[The application and development of artificial intelligence in medical diagnosis systems].
Chen, Zhencheng; Jiang, Yong; Xu, Mingyu; Wang, Hongyan; Jiang, Dazong
2002-09-01
This paper has reviewed the development of artificial intelligence in medical practice and medical diagnostic expert systems, and has summarized the application of artificial neural network. It explains that a source of difficulty in medical diagnostic system is the co-existence of multiple diseases--the potentially inter-related diseases. However, the difficulty of image expert systems is inherent in high-level vision. And it increases the complexity of expert system in medical image. At last, the prospect for the development of artificial intelligence in medical image expert systems is made.
ERIC Educational Resources Information Center
Borko, Harold
1985-01-01
Defines artificial intelligence (AI) and expert systems; describes library applications utilizing AI to automate creation of document representations, request formulations, and design and modify search strategies for information retrieval systems; discusses expert system development for information services; and reviews impact of these…
Counseling, Artificial Intelligence, and Expert Systems.
ERIC Educational Resources Information Center
Illovsky, Michael E.
1994-01-01
Considers the use of artificial intelligence and expert systems in counseling. Limitations are explored; candidates for counseling versus those for expert systems are discussed; programming considerations are reviewed; and techniques for dealing with rational, nonrational, and irrational thoughts and feelings are described. (Contains 46…
Expert Systems and Special Education.
ERIC Educational Resources Information Center
Hofmeister, Alan M.; Ferrara, Joseph M.
The application of artificial intelligence to the problems of education is examined. One of the most promising areas in artificial intelligence is expert systems technology which engages the user in a problem-solving diaglogue. Some of the characteristics that make expert systems "intelligent" are identified and exemplified. The rise of…
ERIC Educational Resources Information Center
Davies, Jim
This paper begins by examining concepts of artificial intelligence (AI) and discusses various definitions of the concept that have been suggested in the literature. The nesting relationship of expert systems within the broader framework of AI is described, and expert systems are characterized as knowledge-based systems (KBS) which attempt to solve…
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Artificial Intelligence: The Expert Way.
ERIC Educational Resources Information Center
Bitter, Gary G.
1989-01-01
Discussion of artificial intelligence (AI) and expert systems focuses on their use in education. Characteristics of good expert systems are explained; computer software programs that contain applications of AI are described, highlighting one used to help educators identify learning-disabled students; and the future of AI is discussed. (LRW)
Artificial Intelligence and Expert Systems.
ERIC Educational Resources Information Center
Wilson, Harold O.; Burford, Anna Marie
1990-01-01
Delineates artificial intelligence/expert systems (AI/ES) concepts; provides an exposition of some business application areas; relates progress; and creates an awareness of the benefits, limitations, and reservations of AI/ES. (Author)
Artificial intelligence and space power systems automation
NASA Technical Reports Server (NTRS)
Weeks, David J.
1987-01-01
Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.
ROSIE: A Programming Environment for Expert Systems
1985-10-01
ence on Artificial Inteligence , Tbilisi, USSR, 1975. Fain, J., D. Gorlin, F. Hayes-Roth, S. Rosenschein, H. Sowizral, and D. Waterman, The ROSIE Language...gramming environment for artificial intelligence (AI) applications. It provides particular support for designing expert systems, systems that embody
Expert Systems: An Overview for Teacher-Librarians.
ERIC Educational Resources Information Center
Orwig, Gary; Barron, Ann
1992-01-01
Provides an overview of expert systems for teacher librarians. Highlights include artificial intelligence and expert systems; the development of the MYCIN medical expert system; rule-based expert systems; the use of expert system shells to develop a specific system; and how to select an appropriate application for an expert system. (11 references)…
What Artificial Intelligence Is Doing for Training.
ERIC Educational Resources Information Center
Kirrane, Peter R.; Kirrane, Diane E.
1989-01-01
Discusses the three areas of research and application of artificial intelligence: (1) robotics, (2) natural language processing, and (3) knowledge-based or expert systems. Focuses on what expert systems can do, especially in the area of training. (JOW)
Utilization of artificial intelligence techniques for the Space Station power system
NASA Technical Reports Server (NTRS)
Evatt, Thomas C.; Gholdston, Edward W.
1988-01-01
Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.
Artificial Intelligence: Applications in Education.
ERIC Educational Resources Information Center
Thorkildsen, Ron J.; And Others
1986-01-01
Artificial intelligence techniques are used in computer programs to search out rapidly and retrieve information from very large databases. Programing advances have also led to the development of systems that provide expert consultation (expert systems). These systems, as applied to education, are the primary emphasis of this article. (LMO)
DOT National Transportation Integrated Search
1987-01-01
Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...
Applications of artificial intelligence V; Proceedings of the Meeting, Orlando, FL, May 18-20, 1987
NASA Technical Reports Server (NTRS)
Gilmore, John F. (Editor)
1987-01-01
The papers contained in this volume focus on current trends in applications of artificial intelligence. Topics discussed include expert systems, image understanding, artificial intelligence tools, knowledge-based systems, heuristic systems, manufacturing applications, and image analysis. Papers are presented on expert system issues in automated, autonomous space vehicle rendezvous; traditional versus rule-based programming techniques; applications to the control of optional flight information; methodology for evaluating knowledge-based systems; and real-time advisory system for airborne early warning.
Experiments in Knowledge Refinement for a Large Rule-Based System
1993-08-01
empirical analysis to refine expert system knowledge bases. Aritificial Intelligence , 22:23-48, 1984. *! ...The Addison- Weslev series in artificial intelligence . Addison-Weslev. Reading, Massachusetts. 1981. Cooke, 1991: ttoger M. Cooke. Experts in...ment for classification systems. Artificial Intelligence , 35:197-226, 1988. 14 Overall, we believe that it will be possible to build a heuristic system
Experiments with microcomputer-based artificial intelligence environments
Summers, E.G.; MacDonald, R.A.
1988-01-01
The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.
Cataloging Expert Systems: Optimism and Frustrated Reality.
ERIC Educational Resources Information Center
Olmstadt, William J.
2000-01-01
Discusses artificial intelligence and attempts to catalog expert systems. Topics include the nature of expertise; examples of cataloging expert systems; barriers to implementation; and problems, including total automation, cataloging expertise, priorities, and system design. (LRW)
Artificial Intelligence Applications in Special Education: How Feasible? Final Report.
ERIC Educational Resources Information Center
Hofmeister, Alan M.; Ferrara, Joseph M.
The research project investigated whether expert system tools have become sophisticated enough to be applied efficiently to problems in special education. (Expert systems are a development of artificial intelligence that combines the computer's capacity for storing specialized knowledge with a general set of rules intended to replicate the…
NASA Technical Reports Server (NTRS)
Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry
1995-01-01
This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.
Artificial Intelligence Information Sources for the Beginner and Expert
1991-05-01
SUBPLEETAR TMS T bepbhdi" Artificial Intelligence ApplictionsforMlitar Expertis SystemsWilasbrVA 527Mrh 91 12a. DSCRIBTION C AIITY 6 STAEENRTY CTO SECb.T...DLSIFC ISTR BUMATION OC Apnclassified pu ncrlase; ituied inlsife unlimited. Artificial Intelligence Information Sources for the Beginner and Expert...mgivenfdsac.dia.mil UUCP: {...).osu-cisidsac!mgiven ABSTRACT A tremendous amount of information on artificial intelligence is available via different
Applications of Artificial Intelligence (AI) and Expert Systems for Online Searching.
ERIC Educational Resources Information Center
Hawkins, Donald T.
1988-01-01
Discussion of the online searching process identifies the formulation of a search strategy as the major problem area for users of online systems. Artificial intelligence is suggested as a solution to this problem, and several expert systems for information retrieval are described. An annotated list of 24 items for further reading is included. (23…
Small Knowledge-Based Systems in Education and Training: Something New Under the Sun.
ERIC Educational Resources Information Center
Wilson, Brent G.; Welsh, Jack R.
1986-01-01
Discusses artificial intelligence, robotics, natural language processing, and expert or knowledge-based systems research; examines two large expert systems, MYCIN and XCON; and reviews the resources required to build large expert systems and affordable smaller systems (intelligent job aids) for training. Expert system vendors and products are…
Expert Systems in Reference Services.
ERIC Educational Resources Information Center
Roysdon, Christine, Ed.; White, Howard D., Ed.
1989-01-01
Eleven articles introduce expert systems applications in library and information science, and present design and implementation issues of system development for reference services. Topics covered include knowledge based systems, prototype development, the use of artificial intelligence to remedy current system inadequacies, and an expert system to…
Artificial intelligence - New tools for aerospace project managers
NASA Technical Reports Server (NTRS)
Moja, D. C.
1985-01-01
Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.
Robotic air vehicle. Blending artificial intelligence with conventional software
NASA Technical Reports Server (NTRS)
Mcnulty, Christa; Graham, Joyce; Roewer, Paul
1987-01-01
The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.
The role of artificial intelligence and expert systems in increasing STS operations productivity
NASA Technical Reports Server (NTRS)
Culbert, C.
1985-01-01
Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.
A brief history and technical review of the expert system research
NASA Astrophysics Data System (ADS)
Tan, Haocheng
2017-09-01
The expert system is a computer system that emulates the decision-making ability of a human expert, which aims to solve complex problems by reasoning knowledge. It is an important branch of artificial intelligence. In this paper, firstly, we briefly introduce the development and basic structure of the expert system. Then, from the perspective of the enabling technology, we classify the current expert systems and elaborate four expert systems: The Rule-Based Expert System, the Framework-Based Expert System, the Fuzzy Logic-Based Expert System and the Expert System Based on Neural Network.
ERIC Educational Resources Information Center
Hankins, George.
1987-01-01
Describes the novice-to-expert model of human learning and compares it to the recent advances in the areas of artificial intelligence and expert systems. Discusses some of the characteristics of experts, proposing connections between them with expert systems and theories of left-right brain functions. (TW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
A Logic Basis for Information Retrieval.
ERIC Educational Resources Information Center
Watters, C. R.; Shepherd, M. A.
1987-01-01
Discusses the potential of recent work in artificial intelligence, especially expert systems, for the development of more effective information retrieval systems. Highlights include the role of an expert bibliographic retrieval system and a prototype expert retrieval system, PROBIB-2, that uses MicroProlog to provide deductive reasoning…
ERIC Educational Resources Information Center
Balajthy, Ernest
1989-01-01
The article examines decision-making expert systems and discusses their implications for diagnosis and prescription of reading difficulties. A detailed description of how a reading diagnostic expert system might operate to aid classroom teachers is followed by a discussion of advantages and limitations of expert systems for educational use.…
Instructional Applications of Artificial Intelligence.
ERIC Educational Resources Information Center
Halff, Henry M.
1986-01-01
Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…
Cardiac risk stratification in renal transplantation using a form of artificial intelligence.
Heston, T F; Norman, D J; Barry, J M; Bennett, W M; Wilson, R A
1997-02-15
The purpose of this study was to determine if an expert network, a form of artificial intelligence, could effectively stratify cardiac risk in candidates for renal transplant. Input into the expert network consisted of clinical risk factors and thallium-201 stress test data. Clinical risk factor screening alone identified 95 of 189 patients as high risk. These 95 patients underwent thallium-201 stress testing, and 53 had either reversible or fixed defects. The other 42 patients were classified as low risk. This algorithm made up the "expert system," and during the 4-year follow-up period had a sensitivity of 82%, specificity of 77%, and accuracy of 78%. An artificial neural network was added to the expert system, creating an expert network. Input into the neural network consisted of both clinical variables and thallium-201 stress test data. There were 5 hidden nodes and the output (end point) was cardiac death. The expert network increased the specificity of the expert system alone from 77% to 90% (p < 0.001), the accuracy from 78% to 89% (p < 0.005), and maintained the overall sensitivity at 88%. An expert network based on clinical risk factor screening and thallium-201 stress testing had an accuracy of 89% in predicting the 4-year cardiac mortality among 189 renal transplant candidates.
NASA Technical Reports Server (NTRS)
Kellner, A.
1987-01-01
Extremely large knowledge sources and efficient knowledge access characterizing future real-life artificial intelligence applications represent crucial requirements for on-board artificial intelligence systems due to obvious computer time and storage constraints on spacecraft. A type of knowledge representation and corresponding reasoning mechanism is proposed which is particularly suited for the efficient processing of such large knowledge bases in expert systems.
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
Toward the Development of Expert Assessment Systems.
ERIC Educational Resources Information Center
Hasselbring, Ted S.
1986-01-01
The potential application of "expert systems" to the diagnosis and assessment of special-needs children is examined and existing prototype systems are reviewed. The future of this artificial intelligence technology is discussed in relation to emerging development tools designed for the creation of expert systems by the lay public. (Author)
The Potential of Computer-Based Expert Systems for Special Educators in Rural Settings.
ERIC Educational Resources Information Center
Parry, James D.; Ferrara, Joseph M.
Knowledge-based expert computer systems are addressing issues relevant to all special educators, but are particularly relevant in rural settings where human experts are less available because of distance and cost. An expert system is an application of artificial intelligence (AI) that typically engages the user in a dialogue resembling the…
1983-10-28
Computing. By seizing an opportunity to leverage recent advances in artificial intelligence, computer science, and microelectronics, the Agency plans...occurred in many separated areas of artificial intelligence, computer science, and microelectronics. Advances in "expert system" technology now...and expert knowledge o Advances in Artificial Intelligence: Mechanization of speech recognition, vision, and natural language understanding. o
Artificial Intelligence in Education.
