DOT National Transportation Integrated Search
2005-10-01
The Specific Pavement Studies 6 (SPS-6) experiment, "Rehabilitation of Jointed Portland Cement Concrete Pavements," was designed as a controlled field experiment that focuses on the study of specific rehabilitation design features of jointed plain co...
Integrated support structure for GASCAN 2
NASA Technical Reports Server (NTRS)
1990-01-01
The focus of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program was the preliminary design of the Integrated Support Structure for GASCAN II, a Get Away Special canister donated by the MITRE Corporation. Two teams of three students each worked on the support structure. There was a structural design team and a thermal design team. The structure will carry three experiments also undergoing preliminary design this year, the mu-gravity Ignition Experiment, the Rotational Flow in Low Gravity Experiment, and the Ionospheric Properties and Propagation Experiment. The structural design team was responsible for the layout of the GASCAN and the preliminary design of the structure itself. They produced the physical interface specifications defining the baseline weights and volumes for the equipment and produced layout drawings of the system. The team produced static and modal finite element analysis of the structure using ANSYS. The thermal design team was responsible for the power and timing requirements of the payload and for the identification and preliminary analysis of potential thermal problems. The team produced the power, timing, and energy interface specifications and assisted in the development of the specification of the battery pack. The thermal parameters of each experiment were cataloged and the experiments were subjected to worst case heat transfer scenarios.
Gradient Heating Facility. Experiment cartridges. Description and general specifications
NASA Technical Reports Server (NTRS)
Breton, J.
1982-01-01
Specifications that define experiment cartridges that are compatible with the furnace of the gradient heating facility on board the Spacelab are presented. They establish a standard cartridge design independent of the type of experiment to be conducted. By using them, experimenters can design, construct, and test the hot section of the cartridge, known as the high temperature nacelle.
Preliminary design polymeric materials experiment. [for space shuttles and Spacelab missions
NASA Technical Reports Server (NTRS)
Mattingly, S. G.; Rude, E. T.; Marshner, R. L.
1975-01-01
A typical Advanced Technology Laboratory mission flight plan was developed and used as a guideline for the identification of a number of experiment considerations. The experiment logistics beginning with sample preparation and ending with sample analysis are then overlaid on the mission in order to have a complete picture of the design requirements. The results of this preliminary design study fall into two categories. First specific preliminary designs of experiment hardware which is adaptable to a variety of mission requirements. Second, identification of those mission considerations which affect hardware design and will require further definition prior to final design. Finally, a program plan is presented which will provide the necessary experiment hardware in a realistic time period to match the planned shuttle flights. A bibliography of all material reviewed and consulted but not specifically referenced is provided.
Cosmic-ray interaction data for designing biological experiments in space
NASA Astrophysics Data System (ADS)
Straume, T.; Slaba, T. C.; Bhattacharya, S.; Braby, L. A.
2017-05-01
There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered.
Item-specific processing reduces false memories.
McCabe, David P; Presmanes, Alison G; Robertson, Chuck L; Smith, Anderson D
2004-12-01
We examined the effect of item-specific and relational encoding instructions on false recognition in two experiments in which the DRM paradigm was used (Deese, 1959; Roediger & McDermott, 1995). Type of encoding (item-specific or relational) was manipulated between subjects in Experiment 1 and within subjects in Experiment 2. Decision-based explanations (e.g., the distinctiveness heuristic) predict reductions in false recognition in between-subjects designs, but not in within-subjects designs, because they are conceptualized as global shifts in decision criteria. Memory-based explanations predict reductions in false recognition in both designs, resulting from enhanced recollection of item-specific details. False recognition was reduced following item-specific encoding instructions in both experiments, favoring a memory-based explanation. These results suggest that providing unique cues for the retrieval of individual studied items results in enhanced discrimination between those studied items and critical lures. Conversely, enhancing the similarity of studied items results in poor discrimination among items within a particular list theme. These results are discussed in terms of the item-specific/ relational framework (Hunt & McDaniel, 1993).
Cosmic-ray interaction data for designing biological experiments in space.
Straume, T; Slaba, T C; Bhattacharya, S; Braby, L A
2017-05-01
There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Churchill, Deirdre Lyne
2014-01-01
This qualitative study examined the impact of architectural design and arrangement on the learning experiences of students. Specifically, it examined how school design and arrangement foster interactions and relationships among students and adults relevant to integral learning experiences. This case study was limited to the breadth of knowledge…
Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egami, R.; Bowen, J.; Coulombe, W.
1995-07-01
An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less
NASA Technical Reports Server (NTRS)
Straume, T.; Slaba, T.; Bhattacharya, S.; Braby, L. A.
2017-01-01
There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel type missions. Designing such experiments requires knowledge of the radiation environment and its interactions with both the spacecraft and the experimental payload. Information is provided here that is useful for designing such experiments.
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
NASA Technical Reports Server (NTRS)
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
Space shuttle recommendations based on aircraft maintenance experience
NASA Technical Reports Server (NTRS)
Spears, J. M.; Fox, C. L.
1972-01-01
Space shuttle design recommendations based on aircraft maintenance experience are developed. The recommendations are specifically applied to the landing gear system, nondestructive inspection techniques, hydraulic system design, materials and processes, and program support.
Expert Recommender: Designing for a Network Organization
NASA Astrophysics Data System (ADS)
Reichling, Tim; Veith, Michael; Wulf, Volker
Recent knowledge management initiatives focus on expertise sharing within formal organizational units and informal communities of practice. Expert recommender systems seem to be a promising tool in support of these initiatives. This paper presents experiences in designing an expert recommender system for a knowledge- intensive organization, namely the National Industry Association (NIA). Field study results provide a set of specific design requirements. Based on these requirements, we have designed an expert recommender system which is integrated into the specific software infrastructure of the organizational setting. The organizational setting is, as we will show, specific for historical, political, and economic reasons. These particularities influence the employees’ organizational and (inter-)personal needs within this setting. The paper connects empirical findings of a long-term case study with design experiences of an expertise recommender system.
Cameron, Josh; Hart, Angie; Brooker, Saff; Neale, Paul; Reardon, Mair
2018-05-15
Recovery Colleges address mental health challenges using an educative approach underpinned by a collaborative recovery orientated philosophy. Research has been limited with no studies identified reporting research on the design and delivery of a specific course. To understand how Recovery College students and tutors experience the design and delivery of a mental health Recovery College course, specifically the "'Building Resilience" course. Thematic analysis of qualitative data related to the experience and process of collaboration in recovery college course design and delivery. Data included 13 qualitative individual interviews with course students and tutors and "naturally occurring" data generated through course preparation and delivery. Findings drew attention to the centrality of: prior experience and design related to students, tutors and the course structure; co-delivery related to tutors and co-learner impacts; and to the course methods and environment. Commitment to collaboration in design and delivery of Recovery College courses can mobilise the diverse experiences and expertise of tutors and students. The environment and methods of learning have a significant impact and should be considered alongside content. Boundaries between people and areas of knowledge and experience that arise can be viewed as sources of creativity that can enrich courses.
Designing Successful Proteomics Experiments.
Ruderman, Daniel
2017-01-01
Because proteomics experiments are so complex they can readily fail, and do so without clear cause. Using standard experimental design techniques and incorporating quality control can greatly increase the chances of success. This chapter introduces the relevant concepts and provides examples specific to proteomic workflows. Applying these notions to design successful proteomics experiments is straightforward. It can help identify failure causes and greatly increase the likelihood of inter-laboratory reproducibility.
NASA Technical Reports Server (NTRS)
1975-01-01
A detailed description of a video system for controlling space shuttle payloads and experiments is presented in the preliminary design review and critical design review, first and second engineering design reports respectively, and in the final report submitted jointly with the design package. The material contained in the four subsequent sections of the package contains system descriptions, design data, and specifications for the recommended 2-view system. Section 2 contains diagrams relating to the simulation test configuration of the 2-view system. Section 3 contains descriptions and drawings of the deliverable breadboard equipment. A description of the recommended system is contained in Section 4 with equipment specifications in Section 5.
Flight software development for the isothermal dendritic growth experiment
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.; Winsa, Edward A.; Glicksman, Martin E.
1989-01-01
The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.
Flight software development for the isothermal dendritic growth experiment
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.; Winsa, Edward A.; Glicksman, M. E.
1990-01-01
The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and unlink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.
Design of microarray experiments for genetical genomics studies.
Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M
2006-10-01
Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.
Gestalt-A Learning Theory for Graphic Design Education
ERIC Educational Resources Information Center
Jackson, Ian
2008-01-01
This article will begin by seeking to define the notion of learning "by, through" and "from" experience. A linkage will then be established between these notions of experiences and gestalt theory. This will be explored within a subject specific context of graphic design. Links will be highlighted between the inherent nature of graphic design and…
Bubble formation in microgravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1996-01-01
An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-17
... the States have accumulated substantial experience in the design and implementation of these surveys... observational surveys is to include a specification of the survey design, to be reassessed and, if appropriate, updated every five (5) years, or earlier if the State so desires. The survey design specification will...
Deutsch, Eric W; Ball, Catherine A; Berman, Jules J; Bova, G Steven; Brazma, Alvis; Bumgarner, Roger E; Campbell, David; Causton, Helen C; Christiansen, Jeffrey H; Daian, Fabrice; Dauga, Delphine; Davidson, Duncan R; Gimenez, Gregory; Goo, Young Ah; Grimmond, Sean; Henrich, Thorsten; Herrmann, Bernhard G; Johnson, Michael H; Korb, Martin; Mills, Jason C; Oudes, Asa J; Parkinson, Helen E; Pascal, Laura E; Pollet, Nicolas; Quackenbush, John; Ramialison, Mirana; Ringwald, Martin; Salgado, David; Sansone, Susanna-Assunta; Sherlock, Gavin; Stoeckert, Christian J; Swedlow, Jason; Taylor, Ronald C; Walashek, Laura; Warford, Anthony; Wilkinson, David G; Zhou, Yi; Zon, Leonard I; Liu, Alvin Y; True, Lawrence D
2015-01-01
One purpose of the biomedical literature is to report results in sufficient detail so that the methods of data collection and analysis can be independently replicated and verified. Here we present for consideration a minimum information specification for gene expression localization experiments, called the “Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE)”. It is modelled after the MIAME (Minimum Information About a Microarray Experiment) specification for microarray experiments. Data specifications like MIAME and MISFISHIE specify the information content without dictating a format for encoding that information. The MISFISHIE specification describes six types of information that should be provided for each experiment: Experimental Design, Biomaterials and Treatments, Reporters, Staining, Imaging Data, and Image Characterizations. This specification has benefited the consortium within which it was initially developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal. PMID:18327244
The subscale orbital fluid transfer experiment
NASA Technical Reports Server (NTRS)
Collins, Frank G.; Antar, Basil N.; Menzel, Reinhard W.; Meserole, Jere S.; Meserole, Jere S.; Jones, Ogden
1990-01-01
The Subscale Orbital Fluid Transfer Experiment (SOFTE) is a planned Shuttle Orbiter fluid transfer experiment. CASP (Center for Advanced Space Propulsion) performed certain aspects of the conceptual design of this experiment. The CASP work consisted of the conceptual design of the optical system, the search for alternative experimental fluids, the determination of the flow meter specifications and the examination of materials to use for a bladder that will empty one of the tanks in the experiment.
ERIC Educational Resources Information Center
Kordaki, Maria
2011-01-01
This study presents an experiment aimed at the design of short learning courses in the context of LAMS, using a number of specific context-free collaboration design patterns implemented within LAMS. In fact, 25 Prospective Computer Engineers (PCEs) participated in this experiment. The analysis of the data shows that PCEs fully used these context…
Effects of Platform Design on the Customer Experience in an Online Solar PV Marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J; Margolis, Robert M; Leibowicz, Benjamin
Residential solar photovoltaic (PV) customers are increasingly buying PV systems in online marketplaces, where customers can compare multiple quotes from several installers on quote platforms. In this study, we use data from an online marketplace to explore how quote platform design affects customer experiences. We analyze how four design changes affected customer experiences in terms of factors such as prices. We find that three of the four design changes are associated with statistically significant and robust price reductions, even though none of the changes were implemented specifically to reduce prices. The results suggest that even seemingly small platform design changesmore » can affect PV customer experiences in online marketplaces.« less
Creativity and Conflict: How Theory and Practice Shape Student Identities in Design Education
ERIC Educational Resources Information Center
Tynan, Jane; New, Christopher
2009-01-01
By exploring the role of student identities in shaping attitudes to learning, this study asks how design students draw on experience to work across theory and practice. It explores how a specific group of design undergraduate students in a UK university perform on two distinct learning experiences on their course: work placement and dissertation.…
Zhang, Qi; Zeng, Xin; Younkin, Sam; Kawli, Trupti; Snyder, Michael P; Keleş, Sündüz
2016-02-24
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments revolutionized genome-wide profiling of transcription factors and histone modifications. Although maturing sequencing technologies allow these experiments to be carried out with short (36-50 bps), long (75-100 bps), single-end, or paired-end reads, the impact of these read parameters on the downstream data analysis are not well understood. In this paper, we evaluate the effects of different read parameters on genome sequence alignment, coverage of different classes of genomic features, peak identification, and allele-specific binding detection. We generated 101 bps paired-end ChIP-seq data for many transcription factors from human GM12878 and MCF7 cell lines. Systematic evaluations using in silico variations of these data as well as fully simulated data, revealed complex interplay between the sequencing parameters and analysis tools, and indicated clear advantages of paired-end designs in several aspects such as alignment accuracy, peak resolution, and most notably, allele-specific binding detection. Our work elucidates the effect of design on the downstream analysis and provides insights to investigators in deciding sequencing parameters in ChIP-seq experiments. We present the first systematic evaluation of the impact of ChIP-seq designs on allele-specific binding detection and highlights the power of pair-end designs in such studies.
Encoding Specificity in the Recall of Pictures and Words in Children and Adults.
ERIC Educational Resources Information Center
Ackerman, Brian P.
1981-01-01
Two experiments, using pictorial or verbal stimuli, were designed to test encoding among young children and adults. In both experiments, results indicated progressively smaller encoding specificity effects with increasing age. Comparisons of recall patterns were conducted to ensure that encoding differences accounted for results. (Author/DB)
Relational and item-specific influences on generate-recognize processes in recall.
Guynn, Melissa J; McDaniel, Mark A; Strosser, Garrett L; Ramirez, Juan M; Castleberry, Erica H; Arnett, Kristen H
2014-02-01
The generate-recognize model and the relational-item-specific distinction are two approaches to explaining recall. In this study, we consider the two approaches in concert. Following Jacoby and Hollingshead (Journal of Memory and Language 29:433-454, 1990), we implemented a production task and a recognition task following production (1) to evaluate whether generation and recognition components were evident in cued recall and (2) to gauge the effects of relational and item-specific processing on these components. An encoding task designed to augment item-specific processing (anagram-transposition) produced a benefit on the recognition component (Experiments 1-3) but no significant benefit on the generation component (Experiments 1-3), in the context of a significant benefit to cued recall. By contrast, an encoding task designed to augment relational processing (category-sorting) did produce a benefit on the generation component (Experiment 3). These results converge on the idea that in recall, item-specific processing impacts a recognition component, whereas relational processing impacts a generation component.
Generation Failure: Estimating Metacognition in Cued Recall
ERIC Educational Resources Information Center
Higham, P.A.; Tam, H.
2005-01-01
Three experiments examined generation, recognition, and response bias in the original encoding-specificity paradigm using the type 2 signal-detection analysis advocated by Higham (2002). Experiments 1 (pure-list design) and 2 (mixed-list design) indicated that some guidance regarding the strength of the associative relationship between the test…
The Design of Learning Experiences: A Connection to Physical Environments.
ERIC Educational Resources Information Center
Stueck, Lawrence E.; Tanner, C. Kenneth
The school environment must create a rich, beautiful, dynamic, meaningful experience for students to learn; however, architects, school boards, and the state focus almost exclusively only on the building when making design decisions. This document lists specific aspects to developing a visionary campus: one that provides a three-dimensional…
Learning--Feeling--Doing: Designing Creative Learning Experiences for Elementary Health Education.
ERIC Educational Resources Information Center
Scott, Gwendolyn D.; Carlo, Mona W.
The dynamics of health education are encompassed in understanding human behavior (its causes and consequences), and this book seeks to outline learning experiences that will correspond to specific behavioral objectives relating to health education. The systematic planning and instructional design center around 11 concepts: (1) Growth and…
Development flight tests of JetStar LFC leading-edge flight test experiment
NASA Technical Reports Server (NTRS)
Fisher, David F.; Fischer, Michael C.
1987-01-01
The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.
Toye, Francine; Williamson, Esther; Williams, Mark A; Fairbank, Jeremy; Lamb, Sarah E
2016-08-09
Using an example of qualitative research embedded in a non-surgical feasibility trial, we explore the benefits of including qualitative research in trial design and reflect on epistemological challenges. We interviewed 18 trial participants and used methods of Interpretive Phenomenological Analysis. Our findings demonstrate that qualitative research can make a valuable contribution by allowing trial stakeholders to see things from alternative perspectives. Specifically, it can help to make specific recommendations for improved trial design, generate questions which contextualize findings, and also explore disease experience beyond the trial. To make the most out of qualitative research embedded in quantitative design it would be useful to (a) agree specific qualitative study aims that underpin research design, (b) understand the impact of differences in epistemological truth claims, (c) provide clear thematic interpretations for trial researchers to utilize, and (d) include qualitative findings that explore experience beyond the trial setting within the impact plan. © The Author(s) 2016.
ERIC Educational Resources Information Center
Hedberg, E. C.; Hedges, Larry V.
2014-01-01
Randomized experiments are often considered the strongest designs to study the impact of educational interventions. Perhaps the most prevalent class of designs used in large scale education experiments is the cluster randomized design in which entire schools are assigned to treatments. In cluster randomized trials (CRTs) that assign schools to…
Vestibular Function Research (VFR) experiment. Phase B: Design definition study
NASA Technical Reports Server (NTRS)
1978-01-01
The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.
Specificity, Transfer, and the Development of Expertise
ERIC Educational Resources Information Center
Brookes, David T.; Ross, Brian H.; Mestre, Jose P.
2011-01-01
In this paper we present the results of two experiments designed to understand how physics students' learning of the concept of refraction is influenced by the cognitive phenomenon of "specificity." In both experiments participants learned why light bends as it travels from one optical medium to another with an analogy made to a car…
Onboard experiment data support facility, task 1 report. [space shuttles
NASA Technical Reports Server (NTRS)
1975-01-01
The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.
ASTP fluid transfer measurement experiment. [using breadboard model
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The ASTP fluid transfer measurement experiment flight system design concept was verified by the demonstration and test of a breadboard model. In addition to the breadboard effort, a conceptual design of the corresponding flight system was generated and a full scale mockup fabricated. A preliminary CEI specification for the flight system was also prepared.
USDA-ARS?s Scientific Manuscript database
Conducting manipulative climate change experiments in forests is challenging, given their spatial heterogeneity and canopy complexity. One specific challenge involves warming both plants and soils to depth in ecosystems without much bare ground. We describe the design, implementation, and performanc...
Tuning: A Guide for Creating Discipline-Specific Frameworks to Foster Meaningful Change
ERIC Educational Resources Information Center
Marshall, David W.
2017-01-01
Tuning, as a methodology, implies a philosophy of curriculum design, pedagogy, and assignment design. It implies that successful study in a discipline depends on intentional construction of learning experiences for students. Intentional construction of learning experiences requires an understanding of the learning goals set forth by faculty for…
Design of the NASA Lewis 4-Port Wave Rotor Experiment
NASA Technical Reports Server (NTRS)
Wilson, Jack
1997-01-01
Pressure exchange wave rotors, used in a topping stage, are currently being considered as a possible means of increasing the specific power, and reducing the specific fuel consumption of gas turbine engines. Despite this interest, there is very little information on the performance of a wave rotor operating on the cycle (i.e., set of waves) appropriate for use in a topping stage. One such cycle, which has the advantage of being relatively easy to incorporate into an engine, is the four-port cycle. Consequently, an experiment to measure the performance of a four-port wave rotor for temperature ratios relevant to application as a topping cycle for a gas turbine engine has been designed and built at NASA Lewis. The design of the wave rotor is described, together with the constraints on the experiment.
Development of N-version software samples for an experiment in software fault tolerance
NASA Technical Reports Server (NTRS)
Lauterbach, L.
1987-01-01
The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.
Designing the future of healthcare.
Fidsa, Gianfranco Zaccai
2009-01-01
This paper describes the application of a holistic design process to a variety of problems plaguing current healthcare systems. A design process for addressing complex, multifaceted problems is contrasted with the piecemeal application of technological solutions to specific medical or administrative problems. The goal of this design process is the ideal customer experience, specifically the ideal experience for patients, healthcare providers, and caregivers within a healthcare system. Holistic design is shown to be less expensive and wasteful in the long run because it avoids solving one problem within a complex system at the cost of creating other problems within that system. The article applies this approach to the maintenance of good health throughout life; to the creation of an ideal experience when a person does need medical care; to the maintenance of personal independence as one ages; and to the enjoyment of a comfortable and dignified death. Virginia Mason Medical Center is discussed as an example of a healthcare institution attempting to create ideal patient and caregiver experiences, in this case by applying the principles of the Toyota Production System ("lean manufacturing") to healthcare. The article concludes that healthcare is inherently dedicated to an ideal, that science and technology have brought it closer to that ideal, and that design can bring it closer still.
Design and Development of "The Reading Biographer": An Application of Function Specific Assessment.
ERIC Educational Resources Information Center
Hanson, Ralph A.; Siegel, Donna Farrell
The general features of function-specific assessment are described and illustrated via a discussion of the design and development of "The Reading Biographer," an instrument for assessing experiences and activities of students (from early childhood through high school) that affect their reading achievement as high school seniors. The…
Early Childhood Educational Software: Specific Features and Issues of Localization
ERIC Educational Resources Information Center
Nikolopoulou, Kleopatra
2007-01-01
The computer has now become a recognized tool in the education of young children and when used appropriately can reinforce their learning experiences. This paper reviews specific features (relating to pedagogic design, software content and user-interface design) of early childhood educational software and discusses issues in favor of its…
Deutsch, Eric W; Ball, Catherine A; Berman, Jules J; Bova, G Steven; Brazma, Alvis; Bumgarner, Roger E; Campbell, David; Causton, Helen C; Christiansen, Jeffrey H; Daian, Fabrice; Dauga, Delphine; Davidson, Duncan R; Gimenez, Gregory; Goo, Young Ah; Grimmond, Sean; Henrich, Thorsten; Herrmann, Bernhard G; Johnson, Michael H; Korb, Martin; Mills, Jason C; Oudes, Asa J; Parkinson, Helen E; Pascal, Laura E; Pollet, Nicolas; Quackenbush, John; Ramialison, Mirana; Ringwald, Martin; Salgado, David; Sansone, Susanna-Assunta; Sherlock, Gavin; Stoeckert, Christian J; Swedlow, Jason; Taylor, Ronald C; Walashek, Laura; Warford, Anthony; Wilkinson, David G; Zhou, Yi; Zon, Leonard I; Liu, Alvin Y; True, Lawrence D
2008-03-01
One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.
The Semantic Environment: Heuristics for a Cross-Context Human-Information Interaction Model
NASA Astrophysics Data System (ADS)
Resmini, Andrea; Rosati, Luca
This chapter introduces a multidisciplinary holistic approach for the general design of successful bridge experiences as a cross-context human-information interaction model. Nowadays it is common to interact through a number of different domains in order to communicate successfully, complete a task, or elicit a desired response: Users visit a reseller’s web site to find a specific item, book it, then drive to the closest store to complete their purchase. As such, one of the crucial challenges user experience design will face in the near future is how to structure and provide bridge experiences seamlessly spanning multiple communication channels or media formats for a specific purpose.
Definition of smolder experiments for Spacelab
NASA Technical Reports Server (NTRS)
Summerfield, M.; Messina, N. A.; Ingram, L. S.
1979-01-01
The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities.
Advanced tools for smartphone-based experiments: phyphox
NASA Astrophysics Data System (ADS)
Staacks, S.; Hütz, S.; Heinke, H.; Stampfer, C.
2018-07-01
The sensors in modern smartphones are a promising and cost-effective tool for experimentation in physics education, but many experiments face practical problems. Often the phone is inaccessible during the experiment and the data usually needs to be analyzed subsequently on a computer. We address both problems by introducing a new app, called ‘phyphox’, which is specifically designed for utilizing experiments in physics teaching. The app is free and designed to offer the same set of features on Android and iOS.
ERTS-C (Landsat 3) cryogenic heat pipe experiment definition
NASA Technical Reports Server (NTRS)
Brennan, P. J.; Kroliczek, E. J.
1975-01-01
A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.
Functional design to support CDTI/DABS flight experiments
NASA Technical Reports Server (NTRS)
Goka, T.
1982-01-01
The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.
ERIC Educational Resources Information Center
Zirakparvar, N. Alex
2015-01-01
This article describes a museum-based urban teacher-residency (UTR) program's approach to building subject-specific content knowledge and research experience in Earth Science teacher candidates. In the museum-based program, graduate-level science courses and research experiences are designed and implemented specifically for the UTR by active Earth…
NASA Technical Reports Server (NTRS)
Minor, Robert
2002-01-01
Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.
BIM LAU-PE: Seedlings in Microgravity
NASA Astrophysics Data System (ADS)
Gass, S.; Pennese, R.; Chapuis, D.; Dainesi, P.; Nebuloni, S.; Garcia, M.; Oriol, A.
2015-09-01
The effect of gravity on plant roots is an intensive subject of research. Sounding rockets represent a costeffective platform to study this effect under microgravity conditions. As part of the upcoming MASER 13 sounding rocket campaign, two experiments on Arabidopsis thaliana seedlings have been devised: GRAMAT and SPARC. These experiments are aimed at studying (1) the genes that are specifically switched on or off during microgravity, and (2) the position of auxin-transporting proteins during microgravity. To perform these experiments, RUAG Space Switzerland site of Nyon, in collaboration with the Swedish Space Corporation (SSC) and the University of Freiburg, has developed the BIM LAU-PE (Biolology In Microgravity Late Access Unit Plant Experiment). In the following an overview of the BIM LAU-PE design is presented, highlighting specific module design features and verifications performed. A particular emphasis is placed on the parabolic flight experiments, including results of the micro-g injection system validation.
Meegan, Daniel V; Honsberger, Michael J M
2005-05-01
Many neuroimaging studies have been designed to differentiate domain-specific processes in the brain. A common design constraint is to use identical stimuli for different domain-specific tasks. For example, an experiment investigating spatial versus identity processing would present compound spatial-identity stimuli in both spatial and identity tasks, and participants would be instructed to attend to, encode, maintain, or retrieve spatial information in the spatial task, and identity information in the identity task. An assumption in such studies is that spatial information will not be processed in the identity task, as it is irrelevant for that task. We report three experiments demonstrating violations of this assumption. Our results suggest that comparisons of spatial and identity tasks in existing neuroimaging studies have underestimated the amount of brain activation that is spatial-specific. For future neuroimaging studies, we recommend unique stimulus displays for each domain-specific task, and event-related measurement of post-stimulus processing.
Viking dynamics experience with application to future payload design
NASA Technical Reports Server (NTRS)
Barrett, S.; Rader, W. P.; Payne, K. R.
1978-01-01
Analytical and test techniques are discussed. Areas in which hindsight indicated erroneous, redundant, or unnecessarily severe design and test specifications are identified. Recommendations are made for improvements in the dynamic design and criteria philosophy, aimed at reducing costs for payloads.
U.S. perspective on technology demonstration experiments for adaptive structures
NASA Technical Reports Server (NTRS)
Aswani, Mohan; Wada, Ben K.; Garba, John A.
1991-01-01
Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).
Design Review and Analysis | Water Power | NREL
Design Review and Analysis Design Review and Analysis NREL is leveraging its 35 years of experience devices and components. As part of this effort, NREL researchers provide industry partners with design reviews and analyses. In addition to design reviews, NREL offers technical assistance to solve specific
Kotlikoff, Michael I
2007-01-01
This article reviews genetically encoded Ca2+ indicators (GECIs), with a focus on the use of these novel molecules in the context of understanding complex cell signalling in mammals, in vivo. The review focuses on the advantages and limitations of specific GECI design strategies and the results of experiments in which these molecules have been expressed in transgenic mice, concentrating particularly on recent experiments from our laboratory in which physiological signalling could be monitored in vivo. Finally, newer strategies for effective genetic specification of GECIs are briefly reviewed. PMID:17038427
ERIC Educational Resources Information Center
Kaahaaina, Nancy
1997-01-01
Describes a project that involved a rocket-design competition where students played the roles of McDonnell Douglas employees competing for NASA contracts. Provides a real world experience involving deadlines, design and performance specifications, and budgets. (JRH)
Biomedical experiments. Part A: Biostack experiment
NASA Technical Reports Server (NTRS)
Buecker, H.; Horneck, G.; Reinholz, E.; Scheuermann, W.; Ruether, W.; Graul, E. H.; Planel, H.; Soleilhavoup, J. P.; Cuer, P.; Kaiser, R.
1972-01-01
The biostack experiment is described which was designed to study the biologic effects of individual heavy nuclei of galactic cosmic radiation during space flight outside the magnetosphere of the earth. Specifically, the biostack experiment was designed to promote research on the effects of high energy/high Z particles of galactic cosmic radiation on a broad spectrum of biologic systems, from the molecular to the highly organized and developed forms of life. The experiment was considered unique and scientifically meritorious because of its potential yield of information - currently unavailable on earth - on the interaction of biologic systems with the heavy particles of galactic cosmic radiation.
How scientific experiments are designed: Problem solving in a knowledge-rich, error-rich environment
NASA Astrophysics Data System (ADS)
Baker, Lisa M.
While theory formation and the relation between theory and data has been investigated in many studies of scientific reasoning, researchers have focused less attention on reasoning about experimental design, even though the experimental design process makes up a large part of real-world scientists' reasoning. The goal of this thesis was to provide a cognitive account of the scientific experimental design process by analyzing experimental design as problem-solving behavior (Newell & Simon, 1972). Three specific issues were addressed: the effect of potential error on experimental design strategies, the role of prior knowledge in experimental design, and the effect of characteristics of the space of alternate hypotheses on alternate hypothesis testing. A two-pronged in vivo/in vitro research methodology was employed, in which transcripts of real-world scientific laboratory meetings were analyzed as well as undergraduate science and non-science majors' design of biology experiments in the psychology laboratory. It was found that scientists use a specific strategy to deal with the possibility of error in experimental findings: they include "known" control conditions in their experimental designs both to determine whether error is occurring and to identify sources of error. The known controls strategy had not been reported in earlier studies with science-like tasks, in which participants' responses to error had consisted of replicating experiments and discounting results. With respect to prior knowledge: scientists and undergraduate students drew on several types of knowledge when designing experiments, including theoretical knowledge, domain-specific knowledge of experimental techniques, and domain-general knowledge of experimental design strategies. Finally, undergraduate science students generated and tested alternates to their favored hypotheses when the space of alternate hypotheses was constrained and searchable. This result may help explain findings of confirmation bias in earlier studies using science-like tasks, in which characteristics of the alternate hypothesis space may have made it unfeasible for participants to generate and test alternate hypotheses. In general, scientists and science undergraduates were found to engage in a systematic experimental design process that responded to salient features of the problem environment, including the constant potential for experimental error, availability of alternate hypotheses, and access to both theoretical knowledge and knowledge of experimental techniques.
CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments.
Cao, Qingyi; Ma, Jian; Chen, Chen-Hao; Xu, Han; Chen, Zhi; Li, Wei; Liu, X Shirley
2017-01-01
The recently developed CRISPR screen technology, based on the CRISPR/Cas9 genome editing system, enables genome-wide interrogation of gene functions in an efficient and cost-effective manner. Although many computational algorithms and web servers have been developed to design single-guide RNAs (sgRNAs) with high specificity and efficiency, algorithms specifically designed for conducting CRISPR screens are still lacking. Here we present CRISPR-FOCUS, a web-based platform to search and prioritize sgRNAs for CRISPR screen experiments. With official gene symbols or RefSeq IDs as the only mandatory input, CRISPR-FOCUS filters and prioritizes sgRNAs based on multiple criteria, including efficiency, specificity, sequence conservation, isoform structure, as well as genomic variations including Single Nucleotide Polymorphisms and cancer somatic mutations. CRISPR-FOCUS also provides pre-defined positive and negative control sgRNAs, as well as other necessary sequences in the construct (e.g., U6 promoters to drive sgRNA transcription and RNA scaffolds of the CRISPR/Cas9). These features allow users to synthesize oligonucleotides directly based on the output of CRISPR-FOCUS. Overall, CRISPR-FOCUS provides a rational and high-throughput approach for sgRNA library design that enables users to efficiently conduct a focused screen experiment targeting up to thousands of genes. (CRISPR-FOCUS is freely available at http://cistrome.org/crispr-focus/).
