughness and electrical conductivity of the surfaces. These experiments were performed for both silica gel and glass beads, the latter of which lacked the interior porosity and high surface area of the silica gel. The results appear to be more nuanced that the chemical modifications of the system. In general, however, it was found that deposition of iron oxides and etching had relatively minimal or negative impacts on the polarization response of the medium, whereas carbonate coatings increased the polarization response. These results were generally consistent with changes in surface charge observed via AFM. Abiotic and biotic column flow through experiments demonstrated that precipitation of carbonate within the medium significantly impacted the real and imaginary conductivity over time in a manner generally consistent with the carbonate precipitation as observed from the batch grain coating experiments. Biotic effects were not observed to provide distinctly different signatures, but may have contributed to differences in the rate of changes observed with SIP. AFM was used in a variety of different ways to investigate the grain surfaces throughout the course of the project. Standard imaging methods were used to evaluate surface roughness and charge density, which showed that these data could provide qualitative insights about consistency between surface trends and the electrical behavior at the column scale (for the case of glass beads). Polarization and conductive force microscopy (PCFM) measurements were developed by the original project PI (Treavor Kendall), which illustrated the importance of the initial few monolayers of water on the mineral surface for producing surface conductivity. The technique allowed for initial local estimates of complex electrical conductivity on mineral surfaces, but could not be pursued after Kendall left the project due to phase locking limitations with the AFM instrument at Clemson and an inability to perform measurements in solution, which limited their value for linking the measurements to column-scale SIP responses. As a result, co-PI Dean developed a new methodology for making AFM measurements within an externally applied electric field. In this method, the charged tip of an AFM probe is brought within the proximity of a polarization domain while an external electric field is applied to the sample. The premise of the approach is that the tip will be attracted to or rebound from charge accumulations on the surface, which allow for detection of the local polarization response. Initial experiments showed promise in terms of the general trends of responses observed, though we have not yet been able to develop a quantitative interpretation technique that can be applied to predicting column scale responses.« less

  15. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    PubMed

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  16. Optimal Color Design of Psychological Counseling Room by Design of Experiments and Response Surface Methodology

    PubMed Central

    Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients’ perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients’ impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the ‘central point’, and three color attributes were optimized to maximize the patients’ satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room. PMID:24594683

  17. Robust Optimization Design for Turbine Blade-Tip Radial Running Clearance using Hierarchically Response Surface Method

    NASA Astrophysics Data System (ADS)

    Zhiying, Chen; Ping, Zhou

    2017-11-01

    Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.

  18. Response surface methodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEO hydrolysis

    Treesearch

    Rita C.L.B. Rodrigues; William R. Kenealy; Diane Dietrich; Thomas W. Jeffries

    2012-01-01

    Response surface methodology (RSM), based on a 22 full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 °C for 90 min. Both DEO...

  19. Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces

    PubMed Central

    Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Saito, Miki Taketomi; da Cruz, Nilson Cristino; Takoudis, Christos; Landers, Richard; Mesquita, Marcelo Ferraz; Nociti Junior, Francisco Humberto; Mathew, Mathew T.; Sukotjo, Cortino; Barão, Valentim Adelino Ricardo

    2016-01-01

    Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (−0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (−0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces. PMID:27514370

  20. Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces.

    PubMed

    Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Saito, Miki Taketomi; da Cruz, Nilson Cristino; Takoudis, Christos; Landers, Richard; Mesquita, Marcelo Ferraz; Nociti Junior, Francisco Humberto; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim Adelino Ricardo

    2016-09-11

    Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (-0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (-0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces.

  1. Coupled heat transfer model and experiment study of semitransparent barrier materials in aerothermal environment

    NASA Astrophysics Data System (ADS)

    Wang, Da-Lin; Qi, Hong

    Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.

  2. An application of a Hill-based response surface model for a drug combination experiment on lung cancer.

    PubMed

    Ning, Shaoyang; Xu, Hongquan; Al-Shyoukh, Ibrahim; Feng, Jiaying; Sun, Ren

    2014-10-30

    Combination chemotherapy with multiple drugs has been widely applied to cancer treatment owing to enhanced efficacy and reduced drug resistance. For drug combination experiment analysis, response surface modeling has been commonly adopted. In this paper, we introduce a Hill-based global response surface model and provide an application of the model to a 512-run drug combination experiment with three chemicals, namely AG490, U0126, and indirubin-3  ' -monoxime (I-3-M), on lung cancer cells. The results demonstrate generally improved goodness of fit of our model from the traditional polynomial model, as well as the original Hill model on the basis of fixed-ratio drug combinations. We identify different dose-effect patterns between normal and cancer cells on the basis of our model, which indicates the potential effectiveness of the drug combination in cancer treatment. Meanwhile, drug interactions are analyzed both qualitatively and quantitatively. The distinct interaction patterns between U0126 and I-3-M on two types of cells uncovered by the model could be a further indicator of the efficacy of the drug combination. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Application of Response Surface Methodology (RSM) for wastewater of hospital by using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Murdani; Jakfar; Ekawati, D.; Nadira, R.; Darmadi

    2018-04-01

    Hospital wastewater is a source of potential environmental contamination. Therefore, the waste water needs to be treated before it is discharged into the landfill. Various research methods have been used to treat hospital wastewater. However, some methods that have been implemented have not achieved the effluent standards for hospitals that have been set by the government. The experiment was conducted by an electrochemical method is electrolysis using aluminum electrodes with independent variable is the voltage, contact time and concentration of electrolytes. The response optimization using response surface with optimum conditions obtained by the contact time of 34.26 min, voltage 12 V, concentration electrolyte 0.38 M can decrease of COD 65.039%. The model recommended by the response surface for the three variables, namely quadratic response.

  4. Prediction of surface roughness and cutting force under MQL turning of AISI 4340 with nano fluid by using response surface methodology

    NASA Astrophysics Data System (ADS)

    Patole, Pralhad B.; Kulkarni, Vivek V.

    2018-06-01

    This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.

  5. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption

    PubMed Central

    Liu, Jiansheng; Lu, Yanyan

    2014-01-01

    A theoretical model is established to describe the response mechanism of surface acoustic wave (SAW) gas sensors based on physical adsorption on the detector surface. Wohljent's method is utilized to describe the relationship of sensor output (frequency shift of SAW oscillator) and the mass loaded on the detector surface. The Brunauer-Emmett-Teller (BET) formula and its improved form are introduced to depict the adsorption behavior of gas on the detector surface. By combining the two methods, we obtain a theoretical model for the response mechanism of SAW gas sensors. By using a commercial SAW gas chromatography (GC) analyzer, an experiment is performed to measure the frequency shifts caused by different concentration of dimethyl methylphosphonate (DMMP). The parameters in the model are given by fitting the experimental results and the theoretical curve agrees well with the experimental data. PMID:24743157

  6. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    PubMed

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  7. A search for a nonbiological explanation of the Viking Labeled Release life detection experiment

    NASA Technical Reports Server (NTRS)

    Levin, G. V.; Straat, P. A.

    1981-01-01

    The possibility of nonbiological reactions involving hydrogen peroxide being the source of the positive response detected by the Viking Labeled Release (LR) life detection experiment on the surface of Mars is assessed. Labeled release experiments were conducted in the LR Test Standards Module which replicates the Viking flight instrument configuration on analog Martian soils prepared to match the Viking inorganic analysis of Mars surface material to which an aqueous solution of hydrogen peroxide had been added. Getter experiments were also conducted to compare several reactions simultaneously in the presence and absence of UV radiation prior to the addition of nutrient. Hydrogen peroxide on certain analog soils is found to be capable of reproducing the kinetics and thermal information contained in the Mars data. The peroxide concentration necessary for this response, however, is shown to require a chemical stability or production rate much greater than seems likely in the Mars environment. As previous experiments have shown hydrogen peroxide to be the most likely nonbiological source of the positive LR response, it is concluded that the presence of a biological agent on Mars must not yet be ruled out.

  8. Science Support Room Operations During Desert RATS 2009

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.; hide

    2010-01-01

    NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.

  9. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.

  10. Nonlinear, interacting responses to climate limit grassland production under global change.

    PubMed

    Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B

    2016-09-20

    Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.

  11. Multi-response optimization of T300/epoxy prepreg tape-wound cylinder by grey relational analysis coupled with the response surface method

    NASA Astrophysics Data System (ADS)

    Kang, Chao; Shi, Yaoyao; He, Xiaodong; Yu, Tao; Deng, Bo; Zhang, Hongji; Sun, Pengcheng; Zhang, Wenbin

    2017-09-01

    This study investigates the multi-objective optimization of quality characteristics for a T300/epoxy prepreg tape-wound cylinder. The method integrates the Taguchi method, grey relational analysis (GRA) and response surface methodology, and is adopted to improve tensile strength and reduce residual stress. In the winding process, the main process parameters involving winding tension, pressure, temperature and speed are selected to evaluate the parametric influences on tensile strength and residual stress. Experiments are conducted using the Box-Behnken design. Based on principal component analysis, the grey relational grades are properly established to convert multi-responses into an individual objective problem. Then the response surface method is used to build a second-order model of grey relational grade and predict the optimum parameters. The predictive accuracy of the developed model is proved by two test experiments with a low prediction error of less than 7%. The following process parameters, namely winding tension 124.29 N, pressure 2000 N, temperature 40 °C and speed 10.65 rpm, have the highest grey relational grade and give better quality characteristics in terms of tensile strength and residual stress. The confirmation experiment shows that better results are obtained with GRA improved by the proposed method than with ordinary GRA. The proposed method is proved to be feasible and can be applied to optimize the multi-objective problem in the filament winding process.

  12. Seismometer readings studied in Mission Control Center

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The seismometer reading from the impact made by the Apollo 15 Saturn S-IVB stage when it struck the lunar surface is studied by scientists in the Mission Control Center. Dr. Gary Latham (dark suit, wearing lapel button) of Columbia University is responsible for the design and experiment data analysis of the Passive Seismic Experiment of the Apollo Lunar Surface Experiment Package (ALSEP). The man on the left, writing, is Nafi Toksos of the Massachusetts Institute of Technology. Looking on at upper left is Dave Lammlein, also with Columbia.

  13. Seismometer readings studied in Mission Control Center

    NASA Image and Video Library

    1971-07-29

    The seismometer reading from the impact made by the Apollo 15 Saturn S-IVB stage when it struck the lunar surface is studied by scientists in the Mission Control Center. Dr. Gary Latham (dark suit, wearing lapel button) of Columbia University is responsible for the design and experiment data analysis of the Passive Seismic Experiment of the Apollo Lunar Surface Experiment Package (ALSEP). The man on the left, writing, is Nafi Toksos of the Massachusetts Institute of Technology. Looking on at upper left is Dave Lamneline, also with Columbia.

  14. Investigation of microwave backscatter from the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mcintosh, Robert E.; Carswell, James R.

    1995-01-01

    Monitoring the ocean surface winds and mean ocean surface level is essential for improving our knowledge of the climate. Two instruments that may provide us with this information are satellite-based scatterometers and altimeters. However, these instruments measure the backscatter characteristics of the ocean surface from which other physical parameters, such as the wind speed or ocean surface height, are derived. To improve the algorithms or models that relate the electromagnetic backscatter to the desired physical parameters, the University of Massachusetts (UMass) Microwave Remote Sensing Laboratory (MIRSL) designed and fabricated three airborne scatterometers: a C-band scatterometer (CSCAT), Ku-band scatterometer (KUSCAT) and C/Ku-band scatterometer (EMBR). One or more of these instruments participated in the Electromagnetic Bias experiment (EM Bias), Shelf Edge Exchange Processes experiment (SEEP), Surface Wave Dynamics Experiment (SWADE), Southern Ocean Wave Experiment (SOWEX), Hurricane Tina research flights, Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), and Ladir In-space Technology Experiment (LITE). This document describes the three scatterometers, summarizes our measurement campaigns and major contributions to the scientific and engineering communities, lists the publications that resulted, and presents the degrees earned under the support of this NASA grant.

  15. Use of statistical design of experiments for surface modification of Kapton films by CF4sbnd O2 microwave plasma treatment

    NASA Astrophysics Data System (ADS)

    Grandoni, Andrea; Mannini, Giacomo; Glisenti, Antonella; Manariti, Antonella; Galli, Giancarlo

    2017-10-01

    A statistical design of experiments (DoE) was used to evaluate the effects of CF4sbnd O2 plasma on Kapton films in which the duration of treatment, volume ratio of plasma gases, and microwave power were selected as effective experimental factors for systematic investigation of surface modification. Static water contact angle (θW), polar component of surface free energy (γSp) and surface O/C atomic ratio were analyzed as response variables. A significant enhancement in wettability and polarity of the treated films compared to untreated Kapton films was observed; depending on the experimental conditions, θW very significantly decreased, showing full wettability, and γSp rose dramatically, up to ten times. Within the DoE the conditions of plasma treatment were identified that resulted in selected optimal values of θW, γSp and O/C responses. Surface chemical changes were detected by XPS and ATR-IR investigations that evidenced both the introduction of fluorinated groups and the opening of the imide ring in the plasma-treated films.

  16. Optimization of palm fruit sterilization by microwave irradiation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Madinah, I.; Salamah, S.

    2018-02-01

    This study reported optimization of palm fruit sterilization process by microwave irradiation. The results of fractional factorial experiments showed no significant external factors affecting temperature of microwave sterilization (MS). Response surface methodology (RSM) was employed and model equation of MS of palm fruit was built. Response surface plots and their corresponding contour plots were analyzed as well as solving model equation. The optimum process parameters for lipase reduction were obtained from MS of 1 kg palm fruit at microwave power of 486 Watt and heating time of 14 minutes. The experimental results showed reduction of lipase activity in the present work under MS treatment. The adequacy of the model equation for predicting the optimum response value was verified by validation data (P>0.15).

  17. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods.

    PubMed

    Fišer, Žiga; Novak, Luka; Luštrik, Roman; Fišer, Cene

    2016-02-01

    Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.

  18. The SNOOPY Contradistinctive Copper Experiment: Calibration Results

    NASA Technical Reports Server (NTRS)

    Sherman, J.; Trowbridge, K.; Waldron, A. M.; Batt, C. A.; Kuhlman, K. R.

    2002-01-01

    The Contradistinctive Copper nanoexperiment was designed to investigate the highly oxidizing and abrasive conditions expected on the surface of Mars. The experiment was conceived in response to the MECA Student Nanoexperiment Challenge in 1999. Additional information is contained in the original extended abstract.

  19. TThe role of nitrogen availability in land-atmosphere interactions: a systematic evaluation of carbon-nitrogen coupling in a global land surface model using plot-level nitrogen fertilization experiments

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.

    2010-12-01

    Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.

  20. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    PubMed

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  1. Determination of injection molding process windows for optical lenses using response surface methodology.

    PubMed

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  2. Assessing the Combined Antibacterial Effect of Isoniazid and Rifampin on Four Mycobacterium tuberculosis Strains Using In Vitro Experiments and Response-Surface Modeling

    PubMed Central

    2017-01-01

    ABSTRACT While isoniazid and rifampin have been the cornerstone of tuberculosis therapy caused by drug-susceptible Mycobacterium tuberculosis for more than 40 years, their combined action has never been thoroughly assessed by modern quantitative pharmacology approaches. The aims of this work were to perform in vitro experiments and mathematical modeling of the antibacterial effect of isoniazid and rifampin alone and in combination against various strains of Mycobacterium tuberculosis. After MIC determination of H37Rv and three strains belonging to the Beijing, Euro-American, and Indo-Oceanic lineages, the antibacterial effects of isoniazid and rifampin alone and in combination were studied in static time-kill experiments. A sigmoidal maximum effect model (Hill equation) and a response-surface model were used to describe the effect of the drugs alone and in combination, respectively. The killing effect of isoniazid and rifampin alone were well described by the Hill equation. Rifampin displayed a more concentration-dependent effect than isoniazid around the MIC. The pharmacodynamics parameters of each drug (maximal effect, median effect concentration, and coefficient of sigmoidicity) were quite similar between the four strains. The response-surface model from Minto et al. fit data of combined effect very well with low bias and imprecision (C. F. Minto, T. W. Schnider, T. G. Short, K. M. Gregg, A. Gentilini, Anesthesiology 92:1603–1616, 2000, https://doi.org/10.1097/00000542-200006000-00017). Response-surface modeling showed that the combined action of isoniazid and rifampin was synergistic for the H37Rv, Beijing, and Euro-American strains but only additive for the Indo-Oceanic strain. This study can serve as a motivating example for preclinical evaluation of combined action of antituberculous drugs. PMID:29061753

  3. Surface laser marking optimization using an experimental design approach

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  4. Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Landman, Drew

    2015-01-01

    Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.

  5. Multimodel Evidence for an Atmospheric Circulation Response to Arctic Sea Ice Loss in the CMIP5 Future Projections

    NASA Astrophysics Data System (ADS)

    Zappa, G.; Pithan, F.; Shepherd, T. G.

    2018-01-01

    Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.

  6. Multimodel Evidence for an Atmospheric Circulation Response to Arctic Sea Ice Loss in the CMIP5 Future Projections.

    PubMed

    Zappa, G; Pithan, F; Shepherd, T G

    2018-01-28

    Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO 2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.

  7. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 1: Dynamic models and computer simulations for the ERBE nonscanner, scanner and solar monitor sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.

    1987-01-01

    Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.

  8. Resonant generation of internal waves on the soft sea bed by a surface water wave

    NASA Astrophysics Data System (ADS)

    Wen, Feng

    1995-08-01

    The nonlinear response of an initially flat sea bed to a monochromatic surface progressive wave was studied using the multiple scale perturbation method. Two opposite-traveling subliminal internal ``mud'' waves are selectively excited and form a resonant triad with the surface wave. The amplitudes of the internal waves grow on a time scale much longer than the period of the surface wave. It was found that the sea bed response is critically dependent on the density ratio of water and soil, depth of water, and depth and viscosity of the saturated soil. The result of instability analysis is in qualitative agreement with the result of a wave flume experiment.

  9. Optimum surface roughness prediction for titanium alloy by adopting response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Aimin; Han, Yang; Pan, Yuhang; Xing, Hongwei; Li, Jinze

    Titanium alloy has been widely applied in industrial engineering products due to its advantages of great corrosion resistance and high specific strength. This paper investigated the processing parameters for finish turning of titanium alloy TC11. Firstly, a three-factor central composite design of experiment, considering the cutting speed, feed rate and depth of cut, are conducted in titanium alloy TC11 and the corresponding surface roughness are obtained. Then a mathematic model is constructed by the response surface methodology to fit the relationship between the process parameters and the surface roughness. The prediction accuracy was verified by the one-way ANOVA. Finally, the contour line of the surface roughness under different combination of process parameters are obtained and used for the optimum surface roughness prediction. Verification experimental results demonstrated that material removal rate (MRR) at the obtained optimum can be significantly improved without sacrificing the surface roughness.

  10. Application of response surface methodology method in designing corrosion inhibitor

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Athirah; Siregar, J. P.; Kurniawan, T.; Bachtiar, D.

    2017-10-01

    In oil and gas pipelines and offshore structure, inhibitors have been considered to be the first choice to reduce corrosion rate. There are many corrosion inhibitor compositions available in the market. To produce the best corrosion inhibitor requires many experimental data which is not efficient. These experiments used response surface methodology (RSM) to select corrosion inhibitor compositions. The experiments investigated effects of corrosion inhibition on corrosion rate of low carbon steel in 3% NaCl solution with different concentrations of selected main inhibitor compositions which are ethyl acetate (EA), ethylene glycol (EG) and sodium benzoate (SB). Corrosion rate were calculated using linear polarization resistance (LPR). All of the experiments were set in natural conditions at pH 7. MINITAB® version 15 was used for data analysis. It is shown that a quadratic model is a representative model can predict best corrosion inhibitor composition comprehensibly.

  11. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  12. Laboratory observations of fault strength in response to changes in normal stress

    USGS Publications Warehouse

    Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David

    2012-01-01

    Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.

  13. Fuel Injector Design Optimization for an Annular Scramjet Geometry

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    2003-01-01

    A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.

  14. Modelling of the MEA float zone using accelerometer data

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1993-01-01

    During a floating zone experiment involving the growth of indium on a recent orbiter mission, (STS 32) oscillation of the zone shapes were observed to occur in response to the background acceleration. An understanding of the nature of the response of the zone shape to forced (g-jitter) oscillations and predictions of its impact on future experiments is of great interest not only to the PI's but to other commercial and academic investigators who plan to fly similar experiments in the orbiter and on space station. Motivated by this, a 15 month study was undertaken to analyze the nature of the g-sensitivity of the STS 32 floating zone crystal growth experiment. Numerical models were used to describe the time-dependent free surface motion of the zone as it responds to the spacecraft residual acceleration. Relevant experimental data concerning the acceleration environment was obtained from the Honeywell in Space Accelerometer (HISA) investigators through MSFC's ACAP program and processed and analyzed. For the indium floating zone experiment, a series of calculations were made using time-dependent axial accelerations g(t). The form of g(t) included simple sinusoidal disturbances as well as actual data (subject to appropriate filtering) measured on the STS 32 mission. Focus was on the calculation of the response of the free surface of the zone as well as the internal flows and internal heat transfer. The influence of solidification on the response of the zone shape was also examined but found to be negligible.

  15. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    DOE PAGES

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-13

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this study, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and themore » resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. Finally, this also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.« less

  16. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  17. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this study, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and themore » resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. Finally, this also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.« less

  18. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    NASA Astrophysics Data System (ADS)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  19. Substrate texture affects female cricket walking response to male calling song

    NASA Astrophysics Data System (ADS)

    Sarmiento-Ponce, E. J.; Sutcliffe, M. P. F.; Hedwig, B.

    2018-03-01

    Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.

  20. Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green’s Function Experiments. Part I: Linear Response Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Lu, Jian; Garuba, Oluwayemi

    This paper explores the use of linear response function (LRF) to relate the mean sea surface temperature (SST) response to prescribed ocean heat convergence (q-flux) forcings. Two methods for constructing the LRF based on the fluctuation-dissipation theorem (FDT) and Green’s function (GRF) are examined. A 900-year preindustrial simulation from the Community Earth System Model with a slab ocean (CESM-SOM) is used to estimate the LRF using FDT. For GRF, 106 pairs of CESM-SOM simulations with warm and cold q-flux patches are performed. FDT is found to have skill in estimating the SST response to a q-flux forcing when the localmore » SST response is strong, but it fails in inverse estimation of the q-flux forcing for a given SST pattern. In contrast, GRF is shown to be reasonably accurate in estimating both SST response and q-flux forcing. Possible degradation in FDT may be attributed to insufficient data sampling, significant departures of the SST data from Gaussian, and the non-normality of the constructed operator. The accurately estimated GRF-based LRF is used to (i) generate a global surface temperature sensitivity map that shows the q-flux forcing in higher latitudes to be three to four times more effective than in low latitudes in producing global surface warming; (ii) identify the most excitable SST mode (neutral vector) resembling Interdecadal Pacific Oscillation; and (iii) estimate a time-invariant q-flux forcing needed for maintaining the GHG-induced SST warming pattern. The GRF experiments will be used to construct LRF for other variables to further explore climate sensitivities and feedbacks.« less

  1. Induced dynamic nonlinear ground response at Gamer Valley, California

    USGS Publications Warehouse

    Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.

    2008-01-01

    We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.

  2. Parametric design and analysis on the landing gear of a planet lander using the response surface method

    NASA Astrophysics Data System (ADS)

    Zheng, Guang; Nie, Hong; Luo, Min; Chen, Jinbao; Man, Jianfeng; Chen, Chuanzhi; Lee, Heow Pueh

    2018-07-01

    The purpose of this paper is to obtain the design parameter-landing response relation for designing the configuration of the landing gear in a planet lander quickly. To achieve this, parametric studies on the landing gear are carried out using the response surface method (RSM), based on a single landing gear landing model validated by experimental results. According to the design of experiment (DOE) results of the landing model, the RS (response surface)-functions of the three crucial landing responses are obtained, and the sensitivity analysis (SA) of the corresponding parameters is performed. Also, two multi-objective optimizations designs on the landing gear are carried out. The analysis results show that the RS (response surface)-model performs well for the landing response design process, with a minimum fitting accuracy of 98.99%. The most sensitive parameters for the three landing response are the design size of the buffers, struts friction and the diameter of the bending beam. Moreover, the good agreement between the simulated model and RS-model results are obtained in two optimized designs, which show that the RS-model coupled with the FE (finite element)-method is an efficient method to obtain the design configuration of the landing gear.

  3. Electrophoretic deposition of graphene oxide on magnetic ribbon: Toward high sensitive and selectable magnetoimpedance response

    NASA Astrophysics Data System (ADS)

    Jamilpanah, L.; Azadian, S.; Shoa e Gharehbagh, J.; Haghniaz Jahromi, S.; Sheykhifard, Z.; Hosseinizadeh, S.; Erfanifam, S.; Hajiali, M. R.; Tehranchi, M. M.; Mohseni, S. M.

    2018-07-01

    Graphene oxide (GO) layers have shown to be fascinating elements for application in high performance sensors. They can be applied in multi-disciplinary designs based on surface selective sensing mechanisms. One immediate application of such surface sensitive elements is implementing of GO layer in magnetoimpedance (MI) sensors to improve their multi-functionality. In this paper, deposition of GO on the surface of Co-based amorphous ribbons (Co68.15Fe4.35Si12.5B15) is performed using electrophoretic deposition (EPD) method to evaluate the MI response. MI ratio increased from 271% (bare ribbon) up to 281% and 301% EPD GO deposited within 4 and 8 min, respectively. Similar experiment for the ribbon drop coated with GO was carried out while no enhancement in MI response was seen. Vertical growth of GO on the surface of the ribbon in EPD and drop coated layers observed by topographical measurements. We explained the difference between the MI responses based on layers verticality and surface coverage. UV-Visible absorption and Raman spectroscopy were used to study the nature of GO. Gaining a high surface area of GO along with their biocompatible and anticorrosive properties atop the MI sensors can open pathways towards increasing applications of surface selective and high sensitive MI sensors.

  4. Negations in syllogistic reasoning: evidence for a heuristic-analytic conflict.

    PubMed

    Stupple, Edward J N; Waterhouse, Eleanor F

    2009-08-01

    An experiment utilizing response time measures was conducted to test dominant processing strategies in syllogistic reasoning with the expanded quantifier set proposed by Roberts (2005). Through adding negations to existing quantifiers it is possible to change problem surface features without altering logical validity. Biases based on surface features such as atmosphere, matching, and the probability heuristics model (PHM; Chater & Oaksford, 1999; Wetherick & Gilhooly, 1995) would not be expected to show variance in response latencies, but participant responses should be highly sensitive to changes in the surface features of the quantifiers. In contrast, according to analytic accounts such as mental models theory and mental logic (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994) participants should exhibit increased response times for negated premises, but not be overly impacted upon by the surface features of the conclusion. Data indicated that the dominant response strategy was based on a matching heuristic, but also provided evidence of a resource-demanding analytic procedure for dealing with double negatives. The authors propose that dual-process theories offer a stronger account of these data whereby participants employ competing heuristic and analytic strategies and fall back on a heuristic response when analytic processing fails.

  5. Sensor development for in situ detection of concentration polarization and fouling of reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Detrich, Kahlil T.; Goulbourne, Nakhiah C.

    2009-03-01

    The purpose of this research is to evaluate three polymer electroding techniques in developing a novel in situ sensor for an RO system using the electrical response of a thin film composite sensor. Electrical impedance spectroscopy (EIS) was used to measure the sensor response when exposed to sodium chloride solutions with concentrations from 0.1 M to 0.8 M in both single and double bath configurations. An insulated carbon grease sensor was mechanically stable while a composite Direct Assembly Process (DAP) sensor was fragile upon hydration. Scanning electron microscopy results from an impregnation-reduction technique showed gold nanoparticles were deposited most effectively when presoaked in a potassium hydroxide solution and on an uncoated membrane; surface resistances remained too high for sensor implementation. Through thickness carbon grease sensors showed a transient response to changes in concentration, and no meaningful concentration sensitivity was noted for the time scales over which EIS measurements were taken. Surface carbon grease electrodes attached to the polyamide thin film were not sensitive to concentration. The impedance spectra indicated the carbon grease sensor was unable to detect changes in concentration in double bath experiments when implemented with the polyamide surface exposed to salt solutions. DAP sensors lacked a consistent response to changes in concentration too. A reverse double bath experiment with the polysulfone layer exposed to a constant concentration exhibited a transient impedance response similar to through thickness carbon grease sensors in a single bath at constant concentration. These results suggest that the microporous polysulfone layer is responsible for sensor response to concentration.

  6. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  7. Diffusion of Drag-Reducing Polymers within a High-Reynolds-Number, Rough-Wall Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Perlin, Marc; Dowling, David; Solomon, Michael; Ceccio, Steven

    2008-11-01

    Two experiments were conducted to investigate polymer drag reduction (PDR) within high Reynolds number (to 200 million based on downstream distance), rough-wall turbulent boundary layers. The first experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate at speeds to 20 m/s with the surface hydraulically smooth and fully rough. Local skin-friction measurements on the smooth and rough surfaces had maximum PDR levels of 65 and 75 percent, respectively. However, PDR decreased with increasing downstream distance and flow speed more rapidly on the rough surface, and at the top speed no measureable level of PDR was observed. The roughness-induced increased diffusion was quantified with near-wall concentration measurements and the second experiment, which measured concentration profiles on a 0.94 m long flat-plate with three surface conditions: smooth, 240-grit, and 60-grit sandpaper. The increased diffusion does not fully explain the smooth-rough PDR differences observed in the first experiment. Rheological analysis of drawn samples from the first experiment indicates that polymer degradation (chain scission) could be responsible for the remaining loss of rough-wall PDR. These results have implications for the cost effectiveness of PDR for surface ships.

  8. A process-based investigation into the impact of the Congo basin deforestation on surface climate

    NASA Astrophysics Data System (ADS)

    Bell, Jean P.; Tompkins, Adrian M.; Bouka-Biona, Clobite; Sanda, I. Seidou

    2015-06-01

    The sensitivity of climate to the loss of the Congo basin rainforest through changes in land cover properties is examined using a regional climate model. The complete removal of the Congo basin rainforest results in a dipole rainfall anomaly pattern, characterized by a decrease (˜-42%) in rainfall over the western Congo and an increase (˜10%) in the basin's eastern part. Three further experiments systematically examine the individual response to the changes in albedo, surface roughness, and evapotranspiration efficiency that accompany deforestation. The increased albedo (˜) caused by the Congo basin rainforest clearance results in cooler and drier climate conditions over the entire basin. The drying is accompanied with a reduction in available surface energy. Reducing evapotranspiration efficiency or roughness length produces similar positive air temperature anomaly patterns. The decreased evapotranspiration efficiency leads to a dipole response in rainfall, similar to that resulting from a reduced surface roughness following Congo basin rainforest clearance. This precipitation anomaly pattern is strongly linked to the change in low-level water vapor transport, the influence of the Rift valley highlands, and the spatial pattern of water recycling activity. The climate responds linearly to the separate albedo, surface roughness, and evapotranspiration efficiency changes, which can be summed to produce a close approximation to the impact of the full deforestation experiment. It is suggested that the widely contrasting climate responses to deforestation in the literature could be partly due to the relative magnitude of change of the radiative and nonradiative parameterizations in their respective land surface schemes.

  9. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    PubMed Central

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-01-01

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high. PMID:28793583

  10. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology.

    PubMed

    Teng, Hui; Choi, Yong Hee

    2014-01-01

    The optimum extraction conditions for the maximum recovery of total alkaloid content (TAC), berberine content (BC), palmatine content (PC), and the highest antioxidant capacity (AC) from rhizoma coptidis subjected to ultrasonic-assisted extraction (UAE) were determined using response surface methodology (RSM). Central composite design (CCD) with three variables and five levels was employed, and response surface plots were constructed in accordance with a second order polynomial model. Analysis of variance (ANOVA) showed that the quadratic model was well fitted and significant for responses of TAC, BC, PC, and AA. The optimum conditions obtained through the overlapped contour plot were as follows: ethanol concentration of 59%, extraction time of 46.57min, and temperature of 66.22°C. Verification experiment was carried out, and no significant difference was found between observed and estimated values for each response, suggesting that the estimated models were reliable and valid for UAE of alkaloids. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Finite element modelling of Plantar Fascia response during running on different surface types

    NASA Astrophysics Data System (ADS)

    Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.

    2017-10-01

    Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.

  12. Long Duration Exposure Facility (LDEF) experiment M0003 meteoroid and debris survey

    NASA Technical Reports Server (NTRS)

    Meshishnek, M. J.; Gyetvay, S. R.; Paschen, K. W.; Coggi, J. M.

    1993-01-01

    A survey of the meteoroid and space debris impacts on LDEF experiment M0003 was performed. The purpose of this survey was to document significant impact phenomenology and to obtain impact crater data for comparison to current space debris and micrometeoroid models. The survey consists of the following: photomicrographs of significant impacts in a variety of material types; accurate measurements of impact crater coordinates and dimensions for selected experiment surfaces; and databasing of the crater data for reduction, manipulation, and comparison to models. Large area surfaces that were studied include the experiment power and data system (EPDS) sunshields, environment exposure control canister (EECC) sunshields, and the M0003 signal conditioning unit (SCU) covers. Crater diameters down to 25 microns were measured and cataloged. Both leading (D8) and trailing (D4) edge surfaces were studied and compared. The EPDS sunshields are aluminum panels painted with Chemglaze A-276 white thermal control paint, the EECC sunshields are chromic acid-anodized aluminum, and the SCU covers are aluminum painted with S13GLO white thermal control paint. Typical materials that have documented impacts are metals, glasses and ceramics, composites, polymers, electronic materials, and paints. The results of this survey demonstrate the different response of materials to hypervelocity impacts. Comparison of the survey data to curves derived from the Kessler debris model and the Cour-Palais micrometeoroid model indicates that these models overpredict small impacts (less than 100 micron) and may underpredict large impacts (greater than 1000 micron) while having fair to good agreement for the intermediate impacts. Comparison of the impact distributions among the various surfaces indicates significant variations, which may be a function of material response effects, or in some cases surface roughness. Representative photographs and summary graphs of the impact data are presented.

  13. Visualization experiences and issues in Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene

    2003-01-01

    The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.

  14. Experiment K-6-23. Effect of spaceflight on levels and function of immune cells

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Sonnenfeld, G.; Berry, W.; Taylor, G.; Wellhausen, S. R.; Konstantinova, I.; Lesnyak, A.; Fuchs, B.

    1990-01-01

    Two different immunology experiments were performed on samples received from rats flown on Cosmos 1887. In the first experiment, rat bone marrow cells were examined in Moscow for their response to colony stimulating factor-M. In the second experiment, rat spleen and bone marrow cells were stained in Moscow with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and shipped to the United States where they were subjected to analysis on a flow cytometer. The results of the studies indicate that bone marrow cells from flown rats showed a decreased response to colony stimulating factor than did bone marrow cells from control rats. There was a higher percentage of spleen cells from flown rats staining positively for pan-T-cell, suppressor-T-cell and innate interleukin-2 receptor antigens than from control animals. In addition, a higher percentage of cells that appeared to be part of the myelogenous population of bone marrow cells from flown rats stained positively for surface immunoglobulin than did equivalent cells from control rats.

  15. Time-dependent influence of sensorimotor set on automatic responses in perturbed stance

    NASA Technical Reports Server (NTRS)

    Chong, R. K.; Horak, F. B.; Woollacott, M. H.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    These experiments tested the hypothesis that the ability to change sensorimotor set quickly for automatic responses depends on the time interval between successive surface perturbations. Sensorimotor set refers to the influence of prior experience or context on the state of the sensorimotor system. Sensorimotor set for postural responses was influenced by first giving subjects a block of identical backward translations of the support surface, causing forward sway and automatic gastrocnemius responses. The ability to change set quickly was inferred by measuring the suppression of the stretched antagonist gastrocnemius responses to toes-up rotations causing backward sway, following the translations. Responses were examined under short (10-14 s) and long (19-24 s) inter-trial intervals in young healthy subjects. The results showed that subjects in the long-interval group changed set immediately by suppressing gastrocnemius to 51% of translation responses within the first rotation and continued to suppress them over succeeding rotations. In contrast, subjects in the short-interval group did not change set immediately, but required two or more rotations to suppress gastrocnemius responses. By the last rotation, the short-interval group suppressed gastrocnemius responses to 33%, similar to the long-interval group of 29%. Associated surface plantarflexor torque resulting from these responses showed similar results. When rotation and translation perturbations alternated, however, the short-interval group was not able to suppress gastrocnemius responses to rotations as much as the long-interval group, although they did suppress more than in the first rotation trial after a series of translations. Set for automatic responses appears to linger, from one trial to the next. Specifically, sensorimotor set is more difficult to change when surface perturbations are given in close succession, making it appear as if set has become progressively stronger. A strong set does not mean that responses become larger over consecutive trials. Rather, it is inferred by the extent of difficulty in changing a response when it is appropriate to do so. These results suggest that the ability to change sensorimotor set quickly is sensitive to whether the change is required after a long or a short series of a prior different response, which in turn depends on the time interval between successive trials. Different rate of gastrocnemius suppression to toes-up rotation of the support surface have been reported in previous studies. This may be partially explained by different inter-trial time intervals demonstrated in this study.

  16. The influence of land surface properties on Sahel climate. Part 1: Desertification

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; Shukla, Jagadish

    1993-01-01

    This is a general circulation model sensitivity study of the physical mechanisms of the effects of desertification on the Sahel drought. The model vegetation types were changed in the prescribed desertification area, which led to changes in the surface characteristics. The model was integrated for three months (June, July, August) with climatological surface conditions (control) and desertification conditions (anomaly) to examine the summer season response to the changed surface conditions. The control and anomaly experiments consisted of five pairs of integrations with different initial conditions and/or sea surface temperature boundary conditions. In the desertification experiment, the moisture flux convergence and rainfall were reduced in the test area and increased to the immediate south of this area. The simulated anomaly dipole pattern was similar to the observed African drought patterns in which the axis of the maximum rainfall shifts to the south. The circulation changes in the desertification experiment were consistent with those observed during sub-Saharan dry years. The tropical easterly jet was weaker and the African easterly jet was stronger than normal. Further, in agreement with the observations, the easterly wave disturbances were reduced in intensity but not in number. Descending motion dominated the desertification area. The surface energy budget and hydrological cycle were also changed substantially in the anomaly experiment.