ERIC Educational Resources Information Center
Ruyle, Kim E.
Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have…
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
An Expert System for Processing Uncorrelated Satellite Tracks
1992-12-17
earthworms with much intellect e\\en though they routinely carry out this same function. One definition given artificial intelligence is "the study of mental...Networks: Benchmarking Studies ," Proceedings from the IEEE International Conference on Neural Networkv. pp. 64-65, 1988. 229 Lyddane, R., "Small...reverse if necessary and rdenqtl_ by block number, Field Group Subgroup Artificial Intelligence, Expert Systems, Neural Networks. Orbital Mechanics
An overview of the artificial intelligence and expert systems component of RICIS
NASA Technical Reports Server (NTRS)
Feagin, Terry
1987-01-01
Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.
In Pursuit of Artificial Intelligence.
ERIC Educational Resources Information Center
Watstein, Sarah; Kesselman, Martin
1986-01-01
Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…
NASA Astrophysics Data System (ADS)
Bravos, Angelo; Hill, Howard; Choca, James; Bresolin, Linda B.; Bresolin, Michael J.
1986-03-01
Computer technology is rapidly becoming an inseparable part of many health science specialties. Recently, a new area of computer technology, namely Artificial Intelligence, has been applied toward assisting the medical experts in their diagnostic and therapeutic decision making process. MOODIS is an experimental diagnostic expert system which assists Psychiatry specialists in diagnosing human Mood Disorders, better known as Affective Disorders. Its diagnostic methodology is patterned after MDX, a diagnostic expert system developed at LAIR (Laboratory for Artificial Intelligence Research) of Ohio State University. MOODIS is implemented in CSRL (Conceptual Structures Representation Language) also developed at LAIR. This paper describes MOODIS in terms of conceptualization and requirements, and discusses why the MDX approach and CSRL were chosen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacAllister, D.J.; Day, R.; McCormack, M.D.
This paper gives an overview of a major integrated oil company`s experience with artificial intelligence (AI) over the last 5 years, with an emphasis on expert systems. The authors chronicle the development of an AI group, including details on development tool selection, project selection strategies, potential pitfalls, and descriptions of several completed expert systems. Small expert systems produced by teams of petroleum technology experts and experienced expert system developers that are focused in well-defined technical areas have produced substantial benefits and accelerated petroleum technology transfer.
Artificial Intelligence In Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
Expert systems and simulation models; Proceedings of the Seminar, Tucson, AZ, November 18, 19, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
The seminar presents papers on modeling and simulation methodology, artificial intelligence and expert systems, environments for simulation/expert system development, and methodology for simulation/expert system development. Particular attention is given to simulation modeling concepts and their representation, modular hierarchical model specification, knowledge representation, and rule-based diagnostic expert system development. Other topics include the combination of symbolic and discrete event simulation, real time inferencing, and the management of large knowledge-based simulation projects.
Computer Series, 82. The Application of Expert Systems in the General Chemistry Laboratory.
ERIC Educational Resources Information Center
Settle, Frank A., Jr.
1987-01-01
Describes the construction of expert computer systems using artificial intelligence technology and commercially available software, known as an expert system shell. Provides two applications; a simple one, the identification of seven white substances, and a more complicated one involving the qualitative analysis of six metal ions. (TW)
Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.
ERIC Educational Resources Information Center
Fox, Edward A.; Winett, Sheila G.
1990-01-01
Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…
Bibliography: Artificial Intelligence.
ERIC Educational Resources Information Center
Smith, Richard L.
1986-01-01
Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)
Development of a coupled expert system for the spacecraft attitude control problem
NASA Technical Reports Server (NTRS)
Kawamura, K.; Beale, G.; Schaffer, J.; Hsieh, B.-J.; Padalkar, S.; Rodriguezmoscoso, J.; Vinz, F.; Fernandez, K.
1987-01-01
A majority of the current expert systems focus on the symbolic-oriented logic and inference mechanisms of artificial intelligence (AI). Common rule-based systems employ empirical associations and are not well suited to deal with problems often arising in engineering. Described is a prototype expert system which combines both symbolic and numeric computing. The expert system's configuration is presented and its application to a spacecraft attitude control problem is discussed.
Proceedings of the international conference on cybernetics and societ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference on artificial intelligence, expert systems and knowledge bases. Topics considered at the conference included automating expert system development, modeling expert systems, causal maps, data covariances, robot vision, image processing, multiprocessors, parallel processing, VLSI structures, man-machine systems, human factors engineering, cognitive decision analysis, natural language, computerized control systems, and cybernetics.
ERIC Educational Resources Information Center
Lancaster, F. W., Ed.; Smith, Linda C., Ed.
Some of the 12 conference papers presented in this proceedings focus on the present and potential capabilities of artificial intelligence and expert systems as they relate to a wide range of library applications, including descriptive cataloging, technical services, collection development, subject indexing, reference services, database searching,…
An Expert Systems Approach for PR Campaigns Research.
ERIC Educational Resources Information Center
Cameron, Glen T.; Curtin, Patricia A.
1992-01-01
Describes an expert system (the artificial intelligence program "Publics") that helps users identify key publics for public relations campaigns. Examines advantages and problems encountered in its use in public relations campaigns classrooms. (SR)
Application of artificial intelligence to pharmacy and medicine.
Dasta, J F
1992-04-01
Artificial intelligence (AI) is a branch of computer science dealing with solving problems using symbolic programming. It has evolved into a problem solving science with applications in business, engineering, and health care. One application of AI is expert system development. An expert system consists of a knowledge base and inference engine, coupled with a user interface. A crucial aspect of expert system development is knowledge acquisition and implementing computable ways to solve problems. There have been several expert systems developed in medicine to assist physicians with medical diagnosis. Recently, several programs focusing on drug therapy have been described. They provide guidance on drug interactions, drug therapy monitoring, and drug formulary selection. There are many aspects of pharmacy that AI can have an impact on and the reader is challenged to consider these possibilities because they may some day become a reality in pharmacy.
Development of the Diagnostic Expert System for Tea Processing
NASA Astrophysics Data System (ADS)
Yoshitomi, Hitoshi; Yamaguchi, Yuichi
A diagnostic expert system for tea processing which can presume the cause of the defect of the processed tea was developed to contribute to the improvement of tea processing. This system that consists of some programs can be used through the Internet. The inference engine, the core of the system adopts production system which is well used on artificial intelligence, and is coded by Prolog as the artificial intelligence oriented language. At present, 176 rules for inference have been registered on this system. The system will be able to presume better if more rules are added to the system.
Artificial Intelligence and Vocational Education: An Impending Confluence.
ERIC Educational Resources Information Center
Roth, Gene L.; McEwing, Richard A.
1986-01-01
Reports on the relatively new field of artificial intelligence and its relationship to vocational education. Compares human intelligence with artificial intelligence. Discusses expert systems, natural language technology, and current trends. Lists potential applications for vocational education. (CH)
Expert Systems: Tutors, Tools, and Tutees.
ERIC Educational Resources Information Center
Lippert, Renate C.
1989-01-01
Discusses the current status, research, and practical implications of artificial intelligence and expert systems in education. Topics discussed include computer-assisted instruction; intelligent computer-assisted instruction; intelligent tutoring systems; instructional strategies involving the creation of knowledge bases; decision aids;…
Expert Systems the Old Fashioned Way: Person to Person.
ERIC Educational Resources Information Center
McCleary, Hunter; Mayer, William J.
1988-01-01
Describes the services of Teltech, Inc., which mimic the desirable attributes of artificial intelligence and expert systems via a "database" of 5,000 experts in technical areas and interactive literature searches executed by staff. Advantages and shortcomings of the network are exemplified by sample searches. Several sample menus and…
Innovative applications of artificial intelligence
NASA Astrophysics Data System (ADS)
Schorr, Herbert; Rappaport, Alain
Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.
Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra
2014-09-01
Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.
ERIC Educational Resources Information Center
Thornburg, David D.
1986-01-01
Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…
Teaching artificial neural systems to drive: Manual training techniques for autonomous systems
NASA Technical Reports Server (NTRS)
Shepanski, J. F.; Macy, S. A.
1987-01-01
A methodology was developed for manually training autonomous control systems based on artificial neural systems (ANS). In applications where the rule set governing an expert's decisions is difficult to formulate, ANS can be used to extract rules by associating the information an expert receives with the actions taken. Properly constructed networks imitate rules of behavior that permits them to function autonomously when they are trained on the spanning set of possible situations. This training can be provided manually, either under the direct supervision of a system trainer, or indirectly using a background mode where the networks assimilates training data as the expert performs its day-to-day tasks. To demonstrate these methods, an ANS network was trained to drive a vehicle through simulated freeway traffic.
A/C Interface: Expert Systems: Part II.
ERIC Educational Resources Information Center
Dessy, Raymond E., Ed.
1984-01-01
Discusses working implementations of artificial intelligence systems for chemical laboratory applications. They include expert systems for liquid chromatography, spectral analysis, instrument control of a totally computerized triple-quadrupole mass spectrometer, and the determination of the mineral constituents of a rock sample given the powder…
Third Conference on Artificial Intelligence for Space Applications, part 1
NASA Technical Reports Server (NTRS)
Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)
1987-01-01
The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.
Artificial intelligence, expert systems, computer vision, and natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1984-01-01
An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.
Explanation Generation in Expert Systems (A Literature Review and Implementation)
1989-01-01
Rubinoff. Explaining concepts in expert systems: The clear system. In Proceedings of the Second Conference on Aritificial Intelligence Applications. pages... intelligent computer software systems are Heedled. The Expert System (ES) technology of Artificial Intelligence (Al) is ore solution that is (nerging to...Random House College Dictionary defines explanation as: "to make plain, clear, or intelligible something that is not known or understood". [33] While
ERIC Educational Resources Information Center
Duda, Richard O.; Shortliffe, Edward H.
1983-01-01
Discusses a class of artificial intelligence computer programs (often called "expert systems" because they address problems normally thought to require human specialists for their solution) intended to serve as consultants for decision making. Also discusses accomplishments (including information systematization in medical diagnosis and…
1988-06-27
de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the
Engineering monitoring expert system's developer
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1991-01-01
This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.
Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1
1989-03-01
American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to
NASA Technical Reports Server (NTRS)
Chang, C. L.; Stachowitz, R. A.
1988-01-01
Software quality is of primary concern in all large-scale expert system development efforts. Building appropriate validation and test tools for ensuring software reliability of expert systems is therefore required. The Expert Systems Validation Associate (EVA) is a validation system under development at the Lockheed Artificial Intelligence Center. EVA provides a wide range of validation and test tools to check correctness, consistency, and completeness of an expert system. Testing a major function of EVA. It means executing an expert system with test cases with the intent of finding errors. In this paper, we describe many different types of testing such as function-based testing, structure-based testing, and data-based testing. We describe how appropriate test cases may be selected in order to perform good and thorough testing of an expert system.
NASA Technical Reports Server (NTRS)
Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)
1993-01-01
The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry
1988-01-01
In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry
1988-01-01
In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.
Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope?
Bartlett, Roger
2006-01-01
This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements (‘techniques’) and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key Points Expert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis. Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear. Other AI applications, including Evolutionary Computation, have received little attention. PMID:24357939
Artificial intelligence in sports biomechanics: new dawn or false hope?
Bartlett, Roger
2006-12-15
This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.
Artificial Intelligence and Expert Systems.
ERIC Educational Resources Information Center
Lawlor, Joseph
Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…
Software Analyzes Complex Systems in Real Time
NASA Technical Reports Server (NTRS)
2008-01-01
Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.
A Reference and Referral System Using Expert System Techniques.
ERIC Educational Resources Information Center
Vickery, Alina; And Others
1987-01-01
Describes PLEXUS, an expert system for information retrieval related to gardening, designed at the University of London for use in public libraries. Focusing on the semantic problems encountered, methods used in artificial intelligence and information science to resolve them are discussed, including classification and facet analysis. (Author/LRW)
Artificial intelligence and expert systems in-flight software testing
NASA Technical Reports Server (NTRS)
Demasie, M. P.; Muratore, J. F.
1991-01-01
The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.
Artificial Intelligence and Spacecraft Power Systems
NASA Technical Reports Server (NTRS)
Dugel-Whitehead, Norma R.
1997-01-01
This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.
1986-09-01
expert systems will certainly find management applications a fertile field for research and practice." Elam and Henderson (1983) also discuss concepts ...Shortliffe, E.H. (1983). Expert systems research. Science, 220, 261-268, 15 Apr. * Elam, J.J. and Henderson, J.C. (1983). Knowledge engineering concepts for...Symposium on Aerospace and Electronic Systems, Advanced Concepts and Pioneering Perspectives, Dayton, OH, Sect 4, (pp 1-9), Nov 14-15. Dreyfus, H
The potential of expert systems for remote sensing application
NASA Technical Reports Server (NTRS)
Mooneyhan, D. W.
1983-01-01
An overview of the status and potential of artificial intelligence-driven expert systems in the role of image data analysis is presented. An expert system is defined and its structure is summarized. Three such systems designed for image interpretation are outlined. The use of an expert system to detect changes on the earth's surface is discussed, and the components of a knowledge-based image interpretation system and their make-up are outlined. An example of how such a system should work for an area in the tropics where deforestation has occurred is presented as a sequence of situation/action decisions.