Specificity of perceptual processing in rereading spatially transformed materials.
Horton, K D; McKenzie, B D
1995-05-01
While most studies using the task of reading spatially transformed text do not reveal evidence of specific perceptual transfer, a study by Masson (1986, Experiment 3) provides clear evidence of such effects. Several experiments were designed to identify the basis for this empirical discrepancy. The only substantive evidence of specific perceptual transfer occurred when the words were presented in an unfamiliar typography, although each study suggested a trend toward perceptual specificity effects. The results are discussed in terms of Graf and Ryan's (1990) ideas about the role of distinctive memory representations.
The design and development of a rectangular, shingle-type photovoltaic module
NASA Astrophysics Data System (ADS)
Shepard, N. F., Jr.
A shingle-type photovoltaic module has been designed and developed to meet the requirements of specifications for residential applications. The module is ideally suited for installation directly to the sheathing of a sloping, south-facing roof of a residential, industrial, or commercial building. The design requirements are examined, taking into account also module safety requirements. Aspects of module design and analysis are discussed, giving attention to installation details, solar cells and electrical circuit design, the encapsulation system, substrate lamination, and the module-to-module interconnecting cable. Details of module assembly experience and test and outdoor exposure experience are also considered.
The design and development of a rectangular, shingle-type photovoltaic module
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1982-01-01
A shingle-type photovoltaic module has been designed and developed to meet the requirements of specifications for residential applications. The module is ideally suited for installation directly to the sheathing of a sloping, south-facing roof of a residential, industrial, or commercial building. The design requirements are examined, taking into account also module safety requirements. Aspects of module design and analysis are discussed, giving attention to installation details, solar cells and electrical circuit design, the encapsulation system, substrate lamination, and the module-to-module interconnecting cable. Details of module assembly experience and test and outdoor exposure experience are also considered.
NASA Astrophysics Data System (ADS)
Cho, G. S.
2017-09-01
For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
Practical Findings from Applying the PSD Model for Evaluating Software Design Specifications
NASA Astrophysics Data System (ADS)
Räisänen, Teppo; Lehto, Tuomas; Oinas-Kukkonen, Harri
This paper presents practical findings from applying the PSD model to evaluating the support for persuasive features in software design specifications for a mobile Internet device. On the one hand, our experiences suggest that the PSD model fits relatively well for evaluating design specifications. On the other hand, the model would benefit from more specific heuristics for evaluating each technique to avoid unnecessary subjectivity. Better distinction between the design principles in the social support category would also make the model easier to use. Practitioners who have no theoretical background can apply the PSD model to increase the persuasiveness of the systems they design. The greatest benefit of the PSD model for researchers designing new systems may be achieved when it is applied together with a sound theory, such as the Elaboration Likelihood Model. Using the ELM together with the PSD model, one may increase the chances for attitude change.
Software Design for Interactive Graphic Radiation Treatment Simulation Systems*
Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan
1990-01-01
We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.
NASA Technical Reports Server (NTRS)
1970-01-01
The requirements for the design, fabrication, performance, and testing of a 10.6 micron optical heterodyne receiver subsystem for use in a laser communication system are presented. The receiver subsystem, as a part of the laser communication experiment operates in the ATS 6 satellite and in a transportable ground station establishing two-way laser communications between the spacecraft and the transportable ground station. The conditions under which environmental tests are conducted are reported.
Development and Implementation of Minimum Hiring Specifications
ERIC Educational Resources Information Center
Herbstritt, Michael R.
1978-01-01
Specifications were developed to avoid possible discrimination and confusion in the hiring practices at a large southeastern university. They were developed through job analysis and a systematic file search designed to find the education and prior related work experience possessed by each incumbent. The specifications were validated as…
OGO-1 and OGO-3 MIT plasma experiments S4903
NASA Technical Reports Server (NTRS)
1968-01-01
Plasma proton and plasma electron prototype and flight models were designed, fabricated, and tested. Ground support equipment for the models was also prepared. The flight models were launched aboard the first and third Orbiting Geophysical Observatories on 4 Sept. 1964 and 6 June 1966. These experiments have generally functioned in accordance with the design specifications and useful data are still being received.
Micro-Cycle Teaching Experiments as a Vehicle for Professional Development
ERIC Educational Resources Information Center
Billings, Esther M. H.; Kasmer, Lisa
2015-01-01
This study used design experiments, specifically micro-cycle teaching experiments (MTE) as a catalyst for practice-based professional development. The MTE incorporated research-based characteristics of effective professional development: it was embedded in the teachers' daily work of planning and enacting lessons, co-constructed with the…
An Example of a Laboratory Teaching Experience in a Professional Year (Plan B) Program
ERIC Educational Resources Information Center
Miller, P. J.; And Others
1978-01-01
A laboratory teaching experience (L.T.E.) was designed to focus on three teaching behaviors. It was recognized that a behavioral approach to teaching simplified its complexity by isolating specific teaching behaviors. Discusses the development and evaluation of the laboratory teaching experience. (Author/RK)
OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING
Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.
2017-01-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369
Optimal experiment design for magnetic resonance fingerprinting.
Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L
2016-08-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.
Jamin, Gaston; Luyten, Tom; Delsing, Rob; Braun, Susy
2017-10-17
Interactive art installations might engage nursing home residents with dementia. The main aim of this article was to describe the challenging design process of an interactive artwork for nursing home residents, in co-creation with all stakeholders and to share the used methods and lessons learned. This process is illustrated by the design of the interface of VENSTER as a case. Nursing home residents from the psychogeriatric ward, informal caregivers, client representatives, health care professionals and members of the management team were involved in the design process, which consisted of three phases: (1) identify requirements, (2) develop a prototype and (3) conduct usability tests. Several methods were used (e.g. guided co-creation sessions, "Wizard of Oz"). Each phase generated "lessons learned", which were used as the departure point of the next phase. Participants hardly paid attention to the installation and interface. There, however, seemed to be an untapped potential for creating an immersive experience by focussing more on the content itself as an interface (e.g. creating specific scenes with cues for interaction, scenes based on existing knowledge or prior experiences). "Fifteen lessons learned" which can potentially assist the design of an interactive artwork for nursing home residents suffering from dementia were derived from the design process. This description provides tools and best practices for stakeholders to make (better) informed choices during the creation of interactive artworks. It also illustrates how co-design can make the difference between designing a pleasurable experience and a meaningful one. Implications for rehabilitation Co-design with all stakeholders can make the difference between designing a pleasurable experience and a meaningful one. There seems to be an untapped potential for creating an immersive experience by focussing more on the content itself as an interface (e.g. creating specific scenes with cues for interaction, scenes based on existing knowledge or prior experiences). Content as an interface proved to be a crucial part of the overall user experience. The case-study provides tools and best practices (15 "lessons learned") for stakeholders to make (better) informed choices during the creation of interactive artworks.
Base Stabilization Guidance and Additive Selection for Pavement Design and Rehabilitation
DOT National Transportation Integrated Search
2017-12-01
Significant improvements have been made in base stabilization practice that include design specifications and methodology, experience with the selection of stabilizing additives, and equipment for distribution and uniform blending of additives. For t...
Telecommunications Systems Design Techniques Handbook
NASA Technical Reports Server (NTRS)
Edelson, R. E. (Editor)
1972-01-01
The Deep Space Network (DSN) increasingly supports deep space missions sponsored and managed by organizations without long experience in DSN design and operation. The document is intended as a textbook for those DSN users inexperienced in the design and specification of a DSN-compatible spacecraft telecommunications system. For experienced DSN users, the document provides a reference source of telecommunication information which summarizes knowledge previously available only in a multitude of sources. Extensive references are quoted for those who wish to explore specific areas more deeply.
Apollo experience report: Lunar module electrical power subsystem
NASA Technical Reports Server (NTRS)
Campos, A. B.
1972-01-01
The design and development of the electrical power subsystem for the lunar module are discussed. The initial requirements, the concepts used to design the subsystem, and the testing program are explained. Specific problems and the modifications or compromises (or both) imposed for resolution are detailed. The flight performance of the subsystem is described, and recommendations pertaining to power specifications for future space applications are made.
Luft, Joseph R.; Wolfley, Jennifer R.; Snell, Edward H.
2011-01-01
Observations of crystallization experiments are classified as specific outcomes and integrated through a phase diagram to visualize solubility and thereby direct subsequent experiments. Specific examples are taken from our high-throughput crystallization laboratory which provided a broad scope of data from 20 million crystallization experiments on 12,500 different biological macromolecules. The methods and rationale are broadly and generally applicable in any crystallization laboratory. Through a combination of incomplete factorial sampling of crystallization cocktails, standard outcome classifications, visualization of outcomes as they relate chemically and application of a simple phase diagram approach we demonstrate how to logically design subsequent crystallization experiments. PMID:21643490
Developing Teachers' Competences for Designing Inclusive Learning Experiences
ERIC Educational Resources Information Center
Navarro, Silvia Baldiris; Zervas, Panagiotis; Gesa, Ramon Fabregat; Sampson, Demetrios G.
2016-01-01
Inclusive education, namely the process of providing all learners with equal educational opportunities, is a major challenge for many educational systems worldwide. In order to address this issue, a widely used framework has been developed, namely the Universal Design for Learning (UDL), which aims to provide specific educational design guidelines…
ERIC Educational Resources Information Center
Skeries, Larry
Experiences suggested within this visual arts packet provide high school students with awareness of visual expression in graphic design, product design, architecture, and crafts. The unit may be used in whole or in part and includes information about art careers and art-related jobs found in major occupational fields. Specific lesson topics…
A scalable, self-analyzing digital locking system for use on quantum optics experiments.
Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T
2011-07-01
Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.
System safety checklist Skylab program report
NASA Technical Reports Server (NTRS)
Mcnail, E. M.
1974-01-01
Design criteria statement applicable to a wide variety of flight systems, experiments and other payloads, associated ground support equipment and facility support systems are presented. The document reflects a composite of experience gained throughout the aerospace industry prior to Skylab and additional experience gained during the Skylab Program. It has been prepared to provide current and future program organizations with a broad source of safety-related design criteria and to suggest methods for systematic and progressive application of the criteria beginning with preliminary development of design requirements and specifications. Recognizing the users obligation to shape the checklist to his particular needs, a summary of the historical background, rationale, objectives, development and implementation approach, and benefits based on Skylab experience has been included.
Toward the Design of Personalized Continuum Surgical Robots.
Morimoto, Tania K; Greer, Joseph D; Hawkes, Elliot W; Hsieh, Michael H; Okamura, Allison M
2018-05-31
Robot-assisted minimally invasive surgical systems enable procedures with reduced pain, recovery time, and scarring compared to traditional surgery. While these improvements benefit a large number of patients, safe access to diseased sites is not always possible for specialized patient groups, including pediatric patients, due to their anatomical differences. We propose a patient-specific design paradigm that leverages the surgeon's expertise to design and fabricate robots based on preoperative medical images. The components of the patient-specific robot design process are a virtual reality design interface enabling the surgeon to design patient-specific tools, 3-D printing of these tools with a biodegradable polyester, and an actuation and control system for deployment. The designed robot is a concentric tube robot, a type of continuum robot constructed from precurved, elastic, nesting tubes. We demonstrate the overall patient-specific design workflow, from preoperative images to physical implementation, for an example clinical scenario: nonlinear renal access to a pediatric kidney. We also measure the system's behavior as it is deployed through real and artificial tissue. System integration and successful benchtop experiments in ex vivo liver and in a phantom patient model demonstrate the feasibility of using a patient-specific design workflow to plan, fabricate, and deploy personalized, flexible continuum robots.
Electromagnetic sunscreen model: design of experiments on particle specifications.
Lécureux, Marie; Deumié, Carole; Enoch, Stefan; Sergent, Michelle
2015-10-01
We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc. Both the sun protection factor (SPF) and the UVB/UVA ratio are considered. We show that the design of experiments' model should include interactions between materials and other parameters. We conclude that the material of the particles is a key parameter for the SPF and the UVB/UVA ratio. Among the materials considered, none is optimal for both. The SPF is also highly dependent on the size of the particles.
Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Cole, Kevin D.
2003-01-01
The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.
NASA Technical Reports Server (NTRS)
Sweet, H. C.; Simmonds, R. C.
1976-01-01
It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.
An Intelligent Automation Platform for Rapid Bioprocess Design.
Wu, Tianyi; Zhou, Yuhong
2014-08-01
Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.
An Intelligent Automation Platform for Rapid Bioprocess Design
Wu, Tianyi
2014-01-01
Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579
Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments
NASA Technical Reports Server (NTRS)
Davis, M. H.
1977-01-01
The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.
Extravehicular activity welding experiment
NASA Technical Reports Server (NTRS)
Watson, J. Kevin
1989-01-01
The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.
Laser ignition application in a space experiment
NASA Technical Reports Server (NTRS)
Liou, Larry C.; Culley, Dennis E.
1993-01-01
A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.
NASA Technical Reports Server (NTRS)
Lang, A. L., Jr.
1971-01-01
Preliminary designs of the Bioexplorer spacecraft, developed in an earlier study program, are analyzed and updated to conform to a new specification which includes use of both the Scout and the space shuttle vehicle for launch. The updated spacecraft is referred to as bioresearch module. It is capable of supporting a variety of small biological experiments in near-earth and highly elliptical earth orbits. The baseline spacecraft design is compatible with the Scout launch vehicle. Inboard profile drawings, weight statements, interface drawings, and spacecraft parts and aerospace ground equipment lists are provided to document the design. The baseline design was analyzed to determine the design and cost impact of a set of optional features. These include reduced experiment power and thermal load, addition of an experiment television monitor, and replacement of VHF with S-band communications. The impact of these options on power required, weight change and cost is defined.
ERIC Educational Resources Information Center
Abd-El-Khalick, Fouad
2006-01-01
This study aimed to describe preservice and experienced secondary biology teachers' global and specific subject matter structures (SMSs) and elucidate the relationship between these structures and teaching experience. Teachers' global and specific SMSs respectively designate their conceptions and/or organization of their disciplines and of…
The 18th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1984-01-01
Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.
Feed-in Tariffs: Good Practices and Design Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Esterly, Sean
2016-01-02
In recent years, feed-in tariff (FIT) activity has focused primarily on revisions to current policies, underscoring the need for stable and predictable, yet flexible, policy environments. This policy brief provides a primer on key FIT design elements, lessons from country experience, and support resources to enable more detailed and country-specific FIT policy design.
NASA Technical Reports Server (NTRS)
Laughery, Mike
1994-01-01
A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.
NASA Astrophysics Data System (ADS)
Laughery, Mike
A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, J Michael; Deru, Michael
2007-01-01
In 2005, Wal-Mart opened experimental stores in McKinney, Texas (hot climate), and Aurora, Colo. (cold climate). With these projects Wal-Mart can: * Learn how to achieve sustainability improvements; * Gain experience with the design, design process, and operations for some specific advanced technologies; * Understand energy use patterns in their stores more clearly; * Lay groundwork for better understanding of how to achieve major carbon footprint reductions; and * Measure the potential benefits of specific technologies tested.
Zavos, Helena M.S.; Freeman, Daniel; Haworth, Claire M. A.; McGuire, Philip; Plomin, Robert; Cardno, Alastair G.; Ronald, Angelica
2014-01-01
Context The onset of psychosis is usually preceded by psychotic experiences, but little is known about their causes. The present study investigated the degree of genetic and environmental influences on specific psychotic experiences, assessed dimensionally, in adolescence in the community and in individuals with many, frequent experiences (defined using quantitative cut-offs). The degree of overlap in etiological influences between specific psychotic experiences was also investigated Objective Investigate degree of genetic and environmental influences on specific psychotic experiences, assessed dimensionally, in adolescence in the community and in individuals having many, frequent experiences (defined using quantitative cut-offs). Test degree of overlap in etiological influences between specific psychotic experiences. Design Classic twin design. Structural equation model-fitting. Univariate and bivariate twin models, liability threshold models, DeFries-Fulker extremes analysis and the Cherny Method. Setting Representative community sample of twins from England and Wales. Participants 5059 adolescent twin pairs (Mean age: 16.31 yrs, SD: 0.68 yrs). Main outcome measure Psychotic experiences assessed as quantitative traits (self-rated paranoia, hallucinations, cognitive disorganization, grandiosity, anhedonia; parent-rated negative symptoms). Results Genetic influences were apparent for all psychotic experiences (15-59%) with modest shared environment for hallucinations and negative symptoms (17-24%) and significant nonshared environment (49-64% for the self-rated scales, 17% for Parent-rated Negative Symptoms). Three different empirical approaches converged to suggest that the etiology in extreme groups (most extreme-scoring 5%, 10% and 15%) did not differ significantly from that of the whole distribution. There was no linear change in the heritability across the distribution of psychotic experiences, with the exception of a modest increase in heritability for increasing severity of parent-rated negative symptoms. Of the psychotic experiences that showed covariation, this appeared to be due to shared genetic influences (bivariate heritabilities = .54-.71). Conclusions and Relevance These findings are consistent with the concept of a psychosis continuum, suggesting that the same genetic and environmental factors influence both extreme, frequent psychotic experiences and milder, less frequent manifestations in adolescents. Individual psychotic experiences in adolescence, assessed quantitatively, have lower heritability estimates and higher estimates of nonshared environment than those for the liability to schizophrenia. Heritability varies by type of psychotic experience, being highest for paranoia and parent-rated negative symptoms, and lowest for hallucinations. PMID:25075799
System design projects for undergraduate design education
NASA Technical Reports Server (NTRS)
Batill, S. M.; Pinkelman, J.
1993-01-01
Design education has received considerable in the recent past. This paper is intended to address one aspect of undergraduate design education and that is the selection and development of the design project for a capstone design course. Specific goals for a capstone design course are presented and their influence on the project selection are discussed. The evolution of a series of projects based upon the design of remotely piloted aircraft is presented along with students' perspective on the capstone experience.
Hardware demonstration of flexible beam control
NASA Technical Reports Server (NTRS)
Schaechter, D. B.
1980-01-01
An experiment employing a pinned-free flexible beam has been constructed to demonstrate and verify several facets of the control of flexible structures. The desired features of the experiment are to demonstrate active shape control, active dynamic control, adaptive control, various control law design approaches, and associated hardware requirements and mechanization difficulties. This paper contains the analytical work performed in support of the facility development, the final design specifications, control law synthesis, and some preliminary results.
Guthrie, Kate M; Rosen, Rochelle K; Vargas, Sara E; Guillen, Melissa; Steger, Arielle L; Getz, Melissa L; Smith, Kelley A; Ramirez, Jaime J; Kojic, Erna M
2017-10-01
The development of HIV-preventive topical vaginal microbicides has been challenged by a lack of sufficient adherence in later stage clinical trials to confidently evaluate effectiveness. This dilemma has highlighted the need to integrate translational research earlier in the drug development process, essentially applying behavioral science to facilitate the advances of basic science with respect to the uptake and use of biomedical prevention technologies. In the last several years, there has been an increasing recognition that the user experience, specifically the sensory experience, as well as the role of meaning-making elicited by those sensations, may play a more substantive role than previously thought. Importantly, the role of the user-their sensory perceptions, their judgements of those experiences, and their willingness to use a product-is critical in product uptake and consistent use post-marketing, ultimately realizing gains in global public health. Specifically, a successful prevention product requires an efficacious drug, an efficient drug delivery system, and an effective user. We present an integrated iterative drug development and user experience evaluation method to illustrate how user-centered formulation design can be iterated from the early stages of preclinical development to leverage the user experience. Integrating the user and their product experiences into the formulation design process may help optimize both the efficiency of drug delivery and the effectiveness of the user.
SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments.
Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H
2018-01-01
DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.
SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments
Youngblut, Nicholas D.; Barnett, Samuel E.; Buckley, Daniel H.
2018-01-01
DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments. PMID:29643843
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1990-01-01
A flight experiment is planned for the validation, in a microgravity environment, of several ground-proven simplification features relating to SPE fuel cells and SPE electrolyzers. With a successful experiment, these features can be incorporated into equipment designs for specific extraterrestrial energy storage applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geynisman, M.; Bremer, J.; Chalifour, M.
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements formore » the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.« less
NASA Astrophysics Data System (ADS)
Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.
2017-12-01
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.
MSFC Skylab corollary experiment systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
Evaluations are presented of the performances of corollary experiment hardware developed by the George C. Marshall Space Flight Center and operated during the three manned Skylab missions. Also presented are assessments of the functional adequacy of the experiment hardware and its supporting systems, and indications are given as to the degrees by which experiment constraints and interfaces were met. It is shown that most of the corollary experiment hardware performed satisfactorily and within design specifications.
The cavity heat pipe Stirling receiver for space solar dynamics
NASA Technical Reports Server (NTRS)
Kesseli, James B.; Lacy, Dovie E.
1989-01-01
The receiver/storage unit for the low-earth-orbiting Stirling system is discussed. The design, referred to as the cavity heat pipe (CHP), has been optimized for minimum specific mass and volume width. A specific version of this design at the 7-kWe level has been compared to the space station Brayton solar dynamic design. The space station design utilizes a eutectic mixture of LiF and CaF2. Using the same phase change material, the CHP has been shown to have a specific mass of 40 percent and a volume of 5 percent of that of the space station Brayton at the same power level. Additionally, it complements the free-piston Stirling engine in that it also maintains a relatively flat specific mass down to at least 1 kWe. The technical requirements, tradeoff studies, critical issues, and critical technology experiments are discussed.
Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Hull, Patrick V.
2015-01-01
Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.
Proceedings: 1990 EPRI gas turbine procurement seminar
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, B.L.; Miller, M.N.
1991-06-01
This seminar presents information that enables utilities to implement more cost-effective procurements for gas turbine and combined-cycle power generation equipment. A systematic approach to specification and permitting procedures can lower unit life-cycle cost. APPROACH. Thirty-two staff members from 25 utilities met in Danvers, Massachusetts, October 9--11, 1990. Speakers representing utilities, vendors, and EPRI contractors presented material on recent procurement and startup experiences, permitting considerations, specification strategy, bid evaluation techniques, and a vendor's perspective of utility procurements. KEY POINTS. The seminar focused on specification features, procurement procedures, and bid evaluation techniques designed to implement life-cycle cost-effective procurement consistent with the plantmore » mission. Speakers highlighted the following issues: Experiential case histories of recent procurements and startups, emphasizing how to design procurement procedures that improve plant operating economics; Current trends in permitting for NO{sub x} compliance and recent permitting experience; Quantifiable evaluations of vendors' bids for RAM-related characteristics; The means to obtain specifically desired but nonstandard equipment features.« less
Renewable Electricity Standards: Good Practices and Design Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Esterly, Sean
2016-01-02
In widespread use globally, renewable electricity standards (RES) are one of the most widely adopted renewable energy policies and a critical regulatory vehicle to accelerate renewable energy deployment. This policy brief provides an introduction to key RES design elements, lessons from country experience, and support resources to enable more detailed and country-specific RES policy design.
A miniature microcontroller curve tracing circuit for space flight testing transistors.
Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D
2015-02-01
This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.
Merlin: Computer-Aided Oligonucleotide Design for Large Scale Genome Engineering with MAGE.
Quintin, Michael; Ma, Natalie J; Ahmed, Samir; Bhatia, Swapnil; Lewis, Aaron; Isaacs, Farren J; Densmore, Douglas
2016-06-17
Genome engineering technologies now enable precise manipulation of organism genotype, but can be limited in scalability by their design requirements. Here we describe Merlin ( http://merlincad.org ), an open-source web-based tool to assist biologists in designing experiments using multiplex automated genome engineering (MAGE). Merlin provides methods to generate pools of single-stranded DNA oligonucleotides (oligos) for MAGE experiments by performing free energy calculation and BLAST scoring on a sliding window spanning the targeted site. These oligos are designed not only to improve recombination efficiency, but also to minimize off-target interactions. The application further assists experiment planning by reporting predicted allelic replacement rates after multiple MAGE cycles, and enables rapid result validation by generating primer sequences for multiplexed allele-specific colony PCR. Here we describe the Merlin oligo and primer design procedures and validate their functionality compared to OptMAGE by eliminating seven AvrII restriction sites from the Escherichia coli genome.
Analysis of commercial equipment and instrumentation for Spacelab payloads, volume 2
NASA Technical Reports Server (NTRS)
1974-01-01
Technical results are presented of a study to investigate analytically the feasibility of using commercially available laboratory equipment and instrumentation in the spacelab in support of various experiments. The feasibility is demonstrated by the breadth of application of commercial, airborne, and military equipment to experiment equipment requirements in the spacelab, and the cost effectiveness of utilizing this class of equipment instead of custom-built aerospace equipment typical of past designs. Equipment design and specifications are discussed.
Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach
NASA Technical Reports Server (NTRS)
Fisher, David; Thomas, Flint O.; Nelson, Robert C.
1996-01-01
Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.
Brühlmann, David; Sokolov, Michael; Butté, Alessandro; Sauer, Markus; Hemberger, Jürgen; Souquet, Jonathan; Broly, Hervé; Jordan, Martin
2017-07-01
Rational and high-throughput optimization of mammalian cell culture media has a great potential to modulate recombinant protein product quality. We present a process design method based on parallel design-of-experiment (DoE) of CHO fed-batch cultures in 96-deepwell plates to modulate monoclonal antibody (mAb) glycosylation using medium supplements. To reduce the risk of losing valuable information in an intricate joint screening, 17 compounds were separated into five different groups, considering their mode of biological action. The concentration ranges of the medium supplements were defined according to information encountered in the literature and in-house experience. The screening experiments produced wide glycosylation pattern ranges. Multivariate analysis including principal component analysis and decision trees was used to select the best performing glycosylation modulators. Subsequent D-optimal quadratic design with four factors (three promising compounds and temperature shift) in shake tubes confirmed the outcome of the selection process and provided a solid basis for sequential process development at a larger scale. The glycosylation profile with respect to the specifications for biosimilarity was greatly improved in shake tube experiments: 75% of the conditions were equally close or closer to the specifications for biosimilarity than the best 25% in 96-deepwell plates. Biotechnol. Bioeng. 2017;114: 1448-1458. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
VIP: A knowledge-based design aid for the engineering of space systems
NASA Technical Reports Server (NTRS)
Lewis, Steven M.; Bellman, Kirstie L.
1990-01-01
The Vehicles Implementation Project (VIP), a knowledge-based design aid for the engineering of space systems is described. VIP combines qualitative knowledge in the form of rules, quantitative knowledge in the form of equations, and other mathematical modeling tools. The system allows users rapidly to develop and experiment with models of spacecraft system designs. As information becomes available to the system, appropriate equations are solved symbolically and the results are displayed. Users may browse through the system, observing dependencies and the effects of altering specific parameters. The system can also suggest approaches to the derivation of specific parameter values. In addition to providing a tool for the development of specific designs, VIP aims at increasing the user's understanding of the design process. Users may rapidly examine the sensitivity of a given parameter to others in the system and perform tradeoffs or optimizations of specific parameters. A second major goal of VIP is to integrate the existing corporate knowledge base of models and rules into a central, symbolic form.
de Borst, Aline W; Valente, Giancarlo; Jääskeläinen, Iiro P; Tikka, Pia
2016-04-01
In the perceptual domain, it has been shown that the human brain is strongly shaped through experience, leading to expertise in highly-skilled professionals. What has remained unclear is whether specialization also shapes brain networks underlying mental imagery. In our fMRI study, we aimed to uncover modality-specific mental imagery specialization of film experts. Using multi-voxel pattern analysis we decoded from brain activity of professional cinematographers and sound designers whether they were imagining sounds or images of particular film clips. In each expert group distinct multi-voxel patterns, specific for the modality of their expertise, were found during classification of imagery modality. These patterns were mainly localized in the occipito-temporal and parietal cortex for cinematographers and in the auditory cortex for sound designers. We also found generalized patterns across perception and imagery that were distinct for the two expert groups: they involved frontal cortex for the cinematographers and temporal cortex for the sound designers. Notably, the mental representations of film clips and sounds of cinematographers contained information that went beyond modality-specificity. We were able to successfully decode the implicit presence of film genre from brain activity during mental imagery in cinematographers. The results extend existing neuroimaging literature on expertise into the domain of mental imagery and show that experience in visual versus auditory imagery can alter the representation of information in modality-specific association cortices. Copyright © 2016 Elsevier Inc. All rights reserved.
Implicit Approach-Avoidance Associations for Craved Food Cues
ERIC Educational Resources Information Center
Kemps, Eva; Tiggemann, Marika; Martin, Rachel; Elliott, Mecia
2013-01-01
Implicit approach associations are well documented for substances such as alcohol, tobacco, and illicit drugs. This study reports two experiments designed to establish and modify such associations specifically in the food craving domain. Experiment 1 used a pictorial implicit association task to examine approach-avoidance associations with…
Laser pattern generator challenges in airborne molecular contamination protection
NASA Astrophysics Data System (ADS)
Ekberg, Mats; Skotte, Per-Uno; Utterback, Tomas; Paul, Swaraj; Kishkovich, Oleg P.; Hudzik, James S.
2003-08-01
The introduction of photomask laser pattern generators presents new challenges to system designers and manufacturers. One of the laser pattern generator's environmental operating challenges is Airborne Molecular Contamination (AMC), which affects both chemically amplified resists (CAResist) and laser optics. Similar challenges in CAResist protection have already been addressed in semiconductor wafer lithography with reasonable solutions and experience gained by all those involved. However, photomask and photomask equipment manufacturers have not previously had a comparable experience, and some photomask AMC issues differ from those seen in semiconductor wafer lithography. Culminating years of AMC experience, the authors discuss specific requirements of Photomask AMC. Air sampling and material of construction analysis were performed to understand these particular AMC challenges and used to develop an appropriate filtration specification for different classes of contaminates. The authors portray the importance of cooperation between tool designers and AMC experts early in the design stage to assure goal attainment to maximize both process stability and machine productivity in advanced mask making. In conclusion, the authors provide valuable recommendations to both laser tool users and other equipment manufacturers.
UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model
NASA Astrophysics Data System (ADS)
Thorsen, D.
2017-12-01
Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.
RF-based power distribution system for optogenetic experiments
NASA Astrophysics Data System (ADS)
Filipek, Tomasz A.; Kasprowicz, Grzegorz H.
2017-08-01
In this paper, the wireless power distribution system for optogenetic experiment was demonstrated. The design and the analysis of the power transfer system development is described in details. The architecture is outlined in the context of performance requirements that had to be met. We show how to design a wireless power transfer system using resonant coupling circuits which consist of a number of receivers and one transmitter covering the entire cage area with a specific power density. The transmitter design with the full automated protection stage is described with detailed consideration of the specification and the construction of the transmitting loop antenna. In addition, the design of the receiver is described, including simplification of implementation and the minimization of the impact of component tolerances on the performance of the distribution system. The conducted analysis has been confirmed by calculations and measurement results. The presented distribution system was designed to provide 100 mW power supply to each of the ten possible receivers in a limited 490 x 350 mm cage space while using a single transmitter working at the coupling resonant frequency of 27 MHz.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Team Science: Organizing Classroom Experiments That Develop Group Skills.
ERIC Educational Resources Information Center
Coffin, Marilyn
This book contains classroom experiments designed to promote group skills. Each lesson has 4 parts: a 3-minute set-up; 5-minute warm-up, 25-minute experiment, and 5-minute clean-up. During each part, each member of the group is responsible for performing a specific task. Included are 34 labs that cover a range of topics: observations, physical…
NASA Technical Reports Server (NTRS)
Weber, Doug; Jamsek, Damir
1994-01-01
The goal of this task was to investigate how formal methods could be incorporated into a software engineering process for flight-control systems under DO-178B and to demonstrate that process by developing a formal specification for NASA's Guidance and Controls Software (GCS) Experiment. GCS is software to control the descent of a spacecraft onto a planet's surface. The GCS example is simplified from a real example spacecraft, but exhibits the characteristics of realistic spacecraft control software. The formal specification is written in Larch.