  17. Preliminary results report: Conasauga near-surface heater experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumhansl, J.L.

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW formore » heater mid-plane temperatures of 385/sup 0/C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples.« less

  18. Warpage analysis on thin shell part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.

  19. Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Saltzman, Barry

    1990-01-01

    The equilibrium response of surface temperature to atmospheric CO2 concentration, for six values between 100 and 1000 ppm, is calculated from a series of GCM experiments. This response is nonlinear, showing greater sensitivity for lower values of CO2 than for the higher values. It is suggested that changes in CO2 concentration of a given magnitude (e.g., 100 ppm) played a larger role in the Pleistocene ice-age-type temperature variations than in causing global temperature changes due to anthropogenic increases.

  20. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    USGS Publications Warehouse

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  1. Eddy current probe response to open and closed surface flaws

    NASA Technical Reports Server (NTRS)

    Auld, B. A.; Muennemann, F.; Winslow, D. K.

    1981-01-01

    A general analysis of eddy current response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.

  2. Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics.

    PubMed

    Stratoudaki, Theodosia; Ellwood, Robert; Sharples, Steve; Clark, Matthew; Somekh, Michael G; Collison, Ian J

    2011-04-01

    A dual frequency mixing technique has been developed for measuring velocity changes caused by material nonlinearity. The technique is based on the parametric interaction between two surface acoustic waves (SAWs): The low frequency pump SAW generated by a transducer and the high frequency probe SAW generated and detected using laser ultrasonics. The pump SAW stresses the material under the probe SAW. The stress (typically <5 MPa) is controlled by varying the timing between the pump and probe waves. The nonlinear interaction is measured as a phase modulation of the probe SAW and equated to a velocity change. The velocity-stress relationship is used as a measure of material nonlinearity. Experiments were conducted to observe the pump-probe interaction by changing the pump frequency and compare the nonlinear response of aluminum and fused silica. Experiments showed these two materials had opposite nonlinear responses, consistent with previously published data. The technique could be applied to life-time predictions of engineered components by measuring changes in nonlinear response caused by fatigue.

  3. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  4. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  5. Electrostatic Charging of Polymers by Particle Impact at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.

  6. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    PubMed

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  7. Transient hot-film sensor response in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.

    1989-01-01

    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation.

  8. Depletion region surface effects in electron beam induced current measurements.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

  9. Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.

    1990-09-01

    The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.

  10. Convective response of a wall-mounted hot-film sensor in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. Sidney, Jr.; Ortgies, Kelly R.; Gartenberg, Ehud; Carraway, Debra L.

    1991-01-01

    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation.

  11. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation, this technique can possibly be developed for in-vivo experiments on animals and humans and then may prospectively be matured for future clinical usage.

  12. Numerical Response Surfaces of Volume of Ablation and Retropulsion Amplitude by Settings of Ho:YAG Laser Lithotripter

    PubMed Central

    Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael L. D.; Yang, Xirong; Hasenberg, Thomas; Curran, Sean

    2018-01-01

    Objectives Although laser lithotripsy is now the preferred treatment option for urolithiasis due to shorter operation time and a better stone-free rate, the optimal laser settings for URS (ureteroscopic lithotripsy) for less operation time remain unclear. The aim of this study was to look for quantitative responses of calculus ablation and retropulsion by performing operator-independent experiments to determine the best fit versus the pulse energy, pulse width, and the number of pulses. Methods A lab-built Ho:YAG laser was used as the laser pulse source, with a pulse energy from 0.2 J up to 3.0 J and a pulse width of 150 μs up to 1000 μs. The retropulsion was monitored using a high-speed camera, and the laser-induced craters were evaluated with a 3-D digital microscope. The best fit to the experimental data is done by a design of experiment software. Results The numerical formulas for the response surfaces of ablation speed and retropulsion amplitude are generated. Conclusions The longer the pulse, the less the ablation or retropulsion, while the longer pulse makes the ablation decrease faster than the retropulsion. The best quadratic fit of the response surface for the volume of ablation varied nonlinearly with pulse duration and pulse number. PMID:29707187

  13. Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study.

    PubMed

    Paz, María Dolores; Álava, J Iñaki; Goikoetxea, Leire; Chiussi, Stefano; Díaz-Güemes, Idoia; Usón, Jesus; Sánchez, Francisco; León, Betty

    2011-01-01

    To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants. A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively. Human fetal osteoblastic cell culture and a sheep tibia model were used to assess the cell response and the osseogeneration capability of as-machined, laser macrostructured and laser macrostructured and oxidized surfaces. In vitro: Laser macrostructuration alone did not promote cell response. Cellular proliferation was enhanced by the additional UV laser oxidation. In vivo: A greater significant percentage of bone-implant contact was obtained for both laser treated surfaces compared to machine-turned control samples, three months after implantation, in spite of the low cellular response for macrostructured samples. The use of sheep model for six months appears to be less adequate for a comparison because of the high level of bone integration in all samples. In spite of the often reported positive effect of titanium oxidation on the triggering of faster osseointegration, in this experiment the additional UV laser oxidation did not lead to a significant in vivo improvement. Laser macrostructuration of titanium alloy surfaces appears to promote bone apposition and may therefore constitute a promising surface modification strategy. In animal models, the natural process of titanium surface oxidation, because of physiologic fluids, alters properties observed in vitro with cells.

  14. Quantification of phototrophic biomass on rocks: optimization of chlorophyll-a extraction by response surface methodology.

    PubMed

    Fernández-Silva, I; Sanmartín, P; Silva, B; Moldes, A; Prieto, B

    2011-01-01

    Biological colonization of rock surfaces constitutes an important problem for maintenance of buildings and monuments. In this work, we aim to establish an efficient extraction protocol for chlorophyll-a specific for rock materials, as this is one of the most commonly used biomarkers for quantifying phototrophic biomass. For this purpose, rock samples were cut into blocks, and three different mechanical treatments were tested, prior to extraction in dimethyl sulfoxide (DMSO). To evaluate the influence of the experimental factors (1) extractant-to-sample ratio, (2) temperature, and (3) time of incubation, on chlorophyll-a recovery (response variable), incomplete factorial designs of experiments were followed. Temperature of incubation was the most relevant variable for chlorophyll-a extraction. The experimental data obtained were analyzed following a response surface methodology, which allowed the development of empirical models describing the interrelationship between the considered response and experimental variables. The optimal extraction conditions for chlorophyll-a were estimated, and the expected yields were calculated. Based on these results, we propose a method involving application of ultrasound directly to intact sample, followed by incubation in 0.43 ml DMSO/cm(2) sample at 63°C for 40 min. Confirmation experiments were performed at the predicted optimal conditions, allowing chlorophyll-a recovery of 84.4 ± 11.6% (90% was expected), which implies a substantial improvement with respect to the expected recovery using previous methods (68%). This method will enable detection of small amounts of photosynthetic microorganisms and quantification of the extent of biocolonization of stone surfaces.

  15. The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Su, Hui; Jiang, Jonathan H.; Livesey, Nathaniel J.; Santee, Michelle L.; Froidevaux, Lucien; Read, William G.; Anderson, John

    2017-04-01

    We assess the interactions between stratospheric water vapor (SWV) and surface temperature during the past two decades using satellite observations and the Community Earth System Model (CESM). From 1992 to 2013, to first order, the observed SWV exhibited three distinct piece-wise trends: a steady increase from 1992 to 2000, an abrupt drop from 2000 to 2004, and a gradual recovery after 2004, while the global-mean surface temperature experienced a strong increase until 2000 and a warming hiatus after 2000. The atmosphere-only CESM shows that the seasonal variation of tropical-mean (30°S-30°N) SWV is anticorrelated with that of the tropical-mean sea surface temperature (SST), while the correlation between the tropical SWV and SST anomalies on the interannual time scale is rather weak. By nudging the modeled SWV to prescribed profiles in coupled atmosphere-slab ocean experiments, we investigate the impact of SWV variations on surface temperature change. We find that a uniform 1 ppmv (0.5 ppmv) SWV increase (decrease) leads to an equilibrium global mean surface warming (cooling) of 0.12 ± 0.05 °C (-0.07 ± 0.05 °C). Sensitivity experiments show that the equilibrium response of global mean surface temperature to SWV perturbations over the extratropics is larger than that over the tropics. The observed sudden drop of SWV from 2000 to 2004 produces a global mean surface cooling of about -0.048 ± 0.041 °C, which suggests that a persistent change in SWV would make an imprint on long-term variations of global-mean surface temperature. A constant linear increase in SWV based on the satellite-observed rate of SWV change yields a global mean surface warming of 0.03 ± 0.01 °C/decade over a 50-year period, which accounts for about 19 % of the observed surface temperature increase prior to the warming hiatus. In the same experiment, trend analyses during different periods reveal a multi-year adjustment of surface temperature before the response to SWV forcing becomes strong relative to the internal variability in the model.

  16. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    NASA Astrophysics Data System (ADS)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  17. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    NASA Astrophysics Data System (ADS)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Richard A.; Paz-Soldan, Carlos; Nazikian, Raffi

    Here, experiments have been executed in the DIII-D tokamak to extend suppression of Edge Localized Modes (ELMs) with Resonant Magnetic Perturbations (RMPs) to ITER-relevant levels of beam torque. The results support the hypothesis for RMP ELM suppression based on transition from an ideal screened response to a tearing response at a resonant surface that prevents expansion of the pedestal to an unstable width.

  19. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  20. AO/NAO Response to Climate Change. 1; Respective Influences of Stratospheric and Tropospheric Climate Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.

    2005-01-01

    We utilize the GISS Global Climate Middle Atmosphere Model and 8 different climate change experiments, many of them focused on stratospheric climate forcings, to assess the relative influence of tropospheric and stratospheric climate change on the extratropical circulation indices (Arctic Oscillation, AO; North Atlantic Oscillation, NAO). The experiments are run in two different ways: with variable sea surface temperatures (SSTs) to allow for a full tropospheric climate response, and with specified SSTs to minimize the tropospheric change. The results show that tropospheric warming (cooling) experiments and stratospheric cooling (warming) experiments produce more positive (negative) AO/NAO indices. For the typical magnitudes of tropospheric and stratospheric climate changes, the tropospheric response dominates; results are strongest when the tropospheric and stratospheric influences are producing similar phase changes. Both regions produce their effect primarily by altering wave propagation and angular momentum transports, but planetary wave energy changes accompanying tropospheric climate change are also important. Stratospheric forcing has a larger impact on the NAO than on the AO, and the angular momentum transport changes associated with it peak in the upper troposphere, affecting all wavenumbers. Tropospheric climate changes influence both the A0 and NAO with effects that extend throughout the troposphere. For both forcings there is often vertical consistency in the sign of the momentum transport changes, obscuring the difference between direct and indirect mechanisms for influencing the surface circulation.

  1. A review of recent theoretical and computational studies on pinned surface nanobubbles

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2018-01-01

    The findings of long-lived surface nanobubbles in various experiments brought a puzzle in theory, as they were supposed to be dissolved in microseconds due to the high Laplace pressure. However, an increasing number of studies suggest that the pinning of contact line, together with certain levels of oversaturation, is responsible for the anomalous stability of surface nanobubble. This mechanism can interpret most characteristics of surface nanobubbles. Here we summarize recent theoretical and computational work to explain how the surface nanobubbles become stable with the pinning of contact line. Other related work devoted to understand the unusual behaviors of pinned surface nanobubbles are also reviewed here.

  2. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    PubMed

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  3. Crisis management in transportation : building capacity through exercises.

    DOT National Transportation Integrated Search

    2013-03-01

    Building on research conducted in part with UTC Year 20 funding, this project : examined the experience of organizations from the second circle of the : emergency response community including surface transportation agencies in : using e...

  4. Observations on the behavior of bowhead whales (Balaena mysticetus) in the presence of operating seismic exploration vessels in the Alaskan Beaufort Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ljungblad, D.K.; Wuersig, B.; Swartz, S.L.

    1985-10-01

    The response of bowhead whales to active geophysical vessels was observed during the course of 4 field experiments conducted in the Alaskan Beaufort Sea, September 1984. Conspicuous short-term behavioral changes were observed when active vessels approached to within 10km of bowheads, with the strongest responses occurring when whales were within 5km of active vessels. Behavioral responses included shorter surfacing and dive times, fewer blows per surfacing, and longer blow intervals. Total avoidance responses occured at vessel distances of 1.25km, 7.2km, 3.5km and 3.5km with associated measured sound levels from the seismic airgun arrays of 152dB, 164dB, 178dB and 163dB, respectively.

  5. Optimum extrusion-cooking conditions for improving physical properties of fish-cereal based snacks by response surface methodology.

    PubMed

    Singh, R K Ratankumar; Majumdar, Ranendra K; Venkateshwarlu, G

    2014-09-01

    To establish the effect of barrel temperature, screw speed, total moisture and fish flour content on the expansion ratio and bulk density of the fish based extrudates, response surface methodology was adopted in this study. The experiments were optimized using five-levels, four factors central composite design. Analysis of Variance was carried to study the effects of main factors and interaction effects of various factors and regression analysis was carried out to explain the variability. The fitting was done to a second order model with the coded variables for each response. The response surface plots were developed as a function of two independent variables while keeping the other two independent variables at optimal values. Based on the ANOVA, the fitted model confirmed the model fitness for both the dependent variables. Organoleptically highest score was obtained with the combination of temperature-110(0) C, screw speed-480 rpm, moisture-18 % and fish flour-20 %.

  6. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaksmore » down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.« less

  7. Viscosity Measurement using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.

  8. Strategies of Healthy Adults Walking on a Laterally Oscillating Treadmill

    NASA Technical Reports Server (NTRS)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2008-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate locomotor responses produced by healthy adults introduced to a dynamic walking surface. The experiment examined self-selected strategies employed by participants when exposed to continuous, sinusoidal lateral motion of the support surface while walking. Torso translation and step width were used to classify responses used to stabilize gait in a novel, dynamic environment. Two response categories emerged. Participants tended to either fix themselves in space (FIS), allowing the treadbelt to move laterally beneath them, or they fixed themselves to the base (FTB), moving laterally as the motion base oscillated. The degree of fixation in both extremes varied across participants. This finding suggests that normal adults have innate and varied preferences for reacquiring gait stability, some depending more heavily on vision (FIS group) and others on proprioception (FTB group). Keywords: Human locomotion, Unstable surface, Treadmill, Adaptation, Stability

  9. Effects of spaceflight on levels and activity of immune cells

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Berry, Wallace D.; Mandel, Adrian D.; Konstantinova, Irena V.; Taylor, Gerald R.

    1990-01-01

    Experiments were carried out on cells from rats that had been flown on Soviet Biosputnik Cosmos 1887 to explore the effects of speceflight on immune responses. Rat bone marrow cells were examined for their response to colony stimulating factor-M. Rat spleen and bone marrow cells were stained with antibodies directed against cell surface antigenic markers. The results of the studies indicate that bone marrow cells from flown rats showed a decreased response to colony stimulating factor. There was a higher percentage of spleen cells from flown rats staining positively for pan-T-cell, suppressor-T-cell, and interleukin-2 receptor cell surface antigens. A small increase in the percentage of cells staining positively for helper-T-cell antigens was also noted. In addition, a higher percentage of cells that appeared to be part of the myelogenous population of bone marrow cells from flown rats stained positively for surface immunoglobulin.

  10. The Role of Hierarchy in Response Surface Modeling of Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2010-01-01

    This paper is intended as a tutorial introduction to certain aspects of response surface modeling, for the experimentalist who has started to explore these methods as a means of improving productivity and quality in wind tunnel testing and other aerospace applications. A brief review of the productivity advantages of response surface modeling in aerospace research is followed by a description of the advantages of a common coding scheme that scales and centers independent variables. The benefits of model term reduction are reviewed. A constraint on model term reduction with coded factors is described in some detail, which requires such models to be well-formulated, or hierarchical. Examples illustrate the consequences of ignoring this constraint. The implication for automated regression model reduction procedures is discussed, and some opinions formed from the author s experience are offered on coding, model reduction, and hierarchy.

  11. Response Surface Modeling Tolerance and Inference Error Risk Specifications: Proposed Industry Standards

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2012-01-01

    This paper reviews the derivation of an equation for scaling response surface modeling experiments. The equation represents the smallest number of data points required to fit a linear regression polynomial so as to achieve certain specified model adequacy criteria. Specific criteria are proposed which simplify an otherwise rather complex equation, generating a practical rule of thumb for the minimum volume of data required to adequately fit a polynomial with a specified number of terms in the model. This equation and the simplified rule of thumb it produces can be applied to minimize the cost of wind tunnel testing.

  12. A surface acoustic wave response detection method for passive wireless torque sensor

    NASA Astrophysics Data System (ADS)

    Fan, Yanping; Kong, Ping; Qi, Hongli; Liu, Hongye; Ji, Xiaojun

    2018-01-01

    This paper presents an effective surface acoustic wave (SAW) response detection method for the passive wireless SAW torque sensor to improve the measurement accuracy. An analysis was conducted on the relationship between the response energy-entropy and the bandwidth of SAW resonator (SAWR). A self-correlation method was modified to suppress the blurred white noise and highlight the attenuation characteristic of wireless SAW response. The SAW response was detected according to both the variation and the duration of energy-entropy ascension of an acquired RF signal. Numerical simulation results showed that the SAW response can be detected even when the signal-to-noise ratio (SNR) is 6dB. The proposed SAW response detection method was evaluated with several experiments at different conditions. The SAW response can be well distinguished from the sinusoidal signal and the noise. The performance of the SAW torque measurement system incorporating the detection method was tested. The obtained repeatability error was 0.23% and the linearity was 0.9934, indicating the validity of the detection method.

  13. Optimization of process parameters in CNC turning of aluminium alloy using hybrid RSM cum TLBO approach

    NASA Astrophysics Data System (ADS)

    Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.

    2016-09-01

    The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.

  14. Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; DeLoach, Richard

    2005-01-01

    A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings.

  15. Flexible Space-Filling Designs for Complex System Simulations

    DTIC Science & Technology

    2013-06-01

    interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations

  16. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    DTIC Science & Technology

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  17. Two-Dimensional Synthetic Aperture Radiometry over Land Surface During Soil Moisture Experiment in 2003 (SMEX03)

    NASA Technical Reports Server (NTRS)

    Ryu, Dongryeol; Jackson, Thomas J.; Bindlish, Rajat; Le Vine, David M.; Haken, Michael

    2007-01-01

    Microwave radiometry at low frequencies (L-band, approx. 1.4 GHz) has been known as an optimal solution for remote sensing of soil moisture. However, the antenna size required to achieve an appropriate resolution from space has limited the development of spaceborne L-band radiometers. This problem can be addressed by interferometric technology called aperture synthesis. The Soil Moisture and Ocean Salinity (SMOS) mission will apply this technique to monitor global-scale surface parameters in the near future. The first airborne experiment using an aircraft prototype of this approach, the Two-Dimensional Synthetic Aperture Radiometer (2D-STAR), was performed in the Soil Moisture Experiment in 2003 (SMEX03). The L-band brightness temperature data acquired in Alabama by the 2DSTAR was compared with ground-based measurements of soil moisture and with C-band data collected by the Polarimetric Scanning Radiometer (PSR). Our results demonstrate a good response of the 2D-STAR brightness temperature to changes in surface wetness, both in agricultural and forest lands. The behavior of the horizontally polarized brightness temperature data with increasing view-angle over the forest area was noticeably different than over bare soil. The results from the comparison of 2D-STAR and PSR indicate a better response of the 2D-STAR to the surface wetness under both wet and dry conditions. Our results have important implications for the performance of the future SMOS mission.

  18. The whole-soil carbon flux in response to warming

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.

    2017-03-01

    Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.

  19. Testing the Structure of Hydrological Models using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  20. Tightly Coupled Mechanistic Study of Materials in the Extreme Space Environment

    DTIC Science & Technology

    2016-10-11

    to examine spacecraft contamination issues from the perspective of non- equilibrium gas dynamics (Levin), material response at the atomistic level...Space Environment Group has worked to examine spacecraft contamination issues from the perspective of non- equilibrium gas dynamics (Levin...material response at the atomistic level (Rajan), high fidelity gas -surface chemistry models (van Duin), and experiments to characterize and test

  1. Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Lakshmi, Venkataraman

    1993-01-01

    Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.

  2. Nonlinearity response correction in phase-shifting deflectometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh The; Kang, Pilseong; Ghim, Young-Sik; Rhee, Hyug-Gyo

    2018-04-01

    Owing to the nonlinearity response of digital devices such as screens and cameras in phase-shifting deflectometry, non-sinusoidal phase-shifted fringe patterns are generated and additional measurement errors are introduced. In this paper, a new deflectometry technique is described for overcoming these problems using a pre-distorted pattern combined with an advanced iterative algorithm. The experiment results show that this method can reconstruct the 3D surface map of a sample without fringe print-through caused by the nonlinearity response of digital devices. The proposed technique is verified by measuring the surface height variations in a deformable mirror and comparing them with the measurement result obtained using a coordinate measuring machine. The difference between the two measurement results is estimated to be less than 13 µm.

  3. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process

    PubMed Central

    2014-01-01

    Background In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100–180 mg/L), pH (3–11), time (10–30 min) and initial total organic carbon (TOC) concentration (4–10 mg/L) were studied. Results Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R2 = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. Conclusions This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process. PMID:24735555

  4. Application of response surface methodology (RSM) for the removal of methylene blue dye from water by nano zero-valent iron (NZVI).

    PubMed

    Khosravi, Morteza; Arabi, Simin

    In this study, iron zero-valent nanoparticles were synthesized, characterized and studied for removal of methylene blue dye in water solution. The reactions were mathematically described as the function of parameters such as nano zero-valent iron (NZVI) dose, pH, contact time and initial dye concentration, and were modeled by the use of response surface methodology. These experiments were carried out as a central composite design consisting of 30 experiments determined by the 2(4) full factorial designs with eight axial points and six center points. The results revealed that the optimal conditions for dye removal were NZVI dose 0.1-0.9 g/L, pH 3-11, contact time 20-100 s, and initial dye concentration 10-50 mg/L, respectively. Under these optimal values of process parameters, the dye removal efficiency of 92.87% was observed, which very close to the experimental value (92.21%) in batch experiment. In the optimization, R(2) and R(2)adj correlation coefficients for the model were evaluated as 0.96 and 0.93, respectively.

  5. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    PubMed

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  6. Calcification response of a key phytoplankton family to millennial-scale environmental change.

    PubMed

    McClelland, H L O; Barbarin, N; Beaufort, L; Hermoso, M; Ferretti, P; Greaves, M; Rickaby, R E M

    2016-09-28

    Coccolithophores are single-celled photosynthesizing marine algae, responsible for half of the calcification in the surface ocean, and exert a strong influence on the distribution of carbon among global reservoirs, and thus Earth's climate. Calcification in the surface ocean decreases the buffering capacity of seawater for CO 2 , whilst photosynthetic carbon fixation has the opposite effect. Experiments in culture have suggested that coccolithophore calcification decreases under high CO 2 concentrations ([CO 2 (aq)]) constituting a negative feedback. However, the extent to which these results are representative of natural populations, and of the response over more than a few hundred generations is unclear. Here we describe and apply a novel rationale for size-normalizing the mass of the calcite plates produced by the most abundant family of coccolithophores, the Noëlaerhabdaceae. On average, ancient populations subjected to coupled gradual increases in [CO 2 (aq)] and temperature over a few million generations in a natural environment become relatively more highly calcified, implying a positive climatic feedback. We hypothesize that this is the result of selection manifest in natural populations over millennial timescales, so has necessarily eluded laboratory experiments.

  7. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  8. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  9. Response of selected microorganisms to experimental planetary environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.; Casey, R. C.

    1975-01-01

    Experiments indicate that hardy organisms will likely grow in the Martian environment if moisture is available, and that these organisms definitely present a threat to contamination of the biopackage if they are transported to the surface of Mars.

  10. A Transpiration Experiment Requiring Critical Thinking Skills.

    ERIC Educational Resources Information Center

    Ford, Rosemary H.

    1998-01-01

    Details laboratory procedures that enable students to understand the concept of how differences in water potential drive the movement of water within a plant in response to transpiration. Students compare transpiration rates for upper and lower surfaces of leaves. (DDR)

  11. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.

  12. Depletion region surface effects in electron beam induced current measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less

  13. Development of an electro-responsive platform for the controlled transfection of mammalian cells

    NASA Astrophysics Data System (ADS)

    Hook, Andrew L.; Thissen, Helmut W.; Hayes, Jason P.; Voelcker, Nicolas H.

    2005-02-01

    The recent development of living microarrays as novel tools for the analysis of gene expression in an in-situ environment promises to unravel gene function within living organisms. In order to significantly enhance microarray performance, we are working towards electro-responsive DNA transfection chips. This study focuses on the control of DNA adsorption and desorption by appropriate surface modification of highly doped p++ silicon. Silicon was modified by plasma polymerisation of allylamine (ALAPP), a non-toxic surface that sustains cell growth. Subsequent high surface density grafting of poly(ethylene oxide) formed a layer resistant to biomolecule adsorption and cell attachment. Spatially controlled excimer laser ablation of the surface produced micron resolution patterns of re-exposed plasma polymer whilst the rest of the surface remained non-fouling. We observed electro-stimulated preferential adsorption of DNA to the ALAPP surface and subsequent desorption by the application of a negative bias. Cell culture experiments with HEK 293 cells demonstrated efficient and controlled transfection of cells using the expression of green fluorescent protein as a reporter. Thus, these chemically patterned surfaces are promising platforms for use as living microarrays.

  14. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  15. Surface-Engineered Multifunctional Eu:Gd2O3 Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications.

    PubMed

    Saha, Arindam; Mohanta, Subas Chandra; Deka, Kashmiri; Deb, Pritam; Devi, Parukuttyamma Sujatha

    2017-02-01

    In this paper, we report the synthesis of surface-engineered multifunctional Eu:Gd 2 O 3 triangular nanoplates with small size and uniform shape via a high-temperature solvothermal technique. Surface engineering has been performed by a one-step polyacrylate coating, followed by controlled conjugation chemistry. This creates the desired number of surface functional groups that can be used to attach folic acid as a targeting ligand on the nanoparticle surface. To specifically deliver the drug molecules in the nucleus, the folate density on the nanoparticle surface has been kept low. We have also modified the drug molecules with terminal double bond and ester linkage for the easy conjugation of nanoparticles. The nanoparticle surface was further modified with free thiols to specifically attach the modified drug molecules with a pH-responsive feature. High drug loading has been encountered for both hydrophilic drug daunorubicin (∼69% loading) and hydrophobic drug curcumin (∼75% loading) with excellent pH-responsive drug release. These nanoparticles have also been used as imaging probes in fluorescence imaging. Some preliminary experiments to evaluate their application in magnetic resonance imaging have also been explored. A detailed fluorescence imaging study has confirmed the efficient delivery of drugs to the nuclei of cancer cells with a high cytotoxic effect. Synthesized surface-engineered nanomaterials having small hydrodynamic size, excellent colloidal stability, and high drug-loading capacity, along with targeted and pH-responsive delivery of dual drugs to the cancer cells, will be potential nanobiomaterials for various biomedical applications.

  16. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhi -Yong; Wu, Jianzhong

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmedmore » with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.« less

  17. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  18. Impact of surface coated magnetite used in magnetic drug delivery system on immune response

    NASA Astrophysics Data System (ADS)

    Oaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko; Osako, Mariana Kiomy; Koriyama, Hiroshi; Nakagami, Hironori; Nishijima, Shigehiro

    2015-05-01

    Magnetic drug delivery system (MDDS) is a technique to effectively accumulate drugs, which are combined with ferromagnetic particles, into the affected area using magnetic force control. This study intends to apply MDDS for immunotherapy by enhancing immune responses by a surface treatment of a ferromagnetic particle. The objective of this study is to give the adjuvant effect to a ferromagnetic particle by the surface treatment with alum, which is known as one of the common adjuvants that activates inflammasome pathway. First, magnetite was prepared as a ferromagnetic particle and coated with alum. Alum-coated magnetite increased the expression of caspase-1, which is an activated indicator of inflammasome, in the culture of human monocyte cell (THP-1 cell). To evaluate the potential of the surface coated particles, the particles were subcutaneously injected to mice with a peptide vaccine. As a result, the antibody titer was increased by the surface coated particles as assessed by ELISA. Although a magnetic force has not yet applied in this study, the administration experiment to mice using magnetic force control is our next step. In conclusion, we modified the immune response to magnetite by coating the surface with alum. This can lead to a clinical application for vaccine therapy in future.

  19. Time-resolved spectroscopy at surfaces and adsorbate dynamics:insights from a model-system approach

    NASA Astrophysics Data System (ADS)

    Boström, Emil; Mikkelsen, Anders; Verdozzi, Claudio

    We introduce a finite-system, model description of the initial stages of femtosecond laser induced desorption at surfaces. Using the exact many-body time evolution and also results from a novel time-dependent DFT description for electron-nuclear systems, we analyse the competition between several surface-response mechanisms and electronic correlations in the transient and longer time dynamics under the influence of dipole-coupled fields. Our model allows us to explore how coherent multiple-pulse protocols impact desorption in a variety of prototypical experiments.

  20. Surface desensitization of polarimetric waveguide interferometers

    NASA Astrophysics Data System (ADS)

    Worth, Colin

    Non-specific binding of small molecules to the surface of waveguide biosensors presents a major obstacle to surface-sensing techniques that attempt to detect very low concentrations (<1 g/mm2) of large (500 nm to 3 mum) biological objects. Interferometric waveguide biosensors use the interaction of an evanescent light field outside of the guiding layer with a biological sample to detect a particular type of cell or bacteria at some distance from the sensor surface. In such experiments, binding of small proteins close to the surface can be a significant source of noise. It is possible to significantly improve the signal-to-noise ratio by varying the properties of the biosensor, in order to reduce or eliminate the biosensor's response to a thin protein layer at the waveguide surface, without significantly reducing the response to larger target particles. In many biosensing applications, specifically bound particles, such as bacteria, are much larger than non-specifically bound particles such as proteins. In addition, due to laminar flow conditions at the sensor surface, the latter smaller particles tend to accumulate on the sensor surface. By varying the waveguide parameters, it is possible to vary the sensitivity of the detector response as a function of sample distance from the detector, by changing the properties of the TE0 and TM0 guided modes. This results in a signal reduction of more than 85%, for thin (30 nm or less) layers adjacent to the waveguide surface.

  1. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  2. Attached and planktonic Listeria monocytogenes global proteomic responses and associated influence of strain genetics and temperature.

    PubMed

    Mata, Marcia M; da Silva, Wladimir P; Wilson, Richard; Lowe, Edwin; Bowman, John P

    2015-02-06

    Contamination of industrial and domestic food usage environments by the attachement of bacterial food-borne pathogen Listeria monocytogenes has public health and economic implications. Comprehensive proteomics experiments using label-free liquid chromatography/tandem mass spectrometry were used to compare the proteomes of two different L. monocytogenes strains (Siliken_1/2c and F2365_4b), which show very different capacities to attach to surfaces. Growth temperature and strain type were highly influential on the proteomes in both attached and planktonic cells. On the basis of the proteomic data, it is highly unlikely that specific surface proteins play a direct role in adherence to inanimate surfaces. Instead, strain-dependent responses related to cell envelope polymer biosynthesis and stress response regulation likely contribute to a different ability to attach and also to survive external stressors. Collectively, the divergent proteome-level responses observed define strain- and growth-temperature-dependent differences relevant to attachment efficacy, highlight relevant proteins involved in stress protection in attached cells, and suggest that strain differences and growth conditions are important in relation to environmental persistence.

  3. Killing to Fluctuate, or: How Death and Reproduction Drive a Fluctuation-Response Relation in Biofilms

    NASA Astrophysics Data System (ADS)

    Kalziqi, Arben; Yunker, Peter; Thomas, Jacob

    Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.

  4. Optimization of Process Parameters of Pulsed Electro Deposition Technique for Nanocrystalline Nickel Coating Using Gray Relational Analysis (GRA)

    NASA Astrophysics Data System (ADS)

    Venkatesh, C.; Sundara Moorthy, N.; Venkatesan, R.; Aswinprasad, V.

    The moving parts of any mechanism and machine parts are always subjected to a significant wear due to the development of friction. It is an utmost important aspect to address the wear problems in present environment. But the complexity goes on increasing to replace the worn out parts if they are very precise. Technology advancement in surface engineering ensures the minimum surface wear with the introduction of polycrystalline nano nickel coating. The enhanced tribological property of the nano nickel coating was achieved by the development of grain size and hardness of the surface. In this study, it has been decided to focus on the optimized parameters of the pulsed electro deposition to develop such a coating. Taguchi’s method coupled gray relational analysis was employed by considering the pulse frequency, average current density and duty cycle as the chief process parameters. The grain size and hardness were considered as responses. Totally, nine experiments were conducted as per L9 design of experiment. Additionally, response graph method has been applied to determine the most significant parameter to influence both the responses. In order to improve the degree of validation, confirmation test and predicted gray grade were carried out with the optimized parameters. It has been observed that there was significant improvement in gray grade for the optimal parameters.

  5. Dryland feedbacks to climatic change: Results from a climate manipulation experiment on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Reed, S.; Belnap, J.; Ferrenberg, S.; Wertin, T. M.; Darrouzet-Nardi, A.; Tucker, C.; Rutherford, W. A.

    2015-12-01

    Arid and semiarid ecosystems cover ~40% of Earth's terrestrial surface and make up ~35% of the U.S., yet we know surprisingly little about how climate change will affect these widespread landscapes. Like many dryland regions, the Colorado Plateau in the southwestern U.S. is predicted to experience climate change as elevated temperature and altered timing and amount of annual precipitation. We are using a long-term (>10 yr) factorial warming and supplemental rainfall experiment on the Colorado Plateau to explore how predicted changes in climate will affect vascular plant and biological soil crust community composition, biogeochemical cycling, and energy balance (biocrusts are a surface soil community of moss, lichen, and cyanobacteria that can make up as much as 70% of the living cover in drylands). While some of the responses we have observed were expected, many of the results are surprising. For example, we documented biocrust community composition shifts in response to altered climate that were significantly faster and more dramatic than considered likely for these soil communities that typically change over decadal and centennial timescales. Further, while we continue to observe important climate change effects on carbon cycling - including reduced net photosynthesis in vascular plants, increased CO2 losses from biocrust soils during some seasons, and changes to the interactions between water and carbon cycles - we have also found marked treatment effects on the albedo and spectral signatures of dryland soils. In addition to demonstrating the effects of these treatments, the strong relationships we observed in our experiments between biota and climate provide a quantitative framework for improving our representation of dryland responses to climate change. In this talk we will cover a range of datasets that, taken together, show: (1) large climate-driven changes to dryland biogeochemical cycling may be the result of both effects on existing communities, as well of relatively rapid shifts in community composition; (2) drylands could provide feedbacks to future climate not only though altered carbon cycling but also via changes to surface albedo; and (3) models of dryland responses to climate change may need significant revision, but such a revision is well within reach.

  6. Adaptational phenomena and mechanical responses during running: effect of surface, aging and task experience.

    PubMed

    Karamanidis, Kiros; Arampatzis, Adamantios; Brüggemann, Gert-Peter

    2006-10-01

    The goals of the study were to identify adaptational phenomena in running mechanics over a variety of surfaces due to age related changes in the muscle-tendon units (MTUs) capacities, to examine whether running experience is associated with adaptational effects on running mechanics over a variety of surfaces even at old age, and to investigate whether surface condition affects running mechanics. The investigation was executed on 30 old and 19 young including 29 runners and 20 non-active subjects. In a previous study we documented that the older had lower MTUs capacities. In the present study running mechanics were analysed as the same subjects ran at 2.7 m/s over three surfaces having different compliance. Surface condition did not affect centre of mass trajectory, duty factor or joint kinetics (P > 0.01). Older react to the reduced MTUs capacity by increasing duty factor and benefiting from a mechanical advantage for the triceps surae MTU and a lower rate of force generation on all surfaces (P < 0.01). Runners displayed lower average horizontal forces and a higher mechanical advantage for the quadriceps femoris MTU for all surfaces (P < 0.01). The results provided strong evidence on that running strategy remained essentially unchanged over a variety of surfaces. Adaptive improvements in running mechanics due to task experience were present for all surfaces and did not depend on age. We further concluded that older adults were able to recalibrate their running strategy to adjust the task effort to the reduced MTUs capacities in a feedforward control manner for a variety of mechanical environments.

  7. Modulation of Thalamic Somatosensory Neurons by Arousal and Attention

    DTIC Science & Technology

    1988-08-23

    posterior lateral thalamus of the awake , behaving monkey that respond to somatosensory stimuli applied to the body surface. - to detect and quantfy...tested in pilot experiments to determine their feasibility for use in the awake monkey. These are discussed under the appropriate sections below. I I l~i...somatosensory responsiveness. This model is based on focal cortical suppression using MgSO 4 . Our previous experiments in the anesthetized and awake

  8. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  9. PEGylated graphene oxide elicits strong immunological responses despite surface passivation

    NASA Astrophysics Data System (ADS)

    Luo, Nana; Weber, Jeffrey K.; Wang, Shuang; Luan, Binquan; Yue, Hua; Xi, Xiaobo; Du, Jing; Yang, Zaixing; Wei, Wei; Zhou, Ruhong; Ma, Guanghui

    2017-02-01

    Engineered nanomaterials promise to transform medicine at the bio-nano interface. However, it is important to elucidate how synthetic nanomaterials interact with critical biological systems before such products can be safely utilized in humans. Past evidence suggests that polyethylene glycol-functionalized (PEGylated) nanomaterials are largely biocompatible and elicit less dramatic immune responses than their pristine counterparts. We here report results that contradict these findings. We find that PEGylated graphene oxide nanosheets (nGO-PEGs) stimulate potent cytokine responses in peritoneal macrophages, despite not being internalized. Atomistic molecular dynamics simulations support a mechanism by which nGO-PEGs preferentially adsorb onto and/or partially insert into cell membranes, thereby amplifying interactions with stimulatory surface receptors. Further experiments demonstrate that nGO-PEG indeed provokes cytokine secretion by enhancing integrin β8-related signalling pathways. The present results inform that surface passivation does not always prevent immunological reactions to 2D nanomaterials but also suggest applications for PEGylated nanomaterials wherein immune stimulation is desired.