Partial Bibliography of Work on Expert Systems,
1982-12-01
Bibliography: AAAI American Association for Artificial Intelligence ACM Association for Computing Machinery AFIPS American Federation of Information...Processing Societies ECAI European Conference on Artificial Intelligence IEEE Institute for Electrical and Electronic Engineers IFIPS International...Federation of Information Processing Societies IJCAI International Joint Conferences on Artificial Intelligence SIGPLAN ACM Special Interest Group on
Model-Based Reasoning in the Detection of Satellite Anomalies
1990-12-01
Conference on Artificial Intellegence . 1363-1368. Detroit, Michigan, August 89. Chu, Wei-Hai. "Generic Expert System Shell for Diagnostic Reasoning... Intellegence . 1324-1330. Detroit, Michigan, August 89. de Kleer, Johan and Brian C. Williams. "Diagnosing Multiple Faults," Artificial Intellegence , 32(1): 97...Benjamin Kuipers. "Model-Based Monitoring of Dynamic Systems," Proceedings of the Eleventh Intematianal Joint Conference on Artificial Intellegence . 1238
Benchmarking expert system tools
NASA Technical Reports Server (NTRS)
Riley, Gary
1988-01-01
As part of its evaluation of new technologies, the Artificial Intelligence Section of the Mission Planning and Analysis Div. at NASA-Johnson has made timing tests of several expert system building tools. Among the production systems tested were Automated Reasoning Tool, several versions of OPS5, and CLIPS (C Language Integrated Production System), an expert system builder developed by the AI section. Also included in the test were a Zetalisp version of the benchmark along with four versions of the benchmark written in Knowledge Engineering Environment, an object oriented, frame based expert system tool. The benchmarks used for testing are studied.
Artificial Experts: The Computer as Diagnostician Has Definite Limits.
ERIC Educational Resources Information Center
Pournelle, Jerry
1984-01-01
Argues that, although expert systems--which are supposed to give users all the advantages of consulting with human experts--can be useful for medical diagnosis, where tests tend to be reliable, they can be hazardous in such areas as psychological testing, where test reliability is difficult to measure. (MBR)
Object-oriented knowledge representation for expert systems
NASA Technical Reports Server (NTRS)
Scott, Stephen L.
1991-01-01
Object oriented techniques have generated considerable interest in the Artificial Intelligence (AI) community in recent years. This paper discusses an approach for representing expert system knowledge using classes, objects, and message passing. The implementation is in version 4.3 of NASA's C Language Integrated Production System (CLIPS), an expert system tool that does not provide direct support for object oriented design. The method uses programmer imposed conventions and keywords to structure facts, and rules to provide object oriented capabilities.
Evaluation of Expert Systems in Decisionmaking Organizations
1988-07-01
Abacus Press, Tunbridge Wells. Levis, A. H., 1984. "Information Processing and Decisionmaking Organizations: A Mathematical Description." I Large Scale Systems , Vol. 7, pp. 151-163. hI2 II I, Ie ... intelligence and especially expert systems. This paper presents a procedure for assessing to what extent the measures of performance of an organization are...aids that is receiving attention in the development community is based on artificial intelligence and especially expert systems. This paper presents a
NASA Technical Reports Server (NTRS)
Toomarian, N.; Kirkham, Harold
1994-01-01
This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.
Using a CLIPS expert system to automatically manage TCP/IP networks and their components
NASA Technical Reports Server (NTRS)
Faul, Ben M.
1991-01-01
A expert system that can directly manage networks components on a Transmission Control Protocol/Internet Protocol (TCP/IP) network is described. Previous expert systems for managing networks have focused on managing network faults after they occur. However, this proactive expert system can monitor and control network components in near real time. The ability to directly manage network elements from the C Language Integrated Production System (CLIPS) is accomplished by the integration of the Simple Network Management Protocol (SNMP) and a Abstract Syntax Notation (ASN) parser into the CLIPS artificial intelligence language.
An overview of expert systems. [artificial intelligence
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1982-01-01
An expert system is defined and its basic structure is discussed. The knowledge base, the inference engine, and uses of expert systems are discussed. Architecture is considered, including choice of solution direction, reasoning in the presence of uncertainty, searching small and large search spaces, handling large search spaces by transforming them and by developing alternative or additional spaces, and dealing with time. Existing expert systems are reviewed. Tools for building such systems, construction, and knowledge acquisition and learning are discussed. Centers of research and funding sources are listed. The state-of-the-art, current problems, required research, and future trends are summarized.
NASA Technical Reports Server (NTRS)
Lippiatt, Thomas F.; Waterman, Donald
1985-01-01
The applicability of operations research, artificial intelligence, and expert systems to logistics problems for the space station were assessed. Promising application areas were identified for space station logistics. A needs assessment is presented and a specific course of action in each area is suggested.
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.
List of ARI Conference Papers, Journal Articles, Books, and Book Chapters: 1982-1991
1992-10-01
and Engineering Applications of Artificial Intelligence and Expert Systems, Tullahoma, TN. Goehring, D.J., & Hart, R.J. (1985, October). Automated...systems: Computkr-based authoring. Proceedings of the 30th annual meeting of the Artificial Intelligence Society, Dayton, OH. Knapp, D.J., & Pliske, R.M...Moses, F.L. (1984-85) Intelligence vehicle integrated displays. Paper presented at the Conference on Applied Artificial Intelligence , the Data Processing
Considerations in development of expert systems for real-time space applications
NASA Technical Reports Server (NTRS)
Murugesan, S.
1988-01-01
Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications.
Nickel cadmium battery expert system
NASA Technical Reports Server (NTRS)
1986-01-01
The applicability of artificial intelligence methodologies for the automation of energy storage management, in this case, nickel cadmium batteries, is demonstrated. With the Hubble Space Telescope Electrical Power System (HST/EPS) testbed as the application domain, an expert system was developed which incorporates the physical characterization of the EPS, in particular, the nickel cadmium batteries, as well as the human's operational knowledge. The expert system returns not only fault diagnostics but also status and advice along with justifications and explanations in the form of decision support.
NASA Technical Reports Server (NTRS)
1989-01-01
C Language Integrated Production System (CLIPS) is a software shell for developing expert systems is designed to allow research and development of artificial intelligence on conventional computers. Originally developed by Johnson Space Center, it enables highly efficient pattern matching. A collection of conditions and actions to be taken if the conditions are met is built into a rule network. Additional pertinent facts are matched to the rule network. Using the program, E.I. DuPont de Nemours & Co. is monitoring chemical production machines; California Polytechnic State University is investigating artificial intelligence in computer aided design; Mentor Graphics has built a new Circuit Synthesis system, and Brooke and Brooke, a law firm, can determine which facts from a file are most important.
Lim, I; Walkup, R K; Vannier, M W
1993-04-01
Quantitative evaluation of upper extremity impairment, a percentage rating most often determined using a rule based procedure, has been implemented on a personal computer using an artificial intelligence, rule-based expert system (AI system). In this study, the rules given in Chapter 3 of the AMA Guides to the Evaluation of Permanent Impairment (Third Edition) were used to develop such an AI system for the Apple Macintosh. The program applies the rules from the Guides in a consistent and systematic fashion. It is faster and less error-prone than the manual method, and the results have a higher degree of precision, since intermediate values are not truncated.
Development and Evaluation of an Adaptive Computerized Training System (ACTS). R&D Report 78-1.
ERIC Educational Resources Information Center
Knerr, Bruce W.; Nawrocki, Leon H.
This report describes the development of a computer based system designed to train electronic troubleshooting procedures. The ACTS uses artificial intelligence techniques to develop models of student and expert troubleshooting behavior as they solve a series of troubleshooting problems on the system. Comparisons of the student and expert models…
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.
Artificial intelligence against breast cancer (A.N.N.E.S-B.C.-Project).
Parmeggiani, Domenico; Avenia, Nicola; Sanguinetti, Alessandro; Ruggiero, Roberto; Docimo, Giovanni; Siciliano, Mattia; Ambrosino, Pasquale; Madonna, Imma; Peltrini, Roberto; Parmeggiani, Umberto
2012-01-01
Our preliminary study examined the development of an advanced innovative technology with the objectives of--developing methodologies and algorithms for a Artificial Neural Network (ANN) system, improving mammography and ultra-sonography images interpretation;--creating autonomous software as a diagnostic tool for the physicians, allowing the possibility for the advanced application of databases using Artificial Intelligence (Expert System). Since 2004 550 F patients over 40 yrs old were divided in two groups: 1) 310 pts underwent echo every 6 months and mammography every year by expert radiologists. 2) 240 pts had the same screening program and were also examined by our diagnosis software, developed with ANN-ES technology by the Engineering Aircraft Research Project team. The information was continually updated and returned to the Expert System, defining the principal rules of automatic diagnosis. In the second group we selected: Expert radiologist decision; ANN-ES decision; Expert radiologists with ANN-ES decision. The second group had significantly better diagnosis for cancer and better specificity for breast lesions risk as well as the highest percentage account when the radiologist's decision was helped by the ANN software. The ANN-ES group was able to select, by anamnestic, diagnostic and genetic means, 8 patients for prophylactic surgery, finding 4 cancers in a very early stage. Although it is only a preliminary study, this innovative diagnostic tool seems to provide better positive and negative predictive value in cancer diagnosis as well as in breast risk lesion identification.
Artificial Intelligence Techniques: Applications for Courseware Development.
ERIC Educational Resources Information Center
Dear, Brian L.
1986-01-01
Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…
Diagnosis - Using automatic test equipment and artificial intelligence expert systems
NASA Astrophysics Data System (ADS)
Ramsey, J. E., Jr.
Three expert systems (ATEOPS, ATEFEXPERS, and ATEFATLAS), which were created to direct automatic test equipment (ATE), are reviewed. The purpose of the project was to develop an expert system to troubleshoot the converter-programmer power supply card for the F-15 aircraft and have that expert system direct the automatic test equipment. Each expert system uses a different knowledge base or inference engine, basing the testing on the circuit schematic, test requirements document, or ATLAS code. Implementing generalized modules allows the expert systems to be used for any different unit under test. Using converted ATLAS to LISP code allows the expert system to direct any ATE using ATLAS. The constraint propagated frame system allows for the expansion of control by creating the ATLAS code, checking the code for good software engineering techniques, directing the ATE, and changing the test sequence as needed (planning).
1991-03-01
Cliffs, New Jersey, 1989. Merritt, Dennis, "Forward Chaining in Prolog," Al Expert, v.7 November 1986. Minsky , Marvin ., "A Framework for Representing... Minsky , Marvin , (editor), Semantic Information Processing, MIT Press, 1968. Rychener, M. D., Production Systems as a Programming Language for Artificial
Artificial intelligence within the chemical laboratory.
Winkel, P
1994-01-01
Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)
Embedded expert system for space shuttle main engine maintenance
NASA Technical Reports Server (NTRS)
Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.
1987-01-01
The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).
Artificial intelligence in the materials processing laboratory
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kaukler, William F.
1990-01-01
Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.
Artificial Intelligence in Speech Understanding: Two Applications at C.R.I.N.
ERIC Educational Resources Information Center
Carbonell, N.; And Others
1986-01-01
This article explains how techniques of artificial intelligence are applied to expert systems for acoustic-phonetic decoding, phonological interpretation, and multi-knowledge sources for man-machine dialogue implementation. The basic ideas are illustrated with short examples. (Author/JDH)
ERIC Educational Resources Information Center
Wash, Darrel Patrick
1989-01-01
Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)
Artificial Intelligence: Underlying Assumptions and Basic Objectives.
ERIC Educational Resources Information Center
Cercone, Nick; McCalla, Gordon
1984-01-01
Presents perspectives on methodological assumptions underlying research efforts in artificial intelligence (AI) and charts activities, motivations, methods, and current status of research in each of the major AI subareas: natural language understanding; computer vision; expert systems; search, problem solving, planning; theorem proving and logic…
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Nemati, Shamim; Holder, Andre; Razmi, Fereshteh; Stanley, Matthew D; Clifford, Gari D; Buchman, Timothy G
2018-04-01
Sepsis is among the leading causes of morbidity, mortality, and cost overruns in critically ill patients. Early intervention with antibiotics improves survival in septic patients. However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed to develop and validate an Artificial Intelligence Sepsis Expert algorithm for early prediction of sepsis. Observational cohort study. Academic medical center from January 2013 to December 2015. Over 31,000 admissions to the ICUs at two Emory University hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available Medical Information Mart for Intensive Care-III ICU database (validation cohort). Patients who met the Third International Consensus Definitions for Sepsis (Sepsis-3) prior to or within 4 hours of their ICU admission were excluded, resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, respectively. None. High-resolution vital signs time series and electronic medical record data were extracted. A set of 65 features (variables) were calculated on hourly basis and passed to the Artificial Intelligence Sepsis Expert algorithm to predict onset of sepsis in the proceeding T hours (where T = 12, 8, 6, or 4). Artificial Intelligence Sepsis Expert was used to predict onset of sepsis in the proceeding T hours and to produce a list of the most significant contributing factors. For the 12-, 8-, 6-, and 4-hour ahead prediction of sepsis, Artificial Intelligence Sepsis Expert achieved area under the receiver operating characteristic in the range of 0.83-0.85. Performance of the Artificial Intelligence Sepsis Expert on the development and validation cohorts was indistinguishable. Using data available in the ICU in real-time, Artificial Intelligence Sepsis Expert can accurately predict the onset of sepsis in an ICU patient 4-12 hours prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed sepsis prediction model.