To Demonstrate the Specificity of an Enzymatic Method for Plasma Paracetamol Estimation.
ERIC Educational Resources Information Center
O'Mullane, John A.
1987-01-01
Describes an experiment designed to introduce biochemistry students to the specificity of an analytical method which uses an enzyme to quantitate its substrate. Includes the use of toxicity charts together with the concept of the biological half-life of a drug. (TW)
Transitioning from conceptual design to construction performance specification
NASA Astrophysics Data System (ADS)
Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather
2012-09-01
On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.
Vented Tank Resupply Experiment (VTRE) for In-space Technology Experiment Program (IN-STEP)
NASA Technical Reports Server (NTRS)
1992-01-01
An overview of the Vented Tank Resupply Experiment (VTRE) program is presented in outline and graphical form. The goal of the program is to develop, design, build and provide flight and post flight support for a Shuttle Hitchhiker Experiment to investigate and demonstrate vented tank venting in space. Program schedules and experiment subsystem schematics are presented and specific technical objectives, power requirements, payload assemblies, Hitchhiker canister integration, and orbiter mission approach are addressed.
Dewhurst, Stephen A; Knott, Lauren M
2010-12-01
Five experiments investigated the encoding-retrieval match in recognition memory by manipulating read and generate conditions at study and at test. Experiments 1A and 1B confirmed previous findings that reinstating encoding operations at test enhances recognition accuracy in a within-groups design but reduces recognition accuracy in a between-groups design. Experiment 2A showed that generating from anagrams at study and at test enhanced recognition accuracy even when study and test items were generated from different anagrams. Experiment 2B showed that switching from one generation task at study (e.g., anagram solution) to a different generation task at test (e.g., fragment completion) eliminated this recognition advantage. Experiment 3 showed that the recognition advantage found in Experiment 1A is reliably present up to 1 week after study. The findings are consistent with theories of memory that emphasize the importance of the match between encoding and retrieval operations.
Cryogenic fluid management experiment
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.
1981-01-01
The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.
The ISS Fluids and Combustion Facility: Experiment Accommodations Summary
NASA Technical Reports Server (NTRS)
Corban, Robert R.; Simons, Stephen N. (Technical Monitor)
2001-01-01
The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.
ERIC Educational Resources Information Center
Metcalf, Lynn E.
2010-01-01
This article outlines the development of a project-based capstone marketing course, specifically designed to provide marketing students with an international community service learning experience. It differs significantly from previous studies, which focus on integrating service learning into existing marketing courses and on helping local…
Satisfaction Analysis of Experiential Learning-Based Popular Science Education
ERIC Educational Resources Information Center
Dzan, Wei-Yuan; Tsai, Huei-Yin; Lou, Shi-Jer; Shih, Ru-Chu
2015-01-01
This study employed Kolb's experiential learning model-specific experiences, observations of reflections, abstract conceptualization, and experiment-action in activities to serve as the theoretical basis for popular science education planning. It designed the six activity themes of "Knowledge of the Ocean, Easy to Know, See the Large from the…
The Influence of Study Away Experiences on Global Perspective-Taking
ERIC Educational Resources Information Center
Engberg, Mark E.
2013-01-01
This article examines the relationship between 2 study away experiences--study abroad and service-learning--and the development of a global perspective. Three different studies are presented using cross-sectional and longitudinal designs and multi-institutional samples. The results specifically link involvement in study abroad and service-learning…
Experience API: Flexible, Decentralized and Activity-Centric Data Collection
ERIC Educational Resources Information Center
Kevan, Jonathan M.; Ryan, Paul R.
2016-01-01
This emerging technology report describes the Experience API (xAPI), a new e-learning specification designed to support the learning community in standardizing and collecting both formal and informal distributed learning activities. Informed by Activity Theory, a framework aligned with constructivism, data is collected in the form of activity…
Appearance Investment and Everyday Interpersonal Functioning: An Experience Sampling Study
ERIC Educational Resources Information Center
Forand, Nicholas R.; Gunthert, Kathleen C.; German, Ramaris E.; Wenze, Susan J.
2010-01-01
Several studies have shown that body satisfaction affects interpersonal functioning. However, few have studied the specific interpersonal correlates of another important body image dimension, appearance investment--that is, the importance a woman places on appearance. We used an experience sampling design with PDA (personal digital assistant)…
Service Learning: Opportunities for Legal Studies in Business
ERIC Educational Resources Information Center
Burke, Debra D.
2007-01-01
Service learning is a form of experiential learning designed to engage students, faculty, and community partners in a mutually beneficial experience. Specifically, it "is a credit-bearing, educational experience in which students participate in an organized service activity that meets identified community needs and reflects on the service activity…
RANDOMIZATION PROCEDURES FOR THE ANALYSIS OF EDUCATIONAL EXPERIMENTS.
ERIC Educational Resources Information Center
COLLIER, RAYMOND O.
CERTAIN SPECIFIC ASPECTS OF HYPOTHESIS TESTS USED FOR ANALYSIS OF RESULTS IN RANDOMIZED EXPERIMENTS WERE STUDIED--(1) THE DEVELOPMENT OF THE THEORETICAL FACTOR, THAT OF PROVIDING INFORMATION ON STATISTICAL TESTS FOR CERTAIN EXPERIMENTAL DESIGNS AND (2) THE DEVELOPMENT OF THE APPLIED ELEMENT, THAT OF SUPPLYING THE EXPERIMENTER WITH MACHINERY FOR…
Software fault-tolerance by design diversity DEDIX: A tool for experiments
NASA Technical Reports Server (NTRS)
Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Lyu, R. T.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.
1986-01-01
The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described.
A Fingerprint Pattern of Supports for Teachers' Designing of Technology-Enhanced Learning
ERIC Educational Resources Information Center
Svihla, Vanessa; Reeve, Richard; Sagy, Ornit; Kali, Yael
2015-01-01
Teachers often find themselves in a position in which they need to adapt technology-enhanced materials to meet the needs of their students. As new technologies--especially those not specifically designed for learning--find their way into schools, teachers need to be able to design learning experiences that use these new technologies in their local…
Developments in the safe design of LNG tanks
NASA Astrophysics Data System (ADS)
Fulford, N. J.; Slatter, M. D.
The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.
Environmental parameters of shuttle support for life sciences experiments
NASA Technical Reports Server (NTRS)
Waligora, J. M.
1976-01-01
The environments provided by the Orbiter vehicle and by the Spacelab will differ substantially from the environment provided by prior spacecraft. The specific design limits for each environmental parameter and expected operating characteristics are presented for both the Orbiter and the Spacelab. The environments are compared with those of earlier spacecraft and with the normal earth laboratory. Differences between the spacecraft environments and the normal laboratory environment and the impact of these differences on experiments and equipment design are discussed.
Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, R.; Claus, R.; Freytag, M.
2015-01-23
The SLAC RCE platform is a general purpose clustered data acquisition system implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element (RCE), which is a system-on-chip design based upon the Xilinx Zynq family of FPGAs, mounted on custom COB daughter-boards. The Zynq architecture couples a dual core ARM Cortex A9 based processor with a high performance 28nm FPGA. The RCE has 12 external general purpose bi-directional high speed links, each supporting serial rates of up to 12Gbps. 8 RCE nodes are included on a COB, eachmore » with a 10Gbps connection to an on-board 24-port Ethernet switch integrated circuit. The COB is designed to be used with a standard full-mesh ATCA backplane allowing multiple RCE nodes to be tightly interconnected with minimal interconnect latency. Multiple shelves can be clustered using the front panel 10-gbps connections. The COB also supports local and inter-blade timing and trigger distribution. An experiment specific Rear Transition Module adapts the 96 high speed serial links to specific experiments and allows an experiment-specific timing and busy feedback connection. This coupling of processors with a high performance FPGA fabric in a low latency, multiple node cluster allows high speed data processing that can be easily adapted to any physics experiment. RTEMS and Linux are both ported to the module. The RCE has been used or is the baseline for several current and proposed experiments (LCLS, HPS, LSST, ATLAS-CSC, LBNE, DarkSide, ILC-SiD, etc).« less
DOT National Transportation Integrated Search
2014-08-01
This report proposes a set of specifications for bridge structural health monitoring that has resulted from the : experiences gained during the installation and monitoring of six permanent long-term bridge monitoring systems in : Connecticut. As expe...
Early Childhood Education of Children with Specific Language Impairments
ERIC Educational Resources Information Center
Barrett, Emma; Hammond, Lorraine
2008-01-01
Early intervention for children with specific language impairment by teachers with experience in supporting their needs is critical to language acquisition. In Western Australia this small number of children are catered for in designated settings with specialised teachers. The length of time that these children are able to access intensive…
Teaching Quality Object-Oriented Programming
ERIC Educational Resources Information Center
Feldman, Yishai A.
2005-01-01
Computer science students need to learn how to write high-quality software. An important methodology for achieving quality is design-by-contract, in which code is developed together with its specification, which is given as class invariants and method pre- and postconditions. This paper describes practical experience in teaching design-by-contract…
Places and Spaces: Facility Planning for Handicapped Children and Adults.
ERIC Educational Resources Information Center
Aiello, Barbara, Ed.
Intended for special educators and architectural designers, the book provides specifications and lists of resource materials on facility design for handicapped children and adults. In an overview, R. Vosbeck discusses the need for cooperation between architects and educators and relates his experiences in planning facilities for exceptional…
Designing Assessment into a Study Abroad Course
ERIC Educational Resources Information Center
Santanello, Cathy; Wolff, Laura
2008-01-01
One faces several challenges when designing an education abroad program. These include engaging non-traditional majors in study abroad experiences; facilitating learning activities that directly align with the learning goals of the courses; assessing specific learning outcomes; and finding ways to close the circle after the study abroad programs…
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1993-01-01
The focus of this research is on the reduction of the refrigeration requirements for infrared sensors operating in space through the use of high temperature superconductive (HTS) materials as electronic leads between the cooled sensors and the relatively warmer data acquisition components. Specifically, this initial study was directed towards the design of an experiment to quantify the thermal performance of these materials in the space environment. First, an intensive review of relevant literature was undertaken, and then, design requirements were formulated. From this background information, a preliminary experimental design was developed. Additional studies will involve a thermal analysis of the experiment and further modifications of the experimental design.
NASA Technical Reports Server (NTRS)
Hale, Mark A.
1996-01-01
Computer applications for design have evolved rapidly over the past several decades, and significant payoffs are being achieved by organizations through reductions in design cycle times. These applications are overwhelmed by the requirements imposed during complex, open engineering systems design. Organizations are faced with a number of different methodologies, numerous legacy disciplinary tools, and a very large amount of data. Yet they are also faced with few interdisciplinary tools for design collaboration or methods for achieving the revolutionary product designs required to maintain a competitive advantage in the future. These organizations are looking for a software infrastructure that integrates current corporate design practices with newer simulation and solution techniques. Such an infrastructure must be robust to changes in both corporate needs and enabling technologies. In addition, this infrastructure must be user-friendly, modular and scalable. This need is the motivation for the research described in this dissertation. The research is focused on the development of an open computing infrastructure that facilitates product and process design. In addition, this research explicitly deals with human interactions during design through a model that focuses on the role of a designer as that of decision-maker. The research perspective here is taken from that of design as a discipline with a focus on Decision-Based Design, Theory of Languages, Information Science, and Integration Technology. Given this background, a Model of IPPD is developed and implemented along the lines of a traditional experimental procedure: with the steps of establishing context, formalizing a theory, building an apparatus, conducting an experiment, reviewing results, and providing recommendations. Based on this Model, Design Processes and Specification can be explored in a structured and implementable architecture. An architecture for exploring design called DREAMS (Developing Robust Engineering Analysis Models and Specifications) has been developed which supports the activities of both meta-design and actual design execution. This is accomplished through a systematic process which is comprised of the stages of Formulation, Translation, and Evaluation. During this process, elements from a Design Specification are integrated into Design Processes. In addition, a software infrastructure was developed and is called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment). This represents a virtual apparatus in the Design Experiment conducted in this research. IMAGE is an innovative architecture because it explicitly supports design-related activities. This is accomplished through a GUI driven and Agent-based implementation of DREAMS. A HSCT design has been adopted from the Framework for Interdisciplinary Design Optimization (FIDO) and is implemented in IMAGE. This problem shows how Design Processes and Specification interact in a design system. In addition, the problem utilizes two different solution models concurrently: optimal and satisfying. The satisfying model allows for more design flexibility and allows a designer to maintain design freedom. As a result of following this experimental procedure, this infrastructure is an open system that it is robust to changes in both corporate needs and computer technologies. The development of this infrastructure leads to a number of significant intellectual contributions: 1) A new approach to implementing IPPD with the aid of a computer; 2) A formal Design Experiment; 3) A combined Process and Specification architecture that is language-based; 4) An infrastructure for exploring design; 5) An integration strategy for implementing computer resources; and 6) A seamless modeling language. The need for these contributions is emphasized by the demand by industry and government agencies for the development of these technologies.
Carnahan, Heather; Herold, Jodi
2015-01-01
ABSTRACT Purpose: To review the literature on simulation-based learning experiences and to examine their potential to have a positive impact on physiotherapy (PT) learners' knowledge, skills, and attitudes in entry-to-practice curricula. Method: A systematic literature search was conducted in the MEDLINE, CINAHL, Embase Classic+Embase, Scopus, and Web of Science databases, using keywords such as physical therapy, simulation, education, and students. Results: A total of 820 abstracts were screened, and 23 articles were included in the systematic review. While there were few randomized controlled trials with validated outcome measures, some discoveries about simulation can positively affect the design of the PT entry-to-practice curricula. Using simulators to provide specific output feedback can help students learn specific skills. Computer simulations can also augment students' learning experience. Human simulation experiences in managing the acute patient in the ICU are well received by students, positively influence their confidence, and decrease their anxiety. There is evidence that simulated learning environments can replace a portion of a full-time 4-week clinical rotation without impairing learning. Conclusions: Simulation-based learning activities are being effectively incorporated into PT curricula. More rigorously designed experimental studies that include a cost–benefit analysis are necessary to help curriculum developers make informed choices in curriculum design. PMID:25931672
Conceptual design of Dipole Research Experiment (DREX)
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
ERIC Educational Resources Information Center
Velentzas, Athanasios; Halkia, Krystallia
2011-01-01
In this work an attempt is made to explore the possible value of using Thought Experiments (TEs) in teaching physics to upper secondary education students. Specifically, a qualitative research project is designed to investigate the extent to which the Thought Experiment (TE) called "Heisenberg's Microscope", as it has been transformed by…
Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Klimas, P. C.
1981-01-01
Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.
Microgravity science experiment integration - When the PI and the PED differ
NASA Technical Reports Server (NTRS)
Baer-Peckham, M. S.; Mccarley, K. S.
1991-01-01
This paper addresses issues related to the integration of principal investigators (PIs) and payload-element developers (PEDs) for conducting effective microgravity experiments. The Crystal Growth Furnace (CGF) is used as an example to demonstrate the key issues related to the integration of a PI's sample into a facility run by a different organization. Attention is given to the typical preflight timeline, documentation required for experimental implementation, and hardware deliverables. A flow chart delineates the payload-integration process flow, and PI inputs required for an experiment include equipment and procedure definitions, detailed design and fabrication of the experiment-specific equipment, and specifications of the contract-end item. The present analysis is of interest to the coordination of effective microgravity experiments on the Space Station Freedom that incorporate PIs and PEDs from different organizations.
NASA Technical Reports Server (NTRS)
Crocker, Alan R.
2011-01-01
As we push toward new and diverse space transportation capabilities, reduction in operations cost becomes increasingly important. Achieving affordable and safe human spaceflight capabilities will be the mark of success for new programs and new providers. The ability to perceive the operational implications of design decisions is crucial in developing safe yet cost competitive space transportation systems. Any human spaceflight program - government or commercial - must make countless decisions either to implement spacecraft system capabilities or adopt operational constraints or workarounds to account for the lack of such spacecraft capabilities. These decisions can benefit from the collective experience that NASA has accumulated in building and operating crewed spacecraft over the last five decades. This paper reviews NASA s history in developing and operating human rated spacecraft, reviewing the key aspects of spacecraft design and their resultant impacts on operations phase complexity and cost. Specific examples from current and past programs - including the Space Shuttle and International Space Station - are provided to illustrate design traits that either increase or increase cost and complexity associated with spacecraft operations. These examples address factors such as overall design performance margins, levels of redundancy, degree of automated failure response, type and quantity of command and telemetry interfaces, and the definition of reference scenarios for analysis and test. Each example - from early program requirements, design implementation and resulting real-time operations experience - to tell the end-to-end "story" Based on these experiences, specific techniques are recommended to enable earlier and more effective assessment of operations concerns during the design process. A formal method for the assessment of spacecraft operability is defined and results of such operability assessments for recent spacecraft designs are provided. Recent experience in applying these techniques to Orion spacecraft development is reviewed to highlight the direct benefits of early operational assessment and collaborative development efforts.
ON AN ALLEGED TRUTH/FALSITY ASYMMETRY IN CONTEXT SHIFTING EXPERIMENTS
Hansen, Nat
2012-01-01
Keith DeRose has argued that context shifting experiments should be designed in a specific way in order to accommodate what he calls a ‘truth/falsity asymmetry’. I explain and critique DeRose's reasons for proposing this modification to contextualist methodology, drawing on recent experimental studies of DeRose's bank cases as well as experimental findings about the verification of affirmative and negative statements. While DeRose's arguments for his particular modification to contextualist methodology fail, the lesson of his proposal is that there is good reason to pay close attention to several subtle aspects of the design of context shifting experiments. PMID:25821248
Interface definition for the Far Ultraviolet Spectrometer Experiment S169
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1971-01-01
A final contract for development, fabrication, test and flight of the ultraviolet spectrometer experiment on an Apollo space mission is reported. Two interface control documents were completed and signed off and three more were essentially completed. Supporting preliminary concepts formulation, design study and component investigation, specification and subcontract negotiation were accomplished.
The Role of Online Reader Experience in Explaining Students' Performance in Digital Reading
ERIC Educational Resources Information Center
Gil-Flores, Javier; Torres-Gordillo, Juan-Jesus; Perera-Rodriguez, Victor-Hugo
2012-01-01
This study explores the relationship between students' extracurricular experiences online and their performance on the Program for International Student Assessment (PISA), focusing specifically on students' competence in digital reading. The study uses a descriptive, correlational, ex post facto design. The data are taken from Spanish students'…
ERIC Educational Resources Information Center
Nguyen, T. L. U.; Bennet, Francesca; Stenzel, Martina H.; Barner-Kowollik, Christopher
2008-01-01
This 8-hour experiment (spread over two 4-hour sessions) is designed to equip students with essential skills in polymer synthesis, particularly in synthesizing polymers of well-defined molecular weight. The experiment involves the synthesis and characterization of poly(vinyl neodecanoate) via living free radical polymerization, specifically the…
Struggling Readers and Emotional Intelligence: A Case Study of Their Program Experiences
ERIC Educational Resources Information Center
Peterson, Jennifer
2011-01-01
This study examined the question: How do struggling readers experience the Gonzaga University's Saturday Literacy Tutoring Program as viewed through the five key dimensions of emotional intelligence? Gonzaga University's Saturday Literacy Tutoring Program is designed to help struggling readers gain the specific skills and strategies they need to…
Teaching the African-American Experience in the Palmetto State. Educator Resource Guide.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia.
This resource guide for teaching the African-American experience in South Carolina's public schools is designed to serve as a supplement to the "South Carolina Social Studies Curriculum Standards." Focusing on the history and culture of Africa and African-Americans within the specific context of the state's curriculum standards and…
Instrumental Music Educators' Experiences in a Professional Development Course
ERIC Educational Resources Information Center
Draves, Tami J.
2017-01-01
The purpose of this research was to investigate the experiences of instrumental music teachers in Designing Arts Instruction, a 4-day professional development course in a large urban school district. Specifically, I was interested in which activities participants (a) found most relevant and applicable to their current teaching situation, (b)…
A Proposed Multimedia Cone of Abstraction: Updating a Classic Instructional Design Theory
ERIC Educational Resources Information Center
Baukal, Charles E.; Ausburn, Floyd B.; Ausburn, Lynna J.
2013-01-01
Advanced multimedia techniques offer significant learning potential for students. Dale (1946, 1954, 1969) developed a Cone of Experience (CoE) which is a hierarchy of learning experiences ranging from direct participation to abstract symbolic expression. This paper updates the CoE for today's technology and learning context, specifically focused…
ERIC Educational Resources Information Center
McDonald, Denise; Farrell, Tina
2012-01-01
Focus Group interviews with 31 disadvantaged students in an Early College High School (ECHS) program present insights to students' experience in the hybrid school, specifically regarding their perceptions of college readiness. Student "voice" in research can yield significant information when examining aspects of school design that…
Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment
NASA Technical Reports Server (NTRS)
Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.
Are consonant intervals music to their ears? Spontaneous acoustic preferences in a nonhuman primate.
McDermott, Josh; Hauser, Marc
2004-12-01
Humans find some sounds more pleasing than others; such preferences may underlie our enjoyment of music. To gain insight into the evolutionary origins of these preferences, we explored whether they are present in other animals. We designed a novel method to measure the spontaneous sound preferences of cotton-top tamarins, a species that has been extensively tested for other perceptual abilities. Animals were placed in a V-shaped maze, and their position within the maze controlled their auditory environment. One sound was played when they were in one branch of the maze, and a different sound for the opposite branch; no food was delivered during testing. We used the proportion of time spent in each branch as a measure of preference. The first two experiments were designed as tests of our method. In Experiment 1, we used loud and soft white noise as stimuli; all animals spent most of their time on the side with soft noise. In Experiment 2, tamarins spent more time on the side playing species-specific feeding chirps than on the side playing species-specific distress calls. Together, these two experiments suggest that the method is effective, providing a spontaneous measure of preference. In Experiment 3, however, subjects showed no preference for consonant over dissonant intervals. Finally, tamarins showed no preference in Experiment 4 for a screeching sound (comparable to fingernails on a blackboard) over amplitude-matched white noise. In contrast, humans showed clear preferences for the consonant intervals of Experiment 3 and the white noise of Experiment 4 using the same stimuli and a similar method. We conclude that tamarins' preferences differ qualitatively from those of humans. The preferences that support our capacity for music may, therefore, be unique among the primates, and could be music-specific adaptations.
Stepwise Regression Analysis of MDOE Balance Calibration Data Acquired at DNW
NASA Technical Reports Server (NTRS)
DeLoach, RIchard; Philipsen, Iwan
2007-01-01
This paper reports a comparison of two experiment design methods applied in the calibration of a strain-gage balance. One features a 734-point test matrix in which loads are varied systematically according to a method commonly applied in aerospace research and known in the literature of experiment design as One Factor At a Time (OFAT) testing. Two variations of an alternative experiment design were also executed on the same balance, each with different features of an MDOE experiment design. The Modern Design of Experiments (MDOE) is an integrated process of experiment design, execution, and analysis applied at NASA's Langley Research Center to achieve significant reductions in cycle time, direct operating cost, and experimental uncertainty in aerospace research generally and in balance calibration experiments specifically. Personnel in the Instrumentation and Controls Department of the German Dutch Wind Tunnels (DNW) have applied MDOE methods to evaluate them in the calibration of a balance using an automated calibration machine. The data have been sent to Langley Research Center for analysis and comparison. This paper reports key findings from this analysis. The chief result is that a 100-point calibration exploiting MDOE principles delivered quality comparable to a 700+ point OFAT calibration with significantly reduced cycle time and attendant savings in direct and indirect costs. While the DNW test matrices implemented key MDOE principles and produced excellent results, additional MDOE concepts implemented in balance calibrations at Langley Research Center are also identified and described.
Coal desulfurization by low temperature chlorinolysis, phase 1
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.
1977-01-01
The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.
ERIC Educational Resources Information Center
Held, John
2012-01-01
As educators consider designing excellent spaces for education, it is helpful to take a broader look and talk about their approach to design the questions they need to ask. Rather than talk about specific designs of school buildings, the author suggests that they should refocus their vision and look at how ideas of citizenship, the home and…
Spacecraft high-voltage power supply construction
NASA Technical Reports Server (NTRS)
Sutton, J. F.; Stern, J. E.
1975-01-01
The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.
Next-Generation NATO Reference Mobility Model (NG-NRMM)
2016-05-11
facilitate comparisons between vehicle design candidates and to assess the mobility of existing vehicles under specific scenarios. Although NRMM has...of different deployed platforms in different areas of operation and routes Improved flexibility as a design and procurement support tool through...Element Method DEM Digital Elevation Model DIL Driver in the Loop DP Drawbar Pull Force DOE Design of Experiments DTED Digital Terrain Elevation Data
Hopkins during CFE-2 Experiment
2013-11-20
ISS038-E-005962 (19 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the Capillary Flow Experiment-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
NASA Astrophysics Data System (ADS)
Pober, Jonathan C.
2018-05-01
The Precision Array for Probing the Epoch of Reionization (PAPER) was a first-generation 21 cm cosmology experiment with the specific goal of detecting the power spectrum of the 21 cm emission from the Epoch of Reionization. Analysis of PAPER data is still ongoing, but lessons learned from PAPER to date have played a critical role in designing the next-generation Hydrogen Epoch of Reionization Array (HERA) experiment. This article reviews five key design choices made by PAPER: use of a non-imaging configuration, redundancy, short baselines, small antenna elements, and a large instantaneous bandwidth. We describe the impact of these choices and the role they played in designing HERA.
Designing Domain-Specific HUMS Architectures: An Automated Approach
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi; Agarwal, Neha; Kumar, Pramod; Sundaram, Parthiban
2004-01-01
The HUMS automation system automates the design of HUMS architectures. The automated design process involves selection of solutions from a large space of designs as well as pure synthesis of designs. Hence the whole objective is to efficiently search for or synthesize designs or parts of designs in the database and to integrate them to form the entire system design. The automation system adopts two approaches in order to produce the designs: (a) Bottom-up approach and (b) Top down approach. Both the approaches are endowed with a Suite of quantitative and quantitative techniques that enable a) the selection of matching component instances, b) the determination of design parameters, c) the evaluation of candidate designs at component-level and at system-level, d) the performance of cost-benefit analyses, e) the performance of trade-off analyses, etc. In short, the automation system attempts to capitalize on the knowledge developed from years of experience in engineering, system design and operation of the HUMS systems in order to economically produce the most optimal and domain-specific designs.
Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701
NASA Technical Reports Server (NTRS)
1974-01-01
A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.
ERIC Educational Resources Information Center
Kalyuga, Slava
2008-01-01
Rapid cognitive diagnosis allows measuring current levels of learner domain-specific knowledge in online learning environments. Such measures are required for individualizing instructional support in real time, as students progress through a learning session. This article describes 2 experiments designed to validate a rapid online diagnostic…
Field Responsive, Center Specific: A Model for Collaborative Partnerships.
ERIC Educational Resources Information Center
Hawkes, Richard R.; Stahlhut, Richard G.
A description is given of the Regional Partnership Program, a field-responsive, center-specific model established at the University of Northern Iowa (UNI) designed to oversee clinical field experiences for student teachers. This cooperative partnership calls for a resident tenure track professor to be placed in a geographic area away from the main…
Using the Wiimote to Learn MEMS in a Physics Degree Program
ERIC Educational Resources Information Center
Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Celma, Santiago; Aldea, Concepción
2016-01-01
This paper describes a learning experience designed to introduce students in a Micro- and Nanosystems course in a Physics Bachelor's degree program to the use of professional tools for the design and characterization of micro-electromechanical systems (MEMS) through a specific commercial case: the MEMS used by the well-known gaming platform…
Principles of Designing Interpretable Optogenetic Behavior Experiments
ERIC Educational Resources Information Center
Allen, Brian D.; Singer, Annabelle C.; Boyden, Edward S.
2015-01-01
Over the last decade, there has been much excitement about the use of optogenetic tools to test whether specific cells, regions, and projection pathways are necessary or sufficient for initiating, sustaining, or altering behavior. However, the use of such tools can result in side effects that can complicate experimental design or interpretation.…
Pathways to College and STEM Careers: Enhancing the High School Experience
ERIC Educational Resources Information Center
Schneider, Barbara; Broda, Michael; Judy, Justina; Burkander, Kri
2013-01-01
With a rising demand for a college degree and an increasingly complicated college search, application, and selection process, there are a number of interventions designed to ease the college-going process for adolescents and their families. One such intervention, the College Ambition Program (CAP), is specifically designed to be a whole-school…
Generic Service Integration in Adaptive Learning Experiences Using IMS Learning Design
ERIC Educational Resources Information Center
de-la-Fuente-Valentin, Luis; Pardo, Abelardo; Kloos, Carlos Delgado
2011-01-01
IMS Learning Design is a specification to capture the orchestration taking place in a learning scenario. This paper presents an extension called Generic Service Integration. This paradigm allows a bidirectional communication between the course engine in charge of the orchestration and conventional Web 2.0 tools. This communication allows the…
Using the [beta][subscript 2]-Adrenoceptor for Structure-Based Drug Design
ERIC Educational Resources Information Center
Manallack, David T.; Chalmers, David K.; Yuriev, Elizabeth
2010-01-01
The topics of molecular modeling and drug design are studied in a medicinal chemistry course. The recently reported structures of several G protein-coupled receptors (GPCR) with bound ligands have been used to develop a simple computer-based experiment employing molecular-modeling software. Knowledge of the specific interactions between a ligand…
Advertising Graphic Design and Its Effect on Recall and Attitude: A Field Experiment.
ERIC Educational Resources Information Center
Surlin, Stuart H.; Kosak, Hermann H.
Advertisers and other mass media communicators are interested in the potential cognitive and affective effects of various graphic designs, specifically relating to the recall of information and the attitude toward information presented. This study deals with the respondent's recall of information contained within an advertisement as well as the…
ERIC Educational Resources Information Center
Martin, Patrick M.
2012-01-01
This study was designed to investigate the perceived experiences encountered by principals in the state of Illinois regarding professional development sessions offered through the Illinois Administrator Academy. The fundamental value of the Illinois Administrator Academy was designed as one of 169 specific initiatives in association with the…
ERIC Educational Resources Information Center
Milne, Louise; Eames, Chris
2011-01-01
This paper describes teacher responses to a framework designed to support teacher planning for technology. It includes a learning experience outside the classroom [LEOTC] and is designed specifically for five-year-old students. The planning framework draws together characteristics of technology education, junior primary classrooms and LEOTC to…
Online Course Design in a Programmatic Framework: A Case from Social Work
ERIC Educational Resources Information Center
Stewart, Patricia Lynn
2014-01-01
The focus of this study centers on the way instructors, and more specifically, instructors within a programmatic initiative, think about teaching and the decision-making process they employ to design learning experiences for an online environment. Often administrative initiatives do not consider the unique individual instructor needs when planning…
In Designing a Short Course in ESP.
ERIC Educational Resources Information Center
Chantrupanth, Dhanan
This report describes one teacher's experience in designing and teaching an English course of 15 hours to nursing students specializing in anesthesia. The discussion focuses on how an English teacher can equip students with effective reading skills in such a specific area, and to what extent the teacher can involve the subject content. An…
Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki
2008-01-01
The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177
Evolution of the ATLAS PanDA workload management system for exascale computational science
NASA Astrophysics Data System (ADS)
Maeno, T.; De, K.; Klimentov, A.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.; Yu, D.; Atlas Collaboration
2014-06-01
An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated at a very large scale the value of automated dynamic brokering of diverse workloads across distributed computing resources. The next generation of PanDA will allow other data-intensive sciences and a wider exascale community employing a variety of computing platforms to benefit from ATLAS' experience and proven tools.
Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report
NASA Technical Reports Server (NTRS)
Camperchioli, William
2005-01-01
A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.