  10. Numerical modeling of laboratory-scale surface-to-crown fire transition

    NASA Astrophysics Data System (ADS)

    Castle, Drew Clayton

    Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed ignition which closely matched the trends reported in the laboratory experiments.

  11. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  12. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  13. Use of response surface methodology to study the effect of media composition on aflatoxin production by Aspergillus flavus.

    PubMed

    Ahmad, Mahboob; Ahmad, Malik M; Hamid, Rifat; Abdin, M Z; Javed, Saleem

    2013-02-01

    Aflatoxins are one of the most important secondary metabolites. These extrolites are produced by a number of Aspergillus fungi. In this study, we demonstrate the effect of media components and enhanced aflatoxin yield shown by A. flavus using response surface methodology in response to different nutrients. Different components of a chemically defined media that influence the aflatoxin production were monitored using Plackett-Burman experimental design and further optimized by Box-Behnken factorial design of response surface methodology in liquid culture. Interactions were studied with five variables, namely sorbitol, fructose, ammonium sulfate, KH(2)PO(4), and MgSO(4).7H(2)O. Maximum aflatoxin production was envisaged in medium containing 4.94 g/l sorbitol, 5.56 g/l fructose, 0.62 g/l ammonium sulfate, 1.33 g/l KH(2)PO(4), and 0.65 g/l MgSO(4)·7H(2)O using response surface plots and the point prediction tool of the DESIGN EXPERT 8.1.0 (Stat-Ease, USA) software. However, a production of 5.25 μg/ml aflatoxin production was obtained, which was in agreement with the prediction observed in verification experiment. The other component (MgSO(4).7H(2)O) was found to be an insignificant variable.

  14. Process modelling for Space Station experiments

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Rosenberger, Franz; Nadarajah, Arunan; Ouazzani, Jalil; Amiroudine, Sakir

    1990-01-01

    Examined here is the sensitivity of a variety of space experiments to residual accelerations. In all the cases discussed the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion, or fluid motion must be suppressed or eliminated. In the latter case, the experiments are sensitive to steady and low frequency accelerations. For experiments such as the directional solidification of melts with two or more components, determination of the velocity response alone is insufficient to assess the sensitivity. The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt-crystal interface. As far as the response to transient disturbances is concerned, the sensitivity is determined by both the magnitude and frequency of the acceleration and the characteristic momentum and solute diffusion times. The microgravity environment, a numerical analysis of low gravity tolerance of the Bridgman-Stockbarger technique, and modeling crystal growth by physical vapor transport in closed ampoules are discussed.

  15. Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02

    NASA Astrophysics Data System (ADS)

    Li, T. T.; Qu, A.; Yuan, X. N.; Tan, F. X.; Li, X. W.; Wang, T.; Zhang, L. H.

    2017-07-01

    Moderate halophilic bacteria are of halophilic bacteria whose suitable growth of NaCl is 5-10%. When the moderate halophilic bacteria response to high osmotic stress, the intracellular will synthesize small organic molecule compatible solutes. Ectoine, which is the major synthetic osmotic compatible solutes for moderate halophilic bacteria, can help microbial enzymes, nucleic acids and the whole cell resist to hypertonic, high temperature, freezing and other inverse environment. In order to increase the Ectoine production of Moderate halophilic bacteria Halomonas sp. H02, the Ectoine fermentation medium component was optimized by Plackett-Burman (PB) and Response Surface Methodology (RSM) based on the principle of non-complete equilibrium The results of PB experiments showed that the three main influencing factors of Moderate halophilic bacteria Halomonas sp. H02 synthesis Ectoine culture medium were C5H8NNaO4 concentration, NaCl concentration and initial pH. According to the center point of the steepest climbing experiment, the central combination design experiment was used to show that the model is consistent with the actual situation. The optimum combination of three influencing factors were C5H8NNaO4 41 g/L, NaCl 87.2 g/L and initial pH 5.9, and the predicted amount of Ectoine was 1835.8 mg/L, increased by 41.6%.

  16. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  17. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.

    2018-04-01

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  18. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE PAGES

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; ...

    2018-04-19

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  19. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  20. Influence of mineral oil and additives on microhardness and surface chemistry of magnesium oxide (001) surface

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Shigaki, H.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted with cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved into specimens along the /001/ surface, and indentations were made on the cleaved surface in laboratory air, in nitrogen gas, or in degassed mineral oil with and without an additive while not exposing specimen surface to any other environment. The various additives examined contained sulfur, phosphorus, chlorine, or oleic acid. The sulfur-containing additive exhibited the highest hardness and smallest dislocation patterns evidencing plastic deformation; the chlorine-containing additive exhibited the lowest hardness and largest dislocation patterns evidencing plastic deformation. Hydrocarbon and chloride (MgCl2) films formed on the magnesium oxide surface. A chloride film was responsible for the lowest measured hardness.

  1. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    NASA Astrophysics Data System (ADS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  2. Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wofsy, C.; Goldstein, B.

    1991-03-15

    In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of themore » separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.« less

  3. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  4. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  5. Antibody response to actinomyces antigen and dental caries experience: implications for caries susceptibility.

    PubMed

    Levine, Martin; Owen, Willis L; Avery, Kevin T

    2005-06-01

    Fluoridated dentifrices reduce dental caries in subjects who perform effective oral hygiene. Actinomyces naeslundii increases in teeth-adherent microbial biofilms (plaques) in these subjects, and a well-characterized serum immunoglobulin G (IgG) antibody response (Actinomyces antibody [A-Ab]) is also increased. Other studies suggest that a serum IgG antibody response to streptococcal d-alanyl poly(glycerophosphate) (S-Ab) may indicate caries experience associated strongly with gingival health and exposure to fluoridated water. The aim of this study was to investigate relationships between A-Ab response, oral hygiene, S-Ab response, and caries experience. Measurements were made of A-Ab and S-Ab concentrations, caries experience (number of decayed, missing, and filled teeth [DMFT], number of teeth surfaces [DMFS], and number of decayed teeth needing treated [DT]), exposure to fluoridated water (Flu), mean clinical pocket depth (PD; in millimeters), and extent of plaque (PL) and gingival bleeding on probing (BOP). A-Ab concentration, the dependent variable in a multiple regression analysis, increased with S-Ab concentration and decreased with PL and DMFT adjusted for Flu (R(2) = 0.51, P < 0.002). Residual associations with age, DMFS, DT, and BOP were not significant. In addition, an elevated A-Ab response, defined from immunoprecipitation and immunoassay measurements, indicated a significant, 30% reduction in DMFT after adjustment for significant age and Flu covariance (analysis of variance with covariance F statistic = 10.6, P < 0.003; S-Ab response and interactions not significant). Thus, an elevated A-Ab response indicates less caries in subjects performing effective oral hygiene using fluoridated dentifrices. Conversely, a low A-Ab response is suggestive of decreased A. naeslundii binding to saliva-coated apatite and greater caries experience, as reported by others.

  6. Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations

    NASA Astrophysics Data System (ADS)

    Kaufman, Matthew H.; Cardenas, M. Bayani; Buttles, Jim; Kessler, Adam J.; Cook, Perran L. M.

    2017-08-01

    Dissolved oxygen (DO) is a key environmental variable that drives and feeds back with numerous processes. In the aquatic sediment that makes up the hyporheic zone, DO may exhibit pronounced spatial gradients and complex patterns which control the distribution of a series of redox processes. Yet, little is known regarding the dynamics of hyporheic zone DO, especially under transitional flow regimes. Considering the natural tendency of rivers to be highly responsive to external forcing, these temporal dynamics are potentially just as important and pronounced as the spatial gradients. Here we use laboratory flume experiments and multiphysics flow and reactive transport modeling to investigate surface flow controls on the depth of oxygen penetration in the bed as well as the area of oxygenated sediment. We show that the hyporheic zone DO conditions respond over time scales of hours-to-days when subjected to practically instantaneous surface flow perturbations. Additionally, the flume experiments demonstrate that hyporheic zone DO conditions respond faster to surface flow acceleration than to deceleration. Finally, we found that the morphology of the dissolved oxygen plume front depends on surface flow acceleration or deceleration. This study thus shows that the highly dynamic nature of typical streams and rivers drives equally dynamic redox conditions in the hyporheic zone. Because the redox conditions and their distribution within the hyporheic zone are important from biological, ecological, and contaminant perspectives, this hyporheic redox dynamism has the potential to impact system scale aquatic chemical cycles.

  7. Predictability and Quantification of Complex Groundwater Table Dynamics Driven by Irregular Surface Water Fluctuations

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Wang, Shen S. J.; Shen, Chengji; Zhang, Zeyu; Lu, Chunhui; Li, Ling

    2018-03-01

    Shallow groundwater interacts strongly with surface water across a quarter of global land area, affecting significantly the terrestrial eco-hydrology and biogeochemistry. We examined groundwater behavior subjected to unimodal impulse and irregular surface water fluctuations, combining physical experiments, numerical simulations, and functional data analysis. Both the experiments and numerical simulations demonstrated a damped and delayed response of groundwater table to surface water fluctuations. To quantify this hysteretic shallow groundwater behavior, we developed a regression model with the Gamma distribution functions adopted to account for the dependence of groundwater behavior on antecedent surface water conditions. The regression model fits and predicts well the groundwater table oscillations resulting from propagation of irregular surface water fluctuations in both laboratory and large-scale aquifers. The coefficients of the Gamma distribution function vary spatially, reflecting the hysteresis effect associated with increased amplitude damping and delay as the fluctuation propagates. The regression model, in a relatively simple functional form, has demonstrated its capacity of reproducing high-order nonlinear effects that underpin the surface water and groundwater interactions. The finding has important implications for understanding and predicting shallow groundwater behavior and associated biogeochemical processes, and will contribute broadly to studies of groundwater-dependent ecology and biogeochemistry.

  8. Investigation of dust transport on the lunar surface in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Robertson, S. H.

    2009-12-01

    There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.

  9. Advances in dust cyclone research

    USDA-ARS?s Scientific Manuscript database

    Dust cyclones reduce particulate emissions but their operation consumes electrical energy. Response surface methodology was used to compare two strategies to reduce energy costs without increasing emissions. Cyclones of a standard design (1D3D) were operated singly and in series, as was an ‘Experi...

  10. Testing the structure of a hydrological model using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  11. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.

  12. Electron Pair Repulsion Responsible for the Peculiar Edge Effects and Surface Chemistry of Black Phosphorus.

    PubMed

    Kong, Xiang-Peng; Shen, Xiaomei; Jang, Joonkyung; Gao, Xingfa

    2018-03-01

    The electronic and optical properties of black phosphorus (black-P) are significantly modulated by fabricating the edges of this two-dimensional material. Electron lone pairs (ELPs) are ubiquitous in black-P, but their role in creating the edge effects of black-P is poorly understood. Using first-principle calculations, we report ELPs of black-P experience severe Coulomb repulsion and play a central role in creating the edge effects of black-P. We discover the outermost P atoms of the zigzag edges of black-PQDs are free of the Coulomb repulsion, but the P atoms of the armchair edges do experience the Coulomb repulsion. The Coulomb repulsion serves as a new chemical driving force to make electron donor-acceptor bonds with chemical groups bearing vacant orbitals. Our results provide insights into the mechanism responsible for the peculiar edge effects of black-P and highlight the opportunity to use the ELPs of black-P for their damage-free surface functionalization.

  13. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  14. Thermal Effects of Lunar Surface Roughness: Application for the 2008 LRO Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Greenhagen, B.; Paige, D. A.

    2007-12-01

    It is well known that surface roughness affects spectral slope in the infrared. For the first time, we applied a three-dimensional thermal model to a high resolution lunar topography map to study the effects of surface roughness on lunar thermal emission spectra. We applied a numerical instrument model of the upcoming Diviner Lunar Radiometer Experiment (DLRE) to simulate the expected instrument response to surface roughness variations. The Diviner Lunar Radiometer Experiment (DLRE) will launch in late 2008 onboard the Lunar Reconnaissance Orbiter (LRO). DLRE is a nine-channel radiometer designed to study the thermal and petrologic properties of the lunar surface. DLRE has two solar channels (0.3-3.0 μm high/low sensitivity), three mid-infrared petrology channels (7.55-8.05, 8.10-8.40 8.40-8.70 μm), and four thermal infrared channels (12.5-25, 25-50, 50-100, and 100-200 μm). The topographic data we used was selected from a USGS Hadley Rille DEM (from Apollo 15 Panoramic Camera data) with 10 m resolution (M. Rosiek; personal communication). To remove large scale topographic features, we applied a 200 x 200 pixel boxcar high-pass filter to a relatively flat portion of the DEM. This "flattened" surface roughness map served as the basis for much of this study. We also examined the unaltered topography. Surface temperatures were calculated using a three-dimensional ray tracing thermal model. We created temperature maps at numerous solar incidence angles with nadir viewing geometry. A DLRE instrument model, which includes filter spectral responses and detector fields of view, was applied to the high resolution temperature maps. We studied both the thermal and petrologic effects of surface roughness. For the thermal study, the output of the optics model is a filter specific temperature, scaled to a DLRE footprint of < 500 m. For the petrologic study, we examined the effect of the surface roughness induced spectral slope on the DLRE's ability to locate the Christiansen Feature, which is a good compositional indicator. With multiple thermal infrared channels over a wide spectral range, DLRE will be well suited to measure temperature variations due to surface roughness. Any necessary compensation (e.g. correction for spectral slope) to the mid-infrared petrology data will be performed.

  15. The dynamic deformation of a layered viscoelastic medium under surface excitation

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat R.; Wang, Shang; Karpiouk, Andrei B.; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y.; Larin, Kirill V.

    2015-06-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation.

  16. Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method.

    PubMed

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%.

  17. Supporting flight data analysis for Space Shuttle Orbiter Experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The Space Shuttle Orbiter Experiments program in responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The Infrared Imagery of Shuttle (IRIS), Catalytic Surface Effects, and Tile Gap Heating experiments sponsored by Ames Research Center are part of this program. The paper describes the software required to process the flight data which support these experiments. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques have provided information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third Shuttle mission.

  18. Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

  19. Kinematic adaptations during running: effects of footwear, surface, and duration.

    PubMed

    Hardin, Elizabeth C; van den Bogert, Antonie J; Hamill, Joseph

    2004-05-01

    Repetitive impacts encountered during locomotion may be modified by footwear and/or surface. Changes in kinematics may occur either as a direct response to altered mechanical conditions or over time as active adaptations. : To investigate how midsole hardness, surface stiffness, and running duration influence running kinematics. In the first of two experiments, 12 males ran at metabolic steady state under six conditions; combinations of midsole hardness (40 Shore A, 70 Shore A), and surface stiffness (100 kN x m, 200 kN x m, and 350 kN x m). In the second experiment, 10 males ran for 30 min on a 12% downhill grade. In both experiments, subjects ran at 3.4 m x s on a treadmill while 2-D hip, knee, and ankle kinematics were determined using high-speed videography (200 Hz). Oxygen cost and heart rate data were also collected. Kinematic adaptations to midsole, surface, and running time were studied. Stance time, stride cycle time, and maximal knee flexion were invariant across conditions in each experiment. Increased midsole hardness resulted in greater peak ankle dorsiflexion velocity (P = 0.0005). Increased surface stiffness resulted in decreased hip and knee flexion at contact, reduced maximal hip flexion, and increased peak angular velocities of the hip, knee, and ankle. Over time, hip flexion at contact decreased, plantarflexion at toe-off increased, and peak dorsiflexion and plantarflexion velocity increased. Lower-extremity kinematics adapted to increased midsole hardness, surface stiffness, and running duration. Changes in limb posture at impact were interpreted as active adaptations that compensate for passive mechanical effects. The adaptations appeared to have the goal of minimizing metabolic cost at the expense of increased exposure to impact shock.

  20. Calcification response of a key phytoplankton family to millennial-scale environmental change

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Ferretti, P.; Greaves, M.; Rickaby, R. E. M.

    2016-09-01

    Coccolithophores are single-celled photosynthesizing marine algae, responsible for half of the calcification in the surface ocean, and exert a strong influence on the distribution of carbon among global reservoirs, and thus Earth’s climate. Calcification in the surface ocean decreases the buffering capacity of seawater for CO2, whilst photosynthetic carbon fixation has the opposite effect. Experiments in culture have suggested that coccolithophore calcification decreases under high CO2 concentrations ([CO2(aq)]) constituting a negative feedback. However, the extent to which these results are representative of natural populations, and of the response over more than a few hundred generations is unclear. Here we describe and apply a novel rationale for size-normalizing the mass of the calcite plates produced by the most abundant family of coccolithophores, the Noëlaerhabdaceae. On average, ancient populations subjected to coupled gradual increases in [CO2(aq)] and temperature over a few million generations in a natural environment become relatively more highly calcified, implying a positive climatic feedback. We hypothesize that this is the result of selection manifest in natural populations over millennial timescales, so has necessarily eluded laboratory experiments.

  1. Calcification response of a key phytoplankton family to millennial-scale environmental change

    PubMed Central

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Ferretti, P.; Greaves, M.; Rickaby, R. E. M.

    2016-01-01

    Coccolithophores are single-celled photosynthesizing marine algae, responsible for half of the calcification in the surface ocean, and exert a strong influence on the distribution of carbon among global reservoirs, and thus Earth’s climate. Calcification in the surface ocean decreases the buffering capacity of seawater for CO2, whilst photosynthetic carbon fixation has the opposite effect. Experiments in culture have suggested that coccolithophore calcification decreases under high CO2 concentrations ([CO2(aq)]) constituting a negative feedback. However, the extent to which these results are representative of natural populations, and of the response over more than a few hundred generations is unclear. Here we describe and apply a novel rationale for size-normalizing the mass of the calcite plates produced by the most abundant family of coccolithophores, the Noëlaerhabdaceae. On average, ancient populations subjected to coupled gradual increases in [CO2(aq)] and temperature over a few million generations in a natural environment become relatively more highly calcified, implying a positive climatic feedback. We hypothesize that this is the result of selection manifest in natural populations over millennial timescales, so has necessarily eluded laboratory experiments. PMID:27677230

  2. Exploring Asteroid Interiors: The Deep Interior Mission Concept

    NASA Technical Reports Server (NTRS)

    Asphaug, E.; Belton, M. J. S.; Cangahuala, A.; Keith, L.; Klaasen, K.; McFadden, L.; Neumann, G.; Ostro, S. J.; Reinert, R.; Safaeinili, A.

    2003-01-01

    Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the 1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.

  3. How consistent are precipitation patterns predicted by GCMs in the absence of cloud radiative effects?

    NASA Astrophysics Data System (ADS)

    Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn

    2015-04-01

    Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054

  4. PROPERTY CHANGES IN AQUEOUS SOLUTIONS DUE TO SURFACTANT TREATMENT OF PCE: IMPLICATIONS TO GEOPHYSICAL MEASUREMENTS

    EPA Science Inventory

    Select physicochemical properties of aqueous solutions composed of surfactants, dye, and

    perchloroethylene (PCE) were evaluated through a response surface quadratic design

    model of experiment. Nine surfactants, which are conventionally used in the

    remediation...

  5. Effects of space flight on surface marker expression

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.

  6. A physical model of ice sheet response to changes in subglacial hydrology

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Catania, G. A.; Buttles, J. L.; Andrews, A.; Markowski, M.

    2010-12-01

    Using a physical ice sheet model, we investigate the degree to which motion is controlled by local loss of basal traction versus longitudinal coupling during diurnal, seasonal, and event-type water pulses. Our model can be used to reproduce the spatial pattern and magnitude of ice surface displacements and can aid in the interpretation of ground-based GPS measurements, as it eliminates many of the complicating factors influencing surface velocity measurements. This model consists of a 3 x 1.5 meter plastic box with a grid of holes on the bed used to inject water directly between the interface of the box and a silicone polymer. Water flow is visualized using a colored dye. The polymer response to perturbations in water flow is measured by tracking surface markers through a series of overhead images. We report on a suite of experiments that explore the relationship between water discharge, basal traction, and surface displacements and compare our results to ground-based GPS measurements from a transect in western Greenland.

  7. Stability of peatland carbon to rising temperatures

    DOE PAGES

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; ...

    2016-12-13

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less

  8. Stability of peatland carbon to rising temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less

  9. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  10. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    PubMed

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  11. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology

    PubMed Central

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066

  12. Condensation phenomenon detection through surface plasmon resonance.

    PubMed

    Ibrahim, Joyce; Al Masri, Mostafa; Veillas, Colette; Celle, Frédéric; Cioulachtjian, Serge; Verrier, Isabelle; Lefèvre, Frédéric; Parriaux, Olivier; Jourlin, Yves

    2017-10-02

    The aim of this work is to optically detect the condensation of acetone vapor on an aluminum plate cooled down in a two-phase environment (liquid/vapor). Sub-micron period aluminum based diffraction gratings with appropriate properties, exhibiting a highly sensitive plasmonic response, were successfully used for condensation experiments. A shift in the plasmonic wavelength resonance has been measured when acetone condensation on the aluminum surface takes place due to a change of the surrounding medium close to the surface, demonstrating that the surface modification occurs at the very beginning of the condensation phenomenon. This paper presents important steps in comprehending the incipience of condensate droplet and frost nucleation (since both mechanisms are similar) and thus to control the phenomenon by using an optimized engineered surface.

  13. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  14. Laboratory-based geoelectric monitoring of water infiltration in consolidated ground

    NASA Astrophysics Data System (ADS)

    Yang, Lining; Sun, Qiang; Yang, Haiping

    2018-04-01

    Infiltration usually plays a significant role in construction failures and transfer of contaminants. Therefore, it is very important to monitor underground water migration. In this study, a soil infiltration experiment was carried out using an indoor model test. The water infiltration characteristics were recorded and analyzed based on the response of the geoelectric field, including the primary field potential, self-potential, excitation current and apparent resistivity. The phreatic water surface and the infiltration velocity were determined. The inversion results were compared with direct observations. The results showed that the changes in the geoelectric field parameters explain the principles of groundwater flow. The infiltration velocity and the phreatic surface can be determined based on the primary field potential response and the excitation current. When the phreatic surface reached the location of the electrodes, the primary field potential and self-potential decreased rapidly whereas the excitation current increased rapidly. The height of the phreatic surface and the infiltration time exhibited a linear relationship for both the observation data and the calculations of the excitation current. The apparent resistivity described the infiltration status in the soil and tracked the phreatic surface accurately.

  15. Regional climate impacts of a possible future grand solar minimum.

    PubMed

    Ineson, Sarah; Maycock, Amanda C; Gray, Lesley J; Scaife, Adam A; Dunstone, Nick J; Harder, Jerald W; Knight, Jeff R; Lockwood, Mike; Manners, James C; Wood, Richard A

    2015-06-23

    Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

  16. The Effect of Slab Holes on the Surrounding Mantle Flow Field and the Surface from a Multi-Disciplinary Approach

    NASA Astrophysics Data System (ADS)

    Portner, D. E.; Kiraly, A.; Makushkina, A.; Parks, B. H.; Ghosh, T.; Haynie, K. L.; Metcalf, K.; Manga, M.; O'Farrell, K. A.; Moresi, L. N.; Jadamec, M. A.; Stern, R. J.

    2017-12-01

    Large-scale detachment of subducting slabs can have a significant geologic footprint by altering the slab-driven mantle flow field as hot subslab mantle can flow upward through the newly developed opening in the slab. The resulting increase in heat and vertical motion in the mantle wedge may contribute to volcanism and broad surface uplift. Recent geodynamic modeling results show that smaller tears and holes are similarly likely to form in many settings, such as where oceanic ridges or continental fragments subduct. High-resolution seismic tomography models are imaging an increasing number of these gaps and tears ranging in size from tens to hundreds of km in size, many of which occur proximal to alkali volcanism. Here we investigate the role of such gaps on the subduction-induced mantle flow field and related surface response. In particular, we address the relationships between slab hole size, depth, and distance from the slab edge and the magnitude of dynamic response of the mantle using analog experiments and numerical simulations. In the laboratory models, the subduction system is simplified to a two-layered Newtonian viscous sheet model. Our setup consists of a tank filled with glucose syrup and a plate made from silicon putty to model the upper mantle and subducting lithosphere, respectively. In each experiment, we pre-cut a rectangular hole with variable width into the silicon putty plate. Additionally, we perform a series of complementary numerical models using the Underworld geophysical modeling code to calculate the more detailed instantaneous mantle flow perturbation induced by the slab hole. Together, these results imply a strong effect of hole size on mantle flow. Similarly, the depth of the slab hole influences near-surface flow, with significant surface flow alteration when the hole is near the trench and diminishing surface deformation as the hole is dragged deeper into the mantle. The inferred consequence of the dependence of vertical mantle flux on slab hole position and size is that the induced surface response can vary based on slab hole parameters.

  17. Modeling possible spreadings of a buoyant surface plume with lagrangian and eulerian approaches at different resolutions using flow syntheses from 1992-2007 - a Gulf of Mexico study

    NASA Astrophysics Data System (ADS)

    Tulloch, R.; Hill, C. N.; Jahn, O.

    2010-12-01

    We present results from an ensemble of BP oil spill simulations. The oil spill slick is modeled as a buoyant surface plume that is transported by ocean currents modulated, in some experiments, by surface winds. Ocean currents are taken from ECCO2 project (see http://ecco2.org ) observationally constrained state estimates spanning 1992-2007. In this work we (i) explore the role of increased resolution of ocean eddies, (ii) compare inferences from particle based, lagrangian, approaches with eulerian, field based, approaches and (ii) examine the impact of differential response of oil particles and water to normal and extreme, hurricane derived, wind stress. We focus on three main questions. Is the simulated response to an oil spill markedly different for different years, depending on ocean circulation and wind forcing? Does the simulated response depend heavily on resolution and are lagrangian and eulerian estimates comparable? We start from two regional configurations of the MIT General Circulation Model (MITgcm - see http://mitgcm.org ) at 16km and 4km resolutions respectively, both covering the Gulf of Mexico and western North Atlantic regions. The simulations are driven at open boundaries with momentum and hydrographic fields from ECCO2 observationally constrained global circulation estimates. The time dependent surface flow fields from these simulations are used to transport a dye that can optionally decay over time (approximating biological breakdown) and to transport lagrangian particles. Using these experiments we examine the robustness of conclusions regarding the fate of a buoyant slick, injected at a single point. In conclusion we discuss how future drilling operations could use similar approaches to better anticipate outcomes of accidents both in this region and elsewhere.

  18. Dynamics of confined water reconstructed from inelastic x-ray scattering measurements of bulk response functions

    NASA Astrophysics Data System (ADS)

    Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.

    2012-03-01

    Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).

  19. Hydrocentric view of Agro-ecosystem Resiliency to Extreme Hydrometeorological and Climate Events in the High Plains, US.

    NASA Astrophysics Data System (ADS)

    Munoz-Arriola, Francisco; Sharma, Ashutosh; Werner, Katherine; Chacon, Juan-Carlos; Corzo, Gerald; Goyal, Manish-Kumar

    2017-04-01

    An increasing incidence of Hydrometeorological and Climate Extreme Events (EHCEs) is challenging food, water, and ecosystem services security at local to global contexts. This study aims to understand how a large-scale representation of agroecosystems and ecosystems respond to EHCE in the Northern Highplains, US. To track such responses the Variable Infiltration Capacity model (VIC) Land Surface Hydrology model was used and two experiments were implemented. The first experiment uses the LAI MODIS15A2 product to capture dynamic responses of vegetation with a time span from 2000 to 2013. The second experiment used a climatological fixed seasonal cycle calculated as the average from the 2000-2013 dynamic MODIS15A2 product to isolate vegetation from soil physical responses. Based on the analyses of multiple hydrological variables and state variables and high-level organization of agroecosystems and ecosystems, we evidence how the influence of droughts and anomalously wet conditions affect hydrological resilience at large scale.

  20. ITEL Experiment Module and its Flight on MASER9

    NASA Astrophysics Data System (ADS)

    Löth, K.; Schneider, H.; Larsson, B.; Jansson, O.; Houltz, Y.

    2002-01-01

    The ITEL (Interfacial Turbulence in Evaporating Liquid) module is built under contract from the European Space Agency (ESA) and is scheduled to fly onboard a Sounding Rocket (MASER 9) in March 2002. The project is conducted by Swedish Space Corporation (SSC) with Lambda-X as a subcontractor responsible for the optical system. The Principle Investigator is Pierre Colinet from Université Libre de Bruxelles (ULB). The experiment in ITEL on Maser 9 is part of a research program, which will make use of the International Space Station. The purpose of the flight on Maser 9 is to observe the cellular convection (Marangoni-Bénard instability) which arise when the surface tension varies with temperature yielding thermocapillary instabilities. During the 6 minutes of microgravity of the ITEL experiment, a highly volatile liquid layer (ethyl alcohol) will be evaporated, and the convection phenomena generated by the evaporation process will be visualized. Due to the cooling by latent heat consumption at the level of the evaporating free surface, a temperature gradient is induced perpendicularly to it. The flight experiment module contains one experiment cell, including a gas system for regulation of nitrogen flow over the evaporating surface and an injection unit that is used for injection of liquid into the cell both initially and during surface regulation. The experiment cell is equipped with pressure and flow sensors as well as thermocouples both inside the liquid and at different positions in the cell. Two optical diagnostic systems have been developed around the experiment cell. An interferometric optical tomograph measures the 3-dimensional distribution of temperature in the evaporating liquid and a Schlieren system visualizes the temperature gradients inside the liquid together with the liquid surface deformation. A PC/104 based electronic system is used for management and control of the experiment. The electronic system handles measurements, housekeeping, image capture system, surface and pressure regulation as well as storage of data. The images are stored onboard on three DV tape recorders. At flight, video images as well as data is sent to ground and the experiment can be controlled via telecommands. In this presentation we will focus on the technical parts of the experiment, the overall module and the preliminary technical results obtained from the flight, including reconstructions of 3-dimensional temperature distributions.

  1. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  2. Design space construction of multiple dose-strength tablets utilizing bayesian estimation based on one set of design-of-experiments.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-01-01

    Design spaces for multiple dose strengths of tablets were constructed using a Bayesian estimation method with one set of design of experiments (DoE) of only the highest dose-strength tablet. The lubricant blending process for theophylline tablets with dose strengths of 100, 50, and 25 mg is used as a model manufacturing process in order to construct design spaces. The DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) for theophylline 100-mg tablet. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) of the 100-mg tablet were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. Three experiments under an optimal condition and two experiments under other conditions were performed using 50- and 25-mg tablets, respectively. The response surfaces of the highest-strength tablet were corrected to those of the lower-strength tablets by Bayesian estimation using the manufacturing data of the lower-strength tablets. Experiments under three additional sets of conditions of lower-strength tablets showed that the corrected design space made it possible to predict the quality of lower-strength tablets more precisely than the design space of the highest-strength tablet. This approach is useful for constructing design spaces of tablets with multiple strengths.

  3. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.

    PubMed

    Deng, Shaoying; Wang, Daoying; Zhang, Muhan; Geng, Zhiming; Sun, Chong; Bian, Huan; Xu, Weimin; Zhu, Yongzhi; Liu, Fang; Wu, Haihong

    2016-03-01

    Based on single factor experiments, NaCl concentration, adenosine 5'-monophosphate (AMP) concentration and temperature were selected as independent variables for a three-level Box-Behnken experimental design, and the shear force and cooking loss were response values for regression analysis. According to the statistical models, it showed that all independent variables had significant effects on shear force and cooking loss, and optimal values were at the NaCl concentration of 4.15%, AMP concentration of 22.27 mmol/L and temperature of 16.70°C, which was determined with three-dimensional response surface diagrams and contour plots. Under this condition, the observed shear force and cooking loss were 0.625 kg and 8.07%, respectively, exhibiting a good agreement with their predicted values, showing the good applicability and feasibility of response surface methodology (RSM) for improving pork tenderness. Compared with control pig muscles, AMP combined with NaCl treatment demonstrated significant effects on improvement of meat tenderness and reduction of cooking loss. Therefore, AMP could be regarded as an effective tenderization agent for pork. © 2015 Japanese Society of Animal Science.

  4. Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Minobe, S.; Ida, T.; Takatama, K.

    2016-12-01

    Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.

  5. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.

    PubMed

    Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

    2014-01-01

    This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.

  6. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM).

    PubMed

    Moosavi, Fatemeh Sadat; Tavakoli, Touraj

    2016-11-01

    In this study, the solar photocatalytic process in a pilot plant with compound parabolic collectors (CPCs) was performed for amoxicillin (AMX) degradation, an antibiotic widely used in the world. The response surface methodology (RSM) based on Box-Behnken statistical experiment design was used to optimize independent variables, namely TiO 2 dosage, antibiotic initial concentration, and initial pH. The results showed that AMX degradation efficiency affected by positive or negative effect of variables and their interactions. The TiO 2 dosage, pH, and interaction between AMX initial concentration and TiO 2 dosage exhibited a synergistic effect, while the linear and quadratic term of AMX initial concentration and pH showed antagonistic effect in the process response. Response surface and contour plots were used to perform process optimization. The optimum conditions found in this regard were TiO 2 dosage = 1.5 g/L, AMX initial concentration = 17 mg/L, and pH = 9.5 for AMX degradation under 240 min solar irradiation. The photocatalytic degradation of AMX after 34.95 kJ UV /L accumulated UV energy per liter of solution was 84.12 % at the solar plant.

  7. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  8. Multidimensional effects in the thermal response of fuel rod simulators. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabbs, R.D.; Ott, L.J.

    1980-01-01

    One of the primary objectives of the Oak Ridge National Laboratory Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects Program is the determination of the transient surface temperature and surface heat flux of fuel pin simulators (FPSs) from internal thermocouple signals obtained during a loss-of-coolant experiment (LOCE) in the Thermal-Hydraulics Test Facility. This analysis requires the solution of the classical inverse heat conduction problem. The assumptions that allow the governing differential equation to be reduced to one dimension can introduce significant errors in the computed surface heat flux and surface temperature. The degree to which these computed variables are perturbed is addressedmore » and quantified.« less

  9. Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources

    NASA Astrophysics Data System (ADS)

    Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.

    2016-02-01

    Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.

  10. Secretory response induced by essential oils on airway surface fluid: a pharmacological MRI study.

    PubMed

    Nicolato, Elena; Boschi, Federico; Marzola, Pasquina; Sbarbati, Andrea

    2009-07-30

    Using pharmacological magnetic resonance imaging, we have performed an in vivo evaluation of the secretory response induced by essential oils in the rat airway. Aim of the work was to establish a computerized method to assess the efficacy of volatile compounds in spatially localized areas without the bias derived by subjective evaluation. Magnetic resonance experiments were carried out using a 4.7 T horizontal magnet. In the trachea, airway surface fluid was easily identified for its high intensity signal. The tracheal glands were also easily visible. The oesophageal lumen was usually collapsed and was identifiable only in the presence of intraluminal liquid. Scotch pine essential oil inhalation significantly increased the surface fluid in the middle portion of the trachea and the increase was visible at both 5 and 10 min. A lesser secretory response was detected after rosemary essential oil inhalation even though the response was significant with respect to the control in particular at 10 min. No secretory response was detected after peppermint essential oil inhalation both at 5 and 10 min. The data obtained in the present work demonstrate a chemically induced airway secretion. The availability of a pharmacological magnetic resonance imaging approach opens new perspectives to test the action of volatile compounds on the airway.

  11. Development of a Response Surface Thermal Model for Orion Mated to the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.; Meier, Eric J.

    2010-01-01

    A study was performed to determine if a Design of Experiments (DOE)/Response Surface Methodology could be applied to on-orbit thermal analysis and produce a set of Response Surface Equations (RSE) that accurately predict vehicle temperatures. The study used an integrated thermal model of the International Space Station and the Orion Outer mold line model. Five separate factors were identified for study: yaw, pitch, roll, beta angle, and the environmental parameters. Twenty external Orion temperatures were selected as the responses. A DOE case matrix of 110 runs was developed. The data from these cases were analyzed to produce an RSE for each of the temperature responses. The initial agreement between the engineering data and the RSE predictions was encouraging, although many RSEs had large uncertainties on their predictions. Fourteen verification cases were developed to test the predictive powers of the RSEs. The verification showed mixed results with some RSE predicting temperatures matching the engineering data within the uncertainty bands, while others had very large errors. While this study to not irrefutably prove that the DOE/RSM approach can be applied to on-orbit thermal analysis, it does demonstrate that technique has the potential to predict temperatures. Additional work is needed to better identify the cases needed to produce the RSEs

  12. Relationship between wind, waves and radar backscatter

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1991-01-01

    The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars.

  13. Control of the plasmonic near-field in metallic nanohelices.

    PubMed

    Caridad, José M; Winters, Sinéad; McCloskey, David; Duesberg, Georg S; Donegan, John F; Krstić, Vojislav

    2018-08-10

    The optical response of metallic nanohelices is mainly governed by a longitudinal localised surface plasmon resonance (LSPR) which arises due to the helical anisotropy of the system. Up to now, experimental studies have predominantly addressed the far-field response, despite the fact that the LSPR being of broad interest for converting incoming light into strongly enhanced (chiral) optical near-fields. Here, we demonstrate the control and spatial reproducibility of the plasmon-induced electromagnetic near-field around metallic nanohelices via surface-enhanced Raman scattering. We discuss how the near-field intensity of these nanostructures can be custom-tailored through both the nanoscaled helical structure and the electronic properties of the constituting metals. Our experiments, which employ graphene as an accurate probing material, are in quantitative agreement with corresponding numerical simulations. The findings demonstrate metallic nanohelices as reference nanostructured surfaces able to provide and fine-tune optical fields for fundamental studies as well as sensing or (chiro-optical) imaging applications.

  14. Fundamental Studies on Crashworthiness Design with Uncertainties in the System

    DTIC Science & Technology

    2005-01-01

    studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...Exposed to Impact Load Using a Space Mapping Technique,” Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott

  15. Fundamental Studies on Crashworthiness Design with Uncertainties in the System

    DTIC Science & Technology

    2005-01-01

    studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...to Impact Load Using a Space Mapping Technique," Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott, R

  16. When Diagnostic Labels Mask Trauma

    ERIC Educational Resources Information Center

    Foltz, Robert; Dang, Sidney; Daniels, Brian; Doyle, Hillary; McFee, Scott; Quisenberry, Carolyn

    2013-01-01

    A growing body of research shows that many seriously troubled children and adolescents are reacting to adverse life experiences. Yet traditional diagnostic labels are based on checklists of surface symptoms. Distracted by disruptive behavior, the common response is to medicate, punish, or exclude rather than respond to needs of youth who have…

  17. MODELING MERCURY DYNAMICS IN STREAM SYSTEMS WITH WASP7: CHARACTERIZING PROCESSES CONTROLLING SHORT AND LONG TERM RESPONSE

    EPA Science Inventory

    Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...