New directions for Artificial Intelligence (AI) methods in optimum design
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1989-01-01
Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.
Computers Simulate Human Experts.
ERIC Educational Resources Information Center
Roberts, Steven K.
1983-01-01
Discusses recent progress in artificial intelligence in such narrowly defined areas as medical and electronic diagnosis. Also discusses use of expert systems, man-machine communication problems, novel programing environments (including comments on LISP and LISP machines), and types of knowledge used (factual, heuristic, and meta-knowledge). (JN)
Automation technology for aerospace power management
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1982-01-01
The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.
Conference on Space and Military Applications of Automation and Robotics
NASA Technical Reports Server (NTRS)
1988-01-01
Topics addressed include: robotics; deployment strategies; artificial intelligence; expert systems; sensors and image processing; robotic systems; guidance, navigation, and control; aerospace and missile system manufacturing; and telerobotics.
Artificial Intelligence and CALL.
ERIC Educational Resources Information Center
Underwood, John H.
The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…
A Starter's Guide to Artificial Intelligence.
ERIC Educational Resources Information Center
McConnell, Barry A.; McConnell, Nancy J.
1988-01-01
Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)
Quality assurance paradigms for artificial intelligence in modelling and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oren, T.I.
1987-04-01
New classes of quality assurance concepts and techniques are required for the advanced knowledge-processing paradigms (such as artificial intelligence, expert systems, or knowledge-based systems) and the complex problems that only simulative systems can cope with. A systematization of quality assurance problems as well as examples are given to traditional and cognizant quality assurance techniques in traditional and cognizant modelling and simulation.
System of experts for intelligent data management (SEIDAM)
NASA Technical Reports Server (NTRS)
Goodenough, David G.; Iisaka, Joji; Fung, KO
1993-01-01
A proposal to conduct research and development on a system of expert systems for intelligent data management (SEIDAM) is being developed. CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. at the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.
System of Experts for Intelligent Data Management (SEIDAM)
NASA Technical Reports Server (NTRS)
Goodenough, David G.; Iisaka, Joji; Fung, KO
1992-01-01
It is proposed to conduct research and development on a system of expert systems for intelligent data management (SEIDAM). CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. At the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.
DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1989-01-01
This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.
NASA Technical Reports Server (NTRS)
Prince, Mary Ellen
1987-01-01
The expert system is a computer program which attempts to reproduce the problem-solving behavior of an expert, who is able to view problems from a broad perspective and arrive at conclusions rapidly, using intuition, shortcuts, and analogies to previous situations. Expert systems are a departure from the usual artificial intelligence approach to problem solving. Researchers have traditionally tried to develop general modes of human intelligence that could be applied to many different situations. Expert systems, on the other hand, tend to rely on large quantities of domain specific knowledge, much of it heuristic. The reasoning component of the system is relatively simple and straightforward. For this reason, expert systems are often called knowledge based systems. The report expands on the foregoing. Section 1 discusses the architecture of a typical expert system. Section 2 deals with the characteristics that make a problem a suitable candidate for expert system solution. Section 3 surveys current technology, describing some of the software aids available for expert system development. Section 4 discusses the limitations of the latter. The concluding section makes predictions of future trends.
NASA Astrophysics Data System (ADS)
Gavarieva, K. N.; Simonova, L. A.; Pankratov, D. L.; Gavariev, R. V.
2017-09-01
In article the main component of expert system of process of casting under pressure which consists of algorithms, united in logical models is considered. The characteristics of system showing data on a condition of an object of management are described. A number of logically interconnected steps allowing to increase quality of the received castings is developed
ERIC Educational Resources Information Center
Rushinek, Avi; Rushinek, Sara
1984-01-01
Describes results of a system rating study in which users responded to WPS (word processing software) questions. Study objectives were data collection and evaluation of variables; statistical quantification of WPS's contribution (along with other variables) to user satisfaction; design of an expert system to evaluate WPS; and database update and…
Fuzzy logic and neural networks in artificial intelligence and pattern recognition
NASA Astrophysics Data System (ADS)
Sanchez, Elie
1991-10-01
With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.
Computer Intelligence: Unlimited and Untapped.
ERIC Educational Resources Information Center
Staples, Betsy
1983-01-01
Herbert Simon (Nobel prize-winning economist/professor) expresses his views on human and artificial intelligence, problem solving, inventing concepts, and the future. Includes comments on expert systems, state of the art in artificial intelligence, robotics, and "Bacon," a computer program that finds scientific laws hidden in raw data.…
Artificial Intelligence Is for Real: Undergraduate Students Should Know about It.
ERIC Educational Resources Information Center
Liebowitz, Jay
1988-01-01
Discussion of the possibilities of introducing artificial intelligence (AI) into the undergraduate curriculum highlights the introduction of AI in an introduction to information processing course for business students at George Washington University. Topics discussed include robotics, expert systems prototyping in class, and the interdisciplinary…
Knowledge Engineering (Or, Catching Black Cats in Dark Rooms).
ERIC Educational Resources Information Center
Ruyle, Kim E.
1993-01-01
Discusses knowledge engineering, its relationship to artificial intelligence, and possible applications to developing expert systems, job aids, and technical training. The educational background of knowledge engineers is considered; the role of subject matter experts is described; and examples of flow charts, lists, and pictorial representations…
Formal verification of AI software
NASA Technical Reports Server (NTRS)
Rushby, John; Whitehurst, R. Alan
1989-01-01
The application of formal verification techniques to Artificial Intelligence (AI) software, particularly expert systems, is investigated. Constraint satisfaction and model inversion are identified as two formal specification paradigms for different classes of expert systems. A formal definition of consistency is developed, and the notion of approximate semantics is introduced. Examples are given of how these ideas can be applied in both declarative and imperative forms.
Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?
ERIC Educational Resources Information Center
Burford, Anna M.; Wilson, Harold O.
This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…
Artificial Intelligence and School Library Media Centers.
ERIC Educational Resources Information Center
Young, Robert J.
1990-01-01
Discusses developments in artificial intelligence in terms of their impact on school library media centers and the role of media specialists. Possible uses of expert systems, hypertext, and CD-ROM technologies in school media centers are examined and the challenges presented by these technologies are discussed. Fourteen sources of additional…
Artificial Intelligence and the High School Computer Curriculum.
ERIC Educational Resources Information Center
Dillon, Richard W.
1993-01-01
Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…
NASA Astrophysics Data System (ADS)
Friesdorf, Florian; Pangercic, Dejan; Bubb, Heiner; Beetz, Michael
In mac, an ergonomic dialog-system and algorithms will be developed that enable human experts and companions to be integrated into knowledge gathering and decision making processes of highly complex cognitive systems (e.g. Assistive Household as manifested further in the paper). In this event we propose to join algorithms and methodologies coming from Ergonomics and Artificial Intelligence that: a) make cognitive systems more congenial for non-expert humans, b) facilitate their comprehension by utilizing a high-level expandable control code for human experts and c) augment representation of such cognitive system into “deep representation” obtained through an interaction with human companions.
Schwaibold, M; Schöller, B; Penzel, T; Bolz, A
2001-05-01
We describe a novel approach to the problem of automated sleep stage recognition. The ARTISANA algorithm mimics the behaviour of a human expert visually scoring sleep stages (Rechtschaffen and Kales classification). It comprises a number of interacting components that imitate the stepwise approach of the human expert, and artificial intelligence components. On the basis of parameters extracted at 1-s intervals from the signal curves, artificial neural networks recognize the incidence of typical patterns, e.g. delta activity or K complexes. This is followed by a rule interpretation stage that identifies the sleep stage with the aid of a neuro-fuzzy system while taking account of the context. Validation studies based on the records of 8 patients with obstructive sleep apnoea have confirmed the potential of this approach. Further features of the system include the transparency of the decision-taking process, and the flexibility of the option for expanding the system to cover new patterns and criteria.
Expert systems built by the Expert: An evaluation of OPS5
NASA Technical Reports Server (NTRS)
Jackson, Robert
1987-01-01
Two expert systems were written in OPS5 by the expert, a Ph.D. astronomer with no prior experience in artificial intelligence or expert systems, without the use of a knowledge engineer. The first system was built from scratch and uses 146 rules to check for duplication of scientific information within a pool of prospective observations. The second system was grafted onto another expert system and uses 149 additional rules to estimate the spacecraft and ground resources consumed by a set of prospective observations. The small vocabulary, the IF this occurs THEN do that logical structure of OPS5, and the ability to follow program execution allowed the expert to design and implement these systems with only the data structures and rules of another OPS5 system as an example. The modularity of the rules in OPS5 allowed the second system to modify the rulebase of the system onto which it was grafted without changing the code or the operation of that system. These experiences show that experts are able to develop their own expert systems due to the ease of programming and code reusability in OPS5.
Bae, Jeongyee
2013-04-01
The purpose of this project was to develop an international web-based expert system using principals of artificial intelligence and user-centered design for management of mental health by Korean emigrants. Using this system, anyone can access the system via computer access to the web. Our design process utilized principles of user-centered design with 4 phases: needs assessment, analysis, design/development/testing, and application release. A survey was done with 3,235 Korean emigrants. Focus group interviews were also conducted. Survey and analysis results guided the design of the web-based expert system. With this system, anyone can check their mental health status by themselves using a personal computer. The system analyzes facts based on answers to automated questions, and suggests solutions accordingly. A history tracking mechanism enables monitoring and future analysis. In addition, this system will include intervention programs to promote mental health status. This system is interactive and accessible to anyone in the world. It is expected that this management system will contribute to Korean emigrants' mental health promotion and allow researchers and professionals to share information on mental health.
A Spoken English Recognition Expert System.
1983-09-01
Davidson. "Representation of Knowledge," Handbook of Artificial Intelligence, edited by Avron Barr and Edward A. Felgenbaum. DTIC document number AD...Regents of the University of CalTorni, 1981. 9. Gardner, Anne. "Search," Handbook of Artificial Intelligence, edited by Avron Barr and Edward A...Felgenbaum, DTIC document number AD A074078, 1979. 10. Gardner, Anne,et al. "Natural Language Understanding," Handbook of Artificial Intelligence, edited
Use of artificial intelligence in analytical systems for the clinical laboratory
Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul
1995-01-01
The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
AI Tools Bridge Technology Gap.
ERIC Educational Resources Information Center
Rauch-Hindin, Wendy
1985-01-01
This second part of a report on artificial intelligence focuses on the development of expert systems in a variety of applications, from engineering to science, and details expectations for implementation of these systems. (JN)
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1987-01-01
An approach to analyzing CFD knowledge-based systems is proposed which is based, in part, on the concept of knowledge-level analysis. Consideration is given to the expert cooling fan design system, the PAN AIR knowledge system, grid adaptation, and expert zonal grid generation. These AI/CFD systems demonstrate that current AI technology can be successfully applied to well-formulated problems that are solved by means of classification or selection of preenumerated solutions.
1986-08-01
is then applied in i ABSTRCT : ,.:,.vu knowledge acquisition from those multiple sources for a specific design, for example, an expert system for...67. N 181.1 47.U3 a75 269;9.6 % A. %3 3 Genetic Explanations: For the concept of a genetic explanation (see .d -. above) to apply to the Gaither...Simulation Research Unit (Acock,1985; Baker,1983; Baker,1985). -. MD’,EX srves as an inner shell for apPlying Artificial Intelligence and E:pert System
Survey of Artificial Intelligence and Expert Systems in Library and Information Science Literature.
ERIC Educational Resources Information Center
Hsieh, Cynthia C.; Hall, Wendy
1989-01-01
Examines the definition and history of artificial intelligence (AI) and investigates the body of literature on AI found in "Library Literature" and "Library and Information Science Abstracts." The results reported include the number of articles by year and per journal, and the percentage of articles dealing with library…
NASA Astrophysics Data System (ADS)
Sakaguchi, Hideharu
Do you remember an expert system? I think there are various impressions about the system. For example, some might say “It reminds me of old days”. On the other hand, some might say “It was really troublesome”. About 25 years ago, from late 1980s to the middle of 1990s, when the Showa era was about to change into the Heisei Era, artificial intelligence boomed. Research and development for an expert system which was equipped with expertise and worked as smart as expert, was advanced in various fields. Our company also picked up the system as the new system which covered weak point of conventional computer technology. We started research and development in 1984, and installed an expert system in a SCADA system, which started operating in March 1990 in the Fukuoka Integrated Control Center. In this essay, as an electric power engineer who involved in development at that time, I introduce the situation and travail story about developing an expert system which support restorative actions from the outage and overload condition of power networks.
A Simulation of AI Programming Techniques in BASIC.
ERIC Educational Resources Information Center
Mandell, Alan
1986-01-01
Explains the functions of and the techniques employed in expert systems. Offers the program "The Periodic Table Expert," as a model for using artificial intelligence techniques in BASIC. Includes the program listing and directions for its use on: Tandy 1000, 1200, and 2000; IBM PC; PC Jr; TRS-80; and Apple computers. (ML)
Development of a knowledge acquisition tool for an expert system flight status monitor
NASA Technical Reports Server (NTRS)
Disbrow, J. D.; Duke, E. L.; Regenie, V. A.