630A MARITIME NUCLEAR STEAM GENERATOR. Progress Report No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-07-31
Work on the 630A Maritime Nuclear Steam Generator Scoping Study is summarized. The objective of the program is to establish a specific 630A configuration and to develop specifications for components and test equipment. During the period, work was initiated in critical experiment design and fabrication, additional fuel and materials investigations, boiler-test design and fabrication; blower studies; design of component tests; nuclear, thermodynamic, mechanical and safety analysis, and test facility and equipment studies. Design of the critical experiment mockup and test equipment was completed and fabrication of the parts is approximately 50% complete. A rough draft of the critical experiment hazardsmore » report was completed. A fuel test in the ORR completed 876.5 hr of testing out of a planned 2200-hr test without indication of failure. The burnup was equivalent to about 6000 hr of 630A operation. Damage to the capsule during refueling of the ORR caused termination of the test. The design of an MTR fuel-burnup test was completed and fabrication of the sample initiated. Ni-Cr fuel sheet and cladding stock are being tested for creep and oxidation properties at temperatures up to 1750 deg F and have accumulated times up to 5000 hr; no failures have occurred. These tests are continuing. Specimens of Ni-Cr were fabricated and will be tested to determine the effect of neutron irradiation. Cycle operating conditions with 120O deg F reactor-discharge-air temperature were studied and found to be acceptable for the proposed maritime application. Increases in cycle efficiency above 30.2% appear to be possible and practical. Studies during the period indicate that an acceptable power distribution can be maintained through the life of the reactor and the maximum hot spot temperature and maximum burnup location would not coincide. Specifications for the fuel loading of the critical experiment are being prepared. Study of the pressure vessel resulted in selection of 304 SS. Containment studies indfcated the practicality of designing the shield tank outer shell as part of the containment vessel. A blower scoping study subcontract was completed. The study verified the feasibility of the main and afterblower concept. Alternate shaft-seal designs were proposed. The design of a performance test for the two seal types has been initiated. The design of the boiler test from which control characteristics will be determined was completed and fabrication started. The decision was made that the Low Power Test Facility (LPTF) will be the site used for the critical experiment. A preliminary study of the power test facility requirements were completed. The study indicated that locating the facility adjacent to the LPTF would be operationally and economically feasible. (auth)« less
CanSat Competition: Contributing to the Development of NASA's Vision for Robotic Space Exploration
NASA Technical Reports Server (NTRS)
Berman, Joshua; Berman, Timothy; Billheimer, Thomas; Biclmer. Elizabeth; Hood, Stuart; Neas, Charles
2007-01-01
CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL) and the National Aeronautics and Space Administration (NASA). The CanSat competition is designed for college, university and high school students wanting to participate in an applicable space-related competition. The objective of the CanSat competition is to complete space exploration missions by designing a specific system for a small sounding rocket payload which will follow and perform to a specific set of rules and guidelines for each year's competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, judging and competition. The mission guidelines are based from space exploration missions and include bonus requirement options which teams may choose to participate in. The fundamental goal of the competition is to educate future engineers and scientists. This is accomplished by students applying systems engineering practices to a development project that incorporates an end-to-end life cycle, from requirements analysis, through preliminary design, integration and testing, an actual flight of the CanSat, and concluding with a post-mission debrief. This is done specifically with space related missions to bring a unique aspect of engineering and design to the competition. The competition has been progressing since its creation in 2005. The competition was originally meant to purely convey the engineering and design process to its participants, but through many experiences the competition has also undergone a learning experience with respect to systems engineering process and design. According
van Oostrom, Conny T.; Jonker, Martijs J.; de Jong, Mark; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.
2014-01-01
In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints. However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on: framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication, eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have far-reaching implications for experimental standardization. PMID:24823911
Data relay system specifications for ERTS image interpretation
NASA Technical Reports Server (NTRS)
Daniel, J. F.
1970-01-01
Experiments with the Data Collection System (DCS) of the Earth Resources Technology Satellites (ERTS) have been developed to stress ERTS applications in the Earth Resources Observation Systems (EROS) Program. Active pursuit of this policy has resulted in the design of eight specific experiments requiring a total of 98 DCS ground-data platforms. Of these eight experiments, six are intended to make use of DCS data as an aid in image interpretation, while two make use of the capability to relay data from remote locations. Preliminary discussions regarding additional experiments indicate a need for at least 150 DCS platforms within the EROS Program for ERTS experimentation. Results from the experiments will be used to assess the DCS suitability for satellites providing on-line, real-time, data relay capability. The rationale of the total DCS network of ground platforms and the relationship of each experiment to that rationale are discussed.
Internal Versus External DSLs for Trace Analysis: Extended Abstract
NASA Technical Reports Server (NTRS)
Barringer, Howard; Havelund, Klaus
2011-01-01
This tutorial explores the design and implementation issues arising in the development of domain-specific languages for trace analysis. It introduces the audience to the general concepts underlying such special-purpose languages building upon the authors' own experiences in developing both external domain specific languages and systems, such as EAGLE, HAWK, RULER and LOGSCOPE, and the more recent internal domain-specific language and system TRACECONTRACT within the SCALA language.
The openEHR Java reference implementation project.
Chen, Rong; Klein, Gunnar
2007-01-01
The openEHR foundation has developed an innovative design for interoperable and future-proof Electronic Health Record (EHR) systems based on a dual model approach with a stable reference information model complemented by archetypes for specific clinical purposes.A team from Sweden has implemented all the stable specifications in the Java programming language and donated the source code to the openEHR foundation. It was adopted as the openEHR Java Reference Implementation in March 2005 and released under open source licenses. This encourages early EHR implementation projects around the world and a number of groups have already started to use this code. The early Java implementation experience has also led to the publication of the openEHR Java Implementation Technology Specification. A number of design changes to the specifications and important minor corrections have been directly initiated by the implementation project over the last two years. The Java Implementation has been important for the validation and improvement of the openEHR design specifications and provides building blocks for future EHR systems.
Multi-objective engineering design using preferences
NASA Astrophysics Data System (ADS)
Sanchis, J.; Martinez, M.; Blasco, X.
2008-03-01
System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).
Identification and correction of systematic error in high-throughput sequence data
2011-01-01
Background A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. Results We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. Conclusions Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments. PMID:22099972
Analysis and Design of Complex Network Environments
2012-03-01
and J. Lowe, “The myths and facts behind cyber security risks for industrial control systems ,” in the Proceedings of the VDE Kongress, VDE Congress...questions about 1) how to model them, 2) the design of experiments necessary to discover their structure (and thus adapt system inputs to optimize the...theoretical work that clarifies fundamental limitations of complex networks with network engineering and systems biology to implement specific designs and
ERIC Educational Resources Information Center
Isaac-Lam, Meden F.
2014-01-01
A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…
ERIC Educational Resources Information Center
Williams, Paul H.
The Collaborative Ukrainian Experiment (CUE) was a joint mission between the United States and the Ukraine (Russia) whose projects were designed to address specific questions about prior plant science microgravity experiments. The education project that grew out of this, Teachers and Students Investigating Plants in Space (TSIPS), involved…
ERIC Educational Resources Information Center
Guerrero, Michelle D.; Hoffmann, Matt D.; Munroe-Chandler, Krista J.; Hall, Craig R.
2016-01-01
Purpose: Much of what we know about pedometer interventions and imagery interventions with children is grounded in quantitative data. The general purpose of the present study was to qualitatively explore the experiences of children who had participated in a 4-week imagery intervention designed to increase active play. Specifically, the current…
ERIC Educational Resources Information Center
Pike, Jacqueline C.; Spangler, William; Williams, Valerie; Kollar, Robert
2017-01-01
To create a learning experience which replicates the process by which consultants, systems developers and business end users collaborate to design and implement a business application, a cross-functional student team project was developed and is described. The overall learning experience was distinguished by specific components and characteristics…
Development of Health Promoting Leadership--Experiences of a Training Programme
ERIC Educational Resources Information Center
Eriksson, Andrea; Axelsson, Runo; Axelsson, Susanna Bihari
2010-01-01
Purpose: The purpose of this paper is to describe and analyse the experiences of an intervention programme for development of health promoting leadership in Gothenburg in Sweden. The more specific purpose is to identify critical aspects of such a programme as part of the development of a health promoting workplace. Design/methodology/approach: A…
ERIC Educational Resources Information Center
Grace, Debra; Weaven, Scott; Bodey, Kelli; Ross, Mitchell; Weaven, Keith
2012-01-01
Although not specifically designed for this purpose, the Course Experience Questionnaire (CEQ) continues to be used as a proxy for student satisfaction. This may be due to a lack of appropriate alternative measures, or a clear understanding of the relationship between quality and satisfaction. This study, therefore, examines the CEQ dimensions…
ERIC Educational Resources Information Center
Olumese, H. A.; Ediagbonya, Kennedy
2016-01-01
This research paper specifically investigated Business Education students' evaluation of the benefits and challenges confronting Student Industrial Works Experience Scheme (SIWES) in Edo and Delta States. Two research questions were raised to guide the study and were answered descriptively. The descriptive survey research design was adopted for…
Design and application of electromechanical actuators for deep space missions
NASA Technical Reports Server (NTRS)
Haskew, Tim A.; Wander, John
1994-01-01
This progress report documents research and development efforts performed from August 16, 1993 through February 15, 1994 on NASA Grant NAG8-240, 'Design and Application of Electromechanical Actuators for Deep Space Missions.' Following the executive summary are four report sections: Motor Selection, Tests Stand Development, Health Monitoring and Fault Management, and Experiment Planning. Three specific motor types have been considered as prime movers for TVC EMA applications: the brushless dc motor, the permanent magnet synchronous motor, and the induction motor. The fundamental finding was that, in general, the primary performance issues were energy efficiency and thermal dissipation (rotor heating). In terms of all other issues, the three motor types were found to compare quite equally. Among the design changes made to the test stand since the last progress report is the addition of more mounting holes in the side beams. These additional holes allow the movable end beam to be attached in a greater number of positions than previously. With this change the movable end beam can move from full forward to full back in three inch increments. Specific mathematical details on the approach that have been employed for health monitoring and fault management (HMFM) have been reported previously. This approach is based on and adaptive Kalman filter strategy. In general, a bank of filters can be implemented for each primary fault type. Presently under consideration for the brushless dc machine are the following faults: armature winding open-circuits, armature winding short-circuits (phase-to-phase and phase-to-ground), bearing degradation, and rotor flux weakening. The mechanically oriented experiments include transient loading experiments, transverse loading experiment, friction experiment, motor performance experiment, and HMFM experiment.
Solar array experiments on the Sphinx satellite
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1973-01-01
The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.
NASA Astrophysics Data System (ADS)
Villarreal-Stewart, Irene
The purpose guiding this research has been to learn about and describe the phenomena of interactivity from the learners' perspectives and to learn which of the interactivity affordances and practices were actually used by students and why in the process of learning physics using an interactive multimedia distance learning course system. The bigger purpose behind learning about and describing interactivity has been to gain knowledge and perspective for its instructional design to benefit the learner, the school as curriculum implementer, and instructional media designers to create better products. Qualitative methodology in the interpretivist tradition was used, that is, in-depth interviews and on-site observations, to gain understanding of interactivity from the learners' perspective and to gain understanding of the student learning context impacting and shaping the students' interactivity experiences. NVivo was used to sort, organize and index data. All data were read on three levels: literally, interpretively, and reflexively; and were read comparatively to other perspectives to get descriptions and interpretations that were holistic to the implementation and had potential insight to improve practice for instructional designers, teachers, administrators, specifically to improve the learning experience for students. Site-Specific Findings: Students watched videos, resisted using phone and e-mail, and worked math problems to demonstrate learning, which resulted in very little interactivity, virtually no dialogue about physics, no physical activity, one-way communication, multifaceted dissatisfaction, student need for teacher involvement in the learning enterprise, student appreciation for interactivity, and expressed desire for a real, live teacher. I also found that some students did experience the system as interactive, did experience learner control and self-directed learning, and despite dissatisfaction, liked and appreciated the course. Wider Applications: Interactivity, a design element, requires scaffolding and nurturing in implementation. The variable and changing context of implementation suggests the requirement for its consideration in design work. The study suggests that during implementation the integrity of design as a whole and flexibility within the design are important continuing considerations. Recommendations. (1) implementation supervision by the school district, (2) use of a language and activity-based theory of learning and teaching and (3) dialogic inquiry (Wells, 1999) to continue learning about interactivity.
Physician communication coaching effects on patient experience
Seiler, Adrianne; Knee, Alexander; Shaaban, Reham; Bryson, Christine; Paadam, Jasmine; Harvey, Rohini; Igarashi, Satoko; LaChance, Christopher; Benjamin, Evan; Lagu, Tara
2017-01-01
Background Excellent communication is a necessary component of high-quality health care. We aimed to determine whether a training module could improve patients’ perceptions of physician communication behaviors, as measured by change over time in domains of patient experience scores related to physician communication. Study design We designed a comprehensive physician-training module focused on improving specific “etiquette-based” physician communication skills through standardized simulations and physician coaching with structured feedback. We employed a quasi-experimental pre-post design, with an intervention group consisting of internal medicine hospitalists and residents and a control group consisting of surgeons. The outcome was percent “always” scores for questions related to patients’ perceptions of physician communication using the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey and a Non-HCAHPS Physician-Specific Patient Experience Survey (NHPPES) administered to patients cared for by hospitalists. Results A total of 128 physicians participated in the simulation. Responses from 5020 patients were analyzed using HCAHPS survey data and 1990 patients using NHPPES survey data. The intercept shift, or the degree of change from pre-intervention percent “always” responses, for the HCAHPS questions of doctors “treating patients with courtesy” “explaining things in a way patients could understand,” and “overall teamwork” showed no significant differences between surgical control and hospitalist intervention patients. Adjusted NHPPES percent excellent survey results increased significantly post-intervention for the questions of specified individual doctors “keeping patient informed” (adjusted intercept shift 9.9% P = 0.019), “overall teamwork” (adjusted intercept shift 11%, P = 0.037), and “using words the patient could understand” (adjusted intercept shift 14.8%, p = 0.001). Conclusion A simulation based physician communication coaching method focused on specific “etiquette-based” communication behaviors through a deliberate practice framework was not associated with significantly improved HCAHPS physician communication patient experience scores. Further research could reveal ways that this model affects patients’ perceptions of physician communication relating to specific physicians or behaviors. PMID:28678872
Experimental design, power and sample size for animal reproduction experiments.
Chapman, Phillip L; Seidel, George E
2008-01-01
The present paper concerns statistical issues in the design of animal reproduction experiments, with emphasis on the problems of sample size determination and power calculations. We include examples and non-technical discussions aimed at helping researchers avoid serious errors that may invalidate or seriously impair the validity of conclusions from experiments. Screen shots from interactive power calculation programs and basic SAS power calculation programs are presented to aid in understanding statistical power and computing power in some common experimental situations. Practical issues that are common to most statistical design problems are briefly discussed. These include one-sided hypothesis tests, power level criteria, equality of within-group variances, transformations of response variables to achieve variance equality, optimal specification of treatment group sizes, 'post hoc' power analysis and arguments for the increased use of confidence intervals in place of hypothesis tests.
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.
2003-01-01
Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.
URPD: a specific product primer design tool
2012-01-01
Background Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users. Findings URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. Conclusions URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/. PMID:22713312
URPD: a specific product primer design tool.
Chuang, Li-Yeh; Cheng, Yu-Huei; Yang, Cheng-Hong
2012-06-19
Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users. URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/.
Interfacial characterization of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott
2018-03-01
Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.
NASA Technical Reports Server (NTRS)
1974-01-01
A detailed analysis is presented of each selected equipment item, and suitability and cost analyses were documented by equipment item. Tradeoffs of alternative specification requirements are presented which include possible relaxation of vibration, material control, fungus and corrosion requirements for experiment equipment. An additional tradeoff was performed to determine whether it is cost effective to modify experiment equipment to be compatible with a 28-volt dc power source rather than the conventional 110-volt ac source. Programmatic analysis data are given which were used as the basis for the extension of results from the analyses of specific equipment items to the entire spacelab experiment program.
ERIC Educational Resources Information Center
Rosas, Juan M.; Paredes-Olay, Maria C.; Garcia-Gutierrez, Ana; Espinosa, Juan J.; Abad, Maria J. F.
2010-01-01
Three experiments were conducted to explore the effects of different interference treatments upon outcome-specific transfer from predictive learning to instrumental responding. A computer game was designed in which participants had to defend Andalusia from navy and air-force attacks. Participants learned the relationship between two instrumental…
The Pressure Cooker: A Module on the Properties of Matter. Tech Physics Series.
ERIC Educational Resources Information Center
Technical Education Research Center, Cambridge, MA.
Experiments to provide an understanding of the principles related to the pressure cooker are presented. Objectives included are designed to provide the learner with the ability to calibrate a thermistor for measuring temperature; explain the meaning of latent and specific heat; calculate latent and specific heat; use a Bourdon tube pressure gauge…
ERIC Educational Resources Information Center
Atkinson, Michael L.; Allen, Vernon L.
This experiment was designed to investigate the generality-specificity of the accuracy of both encoders and decoders across different types of nonverbal behavior. It was expected that encoders and decoders would exhibit generality in their behavior--i.e., the same level of accuracy--on the dimension of behavior content…
"Life Stage-Specific" Variations in Performance in Response to Age Stereotypes
ERIC Educational Resources Information Center
Hehman, Jessica A.; Bugental, Daphne Blunt
2013-01-01
In a test of life stage-specific responses to age-based stigma, older (n = 54, ages 62-92) and younger (n = 81, ages 17-22) adults were told that a task (Weschler Adult Intelligence Scale-III block design) required either (a) speed/contemporary knowledge (YA; "youth advantage") or (b) life experience/wisdom (OA; "age…
Reynolds, Kimberly A
2015-01-06
In this issue of Structure, Lanouette and colleagues use a combination of computation and experiment to define a specificity motif for the lysine methyltransferase SMYD2. Using this motif, they predict and experimentally verify four new SMYD2 substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.
An ontology of scientific experiments
Soldatova, Larisa N; King, Ross D
2006-01-01
The formal description of experiments for efficient analysis, annotation and sharing of results is a fundamental part of the practice of science. Ontologies are required to achieve this objective. A few subject-specific ontologies of experiments currently exist. However, despite the unity of scientific experimentation, no general ontology of experiments exists. We propose the ontology EXPO to meet this need. EXPO links the SUMO (the Suggested Upper Merged Ontology) with subject-specific ontologies of experiments by formalizing the generic concepts of experimental design, methodology and results representation. EXPO is expressed in the W3C standard ontology language OWL-DL. We demonstrate the utility of EXPO and its ability to describe different experimental domains, by applying it to two experiments: one in high-energy physics and the other in phylogenetics. The use of EXPO made the goals and structure of these experiments more explicit, revealed ambiguities, and highlighted an unexpected similarity. We conclude that, EXPO is of general value in describing experiments and a step towards the formalization of science. PMID:17015305
Medical technology at home: safety-related items in technical documentation.
Hilbers, Ellen S M; de Vries, Claudette G J C A; Geertsma, Robert E
2013-01-01
This study aimed to investigate the technical documentation of manufacturers on issues of safe use of their device in a home setting. Three categories of equipment were selected: infusion pumps, ventilators, and dialysis systems. Risk analyses, instructions for use, labels, and post market surveillance procedures were requested from manufacturers. Additionally, they were asked to fill out a questionnaire on collection of field experience, on incidents, and training activities. Specific risks of device operation by lay users in a home setting were incompletely addressed in the risk analyses. A substantial number of user manuals were designed for professionals, rather than for patients or lay carers. Risk analyses and user information often showed incomplete coherence. Post market surveillance was mainly based on passive collection of field experiences. Manufacturers of infusion pumps, ventilators, and dialysis systems pay insufficient attention to the specific risks of use by lay persons in home settings. It is expected that this conclusion is also applicable for other medical equipment for treatment at home. Manufacturers of medical equipment for home use should pay more attention to use errors, lay use and home-specific risks in design, risk analysis, and user information. Field experiences should be collected more actively. Coherence between risk analysis and user information should be improved. Notified bodies should address these aspects in their assessment. User manuals issued by institutions supervising a specific home therapy should be drawn up in consultation with the manufacturer.
2014-06-19
ISS040-E-015539 (19 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
Possible Gravitational Anomalies in Quantum Materials. Phase 1: Experiment Definition and Design
2007-02-01
temperature achievable with the experiment at liquid nitrogen . The signal of the superconducting ring when decelerating from a mean rotational speed...temperatures below 50 K (see Figure 2.2-5). This experiments would require liquid He, as nitrogen solidifies at 63 K, therefore a temperature lowering... Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way
ERIC Educational Resources Information Center
Blevins, Samantha; Brill, Jennifer
2017-01-01
Drawing from a design and development research approach, specifically model research, this study investigated the perspectives of higher education faculty and administrators regarding their experiences with a university-wide electronic portfolio implementation initiative. Participants in the study were fifty-two faculty and administrators at a…
ERIC Educational Resources Information Center
Vavoula, Giasemi N.; Sharples, Mike
2007-01-01
We describe the future technology workshop (FTW), a method whereby people with everyday knowledge or experience in a specific area of technology use (such as using digital cameras) envision and design the interactions between current and future technology and activity. Through a series of structured workshop sessions, participants collaborate to…
Taking Action--Mathematics Curricular Organization for Effective Teaching and Learning
ERIC Educational Resources Information Center
Appelbaum, Peter
2009-01-01
The curricular structure of Taking Action is described and analyzed as a form of culturally responsive and culturally specific pedagogy. In this design structure, students reconsider what they have done and identify key aspects of their experience. Based on this reflection, they design a way to interact with people outside of their class in order…
ERIC Educational Resources Information Center
Rao-Delgado, Antoinette Toni C.
2010-01-01
Purpose: The purpose of this study was to explore the perceptions of community college faculty regarding their experiences in learning and implementing a new pedagogical concept, Universal Design for Instruction (UDI). Specifically, I explored (a) their perceptions regarding the utilization of the UDI concept on their teaching strategies, (b)…
Tools for the functional interpretation of metabolomic experiments.
Chagoyen, Monica; Pazos, Florencio
2013-11-01
The so-called 'omics' approaches used in modern biology aim at massively characterizing the molecular repertories of living systems at different levels. Metabolomics is one of the last additions to the 'omics' family and it deals with the characterization of the set of metabolites in a given biological system. As metabolomic techniques become more massive and allow characterizing larger sets of metabolites, automatic methods for analyzing these sets in order to obtain meaningful biological information are required. Only recently the first tools specifically designed for this task in metabolomics appeared. They are based on approaches previously used in transcriptomics and other 'omics', such as annotation enrichment analysis. These, together with generic tools for metabolic analysis and visualization not specifically designed for metabolomics will for sure be in the toolbox of the researches doing metabolomic experiments in the near future.
Specific design features of an interpretative phenomenological analysis study.
Wagstaff, Christopher; Williams, Bob
2014-01-01
Report of an innovative use of interpretative phenomenological analysis (IPA) to enable an in-depth study of the experiences of disengagement from mental health services of black men with diagnoses of severe and enduring mental illness. The aim of IPA is to explore the sense that participants make of their personal and social worlds, while recognising the contribution of the researcher in interpreting the participants' interpretations of their experiences. Seven black male research participants were recruited to the study. The components of the study that contribute to the body of literature on IPA research design include: an engagement stage in the research; a second clarifying interview; discussion of clarifying questions and emergent themes with two academic service-users; and a post-interview meeting to discuss the themes emerging from the research study. The paper focuses on the contribution of the four specific design features of the study and how these enabled the researcher to engage with a population that is often deemed 'hard to reach'. The four distinctive methodological developments in the study emphasise the flexibility of IPA. These innovations assisted the researcher in developing a broader double hermeneutic that enabled reporting of the experiences of disengagement from mental health services of black men with diagnoses of severe and enduring mental illness. The distinctive design of this study further emphasises the flexibility of IPA, while simultaneously showing fidelity to the core principles underlying the research methodology.
NASA Astrophysics Data System (ADS)
Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides
2011-07-01
Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.
A Model for Designing Adaptive Laboratory Evolution Experiments.
LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M
2017-04-15
The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized fashion and can design experiments to generate greater fitness in an accelerated time frame, thereby pushing the limits of what adaptive laboratory evolution can achieve. Copyright © 2017 American Society for Microbiology.
Leveraging advances in biology to design biomaterials
NASA Astrophysics Data System (ADS)
Darnell, Max; Mooney, David J.
2017-12-01
Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.
Design and Development of a 3 to 10 kW Ammonia Arcjet
NASA Technical Reports Server (NTRS)
Goodfellow, K. D.; Polk, J. E.
1993-01-01
An ammonia arcjet capable of throttling between 3 and 10 kW and producing a specific impulse of 600 s is required for the SSTAR flight experiment. Testing was performed to evaluate the performance of two nozzle configurations on ammonia arcjet performance over this power range. One of the objectives of these tests was to quantify the effect small nozzle changes have on performance. The smaller constrictor engine (2.54 mm diameter) produced a specific impulse of about 650 s over the range of 3 to 10 kW at a specific power of 60 kJ/g exceeding the 500-600 s requirement for the SSTAR flight experiment.
Sodium-sulfur Cell Technology Flight Experiment (SSCT)
NASA Technical Reports Server (NTRS)
Halbach, Carl R.
1992-01-01
The sodium-sulfur battery is emerging as a prime high-temperature energy storage technology for space flight applications. A Na-S cell demonstration is planned for a 1995-96 NASA Space Shuttle flight which focuses on the microgravity effects on individual cells. The experiment is not optimized for battery performance as such. Rather, it maximizes the variety of operating conditions which the Na-S cell is capable of in a relatively short 5-day flight. The demonstration is designed to reveal the effects of microgravity by comparison with ground test control cells experiencing identical test conditions but with gravity. Specifically, limitations of transport dynamics and associated cell performance characteristics should be revealed. The Na-S Cell Technology Flight Experiment consists of three separate experiments designed to determine cell operating characteristics, detailed electrode kinetics and reactant distributions.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
2012-01-01
As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1974-01-01
The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.
Miguez, Gonzalo; Soares, Julia S.; Miller, Ralph R.
2015-01-01
Two lick-suppression experiments with rats assessed interference with behavior indicative of conditioned inhibition by a latent inhibition treatment as a function of test context. We asked what effect the test context has, given identical latent inhibition treatment in Phase 1 and identical conditioned inhibition training in Phase 2. In Experiment 1, an AAA vs. AAB context-shift design determined that latent inhibition treatment in Phase 1 attenuated behavior indicative of conditioned inhibition training administered in Phase 2 regardless of the test context, which could reflect a failure to either acquire or express conditioned inhibition. In Experiment 2, an ABA vs. ABB design found that test performance in Contexts A and B reflected the treatments that had been administered in those contexts (i.e., conditioned inhibition was observed in Context B but not A), which could reflect either context specificity of latent inhibition or context specificity of conditioned inhibition. In either case, latent inhibition of conditioned inhibition training in at least some situations was seen to reflect an expression deficit rather than an acquisition deficit. These data, in conjunction with prior reports, suggest that latent inhibition is relatively specific to the context in which it was administered, whereas conditioned inhibition is specific to its training context only when it is the second learned relationship concerning the target cue. These experiments are part of a larger effort to delineate control by the test context of two-phase associative interference as a function of the nature of target training and the nature of interference training. PMID:25875792
Onorbit electron beam welding experiment definition
NASA Technical Reports Server (NTRS)
1989-01-01
The proposed experiment design calls for six panels to be welded, each having unique characteristics selected to yield specific results and information. The experiment is completely automated and the concept necessitated the design of a new, miniaturized, self-contained electron beam (EB) welding system, for which purpose a separate IR and D was funded by the contractor, Martin Marietta Corporation. Since future tasks beyond the proposed experiment might call for astronauts to perform hand-held EB gun repairs or for the gun to be interfaced with a dexterous robot such as the planned flight telerobotic servicer (FTS), the EB gun is designed to be dismountable from the automated system. In the experiment design, two separate, identical sets of weld panels will be welded, one on earth in a vacuum chamber and the other onorbit in the aft cargo bay of an orbiter. Since the main objective of the experiment is to demonstrate that high quality welds can be achieved under onorbit conditions, the welds produced will be subjected to a wide range of discriminating non-destructive Q.C. procedures and destructive physical tests. However, advantage will be taken of the availability of a fairly large quantity of welded material in the two series of welded specimens to widen the circle of investigative talent by providing material to academic and scientific institutions for examination.
Apollo experience report: Guidance and control systems - Digital autopilot design development
NASA Technical Reports Server (NTRS)
Peters, W. H.; Cox, K. J.
1973-01-01
The development of the Apollo digital autopilots (the primary attitude control systems that were used for all phases of the lunar landing mission) is summarized. This report includes design requirements, design constraints, and design philosophy. The development-process functions and the essential information flow paths are identified. Specific problem areas that existed during the development are included. A discussion is also presented on the benefits inherent in mechanizing attitude-controller logic and dynamic compensation in a digital computer.
Integrating PCR theory and bioinformatics into a research-oriented primer design exercise.
Robertson, Amber L; Phillips, Allison R
2008-01-01
Polymerase chain reaction (PCR) is a conceptually difficult technique that embodies many fundamental biological processes. Traditionally, students have struggled to analyze PCR results due to an incomplete understanding of the biological concepts (theory) of DNA replication and strand complementarity. Here we describe the design of a novel research-oriented exercise that prepares students to design DNA primers for PCR. Our exercise design includes broad and specific learning goals and assessments of student performance and perceptions. We developed this interactive Primer Design Exercise using the principles of scientific teaching to enhance student understanding of the theory behind PCR and provide practice in designing PCR primers to amplify DNA. In the end, the students were more poised to troubleshoot problems that arose in real experiments using PCR. In addition, students had the opportunity to utilize several bioinformatics tools to gain an increased understanding of primer quality, directionality, and specificity. In the course of this study many misconceptions about DNA replication during PCR and the need for primer specificity were identified and addressed. Students were receptive to the new materials and the majority achieved the learning goals.
Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias
2016-01-01
Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.
Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J. L.; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias
2016-01-01
Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download. PMID:26863543
NASA Astrophysics Data System (ADS)
Huang, Zhaohui; Huang, Xiemin
2018-04-01
This paper, firstly, introduces the application trend of the integration of multi-channel interactions in automotive HMI ((Human Machine Interface) from complex information models faced by existing automotive HMI and describes various interaction modes. By comparing voice interaction and touch screen, gestures and other interaction modes, the potential and feasibility of voice interaction in automotive HMI experience design are concluded. Then, the related theories of voice interaction, identification technologies, human beings' cognitive models of voices and voice design methods are further explored. And the research priority of this paper is proposed, i.e. how to design voice interaction to create more humane task-oriented dialogue scenarios to enhance interactive experiences of automotive HMI. The specific scenarios in driving behaviors suitable for the use of voice interaction are studied and classified, and the usability principles and key elements for automotive HMI voice design are proposed according to the scenario features. Then, through the user participatory usability testing experiment, the dialogue processes of voice interaction in automotive HMI are defined. The logics and grammars in voice interaction are classified according to the experimental results, and the mental models in the interaction processes are analyzed. At last, the voice interaction design method to create the humane task-oriented dialogue scenarios in the driving environment is proposed.
PDC bit hydraulics design, profile are key to reducing balling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariharan, P.R.; Azar, J.J.
1996-12-09
Polycrystalline diamond compact (PDC) bits with a parabolic profile and bladed hydraulic design have a lesser tendency to ball during drilling of reactive shales. PDC bits with ribbed or open-face hydraulic designs and those with flat or rounded profiles tended to ball more often in the bit balling experiments conducted. Experimental work also indicates that PDC hydraulic design seems to have a greater influence on bit balling tendency compared to bit profile design. There are five main factors that affect bit balling: formation type, drilling fluid, drilling hydraulics, bit design, and confining pressures. An equation for specific energy showed thatmore » it could be used to describe the efficiency of the drilling process by examining the amount of energy spent in drilling a unit volume of rock. This concept of specific energy has been used herein to correlate with the parameter Rd, a parameter to quantify the degree of balling.« less
Development of a parameter optimization technique for the design of automatic control systems
NASA Technical Reports Server (NTRS)
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
1983-06-01
program specifically designed to solve IME equations. The IME measure is a useful index because it translates system performance characteristics of...8.0 SUMMARY The purpose of this study was to design the field evaluation of a camou- flage system in such a manner that the camoufleur could...analysis of complex factorial designs and their associated systems of confounding ((44), [46)) and to the introduction of incomplete block designs . My
Conceptual design studies of control and instrumentation systems for ignition experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, P.J.; Dewolf, J.B.; Heinemann, P.C.