  18. Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces

    NASA Astrophysics Data System (ADS)

    Tang, Zhenghua; Lim, Chang-Keun; Palafox-Hernandez, J. Pablo; Drew, Kurt L. M.; Li, Yue; Swihart, Mark T.; Prasad, Paras N.; Walsh, Tiffany R.; Knecht, Marc R.

    2015-08-01

    Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies.Bio-molecular non-covalent interactions provide a powerful platform for material-specific self-organization in aqueous media. Here, we introduce a strategy that integrates a synthetic optically-responsive motif with a materials-binding peptide to enable remote actuation. Specifically, we linked a photoswitchable azobenzene moiety to either terminus of a Au-binding peptide. We employed these hybrid molecules as capping agents for synthesis of Au nanoparticles. Integrated experiments and molecular simulations showed that the hybrid molecules maintained both of their functions, i.e. binding to Au and optically-triggered reconfiguration. The azobenzene unit was optically switched reversibly between trans and cis states while adsorbed on the particle surface. Upon switching, the conformation of the peptide component of the molecule also changed. This highlights the interplay between the surface adsorption and conformational switching that will be pivotal to the creation of actuatable nanoparticle bio-interfaces, and paves the way toward multifunctional peptide hybrids that can produce stimuli responsive nanoassemblies. Electronic supplementary information (ESI) available: Additional modeling analysis, QCM analysis, UV-vis and CD spectroscopy data. See DOI: 10.1039/C5NR02311D

  19. Results from new multi-megabar shockless compression experiments at the Z machine

    DOE PAGES

    Davis, Jean-Paul; Knudson, Marcus D.; Brown, Justin L.

    2017-01-01

    Sandia’s Z Machine has been used to magnetically drive shockless compression of materials in a planar configuration to multi-megabar pressure levels, allowing accurate measurements of quasi-isentropic mechanical response at relatively low temperatures in the solid phase. This work details recent improvements to design and analysis of such experiments, including the use of new data on the mechanical and optical response of lithium fluoride windows. Comparison of windowed and free-surface data on copper to 350 GPa lends confidence to the window correction method. Preliminary results are presented on gold to 500 GPa and platinum to 450 GPa; both appear stiffer thanmore » existing models.« less

  20. Novel Techniques for Characterizing and Understanding the Response of Rubbers and Rubber-Based Composites to Impact Loading

    DTIC Science & Technology

    2016-09-30

    4 of 42 Figure 9. Left: Schematic representation of the gas -gun experiment and a typical speckle pattern the specimen surface, the 12...12 correlation window used in subsequent analysis is also indicated (red rectangle). Right: a photograph of the gas -gun system...20 Figure 11. Left: Averaged acceleration and strain rate and history of μ and α prediction from gas -gun experiment on an EPDM specimen

  1. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.

    PubMed

    Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo

    2018-01-20

    The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Data analysis and calibration for a bulk-refractive-index-compensated surface plasmon resonance affinity sensor

    NASA Astrophysics Data System (ADS)

    Chinowsky, Timothy M.; Yee, Sinclair S.

    2002-02-01

    Surface plasmon resonance (SPR) affinity sensing, the problem of bulk refractive index (RI) interference in SPR sensing, and a sensor developed to overcome this problem are briefly reviewed. The sensor uses a design based on Texas Instruments' Spreeta SPR sensor to simultaneously measure both bulk and surface RI. The bulk RI measurement is then used to compensate the surface measurement and remove the effects of bulk RI interference. To achieve accurate compensation, robust data analysis and calibration techniques are necessary. Simple linear data analysis techniques derived from measurements of the sensor response were found to provide a versatile, low noise method for extracting measurements of bulk and surface refractive index from the raw sensor data. Automatic calibration using RI gradients was used to correct the linear estimates, enabling the sensor to produce accurate data even when the sensor has a complicated nonlinear response which varies with time. The calibration procedure is described, and the factors influencing calibration accuracy are discussed. Data analysis and calibration principles are illustrated with an experiment in which sucrose and detergent solutions are used to produce changes in bulk and surface RI, respectively.

  3. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  4. Chemosensory responses to sugar and fat by the omnivorous lizard Gallotia caesaris: with behavioral evidence suggesting a role for gustation.

    PubMed

    Cooper, W E; Pérez-Mellado, V

    2001-07-01

    Many lizards can identify food using only chemical cues, as indicated by tongue-flicking for chemical sampling and biting, but the effectiveness of the chemical components of food are unknown, as is the relationship between response strength and concentration. We investigated responses by the omnivorous lizard Gallotia caesaris to representatives of two major categories of organic food chemicals, lipids and carbohydrates. The stimuli, pork fat and sucrose solutions of varying concentration, were presented to lizards on cotton swabs and their lingual and biting behaviors were observed during 60-s tests. In the first experiment, fat elicited more tongue-flicks and bites than saturated sucrose or water (odorless control), biting being limited to the fat condition. Lizards licked at high rates, but exclusively in response to sucrose. A lick was a lingual protrusion in which the dorsal surface of the tongue contacted the swab, in contrast to the anteroventral contact made during tongue-flicks. In a second experiment, the number of licks, but not the number of tongue-flicks, increased with the concentration of sucrose. The results indicate that lipids contribute to prey chemical discrimination and are adequate to release some attacks, but are not as effective as releasers of attack as mixtures of prey chemicals obtained from prey surfaces. The findings with respect to licking are novel, and suggest that licking may be a response to gustatory stimulation by sugar, in contrast to previously observed prey chemical discriminations shown to require vomerolfaction.

  5. Age related effects of transitional floor surfaces and obstruction of view on gait characteristics related to slips and falls

    PubMed Central

    Bunterngchit, Yuthachai; Lockhart, Thurmon; Woldstad, Jeffrey C.; Smith, James L.

    2010-01-01

    A laboratory study was conducted to examine gait changes between younger and older subjects as they walked across different floor surfaces. Twenty subjects participated in the experiment (five each of older and younger males and females). For half of the trials, subjects carried light loads that blocked their view of the floor surface immediately in front of them. Subjects walked on slippery (soapy water on vinyl) and stable (outdoor carpet) floor surfaces, as well as transitioning from one surface to another. Responses studied included: required coefficient of friction (RCOF), stride length (SL), and minimum toe clearance (MTC). Significant effects were found for the floor surface, load versus no load condition, and some interactions involving age (older versus younger subjects). Not all expected differences due to age were found in this experiment. The lack of significant differences between younger and older subjects could be due to the older subjects that participated in the experiment. They were volunteers at a local medical center, were in good physical shape, and were probably not typical of the population of people over 65 years of age. Relevance to industry Slips and falls in industry are costly safety issues in terms of human suffering as well as financial compensation. In many facilities and at home, people make transitions from one floor surface to another many times each day, while carrying loads or just walking. A better understanding of characteristics of people as they walk on slippery floor surfaces and the changes that might occur with age, will allow engineers to design better floor surfaces to reduce the incidence of slips and falls. PMID:20607122

  6. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.

  7. Validation of the model for ELM suppression with 3D magnetic fields using low torque ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Moyer, Richard A.; Paz-Soldan, Carlos; Nazikian, Raffi; ...

    2017-09-18

    Here, experiments have been executed in the DIII-D tokamak to extend suppression of Edge Localized Modes (ELMs) with Resonant Magnetic Perturbations (RMPs) to ITER-relevant levels of beam torque. The results support the hypothesis for RMP ELM suppression based on transition from an ideal screened response to a tearing response at a resonant surface that prevents expansion of the pedestal to an unstable width.

  8. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Lee, J. I.; Lim, Y. J.

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  9. Response to 'Comment on 'Controllable local modification of fractured Nb-doped SrTiO{sub 3} surfaces' [Appl. Phys. Lett. 98, 256102 (2011)'.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T. Y.; Santos, T. S.; Bode, M.

    2011-06-20

    In their comment, Chen et al. try to argue that the experimentally observed controllable voltage-induced surface modification, which was attributed to a local electric field-induced atom transfer from the surface to the tip, is rather caused by either an oxidation process and/or a resistance change. In this response, we will show that we can rule out these two effects in our experiment. The statements by Chen et al. are based on two arguments: (1) the tip modification after transferring an adatom should alter the dI/dV contrast, which was not seen in our experiments and (2) the vacuum conditions in ourmore » experiment are similar to earlier reports on resistance switching. First, Chen et al. discuss that the adsorption on the tip should alter the topographic contrast, as many papers have reported. In fact, in our experiments we frequently observed tip modifications at high bias voltage. These typically result in slight changes in scanning tunneling spectroscopy data [see, for example, the spectra in Fig. 3(b) in Ref. 4 and Fig. 2(d) of Ref. 5] but only weakly affected the topographic contrast. Second, Chen et al. claim that oxidation is another possible mechanism to explain our experimental observations. To support this claim, they compare our results to an earlier publication showing resistance switching. In fact, the resistance switching mechanism is related to oxygen vacancy migration or local surface oxidation. The mechanism of oxygen vacancy migration requires a 'forming' process with a threshold current in the order of microampere or even milliampere. In our experimental setup, however, we used tunneling currents in the order of 50 pA. Even during surface modification, which was performed at open feedback loop conditions with voltage pulse of up to 3 or -5 V, the maximum transient current did not exceed a few nanoampere. Therefore, we can safely exclude oxygen vacancy migration as a potential mechanism for the observed surface modification. As a second potential mechanism Chen et al. mention a local surface oxidation process. However, the total pressure at high-vacuum conditions used in experiments, where resistance switching was observed (10{sup -7} torr in Ref. 3) is three order magnitude higher than in our experiment performed under ultrahigh vacuum (UHV) conditions (below 10{sup -10} torr). Furthermore, mass spectra measured with a residual gas analyzer show that the main residue gas in our UHV system is hydrogen ({approx} 90%). Water, oxygen, and other oxygen-related gases are negligible with a partial pressure in the order of 10{sup -12} torr range or lower. Therefore, we can also exclude that local oxidation with reactants from the residual gas causes the observed modifications. In addition, in our experiment, the refilling of the modified areas at negative bias could not be observed with fresh tip, even for bias voltages as high as -10 V. In short, the mechanism for the modification on the UHV in situ fractured Nb:SrTiO{sub 3} (Nb-doped Strontium titanate) surfaces with scanning tunneling microscope (STM) tip is different from the mechanisms such as local surface oxidation or filament formation, used to explain the largecurrent induced resistance switching works.« less

  10. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment

    NASA Astrophysics Data System (ADS)

    Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk

    1998-10-01

    The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the surface buoyancy flux Qb appears to be an important local source.

  11. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach.

    PubMed

    Sahoo, C; Gupta, A K

    2012-05-15

    Photocatalytic degradation of methyl blue (MYB) was studied using Ag(+) doped TiO(2) under UV irradiation in a batch reactor. Catalytic dose, initial concentration of dye and pH of the reaction mixture were found to influence the degradation process most. The degradation was found to be effective in the range catalytic dose (0.5-1.5g/L), initial dye concentration (25-100ppm) and pH of reaction mixture (5-9). Using the three factors three levels Box-Behnken design of experiment technique 15 sets of experiments were designed considering the effective ranges of the influential parameters. The results of the experiments were fitted to two quadratic polynomial models developed using response surface methodology (RSM), representing functional relationship between the decolorization and mineralization of MYB and the experimental parameters. Design Expert software version 8.0.6.1 was used to optimize the effects of the experimental parameters on the responses. The optimum values of the parameters were dose of Ag(+) doped TiO(2) 0.99g/L, initial concentration of MYB 57.68ppm and pH of reaction mixture 7.76. Under the optimal condition the predicted decolorization and mineralization rate of MYB were 95.97% and 80.33%, respectively. Regression analysis with R(2) values >0.99 showed goodness of fit of the experimental results with predicted values. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Optimizing adsorption of blue pigment from wastewater by nano-porous modified Na-bentonite using spectrophotometry based on response surface method

    NASA Astrophysics Data System (ADS)

    Moradi, Neshat; Salem, Shiva; Salem, Amin

    2018-03-01

    This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.

  13. Assessing the Importance of the Evaporation-Wind Feedback Mechanism in the Modulation of Simulated Madden-Julian Oscillations

    NASA Technical Reports Server (NTRS)

    Colon, Edward; Lindesay, James; Suarez, Max J.

    1998-01-01

    An examination of simulated Madden-Julian Oscillation (MJO) response to active and suppressed air-sea interactions is made using an aquaplanet model employing a realistic representation of the hydrologic cyle. In general, the evaporation-wind feedback (EWF) results from a coupling between tropical zonal surface wind stresses and evaporation anomalies. Recent observational and theoretical studies have questioned the significance of EWF in sustaining the predominantly wavenumber 1 eastward propagating mode commonly attributed to the interaction between large scale convergence and cumulus-scale convection (conditional instability of the second kind, CISK). To ascertain the nature of the EWF dependence on lower boundary conditions and thus quantify its effect on MJO development, a series of numerical experiments were conducted employing various zonally symmetric sea surface temperature (SST) distributions with active and suppressed EWF mechanisms. Results suggest that a correlation exists between tropical SSTs and the efficacy of the EWF in vertically redistributing heat acquired through surface wind stresses. It has been determined that the removal of the EWF is not a crucial factor in the dampening of the simulated MJO at high equatorial SSTs. The additional energy fed into the developing convective mode by the EWF selectively amplifies higher order wave modes in all numerical experiments thus boosting overall variances in oscillatory responses.

  14. Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles

    NASA Astrophysics Data System (ADS)

    Burls, Natalie J.; Fedorov, Alexey V.

    2017-12-01

    During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).

  15. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    DOE PAGES

    Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; ...

    2014-11-26

    In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions withmore » the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.« less

  16. Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose M.; Ko, M. K. W.; Sze, N. D.; Heisey, C. W.; Yue, G. K.; Mccormick, M. P.

    1994-01-01

    Increases in aerosol loading after the Pinatubo eruption are expected to cause additional ozone depletion. Even though aerosol loadings were highest in the winter of 1991-1992, recent analyses of satellite and ground-based ozone measurements indicate that ozone levels in the winter of 1992-1993 are the lowest recorded in recent years, raising the question of the mechanisms responsible for such behavior. We have incorporated aerosol surface areas derived from the Stratospheric Aerosol and Gas Experiment II (SAGE-II) measurements into our two-dimensional model. Inclusion of heterogeneous chemsitry on these enhanced aerosol surfaces yields maximum ozone reductions during the winter of 1992-1993 in the Northern Hemisphere, consistent with those derived from observations. This delayed behavior is due to the combination of the non-linear nature of the impact of heterogeneous reactions as a function of aerosol surface area, and the long time constants for ozone in the lower stratosphere. If heterogeneous mechanisms are primarily responsible for the low 1992-1993 ozone levels, we expect ozone concentrations to start recovering in 1994.

  17. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    The warpage is often encountered which occur during injection moulding process of thin shell part depending the process condition. The statistical design of experiment method which are Integrating Finite Element (FE) Analysis, moldflow analysis and response surface methodology (RSM) are the stage of few ways in minimize the warpage values of x,y and z on thin shell plastic parts that were investigated. A battery cover of a remote controller is one of the thin shell plastic part that produced by using injection moulding process. The optimum process condition parameter were determined as to achieve the minimum warpage from being occur. Packing pressure, Cooling time, Melt temperature and Mould temperature are 4 parameters that considered in this study. A two full factorial experimental design was conducted in Design Expert of RSM analysis as to combine all these parameters study. FE analysis result gain from analysis of variance (ANOVA) method was the one of the important process parameters influenced warpage. By using RSM, a predictive response surface model for warpage data will be shown.

  18. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.

    PubMed

    Annadurai, Gurusamy; Ling, Lai Yi; Lee, Jiunn-Fwu

    2008-02-28

    In this work, a four-level Box-Behnken factorial design was employed combining with response surface methodology (RSM) to optimize the medium composition for the degradation of phenol by pseudomonas putida (ATCC 31800). A mathematical model was then developed to show the effect of each medium composition and their interactions on the biodegradation of phenol. Response surface method was using four levels like glucose, yeast extract, ammonium sulfate and sodium chloride, which also enabled the identification of significant effects of interactions for the batch studies. The biodegradation of phenol on Pseudomonas putida (ATCC 31800) was determined to be pH-dependent and the maximum degradation capacity of microorganism at 30 degrees C when the phenol concentration was 0.2 g/L and the pH of the solution was 7.0. Second order polynomial regression model was used for analysis of the experiment. Cubic and quadratic terms were incorporated into the regression model through variable selection procedures. The experimental values are in good agreement with predicted values and the correlation coefficient was found to be 0.9980.

  19. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    NASA Astrophysics Data System (ADS)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  20. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology.

    PubMed

    Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-03-31

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  1. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)

    NASA Astrophysics Data System (ADS)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.

  2. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    PubMed Central

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  3. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  4. Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Deser, Clara; Sun, Lantao; Tomas, Robert A.

    2018-05-01

    The role of ocean dynamics in the transient adjustment of the coupled climate system to an abrupt loss of Arctic sea ice is investigated using experiments with Community Climate System Model version 4 in two configurations: a thermodynamic slab mixed layer ocean and a full-depth ocean that includes both dynamics and thermodynamics. Ocean dynamics produce a distinct sea surface temperature warming maximum in the eastern equatorial Pacific, accompanied by an equatorward intensification of the Intertropical Convergence Zone and Hadley Circulation. These tropical responses are established within 25 years of ice loss and contrast markedly with the quasi-steady antisymmetric coupled response in the slab-ocean configuration. A heat budget analysis reveals the importance of anomalous vertical advection tied to a monotonic temperature increase below 200 m for the equatorial sea surface temperature warming maximum in the fully coupled model. Ocean dynamics also rapidly modify the midlatitude atmospheric response to sea ice loss.

  5. Vibration isolation technology: Sensitivity of selected classes of experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1990-01-01

    The solution was sought of a 2-D axisymmetric moving boundary problem for the sensitivity of isothermal and nonisothermal liquid columns and the sensitivity of thermo-capillary flows to buoyancy driven convection caused by residual accelerations. The sensitivity of a variety of space experiments to residual accelerations are examined. In all the cases discussed, the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion (such as thermocapillary flow), or fluid motion must be suppressed or eliminated (such as in diffusion studies, or directional solidification experiments). The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt crystal interface. As far as the response to transient disturbances is concerned the sensitivity is determined by both the magnitude and frequency the acceleration and the characteristic momentum and solute diffusion times.

  6. Computational modeling of in vitro biological responses on polymethacrylate surfaces

    PubMed Central

    Ghosh, Jayeeta; Lewitus, Dan Y; Chandra, Prafulla; Joy, Abraham; Bushman, Jared; Knight, Doyle; Kohn, Joachim

    2011-01-01

    The objective of this research was to examine the capabilities of QSPR (Quantitative Structure Property Relationship) modeling to predict specific biological responses (fibrinogen adsorption, cell attachment and cell proliferation index) on thin films of different polymethacrylates. Using 33 commercially available monomers it is theoretically possible to construct a library of over 40,000 distinct polymer compositions. A subset of these polymers were synthesized and solvent cast surfaces were prepared in 96 well plates for the measurement of fibrinogen adsorption. NIH 3T3 cell attachment and proliferation index were measured on spin coated thin films of these polymers. Based on the experimental results of these polymers, separate models were built for homo-, co-, and terpolymers in the library with good correlation between experiment and predicted values. The ability to predict biological responses by simple QSPR models for large numbers of polymers has important implications in designing biomaterials for specific biological or medical applications. PMID:21779132

  7. Photoelectrochemical response of GaN, InGaN, and GaNP nanowire ensembles

    NASA Astrophysics Data System (ADS)

    Philipps, Jan M.; Hölzel, Sara; Hille, Pascal; Schörmann, Jörg; Chatterjee, Sangam; Buyanova, Irina A.; Eickhoff, Martin; Hofmann, Detlev M.

    2018-05-01

    The photoelectrochemical responses of GaN, GaNP, and InGaN nanowire ensembles are investigated by the electrical bias dependent photoluminescence, photocurrent, and spin trapping experiments. The results are explained in the frame of the surface band bending model. The model is sufficient for InGaN nanowires, but for GaN nanowires the electrochemical etching processes in the anodic regime have to be considered additionally. These processes lead to oxygen rich surface (GaxOy) conditions as evident from energy dispersive X-ray fluorescence. For the GaNP nanowires, a bias dependence of the carrier transfer to the electrolyte is not reflected in the photoluminescence response, which is tentatively ascribed to a different origin of radiative recombination in this material as compared to (In)GaN. The corresponding consequences for the applications of the materials for water splitting or pH-sensing will be discussed.

  8. Response of the Vegetation-Climate System to High Temperature (Invited)

    NASA Astrophysics Data System (ADS)

    Berry, J. A.

    2009-12-01

    High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.

  9. Parameters optimization of supercritical fluid-CO2 extracts of frankincense using response surface methodology and its pharmacodynamics effects.

    PubMed

    Zhou, Jing; Ma, Xing-miao; Qiu, Bi-Han; Chen, Jun-xia; Bian, Lin; Pan, Lin-mei

    2013-01-01

    The volatile oil parts of frankincense (Boswellia carterii Birdw.) were extracted with supercritical carbon dioxide under constant pressure (15, 20, or 25 MPa) and fixed temperature (40, 50, or 60°C), given time (60, 90, or 120 min) aiming at the acquisition of enriched fractions containing octyl acetate, compounds of pharmaceutical interest. A mathematical model was created by Box-Behnken design, a popular template for response surface methodology, for the extraction process. The response value was characterized by synthetical score, which comprised yields accounting for 20% and content of octyl acetate for 80%. The content of octyl acetate was determined by GC. The supercritical fluid extraction showed higher selectivity than conventional steam distillation. Supercritical fluid-CO(2) for extracting frankincense under optimum condition was of great validity, which was also successfully verified by the pharmacological experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Static and sliding contact of rough surfaces: Effect of asperity-scale properties and long-range elastic interactions

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik

    2018-07-01

    Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.

  11. Multipactor experiment on a dielectric surface

    NASA Astrophysics Data System (ADS)

    Anderson, Rex Beach, III

    2001-12-01

    Multipactor is an electron multiplication process, or electron avalanche, that occurs on metallic and dielectric surfaces in the presence of rf microwave fields. Just as a rock avalanche only needs one rock to cause a larger slide of destruction, one electron under multipactor conditions can cause a tremendous amount of damage to electrical components. Multipactor is a nuisance that can cause excessive noise in communication satellites and radar, and damage to vacuum windows in particle accelerators. Single-surface multipactor on dielectrics is responsible for poor transmission properties of vacuum windows and can eventually lead to vacuum window failure. The repercussions of multipactor affect a wide range of people. For example, a civilian placing a call on a cell phone, or a captain dependent on radar for his ship's safety could both be affected by multipactor. In order to combat this expensive annoyance, a unique experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The motivation of this thesis is to introduce a novel experiment for multipactor that is designed to verify theoretical calculations and explore the physics behind the phenomenon. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. Most single-surface multipactor experiments consist of a large resonant ring wave guide with a MW power supply. This experiment is the first to utilize a high Q resonant cavity and kW-level power supply to create multipactor on a dielectric surface. The small brass resonant cavity has an inner length of 9.154 cm with an inner diameter of 9.045 cm. A pulsed, variable frequency microwave source at ˜2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (˜0.2 cm thickness) that is inserted at the mid-plane of the cavity. The microwave pulses from the power supply are monitored by calibrated microwave diodes. These calibrated diodes along with a bead pull perturbation method are used to calculate the threshold rf fields at the dielectric surface when multipactor occurs. This experiment is the first to measure electron current from the dielectric using an electron probe. The electron probe provides temporal measurements of the multipactor electron current with respect to the microwave pulses. Another unique electron diagnostic utilized in this multipactor experiment is phosphor. Phosphor on the dielectric surface is used to detect multipactor electrons by photoemission. Phosphors with different excitation energies are used as a crude electron energy analyzer. Experimental results from these diagnostics match well with theoretical calculations.

  12. Second-harmonic generation and theoretical studies of protonation at the water/α-TiO 2 (1 1 0) interface

    NASA Astrophysics Data System (ADS)

    Fitts, Jeffrey P.; Machesky, Michael L.; Wesolowski, David J.; Shang, Xiaoming; Kubicki, James D.; Flynn, George W.; Heinz, Tony F.; Eisenthal, Kenneth B.

    2005-08-01

    The pH of zero net surface charge (pH pzc) of the α-TiO 2 (1 1 0) surface was characterized using second-harmonic generation (SHG) spectroscopy. The SHG response was monitored during a series of pH titrations conducted at three NaNO 3 concentrations. The measured pH pzc is compared with a pH pzc value calculated using the revised MUltiSIte Complexation (MUSIC) model of surface oxygen protonation. MUSIC model input parameters were independently derived from ab initio calculations of relaxed surface bond lengths for a hydrated surface. Model (pH pzc 4.76) and experiment (pH pzc 4.8 ± 0.3) agreement establishes the incorporation of independently derived structural parameters into predictive models of oxide surface reactivity.

  13. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  14. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  15. Plant surface wax affects parasitoid's response to host footprints

    NASA Astrophysics Data System (ADS)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  16. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.

    PubMed

    Kobe, Richard K; Iyer, Meera; Walters, Michael B

    2010-01-01

    Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.

  17. Experience-Dependent Color Constancy in Guppies (Poecilia reticulata)

    PubMed Central

    Intskirveli, I. E.; Roinishvili, M. O.; Kezeli, A. R.

    2002-01-01

    We investigated the ability to recognize the color of surfaces in fish (Poecilia reticulata), bred from birth in conditions of artificial light with constant spectral content. The capacity for color constancy significantly deteriorated when compared that to the control group. Further alteration of lighting conditions and transfer into natural daylight conditions restored the suppressed function to its normal level. We suggest that the color constancy function belongs in the visual system-response functions, the full development of which requires the accumulation of individual visual experience. PMID:12757371

  18. Experience-dependent color constancy in guppies (Poecilia reticulata).

    PubMed

    Intskirveli, I E; Roinishvili, M O; Kezeli, A R

    2002-01-01

    We investigated the ability to recognize the color of surfaces in fish (Poecilia reticulata), bred from birth in conditions of artificial light with constant spectral content. The capacity for color constancy significantly deteriorated when compared that to the control group. Further alteration of lighting conditions and transfer into natural daylight conditions restored the suppressed function to its normal level. We suggest that the color constancy function belongs in the visual system-response functions, the full development of which requires the accumulation of individual visual experience.

  19. On the Shock Stress, Substructure Evolution, and Spall Response of Commercially Pure 1100-O Aluminum

    DTIC Science & Technology

    2014-12-01

    recovery experiments were conducted at shock stresses of approxi- mately 4 , 6 , and 9 GPa to study the substructure evolution, while spall recovery...experiments were conducted at shock stresses of approximately 6 and 9 GPa to study the spall fracture surfaces. As shown in Fig. 3, a 4 mm thick by 30 mm...different voltages ranging from 6 –60 V in a TenuPol-3 digitally controlled automatic electropolisher . The hardness of the recovered samples was measured

  20. Chemical combination effects predict connectivity in biological systems

    PubMed Central

    Lehár, Joseph; Zimmermann, Grant R; Krueger, Andrew S; Molnar, Raymond A; Ledell, Jebediah T; Heilbut, Adrian M; Short, Glenn F; Giusti, Leanne C; Nolan, Garry P; Magid, Omar A; Lee, Margaret S; Borisy, Alexis A; Stockwell, Brent R; Keith, Curtis T

    2007-01-01

    Efforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells. The response morphology yields detailed connectivity constraints between nearby targets, and synergy profiles across many combinations show relatedness between targets in the whole network. Constraints from chemical combinations complement genetic studies, because they probe different cellular components and can be applied to disease models that are not amenable to mutagenesis. Chemical probes also offer increased flexibility, as they can be continuously dosed, temporally controlled, and readily combined. After extending this initial study to cover a wider range of combination effects and pathway topologies, chemical combinations may be used to refine network models or to identify novel targets. This response surface methodology may even apply to non-biological systems where responses to targeted perturbations can be measured. PMID:17332758

  1. Micro/nano hierarchical structured titanium treated by NH4OH/H2O2 for enhancing cell response

    PubMed Central

    Yuan, Xin; Kang, Yi; Zuo, Jun; Xie, Youneng; Ma, Li; Ren, Xuelei; Bian, Zeyu; Zhou, Kechao; Wang, Xiyang; Yu, Zhiming

    2018-01-01

    In this paper, two kinds of titanium surfaces with novel micro/nano hierarchical structures, namely Etched (E) surface and Sandblast and etched (SE) surface, were successfully fabricated by NH4OH and H2O2 mixture. And their cellular responses of MG63 were investigated compared with Sandblast and acid-etching (SLA) surface. Scanning electron microscope (SEM), Surface profiler, X-ray photoelectron spectroscopy (XPS), and Contact angle instrument were employed to assess the surface morphologies, roughness, chemistry and wettability respectively. Hierarchical structures with micro holes of 10–30 μm in diameter and nano pits of tens of nanometers in diameter formed on both E and SE surfaces. The size of micro holes is very close to osteoblast cell, which makes them wonderful beds for osteoblast. Moreover, these two kinds of surfaces possess similar roughness and superior hydrophilicity to SLA. Reactive oxygen species were detected on E and SE surface, and thus considerable antimicrobial performance and well fixation can be speculated on them. The cell experiments also demonstrated a boost in cell attachment, and that proliferation and osteogenic differentiation were achieved on them, especially on SE surface. The results indicate that the treatment of pure titanium with H2O2/NH4OH is an effective technique to improve the initial stability of implants and enhance the osseointegration, which may be a promising surface treatment to titanium implant. PMID:29723214

  2. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    NASA Astrophysics Data System (ADS)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  3. Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration

    NASA Astrophysics Data System (ADS)

    Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja

    2018-04-01

    Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.

  4. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.

  5. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Antibody-Functionalized Carbon Nanotube Transistors as Biosensors for the Detection of Prostate Cancer

    DTIC Science & Technology

    2010-07-01

    the attachment by AFM and electronic measurement (Fig. 1.2). We have also begun experiments to quantify the sensor response to solutions of OPN...to facilitate IMAC purification. Each of the sc Fv were expressed, purified, and binding activity ch aracterized via surface plasm on resonance (SPR

  7. Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.

    Treesearch

    S.M. Nay; B.T. Bormann

    2000-01-01

    Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...

  8. Density-dependent coral recruitment displays divergent responses during distinct early life-history stages

    PubMed Central

    Evensen, Nicolas R.; Gómez-Lemos, Luis A.; Babcock, Russell C.

    2017-01-01

    Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions. PMID:28573015

  9. High-frequency response to millimeter wave irradiation of YBaCuO thin film and ceramic

    NASA Astrophysics Data System (ADS)

    Velichko, A. V.; Cherpak, N. T.; Izhyk, E. V.; Kirichenko, A. Ya.; Chukanova, I. N.

    1997-02-01

    Microwave (35 GHz) and radiowave (9 MHz) responses of an YBaCuO thin film and a ceramic to millimeter (mm) wave irradiation (31.5 GHz) have been studied by means of a quasioptical dielectric resonator with whispering gallery modes and an inductive technique at micro- and radiowaves, respectively. The responses are shown to have a mixed nature including a sufficiently strong non-bolometric component. Relaxation of the surface resistance in time after the irradiation removal obeys the logarithmic law implying the nucleation and flux creep of vortices induced by the irradiation is a mechanism of the response at temperatures 3-10 K below the critical temperature Tc. Dependence of the microwave surface resistance Rsmw on the mm wave pump amplitude Hω is well described by Halbritter's theory of vortex motion inside weak links. A correlation between dependences of the radiowave (rw) response on Hω with that of Rsmw has been found. Thus the mechanism of rw-response is believed to arise from intergranular Josephson couplings. The latter conclusion is further confirmed by a comparison of the pump power dependence of the rw-response with that of conventional DC-response found for granular HTSC in other recent experiments on the response to the subgap radiation.

  10. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  11. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    NASA Astrophysics Data System (ADS)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  12. Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation.

    PubMed

    Sakkas, Vasilios A; Islam, Md Azharul; Stalikas, Constantine; Albanis, Triantafyllos A

    2010-03-15

    The use of chemometric methods such as response surface methodology (RSM) based on statistical design of experiments (DOEs) is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Applied catalysis, is certainly not the exception. It is clear that photocatalytic processes mated with chemometric experimental design play a crucial role in the ability of reaching the optimum of the catalytic reactions. The present article reviews the major applications of RSM in modern experimental design combined with photocatalytic degradation processes. Moreover, the theoretical principles and designs that enable to obtain a polynomial regression equation, which expresses the influence of process parameters on the response are thoroughly discussed. An original experimental work, the photocatalytic degradation of the dye Congo red (CR) using TiO(2) suspensions and H(2)O(2), in natural surface water (river water) is comprehensively described as a case study, in order to provide sufficient guidelines to deal with this subject, in a rational and integrated way. (c) 2009 Elsevier B.V. All rights reserved.

  13. Time dependent density functional calculation of plasmon response in clusters

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhang, Feng-Shou; Eric, Suraud

    2003-02-01

    We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.

  14. Modeling and Analysis of Composite Wing Sections for Improved Aeroelastic and Vibration Characteristics Using Smart Materials

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1996-01-01

    The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.

  15. A further assessment of vegetation feedback on decadal Sahel rainfall variability

    NASA Astrophysics Data System (ADS)

    Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia

    2013-03-01

    The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

  16. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  17. Surface-enhanced resonant Raman spectroscopy (SERRS) of single-walled carbon nanotubes absorbed on the Ag-coated anodic aluminum oxide (AAO) surface

    NASA Astrophysics Data System (ADS)

    Dou, X. Y.; Zhou, Z. P.; Tan, P. H.; Song, L.; Liu, L. F.; Zhao, X. W.; Luo, S. D.; Yan, X. Q.; Liu, D. F.; Wang, J. X.; Gao, Y.; Zhang, Z. X.; Yuan, H. J.; Zhou, W. Y.; Xie, S. S.

    2005-05-01

    In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO 3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the “electromagnetic” and “chemical” mechanism, were mainly responsible for the experiment results.

  18. Surface-Plasma Interaction on the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horanyi, M.; Wang, X.; Robertson, S.

    2008-09-07

    The electrostatic levitation and transport of lunar dust remains a controversial science issue since the Apollo era. As a function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface emit and absorb plasma particles and are exposed to solar UV photons. There are several in situ and remote sensing observations that indicate that dusty plasma processes are responsible for the mobilization and transport of lunar soil. We briefly discuss the existing observations, and report on a series of experiments that addressmore » some of the most relevant processes acting on dusty surfaces exposed to plasmas and UV radiation.« less

  19. Vibrations At Surfaces During Heterogeneous Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Aragno, A.; Basini, Luca; Marchionna, M.; Raffaelli, A.

    1989-12-01

    FTIR spectroscopies can be used in a wide range of temperature and pressure conditions to investigate on the chemistry and the physics of heterogeneous catalytic reactions. In this paper we have shortly discussed the spectroscopic results obtained during the study of two different reactions; the skeletal isomerization of 1-butene to obtain 2-methylpropene and the surface aggregation and fragmentation of rhodium carbonyl complexes during thermal treatments in N2, H2, CO, CH4 atmospheres. In the first case high temperature proton tran-sfer reactions are proposed to be responsible for the skeletal isomerization reaction. In the second case our experiments have shown a partial reversibility of the nucleation processes at the surfaces and revealed a low temperature reactivity of methane on rhodium car-bonyl surface complexes.

  20. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  1. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  2. Sensitivity of Offshore Surface Fluxes and Sea Breezes to the Spatial Distribution of Sea-Surface Temperature

    NASA Astrophysics Data System (ADS)

    Lombardo, Kelly; Sinsky, Eric; Edson, James; Whitney, Michael M.; Jia, Yan

    2018-03-01

    A series of numerical sensitivity experiments is performed to quantify the impact of sea-surface temperature (SST) distribution on offshore surface fluxes and simulated sea-breeze dynamics. The SST simulations of two mid-latitude sea-breeze events over coastal New England are performed using a spatially-uniform SST, as well as spatially-varying SST datasets of 32- and 1-km horizontal resolutions. Offshore surface heat and buoyancy fluxes vary in response to the SST distribution. Local sea-breeze circulations are relatively insensitive, with minimal differences in vertical structure and propagation speed among the experiments. The largest thermal perturbations are confined to the lowest 10% of the sea-breeze column due to the relatively high stability of the mid-Atlantic marine atmospheric boundary layer (ABL) suppressing vertical mixing, resulting in the depth of the marine layer remaining unchanged. Minimal impacts on the column-averaged virtual potential temperature and sea-breeze depth translates to small changes in sea-breeze propagation speed. This indicates that the use of datasets with a fine-scale SST may not produce more accurate sea-breeze simulations in highly stable marine ABL regimes, though may prove more beneficial in less stable sub-tropical environments.

  3. The G4Foam Experiment: global climate impacts of regional ocean albedo modification

    NASA Astrophysics Data System (ADS)

    Gabriel, Corey J.; Robock, Alan; Xia, Lili; Zambri, Brian; Kravitz, Ben

    2017-01-01

    Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such a foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150 %) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6 W m-2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30° N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June-July-August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5 W m-2 is amplified through a series of positive cloud feedbacks, in which more shortwave radiation is reflected. The precipitation response is primarily the result of the intensification of the southern Hadley cell, as its mean position migrates northward and away from the Equator in response to the asymmetric cooling.

  4. Determination and impact of surface radiative processes for TOGA COARE

    NASA Technical Reports Server (NTRS)

    Curry, Judith A.; Ackerman, Thomas; Rossow, William B.; Webster, Peter J.