1986-01-01
Two of the main issues in artificial intelligence today are knowledge acquisition dion and knowledge representation. The Dryden Flight Research Facility of NASA's Ames Research Center is presently involved in the design and implementation of an expert system flight status monitor that will provide expertise and knowledge to aid the flight systems engineer in monitoring today's advanced high-performance aircraft. The flight status monitor can be divided into two sections: the expert system itself and the knowledge acquisition tool. The knowledge acquisition tool, the means it uses to extract knowledge from the domain expert, and how that knowledge is represented for computer use is discussed. An actual aircraft system has been codified by this tool with great success. Future real-time use of the expert system has been facilitated by using the knowledge acquisition tool to easily generate a logically consistent and complete knowledge base.
Development of a knowledge acquisition tool for an expert system flight status monitor
NASA Technical Reports Server (NTRS)
Disbrow, J. D.; Duke, E. L.; Regenie, V. A.
1986-01-01
Two of the main issues in artificial intelligence today are knowledge acquisition and knowledge representation. The Dryden Flight Research Facility of NASA's Ames Research Center is presently involved in the design and implementation of an expert system flight status monitor that will provide expertise and knowledge to aid the flight systems engineer in monitoring today's advanced high-performance aircraft. The flight status monitor can be divided into two sections: the expert system itself and the knowledge acquisition tool. This paper discusses the knowledge acquisition tool, the means it uses to extract knowledge from the domain expert, and how that knowledge is represented for computer use. An actual aircraft system has been codified by this tool with great success. Future real-time use of the expert system has been facilitated by using the knowledge acquisition tool to easily generate a logically consistent and complete knowledge base.
Automated Test Requirement Document Generation
1987-11-01
DIAGNOSTICS BASED ON THE PRINCIPLES OF ARTIFICIAL INTELIGENCE ", 1984 International Test Conference, 01Oct84, (A3, 3, Cs D3, E2, G2, H2, 13, J6, K) 425...j0O GLOSSARY OF ACRONYMS 0 ABBREVIATION DEFINITION AFSATCOM Air Force Satellite Communication Al Artificial Intelligence ASIC Application Specific...In-Test Equipment (BITE) and AI ( Artificial Intelligence) - Expert Systems - need to be fully applied before a completely automated process can be
NASA Technical Reports Server (NTRS)
Mckee, James W.
1988-01-01
This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.
1989-01-01
completely autonomous system. SOMMIIRE Une exp6rience en intelligence artificielle (IA) en cours au CRDA vise la misc au point 6ventuelle d’un syst~me...identifying vessel classifications from 0aaV Mcute SOAifatwgms is the ultimate goal of Artificial Intelligence (Al) wod ?bhig- eouaduted -*DRAR~ An...Friendly Interface ..................................................................... 4 3 Concepts of Assistant and Autonomous Artificially Intelligent
Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings
NASA Astrophysics Data System (ADS)
Montechiesi, L.; Cocconcelli, M.; Rubini, R.
2016-08-01
In recent years new diagnostics methodologies have emerged, with particular interest into machinery operating in non-stationary conditions. In fact continuous speed changes and variable loads make non-trivial the spectrum analysis. A variable speed means a variable characteristic fault frequency related to the damage that is no more recognizable in the spectrum. To overcome this problem the scientific community proposed different approaches listed in two main categories: model-based approaches and expert systems. In this context the paper aims to present a simple expert system derived from the mechanisms of the immune system called Euclidean Distance Minimization, and its application in a real case of bearing faults recognition. The proposed method is a simplification of the original process, adapted by the class of Artificial Immune Systems, which proved to be useful and promising in different application fields. Comparative results are provided, with a complete explanation of the algorithm and its functioning aspects.
Demonstrating artificial intelligence for space systems - Integration and project management issues
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Difilippo, Denise M.
1990-01-01
As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.
a Study on Satellite Diagnostic Expert Systems Using Case-Based Approach
NASA Astrophysics Data System (ADS)
Park, Young-Tack; Kim, Jae-Hoon; Park, Hyun-Soo
1997-06-01
Many research works are on going to monitor and diagnose diverse malfunctions of satellite systems as the complexity and number of satellites increase. Currently, many works on monitoring and diagnosis are carried out by human experts but there are needs to automate much of the routine works of them. Hence, it is necessary to study on using expert systems which can assist human experts routine work by doing automatically, thereby allow human experts devote their expertise more critical and important areas of monitoring and diagnosis. In this paper, we are employing artificial intelligence techniques to model human experts' knowledge and inference the constructed knowledge. Especially, case-based approaches are used to construct a knowledge base to model human expert capabilities which use previous typical exemplars. We have designed and implemented a prototype case-based system for diagnosing satellite malfunctions using cases. Our system remembers typical failure cases and diagnoses a current malfunction by indexing the case base. Diverse methods are used to build a more user friendly interface which allows human experts can build a knowledge base in as easy way.
ERIC Educational Resources Information Center
Vitale, Michael R.; Romance, Nancy
Adopting perspectives based on applications of artificial intelligence proven in industry, this paper discusses methodological strategies and issues that underlie the development of such software environments. The general concept of an expert system is discussed in the context of its relevance to the problem of increasing the accessibility of…
Alonso-Silverio, Gustavo A; Pérez-Escamirosa, Fernando; Bruno-Sanchez, Raúl; Ortiz-Simon, José L; Muñoz-Guerrero, Roberto; Minor-Martinez, Arturo; Alarcón-Paredes, Antonio
2018-05-01
A trainer for online laparoscopic surgical skills assessment based on the performance of experts and nonexperts is presented. The system uses computer vision, augmented reality, and artificial intelligence algorithms, implemented into a Raspberry Pi board with Python programming language. Two training tasks were evaluated by the laparoscopic system: transferring and pattern cutting. Computer vision libraries were used to obtain the number of transferred points and simulated pattern cutting trace by means of tracking of the laparoscopic instrument. An artificial neural network (ANN) was trained to learn from experts and nonexperts' behavior for pattern cutting task, whereas the assessment of transferring task was performed using a preestablished threshold. Four expert surgeons in laparoscopic surgery, from hospital "Raymundo Abarca Alarcón," constituted the experienced class for the ANN. Sixteen trainees (10 medical students and 6 residents) without laparoscopic surgical skills and limited experience in minimal invasive techniques from School of Medicine at Universidad Autónoma de Guerrero constituted the nonexperienced class. Data from participants performing 5 daily repetitions for each task during 5 days were used to build the ANN. The participants tend to improve their learning curve and dexterity with this laparoscopic training system. The classifier shows mean accuracy and receiver operating characteristic curve of 90.98% and 0.93, respectively. Moreover, the ANN was able to evaluate the psychomotor skills of users into 2 classes: experienced or nonexperienced. We constructed and evaluated an affordable laparoscopic trainer system using computer vision, augmented reality, and an artificial intelligence algorithm. The proposed trainer has the potential to increase the self-confidence of trainees and to be applied to programs with limited resources.
Blindness in designing intelligent systems
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1988-01-01
New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duda, R.O.; Shortliffe, E.H.
1983-04-15
Artificial intelligence, long a topic of basic computer science research, is now being applied to problems of scientific, technical, and commercial interest. Some consultation programs although limited in versatility, have achieved levels of performance rivaling those of human experts. A collateral benefit of this work is the systematization of previously unformalized knowledge in areas such as medical diagnosis and geology. 30 references.
EMMA: The expert system for munition maintenance
NASA Technical Reports Server (NTRS)
Mullins, Barry E.
1988-01-01
Expert Missile Maintenance Aid (EMMA) is a first attempt to enhance maintenance of the tactical munition at the field and depot level by using artificial intelligence (AI) techniques. The ultimate goal of EMMA is to help a novice maintenance technician isolate and diagnose electronic, electromechanical, and mechanical equipment faults to the board/chassis level more quickly and consistently than the best human expert using the best currently available automatic test equipment (ATE). To this end, EMMA augments existing ATE with an expert system that captures the knowledge of design and maintenance experts. The EMMA program is described, including the evaluation of field-level expert system prototypes, the description of several study tasks performed during EMMA, and future plans for a follow-on program. This paper will briefly address several study tasks performed during EMMA. The paper concludes with a discussion of future plans for a follow-on program and other areas of concern.
NASA Technical Reports Server (NTRS)
Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.
1985-01-01
The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.
Expert System Approach For Generating And Evaluating Engine Design Alternatives
NASA Astrophysics Data System (ADS)
Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.
1989-03-01
Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.
Expert systems for C3I. Volume 1. A user's introduction
NASA Astrophysics Data System (ADS)
Clapp, J. A.; Hockett, S. M.; Prelle, M. J.; Tallant, A. M.; Triant, D. D.
1985-10-01
There has been a tremendous burgeoning of interest in artificial intelligence (AI) over the last few years. Investments of commercial and government sponsors reflect a widespread belief that AI is now ready for practical applications. The area of AI currently receiving the greatest attention and investment is expert system technology. Most major high tech corporations have begun to develop expert systems, and many software houses specializing in expert system tools and applications have recently appeared. The defense community is one of the heaviest investors in expert system technology, and within this community one of the application areas receiving greatest attention is C3I. Many ESD programs are now beginning to ask whether expert system applications for C3I are ready for incorporation into ESD-developed systems, and, if so, what are the potential benefits and risks of doing so. This report was prepared to help ESD and MITRE personnel working on acquisition programs to address these issues and to gain a better understanding of what expert systems are all about. The primary intention of this report is to investigate what expert systems are and the advances that are being made in expert system technology for C3I applications. The report begins with a brief tutorial on expert systems, emphasizing how they differ from conventional software systems and what they are best at doing.
Validation of an expert system intended for research in distributed artificial intelligence
NASA Technical Reports Server (NTRS)
Grossner, C.; Lyons, J.; Radhakrishnan, T.
1991-01-01
The expert system discussed in this paper is designed to function as a testbed for research on cooperating expert systems. Cooperating expert systems are members of an organization which dictates the manner in which the expert systems will interact when solving a problem. The Blackbox Expert described in this paper has been constructed using the C Language Integrated Production System (CLIPS), C++, and X windowing environment. CLIPS is embedded in a C++ program which provides objects that are used to maintain the state of the Blackbox puzzle. These objects are accessed by CLIPS rules through user-defined functions calls. The performance of the Blackbox Expert is validated by experimentation. A group of people are asked to solve a set of test cases for the Blackbox puzzle. A metric has been devised which evaluates the 'correctness' of a solution proposed for a test case of Blackbox. Using this metric and the solutions proposed by the humans, each person receives a rating for their ability to solve the Blackbox puzzle. The Blackbox Expert solves the same set of test cases and is assigned a rating for its ability. Then the rating obtained by the Blackbox Expert is compared with the ratings of the people, thus establishing the skill level of our expert system.
Artificial intelligent decision support for low-cost launch vehicle integrated mission operations
NASA Astrophysics Data System (ADS)
Szatkowski, Gerard P.; Schultz, Roger
1988-11-01
The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.
Artificial intelligent decision support for low-cost launch vehicle integrated mission operations
NASA Technical Reports Server (NTRS)
Szatkowski, Gerard P.; Schultz, Roger
1988-01-01
The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.
Handbook for Operating the OWLKNEST Technology
1992-06-01
D . A. (Ed.). (1988). Expert systems [Special issue]. Human Factors, 30(4), 377-443. Byers, J . C., Hill, S. G., Zaklad, A. L., & Christ, R. E. (1989...Sons. Harmon, P., & King, D . (1985). Expert systems: Artificial intelligence in business. New York, NY: John Wiley & Sons. Hill, S. G., Byers, J . C...Plamondon, B. D ., Linton, P. M., Wierwille, W. W., Zaklad, A. L., Bittner, A. C., Jr., & Wherry, R. J ., Jr. (1989). Operator workload: Comprehensive
Space station automation: the role of robotics and artificial intelligence (Invited Paper)
NASA Astrophysics Data System (ADS)
Park, W. T.; Firschein, O.
1985-12-01
Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.
A prototype system for perinatal knowledge engineering using an artificial intelligence tool.
Sokol, R J; Chik, L
1988-01-01
Though several perinatal expert systems are extant, the use of artificial intelligence has, as yet, had minimal impact in medical computing. In this evaluation of the potential of AI techniques in the development of a computer based "Perinatal Consultant," a "top down" approach to the development of a perinatal knowledge base was taken, using as a source for such a knowledge base a 30-page manuscript of a chapter concerning high risk pregnancy. The UNIX utility "style" was used to parse sentences and obtain key words and phrases, both as part of a natural language interface and to identify key perinatal concepts. Compared with the "gold standard" of sentences containing key facts as chosen by the experts, a semiautomated method using a nonmedical speller to identify key words and phrases in context functioned with a sensitivity of 79%, i.e., approximately 8 in 10 key sentences were detected as the basis for PROLOG, rules and facts for the knowledge base. These encouraging results suggest that functional perinatal expert systems may well be expedited by using programming utilities in conjunction with AI tools and published literature.
An Expert System For Tuning Particle-Beam Accelerators
NASA Astrophysics Data System (ADS)
Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.
1989-03-01
We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.