1978-03-01
Studies at the Charles Stark Draper Laboratory in the past year were a continuation of prior studies of control and instrumentation systems for current and next generation Tokomaks. Specifically, the FY 77 effort has focused on the following two main efforts: (1) control requirements--(a) defining and evolving control requirements/concepts for a prototype experimental power reactor(s), and (b) defining control requirements for diverters and mirror machines, specifically the MX; and (2) defining requirements and scoping design for a functional control simulator. Later in the year, a small additional task was added: (3) providing analysis and design support to INESCO for itsmore » low cost fusion power system, FPC/DMT.« less
Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1997-01-01
Pilot non-conformance to alerting system commands has been noted in general and to a TCAS-like collision avoidance system in a previous experiment. This paper details two experiments studying collision avoidance during closely-spaced parallel approaches in instrument meteorological conditions (IMC), and specifically examining possible causal factors of, and design solutions to, pilot non-conformance.
Dzabeng, Francis; Enuameh, Yeetey; Adjei, George; Manu, Grace; Asante, Kwaku Poku; Owusu-Agyei, Seth
2016-09-01
The objective of this review is to synthesize evidence on the experiences of community health workers (CHWs) of mobile device-enabled clinical decision support systems (CDSSs) interventions designed to support maternal newborn and child health (MNCH) in low-and middle-income countries.Specific objectives.
ERIC Educational Resources Information Center
Coleman, Aaron B.; Lam, Diane P.; Soowal, Lara N.
2015-01-01
Gaining an understanding of how science works is central to an undergraduate education in biology and biochemistry. The reasoning required to design or interpret experiments that ask specific questions does not come naturally, and is an essential part of the science process skills that must be learned for an understanding of how scientists conduct…
ERIC Educational Resources Information Center
Larose, Simon; Duchesne, Stéphane; Boivin, Michel; Vitaro, Frank; Tremblay, Richard E.
2015-01-01
Using a 17-year longitudinal design, this study examined the role of personal and family factors assessed early in life, and also academic and social experiences assessed in the first year of college, in predicting college completion. We followed a sample of 444 French-speaking Canadian children from middle to upper socioeconomic backgrounds (66%…
ERIC Educational Resources Information Center
Kong, Siu Cheung; Yeung, Yau Yuen; Wu, Xian Qiu
2009-01-01
In order to facilitate senior primary school students in Hong Kong to engage in learning by observation of the phenomena related to electrical circuits, a design of a specific courseware system, of which the interactive human-machine interface was created with the use of an open-source software called the LabVNC, for conducting online…
Janice VanCleave's Electricity: Mind-Boggling Experiments You Can Turn into Science Fair Projects.
ERIC Educational Resources Information Center
VanCleave, Janice
This book is designed to provide guidance and ideas for science projects to help students learn more about science as they search for answers to specific problems. The 20 topics on electricity in this book suggest many possible problems to solve. Each topic has one detailed experiment followed by a section that provides additional questions about…
ERIC Educational Resources Information Center
Caldwell, Jeremy Dean
2013-01-01
The purpose of this study was to examine the experiences and adjustment challenges of Saudi Arabian students in the California State University (CSU) system. Specifically, the study was conducted to better understand and serve the Saudi Arabian students studying in the system. The design for this mixed method study integrated both quantitative and…
Plant Science in Reduced Gravity: Lessons Learned
NASA Technical Reports Server (NTRS)
Stutte, Gary W.; Monje, Oscar; Wheeler, Raymond M.
2012-01-01
The effect of gravity on the growth and development of plants has been the subject of scientific investigation for over a century. The results obtained in space to test specific hypotheses on gravitropism, gene expression, seed formation, or growth rate are affected by both the primary effect of the microgravity and secondary effects of the spaceflight environment. The secondary effects of the spaceflight environment include physical effects arising from physical changes, such as the absence of buoyancy driven convective mixing, altered behavior of liquids and gases, and the environmental conditions in the spacecraft atmosphere. Thus, the design of biological experiments (e.g. cells, plants, animals, etc.) conducted in microgravity must account for changes in the physical forces, as well as the environmental conditions, imposed by the specific spaceflight vehicle and experimental hardware. In addition, researchers must become familiar with other aspects of spaceflight experiments: payload integration with hardware developers, safety documentation and crew procedures, and the logistics of conducting flight and ground controls. This report reviews the physical and environmental factors that directly and indirectly affect the results of plant science experiments in microgravity and is intended to serve as a guide in the design and implementation plant experiments in space.
Experiences with the hydraulic design of the high specific speed Francis turbine
NASA Astrophysics Data System (ADS)
Obrovsky, J.; Zouhar, J.
2014-03-01
The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.
NASA Astrophysics Data System (ADS)
Liao, J.; Monje, O.; Porterfield, D.
Numerous spaceflight experiments have noted changes in the roots that are consistent with hypoxia in the rootzone. These observations range from general ultrastructure analysis and biochemical measurements to direct measurements of stress specific enzymes. In experiments that have monitored alcohol dehydrogenase (ADH) the data shows this hypoxically responsive gene is induced and ADH activity is elevated in microgravity. These changes in ADH could be induced either by spaceflight hypoxia resulting from inhibition of gravity mediated O 2 transport, or by a non-specific stress response due to inhibition of gravisensing. We tested these hypotheses in two series of experiments. The objective of the first experiment was to determine if physical changes in gravity mediated O 2 transport can be directly measured, while the second series of experiments tested whether disruption of gravisensing can induce a non-specific ADH response. To directly measure O 2 bioavailability as a function of gravity we designed a sensor that mimics metabolic O 2 consumption from the rhizosphere. Because of these design criteria the sensor is sensitive to any changes in root O 2 bioavailability that may occur in microgravity. In a KC-135 experiment the sensor was implanted in a moist granular clay media and exposed to microgravity during parabolic flight. The resulting data indicated that root O 2 bioavailability decreased in phase with gravity. In experiments that tested for non-specific induction of ADH we compared the response of transgenic Arabidopsis plants (ADH promoted GUS marker gene) exposed to clinostat, control, and waterlogged conditions. The plants were grown on agar slats in a growth chamber before being exposed to the experimental treatments. The plants were stained for GUS activity localization, and subjected to biochemical tests for ADH, and GUS enzyme activity. These tests showed that the waterlogging treatment induced significant increases in GUS and ADH enzyme activities, while the control and clinostat treatments showed no response. This work demonstrates : 1) the inhibition of gravity driven convective transport can reduce the O2 bioavailability to the root tip, and 2) the perturbation of gravisensing by clinostat rotation does not induce a non-specific stress response involving ADH. Together these experiments support the microgravity convection inhibition model for explaining changes in root metabolism during spaceflight. Supported by funding from the Missouri Research Board, and the USDA/NRICGP (2001-35100-10751) to DMP.
NASA Astrophysics Data System (ADS)
Fonda, James; Rao, Vittal S.; Sana, Sridhar
2001-08-01
This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.
Design of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.
2003-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
NASA Technical Reports Server (NTRS)
1972-01-01
The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.
Structural design of morphing trailing edge actuated by SMA
NASA Astrophysics Data System (ADS)
Wang, Qi; Xu, Zhiwei; Zhu, Qian
2013-09-01
In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4%and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.
2014-01-03
ISS038-E-025016 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-06-19
ISS040-E-015545 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-06-19
ISS040-E-015532 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-06-19
ISS040-E-015523 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-06-19
ISS040-E-015543 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
2014-06-19
ISS040-E-015536 (19 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
Development of an Environmental Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, Ralph M., Jr.; Clifton, Kenneth S.; Vanhooser, Michael T.
1999-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments and provide data and power from ISS. From the beginning of the space station program it has been recognized that external experiments will require knowledge of the external environment because it can affect the science being performed and may impact lifetime and operations of the experiments. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP) was started. This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
An Environment Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, M. Ralph; Clifton, Kenneth S.
1998-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
NASA Technical Reports Server (NTRS)
Huth, John F.; Whiteley, James D.; Hawker, John E.
1993-01-01
A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.
A stream mesocosm experiment was designed to compare biotic responses among streams exposed to an equal excess specific conductivity target of 850 µS/cm relative to a control that was set for 200 µS/cm and three treatments comprised of different major ion contents. Each treatment...
ERIC Educational Resources Information Center
Andreu, Llorenc; Sanz-Torrent, Monica; Trueswell, John C.
2013-01-01
Twenty-five children with specific language impairment (SLI; age 5 years, 3 months [5;3]-8;2), 50 typically developing children (3;3-8;2), and 31 normal adults participated in three eye-tracking experiments of spoken language comprehension that were designed to investigate the use of verb information during real-time sentence comprehension in…
ERIC Educational Resources Information Center
Martínez, Yolanda García; Velázquez, Claudia Alvarado; Castillo, Rolando Delgado
2016-01-01
This paper pursues to define the pillars for designing the specific (SC) and optional curricula (OC) of Unit Operations and Processes (UOP) Discipline in the Chemical Engineering Program. To achieve this objective a methodology was developed, which was characterized by the participation of every member in the educational process: professors,…
Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Jacobson, David (Technical Monitor)
2004-01-01
This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.
Rugged, Tunable Extended-Cavity Diode Laser
NASA Technical Reports Server (NTRS)
Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade
2007-01-01
A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.
ERIC Educational Resources Information Center
Broome, Jeffrey L.
2013-01-01
The purpose of this research project is to investigate the design of classroom environments through the lens of a uniquely selected art educator. More specifically, the purpose is to use case study methodology (Stake, 1995) to characterize the resulting instructional experiences for an art educator who had the unique opportunity to collaborate…
Comparison of Example-Based Learning and Problem-Based Learning in Engineering Domain
ERIC Educational Resources Information Center
Sern, Lai Chee; Salleh, Kahirol Mohd; Sulaiman, Nor lisa; Mohamad, Mimi Mohaffyza; Yunos, Jailani Md
2015-01-01
The research was conducted to compare the impacts of problem-based learning (PBL) and example-based learning (EBL) on the learning performance in an engineering domain. The research was implemented by means of experimental design. Specifically, a two-group experiment with a pre- and post-test design was used in this research. A total of 37…
The Nature of Working Memory in Linguistic, Arithmetic and Spatial Integration Processes
ERIC Educational Resources Information Center
Fedorenko, Evelina; Gibson, Edward; Rohde, Douglas
2007-01-01
This paper reports the results of four dual-task experiments that were designed to determine the extent of domain-specificity of the verbal working memory resources used in linguistic integrations. To address this question, syntactic complexity was crossed in a 2x2 design with the complexity of a secondary task, which involved either (1)…
High subsonic flow tests of a parallel pipe followed by a large area ratio diffuser
NASA Technical Reports Server (NTRS)
Barna, P. S.
1975-01-01
Experiments were performed on a pilot model duct system in order to explore its aerodynamic characteristics. The model was scaled from a design projected for the high speed operation mode of the Aircraft Noise Reduction Laboratory. The test results show that the model performed satisfactorily and therefore the projected design will most likely meet the specifications.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Publication of conference paper texts include --(1) history and development of masonry cavity walls, (2) recent research related to determination of thermal and moisture resistance, (3) wall design and detailing, (4) design for crack prevention, (5) mortar specification characteristics, (6) performance experience with low-rise buildings, (7)…
Genome engineering with TALENs and ZFNs: repair pathways and donor design.
Carroll, Dana; Beumer, Kelly J
2014-09-01
Genome engineering with targetable nucleases depends on cellular pathways of DNA repair after target cleavage. Knowledge of how those pathways work, their requirements and their active factors, can guide experimental design and improve outcomes. While many aspects of both homologous recombination (HR) and nonhomologous end joining (NHEJ) are shared by a broad range of cells and organisms, some features are specific to individual situations. This article reviews the influence of repair mechanisms on the results of gene targeting experiments, with an emphasis on lessons learned from experiments with Drosophila. Copyright © 2014 Elsevier Inc. All rights reserved.
Design, development and fabrication of a Solar Experiment Alignment Sensor (SEAS)
NASA Technical Reports Server (NTRS)
Bancroft, J. R.; Fain, M. Z.; Johnson, D. F.
1971-01-01
The design, development and testing of a laboratory SEAS (Solar Experiment Alignment Sensor) system are presented. The system is capable of overcoming traditional alignment and calibration problems to permit pointing anywhere on the solar disc to an accuracy of five arc seconds. The concept, development and laboratory testing phases of the program are discussed, and particular attention has been given to specific problems associated with selection of materials, and components. The conclusions summarize performance capability and discuss areas for further study including the effects of solar limb darkening and effects of annual variations in the apparent solar diameter.
Rothmann, Mark
2005-01-01
When testing the equality of means from two different populations, a t-test or large sample normal test tend to be performed. For these tests, when the sample size or design for the second sample is dependent on the results of the first sample, the type I error probability is altered for each specific possibility in the null hypothesis. We will examine the impact on the type I error probabilities for two confidence interval procedures and procedures using test statistics when the design for the second sample or experiment is dependent on the results from the first sample or experiment (or series of experiments). Ways for controlling a desired maximum type I error probability or a desired type I error rate will be discussed. Results are applied to the setting of noninferiority comparisons in active controlled trials where the use of a placebo is unethical.
NASA Technical Reports Server (NTRS)
DeLoach, Richard; Micol, John R.
2011-01-01
The factors that determine data volume requirements in a typical wind tunnel test are identified. It is suggested that productivity in wind tunnel testing can be enhanced by managing the inference error risk associated with evaluating residuals in a response surface modeling experiment. The relationship between minimum data volume requirements and the factors upon which they depend is described and certain simplifications to this relationship are realized when specific model adequacy criteria are adopted. The question of response model residual evaluation is treated and certain practical aspects of response surface modeling are considered, including inference subspace truncation. A wind tunnel test plan developed by using the Modern Design of Experiments illustrates the advantages of an early estimate of data volume requirements. Comparisons are made with a representative One Factor At a Time (OFAT) wind tunnel test matrix developed to evaluate a surface to air missile.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.; Pradas, A.; Arcega, F. J.
2017-12-01
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. This paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
Arteche, F.; Rivetta, C.; Iglesias, M.; ...
2017-12-05
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation effects in power supply distribution systems for high-energy physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arteche, F.; Rivetta, C.; Iglesias, M.
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
RIPOSTE: a framework for improving the design and analysis of laboratory-based research.
Masca, Nicholas Gd; Hensor, Elizabeth Ma; Cornelius, Victoria R; Buffa, Francesca M; Marriott, Helen M; Eales, James M; Messenger, Michael P; Anderson, Amy E; Boot, Chris; Bunce, Catey; Goldin, Robert D; Harris, Jessica; Hinchliffe, Rod F; Junaid, Hiba; Kingston, Shaun; Martin-Ruiz, Carmen; Nelson, Christopher P; Peacock, Janet; Seed, Paul T; Shinkins, Bethany; Staples, Karl J; Toombs, Jamie; Wright, Adam Ka; Teare, M Dawn
2015-05-07
Lack of reproducibility is an ongoing problem in some areas of the biomedical sciences. Poor experimental design and a failure to engage with experienced statisticians at key stages in the design and analysis of experiments are two factors that contribute to this problem. The RIPOSTE (Reducing IrreProducibility in labOratory STudiEs) framework has been developed to support early and regular discussions between scientists and statisticians in order to improve the design, conduct and analysis of laboratory studies and, therefore, to reduce irreproducibility. This framework is intended for use during the early stages of a research project, when specific questions or hypotheses are proposed. The essential points within the framework are explained and illustrated using three examples (a medical equipment test, a macrophage study and a gene expression study). Sound study design minimises the possibility of bias being introduced into experiments and leads to higher quality research with more reproducible results.
He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris
2012-03-01
In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.
Automated Microbial Metabolism Laboratory
NASA Technical Reports Server (NTRS)
1971-01-01
The effect of several environmental parameters on previously developed life detection systems is explored. Initial attempts were made to conduct all the experiments in a moist mode (high soil volume to water volume ratio). However, only labeled release and measurement of ATP were found to be feasible under conditions of low moisture. Therefore, these two life detection experiments were used for most of the environmental effects studies. Three soils, Mojave (California desert), Wyaconda (Maryland, sandy loam) and Victoria Valley (Antarctic desert) were generally used throughout. The environmental conditions studied included: incubation temperature 3 C to 80 C, ultraviolet irradiation of soils, variations in soil/liquid ratio, specific atmospheric gases, various antimetabolites, specific substrates, and variation in pH. An experiment designed to monitor nitrogen metabolism was also investigated.
NASA Technical Reports Server (NTRS)
Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.
1974-01-01
Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.
Development of a large color range for a paint company
NASA Astrophysics Data System (ADS)
McGinley, Peter
2002-06-01
Experience with the Master Palette system of 6000 colors lead to a specification for a new color range where the primary design feature is the control of the paint tint formula. This design approach met a market-derived requirement for sample pots and fractional-strength colors. The layout process employed was able to display the color capability of the paint system and generate an array of colors with controlled spacing similar to Master Palette. Updated pigment selections and the introduction of additional colored bases completed the system specification of improved opacity and every color being exterior durable.
ERIC Educational Resources Information Center
Scanlon, Eileen; McAndrew, Patrick; O'Shea, Tim
2015-01-01
The area of learning has a justifiable claim to be a special case in how it can be enhanced or supported by technology. In areas such as commerce and web design the aim is usually to ensure efficiency and support specific actions such as purchasing or accessing information as quickly and easily as possible. Working with technology for the purpose…
Structural and compositional features of high-rise buildings: experimental design in Yekaterinburg
NASA Astrophysics Data System (ADS)
Yankovskaya, Yulia; Lobanov, Yuriy; Temnov, Vladimir
2018-03-01
The study looks at the specifics of high-rise development in Yekaterinburg. High-rise buildings are considered in the context of their historical development, structural features, compositional and imaginative design techniques. Experience of Yekaterinburg architects in experimental design is considered and analyzed. Main issues and prospects of high-rise development within the Yekaterinburg structure are studied. The most interesting and significant conceptual approaches to the structural and compositional arrangement of high-rise buildings are discussed.
Chen, Kuan-Hua; Lwi, Sandy J.; Hua, Alice Y.; Haase, Claudia M.; Miller, Bruce L.; Levenson, Robert W.
2017-01-01
Although laboratory procedures are designed to produce specific emotions, participants often experience mixed emotions (i.e., target and non-target emotions). We examined non-target emotions in patients with frontotemporal dementia (FTD), Alzheimer’s disease (AD), other neurodegenerative diseases, and healthy controls. Participants watched film clips designed to produce three target emotions. Subjective experience of non-target emotions was assessed and emotional facial expressions were coded. Compared to patients with other neurodegenerative diseases and healthy controls, FTD patients reported more positive and negative non-target emotions, whereas AD patients reported more positive non-target emotions. There were no group differences in facial expressions of non-target emotions. We interpret these findings as reflecting deficits in processing interoceptive and contextual information resulting from neurodegeneration in brain regions critical for creating subjective emotional experience. PMID:29457053
Dallaire, Danielle H.; Zeman, Janice L.; Thrash, Todd M.
2014-01-01
Children of incarcerated mothers are at increased risk for social and emotional difficulties, yet few studies have investigated potential mechanisms of risk within this population. This research simultaneously examined the association of children’s experience of incarceration-specific risk factors (e.g., witness mother’s arrest) and environmental risks (e.g., low educational attainment) to children’s psychological maladaptation using a multi-informant design and a latent variable analytic approach. Participants were 117 currently incarcerated mothers (64.1% African American), their 151 children (53.6% boys, M age =9.8 years, range =6–12 years, 61.7% African American), and the 118 caregivers (74.8% female, 61.9% grandparents, 62.2% African American) of the children. Mothers, children, and caregivers each provided accounts of children’s experiences related to maternal incarceration and children’s internalizing and externalizing behavior problems. Mothers and caregivers each supplied information about 10 environmental risk factors. Findings from structural equation modeling indicate that children’s incarceration-specific risk experiences predict internalizing and externalizing behavior problems whereas the influence of environmental risks was negligible. Follow-up analyses examining the contribution of specific risks indicate that significant predictors differ by reporter and separate into effects of family incarceration history and direct experiences of maternal incarceration. Incarceration-specific experiences place children at higher risk for maladjustment than exposure to general environmental risk factors. These findings indicate the need to critically examine children’s exposure to experiences related to maternal incarceration and family incarceration history to help to clarify the multifaceted stressor of maternal incarceration. PMID:24871820
Accounting for substitution and spatial heterogeneity in a labelled choice experiment.
Lizin, S; Brouwer, R; Liekens, I; Broeckx, S
2016-10-01
Many environmental valuation studies using stated preferences techniques are single-site studies that ignore essential spatial aspects, including possible substitution effects. In this paper substitution effects are captured explicitly in the design of a labelled choice experiment and the inclusion of different distance variables in the choice model specification. We test the effect of spatial heterogeneity on welfare estimates and transfer errors for minor and major river restoration works, and the transferability of river specific utility functions, accounting for key variables such as site visitation, spatial clustering and income. River specific utility functions appear to be transferable, resulting in low transfer errors. However, ignoring spatial heterogeneity increases transfer errors. Copyright © 2016 Elsevier Ltd. All rights reserved.
From theory to experimental design-Quantifying a trait-based theory of predator-prey dynamics.
Laubmeier, A N; Wootton, Kate; Banks, J E; Bommarco, Riccardo; Curtsdotter, Alva; Jonsson, Tomas; Roslin, Tomas; Banks, H T
2018-01-01
Successfully applying theoretical models to natural communities and predicting ecosystem behavior under changing conditions is the backbone of predictive ecology. However, the experiments required to test these models are dictated by practical constraints, and models are often opportunistically validated against data for which they were never intended. Alternatively, we can inform and improve experimental design by an in-depth pre-experimental analysis of the model, generating experiments better targeted at testing the validity of a theory. Here, we describe this process for a specific experiment. Starting from food web ecological theory, we formulate a model and design an experiment to optimally test the validity of the theory, supplementing traditional design considerations with model analysis. The experiment itself will be run and described in a separate paper. The theory we test is that trophic population dynamics are dictated by species traits, and we study this in a community of terrestrial arthropods. We depart from the Allometric Trophic Network (ATN) model and hypothesize that including habitat use, in addition to body mass, is necessary to better model trophic interactions. We therefore formulate new terms which account for micro-habitat use as well as intra- and interspecific interference in the ATN model. We design an experiment and an effective sampling regime to test this model and the underlying assumptions about the traits dominating trophic interactions. We arrive at a detailed sampling protocol to maximize information content in the empirical data obtained from the experiment and, relying on theoretical analysis of the proposed model, explore potential shortcomings of our design. Consequently, since this is a "pre-experimental" exercise aimed at improving the links between hypothesis formulation, model construction, experimental design and data collection, we hasten to publish our findings before analyzing data from the actual experiment, thus setting the stage for strong inference.
Positive technology: using interactive technologies to promote positive functioning.
Riva, Giuseppe; Baños, Rosa M; Botella, Cristina; Wiederhold, Brenda K; Gaggioli, Andrea
2012-02-01
It is generally assumed that technology assists individuals in improving the quality of their lives. However, the impact of new technologies and media on well-being and positive functioning is still somewhat controversial. In this paper, we contend that the quality of experience should become the guiding principle in the design and development of new technologies, as well as a primary metric for the evaluation of their applications. The emerging discipline of Positive Psychology provides a useful framework to address this challenge. Positive Psychology is the scientific study of optimal human functioning and flourishing. Instead of drawing on a "disease model" of human behavior, it focuses on factors that enable individuals and communities to thrive and build the best in life. In this paper, we propose the "Positive Technology" approach--the scientific and applied approach to the use of technology for improving the quality of our personal experience through its structuring, augmentation, and/or replacement--as a way of framing a suitable object of study in the field of cyberpsychology and human-computer interaction. Specifically, we suggest that it is possible to use technology to influence three specific features of our experience--affective quality, engagement/actualization, and connectedness--that serve to promote adaptive behaviors and positive functioning. In this framework, positive technologies are classified according to their effects on a specific feature of personal experience. Moreover, for each level, we have identified critical variables that can be manipulated to guide the design and development of positive technologies.
NASA Technical Reports Server (NTRS)
Newkirk, R. W.; Ertel, I. D.; Brooks, C. G.
1977-01-01
The Skylab Program was specifically designed to conduct a series of experiments from beyond the earth's atmosphere. Since the number and types of experiments conducted during the operational phase of Skylab were constantly changing, rather than encumber the body of the chronology with these changes, a lengthy appendix on experiments is included in this document. This appendix identifies the principle investigators and coinvestigators; gives the types, numbers, and descriptions of the experiments; explains the purpose of the various experiments; and, where possible, gives the results or findings of the experiments. The body of the Skylab chronology is divided into three parts; early space station activities, Apollo applications, and Skylab development and operations.
Transforming patient experience: health web science meets medicine 2.0.
McHattie, Lynn-Sayers; Cumming, Grant; French, Tara
2014-01-01
Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London.
Transforming Patient Experience: Health Web Science Meets Medicine 2.0
2014-01-01
Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London. PMID:25075246
Progress on LMJ targets for ignition
NASA Astrophysics Data System (ADS)
Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Dattolo, E.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.
2009-12-01
Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2014-09-01
This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.
Estimating peer effects in networks with peer encouragement designs.
Eckles, Dean; Kizilcec, René F; Bakshy, Eytan
2016-07-05
Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals' peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them.
Estimating peer effects in networks with peer encouragement designs
Eckles, Dean; Kizilcec, René F.; Bakshy, Eytan
2016-01-01
Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals’ peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them. PMID:27382145
NASA Technical Reports Server (NTRS)
Wong, Robert Y.; Monroe, Daniel E.
1959-01-01
The design and experimental investigation of a 4.5-inch-mean-diameter two-stage turbine are presented herein and used to study the effect of size on the efficiency of turbines in the auxiliary power drive class. The results of the experimental investigation indicated that design specific work was obtained at design speed at a total-to-static efficiency of 0.639. At design pressure ratio, design static-pressure distribution through the turbine was obtained with an equivalent specific work output of 33.2 Btu per pound and an efficiency of 0.656. It was found that, in the design of turbines in the auxiliary power drive class, Reynolds number plays an important part in the selection of the design efficiency. Comparison with theoretical efficiencies based on a loss coefficient and velocity diagrams are presented. Close agreement was obtained between theory and experiment when the loss coefficient was adjusted for changes in Reynolds number to the -1/5 power.
Tan, Lindsay; Hong, Miyoung; Albert, Taneshia West
2017-10-01
This case study explores the influence of the healthcare design studio experience on students' short-term professional goals as measured through rates of healthcare-related certification and internship/employment. The value and relevance of interior design is evident in the healthcare design sector. However, interior design students may not perceive this value if it is not communicated through their design education. Students' experience in the design studio plays a crucial role in determining career choices, and students may be more committed to career goals when there is clear connection between major coursework and professional practice. The authors compared healthcare-related certification and internship/employment levels between two student cohorts in a capstone undergraduate interior design healthcare design studio course. The first cohort was led by the existing curriculum. The second cohort was led by the revised curriculum that specifically aimed at encouraging students to commit to healthcare-related design practice. When measured at 3 months from graduation, the second cohort, led by the revised curriculum, saw a 30% increase in Evidence-based Design Accreditation and Certification exam pass rates and a 40% increase in healthcare-related internship/employment. The challenge of interior design education is to instill in emerging professionals not only professional competence but also those professional attitudes that will make them better prepared to design spaces that improve quality of life, particularly in healthcare environments. The results exceeded the project goals, and so this could be considered a promising practice for courses focused on healthcare design education.
CFE-2 Experiment ICF-5 in the Node 2
2014-01-03
ISS038-E-025000 (3 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, speaks in a microphone while conducting a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
NASA Technical Reports Server (NTRS)
1976-01-01
The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.
Advanced ISDN satellite designs and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.
A Fundamental Study of Smoldering with Emphasis on Experimental Design for Zero-G
NASA Technical Reports Server (NTRS)
Fernandez-Pello, Carlos; Pagni, Patrick J.
1995-01-01
A research program to study smoldering combustion with emphasis on the design of an experiment to be conducted in the space shuttle was conducted at the Department of Mechanical Engineering, University of California, Berkeley. The motivation of the research is the interest in smoldering both as a fundamental combustion problem and as a serious fire risk. Research conducted included theoretical and experimental studies that have brought considerable new information about smolder combustion, the effect that buoyancy has on the process, and specific information for the design of a space experiment. Experiments were conducted at normal gravity, in opposed and forward mode of propagation and in the upward and downward direction to determine the effect and range of influence of gravity on smolder. Experiments were also conducted in microgravity, in a drop tower and in parabolic aircraft flights, where the brief microgravity periods were used to analyze transient aspects of the problem. Significant progress was made on the study of one-dimensional smolder, particularly in the opposed-flow configuration. These studies provided enough information to design a small-scale space-based experiment that was successfully conducted in the Spacelab Glovebox in the June 1992 USML-1/STS-50 mission of the Space Shuttle Columbia.
Simulations of a Molecular Cloud experiment using CRASH
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.
2017-06-01
Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Design of a clinical notification system.
Wagner, M M; Tsui, F C; Pike, J; Pike, L
1999-01-01
We describe the requirements and design of an enterprise-wide notification system. From published descriptions of notification schemes, our own experience, and use cases provided by diverse users in our institution, we developed a set of functional requirements. The resulting design supports multiple communication channels, third party mappings (algorithms) from message to recipient and/or channel of delivery, and escalation algorithms. A requirement for multiple message formats is addressed by a document specification. We implemented this system in Java as a CORBA object. This paper describes the design and current implementation of our notification system.
Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin
ERIC Educational Resources Information Center
Dever, David F.
1975-01-01
Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)
An Additive Manufacturing Test Artifact
Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan
2014-01-01
A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039
Progress on LMJ targets for ignition
NASA Astrophysics Data System (ADS)
Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Lambert, F.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.
2010-08-01
Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
Karkar, Ravi; Schroeder, Jessica; Epstein, Daniel A; Pina, Laura R; Scofield, Jeffrey; Fogarty, James; Kientz, Julie A; Munson, Sean A; Vilardaga, Roger; Zia, Jasmine
2017-05-02
Diagnostic self-tracking, the recording of personal information to diagnose or manage a health condition, is a common practice, especially for people with chronic conditions. Unfortunately, many who attempt diagnostic self-tracking have trouble accomplishing their goals. People often lack knowledge and skills needed to design and conduct scientifically rigorous experiments, and current tools provide little support. To address these shortcomings and explore opportunities for diagnostic self-tracking, we designed, developed, and evaluated a mobile app that applies a self-experimentation framework to support patients suffering from irritable bowel syndrome (IBS) in identifying their personal food triggers. TummyTrials aids a person in designing, executing, and analyzing self-experiments to evaluate whether a specific food triggers their symptoms. We examined the feasibility of this approach in a field study with 15 IBS patients, finding that participants could use the tool to reliably undergo a self-experiment. However, we also discovered an underlying tension between scientific validity and the lived experience of self-experimentation. We discuss challenges of applying clinical research methods in everyday life, motivating a need for the design of self-experimentation systems to balance rigor with the uncertainties of everyday life.
The Role of Formal Experiment Design in Hypersonic Flight System Technology Development
NASA Technical Reports Server (NTRS)
McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.
2002-01-01
Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.
Computational design of an experimental laser-powered thruster
NASA Technical Reports Server (NTRS)
Jeng, San-Mou; Litchford, Ronald; Keefer, Dennis
1988-01-01
An extensive numerical experiment, using the developed computer code, was conducted to design an optimized laser-sustained hydrogen plasma thruster. The plasma was sustained using a 30 kW CO2 laser beam operated at 10.6 micrometers focused inside the thruster. The adopted physical model considers two-dimensional compressible Navier-Stokes equations coupled with the laser power absorption process, geometric ray tracing for the laser beam, and the thermodynamically equilibrium (LTE) assumption for the plasma thermophysical and optical properties. A pressure based Navier-Stokes solver using body-fitted coordinate was used to calculate the laser-supported rocket flow which consists of both recirculating and transonic flow regions. The computer code was used to study the behavior of laser-sustained plasmas within a pipe over a wide range of forced convection and optical arrangements before it was applied to the thruster design, and these theoretical calculations agree well with existing experimental results. Several different throat size thrusters operated at 150 and 300 kPa chamber pressure were evaluated in the numerical experiment. It is found that the thruster performance (vacuum specific impulse) is highly dependent on the operating conditions, and that an adequately designed laser-supported thruster can have a specific impulse around 1500 sec. The heat loading on the wall of the calculated thrusters were also estimated, and it is comparable to heat loading on the conventional chemical rocket. It was also found that the specific impulse of the calculated thrusters can be reduced by 200 secs due to the finite chemical reaction rate.