    1991-01-01

    Experiments using atmospheric general circulation models have shown that the atmospheric circulation is very sensitive to small changes in sea surface temperature in the tropical western Pacific Ocean warm pool region. The mutual sensitivity of the ocean and the atmosphere in the warm pool region places stringent requirements on models of the coupled ocean atmosphere system. At present, the situation is such that diagnostic studies using available data sets have been unable to balance the surface energy budget in the warm pool region to better than 50 to 80 W/sq m. The Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE) is an observation and modelling program that aims specifically at the elucidation of the physical process which determine the mean and transient state of the warm pool region and the manner in which the warm pool interacts with the global ocean and atmosphere. This project focuses on one very important aspect of the ocean atmosphere interface component of TOGA COARE, namely the temporal and spatial variability of surface radiative fluxes in the warm pool region.

  5. Vibrotactile Compliance Feedback for Tangential Force Interaction.

    PubMed

    Heo, Seongkook; Lee, Geehyuk

    2017-01-01

    This paper presents a method to generate a haptic illusion of compliance using a vibrotactile actuator when a tangential force is applied to a rigid surface. The novel method builds on a conceptual compliance model where a physical object moves on a textured surface in response to a tangential force. The method plays vibration patterns simulating friction-induced vibrations as an applied tangential force changes. We built a prototype consisting of a two-dimensional tangential force sensor and a surface transducer to test the effectiveness of the model. Participants in user experiments with the prototype perceived the rigid surface of the prototype as a moving, rubber-like plate. The main findings of the experiments are: 1) the perceived stiffness of a simulated material can be controlled by controlling the force-playback transfer function, 2) its perceptual properties such as softness and pleasantness can be controlled by changing friction grain parameters, and 3) the use of the vibrotactile compliance feedback reduces participants' workload including physical demand and frustration while performing a force repetition task.

  6. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    NASA Astrophysics Data System (ADS)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  7. Multi-response optimization of Artemia hatching process using split-split-plot design based response surface methodology

    PubMed Central

    Arun, V. V.; Saharan, Neelam; Ramasubramanian, V.; Babitha Rani, A. M.; Salin, K. R.; Sontakke, Ravindra; Haridas, Harsha; Pazhayamadom, Deepak George

    2017-01-01

    A novel method, BBD-SSPD is proposed by the combination of Box-Behnken Design (BBD) and Split-Split Plot Design (SSPD) which would ensure minimum number of experimental runs, leading to economical utilization in multi- factorial experiments. The brine shrimp Artemia was tested to study the combined effects of photoperiod, temperature and salinity, each with three levels, on the hatching percentage and hatching time of their cysts. The BBD was employed to select 13 treatment combinations out of the 27 possible combinations that were grouped in an SSPD arrangement. Multiple responses were optimized simultaneously using Derringer’s desirability function. Photoperiod and temperature as well as temperature-salinity interaction were found to significantly affect the hatching percentage of Artemia, while the hatching time was significantly influenced by photoperiod and temperature, and their interaction. The optimum conditions were 23 h photoperiod, 29 °C temperature and 28 ppt salinity resulting in 96.8% hatching in 18.94 h. In order to verify the results obtained from BBD-SSPD experiment, the experiment was repeated preserving the same set up. Results of verification experiment were found to be similar to experiment originally conducted. It is expected that this method would be suitable to optimize the hatching process of animal eggs. PMID:28091611

  8. 3D Material Response Analysis of PICA Pyrolysis Experiments

    NASA Technical Reports Server (NTRS)

    Oliver, A. Brandon

    2017-01-01

    The PICA decomposition experiments of Bessire and Minton are investigated using 3D material response analysis. The steady thermoelectric equations have been added to the CHAR code to enable analysis of the Joule-heated experiments and the DAKOTA optimization code is used to define the voltage boundary condition that yields the experimentally observed temperature response. This analysis has identified a potential spatial non-uniformity in the PICA sample temperature driven by the cooled copper electrodes and thermal radiation from the surface of the test article (Figure 1). The non-uniformity leads to a variable heating rate throughout the sample volume that has an effect on the quantitative results of the experiment. Averaging the results of integrating a kinetic reaction mechanism with the heating rates seen across the sample volume yield a shift of peak species production to lower temperatures that is more significant for higher heating rates (Figure 2) when compared to integrating the same mechanism at the reported heating rate. The analysis supporting these conclusions will be presented along with a proposed analysis procedure that permits quantitative use of the existing data. Time permitting, a status on the in-development kinetic decomposition mechanism based on this data will be presented as well.

  9. Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.

    1993-01-01

    The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.

  10. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  11. Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Zhu, Dezhi

    2018-06-01

    Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.

  12. Standing wave performance test of IDT-SAW transducer prepared by silk-screen printing

    NASA Astrophysics Data System (ADS)

    Wang, Ziping; Jiang, Zhengxuan; Chen, Liangbin; Li, Yefei; Li, Meixia; Wang, Shaohan

    2018-05-01

    With the advantages of high performance and low loss, interdigital surface acoustic wave (IDT-SAW) transducers are widely used in the fields of nondestructive testing, communication and broadcasting. The production, performance and application of surface acoustic wave (SAW) actuators has become a research hotspot. Based on the basic principle of SAW, an IDT-SAW transducer is designed and fabricated using silk-screen printing in this work. The experiment results show that in terms of SAW performance, the fabricated IDT-SAW transducer can generate standing wave fields comparable to those generated using traditional fabrication methods. The resonant frequency response of the IDT-SAW transducer and SAW attenuation coefficient were obtained by experiments. It has provided a method to test the transducer sensing performance by using fabricated IDT-SAW transducer.

  13. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  14. Computer simulations of the mechanical response of brushes on the surface of cancerous epithelial cells

    NASA Astrophysics Data System (ADS)

    Goicochea, A. Gama; Guardado, S. J. Alas

    2015-08-01

    We report a model for atomic force microscopy by means of computer simulations of molecular brushes on surfaces of biological interest such as normal and cancerous cervical epithelial cells. Our model predicts that the force needed to produce a given indentation on brushes that can move on the surface of the cell (called “liquid” brushes) is the same as that required for brushes whose ends are fixed on the cell’s surface (called “solid” brushes), as long as the tip of the microscope covers the entire area of the brush. Additionally, we find that cancerous cells are softer than normal ones, in agreement with various experiments. Moreover, soft brushes are found to display larger resistance to compression than stiff ones. This phenomenon is the consequence of the larger equilibrium length of the soft brushes and the cooperative association of solvent molecules trapped within the brushes, which leads to an increase in the osmotic pressure. Our results show that a careful characterization of the brushes on epithelial cells is indispensable when determining the mechanical response of cancerous cells.

  15. Multi Response Optimization of Process Parameters Using Grey Relational Analysis for Turning of Al-6061

    NASA Astrophysics Data System (ADS)

    Deepak, Doreswamy; Beedu, Rajendra

    2017-08-01

    Al-6061 is one among the most useful material used in manufacturing of products. The major qualities of Aluminium are reasonably good strength, corrosion resistance and thermal conductivity. These qualities have made it a suitable material for various applications. While manufacturing these products, companies strive for reducing the production cost by increasing Material Removal Rate (MRR). Meanwhile, the quality of surface need to be ensured at an acceptable value. This paper aims at bringing a compromise between high MRR and low surface roughness requirement by applying Grey Relational Analysis (GRA). This article presents the selection of controllable parameters like longitudinal feed, cutting speed and depth of cut to arrive at optimum values of MRR and surface roughness (Ra). The process parameters for experiments were selected based on Taguchi’s L9 array with two replications. Grey relation analysis being most suited method for multi response optimization, the same is adopted for the optimization. The result shows that feed rate is the most significant factor that influences MRR and Surface finish.

  16. The Role of Ocean Eddies in the Southern Ocean Response to Observed Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    Bilgen, S. I.; Kirtman, B. P.

    2017-12-01

    The Southern Ocean (SO) is crucial to understanding the possible future response to a changing climate. This is a principal region where energy is conveyed to the ocean by the westerly winds and it is here that mesoscale ocean eddies field dominate meridional heat and momentum transport. Compared to the Arctic, the Antarctic and the surrounding SO have a "delayed warming" anthropogenic greenhouse gas (GHG) response. Understanding the role of the ocean dynamics in modulating the mesoscale atmosphere-ocean interactions in the SO in a fully coupled regime is crucial to efforts aimed at predicting the consequences of the warming and variability to the climate system. The response of model run at multiple resolutions (eddy permitting, eddy resolving) to both GHG forcing and historical forcing are examined in NCAR CCSM4 with four experiments. The first simulation, 0.5° atmosphere coupled to ocean and sea ice components with 1° resolution (LR). The second simulation uses the identical atmospheric model but coupled to 0.1° ocean and sea ice component models (HR). For the third and fourth experiments, the global ocean is simulated for LR an HR models, and a climate change scenario are produced by applying a fixed (present-day) CO2 concentration. The analysis focuses on the last 55 years of two individual 155 year simulations. We discuss results from a set of state-of-art model experiments in comparison with observational estimates and explore mechanisms by examining sea surface temperature, westerly winds, surface heat flux, ocean heat transport. In LR simulations, the patterns and mechanisms of SO changes under GHG forcing are similar to those over the historical period: warming is damped southward of the ACC and enhanced to the north, however major changes between the HR simulations are explored. We find that in recent decades the Southern Annual Mode has shown a distinct upward trend, the result of an anthropogenic global warming. Also, HR simulations show that strengthening of the SAM and associated surface wind stress have been invoked to posit enhancement in the strength of the upwelling of the MOC, and increases eddy activity of the ACC. The results also indicate that eddy-permitting models are not able to capture the eddy-driven SST response since ocean dynamics is playing crucial role in the HR simulation but not in the LR models.

  17. Effects of acute ocean acidification on spatially-diverse polar pelagic foodwebs: Insights from on-deck microcosms

    NASA Astrophysics Data System (ADS)

    Tarling, G. A.; Peck, V. L.; Ward, P.; Ensor, N. S.; Achterberg, E.; Tynan, E.; Poulton, A. J.; Mitchell, E.; Zubkov, M. V.

    2016-05-01

    The polar oceans are experiencing some of the largest levels of ocean acidification (OA) resulting from the uptake of anthropogenic carbon dioxide (CO2). Our understanding of the impacts this is having on polar marine communities is mainly derived from studies of single species in laboratory conditions, while the consequences for food web interactions remain largely unknown. This study carried out experimental manipulations of natural pelagic communities at different high latitude sites in both the northern (Nordic Seas) and southern hemispheres (Scotia and Weddell Seas). The aim of this study was to identify more generic responses and achieve greater experimental reproducibility through implementing a series of short term (4 d), multilevel (3 treatment) carbonate chemistry manipulation experiments on unfiltered natural surface-ocean communities, including grazing copepods. The experiments were successfully executed at six different sites, covering a diverse range of environmental conditions and differing plankton community compositions. The study identified the interaction between copepods and dinoflagellate cell abundance to be significantly altered by elevated levels of dissolved CO2 (pCO2), with dinoflagellates decreasing relative to ambient conditions across all six experiments. A similar pattern was not observed in any other major phytoplankton group. The patterns indicate that copepods show a stronger preference for dinoflagellates when in elevated pCO2 conditions, demonstrating that changes in food quality and altered grazing selectivity may be a major consequence of ocean acidification. The study also found that transparent exopolymeric particles (TEP) generally increased when pCO2 levels were elevated, but the response was dependent on the exact set of environmental conditions. Bacteria and nannoplankton showed a neutral response to elevated pCO2 and there was no significant relationship between changes in bacterial or nannoplankton abundance and that of TEP concentrations. Overall, the study illustrated that, although some similar responses exist, these contrasting high latitude surface ocean communities are likely to show different responses to the onset of elevated pCO2.

  18. Influence of Surface Properties and Impact Conditions on Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Doss, Jereme R.; Shanahan, Michelle H.; Smith, Joseph G., Jr.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2015-01-01

    Airflow over airfoils used on current commercial aircraft transitions from laminar to turbulent at relatively low chord positions. As a result, drag increases, requiring more thrust to maintain flight. An airfoil with increased laminar flow would experience reduced drag and a lower fuel burn rate. One of the objectives of NASA's Environmentally Responsible Aviation project is to identify and demonstrate technologies that will enable more environmentally friendly commercial aircraft. While more aerodynamically efficient airfoil shapes can be designed, surface contamination from ice, dirt, pollen, runway debris, and insect residue can degrade performance.

  19. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  20. Is there a difference between the effects of single and triple indirect moxibustion stimulations on skin temperature changes of the posterior trunk surface?

    PubMed

    Mori, Hidetoshi; Kuge, Hiroshi; Tanaka, Tim Hideaki; Taniwaki, Eiichi; Ohsawa, Hideo

    2011-06-01

    To determine whether any difference exists in responses to indirect moxibustion (IM) relative to thermal stimulation duration. In experiment 1, 9 subjects attended two experimental sessions consisting of single stimulation with IM or triple stimulation with IM, using a crossover design. A K-type thermocouple temperature probe was fixed on the skin surface at the GV14 acupuncture point. IM stimulation was administered to the top of the probe in order to measure the temperature curve. In addition, each subject evaluated his or her subjective feeling of heat on a visual analogue scale after each stimulation. Experiment 2 was conducted on 42 participants, divided into three groups according to the envelope allocation method: single stimulation with IM (n=20), triple stimulation with IM (n=11) and a control group (n=11). A thermograph was used to obtain the skin temperature on the posterior trunk of the participant. To analyse skin temperature, four arbitrary frames (the scapular, interscapular, lumbar and vertebral regions) were made on the posterior trunk. In experiment 1, no significant difference in maximum temperature was found in IM and subjective feeling of heat intensity between single and triple stimulation with IM. In experiment 2, increases in skin temperature occurred on the posterior trunk, but no differences in skin temperature occurred between the groups receiving single and triple stimulation with IM. No difference exists in the skin temperature response to moxibustion between the single and triple stimulation with IM.

  1. Transition Induced by Fence Geometrics on Shuttle Orbiter at Mach 10

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    2010-01-01

    Fence-induced transition data simulating a raised gap filler have been acquired on the wing lower surface of a Shuttle Orbiter model in the Langley 31-Inch Mach 10 Tunnel to compare with the Shuttle Boundary Layer Transition Flight and HYTHIRM Experiments, and to provide additional correlation data for the Boundary Layer Transition Tool. In a qualitative assessment, the data exhibit the expected response to all parameter variations; however, it is unclear whether fully effective tripping at the fence was ever realized at any test condition with the present model hardware. A preliminary, qualitative comparison of the ground-based transition measurements with those obtained from the STS-128 HYTHIRM imagery at Mach 15 reveal similar transition-wake response characteristics in terms of the spreading and the path along the vehicle surface.

  2. Monte Carlo Solution to Find Input Parameters in Systems Design Problems

    NASA Astrophysics Data System (ADS)

    Arsham, Hossein

    2013-06-01

    Most engineering system designs, such as product, process, and service design, involve a framework for arriving at a target value for a set of experiments. This paper considers a stochastic approximation algorithm for estimating the controllable input parameter within a desired accuracy, given a target value for the performance function. Two different problems, what-if and goal-seeking problems, are explained and defined in an auxiliary simulation model, which represents a local response surface model in terms of a polynomial. A method of constructing this polynomial by a single run simulation is explained. An algorithm is given to select the design parameter for the local response surface model. Finally, the mean time to failure (MTTF) of a reliability subsystem is computed and compared with its known analytical MTTF value for validation purposes.

  3. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    PubMed

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An Immunoglobulin G1 Monoclonal Antibody Highly Specific to the Wall of Cryptosporidium Oocysts

    PubMed Central

    Weir, C.; Vesey, G.; Slade, M.; Ferrari, B.; Veal, D. A.; Williams, K.

    2000-01-01

    The detection of Cryptosporidium oocysts in drinking water is critically dependent on the quality of immunofluorescent reagents. Experiments were performed to develop a method for producing highly specific antibodies to Cryptosporidium oocysts that can be used for water testing. BALB/c mice were immunized with six different antigen preparations and monitored for immunoglobulin G (IgG) and IgM responses to the surface of Cryptosporidium oocysts. One group of mice received purified oocyst walls, a second group received a soluble protein preparation extracted from the outside of the oocyst wall, and the third group received whole inactivated oocysts. Three additional groups were immunized with sequentially prepared oocyst extracts to provide for a comparison of the immune response. Mice injected with the soluble protein extract demonstrated an IgG response to oocysts surface that was not seen in the whole-oocyst group. Mice injected with whole oocysts showed an IgM response only, while mice injected with purified oocyst walls showed little increase in IgM or IgG levels. Of the additional reported preparations only one, BME (2-mercaptoethanol treated), produced a weak IgM response to the oocyst wall. A mouse from the soluble oocyst extract group yielding a high IgG response was utilized to produce a highly specific IgG1 monoclonal antibody (Cry104) specific to the oocyst surface. Comparative flow cytometric analysis indicated that Cry104 has a higher avidity and specificity to oocysts in water concentrates than other commercially available antibodies. PMID:10973448

  5. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO2 adsorption performance

    NASA Astrophysics Data System (ADS)

    Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali; Ebrahimipour, S. Yousef

    2017-06-01

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2k-1 factorial design experiments, and the response surface optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m2/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO2 adsorption.

  6. Evaluation of the fish passage effectiveness of the Bonneville I prototype surface collector using three-dimensional ultrasonic fish tracking - Final Report

    USGS Publications Warehouse

    Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.

    2001-01-01

    This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.

  7. Tactile discrimination and representations of texture, shape, and softness

    NASA Technical Reports Server (NTRS)

    Srinivasan, M. A.; Lamotte, R. H.

    1991-01-01

    We present here some of the salient results on the tactual discriminabilities of human subjects obtained through psychophysical experiments, and the associated peripheral neural codes obtained through electrophysiological recordings from monkey single nerve fibers. Humans can detect the presence of a 2 micron high single dot on a smooth glass plate stroked on the skin, based on the responses of Meissner type rapidly adapting fibers (RAs). They can also detect a 0.06 micron high grating on the plate, owing to the response of Pacinian corpuscle fibers. Among all the possible representations of the shapes of objects, the surface curvature distribution seems to be the most relevant for tactile sensing. Slowly adapting fibers respond to both the change and rate of change of curvature of the skin surface at the most sensitive spot in their receptive fields, whereas RAs respond only to the rate of change of curvature. Human discriminability of compliance of objects depends on whether the object has a deformable or rigid surface. When the surface is deformable, the spatial pressure distribution within the contact region is dependent on object compliance, and hence information from cutaneous mechanoreceptors is sufficient for discrimination of subtle differences in compliance. When the surface is rigid, kinesthetic information is necessary for discrimination, and the discriminability is much poorer than that for objects with deformable surfaces.

  8. Effect of plasma arc welding variables on fusion zone grain size and hardness of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Kondapalli, S. P.

    2017-12-01

    In the present work, pulsed current microplasma arc welding is carried out on AISI 321 austenitic stainless steel of 0.3 mm thickness. Peak current, Base current, Pulse rate and Pulse width are chosen as the input variables, whereas grain size and hardness are considered as output responses. Response surface method is adopted by using Box-Behnken Design, and in total 27 experiments are performed. Empirical relation between input and output response is developed using statistical software and analysis of variance (ANOVA) at 95% confidence level to check the adequacy. The main effect and interaction effect of input variables on output response are also studied.

  9. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

    PubMed

    Castillo, Karl D; Ries, Justin B; Bruno, John F; Westfield, Isaac T

    2014-12-22

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

  10. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming

    PubMed Central

    Castillo, Karl D.; Ries, Justin B.; Bruno, John F.; Westfield, Isaac T.

    2014-01-01

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1–0.3 pH units and sea surface temperature to increase by 1–4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate—suggesting that ocean warming poses a more immediate threat than acidification for this important coral species. PMID:25377455

  11. Proteins at the Biomaterial Electrolyte Interface

    NASA Astrophysics Data System (ADS)

    Tengvall, Pentti

    2005-03-01

    Proteins adsorb rapidly onto solid and polymeric surfaces because the association process is in the vast majority of cases energetically favourable, i.e. exothermic. The most common exceptions to this rule are hydrophilic interfaces with low net charge and high mobility, e.g. immobilized PEGs. Current research in the research area tries to understand and control unwanted and wanted adsorption by studying the adsorption kinetics, protein surface binding specificity, protein exchange at interfaces, and surface protein repulsion mechanisms. In blood plasma model systems humoral cascade reactions such as surface mediated coagulation and immune complement raise considerable interest due to the immediate association to blood compatibility, and in tissue applications the binding between surfaces and membrane receptors in cells and tissues. Thus, the understanding of interfacial events at the protein level is of large importance in applications such as blood and tissue contacting biomaterials, in vitro medical and biological diagnostics, food industry and in marine anti-fouling technology. Well described consequences of adsorption are a lowered system energy, increased system entropy, irreversible binding, conformational changes, specific surface/protein interactions, and in biomedical materials applications surface opsonization followed by cell-surface interactions and a host tissue response. This lecture will deal with some mechanisms known to be of importance for the adsorption processes, such as the influence of surface chemistry and surface energy, the composition of the protein solution, the Vroman effect, and residence time. Examples will be shown from ellipsometric experiments using different model surfaces in single/few protein solutions, and specific attention be given to blood serum and plasma experiments on coagulation and immune complement at interfaces.

  12. Simulation of boundary layer trajectory dispersion sensitivity to soil moisture conditions: MM5 and noah-based investigation

    USDA-ARS?s Scientific Manuscript database

    The sensitivity of trajectories from experiments in which volumetric values of soil moisture were changed with respect to control values were analyzed during three different synoptic episodes in June 2006. The MM5 and Noah land surface models were used to simulate the response of the planetary boun...

  13. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Treesearch

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  14. Stability of peatland carbon to rising temperatures

    Treesearch

    R. M. Wilson; A. M. Hopple; M. M. Tfaily; S. D. Sebestyen; C. W. Schadt; L. Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; J. E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; J. K. Keller; T. P. Guilderson; N. A. Griffiths; J. P. Chanton; S. D. Bridgham; P. J. Hanson

    2016-01-01

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However,...

  15. Right cerebral hemisphere specialization for quiet and perturbed body balance control: Evidence from unilateral stroke.

    PubMed

    Fernandes, Corina Aparecida; Coelho, Daniel Boari; Martinelli, Alessandra Rezende; Teixeira, Luis Augusto

    2018-02-01

    Our aim in this investigation was to assess the relative importance of each cerebral hemisphere in quiet and perturbed balance, based on uni-hemispheric lesions by stroke. We tested the hypothesis of right cerebral hemisphere specialization for balance control. Groups of damage either to the right (RHD, n=9) or the left (LHD, n=7) cerebral hemisphere were compared across tasks requiring quiet balance or body balance recovery following a mechanical perturbation, comparing them to age-matched nondisabled individuals (controls, n=24). They were evaluated in conditions of full and occluded vision. In Experiment 1, the groups were compared in the task of quiet standing on (A) rigid and (B) malleable surfaces, having as outcome measures center of pressure (CoP) amplitude and velocity sway. In Experiment 2, we evaluated the recovery of body balance following a perturbation inducing forward body oscillation, having as outcome measures CoP displacement, peak hip and ankle rotations and muscular activation of both legs. Results from Experiment 1 showed higher values of CoP sway velocity for RHD in comparison to LHD and controls in the anteroposterior (rigid surface) and mediolateral (malleable surface) directions, while LHD had lower balance stability than the controls only in the mediolateral direction when supported on the rigid surface. In Experiment 2 results showed that RHD led to increased values in comparison to LHD and controls for anteroposterior CoP displacement and velocity, time to CoP direction reversion, hip rotation, and magnitude of muscular activation in the paretic leg, while LHD was found to differ in comparison to controls in magnitude of muscular activation of the paretic leg and amplitude of mediolateral sway only. These results suggest that damage to the right as compared to the left cerebral hemisphere by stroke leads to poorer postural responses both in quiet and perturbed balance. That effect was not altered by manipulation of sensory information. Our findings suggest that the right cerebral hemisphere plays a more prominent role in efferent processes responsible for balance control. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes

    PubMed Central

    Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio

    2015-01-01

    Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499

  17. An Embedded 4-Channel Receive-Only RF Coil Array for fMRI Experiments of the Somatosensory Pathway in Conscious Awake Marmosets at 7T

    PubMed Central

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B.; Merkle, Hellmut; Silva, Afonso C.

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a 4-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low input impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. PMID:23696219

  18. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators.

    PubMed

    Wan, Quan; Galli, Giulia

    2015-12-11

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice I_{h} basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  19. Solar Effects on Climate and the Maunder Minimum: Minimum Certainty

    NASA Technical Reports Server (NTRS)

    Rind, David

    2003-01-01

    The current state of our understanding of solar effects on climate is reviewed. As an example of the relevant issues, the climate during the Maunder Minimum is compared with current conditions in GCM simulations that include a full stratosphere and parameterized ozone response to solar spectral irradiance variability and trace gas changes. The GISS Global Climate/Middle Atmosphere Model coupled to a q-flux/mixed layer model is used for the simulations, which begin in 1500 and extend to the present. Experiments were made to investigate the effect of total versus spectrally-varying solar irradiance changes; spectrally-varying solar irradiance changes on the stratospheric ozone/climate response with both pre-industrial and present trace gases; and the impact on climate and stratospheric ozone of the preindustrial trace gases and aerosols by themselves. The results showed that: (1) the Maunder Minimum cooling relative to today was primarily associated with reduced anthropogenic radiative forcing, although the solar reduction added 40% to the overall cooling. There is no obvious distinguishing surface climate pattern between the two forcings. (2)The global and tropical response was greater than 1 C, in a model with a sensitivity of 1.2 C per W m-2. To reproduce recent low-end estimates would require a sensitivity 1/4 as large. (3) The global surface temperature change was similar when using the total and spectral irradiance prescriptions, although the tropical response was somewhat greater with the former, and the stratospheric response greater with the latter. (4) Most experiments produce a relative negative phase of the NAO/AO during the Maunder Minimum, with both solar and anthropogenic forcing equally capable, associated with the tropical cooling and relative poleward EP flux refraction. (5) A full stratosphere appeared to be necessary for the negative AO/NAO phase, as was the case with this model for global warming experiments, unless the cooling was very large, while the ozone response played a minor role and did not influence surface temperature significantly. (6) Stratospheric ozone was most affected by the difference between present day and preindustrial atmospheric composition and chemistry, with increases in the upper and lower stratosphere during the Maunder Minimum. While the estimated UV reduction led to ozone decreases, this was generally less important than the anthropogenic effect except in the upper middle stratosphere, as judged by two different ozone photochemistry schemes. (7) The effect of the reduced solar irradiance on stratospheric ozone and on climate was similar in Maunder Minimum and current atmospheric conditions.

  20. Multivariate analysis of behavioural response experiments in humpback whales (Megaptera novaeangliae).

    PubMed

    Dunlop, Rebecca A; Noad, Michael J; Cato, Douglas H; Kniest, Eric; Miller, Patrick J O; Smith, Joshua N; Stokes, M Dale

    2013-03-01

    The behavioural response study (BRS) is an experimental design used by field biologists to determine the function and/or behavioural effects of conspecific, heterospecific or anthropogenic stimuli. When carrying out these studies in marine mammals it is difficult to make basic observations and achieve sufficient samples sizes because of the high cost and logistical difficulties. Rarely are other factors such as social context or the physical environment considered in the analysis because of these difficulties. This paper presents results of a BRS carried out in humpback whales to test the response of groups to one recording of conspecific social sounds and an artificially generated tone stimulus. Experiments were carried out in September/October 2004 and 2008 during the humpback whale southward migration along the east coast of Australia. In total, 13 'tone' experiments, 15 'social sound' experiments (using one recording of social sounds) and three silent controls were carried out over two field seasons. The results (using a mixed model statistical analysis) suggested that humpback whales responded differently to the two stimuli, measured by changes in course travelled and dive behaviour. Although the response to 'tones' was consistent, in that groups moved offshore and surfaced more often (suggesting an aversion to the stimulus), the response to 'social sounds' was highly variable and dependent upon the composition of the social group. The change in course and dive behaviour in response to 'tones' was found to be related to proximity to the source, the received signal level and signal-to-noise ratio (SNR). This study demonstrates that the behavioural responses of marine mammals to acoustic stimuli are complex. In order to tease out such multifaceted interactions, the number of replicates and factors measured must be sufficient for multivariate analysis.

  1. Multivariate analysis of behavioural response experiments in humpback whales (Megaptera novaeangliae)

    PubMed Central

    Dunlop, Rebecca A.; Noad, Michael J.; Cato, Douglas H.; Kniest, Eric; Miller, Patrick J. O.; Smith, Joshua N.; Stokes, M. Dale

    2013-01-01

    SUMMARY The behavioural response study (BRS) is an experimental design used by field biologists to determine the function and/or behavioural effects of conspecific, heterospecific or anthropogenic stimuli. When carrying out these studies in marine mammals it is difficult to make basic observations and achieve sufficient samples sizes because of the high cost and logistical difficulties. Rarely are other factors such as social context or the physical environment considered in the analysis because of these difficulties. This paper presents results of a BRS carried out in humpback whales to test the response of groups to one recording of conspecific social sounds and an artificially generated tone stimulus. Experiments were carried out in September/October 2004 and 2008 during the humpback whale southward migration along the east coast of Australia. In total, 13 ‘tone’ experiments, 15 ‘social sound’ experiments (using one recording of social sounds) and three silent controls were carried out over two field seasons. The results (using a mixed model statistical analysis) suggested that humpback whales responded differently to the two stimuli, measured by changes in course travelled and dive behaviour. Although the response to ‘tones’ was consistent, in that groups moved offshore and surfaced more often (suggesting an aversion to the stimulus), the response to ‘social sounds’ was highly variable and dependent upon the composition of the social group. The change in course and dive behaviour in response to ‘tones’ was found to be related to proximity to the source, the received signal level and signal-to-noise ratio (SNR). This study demonstrates that the behavioural responses of marine mammals to acoustic stimuli are complex. In order to tease out such multifaceted interactions, the number of replicates and factors measured must be sufficient for multivariate analysis. PMID:23155085

  2. Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Akma, N.

    2017-03-01

    Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.

  3. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology

    PubMed Central

    Auwal, Shehu Muhammad; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-01-01

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4–7), temperature (40–70 °C), enzyme/substrate (E/S) ratio (0.5%–2%) and time (30–360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries. PMID:28362352

  4. Modeling of Greenland outlet glaciers response to future climate change

    NASA Astrophysics Data System (ADS)

    Beckmann, J.

    2017-12-01

    Over the past two decades net mass loss from the Greenland ice sheet (GIS) quadrupled, resulting in 25% of the global mean sea level (GMSL) rise. Increased mass loss of the GIS is caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers. This speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and by increased subglacial, meltwater discharge. Yet, ice-ocean processes are not properly represented in contemporary Greenland Ice Sheet models used to project future changes in the GIS. In this work, we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional (depth- and width- integrated) ice flow model for several representative outlet glaciers in Greenland. We investigate the dynamic response of the coupled ice-flow plume model to scenarios of future climate change. In particular, we examine the transient response of the outlet glaciers to projected changes in surface melting, ocean temperature and subglacial discharge. With our modeling approach we quantify the amount of the surface and submarine melting and the resulting retreat and mass loss for each individual glacier for the next 100 years.

  5. Optimization of photocatalytic degradation of palm oil mill effluent in UV/ZnO system based on response surface methodology.

    PubMed

    Ng, Kim Hoong; Cheng, Yoke Wang; Khan, Maksudur R; Cheng, Chin Kui

    2016-12-15

    This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UV-activated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, viz. O 2 flowrate (A), ZnO loading (B) and initial concentration of POME (C) were evaluated for the significance analysis using a 2 3 full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (A), 15.96% (B) and 13.85% (C), respectively, to the POME degradation. In addition, the interactions between the factors AB, AC and BC also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.

    PubMed

    Misra, R D K; Thein-Han, W W; Pesacreta, T C; Hasenstein, K H; Somani, M C; Karjalainen, L P

    2009-06-01

    Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.

  7. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-06-01

    Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass.

  8. Fully microscopic analysis of laser-driven finite plasmas using the example of clusters

    NASA Astrophysics Data System (ADS)

    Peltz, Christian; Varin, Charles; Brabec, Thomas; Fennel, Thomas

    2012-06-01

    We discuss a microscopic particle-in-cell (MicPIC) approach that allows bridging of the microscopic and macroscopic realms of laser-driven plasma physics. The simultaneous resolution of collisions and electromagnetic field propagation in MicPIC enables the investigation of processes that have been inaccessible to rigorous numerical scrutiny so far. This is illustrated by the two main findings of our analysis of pre-ionized, resonantly laser-driven clusters, which can be realized experimentally in pump-probe experiments. In the linear response regime, MicPIC data are used to extract the individual microscopic contributions to the dielectric cluster response function, such as surface and bulk collision frequencies. We demonstrate that the competition between surface collisions and radiation damping is responsible for the maximum in the size-dependent lifetime of the Mie surface plasmon. The capacity to determine the microscopic underpinning of optical material parameters opens new avenues for modeling nano-plasmonics and nano-photonics systems. In the non-perturbative regime, we analyze the formation and evolution of recollision-induced plasma waves in laser-driven clusters. The resulting dynamics of the electron density and local field hot spots opens a new research direction for the field of attosecond science.

  9. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  10. Amplified Late Pliocene terrestrial warmth in northern high latitudes from greater radiative forcing and closed Arctic Ocean gateways

    NASA Astrophysics Data System (ADS)

    Feng, Ran; Otto-Bliesner, Bette L.; Fletcher, Tamara L.; Tabor, Clay R.; Ballantyne, Ashley P.; Brady, Esther C.

    2017-05-01

    Proxy reconstructions of the mid-Piacenzian warm period (mPWP, between 3.264 and 3.025 Ma) suggest terrestrial temperatures were much warmer in the northern high latitudes (55°-90°N, referred to as NHL) than present-day. Climate models participating in the Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) tend to underestimate this warmth. For instance, the underestimate is ∼10 °C on average across NHL and up to 17 °C in the Canadian Arctic region in the Community Climate System Model version 4 (CCSM4). Here, we explore potential mPWP climate forcings that might contribute to this mPWP mismatch. We carry out seven experiments to assess terrestrial temperature responses to Pliocene Arctic gateway closure, variations in CO2 level, and orbital forcing at millennial time scale. To better compare the full range of simulated terrestrial temperatures with sparse proxy data, we introduce a pattern recognition technique that simplifies the model surface temperatures to a few representative patterns that can be validate with the limited terrestrial proxy data. The pattern recognition technique reveals two prominent features of simulated Pliocene surface temperature responses. First, distinctive patterns of amplified warming occur in the NHL, which can be explained by lowered surface elevation of Greenland, pattern and amount of Arctic sea ice loss, and changing strength of Atlantic meridional overturning circulation. Second, patterns of surface temperature response are similar among experiments with different forcing mechanisms. This similarity is due to strong feedbacks from responses in surface albedo and troposphere water vapor content to sea ice changes, which overwhelm distinctions in forcings from changes in insolation, CO2 forcing, and Arctic gateway closure. By comparing CCSM4 simulations with proxy records, we demonstrate that both model and proxy records show similar patterns of mPWP NHL terrestrial warmth, but the model underestimates the magnitude. High insolation, greater CO2 forcing, and Arctic gateways closure each contributes to reduce the underestimate by enhancing the Arctic warmth of 1-2 °C. These results highlight the importance of considering proxy NHL warmth in the context of Pliocene Arctic gateway changes, and variations in insolation and CO2 forcing.

  11. Rapid Measurement of Tectonic Deformation Using Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Pickering, A.; DeLong, S.; Lienkaemper, J. J.; Hecker, S.; Prentice, C. S.; Schwartz, D. P.; Sickler, R. R.

    2016-12-01

    Rapid collection and distribution of accurate surface slip data after earthquakes can support emergency response, help coordinate scientific response, and constrain coseismic slip that can be rapidly overprinted by postseismic slip, or eliminated as evidence of surface deformation is repaired or obscured. Analysis of earthquake deformation can be achieved quickly, repeatedly and inexpensively with the use of Structure-from-Motion (SfM) photogrammetry. Traditional methods of measuring surface slip (e.g. manual measurement with tape measures) have proven inconsistent and irreproducible, and sophisticated methods such as laser scanning require specialized equipment and longer field time. Here we present a simple, cost-effective workflow for rapid, three-dimensional imaging and measurement of features affected by earthquake rupture. As part of a response drill performed by the USGS and collaborators on May 11, 2016, geologists documented offset cultural features along the creeping Hayward Fault in northern California, in simulation of a surface-rupturing earthquake. We present several photo collections from smart phones, tablets, and DSLR cameras from a number of locations along the fault collected by users with a range of experience. Using professionally calibrated photogrammetric scale bars we automatically and accurately scale our 3D models to 1 mm accuracy for precise measurement in three dimensions. We then generate scaled 3D point clouds and extract offsets from manual measurement and multiple linear regression for comparison with collected terrestrial scanner data. These results further establish dense photo collection and SfM processing as an important, low-cost, rapid means of quantifying surface deformation in the critical hours after a surface-rupturing earthquake and emphasize that researchers with minimal training can rapidly collect three-dimensional data that can be used to analyze and archive the surface effects of damaging earthquakes.