NASA Technical Reports Server (NTRS)
Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry
1989-01-01
This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.
Web-based expert system for foundry pollution prevention
NASA Astrophysics Data System (ADS)
Moynihan, Gary P.
2004-02-01
Pollution prevention is a complex task. Many small foundries lack the in-house expertise to perform these tasks. Expert systems are a type of computer information system that incorporates artificial intelligence. As noted in the literature, they provide a means of automating specialized expertise. This approach may be further leveraged by implementing the expert system on the internet (or world-wide web). This will allow distribution of the expertise to a variety of geographically-dispersed foundries. The purpose of this research is to develop a prototype web-based expert system to support pollution prevention for the foundry industry. The prototype system identifies potential emissions for a specified process, and also provides recommendations for the prevention of these contaminants. The system is viewed as an initial step toward assisting the foundry industry in better meeting government pollution regulations, as well as improving operating efficiencies within these companies.
ERIC Educational Resources Information Center
Sayre, Scott Alan
The ultimate goal of the science of artificial intelligence (AI) is to establish programs that will use algorithmic computer techniques to imitate the heuristic thought processes of humans. Most AI programs, especially expert systems, organize their knowledge into three specific areas: data storage, a rule set, and a control structure. Limitations…
Artificial Intelligence/Robotics Applications to Navy Aircraft Maintenance.
1984-06-01
other automatic machinery such as presses, molding machines , and numerically-controlled machine tools, just as people do. A-36...Robotics Technologies 3 B. Relevant AI Technologies 4 1. Expert Systems 4 2. Automatic Planning 4 3. Natural Language 5 4. Machine Vision...building machines that imitate human behavior. Artificial intelligence is concerned with the functions of the brain, whereas robotics include, in
NASA Technical Reports Server (NTRS)
Stephan, Amy; Erikson, Carol A.
1991-01-01
As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.
Exodus - Distributed artificial intelligence for Shuttle firing rooms
NASA Technical Reports Server (NTRS)
Heard, Astrid E.
1990-01-01
This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.
Knowledge Gateways: The Building Blocks.
ERIC Educational Resources Information Center
Hawkins, Donald T.; And Others
1988-01-01
Discusses the need for knowledge gateway systems to provide access to scattered information and the use of technologies in gateway building, including artificial intelligence and expert systems, networking, online retrieval systems, optical storage, and natural language processing. The status of four existing gateways is described. (20 references)…
NASA Astrophysics Data System (ADS)
Dowell, Laurie; Gary, Jack; Illingworth, Bill; Sargent, Tom
1987-05-01
Gathering information, necessary forms, and financial calculations needed to generate a "capital investment proposal" is an extremely complex and difficult process. The intent of the capital investment proposal is to ensure management that the proposed investment has been thoroughly investigated and will have a positive impact on corporate goals. Meeting this requirement typically takes four or five experts a total of 12 hours to generate a "Capital Package." A Capital Expert System was therefore developed using "Personal Consultant." The completed system is hybrid and as such does not depend solely on rules but incorporates several different software packages that communicate through variables and functions passed from one to another. This paper describes the use of expert system techniques, methodology in building the knowledge base, contexts, LISP functions, data base, and special challenges that had to be overcome to create this system. The Capital Expert System is the successful result of a unique integration of artificial intelligence with business accounting, financial forms generation, and investment proposal expertise.
Real time AI expert system for robotic applications
NASA Technical Reports Server (NTRS)
Follin, John F.
1987-01-01
A computer controlled multi-robot process cell to demonstrate advanced technologies for the demilitarization of obsolete chemical munitions was developed. The methods through which the vision system and other sensory inputs were used by the artificial intelligence to provide the information required to direct the robots to complete the desired task are discussed. The mechanisms that the expert system uses to solve problems (goals), the different rule data base, and the methods for adapting this control system to any device that can be controlled or programmed through a high level computer interface are discussed.
Improved Real-Time Monitoring Using Multiple Expert Systems
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Angelino, Robert; Quan, Alan G.; Veregge, John; Childs, Cynthia
1993-01-01
Monitor/Analyzer of Real-Time Voyager Engineering Link (MARVEL) computer program implements combination of techniques of both conventional automation and artificial intelligence to improve monitoring of complicated engineering system. Designed to support ground-based operations of Voyager spacecraft, also adapted to other systems. Enables more-accurate monitoring and analysis of telemetry, enhances productivity of monitoring personnel, reduces required number of such personnel by performing routine monitoring tasks, and helps ensure consistency in face of turnover of personnel. Programmed in C language and includes commercial expert-system software shell also written in C.
Tools and technologies for expert systems: A human factors perspective
NASA Technical Reports Server (NTRS)
Rajaram, Navaratna S.
1987-01-01
It is widely recognized that technologies based on artificial intelligence (AI), especially expert systems, can make significant contributions to the productivity and effectiveness of operations of information and knowledge intensive organizations such as NASA. At the same time, these being relatively new technologies, there is the problem of transfering technology to key personnel of such organizations. The problems of examining the potential of expert systems and of technology transfer is addressed in the context of human factors applications. One of the topics of interest was the investigation of the potential use of expert system building tools, particularly NEXPERT as a technology transfer medium. Two basic conclusions were reached in this regard. First, NEXPERT is an excellent tool for rapid prototyping of experimental expert systems, but not ideal as a delivery vehicle. Therefore, it is not a substitute for general purpose system implementation languages such a LISP or C. This assertion probably holds for nearly all such tools on the market today. Second, an effective technology transfer mechanism is to formulate and implement expert systems for problems which members of the organization in question can relate to. For this purpose, the LIghting EnGineering Expert (LIEGE) was implemented using NEXPERT as the tool for technology transfer and to illustrate the value of expert systems to the activities of the Man-System Division.
A framework for building real-time expert systems
NASA Technical Reports Server (NTRS)
Lee, S. Daniel
1991-01-01
The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.
Proceedings of the 1984 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
This conference contains papers on artificial intelligence, pattern recognition, and man-machine systems. Topics considered include concurrent minimization, a robot programming system, system modeling and simulation, camera calibration, thermal power plants, image processing, fault diagnosis, knowledge-based systems, power systems, hydroelectric power plants, expert systems, and electrical transients.
Artificial intelligence in medicine.
Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.
2004-01-01
INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167
Artificial intelligence in medicine.
Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J
2004-09-01
Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.
An advanced artificial intelligence tool for menu design.
Khan, Abdus Salam; Hoffmann, Achim
2003-01-01
The computer-assisted menu design still remains a difficult task. Usually knowledge that aids in menu design by a computer is hard-coded and because of that a computerised menu planner cannot handle the menu design problem for an unanticipated client. To address this problem we developed a menu design tool, MIKAS (menu construction using incremental knowledge acquisition system), an artificial intelligence system that allows the incremental development of a knowledge-base for menu design. We allow an incremental knowledge acquisition process in which the expert is only required to provide hints to the system in the context of actual problem instances during menu design using menus stored in a so-called Case Base. Our system incorporates Case-Based Reasoning (CBR), an Artificial Intelligence (AI) technique developed to mimic human problem solving behaviour. Ripple Down Rules (RDR) are a proven technique for the acquisition of classification knowledge from expert directly while they are using the system, which complement CBR in a very fruitful way. This combination allows the incremental improvement of the menu design system while it is already in routine use. We believe MIKAS allows better dietary practice by leveraging a dietitian's skills and expertise. As such MIKAS has the potential to be helpful for any institution where dietary advice is practised.
Sengur, Abdulkadir
2008-03-01
In the last two decades, the use of artificial intelligence methods in medical analysis is increasing. This is mainly because the effectiveness of classification and detection systems have improved a great deal to help the medical experts in diagnosing. In this work, we investigate the use of principal component analysis (PCA), artificial immune system (AIS) and fuzzy k-NN to determine the normal and abnormal heart valves from the Doppler heart sounds. The proposed heart valve disorder detection system is composed of three stages. The first stage is the pre-processing stage. Filtering, normalization and white de-noising are the processes that were used in this stage. The feature extraction is the second stage. During feature extraction stage, wavelet packet decomposition was used. As a next step, wavelet entropy was considered as features. For reducing the complexity of the system, PCA was used for feature reduction. In the classification stage, AIS and fuzzy k-NN were used. To evaluate the performance of the proposed methodology, a comparative study is realized by using a data set containing 215 samples. The validation of the proposed method is measured by using the sensitivity and specificity parameters; 95.9% sensitivity and 96% specificity rate was obtained.
Lumb, A.M.; McCammon, R.B.; Kittle, J.L.
1994-01-01
Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.
Expert system application education project
NASA Technical Reports Server (NTRS)
Gonzelez, Avelino J.; Ragusa, James M.
1988-01-01
Artificial intelligence (AI) technology, and in particular expert systems, has shown potential applicability in many areas of operation at the Kennedy Space Center (KSC). In an era of limited resources, the early identification of good expert system applications, and their segregation from inappropriate ones can result in a more efficient use of available NASA resources. On the other hand, the education of students in a highly technical area such as AI requires an extensive hands-on effort. The nature of expert systems is such that proper sample applications for the educational process are difficult to find. A pilot project between NASA-KSC and the University of Central Florida which was designed to simultaneously address the needs of both institutions at a minimum cost. This project, referred to as Expert Systems Prototype Training Project (ESPTP), provided NASA with relatively inexpensive development of initial prototype versions of certain applications. University students likewise benefit by having expertise on a non-trivial problem accessible to them at no cost. Such expertise is indispensible in a hands-on training approach to developing expert systems.
Deciding alternative left turn signal phases using expert systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E.C.P.
1988-01-01
The Texas Transportation Institute (TTI) conducted a study to investigate the feasibility of applying artificial intelligence (AI) technology and expert systems (ES) design concepts to a traffic engineering problem. Prototype systems were developed to analyze user input, evaluate various reasoning, and suggest suitable left turn phase treatment. These systems were developed using AI programming tools on IBM PC/XT/AT-compatible microcomputers. Two slightly different systems were designed using AI languages; another was built with a knowledge engineering tool. These systems include the PD PROLOG and TURBO PROLOG AI programs, as well as the INSIGHT Production Rule Language.
Distribution Planning: An Integration of Constraint Satisfaction & Heuristic Search Techniques
1990-01-01
Proceedings of the Symposium on Aritificial Intelligence in ~~litary Logistics, Arlington, VA: American Defense Preparedness Assoc. pp. 177-182...dynamic changes, too many variables, and lack pf planning time. The Human Engineeri n ~ Laboratory (HEL) is developing artificial intelligence (AI...first attempt. The field of artificial intelligence includes a variety of knowledge-based approaches. Most widely known are Expert Systems, that are
NASA Astrophysics Data System (ADS)
Sargis, J. C.; Gray, W. A.
1999-03-01
The APWS allows user friendly access to several legacy systems which would normally each demand domain expertise for proper utilization. The generalized model, including objects, classes, strategies and patterns is presented. The core components of the APWS are the Microsoft Windows 95 Operating System, Oracle, Oracle Power Objects, Artificial Intelligence tools, a medical hyperlibrary and a web site. The paper includes a discussion of how could be automated by taking advantage of the expert system, object oriented programming and intelligent relational database tools within the APWS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanham, R.; Vogt, W.G.; Mickle, M.H.
1986-01-01
This book presents the papers given at a conference on computerized simulation. Topics considered at the conference included expert systems, modeling in electric power systems, power systems operating strategies, energy analysis, a linear programming approach to optimum load shedding in transmission systems, econometrics, simulation in natural gas engineering, solar energy studies, artificial intelligence, vision systems, hydrology, multiprocessors, and flow models.
The Roles of the Future Library.
ERIC Educational Resources Information Center
Murr, Lawrence E.; Williams, James B.
1987-01-01
Discusses emerging roles for the library and librarian, including services in the following areas: (1) special collection management and reference; (2) information systems; (3) expert systems; (4) electronic publishing; (5) telecommunications networking; and (6) computer support. The technologies of artificial intelligence, graphic imaging,…
Intelligent Information Retrieval: An Introduction.
ERIC Educational Resources Information Center
Gauch, Susan
1992-01-01
Discusses the application of artificial intelligence to online information retrieval systems and describes several systems: (1) CANSEARCH, from MEDLINE; (2) Intelligent Interface for Information Retrieval (I3R); (3) Gausch's Query Reformulation; (4) Environmental Pollution Expert (EP-X); (5) PLEXUS (gardening); and (6) SCISOR (corporate…
A Knowledge-Based System Developer for aerospace applications
NASA Technical Reports Server (NTRS)
Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.
1993-01-01
A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.
Expertise and reasoning with possibility: An explanation of modal logic and expert systems
NASA Technical Reports Server (NTRS)
Rochowiak, Daniel
1988-01-01
Recently systems of modal reasoning have been brought to the foreground of artificial intelligence studies. The intuitive idea of research efforts in this area is that in addition to the actual world in which sentences have certain truth values there are other worlds in which those sentences have different truth values. Such alternative worlds can be considered as possible worlds, and an agent may or may not have access to some or all of them. This approach to reasoning can be valuable in extending the expert system paradigm. Using the scheme of reasoning proposed by Toulmin, Reike and Janick and the modal system T, a scheme is proposed for expert reasoning that mitigates some of the criticisms raised by Schank and Nickerson.