DOT National Transportation Integrated Search
1996-11-01
The purpose of Task A was to conduct a literature review of human factors-applicable articles associated with Advanced Traveler Information Systems (ATIS) and ATIS-related commercial vehicle operations (CVO) systems. Specifically, Task A was to asses...
ERIC Educational Resources Information Center
Varnell, Matt
2013-01-01
The purpose of this study was to evaluate the effect of rhythm and tonality on an academic memory task by comparing three different treatment conditions: a poem, a rhythmic chant (or rap), and a melodic rhythm (or song). A quasi-experimental experiment was designed and implemented, specifically a pretest-posttest-posttest control-group design.…
ERIC Educational Resources Information Center
Yang, Eunyoung
2010-01-01
In updating fashion and apparel related design programs, many educators are striving to address the perspective of the fashion industry to obtain the career-specific skill and knowledge requirements sought by employers when hiring college or university graduates. Identifying such competencies from the view of fashion industry professionals as well…
Burmakina, G; Malogolovkin, A; Tulman, E R; Zsak, L; Delhon, G; Diel, D G; Shobogorov, N M; Morgunov, Yu P; Morgunov, S Yu; Kutish, G F; Kolbasov, D; Rock, D L
2016-07-01
African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available and progress is hindered by lack of knowledge concerning the extent of ASFV strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Available data from vaccination/challenge experiments in pigs indicate that ASF protective immunity may be haemadsorption inhibition (HAI) serotype-specific. Recently, we have shown that two ASFV proteins, CD2v (EP402R) and C-type lectin (EP153R), are necessary and sufficient for mediating HAI serological specificity (Malogolovkin et al., 2015).. Here, using ASFV inter-serotypic chimeric viruses and vaccination/challenge experiments in pigs, we demonstrate that serotype-specific CD2v and/or C-type lectin proteins are important for protection against homologous ASFV infection. Thus, these viral proteins represent significant protective antigens for ASFV that should be targeted in future vaccine design and development. Additionally, these data support the concept of HAI serotype-specific protective immunity.
Game design in virtual reality systems for stroke rehabilitation.
Goude, Daniel; Björk, Staffan; Rydmark, Martin
2007-01-01
We propose a model for the structured design of games for post-stroke rehabilitation. The model is based on experiences with game development for a haptic and stereo vision immersive workbench intended for daily use in stroke patients' homes. A central component of this rehabilitation system is a library of games that are simultaneously entertaining for the patient and beneficial for rehabilitation [1], and where each game is designed for specific training tasks through the use of the model.
Kerr, Kathleen F; Serikawa, Kyle A; Wei, Caimiao; Peters, Mette A; Bumgarner, Roger E
2007-01-01
The reference design is a practical and popular choice for microarray studies using two-color platforms. In the reference design, the reference RNA uses half of all array resources, leading investigators to ask: What is the best reference RNA? We propose a novel method for evaluating reference RNAs and present the results of an experiment that was specially designed to evaluate three common choices of reference RNA. We found no compelling evidence in favor of any particular reference. In particular, a commercial reference showed no advantage in our data. Our experimental design also enabled a new way to test the effectiveness of pre-processing methods for two-color arrays. Our results favor using intensity normalization and foregoing background subtraction. Finally, we evaluate the sensitivity and specificity of data quality filters, and we propose a new filter that can be applied to any experimental design and does not rely on replicate hybridizations.
EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT
Solvents used throughout industry are chosen to meet specific technological requirements such as solute solubility, cleaning and degreasing, or being a medium for paints and coatings. With the increasing awareness of the human health effects and environmental risks of solvent use...
EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT
Solvents used throughout industry are chosen to meet specific technological requirements such as solute solubility, cleaning and degreasing, or being a medium for paints and coatings. With the increasing awareness of the human health effects and environmental tisks of solvent use...
Analysis and specification tools in relation to the APSE
NASA Technical Reports Server (NTRS)
Hendricks, John W.
1986-01-01
Ada and the Ada Programming Support Environment (APSE) specifically address the phases of the system/software life cycle which follow after the user's problem was translated into system and software development specifications. The waterfall model of the life cycle identifies the analysis and requirements definition phases as preceeding program design and coding. Since Ada is a programming language and the APSE is a programming support environment, they are primarily targeted to support program (code) development, tecting, and maintenance. The use of Ada based or Ada related specification languages (SLs) and program design languages (PDLs) can extend the use of Ada back into the software design phases of the life cycle. Recall that the standardization of the APSE as a programming support environment is only now happening after many years of evolutionary experience with diverse sets of programming support tools. Restricting consideration to one, or even a few chosen specification and design tools, could be a real mistake for an organization or a major project such as the Space Station, which will need to deal with an increasingly complex level of system problems. To require that everything be Ada-like, be implemented in Ada, run directly under the APSE, and fit into a rigid waterfall model of the life cycle would turn a promising support environment into a straight jacket for progress.
Simulation of nap-of-the-Earth flight in helicopters
NASA Technical Reports Server (NTRS)
Condon, Gregory W.
1991-01-01
NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.
Crewed Space Vehicle Battery Safety Requirements
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Darcy, Eric C.
2014-01-01
This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.
Ionizing radiation exposure of LDEF (pre-recovery estimates)
NASA Technical Reports Server (NTRS)
Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.
1992-01-01
The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.
NASA Technical Reports Server (NTRS)
Stodieck, Louis; Klaus, David
2001-01-01
The two experiments housed in the Commercial Generic Bioprocessing Apparatus (CGBA) during STS-106 were designed to explore how biological processes are affected by microgravity. The first was a developmental study into the effects of microgravity on motor-neuronal growth in the fruit fly species Drosophila melanogaster and the second study was designed to characterize changes in kidney cell gene expression. The objective of the primary experiment, called NIH-B1, was to determine how gravity affects neuronal development of the D. melanogaster embryo and larvae in microgravity, specifically observing the neural connections to muscle fibers.
High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
The photomultiplier tube calibration system of the MicroBooNE experiment
Conrad, J.; Jones, B. J. P.; Moss, Z.; ...
2015-06-03
Here, we report on the design and construction of a LED-based fiber calibration system for large liquid argon time projection detectors. This system was developed to calibrate the optical systems of the MicroBooNE experiment. As well as detailing the materials and installation procedure, we provide technical drawings and specifications so that the system may be easily replicated in future LArTPC detectors.
Study for verification testing of the helmet-mounted display in the Japanese Experimental Module.
Nakajima, I; Yamamoto, I; Kato, H; Inokuchi, S; Nemoto, M
2000-02-01
Our purpose is to propose a research and development project in the field of telemedicine. The proposed Multimedia Telemedicine Experiment for Extra-Vehicular Activity will entail experiments designed to support astronaut health management during Extra-Vehicular Activity (EVA). Experiments will have relevant applications to the Japanese Experimental Module (JEM) operated by National Space Development Agency of Japan (NASDA) for the International Space Station (ISS). In essence, this is a proposal for verification testing of the Helmet-Mounted Display (HMD), which enables astronauts to verify their own blood pressures and electrocardiograms, and to view a display of instructions from the ground station and listings of work procedures. Specifically, HMD is a device designed to project images and data inside the astronaut's helmet. We consider this R&D proposal to be one of the most suitable projects under consideration in response to NASDA's open invitation calling for medical experiments to be conducted on JEM.
An Advanced Professional Pharmacy Experience in a Community Setting Using an Experiential Manual
Lee, Karen W.; Machado, Matthew R.; Wenzel, Marie M.; Gagnon, James M.; Calomo, Joseph M.
2006-01-01
Objectives To determine the usefulness of a teaching and learning tool used to create structure for advanced pharmacy practice experiences (APPEs) in community pharmacy settings, and to identify differences between respondents' perspectives on the relevance and practicality of implementing specific community pharmacy-related topics during the experience. Design Community practice faculty members designed a manual that outlined a week-by-week schedule of student activities, consistent with the Center for the Advancement of Pharmaceutical Education (CAPE) outcome-based goals, and included associated teaching, documentation, and assessment tools. The manual was distributed to site preceptors and students. Assessment Eighty-six PharmD students responded to a questionnaire upon completion of their community APPE. Student feedback concerning the impact of the manual relative to interactions with site preceptors and their overall learning experience was relatively positive. Conclusion The manual was an effective teaching and learning tool for students completing a community APPE. PMID:17149421
Overview of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Jacobson, C. M.; Parada, C. A.; Forest, C. B.
2006-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin-Madison's liquid-sodium facility. The experiment is designed to self-generate magnetic fields from flows of conducting metal. The apparatus consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium. Two 100 Hp motors drive impellers which generate the flow. The motors have been operated up to 1300 RPM (70% of design specification), achieving a magnetic Reynolds number of 130, based on impeller tip speed. Various polarizations of external magnetic fields have been applied to the sodium, and the induced magnetic field has been measured by both internal and external Hall probe arrays. The voltage induced across the sphere by the turbulent flow has been measured. Techniques for using ultrasound Doppler velocimetry have been explored in the water model of the experiment, including the use of high-pressure bubbles as seed particles.
ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6
NASA Technical Reports Server (NTRS)
Nowicki, S.
2015-01-01
ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.
Clark, Robin A; Shoaib, Mohammed; Hewitt, Katherine N; Stanford, S Clare; Bate, Simon T
2012-08-01
InVivoStat is a free-to-use statistical software package for analysis of data generated from animal experiments. The package is designed specifically for researchers in the behavioural sciences, where exploiting the experimental design is crucial for reliable statistical analyses. This paper compares the analysis of three experiments conducted using InVivoStat with other widely used statistical packages: SPSS (V19), PRISM (V5), UniStat (V5.6) and Statistica (V9). We show that InVivoStat provides results that are similar to those from the other packages and, in some cases, are more advanced. This investigation provides evidence of further validation of InVivoStat and should strengthen users' confidence in this new software package.
NASA Technical Reports Server (NTRS)
Alfrey, Clarence P.
1995-01-01
The purpose of this contract was to design and conduct experiments that would increase our understanding of the influence of space flight on erythrokinetics and the rapid change that occurs in the red blood cell mass during spaceflight. The experiment designated E261, was flown on Space Life Science missions SLS-1 and SLS-2 (STS 40 and STS 58). Unique features of this experiment included radionuclide tracer studies during flight and frequent in-flight blood samples specifically for the first three or four days of the mission. Plasma volume measurements were made early and late in the missions. Radioactive iron kinetics studies were initiated after one or three days in microgravity since the magnitude of the red blood cell mass decrease dictated that bone marrow production must be decreased very early in the flight. The schedule was designed to study the time course of the changes that occur during spaceflight and to possibly define a mechanism for the rapid reduction in red blood cell mass.
DIRAC in Large Particle Physics Experiments
NASA Astrophysics Data System (ADS)
Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC
2017-10-01
The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.
An Inquiry-Based Approach to Study the Synapse: Student-Driven Experiments Using C. elegans
Lemons, Michele L.
2016-01-01
Inquiry-based instruction has been well demonstrated to enhance long term retention and to improve application and synthesis of knowledge. Here we describe an inquiry-based teaching module that trains undergraduates as scientists who pose questions, design and execute hypothesis-driven experiments, analyze data and communicate their research findings. Before students design their research projects, they learn and practice several research techniques with the model organism, Caenorhabditis elegans. This nematode is an ideal choice for experimentation in an undergraduate lab due to its powerful genetics, ease and low cost of maintenance, and amenability for undergraduate training. Students are challenged to characterize an instructor-assigned “mystery mutant” C. elegans strain. The “mystery mutant” strain has a defect in cholinergic synaptic transmission. Students are well poised to experimentally test how the mutation impacts synaptic transmission. For example, students design experiments that address questions including: Does the effected gene influence acetylcholine neurotransmitter release? Does it inhibit postsynaptic cholinergic receptors? Students must apply their understanding of the synapse while using their recently acquired research skills (including aldicarb and levamisole assays) to successfully design, execute and analyze their experiments. Students prepare an experimental plan and a timeline for proposed experiments. Undergraduates work collaboratively in pairs and share their research findings in oral and written formats. Modifications to suit instructor-specific goals and courses with limited or no lab time are provided. Students have anonymously reported their surprise regarding how much can be learned from a worm and feelings of satisfaction from conducting research experiments of their own design. PMID:27980470
Lindblad, Andreas; Söderström, Johan; Nicolas, Christophe; Robert, Emmanuel; Miron, Catalin
2013-11-01
This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO2) and free mixed clusters (Ar/Xe). The results from those experiments are showcased and briefly discussed.
Crozier, Sarah E; Cassell, Catherine M
2016-06-01
The use of longitudinal methodology as a means of capturing the intricacies in complex organizational phenomena is well documented, and many different research strategies for longitudinal designs have been put forward from both a qualitative and quantitative stance. This study explores a specific emergent qualitative methodology, audio diaries, and assesses their utility for work psychology research drawing on the findings from a four-stage study addressing transient working patterns and stress in UK temporary workers. Specifically, we explore some important methodological, analytical and technical issues for practitioners and researchers who seek to use these methods and explain how this type of methodology has much to offer when studying stress and affective experiences at work. We provide support for the need to implement pluralistic and complementary methodological approaches in unearthing the depth in sense-making and assert their capacity to further illuminate the process orientation of stress. This study illustrates the importance of verbalization in documenting stress and affective experience as a mechanism for accessing cognitive processes in making sense of such experience.This study compares audio diaries with more traditional qualitative methods to assess applicability to different research contexts.This study provides practical guidance and a methodological framework for the design of audio diary research and design, taking into account challenges and solutions for researchers and practitioners.
ERIC Educational Resources Information Center
Streibel, Michael J.
This paper discusses the implications of Lucy Suchman's conclusion that a theory of situated action--i.e., the actual sense that specific users make out of specific Xeroxing events--is truer to the lived experience of Xerox users than a cognitive account of the user's plans--e.g., the hierarchy of subprocedures for how Xerox machines should be…
ERIC Educational Resources Information Center
Richels, Corrin; Bobzien, Jonna; Raver, Sharon A.; Schwartz, Kathryn; Hester, Peggy; Reed, Lauren
2014-01-01
The purpose of this study was to investigate whether specific emotion vocabulary could be taught to children with hearing impairments using child-specific social stories and demonstration tasks. The participants were three preschool-aged children who were being served in an auditory-verbal preschool classroom. An A-B single-subject design was used…
A universal fluid cell for the imaging of biological specimens in the atomic force microscope.
Kasas, Sandor; Radotic, Ksenja; Longo, Giovanni; Saha, Bashkar; Alonso-Sarduy, Livan; Dietler, Giovanni; Roduit, Charles
2013-04-01
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Copyright © 2013 Wiley Periodicals, Inc.
Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters
NASA Astrophysics Data System (ADS)
Hofer, Richard Robert
This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The decrease of efficiency due to multiply-charged ions was minor. Efficiency was largely determined by the current utilization, which suggested maximum Hall thruster efficiency has yet to be reached. The electron Hall parameter was approximately constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400--900 V, which confirmed efficient operation can be realized only over a limited range of Hall parameters.
ERIC Educational Resources Information Center
Garrett, Robin Eileen
2014-01-01
Community colleges serve a diverse population of learners including many older students counting on the community college for enhanced skills or personal enrichment. Many of these colleges target this population with programs designed specifically to meet the needs and goals of the older adult but may not consider this population when designing a…
Scenarios and performance measures for advanced ISDN satellite design and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1991-01-01
Described here are the contemplated input and expected output for the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and Full Service ISDN Satellite (FSIS) Models. The discrete event simulations of these models are presented with specific scenarios that stress ISDN satellite parameters. Performance measure criteria are presented for evaluating the advanced ISDN communication satellite designs of the NASA Satellite Communications Research (SCAR) Program.
2006-05-01
a significant design project that requires development of a large scale software project . A distinct shortcoming of Purdue ECE...18-540: Rapid Prototyping of Computer Systems This is a project -oriented course which will deal with all four aspects of project development ; the...instructors, will develop specifications for a mobile computer to assist in inspection and maintenance. The application will be partitioned
ERIC Educational Resources Information Center
Hagelkruys, Dominik; Motschnig, Renate
2017-01-01
Case studies help to reflect and to capture information about complex processes and domains and to make it reusable for future application in related contexts. In the case study reported in this article, we aim to capture and share processes and experience that we gained while designing a web-portal for supporting the specific user group of…
Triberti, Stefano; Barello, Serena
2016-10-01
Recent research highlights that patient engagement, conceived as a patient's behavioral, cognitive and emotional commitment to his own care management, is a key issue while implementing new technologies in the healthcare process. Indeed, eHealth interventions may systematically fail when the patient's subjective experience has not been taken into consideration since the first steps of the technology design. In the present contribution, we argue that such an issue is more and more crucial as regarded to the field of Ambient Intelligence (AmI). Specifically, the exact concept of technologies embedded in the patients' surrounding environment implies a strong impact on their everyday life, which can be perceived as a limitation to autonomy and privacy, and therefore refused or even openly opposed by the final users. The present contribution tackles this issue directly, highlighting: (1) a theoretical framework to include patient engagement in the design of AmI technologies; (2) assessment measures for patient engagement while developing and testing the effectiveness of AmI prototypes for healthcare. Finally (3) this contribution provides an overview of the main issues emerging while implementing AmI technologies and suggests specific design solutions to address them. Copyright © 2016 Elsevier Inc. All rights reserved.
The Designed Environment and How it Affects Brain Morphology and Mental Health.
Golembiewski, Jan A
2016-01-01
The environment is inextricably related to mental health. Recent research replicates findings of a significant, linear correlation between a childhood exposure to the urban environment and psychosis. Related studies also correlate the urban environment and aberrant brain morphologies. These findings challenge common beliefs that the mind and brain remain neutral in the face of worldly experience. There is a signature within these neurological findings that suggests that specific features of design cause and trigger mental illness. The objective in this article is to work backward from the molecular dynamics to identify features of the designed environment that may either trigger mental illness or protect against it. This review analyzes the discrete functions putatively assigned to the affected brain areas and a neurotransmitter called dopamine, which is the primary target of most antipsychotic medications. The intention is to establish what the correlations mean in functional terms, and more specifically, how this relates to the phenomenology of urban experience. In doing so, environmental mental illness risk factors are identified. Having established these relationships, the review makes practical recommendations for those in public health who wish to use the environment itself as a tool to improve the mental health of a community through design. © The Author(s) 2015.
Parafoveal preview during reading: Effects of sentence position
White, Sarah J.; Warren, Tessa; Reichle, Erik D.
2011-01-01
Two experiments examined parafoveal preview for words located in the middle of sentences and at sentence boundaries. Parafoveal processing was shown to occur for words at sentence-initial, mid-sentence, and sentence-final positions. Both Experiments 1 and 2 showed reduced effects of preview on regressions out for sentence-initial words. In addition, Experiment 2 showed reduced preview effects on first-pass reading times for sentence-initial words. These effects of sentence position on preview could result from reduced parafoveal processing for sentence-initial words, or other processes specific to word reading at sentence boundaries. In addition to the effects of preview, the experiments also demonstrate variability in the effects of sentence wrap-up on different reading measures, indicating that the presence and time course of wrap-up effects may be modulated by text-specific factors. We also report simulations of Experiment 2 using version 10 of E-Z Reader (Reichle, Warren, & McConnell, 2009), designed to explore the possible mechanisms underlying parafoveal preview at sentence boundaries. PMID:21500948
Two spatial memories are not better than one: evidence of exclusivity in memory for object location.
Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K
2006-05-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.
ESF-X: a low-cost modular experiment computer for space flight experiments
NASA Astrophysics Data System (ADS)
Sell, Steven; Zapetis, Joseph; Littlefield, Jim; Vining, Joanne
2004-08-01
The high cost associated with spaceflight research often compels experimenters to scale back their research goals significantly purely for budgetary reasons; among experiment systems, control and data collection electronics are a major contributor to total project cost. ESF-X was developed as an architecture demonstration in response to this need: it is a highly capable, radiation-protected experiment support computer, designed to be configurable on demand to each investigator's particular experiment needs, and operational in LEO for missions lasting up to several years (e.g., ISS EXPRESS) without scheduled service or maintenance. ESF-X can accommodate up to 255 data channels (I/O, A/D, D/A, etc.), allocated per customer request, with data rates up to 40kHz. Additionally, ESF-X can be programmed using the graphical block-diagram based programming languages Simulink and MATLAB. This represents a major cost saving opportunity for future investigators, who can now obtain a customized, space-qualified experiment controller at steeply reduced cost compared to 'new' design, and without the performance compromises associated with using preexisting 'generic' systems. This paper documents the functional benchtop prototype, which utilizes a combination of COTS and space-qualified components, along with unit-gravity-specific provisions appropriate to laboratory environment evaluation of the ESF-X design concept and its physical implementation.
ERIC Educational Resources Information Center
Burgin, Stephen R.; Sadler, Troy D.
2013-01-01
This article describes summer programs that allow high school students to participate in an "authentic scientific research experience" (ASRE). These summer programs are specifically designed to embed students in working laboratories and research groups. Summer ASRE programs for secondary learners range in length from a couple of weeks to…
Synthesis and analysis of precise spaceborne laser ranging systems, volume 2. [Spacelab payload
NASA Technical Reports Server (NTRS)
Paddon, E. A.
1978-01-01
The performance capabilities of specific shuttle-based laser ranging systems were evaluated, and interface and support requirements were determined. The preliminary design of a shuttle-borne laser ranging experiment developed as part of the Spacelab program is discussed.
Agricultural Record Keeping. Instructor Key and Supplementary Units.
ERIC Educational Resources Information Center
Martin, Donna
This teaching manual is designed to help students with special needs learn and apply recordkeeping skills in agriculture. The material applies specifically to recordkeeping for a supervised agricultural experience program. The units presented here supplement the curriculum guide, "Developing Programs of Supervised Agricultural…
ERIC Educational Resources Information Center
Bokor, Julie
2012-01-01
Practicing correct pipetting procedure doesn't have to be boring. "Pipetting by Coordinates" is an effective way to teach necessary pipetting skills in an enjoyable manner. Students create designs as they add volumes of colored water to specific wells and gain experience using a basic biotechnology tool.
Real-time PCR probe optimization using design of experiments approach.
Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F
2016-03-01
Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.
Site-Specific Research Conducted in Support of the Salton Sea Solar Pond Project - FY 1982 Report
NASA Technical Reports Server (NTRS)
French, R. L.; Marsh, H. E.; Roschke, E. J.; Wu, Y. C.
1984-01-01
The design and operation of a salt-gradient solar pond power plant at the Salton Sea presents problems not encountered at small research ponds that were built in the United States. The specific characteristics of the Salton Sea site and the desire to construct the pond using the local clay as a sealant represent major deviations from previous solar pond experience. The site-specific research in support of the plant design is described. The research activity included validation of the spectrophotometric light transmission measurement technique, a search for options for clarifying the turbid and colored water of the Salton Sea, development of water clarification specifications in terms common to industry practice, quantification of gas production from microbiological reactions in the ground, a determination of the combined effects of temperature and salinity on the permeation of the local clays, and a preliminary evaluation of material corrosion.
Effects of practice schedule and task specificity on the adaptive process of motor learning.
Barros, João Augusto de Camargo; Tani, Go; Corrêa, Umberto Cesar
2017-10-01
This study investigated the effects of practice schedule and task specificity based on the perspective of adaptive process of motor learning. For this purpose, tasks with temporal and force control learning requirements were manipulated in experiments 1 and 2, respectively. Specifically, the task consisted of touching with the dominant hand the three sequential targets with specific movement time or force for each touch. Participants were children (N=120), both boys and girls, with an average age of 11.2years (SD=1.0). The design in both experiments involved four practice groups (constant, random, constant-random, and random-constant) and two phases (stabilisation and adaptation). The dependent variables included measures related to the task goal (accuracy and variability of error of the overall movement and force patterns) and movement pattern (macro- and microstructures). Results revealed a similar error of the overall patterns for all groups in both experiments and that they adapted themselves differently in terms of the macro- and microstructures of movement patterns. The study concludes that the effects of practice schedules on the adaptive process of motor learning were both general and specific to the task. That is, they were general to the task goal performance and specific regarding the movement pattern. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene
1992-01-01
Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.
NASA Astrophysics Data System (ADS)
Mancuso, Vincent J.
Students' scientific investigations have been identified in national standards and related reform documents as a critical component of students' learning experiences in school, yet it is not easy to implement them in science classrooms. Could science demonstrations help science teachers put this recommendation into practice? While demonstrations are a common practice in the science classroom and research has documented some positive effects in terms of student motivation and engagement from their use, the literature also shows that, as traditionally presented, science demonstrations do not always achieve their intended outcomes. This, in turn, suggested the value of investigating what design elements of demonstrations could be used to promote specific instructional goals. Employing action research as a methodology, the proposed study was developed to explore how science demonstrations can be designed so as to most effectively promote student engagement in scientific investigations. More specifically, I was interested in examining the effects of using a discrepant event as part of the demonstration, as a way to create cognitive conflict and, thus, increase interest and engagement. I also investigated the relative merit of the well-researched POE (Predict, Observe, Explain) design versus employing demonstrations that appear to the student to be unplanned (what I will refer to as NOE, or a Naturally Occurring Experience). This study was informed by Constructivism, Situated Cognition and Conceptual Change as theoretical frameworks. The project included the design, implementation and study of an intervention consisting of three instructional units designed to support students' learning of the concepts of density, molecular arrangement of gas particles, and cohesion, respectively. In each of these units, lasting a total of two 80-minute class periods, students were asked to design and conduct an investigation to gain a better understanding of the concept under study. In one case, though, the investigation was preceded by a discrepant event demonstration using POE, in another case the investigation was preceded by an NOE discrepant event demonstration, and in the third case the student investigation was preceded by an interactive lecture (Lecture/Inquiry, or LA) instead of a demonstration. The intervention took place in Fall 2009 in three sections of the same middle school science course I taught. Data from these experiences were collected and analyzed to evaluate the impact of each unit on (a) students' interest in learning more about the scientific phenomenon under study; and (b) how students designed, conducted and interpreted their own investigation to explain the event. These findings were further compared across experiences to identify similarities and differences connected with the three design approaches utilized --- i.e., inquiry following a discrepant event demonstration using POE, an NOE discrepant event demonstration, or an interactive lecture. Data sources included: audiotapes of each lesson, students' written work, teacher's written reflections, observer's field notes, audiotapes of a final class reflection and semi-structured student interviews. Qualitative analysis was employed to analyze the data with the goal of revealing emerging themes addressing each research question. Findings from this study show that discrepant event demonstrations can indeed generate student interest and inform worthwhile student-led science investigations without requiring great time commitment. Furthermore, each lesson design used (POE, NOE, L/I) offered distinct benefits in the classroom, influencing student engagement and learning outcomes in valuable and distinct ways. This, in turn, suggests that science teachers should choose specific design elements when planning to use demonstrations to achieve specific objectives.
Lee, Haeok; Fawcett, Jacqueline; Yang, Jin Hyang; Hann, Hie-Won
2012-12-01
The purpose of this article is to explain the evolution of a situation-specific theory developed to enhance understanding of health-related behaviors of Korean Americans (KAs) who have or are at risk for a chronic hepatitis B virus (HBV) infection. The situation-specific theory evolved from an integration of the Network Episode Model, studies of health-related behaviors of people with HBV infection, and our studies of and practice experiences with Asian American individuals with HBV infection. The major concepts of the theory are sociocultural context, social network, individual-level factors, illness experience, and health-related behaviors. The major propositions of the theory are that sociocultural context, social network, and individual-level factors influence the illness experience, and that sociocultural context, social network, individual-level factors, and the illness experience influence health-related behaviors of KAs who have or are at risk for HBV infection. This situation-specific theory represents a translation of abstract concepts into clinical reality. The theory is an explanation of correlates of health-related HBV behaviors of KAs. The next step is to develop and test the effectiveness of a nursing intervention designed to promote behaviors that will enhance the health of KAs who have or are at risk for HBV infection, and that takes into account sociocultural context, social network, individual-level factors, and illness experience. © 2012 Sigma Theta Tau International.
Approach to design space from retrospective quality data.
Puñal Peces, Daniel; García-Montoya, Encarna; Manich, Albert; Suñé-Negre, Josep Maria; Pérez-Lozano, Pilar; Miñarro, Montse; Ticó, Josep Ramon
2016-01-01
Nowadays, the entire manufacturing process is based on the current GMPs, which emphasize the reproducibility of the process, and companies have a lot of recorded data about their processes. The establishment of the design space (DS) from retrospective data for a wet compression process. A design of experiments (DoE) with historical data from 4 years of industrial production has been carried out using the experimental factors as the results of the previous risk analysis and eight key parameters (quality specifications) that encompassed process and quality control data. Software Statgraphics 5.0 was applied, and data were processed to obtain eight DS as well as their safe and working ranges. Experience shows that it is possible to determine DS retrospectively, being the greatest difficulty in handling and processing of high amounts of data; however, the practicality of this study is very interesting as it let have the DS with minimal investment in experiments since actual production batch data are processed statistically.
Solenoid for Laser Induced Plasma Experiments at Janus
NASA Astrophysics Data System (ADS)
Klein, Sallee; Leferve, Heath; Kemp, Gregory; Mariscal, Derek; Rasmus, Alex; Williams, Jackson; Gillespie, Robb; Manuel, Mario; Kuranz, Carolyn; Keiter, Paul; Drake, R.
2017-10-01
Creating invariant magnetic fields for experiments involving laser induced plasmas is particularly challenging due to the high voltages at which the solenoid must be pulsed. Creating a solenoid resilient enough to survive through large numbers of voltage discharges, enabling it to endure a campaign lasting several weeks, is exceptionally difficult. Here we present a solenoid that is robust through 40 μs pulses at a 13 kV potential. This solenoid is a vast improvement over our previously fielded designs in peak magnetic field capabilities and robustness. Designed to be operated at small-scale laser facilities, the solenoid housing allows for versatility of experimental set-ups among diagnostic and target positions. Within the perpendicular field axis at the center there is 300 degrees of clearance which can be easily modified to meet the needs of a specific experiment, as well as an f/3 cone for transmitted or backscattered light. After initial design efforts, these solenoids are relatively inexpensive to manufacture.
Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.
2004-01-01
The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.
The Marine Resources Experiment Program (MAREX)
NASA Technical Reports Server (NTRS)
1982-01-01
The Satellite Ocean Color Science Working Group was established to consider the scientific utility of repeated satellite measurements of ocean color, especially for measuring global ocean chlorophyll and for studying the fate of global primary productivity in the sea. Results of the group's deliberations are presented. The scientific requirements are given for ocean color data from a CZCS follow on sensor in order to address global primary productivity, fishery, and carbon storage problems. Some specific experiments, called the marine resource experiment and designed to determine critical nutrient fluxes, photosynthetic rates, and primary productivity and biomass, are outlined.
Navy composite maintenance and repair experience
NASA Technical Reports Server (NTRS)
Donnellan, T. M.; Cochran, R. C.; Rosenzweig, E. L.; Trabocco, R. E.
1992-01-01
The Navy has been a strong proponent of composites for aircraft structure. Fleet use of composites started with the F-14 in the early 1970's and has steadily increased. This experience base provides sufficient information to allow an evaluation of the maintenance performance of polymer composites in service. A summary is presented of the Navy's experience with maintenance of composite structure. The general types of damage experienced in the fleet as well as specific examples of composite damage to aircraft is described. The impact of future designs on supportability is also discussed.
Experience report: Using formal methods for requirements analysis of critical spacecraft software
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.; Ampo, Yoko
1994-01-01
Formal specification and analysis of requirements continues to gain support as a method for producing more reliable software. However, the introduction of formal methods to a large software project is difficult, due in part to the unfamiliarity of the specification languages and the lack of graphics. This paper reports results of an investigation into the effectiveness of formal methods as an aid to the requirements analysis of critical, system-level fault-protection software on a spacecraft currently under development. Our experience indicates that formal specification and analysis can enhance the accuracy of the requirements and add assurance prior to design development in this domain. The work described here is part of a larger, NASA-funded research project whose purpose is to use formal-methods techniques to improve the quality of software in space applications. The demonstration project described here is part of the effort to evaluate experimentally the effectiveness of supplementing traditional engineering approaches to requirements specification with the more rigorous specification and analysis available with formal methods.