  12. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  13. Biosafety evaluations of well-dispersed mesoporous silica nanoparticles: towards in vivo-relevant conditions

    NASA Astrophysics Data System (ADS)

    Liu, Tsang-Pai; Wu, Si-Han; Chen, Yi-Ping; Chou, Chih-Ming; Chen, Chien-Tsu

    2015-04-01

    This study aimed to investigate how mesoporous silica nanoparticles (MSNs), especially focussing on their surface functional groups, interacted with Raw 264.7 macrophages, as well as with zebrafish embryos. Upon introducing nanoparticles into a biological milieu, adsorption of proteins and biomolecules onto the nanoparticle surface usually progresses rapidly. Nanoparticles bound with proteins can result in physiological and pathological changes, but the mechanisms remain to be elucidated. In order to evaluate how protein corona affected MSNs and the subsequent cellular immune responses, we experimented in both serum and serum-deprived conditions. Our findings indicated that the level of p-p38 was significantly elevated by the positively charged MSNs, whereas negatively charged MSNs resulted in marked ROS production. Most significantly, our experiments demonstrated that the presence of protein efficiently mitigated the potential nano-hazard. On the other hand, strongly positively charged MSNs caused 94% of the zebrafish embryos to die. In that case, the toxicity caused by the quaternary ammonium ligands on the surface of those nanoparticles was exerted in a dose-dependent manner. In summary, these fundamental studies here provide valuable insights into the design of better biocompatible nanomaterials in the future.This study aimed to investigate how mesoporous silica nanoparticles (MSNs), especially focussing on their surface functional groups, interacted with Raw 264.7 macrophages, as well as with zebrafish embryos. Upon introducing nanoparticles into a biological milieu, adsorption of proteins and biomolecules onto the nanoparticle surface usually progresses rapidly. Nanoparticles bound with proteins can result in physiological and pathological changes, but the mechanisms remain to be elucidated. In order to evaluate how protein corona affected MSNs and the subsequent cellular immune responses, we experimented in both serum and serum-deprived conditions. Our findings indicated that the level of p-p38 was significantly elevated by the positively charged MSNs, whereas negatively charged MSNs resulted in marked ROS production. Most significantly, our experiments demonstrated that the presence of protein efficiently mitigated the potential nano-hazard. On the other hand, strongly positively charged MSNs caused 94% of the zebrafish embryos to die. In that case, the toxicity caused by the quaternary ammonium ligands on the surface of those nanoparticles was exerted in a dose-dependent manner. In summary, these fundamental studies here provide valuable insights into the design of better biocompatible nanomaterials in the future. Electronic supplementary information (ESI) available: TEM image, size distribution histogram of as-synthesized wn-R-MSN@PEG. TGA measurements. Cellular uptake efficiency. WST-1 analysis. Western blot assays. Confocal images and zebrafish mortality. See DOI: 10.1039/c4nr07421a

  14. Contaminations of inner surface of magnesium fluoride windows in the `Expose-R' experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Skurat, V. E.

    2017-10-01

    A series of experiments was carried out previously on board of the International Space Station in `EXPOSE-R', a multi-user expose facility, provided by European Space Agency attached to the external surface of the Russian Segment. In one experiment, spores of microorganisms and species of higher plant seeds, in heat-sealed polymer bags were irradiated by solar radiation passed through MgF2 windows in a high space vacuum. After sample exposure, it was found that in many cases the inner surfaces of windows were contaminated. Analysis of the contamination revealed the presence of chemical groups CH2, CH3, NH, OH, C═O, Si-CH3 (Demets et al. in 2015). Their presence in deposits was explained by photofixation of gaseous precursors - some of the vapours of glues and additives in polymeric materials in the core facility of `Expose-R'. Carbon-, oxygen- and silicon-containing groups may be deposited from outer intrinsic atmosphere. This atmosphere is connected with sample compartments and core facility. However, the presence of NH groups on inner surfaces of windows was not expected. This paper shows that the process responsible for carbon-, nitrogen- and oxygen-containing group formation can be a photopolymerization of caprolactam, which is released from the outer Nylon 6 layer of polymer bags under Solar vacuum ultraviolet radiation.

  15. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  16. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows Skylab's Microwave Radiometer/Scatterometer and Altimeter, one of the major components for an Earth Resources Experiment Package (EREP). It was designed to study varying ocean surface, soil erosion, sea and lake ice, snow cover, seasonal vegetational changes, flooding, rainfall and soil types. The overall purpose of the EREP was to test the use of sensors that operated in the visible, infrared, and microwave portions of the electromagnetic spectrum to monitor and study Earth resources. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  17. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  18. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans

    PubMed Central

    Joo, N. S.; Wine, J. J.; Cuthbert, A. W.

    2009-01-01

    Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone Kd = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl−1 min−1 in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility. PMID:19233902

  19. Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans.

    PubMed

    Joo, N S; Wine, J J; Cuthbert, A W

    2009-05-01

    Lubiprostone, a putative ClC-2 chloride channel opener, has been investigated for its effects on airway epithelia (tracheas). Lubiprostone is shown to increase submucosal gland secretion in pigs, sheep, and humans and to increase short-circuit current (SCC) in the surface epithelium of pigs and sheep. Use of appropriate blocking agents and ion-substitution experiments shows anion secretion is the driving force for fluid formation in both glands and surface epithelium. From SCC concentration-response relations, it is shown that for apical lubiprostone K(d) = 10.5 nM with a Hill slope of 1.08, suggesting a single type of binding site and, from the speed of the response, close to the apical surface, confirmed the rapid blockade by Cd ions. Responses to lubiprostone were reversible and repeatable, responses being significantly larger with ventral compared with dorsal epithelium. Submucosal gland secretion rates following basolateral lubiprostone were, respectively, 0.2, 0.5, and 0.8 nl gl(-1) min(-1) in humans, sheep, and pigs. These rates dwarf any contribution surface secretion adds to the accumulation of surface liquid under the influence of lubiprostone. Lubiprostone stimulated gland secretion in two out of four human cystic fibrosis (CF) tissues and in two of three disease controls, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (COPD/IPF), but in neither type of tissue was the increase significant. Lubiprostone was able to increase gland secretion rates in normal human tissue in the continuing presence of a high forskolin concentration. Lubiprostone had no spasmogenic activity on trachealis muscle, making it a potential agent for increasing airway secretion that may have therapeutic utility.

  20. Earth system responses to cumulative carbon emissions

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2015-07-01

    Information on the relationship between cumulative fossil carbon emissions and multiple climate targets are essential to design emission mitigation and climate adaptation strategies. In this study, the transient responses in different climate variables are quantified for a large set of multi-forcing scenarios extended to year 2300 towards stabilization and in idealized experiments using the Bern3D-LPJ carbon-climate model. The model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte-Carlo type framework. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.88 °C (68 % confidence interval (c.i.): 1.28 to 2.69 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and in steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic Meridional Overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The slopes of the relationships change when CO2 is stabilized. The Transient Climate Response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the Equilibrium Climate Sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models, but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  1. T Cells and Pathogenesis of Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever with Renal Syndrome

    PubMed Central

    Terajima, Masanori; Ennis, Francis A.

    2011-01-01

    We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses. PMID:21994770

  2. T cells and pathogenesis of hantavirus cardiopulmonary syndrome and hemorrhagic fever with renal syndrome.

    PubMed

    Terajima, Masanori; Ennis, Francis A

    2011-07-01

    We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses.

  3. Segmentation precedes face categorization under suboptimal conditions.

    PubMed

    Van Den Boomen, Carlijn; Fahrenfort, Johannes J; Snijders, Tineke M; Kemner, Chantal

    2015-01-01

    Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process.

  4. Segmentation precedes face categorization under suboptimal conditions

    PubMed Central

    Van Den Boomen, Carlijn; Fahrenfort, Johannes J.; Snijders, Tineke M.; Kemner, Chantal

    2015-01-01

    Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process. PMID:26074838

  5. The Influence of Crustal Thickness and Slope on the Surface Morphology of Active Lava Flows: an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; James, M. R.; van Wyk de Vries, B.; Pinkerton, H.

    2007-12-01

    Many of the surface features that develop on `a`a and blocky lava flows relate to internal dynamics during flow emplacement, but it can be difficult to infer the precise relationships between morphology and dynamics from observations of flows either during or after their emplacement. Experiments using PEG have greatly improved our understanding of the behaviour of lavas with relatively thin crusts. Here we describe an alternative approach (similar to that of Lescinsky and Merle (2005), GSA Special Paper 396, p.136) in which the crust plays a significant role in flow development. Our experiments investigated the effect of crustal thickness and slope on the morphological development of channelised distal flows. The materials used were high viscosity (104 Pa s) silicone gel to simulate the still-fluid lava, and a mix of sand and plaster to represent the cohesive brittle crust and the confining levees. Experiments were conducted on an inclined board with a reservoir constructed at one end. Silicone was released from the reservoir through a sliding gate, where it encountered a seed flow consisting of a silicone sheet topped with a crust of known depth and constrained by levees. The models therefore represented the influx of fresh lava into a channel. Sequential digital images taken over the course of each experiment allowed marker points on the flow surface to be tracked, and these data were used to construct surface velocity maps. Several experiments were recorded using stereo imagery, allowing changes in the surface relief to be monitored. The insights from these quantitative techniques, combined with morphological observations, are used to illustrate the effect of the crust on the flow dynamics, and to show the response of the brittle crust to the movement of the viscous flow interior. An overview of the experimental techniques and results will be presented, together with an assessment of how the observed model morphologies can be related to features observed in the field.

  6. Land Surface Modeling of an Enclosed Ecosystem: Vegetation Response to Short-Term Perturbations Inside Biosphere 2 Tropical Rainforest Biome

    NASA Astrophysics Data System (ADS)

    Rosolem, R.; Zeng, X.; Shuttleworth, W. J.; Saleska, S. R.; Huxman, T. E.

    2009-12-01

    Biosphere 2 (B2) is a large-scale Earth science facility near Tucson (Arizona) that encompasses about 3.15 acres of land and houses five natural biomes. Sealed off to the outside world, B2 allows scientists to exert precise climate and mass balance control at large scales. The tropical rainforest (TRF) mesocosm area is about 1900 sq. meters and contains plant species from different tropical regions. B2 provides a unique controlled laboratory for carrying out experiments to investigate rainforest biome behavior in response to imposed environmental stresses at plot-scales (e.g., temperature, rainfall, humidity, and CO2 levels), providing the missing link between the laboratory scale and the real world. However, lack of repetitions (the facility contains only a single mesocosm for each biome) poses limitations to the analysis of the results. A well-established land surface parameterization scheme (LSP) may overcome this lack of repetitions by providing a reliable assessment of the biome under a variety of conditions. Modeling approaches can also facilitate and improve future experimental designs in B2. Here we challenge a LSP, the Simple Biosphere 3 (SiB3) model, to simulate the main aspects of the biosphere-atmosphere exchanges inside B2-TRF biome. Model simulations include B2-TRF under normal (i.e., operational) conditions, and during short-term perturbations, such as drought conditions and different treatments of CO2 concentration. A hypothetical simulation which combines both drought and high CO2 levels is performed with SiB3 and analyzed on the basis of future predictions of tropical rainforest under climate change. The main objectives of this study is to determine whether or not SiB3 is capable of representing B2-TRF at a wide range of conditions, and if we can use the combination of past field experiments and modeling to improve our understanding on how tropical rainforests may respond to these changes. Results show that our modified version of SiB3 is capable of reproducing the characteristics of B2-TRF remarkably well. Net photosynthesis is reduced quite substantially during drought periods, followed by a recovery period when the biome is re-watered. Increase in CO2 levels tends to enhance net photosynthesis, but soil respiration remains fairly unchanged, similarly to what past B2-TRF studies suggested. When CO2 levels are increased in combination with drought periods (hypothetical experiment), the vegetation response in SiB3 is quite different depending on the available Photosynthetically Active Radiation (PAR). At relatively lower PAR levels, vegetation response to drought conditions is minimal. However, at relatively high PAR, drought effects offset any response to CO2 fertilization. We recognize that the combination of modeling and field experiments is beneficial in both ways, so that advancing of research inside B2 may be expanded to improve in situ experiments as well as future parameterizations in land surface models.

  7. Analysis of the polar amplification pattern of global warming on an aquaplanet in "ghost forcing" experiments with no ice-albedo feedbacks

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Langen, P. L.

    2004-05-01

    Non-ice-albedo feedback mechanisms leading to polar amplification, as reported by Alexeev (2003), are explored in three aquaplanet climate model systems of different complexity. We analyze this pattern using three different "ghost forcing" experiments (Hansen et al, 1997). In the first one we uniformly add 4W/m2 to the oceanic mixed layer in order to roughly simulate a 2xCO2 forcing at the surface. The second forcing, of the same magnitude, is applied only within the tropics and the third forcing is applied only polewards of 30 degrees (north and south). It turns out that our systems' equilibrium responses are linear with respect to these forcings. Surprisingly, the response to the tropical-only forcing is essentially non-local with quite significant warming at higher latitudes. The response to the high-latitude-only forcing is more local and has higher amplitude near the poles. Our explanation of the polar amplification obtained in the uniform forcing experiment is therefore two-fold. Firstly, the tropics are much more difficult to warm because of the higher sensitivity of the surface budget to SST changes at higher temperatures. Secondly, any extra heat deposited in the tropics is not easily radiated to outer space because of the high opaqueness of the tropical atmosphere. The energy, most of which is latent, needs to be redistributed by transports to the extra-tropics. Consequently, the tropical "ghost forcing" results in an essentially non-local response, while the extra-tropical one yields a more localized response, because the energy in the atmosphere cannot propagate effectively equator-wards from high latitudes. The paper deals with these mechanisms in three climate model systems with no ice-albedo feedback - an EBM and two different GCMs - one with cloud feedbacks and the other with cloud feedbacks excluded. References. Alexeev, V.A., (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Climate Dynamics, 20: p.775-787. Hansen, J., Sato M, and R. Ruedy, (1997) Radiative forcing and climate response, JGR, 102, No. D6, 6831-6864.

  8. Exposure to fluoridated drinking water and dental caries experience in Australian army recruits, 1996.

    PubMed

    Hopcraft, Matthew Scott; Morgan, Michael Vivian

    2003-02-01

    The purpose of this study was to investigate a group of young Australian adults to determine their caries experience and measure associations between caries experience and age, gender, socioeconomic status, education level and lifetime exposure to fluoridated water. This was achieved through a cross-sectional study involving Australian Army recruits seen for their initial dental examination on enlistment into the Australian Army. A total of 499 recruits had a clinical examination with the aid of bitewing radiographs and an orthopantomograph (OPG). Sociodemographic and fluoride exposure data were obtained via a questionnaire. This study showed that subjects with a lifetime exposure to fluoridated water reported a 23% lower level of caries experience than subjects with no exposure to fluoridated water, with a greater effect on proximal surfaces compared to smooth and occlusal surfaces. Female subjects had a level of caries experience 25% higher than male subjects, while subjects from the lowest socioeconomic background had a level of caries experience 89% times greater than subjects from the highest socioeconomic group. Although it is not possible to directly establish a causal relationship from a cross-sectional study such as this, the results from this study show a dose-response relationship which suggests that there are benefits of lifetime exposure to fluoridated drinking water through young adulthood.

  9. Transient Atmospheric Circulation Changes in a Grand ensemble of Idealized CO2 Increase Experiments

    NASA Astrophysics Data System (ADS)

    Karpechko, A.; Manzini, E.; Kornblueh, L.

    2017-12-01

    The yearly evolution with increasing forcing of the large-scale atmospheric circulation is examined in a 68-member ensemble of 1pctCO2 scenario experiments performed with the MPI-ESM model. Each member of the experiment ensemble is integrated for 155 years, from initial conditions taken from a 2000-yr long pre-industrial control climate experiment. The 1pctCO2 scenario experiments are conducted following the protocol of including as external forcing only a CO2 concentration increase at 1%/year, till quadrupling of CO2 concentrations. MPI-ESM is the Max-Planck-Institute Earth System Model (including coupling between the atmosphere, ocean and seaice). By averaging over the 68 members (ensemble mean), atmospheric variability is greatly reduced. Thus, it is possible to investigate the sensitivity to the climate state of the atmospheric response to CO2 doubling. Indicators of global change show the expected monotonic evolution with increasing CO2 and a weak dependence of the thermodynamical response to CO2 doubling on the climate state. The surface climate response of the atmospheric circulation, diagnosed for instance by the pressure at sea level, and the eddy-driven jet response show instead a marked dependence to the climate state, for the Northern winter season. We find that as the CO2 concentration increases above doubling, Northern winter trends in some indicators of atmospheric circulation changes decrease or even reverse, posing the question on what are the causes of this nonlinear behavior. The investigation of the role of stationary waves, the meridional overturning circulation, the decrease in Arctic sea ice and the stratospheric vortex points to the latter as a plausible cause of such nonlinear response.

  10. Statistical Modeling Studies of Iron Recovery from Red Mud Using Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Swagat, S. Rath; Archana, Pany; Jayasankar, K.; Ajit, K. Mitra; C. Satish, Kumar; Partha, S. Mukherjee; Barada, K. Mishra

    2013-05-01

    Optimization studies of plasma smelting of red mud were carried out. Reduction of the dried red mud fines was done in an extended arc plasma reactor to recover the pig iron. Lime grit and low ash metallurgical (LAM) coke were used as the flux and reductant, respectively. 2-level factorial design was used to study the influence of all parameters on the responses. Response surface modeling was done with the data obtained from statistically designed experiments. Metal recovery at optimum parameters was found to be 79.52%.

  11. National Transonic Facility Wall Pressure Calibration Using Modern Design of Experiments (Invited)

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Everhart, Joel L.; DeLoach, Richard

    2001-01-01

    The Modern Design of Experiments (MDOE) has been applied to wind tunnel testing at NASA Langley Research Center for several years. At Langley, MDOE has proven to be a useful and robust approach to aerodynamic testing that yields significant reductions in the cost and duration of experiments while still providing for the highest quality research results. This paper extends its application to include empty tunnel wall pressure calibrations. These calibrations are performed in support of wall interference corrections. This paper will present the experimental objectives, and the theoretical design process. To validate the tunnel-empty-calibration experiment design, preliminary response surface models calculated from previously acquired data are also presented. Finally, lessons learned and future wall interference applications of MDOE are discussed.

  12. Nonlinear AC susceptibility, surface and bulk shielding

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  13. Assessment of coagulation pretreatment of leachate by response surface methodology.

    PubMed

    Lessoued, Ridha; Souahi, Fatiha; Castrillon Pelaez, Leonor

    2017-11-01

    Coagulation-flocculation is a relatively simple technique that can be used successfully for the treatment of old leachate by poly-aluminum chloride (PAC). The main objectives of this study are to design the experiments, build models and optimize the operating parameters, dosage m and pH, using the central composite design and response surface method. Developed for chemical organic matter (COD) and turbidity responses, the quadratic polynomial model is suitable for prediction within the range of simulated variables as it showed that the optimum conditions were m of 5.55 g/L at pH 7.05, with a determination coefficient R² at 99.33%, 99.92% and adjusted R² at 98.85% and 99.86% for both COD and turbidity. We confirm that the initial pH and PAC dosage have significant effects on COD and turbidity removal. The experimental data and model predictions agreed well and the removal efficiency of COD, turbidity, Fe, Pb and Cu reached respectively 61%, 96.4%, 97.1%, 99% and 100%.

  14. Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM).

    PubMed

    Chou, K W; Norli, I; Anees, A

    2010-11-01

    In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.

  15. Design Expert Supported Mathematical Optimization and Predictability Study of Buccoadhesive Pharmaceutical Wafers of Loratadine

    PubMed Central

    Dey, Surajit; Parcha, Versha; Bhattacharya, Shiv Sankar; Ghosh, Amitava

    2013-01-01

    Objective. The objective of this work encompasses the application of the response surface approach in the development of buccoadhesive pharmaceutical wafers of Loratadine (LOR). Methods. Experiments were performed according to a 32 factorial design to evaluate the effects of buccoadhesive polymer, sodium alginate (A), and lactose monohydrate as ingredient, of hydrophilic matrix former (B) on the bioadhesive force, disintegration time, percent (%) swelling index, and time taken for 70% drug release (t 70%). The effect of the two independent variables on the response variables was studied by response surface plots and contour plots generated by the Design-Expert software. The desirability function was used to optimize the response variables. Results. The compatibility between LOR and the wafer excipients was confirmed by differential scanning calorimetry, FTIR spectroscopy, and X-ray diffraction (XRD) analysis. Bioadhesion force, measured with TAXT2i texture analyzer, showed that the wafers had a good bioadhesive property which could be advantageous for retaining the drug into the buccal cavity. Conclusion. The observed responses taken were in agreement with the experimental values, and Loratadine wafers were produced with less experimental trials, and a patient compliant product was achieved with the concept of formulation by design. PMID:23781498

  16. Application of Box-Behnken Design and Response Surface Methodology for Surface Roughness Prediction Model of CP-Ti Powder Metallurgy Components Through WEDM

    NASA Astrophysics Data System (ADS)

    Das, Arunangsu; Sarkar, Susenjit; Karanjai, Malobika; Sutradhar, Goutam

    2018-04-01

    The present work was undertaken to investigate and characterize the machining parameters (such as surface roughness, etc.) of uni-axially pressed commercially pure titanium sintered powder metallurgy components. Powder was uni-axially pressed at designated pressure of 840 MPa to form cylindrical samples and the green compacts were sintered at 0.001 mbar for about 4 h with sintering temperature varying from 1350 to 1450 °C. The influence of the sintering temperature, pulse-on and pulse-off time at wire-EDM on the surface roughness of the preforms has been investigated thoroughly. Experiments were conducted under different machining parameters in a CNC operated wire-cut EDM. The surface roughness of the machined surface was measured and critically analysed. The optimum surface roughness was achieved under the conditions of 6 μs pulse-on time, 9 μs pulse-off time and at sintering temperature of 1450 °C.

  17. Optimization of Machining Process Parameters for Surface Roughness of Al-Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2013-10-01

    Metal matrix composites (MMCs) have become a leading material among the various types of composite materials for different applications due to their excellent engineering properties. Among the various types of composites materials, aluminum MMCs have received considerable attention in automobile and aerospace applications. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like silicon carbide particles. In the present investigation Al-SiC composite was produced by stir casting process. The Brinell hardness of the alloy after SiC addition had increased from 74 ± 2 to 95 ± 5 respectively. The composite was machined using CNC turning center under different machining parameters such as cutting speed (S), feed rate (F), depth of cut (D) and nose radius (R). The effect of machining parameters on surface roughness (Ra) was studied using response surface methodology. Face centered composite design with three levels of each factor was used for surface roughness study of the developed composite. A response surface model for surface roughness was developed in terms of main factors (S, F, D and R) and their significant interactions (SD, SR, FD and FR). The developed model was validated by conducting experiments under different conditions. Further the model was optimized for minimum surface roughness. An error of 3-7 % was observed in the modeled and experimental results. Further, it was fond that the surface roughness of Al-alloy at optimum conditions is lower than that of Al-SiC composite.

  18. Prevalent vegetation growth enhancement in urban environment.

    PubMed

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-05-31

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.

  19. Beam related response of in vivo diode detectors for external radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baci, Syrja, E-mail: sbarci2013@gmail.com; Telhaj, Ervis; Malkaj, Partizan

    2016-03-25

    In Vivo Dosimetry (IVD) is a set of methods used in cancer treatment clinics to determine the real dose of radiation absorbed by target volume in a patient’s body. IVD has been widely implemented in radiotherapy treatment centers and is now recommended part of Quality Assurance program by many International health and radiation organizations. Because of cost and lack of specialized personnel, IVD has not been practiced as yet, in Albanian radiotherapy clinics. At Hygeia Hospital Tirana, patients are irradiated with high energy photons generated by Elekta Synergy Accelerators. We have recently started experimenting with the purpose of establishing anmore » IVD practice at this hospital. The first set of experiments was aimed at calibration of diodes that are going to be used for IVD. PMMA, phantoms by PTW were used to calibrate p – type Si, semiconductor diode dosimeters, made by PTW Freiburg for entrance dose. Response of the detectors is affected by energy of the beam, accumulated radiation dose, dose rate, temperature, angle against the beam axis, etc. Here we present the work done for calculating calibration factor and correction factors of source to surface distance, field size, and beam incidence for the entrance dose for both 6 MV photon beam and 18 MV photon beam. Dependence of dosimeter response was found to be more pronounced with source to surface distance as compared to other variables investigated.« less

  20. Prevalent vegetation growth enhancement in urban environment

    PubMed Central

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-01-01

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued. PMID:27185955

  1. From Hills to Holes: How Climate Change and Mining are Altering Runoff Processes in Canada

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2015-12-01

    Canadian environments are under considerable pressure from both climate and land-use change. While warming temperatures are widespread and amplified in the north, surface mining has resulted in large-scale landscape disturbance. How these changes affect catchment response is profound, fundamentally altering the cycling and delivery of water and geochemicals to the drainage network. In permafrost-underlain environments, coupled mass and energy processes control runoff response, and as ground thaw increases, new subsurface pathways become accessible while changing overall catchment storage. With surface mining, watersheds are altered such that they bare little resemblance to what existed prior to mining. In this presentation, data will be presented from long-term experiments exploring the impact of climate and mining on runoff processes in cold catchments using stable isotopes of water and associated hydrometric measurements. In southern Yukon, results from the Wolf Creek Research Basin highlights the influence of surface energy balances on controlling the timing and magnitude of flow response, with inter-annual variability largely driven by how atmospheric forcing interacts with permafrost-underlain areas of the catchment. In mountainous areas of southern British Columbia, surface mining reconfigures landscapes as valleys are filled with waste-rock. Mine-influenced catchments exhibit attenuated flows with delays in spring freshet and a more muted to precipitation. Stable isotopes in stream water suggests that both waste-rock and reference catchments are well mixed, however reference catchments are more responsive to enrichment and depletion events and that mine-influenced catchments had a heavier isotope signature than reference watersheds, suggesting enhanced influence of rainfall on recharge. In both cases, snow storage and release exerts considerable control on streamflow responses, and future changes in streamflow regimes will reflect both a changes in the snow regime and inherent catchment storage properties that are dynamic with time.

  2. Dynamic pushing on three frictional surfaces: maximum acceptable forces, cardiopulmonary and calf muscle metabolic responses in healthy men.

    PubMed

    Maikala, Rammohan V; Dempsey, Patrick G; Ciriello, Vincent M; O'Brien, Niall V

    2009-06-01

    Pushing is an important materials handling activity in many occupations; however, pushing-related physiological investigations are still in infancy. The purpose was to evaluate maximum acceptable forces and physiological responses while pushing on: treadmill (TREAD); plywood floor (PLY); and Teflon floor (TEF). Acceptable forces, cardiopulmonary and calf muscle oxygenation and blood volume responses were collected simultaneously while 12 men (age 39 +/- 13 years; height 178 +/- 6 cm; and body mass 91.5 +/- 16 kg) pushed for 2 h on each surface at their psychophysical workload. Participants selected higher forces on the PLY, resulting in higher pulmonary oxygen uptake compared to that of TEF (by approximately 9%) and TREAD (by approximately 18%). Pushing on the TEF demonstrated 50-56% lower blood volume changes and 1.5-1.8 times more oxygenation-force ratio than that for other surfaces. It is concluded that, to avoid a potential slip, participants were conservative in selecting acceptable forces to push on the slippery TEF. Part of this compensatory strategy on the TEF resulted in less muscle activity and, therefore, less demand for oxygen delivery to the calf muscle than for other surfaces. The present findings of significant force- and physiological-related differences in treadmill vs. high inertia pushcart clearly demonstrate that pushing experiments are essential to evaluate functional abilities of the workers.

  3. Variability in surface energy flux partitioning during Washita '92: Resulting effects on Penman-Monteith and Priestley-Taylor parameters

    USGS Publications Warehouse

    Kustas, William P.; Stannard, D.I.; Allwine, K.J.

    1996-01-01

    During the Washita '92 field experiment, the local surface energy balance was evaluated at four locations in the USDA-ARS Little Washita River Watershed near Chickasha, OK, using the Bowen ratio-energy balance (BREB) approach. For any given day, differences in the partitioning of the available energy appeared to be mostly a function of the type of vegetation at the site, while the actual magnitude of the fluxes was mostly affected by cloud cover. The soil surface was initially wet, and gradually dried during the field experiment. However, there was not a corresponding decrease in the evaporative fraction, which would have indicated a decreasing contribution of soil evaporation to the total latent heat flux. Ground weather data indicated a large shift in the direction and magnitude of the surface winds, and a significant increase in air temperature and vapor pressure deficit. During this period, the evaporative fraction actually increased at two of the four sites. The response of the different sites to the changing near- surface atmospheric conditions was studied in more detail by evaluating the canopy resistance (r(c)) to evaporation using the Penman-Monteith equation and the Priestley-Taylor parameter (??). Midday averages of r(c) and (??) tended to decrease (increase) with increasing vapor pressure deficit for two of the sites while such a trend was not evident for the other two sites. Estimates of stomatal resistances indicated that significant plant physiological differences existed between the sites containing weedy vegetation versus the grasses at the pasture/rangeland sites. Even though soil moisture conditions were relatively wet, ?? was less than 1 at all sites and there was no trend in ?? as a function of surface soil moisture conditions. These findings suggest that vegetation types in mixed agricultural/rangeland ecosystems can have significantly different responses to similar atmospheric forcing conditions.

  4. Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais.

    PubMed

    Gonzales Correa, Yenis Del Carmen; Faroni, Lêda R A; Haddi, Khalid; Oliveira, Eugênio E; Pereira, Eliseu José G

    2015-11-01

    Plant essential oils have been suggested as a suitable alternative for controlling stored pests worldwide. However, very little is known about the physiological or behavioral responses induced by these compounds in insect populations that are resistant to traditional insecticides. Thus, this investigation evaluated the toxicity (including the impacts on population growth) as well as the locomotory and respiratory responses induced by clove, Syzygium aromaticum L., and cinnamon, Cinnamomum zeylanicum L., essential oils in Brazilian populations of the maize weevil Sitophilus zeamais. We used populations that are resistant to phosphine and pyrethroids (PyPhR), only resistant to pyrethroids (PyR1 and PyR2) or susceptible to both insecticide types (SUS). The PyPhR population was more tolerant to cinnamon essential oil, and its population growth rate was less affected by both oil types. Insects from this population reduced their respiratory rates (i.e., CO2 production) after being exposed to both oil types and avoided (in free choice-experiments) or reduced their mobility on essential oil-treated surfaces. The PyR1 and PyR2 populations reduced their respiratory rates, avoided (without changing their locomotory behavior in no-choice experiments) essential oil-treated surfaces and their population growth rates were severely affected by both oil types. Individuals from SUS population increased their mobility on surfaces that were treated with both oil types and showed the highest levels of susceptibility to these oils. Our findings indicate that S. zeamais populations that are resistant to traditional insecticides might have distinct but possibly overlapping mechanisms to mitigate the actions of essential oils and traditional insecticides. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders

    PubMed Central

    King, Caitlin E; King, Gary M

    2012-01-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14–25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H2) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H2 uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H2 uptake was less sensitive than Bare H2 uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H2 uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material. PMID:22258097

  6. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

    PubMed

    Sun, Wen-Jing; Zhao, Hong-Xia; Cui, Feng-Jie; Li, Yun-Hong; Yu, Si-Lian; Zhou, Qiang; Qian, Jing-Ya; Dong, Ying

    2013-07-08

    Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM). The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

  7. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders.

    PubMed

    King, Caitlin E; King, Gary M

    2012-08-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14-25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H(2)) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H(2) uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H(2) uptake was less sensitive than Bare H(2) uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H(2) uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material.

  8. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology

    PubMed Central

    2013-01-01

    Background Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid’s oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One–factor-at-a-time experiments and response surface methodology (RSM). Results The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from “one–factor-at-a-time” experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. Conclusion The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives. PMID:23835418

  9. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Phillips, Cynthia B.; Meirion-Griffith, Gareth

    2017-10-01

    The planned exploration of Europa by NASA’s Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa’s landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a “neck” between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa’s subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts.Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa’s surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa’s surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  10. Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications.

    PubMed

    Guillemot, F; Porté, M C; Labrugère, C; Baquey, Ch

    2002-11-01

    Because of the Ti(3+) defects responsibility for dissociative adsorption of water onto TiO(2) surfaces and due to the hydroxyls influence on the biological behavior of titanium, controlling the Ti(3+) surface defects density by means of low-temperature vacuum annealing is proposed to improve the bone/implant interactions. Experiments have been carried out on Ti-6Al-4V alloys exhibiting a porous surface generated primarily by chemical treatment. XPS investigations have shown that low-temperature vacuum annealing can create a controlled number of Ti(3+) defects (up to 21% Ti(3+)/Ti(4+) at 573 K). High Ti(3+) defect concentration is linked to surface porosity. Such surfaces, exhibiting high hydrophilicity and microporosity, would confer to titanium biomaterials a great ability to interact with surrounding proteins and cells and hence would favor the bone anchorage of as-treated implants.

  11. A differential optical interferometer for measuring short pulses of surface acoustic waves.

    PubMed

    Shaw, Anurupa; Teyssieux, Damien; Laude, Vincent

    2017-09-01

    The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement. The interferometric response is compared with a direct electrical measurement obtained with a receiving wide bandwidth interdigital transducer and good correspondence is observed. The effects of varying the path difference of the interferometer and the measurement position on the surface are discussed. Pulse compression along the chirped interdigital transducer is observed experimentally. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cyclic arc plasma tests of RSI materials using a preheater

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.

    1973-01-01

    The results of a test program are reported in which a preheater was used with an arc plasma stream to study the thermal response of samples of candidate reusable surface insulation materials for the space shuttle. The preheater simulated the shuttle temperature history during the first and last portions of the test cycle, which could not be simulated by the air arc plasma flow. Pre- and post-test data taken for each of the materials included magnified views, optical properties, and chemical analyses. The test results indicate that the mullite base samples experience higher surface temperatures than the other materials at heating rates greater than 225 kw/sq m. The ceramic fibrous mullite and silica coatings show noncatalytic wall behavior. Internal temperature response data for the materials are compared and correlated with analytical predictions.

  13. Dynamic response of composite beams with induced-strain actuators

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh

    1994-05-01

    This paper presents an analytical-experimental study on dynamic response of open-section composite beams with actuation by piezoelectric devices. The analysis includes the essential features of open-section composite beam modeling, such as constrained warping and transverse shear deformation. A general plate segment of the beam with and without piezoelectric ply is modeled using laminated plate theory and the forces and displacement relations of this plate segment are then reduced to the force and displacement of the one-dimensional beam. The dynamic response of bending-torsion coupled composite beams excited by piezoelectric devices is predicted. In order to validate the analysis, kevlar-epoxy and graphite-epoxy beams with surface mounted pieziceramic actuators are tested for their dynamic response. The response was measured using accelerometer. Good correlation between analysis and experiment is achieved.

  14. Strategies of experiment standardization and response optimization in a rat model of hemorrhagic shock and chronic hypertension.

    PubMed

    Reynolds, Penny S; Tamariz, Francisco J; Barbee, Robert Wayne

    2010-04-01

    Exploratory pilot studies are crucial to best practice in research but are frequently conducted without a systematic method for maximizing the amount and quality of information obtained. We describe the use of response surface regression models and simultaneous optimization methods to develop a rat model of hemorrhagic shock in the context of chronic hypertension, a clinically relevant comorbidity. Response surface regression model was applied to determine optimal levels of two inputs--dietary NaCl concentration (0.49%, 4%, and 8%) and time on the diet (4, 6, 8 weeks)--to achieve clinically realistic and stable target measures of systolic blood pressure while simultaneously maximizing critical oxygen delivery (a measure of vulnerability to hemorrhagic shock) and body mass M. Simultaneous optimization of the three response variables was performed though a dimensionality reduction strategy involving calculation of a single aggregate measure, the "desirability" function. Optimal conditions for inducing systolic blood pressure of 208 mmHg, critical oxygen delivery of 4.03 mL/min, and M of 290 g were determined to be 4% [NaCl] for 5 weeks. Rats on the 8% diet did not survive past 7 weeks. Response surface regression model and simultaneous optimization method techniques are commonly used in process engineering but have found little application to date in animal pilot studies. These methods will ensure both the scientific and ethical integrity of experimental trials involving animals and provide powerful tools for the development of novel models of clinically interacting comorbidities with shock.

  15. Parallel In Situ Screening of Remediation Strategies for Improved Decision Making, Remedial Design, and Cost Savings

    DTIC Science & Technology

    2012-11-01

    vitamin B12. Additionally, a reductant reacts directly with hexavalent chromium to reduce it to the trivalent state. SRS®-M provides a readily...experiments ......................................................................... 27 Figure 8. Hexavalent chromium detected in ISMA effluent post in situ...ground surface cis-DCE cis-dichloroethene CERCLA Comprehensive Environmental Response, Compensation, and Liability Act Cr(VI) hexavalent chromium

  16. Growth and Yield Relative to Competition for Loblolly Pine Plantations to Midrotation- A Southeastern United States Regional Study

    Treesearch

    James H. Miller; Bruce R. Zutter; Shepard M. Zedaker; M. Boyd Edwards; Ray A. Newbold

    2003-01-01

    Loblolly pine (Pinus taeda L.) plantations were studied across 13 southeastern sites grown for 1.5 yr with near-complete control of woody, herbaceous, and woody plus herbaceous components during the first 3-5 yr. This multiple objective experiment (the COMProject) documents stand dynamics at the extreme corners of the response surface that...

  17. Teachers’ Relationship Closeness with Students as a Resource for Teacher Wellbeing: A Response Surface Analytical Approach

    PubMed Central

    Milatz, Anne; Lüftenegger, Marko; Schober, Barbara

    2015-01-01

    Teachers’ relationship quality with students has been argued to be an important source of teacher wellbeing. Thus, the current study aimed to investigate to what extent teachers’ relationship closeness toward students, combined with attachment security is a resource protecting against teacher burnout. Eighty-three elementary school teachers reported on their most and least attached student’s relationship closeness, their attachment security and levels of burnout, as measured by emotional exhaustion, depersonalization and personal accomplishment. Response surface analysis (RSA), enabling researchers to investigate the effect of congruence/incongruence of two predictors on an outcome, revealed that teachers’ depersonalization and emotional exhaustion were lowest when they developed homogenous close relationships toward the students within their classroom and when teachers in general made congruent relationship experiences. No RSA model could be specified for personal accomplishment, even though a correlational analysis revealed that increasing closeness with students fostered teachers’ personal accomplishment. Teachers’ secure attachment experiences were not directly related to burnout, but enhanced their capability to establish close relationships toward their students. Findings suggest that teachers’ relationships toward students are a resource for the teacher’s wellbeing, which highlights once again the importance of student–teacher relationships in education. PMID:26779045

  18. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion.

    PubMed

    Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-14

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  19. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  20. Enhancement factor statistics of surface enhanced Raman scattering in multiscale heterostructures of nanoparticles.