Intelligent hypertext manual development for the Space Shuttle hazardous gas detection system
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Hoyt, W. Andes
1989-01-01
This research is designed to utilize artificial intelligence (AI) technology to increase the efficiency of personnel involved with monitoring the space shuttle hazardous gas detection systems at the Marshall Space Flight Center. The objective is to create a computerized service manual in the form of a hypertext and expert system which stores experts' knowledge and experience. The resulting Intelligent Manual will assist the user in interpreting data timely, in identifying possible faults, in locating the applicable documentation efficiently, in training inexperienced personnel effectively, and updating the manual frequently as required.
TDAS: The Thermal Expert System (TEXSYS) data acquisition system
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Healey, Kathleen J.
1987-01-01
As part of the NASA Systems Autonomy Demonstration Project, a thermal expert system (TEXSYS) is being developed. TEXSYS combines a fast real time control system, a sophisticated human interface for the user and several distinct artificial intelligence techniques in one system. TEXSYS is to provide real time control, operations advice and fault detection, isolation and recovery capabilities for the space station Thermal Test Bed (TTB). TEXSYS will be integrated with the TTB and act as an intelligent assistant to thermal engineers conducting TTB tests and experiments. The results are presented from connecting the real time controller to the knowledge based system thereby creating an integrated system. Special attention will be paid to the problem of filtering and interpreting the raw, real time data and placing the important values into the knowledge base of the expert system.
The blackboard model - A framework for integrating multiple cooperating expert systems
NASA Technical Reports Server (NTRS)
Erickson, W. K.
1985-01-01
The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.
The role of automation and artificial intelligence
NASA Astrophysics Data System (ADS)
Schappell, R. T.
1983-07-01
Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.
First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)
NASA Technical Reports Server (NTRS)
Griffin, Sandy (Editor)
1987-01-01
Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.
Evaluating neural networks and artificial intelligence systems
NASA Astrophysics Data System (ADS)
Alberts, David S.
1994-02-01
Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.
Space Station Mission Planning System (MPS) development study. Volume 2
NASA Technical Reports Server (NTRS)
Klus, W. J.
1987-01-01
The process and existing software used for Spacelab payload mission planning were studied. A complete baseline definition of the Spacelab payload mission planning process was established, along with a definition of existing software capabilities for potential extrapolation to the Space Station. This information was used as a basis for defining system requirements to support Space Station mission planning. The Space Station mission planning concept was reviewed for the purpose of identifying areas where artificial intelligence concepts might offer substantially improved capability. Three specific artificial intelligence concepts were to be investigated for applicability: natural language interfaces; expert systems; and automatic programming. The advantages and disadvantages of interfacing an artificial intelligence language with existing FORTRAN programs or of converting totally to a new programming language were identified.
Artificial intelligence for turboprop engine maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-01-01
Long-term maintenance operations, causing the unit to out of action, may seem economical - but they result in reduced operating readiness. Offsetting that concern, careless, hurried maintenance reduces margins of safety and reliability. Any tool that improves maintenance without causing a sharp increase in cost is valuable. Artificial intelligence (AI) is one of the tools. Expert system and neural networks are two different areas of AI that show promise for turboprop engine maintenance.
NASA Astrophysics Data System (ADS)
Cory, J. F., Jr.; Gordon, J. L.; Miyoshi, T.; Suzuki, K.
1989-06-01
Papers are presented on the use of microcomputers, supercomputers, and workstations in solid and structural mechanics. Artificial intelligence technology, the development and use of expert systems, and research in the area of robotics are discussed. Attention is also given to probabilistic finite element and boundary element methods and acoustic sensing.
[Artificial intelligence--the knowledge base applied to nephrology].
Sancipriano, G P
2005-01-01
The idea that efficacy efficiency, and quality in medicine could not be reached without sorting the huge knowledge of medical and nursing science is very common. Engineers and computer scientists have developed medical software with great prospects for success, but currently these software applications are not so useful in clinical practice. The medical doctor and the trained nurse live the 'information age' in many daily activities, but the main benefits are not so widespread in working activities. Artificial intelligence and, particularly, export systems charm health staff because of their potential. The first part of this paper summarizes the characteristics of 'weak artificial intelligence' and of expert systems important in clinical practice. The second part discusses medical doctors' requirements and the current nephrologic knowledge bases available for artificial intelligence development.
Application of artificial intelligence to the management of urological cancer.
Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C
2007-10-01
Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.
Microcomputer-Based Intelligent Tutoring Systems: An Assessment.
ERIC Educational Resources Information Center
Schaffer, John William
Computer-assisted instruction, while familiar to most teachers, has failed to become an effective self-motivating instructional tool. Developments in artificial intelligence, however, have provided new and better tools for exploring human knowledge acquisition and utilization. Expert system technology represents one of the most promising of these…
Klonoff, David C; Zimliki, Charles L; Stevens, LCDR Alan; Beaston, Patricia; Pinkos, Arleen; Choe, Sally Y; Arreaza-Rubín, Guillermo; Heetderks, William
2011-01-01
The Food and Drug Administration in collaboration with the National Institutes of Health presented a public workshop to facilitate medical device innovation in the development of the artificial pancreas (or autonomous system) for the treatment of diabetes mellitus on November 10, 2010 in Gaithersburg, Maryland. The purpose of the workshop was to discuss four aspects of artificial pancreas research and development, including: (1) the current state of device systems for autonomous systems for the treatment of diabetes mellitus; (2) challenges in developing this expert device system using existing technology; (3) clinical expectations for these systems; and (4) development plans for the transition of this device system toward an outpatient setting. The patients discussed how clinical science, system components, and regulatory policies will all need to harmonize in order to achieve the goal of seeing an AP product brought forward to the marketplace for patients to use. PMID:21722597
The application of artificial intelligence techniques to large distributed networks
NASA Technical Reports Server (NTRS)
Dubyah, R.; Smith, T. R.; Star, J. L.
1985-01-01
Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.
Exploiting expert systems in cardiology: a comparative study.
Economou, George-Peter K; Sourla, Efrosini; Stamatopoulou, Konstantina-Maria; Syrimpeis, Vasileios; Sioutas, Spyros; Tsakalidis, Athanasios; Tzimas, Giannis
2015-01-01
An improved Adaptive Neuro-Fuzzy Inference System (ANFIS) in the field of critical cardiovascular diseases is presented. The system stems from an earlier application based only on a Sugeno-type Fuzzy Expert System (FES) with the addition of an Artificial Neural Network (ANN) computational structure. Thus, inherent characteristics of ANNs, along with the human-like knowledge representation of fuzzy systems are integrated. The ANFIS has been utilized into building five different sub-systems, distinctly covering Coronary Disease, Hypertension, Atrial Fibrillation, Heart Failure, and Diabetes, hence aiding doctors of medicine (MDs), guide trainees, and encourage medical experts in their diagnoses centering a wide range of Cardiology. The Fuzzy Rules have been trimmed down and the ANNs have been optimized in order to focus into each particular disease and produce results ready-to-be applied to real-world patients.
Accelerating artificial intelligence with reconfigurable computing
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw
Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.
PC graphics generation and management tool for real-time applications
NASA Technical Reports Server (NTRS)
Truong, Long V.
1992-01-01
A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.
Developing Software For Monitoring And Diagnosis
NASA Technical Reports Server (NTRS)
Edwards, S. J.; Caglayan, A. K.
1993-01-01
Expert-system software shell produces executable code. Report discusses beginning phase of research directed toward development of artificial intelligence for real-time monitoring of, and diagnosis of faults in, complicated systems of equipment. Motivated by need for onboard monitoring and diagnosis of electronic sensing and controlling systems of advanced aircraft. Also applicable to such equipment systems as refineries, factories, and powerplants.
Development of an intelligent hypertext system for wind tunnel testing
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes
1991-01-01
This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.
Building validation tools for knowledge-based systems
NASA Technical Reports Server (NTRS)
Stachowitz, R. A.; Chang, C. L.; Stock, T. S.; Combs, J. B.
1987-01-01
The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification.
The role of networks and artificial intelligence in nanotechnology design and analysis.
Hudson, D L; Cohen, M E
2004-05-01
Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.
Integrating Human and Computer Intelligence. Technical Report No. 32.
ERIC Educational Resources Information Center
Pea, Roy D.
This paper explores the thesis that advances in computer applications and artificial intelligence have important implications for the study of development and learning in psychology. Current approaches to the use of computers as devices for problem solving, reasoning, and thinking--i.e., expert systems and intelligent tutoring systems--are…
Weather forecasting expert system study
NASA Technical Reports Server (NTRS)
1985-01-01
Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.
Fuzzy neural network methodology applied to medical diagnosis
NASA Technical Reports Server (NTRS)
Gorzalczany, Marian B.; Deutsch-Mcleish, Mary
1992-01-01
This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, S.C.; Woolf, B.
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose is to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress that has been made in the fourth year of the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge base maintenance, hardwaremore » architectures for very large systems, knowledge-based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the recognition of plans expressed in natural language, followed by their discussion and use.« less
Fuzzy Expert System for Heart Attack Diagnosis
NASA Astrophysics Data System (ADS)
Hassan, Norlida; Arbaiy, Nureize; Shah, Noor Aziyan Ahmad; Afizah Afif@Afip, Zehan
2017-08-01
Heart attack is one of the serious illnesses and reported as the main killer disease. Early prevention is significant to reduce the risk of having the disease. The prevention efforts can be strengthen through awareness and education about risk factor and healthy lifestyle. Therefore the knowledge dissemination is needed to play role in order to distribute and educate public in health care management and disease prevention. Since the knowledge dissemination in medical is important, there is a need to develop a knowledge based system that can emulate human intelligence to assist decision making process. Thereby, this study utilized hybrid artificial intelligence (AI) techniques to develop a Fuzzy Expert System for Diagnosing Heart Attack Disease (HAD). This system integrates fuzzy logic with expert system, which helps the medical practitioner and people to predict the risk and as well as diagnosing heart attack based on given symptom. The development of HAD is expected not only providing expert knowledge but potentially become one of learning resources to help citizens to develop awareness about heart-healthy lifestyle.
Third Annual Workshop on Space Operations Automation and Robotics (SOAR 1989)
NASA Technical Reports Server (NTRS)
Griffin, Sandy (Editor)
1990-01-01
Papers presented at the Third Annual Workshop on Space Operations Automation and Robotics (SOAR '89), hosted by the NASA Lyndon B. Johnson Space Center at Houston, Texas, on July 25 to 27, 1989, are given. Approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Also held were panel discussions on Air Force/NASA Artificial Intelligence Overview and Expert System Verification and Validation.
Hybrid Architectures and Their Impact on Intelligent Design
NASA Technical Reports Server (NTRS)
Kandel, Abe
1996-01-01
In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.
An evaluation of Ada for Al applications
NASA Technical Reports Server (NTRS)
Wallace, David R.
1986-01-01
Expert system technology seems to be the most promising type of Artificial Intelligence (AI) application for Ada. An expert system implemented with an expert system shell provides a highly structured approach that fits well with the structured approach found in Ada systems. The current commercial expert system shells use Lisp. In this highly structured situation a shell could be built that used Ada just as well. On the other hand, if it is necessary to deal with some AI problems that are not suited to expert systems, the use of Ada becomes more problematical. Ada was not designed as an AI development language, and is not suited to that. It is possible that an application developed in say, Common Lisp could be translated to Ada for actual use in a particular application, but this could be difficult. Some standard Ada packages could be developed to make such a translation easier. If the most general AI programs need to be dealt with, a Common Lisp system integrated with the Ada Environment is probably necessary. Aside from problems with language features, Ada, by itself, is not well suited to the prototyping and incremental development that is well supported by Lisp.
Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san
2011-05-30
The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodionov, S. N.; Martin, J. H.
1999-07-01
A novel approach to climate forecasting on an interannual time scale is described. The approach is based on concepts and techniques from artificial intelligence and expert systems. The suitability of this approach to climate diagnostics and forecasting problems and its advantages compared with conventional forecasting techniques are discussed. The article highlights some practical aspects of the development of climatic expert systems (CESs) and describes an implementation of such a system for the North Atlantic (CESNA). Particular attention is paid to the content of CESNA's knowledge base and those conditions that make climatic forecasts one to several years in advance possible. A detailed evaluation of the quality of the experimental real-time forecasts made by CESNA for the winters of 1995-1996, 1996-1997 and 1997-1998 are presented.
Knowledge-based diagnosis for aerospace systems
NASA Technical Reports Server (NTRS)
Atkinson, David J.
1988-01-01
The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.
Conversion of the CALAP (Computer Aided Landform Analysis Program) Program from FORTRAN to DUCK.
1986-09-01
J’ DUCK artificial intelligence logic programming 20 AVrACT (Cthm m reerse stabN ameeaaW idelfr by block mbae) An expert advisor program named CALAP...original program was developed in FORTRAN on an HP- 1000, a mirticomputer. CALAP was reprogrammed in an Artificial Intelligence (AI) language called DUCK...the Artificial Intelligence Center, U.S. Army Engineer Topographic Laboratory, Fort Belvoir. Z" I. S. n- Page 1 I. Introduction An expert advisor
Raising the AIQ of the Space Station
NASA Technical Reports Server (NTRS)
Lum, Henry; Heer, Ewald
1987-01-01
Expert systems and robotics technologies are to be significantly advanced during the Space Station program. Artificial intelligence systems (AI) on the Station will include 'scars', which will permit upgrading the AI capabilities as the Station evolves to autonomy. NASA-Ames is managing the development of the AI systems through a series of demonstrations, the first, controlling a single subsystem, to be performed in 1988. The capabilities being integrated into the first demonstration are described; however, machine learning and goal-driven natural language understanding will not reach a prototype stage until the mid-1990s. Steps which will be taken to endow the computer systems with the ability to move from heuristic reasoning to factual knowledge, i.e., learning from experience, are explored. It is noted that the development of Space Station expert systems depends on the development of experts in Station operations, which will not happen until the Station has been used extensively by crew members.