Global engineering education programs: More than just international experiences
NASA Astrophysics Data System (ADS)
McNeill, Nathan J.
Engineers in both industry and academia recognize the global nature of the profession. This has lead to calls for engineering students to develop knowledge, skills, and attitudes necessary for success within a global profession. Many institutions are developing globally oriented programs specifically for their engineering students and are eager to know if these programs are helping their students to develop attributes that meet their program objectives, accreditation requirements, and the needs and desires of prospective employers. Administrators of such programs currently lack research data to support the learning objectives they are setting for their programs. This study documented the individual experiences and learning outcomes of students involved in three global education programs for engineering students. The first program provided a portfolio of experiences including foreign language instruction, one semester of study abroad, internships in the U.S. and abroad, and a two-semester global team design project. The second program was a one semester study abroad program in China, and the third was a global service project whose purpose was to design an irrigation system for two small farms in Rwanda. The research questions guiding this study were: 1. What specific knowledge, skills, and attitudes are students gaining from participation in their respective global engineering programs? 2. What kinds of experiences are resulting in these learning outcomes? Interviews were used to elicit the experiences and learning outcomes of participants in this study. Program administrators were also interviewed for their perspectives on the experiences and learning outcomes of participants for the purpose of triangulation. The study identified more than 50 outcomes that resulted from students' experiences in these three programs. The most prevalent outcomes across all three programs included knowledge of culture, openness to new experiences and other cultures, and communication skills.
Optimizing the User Experience: Identifying Opportunities to Improve Use of an Inpatient Portal.
Walker, Daniel M; Menser, Terri; Yen, Po-Yin; McAlearney, Ann Scheck
2018-01-01
Patient portals specifically designed for the inpatient setting have significant potential to improve patient care. However, little is known about how the users of this technology, the patients, may interact with the inpatient portals. As a result, hospitals have limited ability to design approaches that support patient use of the portal. This study aims to evaluate the user experience associated with an inpatient portal. We used a Think-Aloud protocol to study user interactions with a commercially available inpatient portal-MyChart Bedside (MCB). Study participants included 19 English-speaking adults over the age of 18 years. In one-on-one sessions, participants narrated their experience using the MCB application and completing eight specific tasks. Recordings were transcribed and coded into three dimensions of the user experience: physical, cognitive, and sociobehavioral. Our analysis of the physical experience highlighted the navigational errors and technical challenges associated with the use of MCB. We also found that issues associated with the cognitive experience included comprehension problems that spurred anxiety and uncertainty. Analysis of the sociobehavioral experience suggested that users have different learning styles and preferences for learning including self-guided, handouts, and in-person training. Inpatient portals may be an effective tool to improve the patient experience in the hospital. Moreover, making this technology available to inpatients may help to foster ongoing use of technology across the care continuum. However, deriving the benefits from the technology requires appropriate support. We identified multiple opportunities for hospital management to intervene. In particular, teaching patients to use the application by making a variety of instructional materials available could help to reduce several identified barriers to use. Additionally, hospitals should be prepared to manage patient anxiety and increased questioning arising from the availability of information in the inpatient portal application. Schattauer GmbH Stuttgart.
RIPOSTE: a framework for improving the design and analysis of laboratory-based research
Masca, Nicholas GD; Hensor, Elizabeth MA; Cornelius, Victoria R; Buffa, Francesca M; Marriott, Helen M; Eales, James M; Messenger, Michael P; Anderson, Amy E; Boot, Chris; Bunce, Catey; Goldin, Robert D; Harris, Jessica; Hinchliffe, Rod F; Junaid, Hiba; Kingston, Shaun; Martin-Ruiz, Carmen; Nelson, Christopher P; Peacock, Janet; Seed, Paul T; Shinkins, Bethany; Staples, Karl J; Toombs, Jamie; Wright, Adam KA; Teare, M Dawn
2015-01-01
Lack of reproducibility is an ongoing problem in some areas of the biomedical sciences. Poor experimental design and a failure to engage with experienced statisticians at key stages in the design and analysis of experiments are two factors that contribute to this problem. The RIPOSTE (Reducing IrreProducibility in labOratory STudiEs) framework has been developed to support early and regular discussions between scientists and statisticians in order to improve the design, conduct and analysis of laboratory studies and, therefore, to reduce irreproducibility. This framework is intended for use during the early stages of a research project, when specific questions or hypotheses are proposed. The essential points within the framework are explained and illustrated using three examples (a medical equipment test, a macrophage study and a gene expression study). Sound study design minimises the possibility of bias being introduced into experiments and leads to higher quality research with more reproducible results. DOI: http://dx.doi.org/10.7554/eLife.05519.001 PMID:25951517
Design of high entropy alloys based on the experience from commercial superalloys
NASA Astrophysics Data System (ADS)
Wang, Z.; Huang, Y.; Wang, J.; Liu, C. T.
2015-01-01
High entropy alloys (HEAs) have been drawing increasing attention recently and gratifying results have been obtained. However, the existing metallurgic rules of HEAs could not provide specific information of selecting candidate alloys for structural applications. Our brief survey reveals that many commercial superalloys have medium and even to high configurational entropies. The experience of commercial superalloys provides a clue for helping us in the development of HEAs for structural applications.
ERIC Educational Resources Information Center
Marrs Fuchsel, Catherine L.
2014-01-01
In 2011-2013, a qualitative exploratory study was conducted to examine the experiences of 36 immigrant Latina women who participated in a culturally specific 11-week curriculum--Sí Yo Puedo--in a psycho-educational group format. Using action research as a research design, four groups were conducted over a 2-year period at a community health clinic…
Woods, Andy T.; Spence, Charles
2015-01-01
We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365
Wang, Qian Janice; Woods, Andy T; Spence, Charles
2015-12-01
We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.
Bayard, David S.; Neely, Michael
2016-01-01
An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a nonparametric model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher Information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the nonparametric model. Specifically, the problem of identifying an individual from a nonparametric prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient’s behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (Multiple-Model Optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications. PMID:27909942
Bayard, David S; Neely, Michael
2017-04-01
An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a NP model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the NP model. Specifically, the problem of identifying an individual from a NP prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient's behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (multiple-model optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications.
Principles for computational design of binding antibodies
Pszolla, M. Gabriele; Lapidoth, Gideon D.; Norn, Christoffer; Dym, Orly; Unger, Tamar; Albeck, Shira; Tyka, Michael D.; Fleishman, Sarel J.
2017-01-01
Natural proteins must both fold into a stable conformation and exert their molecular function. To date, computational design has successfully produced stable and atomically accurate proteins by using so-called “ideal” folds rich in regular secondary structures and almost devoid of loops and destabilizing elements, such as cavities. Molecular function, such as binding and catalysis, however, often demands nonideal features, including large and irregular loops and buried polar interaction networks, which have remained challenging for fold design. Through five design/experiment cycles, we learned principles for designing stable and functional antibody variable fragments (Fvs). Specifically, we (i) used sequence-design constraints derived from antibody multiple-sequence alignments, and (ii) during backbone design, maintained stabilizing interactions observed in natural antibodies between the framework and loops of complementarity-determining regions (CDRs) 1 and 2. Designed Fvs bound their ligands with midnanomolar affinities and were as stable as natural antibodies, despite having >30 mutations from mammalian antibody germlines. Furthermore, crystallographic analysis demonstrated atomic accuracy throughout the framework and in four of six CDRs in one design and atomic accuracy in the entire Fv in another. The principles we learned are general, and can be implemented to design other nonideal folds, generating stable, specific, and precise antibodies and enzymes. PMID:28973872
Intraindividual differences in executive functions during childhood: the role of emotions.
Pnevmatikos, Dimitris; Trikkaliotis, Ioannis
2013-06-01
Intraindividual differences in executive functions (EFs) have been rarely investigated. In this study, we addressed the question of whether the emotional fluctuations that schoolchildren experience in their classroom settings could generate substantial intraindividual differences in their EFs and, more specifically, in the fundamental unifying component of EFs, their inhibition function. We designed an experimental research with ecological validity within the school setting where schoolchildren of three age groups (8-, 10-, and 12-year-olds) were involved. We executed three experiments. In Experiment 1, using a between-participants design, we isolated a classroom episode that, compared with the other episodes, generated significant differences in inhibitory function in a consequent Go/NoGo task. This was an episode that induced frustration after the experience of anxiety due to the uncertainty. Experiment 2, using a within-participants design, confirmed both the induced emotions from the episode and the intraindividual variability in schoolchildren's inhibition accuracy in the consequent Go/NoGo task. Experiment 3, again using a within-participants design, examined whether the same episode could generate intraindividual differences in a more demanding inhibition task, namely the anti-saccade task. The experiment confirmed the previous evidence; the episode generated high variability that in some age groups accounted for more than 1.5 standard deviations from the interindividual variability between the schoolchildren of the same age. Results showed that, regardless of their sex and the developmental progression in their inhibition with age, the variability induced within participants from the experienced frustration was very high compared with the interindividual variability of the same age group. Copyright © 2013 Elsevier Inc. All rights reserved.
Understanding Our Environment: Life.
ERIC Educational Resources Information Center
Arndt, Laura M. Sanders
This unit is part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience. Students begin by researching the migratory songbirds that live in their community. They determine the bird's roles in the ecosystems and their…
An Examination of Selective Achievement in Gifted Males
ERIC Educational Resources Information Center
Hebert, Thomas P.; Schreiber, Catherine A.
2010-01-01
Selective achievers are intrinsically motivated individuals whose performance matches ability only in specific areas that satisfy their interests and personal goal orientations. Through a qualitative research design, this study investigated the phenomenon of selective achievement by examining the experiences of 2 gifted university males. The…
Care, Communication, Learner Support: Designing Meaningful Online Collaborative Learning
ERIC Educational Resources Information Center
Robinson, Heather A.; Kilgore, Whitney; Warren, Scott J.
2017-01-01
The purpose of this study was to identify emergent themes regarding higher education instructors' perceptions concerning the provision of collaborative learning activities and opportunities in their online classroom. Through semi-structured interviews, instructors described their teaching experiences and reported specifically about the online…
Cushner-Weinstein, Sandra; Berl, Madison; Salpekar, Jay A; Johnson, Jami L; Pearl, Phillip L; Conry, Joan A; Kolodgie, Marian; Scully, Audrey; Gaillard, William D; Weinstein, Steven L
2007-02-01
Children with epilepsy attending a condition-specific overnight camp were evaluated for behavioral changes over 3 consecutive years, using a modification of the Vineland Adaptive Behavioral Scale. Trained counselors completed pre- and postcamp assessments for each camper. Repeated-measures MANOVA was used to analyze effects of the camp experience for each year, with respect to gender and age. Repeated-measures ANOVA was conducted to evaluate long-term effects from year-to-year comparisons for return campers, following three successive camp experiences. A significant change in social interaction was observed over 3 years. Despite some decline at the start of camp in consecutive years, the overall trend for return campers suggests a positive cumulative impact of continued camp participation, with improvements in the domains of social interaction, responsibility, and communication. A condition-specific camp designed for children with epilepsy can improve adaptive behaviors and social interactions. Overall net gains appear to increase over time, suggesting additional benefits for return campers.
Fluid flow and heat convection studies for actively cooled airframes
NASA Technical Reports Server (NTRS)
Mills, A. F.
1993-01-01
This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were contacted to verify that equipment could be obtained to meet our specifications. Much of the equipment required to complete the construction of the experiment has been ordered or received. The material status list is shown in Appendix B.
A Medical Outreach Elective Course
Storer, Amanda; Caldwell, David; Smith, Jennifer
2013-01-01
Objective. To design and implement a Medical Outreach Experience elective course and assess its impact on students’ level of confidence in organizing future medical outreach trips, providing population-specific pharmaceutical care, and achieving learning outcomes. Design. A 2-credit hour elective course was designed for second- and third-year pharmacy students. The course was structured to include 3 sections over 1 semester, a 10-week training and preparation phase, followed by a weeklong international outreach experience and post-outreach reflection. Assessment. Student achievement of curricular outcomes was measured using in-class activities, readings, reflections, and longitudinal projects, as well as performance during the outreach trip. Results from pre- and post-course surveys demonstrated significant improvement in student-rated confidence in several components of outreach trip organization and provision of pharmaceutical care. Conclusions. Students completing the course exhibited increased confidence in their abilities to organize and practice on a medical outreach trip. All students met the learning outcomes of the course, which included providing comprehensive patient-specific pharmaceutical care, communicating effectively, promoting health improvement and self-care, thinking critically, and appropriately managing and using resources of the healthcare system. Students agreed that the elective course was a valuable addition to the curriculum. PMID:23716746
Handling qualities criteria for the space shuttle orbiter during the terminal phase of flight
NASA Technical Reports Server (NTRS)
Stapleford, R. L.; Klein, R. H.; Hob, R. H.
1972-01-01
It was found that large portions of the military handling qualities specification are directly applicable. However a number of additional and substitute criteria are recommended for areas not covered or inadequately covered in the military specification. Supporting pilot/vehicle analyses and simulation experiments were conducted and are described. Results are also presented of analytical and simulator evaluations of three specific interim Orbiter designs which provided a test of the proposed handling qualities criteria. The correlations between the analytical and experimental evaluations were generally excellent.
NASA Technical Reports Server (NTRS)
Jeun, B. H.; Barger, G. L.
1977-01-01
A data base of synoptic meteorological information was compiled for the People's Republic of China, as an integral part of the Large Area Crop Inventory Experiment. A system description is provided, including hardware and software specifications, computation algorithms and an evaluation of output validity. Operations are also outlined, with emphasis placed on least squares interpolation.
NASA Technical Reports Server (NTRS)
Clancey, William J.; Lowry, Michael R.; Nado, Robert Allen; Sierhuis, Maarten
2011-01-01
We analyzed a series of ten systematically developed surface exploration systems that integrated a variety of hardware and software components. Design, development, and testing data suggest that incremental buildup of an exploration system for long-duration capabilities is facilitated by an open architecture with appropriate-level APIs, specifically designed to facilitate integration of new components. This improves software productivity by reducing changes required for reconfiguring an existing system.
Research in Natural Laminar Flow and Laminar-Flow Control, part 3
NASA Technical Reports Server (NTRS)
Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)
1987-01-01
Part 3 of the Symposium proceedings contains papers addressing advanced airfoil development, flight research experiments, and supersonic transition/laminar flow control research. Specific topics include the design and testing of natural laminar flow (NLF) airfoils, NLF wing gloves, and NLF nacelles; laminar boundary-layer stability over fuselage forebodies; the design of low noise supersonic/hypersonic wind tunnels; and boundary layer instability mechanisms on swept leading edges at supersonic speeds.
How Simulator Interfaces Affect Transfer of Training: Comparing Wearable and Desktop Systems
2012-06-01
Taylor et al., 2009). The GEM is a questionnaire designed to measure the participant’s experience with and knowledge of video games separately...based on the percentage of correct responses, with higher values indicating greater knowledge. GamePAB is a measure of the participant’s video game skill...designed specifically for military training, and is similar to many popular first-person shooter video games (e.g., Modern Warfare, Half Life, Virtual
The Specification of an Integrated Computer-Aided Ship Design Process in an Academic Environment.
1984-06-01
complicated. The intuition .-nd ex:perience of a good designer are qualities that cannot yet ;e programmed into even the most capable computer. Comitters...between themselves. These application routines, while very capable in their own right, lack the qualities which would make them more usable in the...academic environment. These qualities include thorough documentation, both substantive derivations and descriptive user’s guides, user friendliness and
Design preferences and cognitive styles: experimentation by automated website synthesis.
Leung, Siu-Wai; Lee, John; Johnson, Chris; Robertson, David
2012-06-29
This article aims to demonstrate computational synthesis of Web-based experiments in undertaking experimentation on relationships among the participants' design preference, rationale, and cognitive test performance. The exemplified experiments were computationally synthesised, including the websites as materials, experiment protocols as methods, and cognitive tests as protocol modules. This work also exemplifies the use of a website synthesiser as an essential instrument enabling the participants to explore different possible designs, which were generated on the fly, before selection of preferred designs. The participants were given interactive tree and table generators so that they could explore some different ways of presenting causality information in tables and trees as the visualisation formats. The participants gave their preference ratings for the available designs, as well as their rationale (criteria) for their design decisions. The participants were also asked to take four cognitive tests, which focus on the aspects of visualisation and analogy-making. The relationships among preference ratings, rationale, and the results of cognitive tests were analysed by conservative non-parametric statistics including Wilcoxon test, Krustal-Wallis test, and Kendall correlation. In the test, 41 of the total 64 participants preferred graphical (tree-form) to tabular presentation. Despite the popular preference for graphical presentation, the given tabular presentation was generally rated to be easier than graphical presentation to interpret, especially by those who were scored lower in the visualization and analogy-making tests. This piece of evidence helps generate a hypothesis that design preferences are related to specific cognitive abilities. Without the use of computational synthesis, the experiment setup and scientific results would be impractical to obtain.
1993-04-01
wave buoy provided by SEATEX, Norway (Figure 3). The modified Mills-cross array was designed to provide spatial estimates of the variation in wave, wind... designed for SWADE to examine the wave physics at different spatial and temporal scales, and the usefulness of a nested system. Each grid is supposed to...field specification. SWADE Model This high-resolution grid was designed to simulate the small scale wave physics and to improve and verify the source
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2002-01-01
The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.
Goals and Status of the NASA Juncture Flow Experiment
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Morrison, Joseph H.
2016-01-01
The NASA Juncture Flow experiment is a new effort whose focus is attaining validation data in the juncture region of a wing-body configuration. The experiment is designed specifically for the purpose of CFD validation. Current turbulence models routinely employed by Reynolds-averaged Navier-Stokes CFD are inconsistent in their prediction of corner flow separation in aircraft juncture regions, so experimental data in the near-wall region of such a configuration will be useful both for assessment as well as for turbulence model improvement. This paper summarizes the Juncture Flow effort to date, including preliminary risk-reduction experiments already conducted and planned future experiments. The requirements and challenges associated with conducting a quality validation test are discussed.
Prospecting of popcorn hybrids for resistance to fall armyworm.
Crubelati-Mulati, N C S; Scapim, C A; Albuquerque, F A; Amaral Junior, A T; Vivas, M; Rodovalho, M A
2014-08-26
The fall armyworm, Spodoptera frugiperda, is the pest that causes the greatest economic losses for both common corn and popcorn crops, and the use of resistant plant genotypes is an important tool for integrated pest management. The goal of the present study was to evaluate the damage caused by S. frugiperda on single-cross popcorn hybrids under field conditions with natural infestation as well as to study the effect of 11 popcorn hybrids on the S. frugiperda life cycle under laboratory conditions. A completely randomized block design with 4 replicates was used for the field experiment, and a completely randomized design with 10 replicates was used for the laboratory experiment. In the field experiment, the damage caused by fall armyworm, grain yield, and popping expansion were quantified, and a diallel analysis was performed to select the best hybrids. For the laboratory experiment, caterpillars were obtained from laboratory cultures kept on an artificial diet and were fed with leaves from the 11 hybrids. Hybrids P7.0 x P9.4, P7.1 x P9.6, P7.2.0 x P9.3, P7.4.0 x P9.1 and P7.4.1 x P9.4 exhibited negative specific combining ability for injury by fall armyworm and positive specific combining ability for yield and popping expansion. In the laboratory experiment, the hybrids influenced the mean larval stage duration, mean larval mass, final larval mass, pupal stage duration, mean pupal mass, and adult longevity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindblad, Andreas; Söderström, Johan; Nicolas, Christophe
2013-11-15
This paper describes the philosophy and design goals regarding the construction of a versatile sample environment: a source capable of producing beams of atoms, molecules, clusters, and nanoparticles in view of studying their interaction with short wavelength (vacuum ultraviolet and x-ray) synchrotron radiation. In the design, specific care has been taken of (a) the use standard components, (b) ensuring modularity, i.e., that swiftly switching between different experimental configurations was possible. To demonstrate the efficiency of the design, proof-of-principle experiments have been conducted by recording x-ray absorption and photoelectron spectra from isolated nanoparticles (SiO{sub 2}) and free mixed clusters (Ar/Xe). Themore » results from those experiments are showcased and briefly discussed.« less
New designs of LMJ targets for early ignition experiments
NASA Astrophysics Data System (ADS)
C-Clérouin, C.; Bonnefille, M.; Dattolo, E.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Poggi, F.; Seytor, P.
2008-05-01
The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.
Trans people's experience of sexuality in the Netherlands: a pilot study.
Doorduin, Tamar; van Berlo, Willy
2014-01-01
This pilot study explores the specificity of 12 Dutch trans people's experience of sexuality in order to provide new hypotheses and perspectives for future research. Emerging themes include the interconnection of sexual development with coming out and transition processes, the way incongruence between gender identity, gendered embodiment, and social perception of gender affected participants' experience of sexuality, and changes in physical sexual functioning after hormone therapy and/or various types of surgery. Our research design allowed for subjective accounts of trans people's experience of sexuality and detailed descriptions of changes in sexuality that occurred over time and throughout the coming out and transitioning processes.
Bassett healthcare rural surgery experience.
Borgstrom, David C; Heneghan, Steven J
2009-12-01
The surgical training at Bassett is naturally broader than in many university settings, with a survey showing that nearly 70% of graduates who practice general surgery remain in a rurally designated area. Rural surgery experience falls into 3 categories: undergraduate, graduate, and postgraduate. The general surgery training program has no competing fellowships or subspecialty residencies; residents get significant experience with endoscopy; ear, nose, and throat; plastic and hand surgery; and obstetrics and gynecology. The rural setting lifestyle is valued by the students, residents, and fellows alike. It provides an ideal setting for recognizing the specific nuances of small-town American life, with a high-quality education and surgical experience.
Contributions to workload of rotational optical transformations
NASA Technical Reports Server (NTRS)
Atkinson, R. P.; Harrington, T. L.
1985-01-01
An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments.
Quality requirements for reclaimed/recycled water
NASA Technical Reports Server (NTRS)
Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.
1987-01-01
Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.
Understanding Our Environment: People.
ERIC Educational Resources Information Center
Tweed, Ann
Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, students work individually and in groups to plan a future community in order to gain an understanding of how greatly increased human populations impact resources,…
Sex Differences in Science Learning: Closing the Gap through Animations
ERIC Educational Resources Information Center
Sanchez, Christopher A.; Wiley, Jennifer
2010-01-01
Males traditionally outperform females on measures of both visuospatial ability and science achievement. This experiment directly tests a manipulation designed to compensate for such differences through the presentation of relevant illustrations or animations to support the construction of understanding of a specific scientific phenomenon. Males…
Understanding Our Environment: Land.
ERIC Educational Resources Information Center
Callister, Jeffrey C.; Crampton, Janet Wert
Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit introduces students to the idea of natural resources and focuses on resources found on land: minerals such as hematite and gypsum; rocks such as granite…
Evaluation of the Use of Remote Laboratories for Secondary School Science Education
ERIC Educational Resources Information Center
Lowe, David; Newcombe, Peter; Stumpers, Ben
2013-01-01
Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However,…
Vitamin C: Rate of Decay and Stability Characteristics
ERIC Educational Resources Information Center
Kakis, Frederic J.; Rossi, Carl J.
1974-01-01
Describes an experiment designed to provide the opportunity for studying some of the parameters affecting the stability of Vitamin C in various environments, and to acquaint the student with an experimental procedure for studying simple reaction kinetics and the calculations of specific rate constants. (Author/JR)
DOT National Transportation Integrated Search
1969-10-01
Data from several recent experiments indicate that the otoliths (detectors of linear acceleration) may exert regulatory effects on responses of the semicircular canals (detectors of angular acceleration). This study was designed to explore further th...
Writing for Instructional Television.
ERIC Educational Resources Information Center
O'Bryan, Kenneth G.
Writing considerations specific to instructional television (ITV) situations are discussed in this handbook written for the beginner, but designed to be of use to anyone creating an ITV script. Advice included in the handbook is based on information obtained from ITV wirters, literature reviews, and the author's personal experience. The ITV…
Understanding Our Environment: Air.
ERIC Educational Resources Information Center
DiSpezio, Michael
Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit uses the contemporary dilemma of acid rain as a vehicle for teaching weather and the characteristics of air and atmosphere. The project involves a…
Understanding Our Environment: Planet.
ERIC Educational Resources Information Center
Callister, Jeffrey C.; And Others
Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit places Earth in the context of its environment-the Universe-then focuses on Earth as seen from satellites. Students analyze patterns formed by the…
ERIC Educational Resources Information Center
Green, Muriel; And Others
This document was developed to provide primary level school teachers in New York City with specific materials and suggestions for organizing effective learning experiences in the science area. The program is designed to emphasize both science knowledge and science processes. An introductory section presents ideas related to the overall philosophy…
Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James; Rodgers, John; Alley, Bethany
2013-05-15
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or ?footprint? of a full-size CWTS for a given inflow rate of produced water.« less
Innovative Water Management Technology to Reduce Environment Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James W.; Rodgers, John H.; Alley, Bethany
2013-08-08
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or footprint of a full-size CWTS for a given inflow rate of produced water.« less
Innovative Water Management Technology to Reduce Environment Impacts of Produced Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castle, James; Rodgers, John; Alley, Bethany
2013-05-15
Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobicmore » biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or footprint of a full-size CWTS for a given inflow rate of produced water.« less
ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs
2011-01-01
Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938
Design-of-experiments to Reduce Life-cycle Costs in Combat Aircraft Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan
2003-01-01
It is the purpose of this study to demonstrate the viability and economy of Design- of-Experiments (DOE), to arrive at micro-secondary flow control installation designs that achieve optimal inlet performance for different mission strategies. These statistical design concepts were used to investigate the properties of "low unit strength" micro-effector installation. "Low unit strength" micro-effectors are micro-vanes, set a very low angle-of incidence, with very long chord lengths. They are designed to influence the neat wall inlet flow over an extended streamwise distance. In this study, however, the long chord lengths were replicated by a series of short chord length effectors arranged in series over multiple bands of effectors. In order to properly evaluate the performance differences between the single band extended chord length installation designs and the segmented multiband short chord length designs, both sets of installations must be optimal. Critical to achieving optimal micro-secondary flow control installation designs is the understanding of the factor interactions that occur between the multiple bands of micro-scale vane effectors. These factor interactions are best understood and brought together in an optimal manner through a structured DOE process, or more specifically Response Surface Methods (RSM).
Design of a Synthetic Aperture Array to Support Experiments in Active Control of Scattering
1990-06-01
becomes necessary to validate the theory and test the control system algorithms . While experiments in open water would be most like the anticipated...mathematical development of the beamforming algorithms used as well as an estimate of their applicability to the specifics of beamforming in a reverberant...Chebyshev array have been proposed. The method used in ARRAY, a nested product algorithm , proposed by Bresler [21] is recommended by Pozar [19] and
Doxon, Andrew J; Johnson, David E; Tan, Hong Z; Provancher, William R
2013-01-01
Many of the devices used in haptics research are over-engineered for the task and are designed with capabilities that go far beyond human perception levels. Designing devices that more closely match the limits of human perception will make them smaller, less expensive, and more useful. However, many device-centric perception thresholds have yet to be evaluated. To this end, three experiments were conducted, using one degree-of-freedom contact location feedback device in combination with a kinesthetic display, to provide a more explicit set of specifications for similar tactile-kinesthetic haptic devices. The first of these experiments evaluated the ability of humans to repeatedly localize tactile cues across the fingerpad. Subjects could localize cues to within 1.3 mm and showed bias toward the center of the fingerpad. The second experiment evaluated the minimum perceptible difference of backlash at the tactile element. Subjects were able to discriminate device backlash in excess of 0.46 mm on low-curvature models and 0.93 mm on high-curvature models. The last experiment evaluated the minimum perceptible difference of system delay between user action and device reaction. Subjects were able to discriminate delays in excess of 61 ms. The results from these studies can serve as the maximum (i.e., most demanding) device specifications for most tactile-kinesthetic haptic systems.
An Experimental Determination of Losses in a 3-Port Wave Rotor
NASA Technical Reports Server (NTRS)
Wilson, Jack
1996-01-01
Wave rotors, used in a gas turbine topping cycle, offer a potential route to higher specific power and lower specific fuel consumption. In order to exploit this potential properly, it is necessary to have some realistic means of calculating wave rotor performance, taking losses into account, so that wave rotors can be designed for good performance. This in turn requires a knowledge of the loss mechanisms. The experiment reported here was designed as a statistical experiment to identify the losses due to finite passage opening time, friction, and leakage. For simplicity, the experiment used a 3-port, flow divider, wave cycle, but the results should be applicable to other cycles. A 12 inch diameter rotor was used, with two different lengths, 9 inches and 18 inches, and two different passage widths, 0.25 inch and 0.54 inch, in order to vary friction and opening time. To vary leakage, moveable end-walls were provided so that the rotor to end-wall gap could be adjusted. The experiment is described, and the results are presented, together with a parametric fit to the data. The fit shows that there will be an optimum passage width for a given wave rotor, since, as the passage width increases, friction losses decrease, but opening-time losses increase, and vice-versa. Leakage losses can be made small at reasonable gap sizes.
The relation between driving experience and recognition of road signs relative to their locations.
Borowsky, Avinoam; Shinar, David; Parmet, Yisrael
2008-04-01
Examine how driving experience and expectations affect the ability of experienced drivers to identify traffic signs--specifically, no right turn (NRT) and no left turn (NLT) at intersections. Failure to heed signs is a frequent cause of accidents, and the authors focused on the contributions of experience and expectancy to sign identification. Inexperienced and experienced drivers were connected to an eye tracker system and briefly exposed to various traffic scenes. Some of the pictures included an NRT sign at the expected location (on the right), and some included the same sign at an unexpected location (on the left). The same procedure was used with an NLT traffic sign. Experienced drivers identified traffic signs better than inexperienced drivers did when the signs were posted at the expected location but identified them worse than did inexperienced drivers when they were at unexpected locations. With experience, drivers' expectations regarding the expected location of traffic signs become so strong that violating these expectancies results in more identification errors among experienced drivers than among inexperienced drivers. To optimize experienced drivers' traffic sign identification, signs must be located in accordance with drivers' expectations--specifically, on the right side of the road. When signs are misplaced, crashes can be caused by inappropriate placement rather than inappropriate driving. Highway designers should ensure that their design conforms to standards that shape experienced drivers' expectations.
Planning and setting objectives in field studies: Chapter 2
Fisher, Robert N.; Dodd, C. Kenneth
2016-01-01
This chapter enumerates the steps required in designing and planning field studies on the ecology and conservation of reptiles, as these involve a high level of uncertainty and risk. To this end, the chapter differentiates between goals (descriptions of what one intends to accomplish) and objectives (the measurable steps required to achieve the established goals). Thus, meeting a specific goal may require many objectives. It may not be possible to define some of them until certain experiments have been conducted; often evaluations of sampling protocols are needed to increase certainty in the biological results. And if sampling locations are fixed and sampling events are repeated over time, then both study-specific covariates and sampling-specific covariates should exist. Additionally, other critical design considerations for field study include obtaining permits, as well as researching ethics and biosecurity issues.
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2011-06-01
This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.
Strategies for teaching object-oriented concepts with Java
NASA Astrophysics Data System (ADS)
Sicilia, Miguel-Ángel
2006-03-01
A considerable amount of experiences in teaching object-oriented concepts using the Java language have been reported to date, some of which describe language pitfalls and concrete learning difficulties. In this paper, a number of additional issues that have been experienced as difficult for students to master, along with approaches intended to overcome them, are addressed. Concretely, practical issues regarding associations, interfaces, genericity and exceptions are described. These issues suggest that more emphasis is required on presenting Java programs as derivations of conceptual models, in order to guarantee that a thorough design of the object structure actually precedes implementation issues. In addition, common student misunderstandings about the uses of interfaces and exceptions point to the necessity of introducing both specific design philosophies and also a clear distinction between design-for-reuse and more specific implementation issues.
Effects of electrons and protons on science instruments
NASA Technical Reports Server (NTRS)
Parker, R. H.