    PubMed

    Zito, Gianluigi; Rusciano, Giulia; Sasso, Antonio

    2016-08-07

    Suitable metal nanostructures may induce surface-enhanced Raman scattering (SERS) enhancement factors (EFs) large-enough to reach single-molecule sensitivity. However, the gap hot-spot EF probability density function (PDF) has the character of a long-tail distribution, which dramatically mines the reproducibility of SERS experiments. Herein, we carry out electrodynamic calculations based on a 3D finite element method of two plasmonic nanostructures, combined with Monte Carlo simulations of the EF statistics under different external conditions. We compare the PDF produced by a homodimer of nanoparticles with that provided by a self-similar trimer. We show that the PDF is sensitive to the spatial distribution of near-field enhancement specifically supported by the nanostructure geometry. Breaking the symmetry of the plasmonic system is responsible for inducing particular modulations of the PDF tail resembling a multiple Poisson distribution. We also study the influence that molecular diffusion towards the hottest hot-spot, or selective hot-spot targeting, might have on the EF PDF. Our results quantitatively assess the possibility of designing the response of a SERS substrate so as to contain the intrinsic EF PDF variance and significantly improving, in principle, the reproducibility of SERS experiments.

  1. Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards.

    PubMed

    Horwell, Claire J; Fenoglio, Ivana; Vala Ragnarsdottir, K; Sparks, R Steve J; Fubini, Bice

    2003-10-01

    The fine-grained character of volcanic ash generated in the long-lived eruption of the Soufrière Hills volcano, Montserrat, West Indies, raises the issue of its possible health hazards. Surface- and free-radical production has been closely linked to bioreactivity of dusts within the lung. In this study, electron paramagnetic resonance (EPR) techniques have been used, for the first time, on volcanic ash to measure the production of radicals from the surface of particles. Results show that concentrations of hydroxyl radicals (HO*) in respirable ash are two to three times higher than a toxic quartz standard. The dome-collapse ash contains cristobalite, a crystalline silica polymorph that may cause adverse health effects. EPR experiments indicate, however, that cristobalite in the ash does not contribute to HO* generation. Our results show that the main cause of reactivity is removable divalent iron (Fe2+), which is present in abundance on the surfaces of the particles and is very reactive in the lung. Our analyses show that fresh ash generates more HO* than weathered ash (which has undergone progressive oxidation and leaching of iron from exposed surfaces), an effect replicated experimentally by incubating fresh ash in dilute acid. HO* production experiments also indicate that iron-rich silicate minerals are responsible for surface reactivity in the Soufrière Hills ash.

  2. Factors Influencing Biofilm Formation in Streams: Bacterial Colonization, Detachment and Transport

    NASA Astrophysics Data System (ADS)

    Leff, L.

    2005-05-01

    Surfaces in aquatic systems develop biofilms containing microorganisms embedded in complex extracellular matrices. Properties of the surface, water, and colonizing organisms impact biofilm formation. Biofilm features, physical disturbance, and interactions between macro- and microscopic organisms, in turn, influence detachment. In spite of the importance of biofilms, much remains unknown about factors controlling biofilms in streams and other natural environments. Experiments were conducted in the laboratory and field to examine factors influencing surface colonization, and subsequent biofilm formation, and detachment. Microscopy methods, fluorescent in situ hybridization and confocal laser microscopy, were used to examine responses, including abundance of different taxa and biofilm depth. From these experiments, we determined that different taxa differ in their colonization ability based on properties like extracellular polysaccharide production and surface features, like hydrophobicity and that water chemistry, such as magnesium concentration, plays an important role. Moreover, detachment varies among taxa and with environmental conditions and may be enhanced by activities of macrofauna. Variation in detachment, in turn, influences bacterial transport and subsequent re-attachment. Overall, examination of attachment, detachment, and interactions in biofilms allows us to begin to understand how environmental conditions may impact the function of these communities in aquatic systems.

  3. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    NASA Astrophysics Data System (ADS)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  4. Weak hydrological sensitivity to temperature change over land, independent of climate forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjorn H.

    2017-04-01

    As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.

  5. Incorporating realistic surface longwave spectral emissivity in the CESM and the impact on simulated current climate and climate changes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Huang, X.; Flanner, M.; Yang, P.; Feldman, D.; Kuo, C.

    2016-12-01

    As of today, most state-of-the-art GCMs still assumes blackbody surface in their longwave radiation scheme. Recent works by Chen et al. (2014) and Feldman et al. (2014) have suggested that the surface spectral emissivity can impact the simulated radiation budget and climate change in a discernible way, especially in high latitudes. Using a recently developed global emissivity database that covers both far-IR and mid-IR, we incorporated the LW surface spectral emissivity into the radiation scheme of the CESM. Effort has been made to ensure a consistent treatment of surface upward LW broadband flux in both the land module and the atmospheric module of the CESM, an important aspect overlooked by the previous study. Then we assess impacts of the inclusion of surface spectral emissivity on simulated mean-state climate and climate changes by carrying out two sets of parallel runs. The first pair of experiments uses the standard slab-ocean CESM v1.1.1 to run two experiments: one control run using forcings at year 2000 level and one sensitivity run abruptly doubling the CO2. The second pair of experiment setup is identical to the first one but using the CESM that we have modified (Surface emissivity is a prognostic variable in our second pair of experiments). The current climate simulation results show that the Sahara desert region in the modified CESM has a warmer surface temperature than in the standard CESM by 2-3K. Over the high-latitude regions, the modified CESM tends to have a colder surface temperature than the standard CESM by 1-2.5K. As a result, the climatological sea ice coverage in the modified CESM is 8% more than it in the standard CESM in both Polar Regions. All these differences are statistically significant. As for simulated climate change in response to a doubling of CO2, the Arctic region in the modified CESM warms consistently faster than in the standard CESM by 1-2K while the Antarctic region shows a non-uniform pattern of differences between two models. Differences in the changes of sea ice coverage between two models show a zonally-uniform dipole pattern over both polar oceans. The reasons for such differences and its linkage with the change of surface spectral emissivity are further explained.

  6. Measurement of Gust Response on a Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.; Lucci, B. L.

    1995-01-01

    The paper presents benchmark experimental data on a gust response of an annular turbine cascade. The experiment was particularly designed to provide data for comparison with the results of a typical linearized gust-response analysis. Reduced frequency, Mach number, and incidence were varied independently. Except for the lowest reduced frequency, the gust velocity distribution was nearly sinusoidal. For the high inlet-velocity series of tests, the cascade was near choking. The mean flow was documented by measuring blade surface pressures and the cascade exit flow. High-response pressure transducers were used to measure the unsteady pressure distribution. Inlet-velocity components and turbulence parameters were measured using hot wire. In addition to the synchronous time-average pressure spectra, typical power spectra are included for several representative conditions.

  7. An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben; Rasch, Philip J.; Forster, Piers M.; Andrews, Timothy; Cole, Jason N. S.; Irvine, Peter J.; Ji, Duoying; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Robock, Alan; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2013-12-01

    of surface and atmospheric energy budget responses to CO2 and solar forcings can be used to reveal mechanisms of change in the hydrological cycle. We apply this energetic perspective to output from 11 fully coupled atmosphere-ocean general circulation models simulating experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), which achieves top-of-atmosphere energy balance between an abrupt quadrupling of CO2 from preindustrial levels (abrupt4xCO2) and uniform solar irradiance reduction. We divide the climate system response into a rapid adjustment, in which climate response is due to adjustment of the atmosphere and land surface on short time scales, and a feedback response, in which the climate response is predominantly due to feedback related to global mean temperature changes. Global mean temperature change is small in G1, so the feedback response is also small. G1 shows a smaller magnitude of land sensible heat flux rapid adjustment than in abrupt4xCO2 and a larger magnitude of latent heat flux adjustment, indicating a greater reduction of evaporation and less land temperature increase than abrupt4xCO2. The sum of surface flux changes in G1 is small, indicating little ocean heat uptake. Using an energetic perspective to assess precipitation changes, abrupt4xCO2 shows decreased mean evaporative moisture flux and increased moisture convergence, particularly over land. However, most changes in precipitation in G1 are in mean evaporative flux, suggesting that changes in mean circulation are small.

  8. ISMIP6 - initMIP: Greenland ice sheet model initialisation experiments

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew; Edwards, Tamsin

    2016-04-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. This intercomparison exercise (initMIP) aims at comparing, evaluating and improving the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experiments are conceived for the large-scale Greenland ice sheet and are designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The latter experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss first results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  9. The Role of Air-sea Coupling in the Response of Climate Extremes to Aerosols

    NASA Astrophysics Data System (ADS)

    Mahajan, S.

    2017-12-01

    Air-sea interactions dominate the climate of surrounding regions and thus also modulate the climate response to local and remote aerosol forcings. To clearly isolate the role of air-sea coupling in the climate response to aerosols, we conduct experiments with a full complexity atmosphere model that is coupled to a series of ocean models progressively increasing in complexity. The ocean models range from a data ocean model with prescribed SSTs, to a slab ocean model that only allows thermodynamic interactions, to a full dynamic ocean model. In a preliminary study, we have conducted single forcing experiments with black carbon aerosols in an atmosphere GCM coupled to a data ocean model and a slab ocean model. We find that while black carbon aerosols can intensify mean and extreme summer monsoonal precipitation over the Indian sub-continent, air-sea coupling can dramatically modulate this response. Black carbon aerosols in the vicinity of the Arabian Sea result in an increase of sea surface temperatures there in the slab ocean model, which intensify the low-level Somali Jet. The associated increase in moisture transport into Western India enhances the mean as well as extreme precipitation. In prescribed SST experiments, where SSTs are not allowed to respond BC aerosols, the response is muted. We will present results from a hierarchy of GCM simulations that investigate the role of air-sea coupling in the climate response to aerosols in more detail.

  10. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits

    PubMed Central

    Piattelli, Adriano; Quaranta, Alesandro

    2017-01-01

    Background Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods Calcium-modified (CA) and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Results Bone-implant contact (BIC) at the two-implant surfaces was significantly different in favor of the CA surface at 15 days (p = 0.027), while SLActive displayed not significantly higher values at 30 (p = 0.51) and 60 days (p = 0.061). Conclusion Both implant surfaces show an intimate interaction with newly formed bone. PMID:29445746

  11. Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.

    2014-08-01

    While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.

  12. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.

    2017-06-01

    Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.

  13. Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment

    NASA Astrophysics Data System (ADS)

    Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.

    2017-12-01

    All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid environments, characterize their chemical compositions, and improve the safety for future manned and unmanned missions to these bodies.

  14. Prevention of neutrophil extravasation by α2-adrenoceptor-mediated endothelial stabilization.

    PubMed

    Herrera-García, Ada María; Domínguez-Luis, María Jesús; Arce-Franco, María; Armas-González, Estefanía; Álvarez de La Rosa, Diego; Machado, José David; Pec, Martina K; Feria, Manuel; Barreiro, Olga; Sánchez-Madrid, Francisco; Díaz-González, Federico

    2014-09-15

    Adrenergic receptors are expressed on the surface of inflammation-mediating cells, but their potential role in the regulation of the inflammatory response is still poorly understood. The objectives of this work were to study the effects of α2-adrenergic agonists on the inflammatory response in vivo and to determine their mechanism of action. In two mouse models of inflammation, zymosan air pouch and thioglycolate-induced peritonitis models, the i.m. treatment with xylazine or UK14304, two α2-adrenergic agonists, reduced neutrophil migration by 60%. The α2-adrenergic antagonist RX821002 abrogated this effect. In flow cytometry experiments, the basal surface expression of L-selectin and CD11b was modified neither in murine nor in human neutrophils upon α2-agonist treatment. Similar experiments in HUVEC showed that UK14304 prevented the activation-dependent upregulation of ICAM-1. In contrast, UK14304 augmented electrical resistance and reduced macromolecular transport through a confluent HUVEC monolayer. In flow chamber experiments, under postcapillary venule-like flow conditions, the pretreatment of HUVECs, but not neutrophils, with α2-agonists decreased transendothelial migration, without affecting neutrophil rolling. Interestingly, α2-agonists prevented the TNF-α-mediated decrease in expression of the adherens junctional molecules, VE-cadherin, β-catenin, and plakoglobin, and reduced the ICAM-1-mediated phosphorylation of VE-cadherin by immunofluorescence and confocal analysis and Western blot analysis, respectively. These findings indicate that α2-adrenoceptors trigger signals that protect the integrity of endothelial adherens junctions during the inflammatory response, thus pointing at the vascular endothelium as a therapeutic target for the management of inflammatory processes in humans. Copyright © 2014 by The American Association of Immunologists, Inc.

  15. Calcification responses to diurnal variation in seawater carbonate chemistry by the coral Acropora formosa

    NASA Astrophysics Data System (ADS)

    Chan, W. Y.; Eggins, S. M.

    2017-09-01

    Significant diurnal variation in seawater carbonate chemistry occurs naturally in many coral reef environments, yet little is known of its effect on coral calcification. Laboratory studies on the response of corals to ocean acidification have manipulated the carbonate chemistry of experimental seawater to compare calcification rate changes under present-day and predicted future mean pH/Ωarag conditions. These experiments, however, have focused exclusively on differences in mean chemistry and have not considered diurnal variation. The aim of this study was to compare calcification responses of branching coral Acropora formosa under conditions with and without diurnal variation in seawater carbonate chemistry. To achieve this aim, we explored (1) a method to recreate natural diurnal variation in a laboratory experiment using the biological activities of a coral-reef mesocosm, and (2) a multi-laser 3D scanning method to accurately measure coral surface areas, essential to normalize their calcification rates. We present a cost- and time-efficient method of coral surface area estimation that is reproducible within 2% of the mean of triplicate measurements. Calcification rates were compared among corals subjected to a diurnal range in pH (total scale) from 7.8 to 8.2, relative to those at constant pH values of 7.8, 8.0 or 8.2. Mean calcification rates of the corals at the pH 7.8-8.2 (diurnal variation) treatment were not statistically different from the pH 8.2 treatment and were 34% higher than the pH 8.0 treatment despite similar mean seawater pH and Ωarag. Our results suggest that calcification of adult coral colonies may benefit from diurnal variation in seawater carbonate chemistry. Experiments that compare calcification rates at different constant pH without considering diurnal variation may have limitations.

  16. Use of optical tweezers to probe epithelial mechanosensation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    2010-01-01

    Cellular mechanosensation mechanisms have been implicated in a variety of disease states. Specifically in renal tubules, the primary cilium and associated mechanosensitive ion channels are hypothesized to play a role in water and salt homeostasis, with relevant disease states including polycystic kidney disease and hypertension. Previous experiments investigating ciliary-mediated cellular mechanosensation have used either fluid flow chambers or micropipetting to elicit a biological response. The interpretation of these experiments in terms of the ``ciliary hypothesis'' has been difficult due the spatially distributed nature of the mechanical disturbance-several competing hypotheses regarding possible roles of primary cilium, glycocalyx, microvilli, cell junctions, and actin cytoskeleton exist. I report initial data using optical tweezers to manipulate individual primary cilia in an attempt to elicit a mechanotransduction response-specifically, the release of intracellular calcium. The advantage of using laser tweezers over previous work is that the applied disturbance is highly localized. I find that stimulation of a primary cilium elicits a response, while stimulation of the apical surface membrane does not. These results lend support to the hypothesis that the primary cilium mediates transduction of mechanical strain into a biochemical response in renal epithelia.

  17. Application of the experimental design of experiments (DoE) for the determination of organotin compounds in water samples using HS-SPME and GC-MS/MS.

    PubMed

    Coscollà, Clara; Navarro-Olivares, Santiago; Martí, Pedro; Yusà, Vicent

    2014-02-01

    When attempting to discover the important factors and then optimise a response by tuning these factors, experimental design (design of experiments, DoE) gives a powerful suite of statistical methodology. DoE identify significant factors and then optimise a response with respect to them in method development. In this work, a headspace-solid-phase micro-extraction (HS-SPME) combined with gas chromatography tandem mass spectrometry (GC-MS/MS) methodology for the simultaneous determination of six important organotin compounds namely monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), diphenyltin (DPhT), triphenyltin (TPhT) has been optimized using a statistical design of experiments (DOE). The analytical method is based on the ethylation with NaBEt4 and simultaneous headspace-solid-phase micro-extraction of the derivative compounds followed by GC-MS/MS analysis. The main experimental parameters influencing the extraction efficiency selected for optimization were pre-incubation time, incubation temperature, agitator speed, extraction time, desorption temperature, buffer (pH, concentration and volume), headspace volume, sample salinity, preparation of standards, ultrasonic time and desorption time in the injector. The main factors (excitation voltage, excitation time, ion source temperature, isolation time and electron energy) affecting the GC-IT-MS/MS response were also optimized using the same statistical design of experiments. The proposed method presented good linearity (coefficient of determination R(2)>0.99) and repeatibilty (1-25%) for all the compounds under study. The accuracy of the method measured as the average percentage recovery of the compounds in spiked surface and marine waters was higher than 70% for all compounds studied. Finally, the optimized methodology was applied to real aqueous samples enabled the simultaneous determination of all compounds under study in surface and marine water samples obtained from Valencia region (Spain). © 2013 Elsevier B.V. All rights reserved.

  18. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  19. Ion association at discretely-charged dielectric interfaces: Giant charge inversion

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yong; Wu, Jianzhong

    2017-07-01

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  20. A nanostructured surface increases friction exponentially at the solid-gas interface.

    PubMed

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  1. A nanostructured surface increases friction exponentially at the solid-gas interface

    NASA Astrophysics Data System (ADS)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  2. Predicting Glucose Sensor Behavior in Blood Using Transport Modeling: Relative Impacts of Protein Biofouling and Cellular Metabolic Effects

    PubMed Central

    Novak, Matthew T.; Yuan, Fan; Reichert, William M.

    2013-01-01

    Background Tissue response to indwelling glucose sensors remains a confounding barrier to clinical application. While the effects of fully formed capsular tissue on sensor response have been studied, little has been done to understand how tissue interactions occurring before capsule formation hinder sensor performance. Upon insertion in subcutaneous tissue, the sensor is initially exposed to blood, blood borne constituents, and interstitial fluid. Using human whole blood as a simple ex vivo experimental system, the effects of protein accumulation at the sensor surface (biofouling effects) and cellular consumption of glucose in both the biofouling layer and in the bulk (metabolic effects) on sensor response were assessed. Methods Medtronic MiniMed SofSensor glucose sensors were incubated in whole blood, plasma-diluted whole blood, and cell-free platelet-poor plasma (PPP) to analyze the impact of different blood constituents on sensor function. Experimental conditions were then simulated using MATLAB to predict the relative impacts of biofouling and metabolic effects on the observed sensor responses. Results Protein biofouling in PPP in both the experiments and the simulations was found to have no interfering effect upon sensor response. Experimental results obtained with whole and dilute blood showed that the sensor response was markedly affected by blood borne glucose-consuming cells accumulated in the biofouling layer and in the surrounding bulk. Conclusions The physical barrier to glucose transport presented by protein biofouling does not hinder glucose movement to the sensor surface, and the consumption of glucose by inflammatory cells, and not erythrocytes, proximal to the sensor surface has a substantial effect on sensor response and may be the main culprit for anomalous sensor behavior immediately following implantation. PMID:24351181

  3. Tinkering With AGCMs To Investigate Atmospheric Behavior

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.

    2014-12-01

    My experience teaching a course in global climate modeling has proven that students (and instructors) with wide-ranging backgrounds in earth-science learn effectively about the complexity of climate by tinker with model components. As an example, I will present a series of experiments in an AGCM with highly simplified geometries for ocean and land to test the response of the atmosphere to variations in basic parameters. The figure below shows an example of how the zonal wind changes with surface roughness and orography. The pinnacle of experiments explored in my course was the outcome of a homework assignment where students reduced the cloud droplet radius by 40% over ocean, and the results surprised students and instructor alike.

  4. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; ...

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  5. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  6. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    PubMed

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  7. The G4Foam Experiment: Global climate impacts of regional ocean albedo modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, Corey J.; Robock, Alan; Xia, Lili

    Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such amore » foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150%) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6Wm -2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30°N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June–July–August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5 W m -2 is amplified through a series of positive cloud feedbacks, in which more shortwave radiation is reflected. Finally, the precipitation response is primarily the result of the intensification of the southern Hadley cell, as its mean position migrates northward and away from the Equator in response to the asymmetric cooling.« less

  8. The G4Foam Experiment: Global climate impacts of regional ocean albedo modification

    DOE PAGES

    Gabriel, Corey J.; Robock, Alan; Xia, Lili; ...

    2017-01-12

    Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such amore » foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150%) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6Wm -2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30°N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June–July–August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5 W m -2 is amplified through a series of positive cloud feedbacks, in which more shortwave radiation is reflected. Finally, the precipitation response is primarily the result of the intensification of the southern Hadley cell, as its mean position migrates northward and away from the Equator in response to the asymmetric cooling.« less

  9. Polymerization speed and diffractive experiments in polymer network LC test cells

    NASA Astrophysics Data System (ADS)

    Braun, Larissa; Gong, Zhen; Habibpourmoghadam, Atefeh; Schafforz, Samuel L.; Wolfram, Lukas; Lorenz, Alexander

    2018-02-01

    Polymer-network liquid crystals (LCs), where the response properties of a LC can be enhanced by the presence of a porous polymer network, are investigated. In the reported experiments, liquid crystals were doped with a small amount (< 10%) of photo-curable acrylate monomers. Samples with surface grafted photoinitiators, dissolvable photoinitiators, and samples with both kinds of photoinitiators were prepared. Both conventional (planar electrodes) and diffractive (interdigitated electrodes) test cells were used. These samples were exposed with a UV light source and changes of their capacitance were investigated with an LCR meter during exposure. Due to the presence of the in-situ generated polymer network, the electro-optic response properties of photo cured samples were enhanced. For example, their continuous phase modulation properties led to more localized responses in samples with interdigitated electrodes, which caused suppression of selected diffraction orders in the diffraction patterns recorded in polymer network LC samples. Moreover, capacitance changes were investigated during photopolymerization of a blue phase LC.

  10. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  11. Biogeochemical carbon coupling influences global precipitation in geoengineering experiments

    NASA Astrophysics Data System (ADS)

    Fyfe, J. C.; Cole, J. N. S.; Arora, V. K.; Scinocca, J. F.

    2013-02-01

    Abstract Climate model studies in which CO2-induced global warming is offset by engineered decreases of incoming solar radiation are generally robust in their prediction of reduced amounts of global precipitation. While this precipitation response has been explained on the basis of changes in net radiation controlling evaporative processes at the surface, there has been relatively little consideration of the relative role of biogeochemical carbon-cycle interactions. To address this issue, we employ an Earth System Model that includes oceanic and terrestrial carbon components to isolate the impact of biogeochemical carbon coupling on the precipitation response in geoengineering experiments for two types of solar radiation management. We show that carbon coupling is responsible for a large fraction of the global precipitation reduction in such geoengineering experiments and that the primary effect comes from reduced transpiration through the leaves of plants and trees in the terrestrial component of the carbon cycle due to elevated CO2. Our results suggest that biogeochemical interactions are as important as changes in net radiation and that climate models that do not account for such carbon coupling may significantly underestimate precipitation reductions in a geoengineered world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JIEIC..97..185G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JIEIC..97..185G"><span>Process Parameters Optimization in Single Point Incremental Forming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulati, Vishal; Aryal, Ashmin; Katyal, Puneet; Goswami, Amitesh</p> <p>2016-04-01</p> <p>This work aims to optimize the formability and surface roughness of parts formed by the single-point incremental forming process for an Aluminium-6063 alloy. The tests are based on Taguchi's L18 orthogonal array selected on the basis of DOF. The tests have been carried out on vertical machining center (DMC70V); using CAD/CAM software (SolidWorks V5/MasterCAM). Two levels of tool radius, three levels of sheet thickness, step size, tool rotational speed, feed rate and lubrication have been considered as the input process parameters. Wall angle and surface roughness have been considered process responses. The influential process parameters for the formability and surface roughness have been identified with the help of statistical tool (response table, main effect plot and ANOVA). The parameter that has the utmost influence on formability and surface roughness is lubrication. In the case of formability, lubrication followed by the tool rotational speed, feed rate, sheet thickness, step size and tool radius have the influence in descending order. Whereas in surface roughness, lubrication followed by feed rate, step size, tool radius, sheet thickness and tool rotational speed have the influence in descending order. The predicted optimal values for the wall angle and surface roughness are found to be 88.29° and 1.03225 µm. The confirmation experiments were conducted thrice and the value of wall angle and surface roughness were found to be 85.76° and 1.15 µm respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730016373','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730016373"><span>Inversion layer solar cell fabrication and evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Call, R. L.</p> <p>1972-01-01</p> <p>Silicon solar cells with induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) supplying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the inversion layer cell response to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. Theory of the conductance of the inversion layer vs. strength of the inversion layer was compared with experiment and found to match. Theoretical determinations of junction depth and inversion layer strength were made as a function of the surface potential for the transparent electrode cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27433013','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27433013"><span>Diatoms and diatomaceous earth as novel poultry vaccine adjuvants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nazmi, A; Hauck, R; Davis, A; Hildebrand, M; Corbeil, L B; Gallardo, R A</p> <p>2017-02-01</p> <p>Diatoms are single cell eukaryotic microalgae; their surface possesses a porous nanostructured silica cell wall or frustule. Diatomaceous earth (DE) or diatomite is a natural siliceous sediment of diatoms. Since silica has been proved to have adjuvant capabilities, we propose that diatoms and DE may provide an inexpensive and abundant source of adjuvant readily available to use in livestock vaccines.In a first experiment, the safety of diatoms used as an adjuvant for in-ovo vaccination was investigated. In a second experiment, we assessed the humoral immune response after one in-ovo vaccination with inactivated Newcastle Disease Virus (NDV) and DE as adjuvant followed by 2 subcutaneous boosters on d 21 and 29 of age. In both experiments, results were compared to Freund's incomplete adjuvant and aluminum hydroxide.No detrimental effects on hatchability and chick quality were detected after in-ovo inoculation of diatoms and DE in experiments 1 and 2 respectively. In experiment 2 no humoral responses were detected after the in-ovo vaccination until 29 d of age. Seven d after the second subcutaneous booster an antibody response against NDV was detected in chickens that had received vaccines adjuvanted with Freund's incomplete adjuvant, aluminum hydroxide, and DE. These responses became significantly higher 10 d after the second booster. Finally, 15 d after the second booster, the humoral responses induced by the vaccine with Freund's incomplete adjuvant were statistically higher, followed by comparable responses induced by vaccines containing DE or aluminum hydroxide that were significantly higher than DE+PBS, PBS+INDV and PBS alone. From an applied perspective, we can propose that DE can serve as a potential adjuvant for vaccines against poultry diseases. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811476B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811476B"><span>Keeping the secret: Insights from repeated catchment-scale tracer experiments under transient conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bogner, Christina; Hauhs, Michael; Lange, Holger</p> <p>2016-04-01</p> <p>Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (< 50 cm) with the bedrock partly visible at the surface. In G1 (irrigated area approximately 1000 m2), tracer experiments were conducted under a roof between 1993 and 2003 during steady state flow conditions. In contrast, in F4 (irrigated area approximately 500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day-1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity, at the catchment scale using tracer experiments. Rather, the series demonstrate the utter importance of the initial and boundary conditions which largely determine the response of the system to inert tracer pulses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51F1880R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51F1880R"><span>Integrating Nutrient Enrichment and Forest Management Experiments in Sweden to Constrain the Process-Based Land Surface Model ORCHIDEE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Resovsky, A.; Luyssaert, S.; Guenet, B.; Peylin, P.; Lansø, A. S.; Vuichard, N.; Messina, P.; Smith, B.; Ryder, J.; Naudts, K.; Chen, Y.; Otto, J.; McGrath, M.; Valade, A.</p> <p>2017-12-01</p> <p>Understanding coupling between carbon (C) and nitrogen (N) cycling in forest ecosystems is key to predicting global change. Numerous experimental studies have demonstrated the positive response of stand-level photosynthesis and net primary production (NPP) to atmospheric CO2 enrichment, while N availability has been shown to exert an important control on the timing and magnitude of such responses. However, several factors complicate efforts to precisely represent ecosystem-level C and N cycling in the current generation of land surface models (LSMs), including sparse in-situ data, uncertainty with regard to key state variables and disregard for the effects of natural and anthropogenic forest management. In this study, we incorporate empirical data from N-fertilization experiments at two long-term manipulation sites in Sweden to improve the representation of C and N interaction in the ORCHIDEE land surface model. Our version of the model represents the union of two existing ORCHIDEE branches: 1) ORCHIDEE-CN, which resolves processes related to terrestrial C and N cycling, and 2) ORCHIDEE-CAN, which integrates a multi-layer canopy structure and includes representation of forest management practices. Using this new model branch (referred to as ORCHIDEE-CN-CAN), we aim to replicate the growth patterns of managed forests both with and without N limitations. Our hope is that the results, in combination with measurements of various ecosystem parameters (such as soil N) will facilitate LSM optimization, inform future model development, and reduce structural uncertainty in global change predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25226508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25226508"><span>Abiotic degradation of glyphosate into aminomethylphosphonic acid in the presence of metals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ascolani Yael, J; Fuhr, J D; Bocan, G A; Daza Millone, A; Tognalli, N; Dos Santos Afonso, M; Martiarena, M L</p> <p>2014-10-08</p> <p>Glyphosate [N-phosphono-methylglycine (PMG)] is the most used herbicide worldwide, particularly since the development of transgenic glyphosate-resistant (GR) crops. Aminomethylphosphonic acid (AMPA) is the main glyphosate metabolite, and it may be responsible for GR crop damage upon PMG application. PMG degradation into AMPA has hitherto been reckoned mainly as a biological process, produced by soil microorganisms (bacteria and fungi) and plants. In this work, we use density functional calculations to identify the vibrational bands of PMG and AMPA in surface-enhanced Raman spectroscopy (SERS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra experiments. SERS shows the presence of AMPA after glyphosate is deposited from aqueous solution on different metallic surfaces. AMPA is also detected in ATR-FTIR experiments when PMG interacts with metallic ions in aqueous solution. These results reveal an abiotic degradation process of glyphosate into AMPA, where metals play a crucial role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4410306O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4410306O"><span>Fluid Pocket Generation in Response to Heterogeneous Reactivity of a Rock Fracture Under Hydrothermal Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okamoto, A.; Tanaka, H.; Watanabe, N.; Saishu, H.; Tsuchiya, N.</p> <p>2017-10-01</p> <p>Fractures are the location of various water-rock interactions within the Earth's crust; however, the impact of the chemical heterogeneity of fractures on hydraulic properties is poorly understood. We conducted flow-through experiments on the dissolution of granite with a tensile fracture at 350°C and fluid pressure of 20 MPa with confining pressure of 40 MPa. The aperture structures were evaluated by X-ray computed tomography before and after the experiments. Under the experimental conditions, quartz grains dissolve rapidly to produce grain-scale pockets on the fracture surface, whereas altered feldspar grains act as asperities to sustain the open cavities. The fracture contained gouge with large surface area. The feedback between fluid flow and the rapid dissolution of gouge material produced large fluid pockets, whereas permeability did not always increase significantly. Such intense hydrological-chemical interactions could strongly influence the porosity-permeability relationship of fractured reservoirs in the crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18393688','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18393688"><span>Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix lander.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schulze-Makuch, Dirk; Turse, Carol; Houtkooper, Joop M; McKay, Christopher P</p> <p>2008-04-01</p> <p>In the time since the Viking life-detection experiments were conducted on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the martian surface chemistry and the Viking lander results remain puzzling. Nonbiological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Plumb et al., 1989; Quinn and Zent, 1999; Klein, 1999; Yen et al., 2000), but problems remain regarding the lifetime, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis that favors the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report on laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix lander transmits its first results from the martian surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010020470&hterms=flower&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dflower','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010020470&hterms=flower&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dflower"><span>Mars Greenhouse Experiment Module: An Experiment to Grow Flowers on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>MacCallum, T. K.; Poynter, J. E.; McKay, C. P.</p> <p>2000-01-01</p> <p>NASA has entered a new phase of in-depth exploration of the planets where robotic exploration of the Solar System is focusing on in-situ missions that pave the way for human exploration. Creating a human presence on Mars will require specialized knowledge and experience concerning the Martian environment and validated technologies that will provide life-supporting consumables. An understanding of the response of terrestrial organisms to the Martian environment with respect to potential deleterious effects on crew health and changes to biological processes will be paramount. In response to these challenges an innovative selfcontained flight experiment is proposed, which is designed to assess the biocompatibility of the Martian environment by germinating seeds and following their growth through to flowering. The experiment, dubbed Mars Greenhouse Experiment Module (Mars GEM), will be accomplished in a sealed pressurized growth chamber or 'Mars Greenhouse'. Seeds will be grown in Martian soil and the Mars Greenhouse will provide ultraviolet-radiation protected, thermal-controlled environment for plant growth that actively controls the CO2 (required nutrient) and O2 (generated by the plants) levels in the chamber. The simple, but visually dramatic, demonstration of the potential to grow a plant in a man-made environment on the surface of Mars should establish a strong connection between current robotic missions and future human habitation on Mars.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790022948','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790022948"><span>Analysis and interpretation of Viking labeled release experimental results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levin, G. V.</p> <p>1979-01-01</p> <p>The Viking Labeled Release (LR) life detection experiment on the surface of Mars produced data consistent with a biological interpretation. In considering the plausibility of this interpretation, terrestrial life forms were identified which could serve as models for Martian microbial life. Prominent among these models are lichens which are known to survive for years in a state of cryptobiosis, to grow in hostile polar environments, to exist on atmospheric nitrogen as sole nitrogen source, and to survive without liquid water by absorbing water directly from the atmosphere. Another model is derived from the endolithic bacteria found in the dry Antarctic valleys; preliminary experiments conducted with samples of these bacteria indicate that they produce positive LR responses approximating the Mars results. However, because of the hositility of the Martian environment to life, and the failure to find organics on the surface of Mars, a number of nonbiological explanations were advanced to account for the Viking LR data. A reaction of the LR nutrient with putative surface hydrogen peroxide is the leading candidate. Other possibilities raised include reactions caused by or with ultraviolet irradiation, gamma-Fe2O3, metalloperoxides or superoxides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040161141','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040161141"><span>Quasi-Liquid Layer Formation on Ice under Stratospheric Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McNeill, V. Faye; Loerting, Thomas; Trout, Bernhardt L.; Molina, Luisa T.; Molina, Mario J.</p> <p>2004-01-01</p> <p>Characterization of the interaction of hydrogen chloride (HCl) with ice is essential to understanding at a molecular level the processes responsible for ozone depletion involving polar stratospheric cloud (PSC) particles. To explain the catalytic role PSC particle surfaces play during chlorine activation, we proposed previously that HCl induces the formation of a disordered region on the ice surface, a quasi-liquid layer (QLL), at stratospheric conditions. The QLL is known to exist in pure ice crystals at temperatures near the melting point, but its existence at stratospheric temperatures (-85 C to -70 C) had not been reported yet. We studied the interaction of HCl with ice under stratospheric conditions using the complementary approach of a) ellipsometry to directly monitor the ice surface, using chemical ionization mass spectrometry (CIMS) to monitor the gas phase species present in the ellipsometry experiments, and b) flow-tube experiments with CIMS detection. Here we show that trace amounts of HCl induce QLL formation at stratospheric temperatures, and that the QLL enhances the chlorine-activation reaction of HCl with chlorine nitrate (ClONO2), and also enhances acetic acid (CH3COOH) adsorption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1806c0007R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1806c0007R"><span>Optimal design of a piezoelectric transducer for exciting guided wave ultrasound in rails</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramatlo, Dineo A.; Wilke, Daniel N.; Loveday, Philip W.</p> <p>2017-02-01</p> <p>An existing Ultrasonic Broken Rail Detection System installed in South Africa on a heavy duty railway line is currently being upgraded to include defect detection and location. To accomplish this, an ultrasonic piezoelectric transducer to strongly excite a guided wave mode with energy concentrated in the web (web mode) of a rail is required. A previous study demonstrated that the recently developed SAFE-3D (Semi-Analytical Finite Element - 3 Dimensional) method can effectively predict the guided waves excited by a resonant piezoelectric transducer. In this study, the SAFE-3D model is used in the design optimization of a rail web transducer. A bound-constrained optimization problem was formulated to maximize the energy transmitted by the transducer in the web mode when driven by a pre-defined excitation signal. Dimensions of the transducer components were selected as the three design variables. A Latin hypercube sampled design of experiments that required a total of 500 SAFE-3D analyses in the design space was employed in a response surface-based optimization approach. The Nelder-Mead optimization algorithm was then used to find an optimal transducer design on the constructed response surface. The radial basis function response surface was first verified by comparing a number of predicted responses against the computed SAFE-3D responses. The performance of the optimal transducer predicted by the optimization algorithm on the response surface was also verified to be sufficiently accurate using SAFE-3D. The computational advantages of SAFE-3D in optimal transducer design are noteworthy as more than 500 analyses were performed. The optimal design was then manufactured and experimental measurements were used to validate the predicted performance. The adopted design method has demonstrated the capability to automate the design of transducers for a particular rail cross-section and frequency range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.M1319W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.M1319W"><span>Using a Photon Beam for Thermal Nociceptive Threshold Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, Azida; Anderson, Jeffery; Sherwood, Spencer</p> <p></p> <p>In humans, risk of diabetes and diabetic complications increases with age and duration of prediabetic state. In an effort to understand the progression of this disease scientists have evaluated the deterioration of the nervous system. One of the current methods used in the evaluation of the deterioration of the nervous system is through thermal threshold experiments. An incremental Hot / Cold Plate Analgesia Meter (IITC Life Science,CA is used to linearly increase the plate temperature at a rate of 10 ºC min-1 with a cutoff temperature of 55 ºC. Hind limb heat pain threshold (HPT) will be defined as a plate temperature at which the animal abruptly withdraws either one of its hind feet from the plate surface in a sharp move, typically followed by licking of the lifted paw. One of the disadvantages of using this hot plate method is in determining the true temperature at which the paw was withdrawn. While the temperature of the plate is known the position of the paw on the surface may vary; occasionally being cupped resulting in a temperature differentiation between the plate and the paw. During experiments the rats may urine onto the plate changing the temperature of the surface again resulting in reduced accuracy as to the withdrawal threshold. We propose here a new method for nociceptive somatic experiments involving the heat pain threshold experiments. This design employs the use of a photon beam to detect thermal response from an animal model. The details of this design is presented. Funded by the Undergraduate Research Council at the University of Central Arkansas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510675L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510675L"><span>An Observing System Simulation Experiment of assimilating leaf area index and soil moisture over cropland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe</p> <p>2013-04-01</p> <p>A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52524','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52524"><span>Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>P. J. Hanson; A. L. Gill; X. Xu; J. R. Phillips; D. J. Weston; Randy Kolka; J. S. Riggs; L. A. Hook</p> <p>2016-01-01</p> <p>Peatland measurements of CO2 and CH4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29508','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29508"><span>Mapping ground cover using hyperspectral remote sensing after the 2003 Simi and Old wildfires in southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Sarah A. Lewis; Leigh B. Lentile; Andrew T. Hudak; Peter R. Robichaud; Penelope Morgan; Michael J. Bobbitt</p> <p>2007-01-01</p> <p>Wildfire effects on the ground surface are indicative of the potential for post-fire watershed erosion response. Areas with remaining organic ground cover will likely experience less erosion than areas of complete ground cover combustion or exposed mineral soil. The Simi and Old fires burned ~67,000 ha in southern California in 2003. Burn severity indices calculated...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..113a2008Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..113a2008Y"><span>Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan</p> <p>2018-02-01</p> <p>The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..330a2096N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..330a2096N"><span>Optimization of process parameters in welding of dissimilar steels using robot TIG welding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navaneeswar Reddy, G.; VenkataRamana, M.</p> <p>2018-03-01</p> <p>Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930019098','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930019098"><span>Data bases for LDEF results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bohnhoff-Hlavacek, Gail</p> <p>1993-01-01</p> <p>The Long Duration Exposure Facility (LDEF) carried 57 experiments and 10,000 specimens for some 200 LDEF experiment investigators. The external surface of LDEF had a large variety of materials exposed to the space environment which were tested preflight, during flight, and post flight. Thermal blankets, optical materials, thermal control paints, aluminum, and composites are among the materials flown. The investigations have produced an abundance of analysis results. One of the responsibilities of the Boeing Support Contract, Materials and Systems Special Investigation Group, is to collate and compile that information into an organized fashion. The databases developed at Boeing to accomplish this task is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016icaa.book..553W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016icaa.book..553W"><span>Ultrasonic fatigue of SiC particle reinforced aluminum in the VHCF-regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, M.; Wagner, G.; Eifler, D.</p> <p></p> <p>At the WKK ultrasonic testing facilities (UTF) are used to perform fatigue experiments in the VHCF regime with a frequency of 20 kHz. These systems allow an on-line characterization of the actual fatigue state by changes of different process parameters such as generator power, displacement, temperature or frequency-response characteristic. Moreover the experiments can be interrupted at user defined events in order to investigate variations of the surface microstructure or changes in the electrical resistance of the specimens. The fatigue tests were realized as load increase tests as well as constant amplitude tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040110894','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040110894"><span>A Surrogate Approach to the Experimental Optimization of Multielement Airfoils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Otto, John C.; Landman, Drew; Patera, Anthony T.</p> <p>1996-01-01</p> <p>The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18837366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18837366"><span>[Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie</p> <p>2008-07-01</p> <p>Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..493M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..493M"><span>Model tropical Atlantic biases underpin diminished Pacific decadal variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGregor, Shayne; Stuecker, Malte F.; Kajtar, Jules B.; England, Matthew H.; Collins, Mat</p> <p>2018-06-01</p> <p>Pacific trade winds have displayed unprecedented strengthening in recent decades1. This strengthening has been associated with east Pacific sea surface cooling2 and the early twenty-first-century slowdown in global surface warming2,3, amongst a host of other substantial impacts4-9. Although some climate models produce the timing of these recently observed trends10, they all fail to produce the trend magnitude2,11,12. This may in part be related to the apparent model underrepresentation of low-frequency Pacific Ocean variability and decadal wind trends2,11-13 or be due to a misrepresentation of a forced response1,14-16 or a combination of both. An increasingly prominent connection between the Pacific and Atlantic basins has been identified as a key driver of this strengthening of the Pacific trade winds12,17-20. Here we use targeted climate model experiments to show that combining the recent Atlantic warming trend with the typical climate model bias leads to a substantially underestimated response for the Pacific Ocean wind and surface temperature. The underestimation largely stems from a reduction and eastward shift of the atmospheric heating response to the tropical Atlantic warming trend. This result suggests that the recent Pacific trends and model decadal variability may be better captured by models with improved mean-state climatologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JSV...319.1150R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JSV...319.1150R"><span>Nonlinear dynamic modeling of surface defects in rolling element bearing systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rafsanjani, Ahmad; Abbasion, Saeed; Farshidianfar, Anoushiravan; Moeenfard, Hamid</p> <p>2009-01-01</p> <p>In this paper an analytical model is proposed to study the nonlinear dynamic behavior of rolling element bearing systems including surface defects. Various surface defects due to local imperfections on raceways and rolling elements are introduced to the proposed model. The contact force of each rolling element described according to nonlinear Hertzian contact deformation and the effect of internal radial clearance has been taken into account. Mathematical expressions were derived for inner race, outer race and rolling element local defects. To overcome the strong nonlinearity of the governing equations of motion, a modified Newmark time integration technique was used to solve the equations of motion numerically. The results were obtained in the form of time series, frequency responses and phase trajectories. The validity of the proposed model verified by comparison of frequency components of the system response with those obtained from experiments. The classical Floquet theory has been applied to the proposed model to investigate the linear stability of the defective bearing rotor systems as the parameters of the system changes. The peak-to-peak frequency response of the system for each case is obtained and the basic routes to periodic, quasi-periodic and chaotic motions for different internal radial clearances are determined. The current study provides a powerful tool for design and health monitoring of machine systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.166..503J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.166..503J"><span>Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun</p> <p>2018-03-01</p> <p>Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant sensitivity responses are found over the karst regions, including pronounced warming and cooling effects on the near-surface atmosphere from barren and forested land cover, respectively; (3) the barren ground in the karst regions provides conditions favourable for convective development under certain conditions. Therefore, it is suggested that karst and non-karst landscapes should be distinguished, and their physical processes should be considered for future model development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22915455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22915455"><span>Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moon, So-Hee; Lee, Seung-Jae; Park, Il-Song; Lee, Min-Ho; Soh, Yun-Jo; Bae, Tae-Sung; Kim, Hyung-Seop</p> <p>2012-11-01</p> <p>Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti-6Al-4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti-6Al-4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti-6Al-4V alloy surface in tibiae of rats. Ti-6Al-4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat-, and bisphosphonate-treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE-SEM and EDS. In vitro, the drug loading capacity of the Ti-6Al-4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate-treated Ti-6Al-4V alloy implants with nanotubular surfaces have positive effects in bone-to-implant contact. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..358a2042S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..358a2042S"><span>Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samsuri, S.; Amran, N. A.; Jusoh, M.</p> <p>2018-05-01</p> <p>In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24473205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24473205"><span>Ultrasound-assisted extraction of Mangiferin from Mango (Mangifera indica L.) leaves using response surface methodology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zou, Tang-Bin; Xia, En-Qin; He, Tai-Ping; Huang, Ming-Yuan; Jia, Qing; Li, Hua-Wen</p> <p>2014-01-27</p> <p>Mangiferin is a xanthone widely distributed in higher plants showing antioxidative, antiviral, anticancer, antidiabetic, immunomodulatory, hepatoprotective and analgesic effects. In the present study, an ultrasonic-assisted extraction method was developed for the effective extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 44% ethanol, the liquid-to-solid ratio was 38:1, and extraction for 19.2 min at 60 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of mangiferin was 58.46 ± 1.27 mg/g. The results obtained are helpful for the full utilization of mango leaves, and also indicated that ultrasonic-assisted extraction is a very useful method for the extraction of mangiferin from plant materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29132781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29132781"><span>Optimisation of surfactant decontamination and pre-treatment of waste chicken feathers by using response surface methodology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tesfaye, Tamrat; Sithole, Bruce; Ramjugernath, Deresh; Ndlela, Luyanda</p> <p>2018-02-01</p> <p>Commercially processed, untreated chicken feathers are biologically hazardous due to the presence of blood-borne pathogens. Prior to valorisation, it is crucial that they are decontaminated to remove the microbial contamination. The present study focuses on evaluating the best technologies to decontaminate and pre-treat chicken feathers in order to make them suitable for valorisation. Waste chicken feathers were washed with three surfactants (sodium dodecyl sulphate) dimethyl dioctadecyl ammonium chloride, and polyoxyethylene (40) stearate) using statistically designed experiments. Process conditions were optimised using response surface methodology with a Box-Behnken experimental design. The data were compared with decontamination using an autoclave. Under optimised conditions, the microbial counts of the decontaminated and pre-treated chicken feathers were significantly reduced making them safe for handling and use for valorisation applications. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24432662','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24432662"><span>[Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo</p> <p>2013-10-01</p> <p>Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IAUS..328..211L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IAUS..328..211L"><span>Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhmann, J. G.; Dong, C. F.; Ma, Y. J.; Curry, S. M.; Li, Yan; Lee, C. O.; Hara, T.; Lillis, R.; Halekas, J.; Connerney, J. E.; Espley, J.; Brain, D. A.; Dong, Y.; Jakosky, B. M.; Thiemann, E.; Eparvier, F.; Leblanc, F.; Withers, P.; Russell, C. T.</p> <p>2017-10-01</p> <p>Much can be learned from terrestrial planets that appear to have had the potential to be habitable, but failed to realize that potential. Mars shows evidence of a once hospitable surface environment. The reasons for its current state, and in particular its thin atmosphere and dry surface, are of great interest for what they can tell us about habitable zone planet outcomes. A main goal of the MAVEN mission is to observe Mars' atmosphere responses to solar and space weather influences, and in particular atmosphere escape related to space weather `storms' caused by interplanetary coronal mass ejections (ICMEs). Numerical experiments with a data-validated MHD model suggest how the effects of an observed moderately strong ICME compare to what happens during a more extreme event. The results suggest the kinds of solar and space weather conditions that can have evolutionary importance at a planet like Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15717785','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15717785"><span>Treatment of dyeing wastewater by TiO2/H2O2/UV process: experimental design approach for evaluating total organic carbon (TOC) removal efficiency.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Seung-Mok; Kim, Young-Gyu; Cho, Il-Hyoung</p> <p>2005-01-01</p> <p>Optimal operating conditions in order to treat dyeing wastewater were investigated by using the factorial design and responses surface methodology (RSM). The experiment was statistically designed and carried out according to a 22 full factorial design with four factorial points, three center points, and four axial points. Then, the linear and nonlinear regression was applied on the data by using SAS package software. The independent variables were TiO2 dosage, H2O2 concentration and total organic carbon (TOC) removal efficiency of dyeing wastewater was dependent variable. From the factorial design and responses surface methodology (RSM), maximum removal efficiency (85%) of dyeing wastewater was obtained at TiO2 dosage (1.82 gL(-1)), H2O2 concentration (980 mgL(-1)) for oxidation reaction (20 min).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17804220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17804220"><span>Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta</p> <p>2008-02-01</p> <p>Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28664372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28664372"><span>Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S</p> <p>2017-07-01</p> <p>Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2  = 0.9496), the ANN model (R 2  = 0.99456) gave a better prediction for the production of lactase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1353..603L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1353..603L"><span>Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena</p> <p>2011-05-01</p> <p>This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4978282','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4978282"><span>Soluto-inertial phenomena: Designing long-range, long-lasting, surface-specific interactions in suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Banerjee, Anirudha; Williams, Ian; Azevedo, Rodrigo Nery; Squires, Todd M.</p> <p>2016-01-01</p> <p>Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles. PMID:27410044</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OptLE..50.1267Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OptLE..50.1267Z"><span>Optimization of laser welding thin-gage galvanized steel via response surface methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin</p> <p>2012-09-01</p> <p>The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110013498&hterms=Mare&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DMare','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110013498&hterms=Mare&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DMare"><span>Characterization of Lunar Swirls at Mare Ingenii: A Model for Space Weathering at Magnetic Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kramer, Georgianna Y.; Combe, Jean-Philippe; Harnett, Erika M.; Hawke, Bernard Ray; Noble, Sarah K.; Blewett, David T.; McCord, Thomas B.; Giguere, Thomas A.</p> <p>2011-01-01</p> <p>Analysis of spectra from the Clementine ultraviolet-visible and near-infrared cameras of small, immature craters and surface soils both on and adjacent to the lunar swirls at Marc Ingenii has yielded the following conclusions about space weathering at a magnetic anomaly. (l) Despite having spectral characteristics of immaturity, the lunar swirls arc not freshly exposed surfaces. (2) The swirl surfaces arc regions of retarded weathering, while immediately adjacent regions experience accelerated weathering, (3) Weathering in the off-swirl regions darkens and flattens the spectrum with little to no reddening, which suggests that the production of larger (greater than 40 nm) nanophase iron dominates in these locations as a result of charged particle sorting by the magnetic field. Preliminaty analysis of two other lunar swirl regions, Reiner Gamma and Mare Marginis, is consistent with our observations at Mare Ingenii. Our results indicate that sputtering/vapor deposition, implanted solar wind hydrogen, and agglutination share responsibility for creating the range in npFe(sup 0) particle sizes responsible for the spectral effects of space weathering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20739179','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20739179"><span>Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jain, Monika; Garg, V K; Kadirvelu, K</p> <p>2011-01-01</p> <p>In the present study, chemically treated Helianthus annuus flowers (SHC) were used to optimize the removal efficiency for Cr(VI) by applying Response Surface Methodological approach. The surface structure of SHC was analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Analysis (EDX). Batch mode experiments were also carried out to assess the adsorption equilibrium in aqueous solution. The adsorption capacity (qe) was found to be 7.2 mg/g. The effect of three parameters, that is pH of the solution (2.0-7.0), initial concentration (10-70 mg/L) and adsorbent dose (0.05-0.5 g/100 mL) was studied for the removal of Cr(VI) by SHC. Box-Behnken model was used as an experimental design. The optimum pH, adsorbent dose and initial Cr(VI) concentration were found to be 2.0, 5.0 g/L and 40 mg/L, respectively. Under these conditions, removal efficiency of Cr(VI) was found to be 90.8%. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23D1691S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23D1691S"><span>Mixing-dependent Reactions in the Hyporheic Zone: Laboratory and Numerical Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santizo, K. Y.; Eastes, L. A.; Hester, E. T.; Widdowson, M.</p> <p>2017-12-01</p> <p>The hyporheic zone is the surface water-groundwater interface surrounding the river's perimeter. Prior research demonstrates the ability of the hyporheic zone to attenuate pollutants when surface water cycles through reactive sediments (non-mixing-dependent reactions). However, the colocation of both surface and ground water within hyporheic sediments also allows mixing-dependent reactions that require mixing of reactants from these two water sources. Recent modeling studies show these mixing zones can be small under steady state homogeneous conditions, but do not validate those results in the laboratory or explore the range of hydrological characteristics that control the extent of mixing. Our objective was to simulate the mixing zone, quantify its thickness, and probe its hydrological controls using a "mix" of laboratory and numerical experiments. For the lab experiments, a hyporheic zone was simulated in a sand mesocosm, and a mixing-dependent abiotic reaction of sodium sulfite and dissolved oxygen was induced. Oxygen concentration response and oxygen consumption were visualized via planar optodes. Sulfate production by the mixing-dependent reaction was measured by fluid samples and a spectrophometer. Key hydrologic controls varied in the mesocosm included head gradient driving hyporheic exchange and hydraulic conductivity/heterogeneity. Results show a clear mixing area, sulfate production, and oxygen gradient. Mixing zone length (hyporheic flow cell size) and thickness both increase with the driving head gradient. For the numerical experiments, transient surface water boundary conditions were implemented together with heterogeneity of hydraulic conductivity. Results indicate that both fluctuating boundary conditions and heterogeneity increase mixing-dependent reaction. The hyporheic zone is deemed an attenuation hotspot by multiple studies, but here we demonstrate its potential for mixing-dependent reactions and the influence of important hydrological parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040046951&hterms=influence+Function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2Binfluence%2BFunction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040046951&hterms=influence+Function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2Binfluence%2BFunction"><span>Use of Subsonic Kernel Function in an Influence-Coefficient Method of Aeroelastic Analysis and some Comparisons with Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sewall, John L.; Herr, Robert W.; Watkins, Charles E.</p> <p>1960-01-01</p> <p>This paper illustrates the development and application of an influence-coefficient method of analysis for calculating the response of a flexible wing in an airstream to an oscillating disturbing force and for treating such aeroelastic instabilities as flutter and divergence. Aerodynamic coefficients are derived on the basis of lifting - surface theory for subsonic compressible flow by use of the method presented in NASA Technical Report R-48. Application of the analysis is made to a uniform cantilever wing- tip tank configuration for which responses to a sinusoidal disturbing force and flutter speeds were measured over a range of subsonic Mach numbers and densities. Calculated responses and flutter speeds based on flexibility influence coefficients measured at nine stations are in good agreement with experiment, provided the aerodynamic load is distributed over the wing so that local centers of pressure very nearly coincide with these nine influence stations. The use of experimental values of bending and torsional structural damping coefficients in the analysis generally improved the agreement between calculated and experimental responses. Some calculations were made to study the effects on density on responses near the flutter conditions, and linear response trends were obtained over a wide range of densities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41E0728S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41E0728S"><span>On the Utilization of Ice Flow Models and Uncertainty Quantification to Interpret the Impact of Surface Radiation Budget Errors on Estimates of Greenland Ice Sheet Surface Mass Balance and Regional Estimates of Mass Balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.</p> <p>2016-12-01</p> <p>How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation budget separately, in order to determine how and where errors in these fields may independently impact ice flow. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere and Interdisciplinary Research in Earth Science Programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...101.3361K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...101.3361K"><span>Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kooi, Henk; Beaumont, Christopher</p> <p>1996-02-01</p> <p>Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19045522','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19045522"><span>Computational mechanobiology to study the effect of surface geometry on peri-implant tissue differentiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andreykiv, A; van Keulen, F; Prendergast, P J</p> <p>2008-10-01</p> <p>The geometry of an implant surface to best promote osseointegration has been the subject of several experimental studies, with porous beads and woven mesh surfaces being among the options available. Furthermore, it is unlikely that one surface geometry is optimal for all loading conditions. In this paper, a computational method is used to simulate tissue differentiation and osseointegration on a smooth surface, a surface covered with sintered beads (this simulated the experiment (Simmons, C., and Pilliar, R., 2000, Biomechanical Study of Early Tissue Formation Around Bone-Interface Implants: The Effects of Implant Surface Geometry," Bone Engineering, J. E. Davies, ed., Emsquared, Chap. A, pp. 369-379) and established that the method gives realistic results) and a surface covered by porous tantalum. The computational method assumes differentiation of mesenchymal stem cells in response to fluid flow and shear strain and models cell migration and proliferation as continuum processes. The results of the simulation show a higher rate of bone ingrowth into the surfaces with porous coatings as compared with the smooth surface. It is also shown that a thicker interface does not increase the chance of fixation failure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22186226','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22186226"><span>Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsirlin, Inna; Allison, Robert S; Wilcox, Laurie M</p> <p>2012-02-01</p> <p>We describe a perceptual asymmetry found in stereoscopic perception of overlaid random-dot surfaces. Specifically, the minimum separation in depth needed to perceptually segregate two overlaid surfaces depended on the distribution of dots across the surfaces. With the total dot density fixed, significantly larger inter-plane disparities were required for perceptual segregation of the surfaces when the front surface had fewer dots than the back surface compared to when the back surface was the one with fewer dots. We propose that our results reflect an asymmetry in the signal strength of the front and back surfaces due to the assignment of the spaces between the dots to the back surface by disparity interpolation. This hypothesis was supported by the results of two experiments designed to reduce the imbalance in the neuronal response to the two surfaces. We modeled the psychophysical data with a network of inter-neural connections: excitatory within-disparity and inhibitory across disparity, where the spread of disparity was modulated according to figure-ground assignment. These psychophysical and computational findings suggest that stereoscopic transparency depends on both inter-neural interactions of disparity-tuned cells and higher-level processes governing figure ground segregation. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29775394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29775394"><span>Degradation of ticarcillin by subcritial water oxidation method: Application of response surface methodology and artificial neural network modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yabalak, Erdal</p> <p>2018-05-18</p> <p>This study was performed to investigate the mineralization of ticarcillin in the artificially prepared aqueous solution presenting ticarcillin contaminated waters, which constitute a serious problem for human health. 81.99% of total organic carbon removal, 79.65% of chemical oxygen demand removal, and 94.35% of ticarcillin removal were achieved by using eco-friendly, time-saving, powerful and easy-applying, subcritical water oxidation method in the presence of a safe-to-use oxidizing agent, hydrogen peroxide. Central composite design, which belongs to the response surface methodology, was applied to design the degradation experiments, to optimize the methods, to evaluate the effects of the system variables, namely, temperature, hydrogen peroxide concentration, and treatment time, on the responses. In addition, theoretical equations were proposed in each removal processes. ANOVA tests were utilized to evaluate the reliability of the performed models. F values of 245.79, 88.74, and 48.22 were found for total organic carbon removal, chemical oxygen demand removal, and ticarcillin removal, respectively. Moreover, artificial neural network modeling was applied to estimate the response in each case and its prediction and optimizing performance was statistically examined and compared to the performance of central composite design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLE.103...34L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLE.103...34L"><span>Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui</p> <p>2018-04-01</p> <p>Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920066100&hterms=UNSTEADY+LIFT+AIRFOIL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DUNSTEADY%2BLIFT%2BAIRFOIL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920066100&hterms=UNSTEADY+LIFT+AIRFOIL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DUNSTEADY%2BLIFT%2BAIRFOIL"><span>Airfoil wake and linear theory gust response including sub and superresonant flow conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Henderson, Gregory H.; Fleeter, Sanford</p> <p>1992-01-01</p> <p>The unsteady aerodynamic gust response of a high solidity stator vane row is examined in terms of the fundamental gust modeling assumptions with particular attention given to the effects near an acoustic resonance. A series of experiments was performed with gusts generated by rotors comprised of perforated plates and airfoils. It is concluded that, for both the perforated plate and airfoil wake generated gusts, the unsteady pressure responses do not agree with the linear-theory gust predictions near an acoustic resonance. The effects of the acoustic resonance phenomena are clearly evident on the airfoil surface unsteady pressure responses. The transition of the measured lift coefficients across the acoustic resonance from the subresonant regime to the superresonant regime occurs in a simple linear fashion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC..975.1767K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC..975.1767K"><span>Model Prediction Results for 2007 Ultrasonic Benchmark Problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Hak-Joon; Song, Sung-Jin</p> <p>2008-02-01</p> <p>The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28485535','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28485535"><span>Reversible Stabilization of Vesicles: Redox-Responsive Polymer Nanocontainers for Intracellular Delivery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Vries, Wilke C; Grill, David; Tesch, Matthias; Ricker, Andrea; Nüsse, Harald; Klingauf, Jürgen; Studer, Armido; Gerke, Volker; Ravoo, Bart Jan</p> <p>2017-08-01</p> <p>We present the self-assembly of redox-responsive polymer nanocontainers comprising a cyclodextrin vesicle core and a thin reductively cleavable polymer shell anchored via host-guest recognition on the vesicle surface. The nanocontainers are of uniform size, show high stability, and selectively respond to a mild reductive trigger as revealed by dynamic light scattering, transmission electron microscopy, atomic force microscopy, a quantitative thiol assay, and fluorescence spectroscopy. Live cell imaging experiments demonstrate a specific redox-responsive release and cytoplasmic delivery of encapsulated hydrophilic payloads, such as the pH-probe pyranine, and the fungal toxin phalloidin. Our results show the high potential of these stimulus-responsive nanocontainers for cell biological applications requiring a controlled delivery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780005656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780005656"><span>Advanced Thermionic Technology Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1977-01-01</p> <p>Topics include surface studies (surface theory, basic surface experiments, and activation chamber experiments); plasma studies (converter theory and enhanced mode conversion experiments); and component development (low temperature conversion experiments, high efficiency conversion experiments, and hot shell development).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26836508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26836508"><span>High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François</p> <p>2016-04-01</p> <p>Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly reflects a protective response to oxidative stress will be addressed in future co-exposure studies with both surface and deep-sea fish liver cells, using additional pro-oxidant chemicals. Altogether, data on CYP1A inducibility with D. labrax and C. rupestris support the view that high HP represses AhR signaling in marine fishes, and that only species adapted to thrive in the deep-sea have evolved the molecular adaptations necessary to counteract to some extent this inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4920412B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4920412B"><span>Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus</p> <p>2017-10-01</p> <p>The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (<10 km), the solar wind leads to a depletion of fine grains (<100µm) on the surface. Ground observations of the two asteroids currently targeted by spacecraft, Ryugu (Hayabusa-2) and Bennu (OSIRIS-REx), indicate that their surfaces could be covered in mm- to cm-sized regolith grains. As these small bodies have surface gravity levels below 10-5g, g being the Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes <250 µm have revealed a transition of the grain behavior from a gravity-dominated regime to a cohesion-dominated regime when the local gravity level reaches values below 10-3g. This is in good agreement with analytical and simulation studies for these grain sizes. From the expected grain sizes at the surfaces of Ryugu and Bennu, we have now focused on larger grain sizes ranging from mm to cm. We have carried out a series of experiments to study the cohesion behavior of such larger grains of asteroid regolith simulant. The simulant used was CI Orgueil of Deep Space Industries. Experiments included laboratory tabletop avalanching, compression and shear force measurements, as well as low-velocity impacts under microgravity.Our goal is to determine if the grain size distribution has an influence on the cohesion behavior of the regolith and if we can validate numerical simulation results with experimental measurements. We will discuss the implications of our results for sample return or landing missions to small bodies such as asteroids or Martian moons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A41A0026S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A41A0026S"><span>Advances in the Surface Renewal Flux Measurement Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.</p> <p>2011-12-01</p> <p>The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments underestimate the sensible heat flux, yielding results that are less than 50% of the sensible heat flux measured with finer sensors. We present the methodology for correcting the thermocouple signal to avoid underestimating the heat flux at both the smallest and the second smallest coherent structure scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22733733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22733733"><span>Younger Dryas cooling and the Greenland climate response to CO2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Zhengyu; Carlson, Anders E; He, Feng; Brady, Esther C; Otto-Bliesner, Bette L; Briegleb, Bruce P; Wehrenberg, Mark; Clark, Peter U; Wu, Shu; Cheng, Jun; Zhang, Jiaxu; Noone, David; Zhu, Jiang</p> <p>2012-07-10</p> <p>Greenland ice-core δ(18)O-temperature reconstructions suggest a dramatic cooling during the Younger Dryas (YD; 12.9-11.7 ka), with temperatures being as cold as the earlier Oldest Dryas (OD; 18.0-14.6 ka) despite an approximately 50 ppm rise in atmospheric CO(2). Such YD cooling implies a muted Greenland climate response to atmospheric CO(2), contrary to physical predictions of an enhanced high-latitude response to future increases in CO(2). Here we show that North Atlantic sea surface temperature reconstructions as well as transient climate model simulations suggest that the YD over Greenland should be substantially warmer than the OD by approximately 5 °C in response to increased atmospheric CO(2). Additional experiments with an isotope-enabled model suggest that the apparent YD temperature reconstruction derived from the ice-core δ(18)O record is likely an artifact of an altered temperature-δ(18)O relationship due to changing deglacial atmospheric circulation. Our results thus suggest that Greenland climate was warmer during the YD relative to the OD in response to rising atmospheric CO(2), consistent with sea surface temperature reconstructions and physical predictions, and has a sensitivity approximately twice that found in climate models for current climate due to an enhanced albedo feedback during the last deglaciation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010020091','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010020091"><span>Automated Fiber Placement of PEEK/IM7 Composites with Film Interleaf Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hulcher, A. Bruce; Banks, William I., III; Pipes, R. Byron; Tiwari, Surendra N.; Cano, Roberto J.; Johnston, Norman J.; Clinton, R. G., Jr. (Technical Monitor)</p> <p>2001-01-01</p> <p>The incorporation of thin discrete layers of resin between plies (interleafing) has been shown to improve fatigue and impact properties of structural composite materials. Furthermore, interleafing could be used to increase the barrier properties of composites used as structural materials for cryogenic propellant storage. In this work, robotic heated-head tape placement of PEEK/IM7 composites containing a PEEK polymer film interleaf was investigated. These experiments were carried out at the NASA Langley Research Center automated fiber placement facility. Using the robotic equipment, an optimal fabrication process was developed for the composite without the interleaf. Preliminary interleaf processing trials indicated that a two-stage process was necessary; the film had to be tacked to the partially-placed laminate then fully melted in a separate operation. Screening experiments determined the relative influence of the various robotic process variables on the peel strength of the film-composite interface. Optimization studies were performed in which peel specimens were fabricated at various compaction loads and roller temperatures at each of three film melt processing rates. The resulting data were fitted with quadratic response surfaces. Additional specimens were fabricated at placement parameters predicted by the response surface models to yield high peel strength in an attempt to gage the accuracy of the predicted response and assess the repeatability of the process. The overall results indicate that quality PEEK/lM7 laminates having film interleaves can be successfully and repeatability fabricated by heated head automated fiber placement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25103452','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25103452"><span>Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosenzweig, Shirley; Sorial, George A; Sahle-Demessie, Endalkachew; McAvoy, Drew C</p> <p>2014-08-30</p> <p>Systematic experiments of copper adsorption on 10 different commercially available nanomaterials were studied for the influence of physical-chemical properties and their interactions. Design of experiment and response surface methodology was used to develop a polynomial model to predict maximum copper adsorption (initial concentration, Co=10mg/L) per mass of nanomaterial, qe, using multivariable regression and maximum R-square criterion. The best subsets of properties to predict qe in order of significant contribution to the model were: bulk density, ID, mesopore volume, tube length, pore size, zeta-charge, specific surface area and OD. The highest experimental qe observed was for an alcohol-functionalized MWCNT (16.7mg/g) with relative high bulk density (0.48g/cm(3)), ID (2-5nm), 10-30μm long and OD<8nm. Graphene nanoplatelets (GNP) showed poor adsorptive capacity associated to stacked-nanoplatelets, but good colloidal stability due to high functionalized surface. Good adsorption results for pristine SWCNT indicated that tubes with small diameter were more associated with good adsorption than functionalized surface. XPS and ICP analysis explored surface chemistry and purity, but pHpzc and zeta-charge were ultimately applied to indicate the degree of functionalization. Optimum CNT were identified in the scatter plot, but actual manufacturing processes introduced size and shape variations which interfered with final property results. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030113133','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030113133"><span>Nucleation Behavior of Oxygen-Acetylene Torch-Produced Diamond Films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, F. E.</p> <p>2003-01-01</p> <p>A mechanism is presented for the nucleation of diamond in the combustion flame environment. A series of six experiments and two associated simulations provide results from which the mechanism was derived. A substantial portion of the prior literature was reviewed and the data and conclusions from the previous experimenters were found to support the proposed mechanism. The nucleation mechanism builds on the work of previous researchers but presents an approach to nucleation in a detail and direction not fully presented heretofore. This work identifies the gas phase as the controlling environment for the initial formation steps leading to nucleation. The developed mechanism explains some of the difficulty which has been found in producing single crystal epitaxial films. An experiment which modified the initial gas phase precursor using methane and carbon monoxide is presented. Addition of methane into the precursor gases was found to be responsible for pillaring of the films. Atomic force microscopy surface roughness data provides a reasonable look at suppression of nucleation by carbon monoxide. Surface finish data was taken on crystals which were open to the nucleation environment and generally parallel to the substrate surface. The test surfaces were measured as an independent measure of the instantaneous nucleation environent. A gas flow and substrate experiment changed the conditions on the surface of the sample by increasing the gas flow rate while remaining on a consistent point of the atomic constituent diagram, and by changing the carbide potential of the substrate. Two tip modification experiments looked at the behavior of gas phase nucleation by modifying the shape and behavior of the flame plasma in which the diamond nucleation is suspected to occur. Diamond nucleation and growth was additionally examined using a high-velocity oxygen fuel gun and C3H6 as the fuel gas phase precursor with addition of carbon monoxide gas 01 addition of liquid toluene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvA..93c2511M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvA..93c2511M"><span>Anisotropic particles near surfaces: Propulsion force and friction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Boris; Krüger, Matthias</p> <p>2016-03-01</p> <p>We theoretically study the phenomenon of propulsion through Casimir forces in thermal nonequilibrium. Using fluctuational electrodynamics, we derive a formula for the propulsion force for an arbitrary small object in two scenarios: (i) for the object being isolated, and (ii) for the object being close to a planar surface. In the latter case, the propulsion force (i.e., the force parallel to the surface) increases with decreasing distance, i.e., it couples to the near field. We numerically calculate the lateral force acting on a hot spheroid near a surface and show that it can be as large as the gravitational force, thus being potentially measurable in fly-by experiments. We close by linking our results to well-known relations of linear-response theory in fluctuational electrodynamics: Looking at the friction of the anisotropic object for constant velocity, we identify a correction term that is additional to the typically used approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820014475','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820014475"><span>Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miyoshi, K.; Buckley, D. H.</p> <p>1982-01-01</p> <p>X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ApSS..196..126C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ApSS..196..126C"><span>Effects of oxidation on surface heterogeneity of carbosils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Charmas, B.; Leboda, R.; Gérard, G.; Villiéras, F.</p> <p>2002-08-01</p> <p>Carbon-silica adsorbents (carbosils), prepared by pyrolysis of methylene chloride (CH 2Cl 2) on the surface of a porous silica gel, were subjected to an oxidizing hydrothermal treatment (HTT) at 200 °C, using a hydrogen peroxide water solution as a modification medium. Conventional nitrogen adsorption volumetry and low-pressure argon and nitrogen adsorption techniques were used to analyze and compare textural properties and surface heterogeneity of initial and hydrothermally treated samples. In the presence of carbon, the mesoporous network of silica gel is protected from the massive collapse generally observed after oxidizing HTT. For carbosils, some changes occur during HTT, leading to a slight decrease of specific surface areas accompanied by an increase in mean mesopore size. The argon and nitrogen condensation energy distributions, derived from low-pressure adsorption experiments, indicate that both silica and pyrocarbon materials were modified during HTT. Depolymerization and recondensation processes occur for silica, creating new silica surfaces. These processes are responsible of the decrease in specific surface areas. For pyrocarbon, similar depolymerization and recondensation processes probably occur, creating new and high-energy surface sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CompM..50..805L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CompM..50..805L"><span>A coupled PFEM-Eulerian approach for the solution of porous FSI problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larese, A.; Rossi, R.; Oñate, E.; Idelsohn, S. R.</p> <p>2012-12-01</p> <p>This paper aims to present a coupled solution strategy for the problem of seepage through a rockfill dam taking into account the free-surface flow within the solid as well as in its vicinity. A combination of a Lagrangian model for the structural behavior and an Eulerian approach for the fluid is used. The particle finite element method is adopted for the evaluation of the structural response, whereas an Eulerian fixed-mesh approach is employed for the fluid. The free surface is tracked by the use of a level set technique. The numerical results are validated with experiments on scale models rockfill dams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29347515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29347515"><span>Transient response in granular quasi-two-dimensional bounded heap flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B</p> <p>2017-10-01</p> <p>We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2863L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2863L"><span>Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiaoqiong; Ting, Mingfang</p> <p>2017-10-01</p> <p>Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5465914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5465914"><span>Development of visual category selectivity in ventral visual cortex does not require visual experience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>van den Hurk, Job; Van Baelen, Marc; Op de Beeck, Hans P.</p> <p>2017-01-01</p> <p>To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience. PMID:28507127</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAG...119...79G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAG...119...79G"><span>Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en</p> <p>2015-08-01</p> <p>Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22408256-temporal-response-surface-flashover-velvet-cathode-relativistic-diode','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22408256-temporal-response-surface-flashover-velvet-cathode-relativistic-diode"><span>Temporal response of a surface flashover on a velvet cathode in a relativistic diode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Coleman, J. E.; Moir, D. C.; Crawford, M. T.</p> <p>2015-03-15</p> <p>Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the ∼100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements willmore » also be presented confirming the ion species are dominated by hydrogen.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850042579&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplanetary%2Bboundaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850042579&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplanetary%2Bboundaries"><span>The interactive role of subsynoptic scale jet streak and planetary boundary layer processes in organizing an isolated convective complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.</p> <p>1984-01-01</p> <p>Surface analyses and numerical simulation sensitivity studies are compared in order to determine the role played by deep, well-mixed, and well-heated boundary layers in perturbing a weak jet streak in proximity to the development of an isolated but intense convective complex associated with the Grand Island, Nebraska tornado outbreak of June 3-4, 1980. A brief description of the case is first presented, emphasizing three-hourly surface analyses, radar, and satellite data. The results of numerical experiments comparing differences in the runs with and without diurnal surface sensible heating are discussed and related to observations. The dynamical processes responsible for these simulation differences are discussed, and the significance of these differences are considered in terms of their effect on the preconvective environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3757706','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3757706"><span>Novel device for continuous spatial control and temporal delivery of nitric oxide for in vitro cell culture☆</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Romanowicz, Genevieve E.; He, Weilue; Nielsen, Matthew; Frost, Megan C.</p> <p>2013-01-01</p> <p>Nitric oxide (NO) is an ubiquitous signaling molecule of intense interest in many physiological processes. Nitric oxide is a highly reactive free radical gas that is difficult to deliver with precise control over the level and timing that cells actually experience. We describe and characterize a device that allows tunable fluxes and patterns of NO to be generated across the surface upon which cells are cultured. The system is based on a quartz microscope slide that allows for controlled light levels to be applied to a previously described photosensitive NO-releasing polydimethylsiloxane (PDMS). Cells are cultured in separate wells that are either NO-releasing or a chemically similar PDMS that does not release NO. Both wells are then top coated with DowCorning RTV-3140 PDMS and a polydopamine/gelatin layer to allow cells to grow in the culture wells. When the waveguide is illuminated, the surface of the quartz slide propagates light such that the photosensitive polymer is evenly irradiated and generates NO across the surface of the cell culture well and no light penetrates into the volume of the wells where cells are growing. Mouse smooth muscle cells (MOVAS) were grown in the system in a proof of principle experiment, whereby 60% of the cells were present in the NO-releasing well compared to control wells after 17 h. The compelling advantage of illuminating the NO-releasing polymers with the waveguide system is that light can be used to tunably control NO release while avoiding exposing cells to optical radiation. This device provides means to quantitatively control the surface flux, timing and duration of NO cells experience and allows for systematic study of cellular response to NO generated at the cell/surface interface in a wide variety of studies. PMID:24024168</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>