1972-01-01
The radiation effects on typical science instruments according to the Jupiter trapped radiation design restraint model are described, and specific aspects of the model where an improved understanding would be beneficial are suggested. The spacecraft design used is the TOPS 12L configuration. Ionization and displacement damage are considered, and damage criteria are placed on the most sensitive components. Possible protective measures are mentioned: selecting components as radiation resistant as possible, using a difference in desired and undesired signal shapes for electronic shielding, orienting and locating the component on the spacecraft for better shielding, and adding passive shields to protect specific components. Available options are listed in decreasing order of attractiveness: attempt to lower the design restraints without compromising the success of the missions, trade off experiment objectives for increased reliability, alter the trajectory, and remove sensitive instruments from the payload.
NASA Astrophysics Data System (ADS)
Wikswo, John; Kolli, Aditya; Shankaran, Harish; Wagoner, Matthew; Mettetal, Jerome; Reiserer, Ronald; Gerken, Gregory; Britt, Clayton; Schaffer, David
Genetic, proteomic, and metabolic networks describing biological signaling can have 102 to 103 nodes. Transcriptomics and mass spectrometry can quantify 104 different dynamical experimental variables recorded from in vitro experiments with a time resolution approaching 1 s. It is difficult to infer metabolic and signaling models from such massive data sets, and it is unlikely that causality can be determined simply from observed temporal correlations. There is a need to design and apply specific system perturbations, which will be difficult to perform manually with 10 to 102 externally controlled variables. Machine learning and optimal experimental design can select an experiment that best discriminates between multiple conflicting models, but a remaining problem is to control in real time multiple variables in the form of concentrations of growth factors, toxins, nutrients and other signaling molecules. With time-division multiplexing, a microfluidic MicroFormulator (μF) can create in real time complex mixtures of reagents in volumes suitable for biological experiments. Initial 96-channel μF implementations control the exposure profile of cells in a 96-well plate to different temporal profiles of drugs; future experiments will include challenge compounds. Funded in part by AstraZeneca, NIH/NCATS HHSN271201600009C and UH3TR000491, and VIIBRE.
The Colorado Student Space Weather Experiment : A CubeSat for Space Physics
NASA Astrophysics Data System (ADS)
Palo, Scott; Li, Xinlin; Gerhardt, David; Turner, Drew; Hoxie, V.; Kohnert, Rick; Batiste, Susan
Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A National Science Foundation supported 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental scientific questions relating to these high energy particles. Of key importance are the relation-ship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, operating in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and pro-tons in 10-40 MeV. The Colorado Student Space Weather Experiment cubesat will be designed, integrated and testing by students at the University of Colorado under the oversight of pro-fessional engineers with the Laboratory of Atmospheric and Space Physics who have extensive space hardware experience. Our design philosophy is to use commercially off the shelf (COTS) parts where available and only engage in detailed designed where COTS parts cannot meet the system needs. The top level science requirements for the mission have driven the system and subsystem level performance requirements and the specific design choices such as a passive magnetic attitude system and instrument design. In this paper we will present details of the CSSWE design and management approach. Specifically we will discuss the top level science requirements for the mission and show that these measurements are novel and will address open questions in the scientific community. The overall system architecture resulting from a flow-down of these requirements will be presented with a focus on the novel aspects of the system including the instrument design. Finally we will discuss how this project is organized and man-aged as part of the Department of Aerospace Engineering graduate projects course sequence along with the integration of professional engineers in the program. It is often underappreciated that the management of a student project, given the transient nature of the students in the program, is more challenging than many of the technical aspects. We will discuss our process to managing this project risk along with our pedagological philosophy for student learning and its relationship to a small satellite program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jernigan, Dann A.; Blanchat, Thomas K.
It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisonmore » between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.« less
Olimpieri, Pier Paolo; Chailyan, Anna; Tramontano, Anna; Marcatili, Paolo
2013-09-15
Antibodies or immunoglobulins are proteins of paramount importance in the immune system. They are extremely relevant as diagnostic, biotechnological and therapeutic tools. Their modular structure makes it easy to re-engineer them for specific purposes. Short of undergoing a trial and error process, these experiments, as well as others, need to rely on an understanding of the specific determinants of the antibody binding mode. In this article, we present a method to identify, on the basis of the antibody sequence alone, which residues of an antibody directly interact with its cognate antigen. The method, based on the random forest automatic learning techniques, reaches a recall and specificity as high as 80% and is implemented as a free and easy-to-use server, named prediction of Antibody Contacts. We believe that it can be of great help in re-design experiments as well as a guide for molecular docking experiments. The results that we obtained also allowed us to dissect which features of the antibody sequence contribute most to the involvement of specific residues in binding to the antigen. http://www.biocomputing.it/proABC. anna.tramontano@uniroma1.it or paolo.marcatili@gmail.com Supplementary data are available at Bioinformatics online.
Physician communication coaching effects on patient experience.
Seiler, Adrianne; Knee, Alexander; Shaaban, Reham; Bryson, Christine; Paadam, Jasmine; Harvey, Rohini; Igarashi, Satoko; LaChance, Christopher; Benjamin, Evan; Lagu, Tara
2017-01-01
Excellent communication is a necessary component of high-quality health care. We aimed to determine whether a training module could improve patients' perceptions of physician communication behaviors, as measured by change over time in domains of patient experience scores related to physician communication. We designed a comprehensive physician-training module focused on improving specific "etiquette-based" physician communication skills through standardized simulations and physician coaching with structured feedback. We employed a quasi-experimental pre-post design, with an intervention group consisting of internal medicine hospitalists and residents and a control group consisting of surgeons. The outcome was percent "always" scores for questions related to patients' perceptions of physician communication using the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey and a Non-HCAHPS Physician-Specific Patient Experience Survey (NHPPES) administered to patients cared for by hospitalists. A total of 128 physicians participated in the simulation. Responses from 5020 patients were analyzed using HCAHPS survey data and 1990 patients using NHPPES survey data. The intercept shift, or the degree of change from pre-intervention percent "always" responses, for the HCAHPS questions of doctors "treating patients with courtesy" "explaining things in a way patients could understand," and "overall teamwork" showed no significant differences between surgical control and hospitalist intervention patients. Adjusted NHPPES percent excellent survey results increased significantly post-intervention for the questions of specified individual doctors "keeping patient informed" (adjusted intercept shift 9.9% P = 0.019), "overall teamwork" (adjusted intercept shift 11%, P = 0.037), and "using words the patient could understand" (adjusted intercept shift 14.8%, p = 0.001). A simulation based physician communication coaching method focused on specific "etiquette-based" communication behaviors through a deliberate practice framework was not associated with significantly improved HCAHPS physician communication patient experience scores. Further research could reveal ways that this model affects patients' perceptions of physician communication relating to specific physicians or behaviors.
Mechanistic analysis of challenge-response experiments.
Shotwell, M S; Drake, K J; Sidorov, V Y; Wikswo, J P
2013-09-01
We present an application of mechanistic modeling and nonlinear longitudinal regression in the context of biomedical response-to-challenge experiments, a field where these methods are underutilized. In this type of experiment, a system is studied by imposing an experimental challenge, and then observing its response. The combination of mechanistic modeling and nonlinear longitudinal regression has brought new insight, and revealed an unexpected opportunity for optimal design. Specifically, the mechanistic aspect of our approach enables the optimal design of experimental challenge characteristics (e.g., intensity, duration). This article lays some groundwork for this approach. We consider a series of experiments wherein an isolated rabbit heart is challenged with intermittent anoxia. The heart responds to the challenge onset, and recovers when the challenge ends. The mean response is modeled by a system of differential equations that describe a candidate mechanism for cardiac response to anoxia challenge. The cardiac system behaves more variably when challenged than when at rest. Hence, observations arising from this experiment exhibit complex heteroscedasticity and sharp changes in central tendency. We present evidence that an asymptotic statistical inference strategy may fail to adequately account for statistical uncertainty. Two alternative methods are critiqued qualitatively (i.e., for utility in the current context), and quantitatively using an innovative Monte-Carlo method. We conclude with a discussion of the exciting opportunities in optimal design of response-to-challenge experiments. © 2013, The International Biometric Society.
Moorthy, Arun S; Eberl, Hermann J
2014-04-01
Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.
1977-01-01
The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.
Application of finite element method in mechanical design of automotive parts
NASA Astrophysics Data System (ADS)
Gu, Suohai
2017-09-01
As an effective numerical analysis method, finite element method (FEM) has been widely used in mechanical design and other fields. In this paper, the development of FEM is introduced firstly, then the specific steps of FEM applications are illustrated and the difficulties of FEM are summarized in detail. Finally, applications of FEM in automobile components such as automobile wheel, steel plate spring, body frame, shaft parts and so on are summarized, compared with related research experiments.
Experimental demonstration of the control of flexible structures
NASA Technical Reports Server (NTRS)
Schaechter, D. B.; Eldred, D. B.
1984-01-01
The Large Space Structure Technology Flexible Beam Experiment employs a pinned-free flexible beam to demonstrate such required methods as dynamic and adaptive control, as well as various control law design approaches and hardware requirements. An attempt is made to define the mechanization difficulties that may inhere in flexible structures. Attention is presently given to analytical work performed in support of the test facility's development, the final design's specifications, the control laws' synthesis, and experimental results obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noe, F; Diadone, Isabella; Lollmann, Marc
There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is dynamical fingerprints which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observedmore » relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.« less
Understanding Game-Based Learning Cultures: Introduction to Special Issue
ERIC Educational Resources Information Center
Engerman, Jason A.; Carr-Chellman, Alison
2017-01-01
This special issue expands our understanding of teaching and learning through video game play, with specific attention to culture. The issue gives insight into the ways educators, researchers, and developers should be discussing and designing for impactful learner-centered game-based learning experiences. The issue features forward-thinking…
Korean Elementary School Students' Perceptions of Relationship with Marine Organisms
ERIC Educational Resources Information Center
Kim, Jong-Mun; Anderson, David; Scott, Sandra
2013-01-01
This exploratory study examined the perceptions of, and relationship with, marine organisms of 81 urban sixth grade Korean students using a specifically designed survey questionnaire. The study outcomes revealed that these Korean students have limited experience with and different levels of connectedness to marine organisms. Viewed through…
"Bearing Down" on Student Non-Completion: Implications and Consequences for English Higher Education
ERIC Educational Resources Information Center
Longden, Bernard
2013-01-01
This article traces recent policy developments relating to full-time undergraduate student retention within the English higher education system. It focuses specifically on the changing government policies and strategies designed to influence institutional behavior to promote widening participation while attending to the student experience and…
A Network of Automatic Control Web-Based Laboratories
ERIC Educational Resources Information Center
Vargas, Hector; Sanchez Moreno, J.; Jara, Carlos A.; Candelas, F. A.; Torres, Fernando; Dormido, Sebastian
2011-01-01
This article presents an innovative project in the context of remote experimentation applied to control engineering education. Specifically, the authors describe their experience regarding the analysis, design, development, and exploitation of web-based technologies within the scope of automatic control. This work is part of an inter-university…
The Real/Ideal Research Project: Fostering Students' Emotional Literacy
ERIC Educational Resources Information Center
Martorana, Christine
2016-01-01
The Real/Ideal Research Project is comprised of three components, ordered in purposeful succession, designed to emphasize the interconnectedness of emotion, reason, and action. In the first component, students compose a personal narrative focused on a specific inequity they (have) experience(d) or witnessed. Here, students are encouraged to…
Ritalin For School Children: The Teachers' Perspective
ERIC Educational Resources Information Center
Robin, Stanley S.; Bosco, James J.
1973-01-01
The authors report on a study designed to assess teachers' attitudes toward the use of Ritalin in the treatment of hyperkinesis in school children. Overall, the attitudes of teachers are cautiously favorable. Although teachers commonly have experience with a pupil using Ritalin, specific and accurate information about the drug is uncommon. (RP)
"It's like Being in a Zoo." Researching with People with Intellectual Disability
ERIC Educational Resources Information Center
Dowse, Leanne
2009-01-01
This paper introduces key debates in the contemporary practice of disability research and examines how these apply to conceptualising, designing and conducting research with people with intellectual disability. Specifically, it describes a collaborative action-oriented reflexive approach to researching the lived experience of people with…
Homelessness in the Elementary School Classroom: Social and Emotional Consequences
ERIC Educational Resources Information Center
Chow, Kirby A.; Mistry, Rashmita S.; Melchor, Vanessa L.
2015-01-01
This study examined elementary school teachers' experiences working with homeless students. Specifically, we focused on the psychosocial impacts of homelessness on students and their teachers. Qualitative, semi-structured interviews were conducted with 28 teachers who worked at designated public schools for family homeless shelters. A prominent…
ERIC Educational Resources Information Center
Harris, Carolyn DeMeyer, Ed.; McKinney, David D., Ed.
This instructional kit outlines procedures for implementing Project PARTnership, a program for teaching students with disabilities greater self-determination skills through specifically designed arts experiences. An introductory section describes key project activities, including establishing a site steering committee comprised of teachers,…
Preaching What We Practice: Experiences from Implementing ISO 14001 at the University of Glamorgan
ERIC Educational Resources Information Center
Price, Trevor J.
2005-01-01
Purpose--To provide an overview of how environmental management systems (EMSs) are becoming sporadically employed within higher educational institutions. Design/methodology/approach--An overview of international developments in sustainable education and within UK universities. Focuses specifically on the University of Glamorgan, Wales.…
ERIC Educational Resources Information Center
Chizmar, John F.; Williams, David B.
2001-01-01
Uses classroom experience and data from a faculty survey to explore what faculty want from instructional technology. Presents several assertions, such as "faculty want instructional technology driven by pedagogical goals" and "faculty desire Web-based tools designed for a specific pedagogical task as opposed to a Swiss-Army-knife Web tool designed…
Leadership Development: An Examination of Individual and Programmatic Growth
ERIC Educational Resources Information Center
Conner, Jerusha Osberg; Strobel, Karen
2007-01-01
This study focuses on two girls' experiences in one youth leadership organization during a period of 3 years. Relying on an embedded case study design, the authors examine the links between leadership development and programmatic structures and supports. Specifically, the development of leadership capacities are analyzed along three dimensions:…
Exploring Quadrilaterals in a Small Group Computing Environment
ERIC Educational Resources Information Center
Lai, Kevin; White, Tobin
2012-01-01
Though cooperative learning has been a topic of considerable interest in educational research, there has been little study specific to learning in the mathematics content area of geometry. This paper seeks to address that gap through a design experiment featuring a novel small-group computing environment for supporting student learning about…
On Learning Geometry for Teaching
ERIC Educational Resources Information Center
Kuchemann, Dietmar; Rodd, Melissa
2012-01-01
The title is that of a course with the same name, designed for teachers of mathematics. The rational for a course specifically on geometry was that "many of those currently teaching mathematics in school had little geometrical education". Teachers on the course experience geometry through problem solving, and learning to pose geometrical problems.…
78 FR 59978 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... developing a survey with content specifically designed to address the experiences unique to ERC personnel... inside these centers and how it impacts faculty, students and their success. This information will enable... environments for all. This diversity climate survey will enable us to evaluate how close we are to that goal...
Managing & Re-Using Didactical Expertise: The Didactical Object Model
ERIC Educational Resources Information Center
Pawlowski, Jan M.; Bick, Markus
2006-01-01
The DIN Didactical Object Model extends the approaches of existing Educational Modeling Languages introducing specifications for contexts and experiences. In this paper, we show how the Didactical Object Model can be used for sharing didactical expertise. Educational Modeling Languages change the design paradigm from content orientation towards…
How to Engage Medical Students in Chronobiology: An Example on Autorhythmometry
ERIC Educational Resources Information Center
Rol de Lama, M. A.; Lozano, J. P.; Ortiz, V.; Sanchez-Vazquez, F. J.; Madrid, J. A.
2005-01-01
This contribution describes a new laboratory experience that improves medical students' learning of chronobiology by introducing them to basic chronobiology concepts as well as to methods and statistical analysis tools specific for circadian rhythms. We designed an autorhythmometry laboratory session where students simultaneously played the role…
Preference Assessment Training via Self-Instruction: A Replication and Extension
ERIC Educational Resources Information Center
Shapiro, Marnie; Kazemi, Ellie; Pogosjana, Meline; Rios, Denice; Mendoza, Melissa
2016-01-01
We examined the effects of a self-instructional and feedback package on participants' implementation of a paired-stimulus preference assessment. Specifically, in Experiment 1, we used a multiple baseline design across participants to replicate and extend the results of Graff and Karsten (2012) by evaluating the effectiveness of their…
The Challenge Course Experience Questionnaire: A Facilitator's Assessment Tool
ERIC Educational Resources Information Center
Schary, David P.; Waldron, Alexis L.
2017-01-01
Challenge course programs influence a variety of psychological, social, and educational outcomes. Yet, many challenges exist when measuring challenge course outcomes like logistical constraints and a lack of specific assessment tools. This study piloted and tested an assessment tool designed for facilitators to measure participant outcomes in…
Intercultural Simulation Games: A Review (of the United States and beyond)
ERIC Educational Resources Information Center
Fowler, Sandra M.; Pusch, Margaret D.
2010-01-01
Intercultural simulations are instructional activities that engage and challenge participants with experiences integral to encounters between people of more than one cultural group. Simulations designed specifically to support intercultural encounters have been in use since the 1970s. This article examines the conceptual bases for intercultural…
Statistical Measures of Integrity in Online Testing: Empirical Study
ERIC Educational Resources Information Center
Wielicki, Tom
2016-01-01
This paper reports on longitudinal study regarding integrity of testing in an online format as used by e-learning platforms. Specifically, this study explains whether online testing, which implies an open book format is compromising integrity of assessment by encouraging cheating among students. Statistical experiment designed for this study…
Feature Inference and the Causal Structure of Categories
ERIC Educational Resources Information Center
Rehder, B.; Burnett, R.C.
2005-01-01
The purpose of this article was to establish how theoretical category knowledge-specifically, knowledge of the causal relations that link the features of categories-supports the ability to infer the presence of unobserved features. Our experiments were designed to test proposals that causal knowledge is represented psychologically as Bayesian…
A Framework for the Instructional Design of Multi-Structured Educational Applications.
ERIC Educational Resources Information Center
Buendia, F.; Diaz, P.; Benlloch, J. V.
An instructional application consists of a set of resources and activities that implement interacting, interrelated and structured experiences oriented towards achieving specific educational objectives. Computer-based instructional applications have to be looked at as any other development activity following a well defined process. With this…
ERIC Educational Resources Information Center
Berleman, William C.
Ten delinquency prevention studies are reviewed that incorporated rigorous evaluative procedures (specifically the classic experimental design) for assessing programmatic outcomes. Following an introduction, the evaluation mechanisms built into each project are described, since they were used for determination of the effectiveness of the…
Empirical Validation and Application of the Computing Attitudes Survey
ERIC Educational Resources Information Center
Dorn, Brian; Elliott Tew, Allison
2015-01-01
Student attitudes play an important role in shaping learning experiences. However, few validated instruments exist for measuring student attitude development in a discipline-specific way. In this paper, we present the design, development, and validation of the computing attitudes survey (CAS). The CAS is an extension of the Colorado Learning…
Preparing Principals for Social Justice Leadership
ERIC Educational Resources Information Center
Baker-Martinez, Darcy
2012-01-01
The purpose of this study is to examine the experiences of social justice leaders to uncover specific leadership competencies that may inform current principal preparation programs. This study employed a qualitative multiple case study design. The three participants all shared many common strategies on how they manage the multiple forms of…
Processes in construction of failure management expert systems from device design information
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Lance, Nick
1987-01-01
This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.
A mechanical rotator for neutron scattering measurements
Thaler, A.; Northen, E.; Aczel, A. A.; ...
2016-12-01
We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses andmore » future extension possibilities.« less
Harvard ER-2 OH laser-induced fluorescence instrument
NASA Technical Reports Server (NTRS)
Wennberg, Paul O.; Anderson, James G.
1994-01-01
The Harvard ER-2 OH instrument is scheduled to be integrated into the NASA ER-2 high altitude aircraft ozone payload in August 1992. Design and fabrication is presently underway. This experiment is a descendant of a balloon borne instrument designed and built in the mid-1980s. The ER-2 instrument is being designed to measure OH and HO2 as part of the NASA ozone payload for the investigation of processes controlling the concentration of stratospheric ozone. Although not specifically designed to do so, it is hoped that valid measurements of OH and HO2 can be made in the remote free troposphere with this instrument.
Organism support for life sciences spacelab experiments
NASA Technical Reports Server (NTRS)
Drake, G. L.; Heppner, D. B.
1976-01-01
This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.
Annemans, Margo; Audenhove, Chantal Van; Vermolen, Hilde; Heylighen, Ann
2016-04-01
In this article, we explore what a different way of moving-being wheeled versus walking-means for the spatial experience of day surgery patients. Day surgery centers can be conceived in very different manners. Some are organized similar to traditional hospital admittance; others are located in a specifically designed part of the hospital and receive patients as guests who walk through the entire procedure. We conducted semistructured interviews with 37 patients at two distinct day surgery centers. Despite the different managerial concepts and corresponding spatial designs, in both centers, patients' spatial experience is shaped by the interrelation of material, social, and time-related aspects. However, the chosen concept results in a different experience throughout patients' journey. Based on an analysis of the different journeys, we conclude that patients' interpretation of a hospital's care vision is influenced not only by what the hospital communicates explicitly or how it educates its staff but also by what is implicitly told by the built environment. © The Author(s) 2016.
Bor, Jacob; Geldsetzer, Pascal; Venkataramani, Atheendar; Bärnighausen, Till
2015-01-01
Purpose of review Randomized, population-representative trials of clinical interventions are rare. Quasi-experiments have been used successfully to generate causal evidence on the cascade of HIV care in a broad range of real-world settings. Recent findings Quasi-experiments exploit exogenous, or quasi-random, variation occurring naturally in the world or because of an administrative rule or policy change to estimate causal effects. Well designed quasi-experiments have greater internal validity than typical observational research designs. At the same time, quasi-experiments may also have potential for greater external validity than experiments and can be implemented when randomized clinical trials are infeasible or unethical. Quasi-experimental studies have established the causal effects of HIV testing and initiation of antiretroviral therapy on health, economic outcomes and sexual behaviors, as well as indirect effects on other community members. Recent quasi-experiments have evaluated specific interventions to improve patient performance in the cascade of care, providing causal evidence to optimize clinical management of HIV. Summary Quasi-experiments have generated important data on the real-world impacts of HIV testing and treatment and on interventions to improve the cascade of care. With the growth in large-scale clinical and administrative data, quasi-experiments enable rigorous evaluation of policies implemented in real-world settings. PMID:26371463
Bor, Jacob; Geldsetzer, Pascal; Venkataramani, Atheendar; Bärnighausen, Till
2015-11-01
Randomized, population-representative trials of clinical interventions are rare. Quasi-experiments have been used successfully to generate causal evidence on the cascade of HIV care in a broad range of real-world settings. Quasi-experiments exploit exogenous, or quasi-random, variation occurring naturally in the world or because of an administrative rule or policy change to estimate causal effects. Well designed quasi-experiments have greater internal validity than typical observational research designs. At the same time, quasi-experiments may also have potential for greater external validity than experiments and can be implemented when randomized clinical trials are infeasible or unethical. Quasi-experimental studies have established the causal effects of HIV testing and initiation of antiretroviral therapy on health, economic outcomes and sexual behaviors, as well as indirect effects on other community members. Recent quasi-experiments have evaluated specific interventions to improve patient performance in the cascade of care, providing causal evidence to optimize clinical management of HIV. Quasi-experiments have generated important data on the real-world impacts of HIV testing and treatment and on interventions to improve the cascade of care. With the growth in large-scale clinical and administrative data, quasi-experiments enable rigorous evaluation of policies implemented in real-world settings.
Comparing Context Specificity of Extinction and Latent Inhibition
Miller, Ralph R.; Laborda, Mario A.; Polack, Cody W.; Miguez, Gonzalo
2015-01-01
Exposure to a cue alone either before (i.e., latent inhibition treatment) or after (i.e., extinction) the cue is paired with an unconditioned stimulus (US) results in attenuated conditioned responding to the cue. Here we report two experiments in which potential parallels between the context specificity of the effects of extinction and latent inhibition treatments were directly compared in a lick suppression preparation with rats. The reversed ordering of conditioning and nonreinforcement in extinction and latent inhibition designs allowed us to examine the effect of training order on the context specificity of what is learned given phasic reinforcement and nonreinforcement of a target cue. Experiment 1 found that when CS conditioning and CS nonreinforcement were administered in the same context, both extinction and latent inhibition treatments had reduced impact on test performance relative to excitatory conditioning when testing occurred outside the treatment context. Similarly, Experiment 2 found that when conditioning was administered in one context and nonreinforcement was administered in a second context, the effects of both extinction and latent inhibition treatments were attenuated when testing occurred in a neutral context relative to the context in which the CS was nonreinforced. The observed context specificity of extinction and latent inhibition treatments have both been previously reported, but not in a single experiment under otherwise identical conditions. The results of the two experiments convergently suggest that memory of nonreinforcement becomes context dependent after a cue is both reinforced and nonreinforced independent of the order of training. PMID:26100525
Comparing the context specificity of extinction and latent inhibition.
Miller, Ralph R; Laborda, Mario A; Polack, Cody W; Miguez, Gonzalo
2015-12-01
Exposure to a cue alone either before (i.e., latent inhibition treatment) or after (i.e., extinction) the cue is paired with an unconditioned stimulus results in attenuated conditioned responding to the cue. Here we report two experiments in which potential parallels between the context specificity of the effects of extinction and latent inhibition treatments were directly compared in a lick suppression preparation with rats. The reversed ordering of conditioning and nonreinforcement in extinction and latent inhibition designs allowed us to examine the effect of training order on the context specificity of what is learned given phasic reinforcement and nonreinforcement of a target cue. Experiment 1 revealed that when conditioned-stimulus (CS) conditioning and CS nonreinforcement were administered in the same context, both extinction and latent inhibition treatments had reduced impacts on test performance, relative to excitatory conditioning when testing occurred outside the treatment context. Similarly, Experiment 2 showed that when conditioning was administered in one context and nonreinforcement was administered in a second context, the effects of both extinction and latent inhibition treatments were attenuated when testing occurred in a neutral context, relative to the context in which the CS was nonreinforced. The observed context specificity of extinction and latent inhibition treatments has been previously reported in both cases, but not in a single experiment under otherwise identical conditions. The results of the two experiments convergently suggest that memory of nonreinforcement becomes context dependent after a cue is both reinforced and nonreinforced, independent of the order of training.
Analysis of the OPERA 15-pin experiment with SABRE-2P. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The OPERA (Out-of-Pile Expulsion and Reentry Apparatus) experiment simulates the initial phase of a pump coastdown without scram of a liquid-metal fast breeder reactor, specifically the Fast Flux Test Facility. The test section is a 15-pin 60/sup 0/ triangular sector designed to simulate a full-size 61-pin hexagonal bundle. A previous study indicates this to be an adequate simulation. In this paper, experimental results from the OPERA 15-pin experiment performed at ANL in 1982 are compared to analytical calculations obtained with the SABRE-2P code at ORNL.
Vatne, Solfrid; Bjornerem, Heidi; Hoem, Elisabeth
2009-03-01
This article reports a multi-professional development project that was based on an action science design. The purpose was to develop 'acknowledging communication' in a psychiatric department for young people, and the objective to study the staffs' experiences of participating in the project. The professional part of the project has its foundation in Schibbye's treatment theory of inter-subjective understanding of relationships, and involves three main approaches from her theory: self-reflection, self-delimitation and emotional presence. The article presents the specific action design used, where reflection processes were developed in three different arenas: multidisciplinary Reflection groups, a Leader support group for the group leaders of the Reflection groups and collective Project seminars for all employees. A formal study programme designed to increase professional expertise, 15 European Credit Transfer System (ECTS), was also offered. The research methods included the researcher's process notes taken during the process, field notes from participating in the Leader support group, and qualitative interviews of eight informants participating in the various reflection arenas. The article presents and discusses the experiences evolved from the methods that were developed during the professional action science project: reflection on specific situations of interaction with patients in the form of oral/written narratives and the development of video presentations in combination with 'reflective teams'. The study showed that to facilitate change in the role of staff members, it is important to combine several reflection arenas where theoretical principles can be converted into practical action. By drawing data from only one study site, the study has a limited transferability, but should be of interest for professionals working with clinical change processes.
Practicing universal design to actual hand tool design process.
Lin, Kai-Chieh; Wu, Chih-Fu
2015-09-01
UD evaluation principles are difficult to implement in product design. This study proposes a methodology for implementing UD in the design process through user participation. The original UD principles and user experience are used to develop the evaluation items. Difference of product types was considered. Factor analysis and Quantification theory type I were used to eliminate considered inappropriate evaluation items and to examine the relationship between evaluation items and product design factors. Product design specifications were established for verification. The results showed that converting user evaluation into crucial design verification factors by the generalized evaluation scale based on product attributes as well as the design factors applications in product design can improve users' UD evaluation. The design process of this study is expected to contribute to user-centered UD application. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Aerodynamic and mechanical design of an 8:1 pressure ratio centrifugal compressor
NASA Technical Reports Server (NTRS)
Osborne, C.; Runstadler, P. W., Jr.; Stacy, W. D.
1974-01-01
A high-pressure-ratio, low-mass-flow centrifugal compressor stage was designed, fabricated, and tested. The design followed specifications that the stage be representative of state-of-the-art performance and that the stage is to be used as a workhorse compressor for planned experiments using laser Doppler velocimeter equipment. The final design is a 75,000-RPM, 19-blade impeller with an axial inducer and 30 degrees of backward leaning at the impeller tip. The compressor design was tested for two- and/or quasi-three-dimensional aerodynamic and stress characteristics. Critical speed analyses were performed for the high speed rotating impeller assembly. An optimally matched, 17-channel vane island diffuser was also designed and built.
A requirements specification for a software design support system
NASA Technical Reports Server (NTRS)
Noonan, Robert E.
1988-01-01
Most existing software design systems (SDSS) support the use of only a single design methodology. A good SDSS should support a wide variety of design methods and languages including structured design, object-oriented design, and finite state machines. It might seem that a multiparadigm SDSS would be expensive in both time and money to construct. However, it is proposed that instead an extensible SDSS that directly implements only minimal database and graphical facilities be constructed. In particular, it should not directly implement tools to faciliate language definition and analysis. It is believed that such a system could be rapidly developed and put into limited production use, with the experience gained used to refine and evolve the systems over time.
Cascadia Initiative Ocean Bottom Seismograph Performance
NASA Astrophysics Data System (ADS)
Evers, B.; Aderhold, K.
2017-12-01
The Ocean Bottom Seismograph Instrument Pool (OBSIP) provided instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigated geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marked the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments featured trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Station instrumentation included weak and strong motion seismometers, differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments is available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date, encompassing a diverse technical implementation and demonstrating an effective structure for community experiments. Thus, the results from Cascadia serve as both a technical and operational resource for the development of future community experiments, such as might be contemplated as part of the SZ4D Initiative. To guide future efforts, we investigate and summarize the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and diverse deployment to explore other environmental and configuration factors that can impact sensor and network performance and inform the design of future deployments.
LLRF System for the Fermilab Muon g-2 and Mu2e Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, P.; Chase, B.
The Mu2e experiment measures the conversion rate of muons into electrons and the Muon g-2 experiment measures the muon magnetic moment. Both experiments require 53 MHz batches of 8 GeV protons to be re-bunched into 150 ns, 2.5 MHz pulses for extraction to the g-2 target for Muon g-2 and to a delivery ring with a single RF cavity running at 2.36 MHz for Mu2e. The LLRF system for both experiments is implemented in a SOC FPGA board integrated into the existing 53 MHz LLRF system in a VXI crate. The tight timing requirements, the large frequency difference and themore » non-harmonic relationship between the two RF systems provide unique challenges to the LLRF system design to achieve the required phase alignment specifications for beam formation, transfers and beam extinction between pulses. The new LLRF system design for both projects is described and the results of the initial beam commissioning tests for the Muon g-2 experiment are presented.« less
Computer code for analyzing the performance of aquifer thermal energy storage systems
NASA Astrophysics Data System (ADS)
Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.
1985-05-01
A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less