Artificial intelligence techniques for ground test monitoring of rocket engines
NASA Technical Reports Server (NTRS)
Ali, Moonis; Gupta, U. K.
1990-01-01
An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.
Expert Causal Reasoning and Explanation.
ERIC Educational Resources Information Center
Kuipers, Benjamin
The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…
Living Design Memory: Framework, Implementation, Lessons Learned.
ERIC Educational Resources Information Center
Terveen, Loren G.; And Others
1995-01-01
Discusses large-scale software development and describes the development of the Designer Assistant to improve software development effectiveness. Highlights include the knowledge management problem; related work, including artificial intelligence and expert systems, software process modeling research, and other approaches to organizational memory;…
Rocky Mountain High-Tech: LITA's Denver Conference.
ERIC Educational Resources Information Center
Flagg, Gordon
1992-01-01
Reports on the third national conference of the American Library Association's Library and Information Technology Association, which was held September 13-16, 1992, in Denver, Colorado. Program highlights are summarized, including virtual communities, virtual reality, the electronic library, artificial intelligence and expert-systems, navigating…
Fourth Conference on Artificial Intelligence for Space Applications
NASA Technical Reports Server (NTRS)
Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)
1988-01-01
Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.
NASA Technical Reports Server (NTRS)
1994-01-01
C Language Integrated Production System (CLIPS), a NASA-developed software shell for developing expert systems, has been embedded in a PC-based expert system for training oil rig personnel in monitoring oil drilling. Oil drilling rigs if not properly maintained for possible blowouts pose hazards to human life, property and the environment may be destroyed. CLIPS is designed to permit the delivery of artificial intelligence on computer. A collection of rules is set up and, as facts become known, these rules are applied. In the Well Site Advisor, CLIPS provides the capability to accurately process, predict and interpret well data in a real time mode. CLIPS was provided to INTEQ by COSMIC.
Development of a Prototype H-46 Helicopter Diagnostic Expert System.
1987-09-01
SQUADRON MAINTEN\\NCE: CURRENT PROCESS AND CA D S INTEG R ,ATIO N ........................................ 14 A. MAINTENANCE DATA SYSTEM...increasce the effectiveness of the maintenance process should enhance the ability of achieving :hee objectives. Artificial intelligence techniques offer a...completeiy validated. G. ORGANIZATION OF STUDY Chapter II contains a description of the Naval Aviation Maintenance Program’s Maintenance Data System (MDS
Implementation of artificial intelligence rules in a data base management system
NASA Technical Reports Server (NTRS)
Feyock, S.
1986-01-01
The intelligent front end prototype was transformed into a RIM-integrated system. A RIM-based expert system was written which demonstrated the developed capability. The use of rules to produce extensibility of the intelligent front end, including the concept of demons and rule manipulation rules were investigated. Innovative approaches such as syntax programming were to be considered.
1992-09-01
David King. Expert Systems: Artificial Intelligence in Bins. New York: John Wiley and Sons Inc., 1985. 10. Hayes-Roth, Frederick, Donald A. Waterman...Technology (AU), Wright-Patterson AFB, OH, July 1992. 26. Simmons, Asa B. and Steven G. Chappel. " Artificial Intelligence - Defini- tion and Practice," IEEE...information on treatment standards is through the publication of the CERCLA Compane With Other Laws Manual and the Co endium of CERCIA ARARs Fact Sheets
1985-09-01
technology issue is expected to take years of research (20:11). According to Lt Gen James A. Abrahamson, director of the SDI organization heading up...from occurring (14:79). A Wqhite House Panel known as the (Dr. James ) Fletcher Defensive Technologies Study Group has pointed out that, in the past...Handbook of Artificial Intelligence. Volume I. Los Altos CA: WilliamKaufmann Inc., 1981. 5. Basden , Andrew. "On the Application of Expert Systems,N
An expert system based software sizing tool, phase 2
NASA Technical Reports Server (NTRS)
Friedlander, David
1990-01-01
A software tool was developed for predicting the size of a future computer program at an early stage in its development. The system is intended to enable a user who is not expert in Software Engineering to estimate software size in lines of source code with an accuracy similar to that of an expert, based on the program's functional specifications. The project was planned as a knowledge based system with a field prototype as the goal of Phase 2 and a commercial system planned for Phase 3. The researchers used techniques from Artificial Intelligence and knowledge from human experts and existing software from NASA's COSMIC database. They devised a classification scheme for the software specifications, and a small set of generic software components that represent complexity and apply to large classes of programs. The specifications are converted to generic components by a set of rules and the generic components are input to a nonlinear sizing function which makes the final prediction. The system developed for this project predicted code sizes from the database with a bias factor of 1.06 and a fluctuation factor of 1.77, an accuracy similar to that of human experts but without their significant optimistic bias.
Model authoring system for fail safe analysis
NASA Technical Reports Server (NTRS)
Sikora, Scott E.
1990-01-01
The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.
A scheduling and diagnostic system for scientific satellite GEOTAIL using expert system
NASA Technical Reports Server (NTRS)
Nakatani, I; Hashimoto, M.; Mukai, T.; Obara, T.; Nishigori, N.
1994-01-01
The Intelligent Satellite Control Software (ISACS) for the geoMagnetic tail observation satellite named GEOTAIL (launched in July 1992) has been successfully developed. ISACS has made it possible by applying Artificial Intelligence (AI) technology including an expert system to autonomously generate a tracking schedule, which originally used to be conducted manually. Using ISACS, a satellite operator can generate a maximum four day period of stored command stream autonomously and can easily confirm its safety. The ISACS system has another function -- to diagnose satellite troubles and to suggest necessary remedies. The workload of satellite operators has drastically been reduced since ISACS has been introduced into the operations of GEOTAIL.
University of Tennessee Center for Space Transportation and Applied Research (CSTAR)
NASA Astrophysics Data System (ADS)
1995-10-01
The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.
University of Tennessee Center for Space Transportation and Applied Research (CSTAR)
NASA Technical Reports Server (NTRS)
1995-01-01
The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.
Knowledge Representation: A Brief Review.
ERIC Educational Resources Information Center
Vickery, B. C.
1986-01-01
Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…
Brasil, L M; de Azevedo, F M; Barreto, J M
2001-09-01
This paper proposes a hybrid expert system (HES) to minimise some complexity problems pervasive to the artificial intelligence such as: the knowledge elicitation process, known as the bottleneck of expert systems; the model choice for knowledge representation to code human reasoning; the number of neurons in the hidden layer and the topology used in the connectionist approach; the difficulty to obtain the explanation on how the network arrived to a conclusion. Two algorithms applied to developing of HES are also suggested. One of them is used to train the fuzzy neural network and the other to obtain explanations on how the fuzzy neural network attained a conclusion. To overcome these difficulties the cognitive computing was integrated to the developed system. A case study is presented (e.g. epileptic crisis) with the problem definition and simulations. Results are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, K.E.
1987-12-01
Expert systems are artificial intelligence programs that solve problems requiring large amounts of heuristic knowledge, based on years of experience and tradition. Production systems are domain-independent tools that support the development of rule-based expert systems. This document describes a general purpose production system known as HERB. This system was developed to support the programming of expert systems using hierarchically structured rule bases. HERB encourages the partitioning of rules into multiple rule bases and supports the use of multiple conflict resolution strategies. Multiple rule bases can also be placed on a system stack and simultaneously searched during each interpreter cycle. Bothmore » backward and forward chaining rules are supported by HERB. The condition portion of each rule can contain both patterns, which are matched with facts in a data base, and LISP expressions, which are explicitly evaluated in the LISP environment. Properties of objects can also be stored in the HERB data base and referenced within the scope of each rule. This document serves both as an introduction to the principles of LISP-based production systems and as a user's manual for the HERB system. 6 refs., 17 figs.« less
NASA Technical Reports Server (NTRS)
Butler, G. F.; Graves, A. T.; Disbrow, J. D.; Duke, E. L.
1989-01-01
A joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on knowledge-based systems has been agreed. Under the agreement, a flight status monitor knowledge base developed at Ames-Dryden has been implemented using the real-time AI (artificial intelligence) toolkit MUSE, which was developed in the UK. Here, the background to the cooperation is described and the details of the flight status monitor and a prototype MUSE implementation are presented. It is noted that the capabilities of the expert-system flight status monitor to monitor data downlinked from the flight test aircraft and to generate information on the state and health of the system for the test engineers provides increased safety during flight testing of new systems. Furthermore, the expert-system flight status monitor provides the systems engineers with ready access to the large amount of information required to describe a complex aircraft system.
Translating expert system rules into Ada code with validation and verification
NASA Technical Reports Server (NTRS)
Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam
1991-01-01
The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.
Expert Systems Based Clinical Assessment and Tutorial Project.
ERIC Educational Resources Information Center
Papa, Frank; Shores, Jay
This project at the Texas College of Osteopathic Medicine (Fort Worth) evaluated the use of an artificial-intelligence-derived measure, "Knowledge-Based Inference Tool" (KBIT), as the basis for assessing medical students' diagnostic capabilities and designing instruction to improve diagnostic skills. The instrument was designed to…
Rule-Based Relaxation of Reference Identification Failures. Technical Report No. 396.
ERIC Educational Resources Information Center
Goodman, Bradley A.
In a step toward creating a robust natural language understanding system which detects and avoids miscommunication, this artificial intelligence research report provides a taxonomy of miscommunication problems that arise in expert-apprentice dialogues (including misunderstandings, wrong communication, and bad analogies), and proposes a flexible…
Intelligent Frameworks for Instructional Design.
ERIC Educational Resources Information Center
Spector, J. Michael; And Others
Many researchers are attempting to develop automated instructional development systems to guide subject matter experts through the lengthy and difficult process of courseware development. Because the targeted users often lack instructional design expertise, a great deal of emphasis has been placed on the use of artificial intelligence (AI) to…
Clips as a knowledge based language
NASA Technical Reports Server (NTRS)
Harrington, James B.
1987-01-01
CLIPS is a language for writing expert systems applications on a personal or small computer. Here, the CLIPS programming language is described and compared to three other artificial intelligence (AI) languages (LISP, Prolog, and OPS5) with regard to the processing they provide for the implementation of a knowledge based system (KBS). A discussion is given on how CLIPS would be used in a control system.
A knowledge-based decision support system for payload scheduling
NASA Technical Reports Server (NTRS)
Floyd, Stephen; Ford, Donnie
1988-01-01
The role that artificial intelligence/expert systems technologies play in the development and implementation of effective decision support systems is illustrated. A recently developed prototype system for supporting the scheduling of subsystems and payloads/experiments for NASA's Space Station program is presented and serves to highlight various concepts. The potential integration of knowledge based systems and decision support systems which has been proposed in several recent articles and presentations is illustrated.
Optimization of knowledge-based systems and expert system building tools
NASA Technical Reports Server (NTRS)
Yasuda, Phyllis; Mckellar, Donald
1993-01-01
The objectives of the NASA-AMES Cooperative Agreement were to investigate, develop, and evaluate, via test cases, the system parameters and processing algorithms that constrain the overall performance of the Information Sciences Division's Artificial Intelligence Research Facility. Written reports covering various aspects of the grant were submitted to the co-investigators for the grant. Research studies concentrated on the field of artificial intelligence knowledge-based systems technology. Activities included the following areas: (1) AI training classes; (2) merging optical and digital processing; (3) science experiment remote coaching; (4) SSF data management system tests; (5) computer integrated documentation project; (6) conservation of design knowledge project; (7) project management calendar and reporting system; (8) automation and robotics technology assessment; (9) advanced computer architectures and operating systems; and (10) honors program.
Chikh, Mohamed Amine; Saidi, Meryem; Settouti, Nesma
2012-10-01
The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disease dataset used in our work is retrieved from UCI machine learning repository. The performances of the AIRS2 and MAIRS2 are evaluated regarding classification accuracy, sensitivity and specificity values. The highest classification accuracy obtained when applying the AIRS2 and MAIRS2 using 10-fold cross-validation was, respectively 82.69% and 89.10%.
Some Aspects of Artificial Bodies Stabilization and Orientation
NASA Astrophysics Data System (ADS)
Samardzija, B.; Segan, S.
2012-12-01
To increase energy resources, and thus the overall possibility of modern cosmic aircrafts, power supply was expanded by adding the (moving) wing area and antenna with complex orientation and design. It is clear that all of this, when there is a need to conduct a very accurate account of orbital elements of satellites, is a nightmare for the experts and scientists. In this paper we will give special attention to the system of stabilization and orientation of satellites, as well as to the importance of gyroscopic effects and the navigation systems of the artificial celestial bodies. Development of modified practical solutions based on knowledge and experience with gyroscopic effects is immeasurable.
XBONE: a hybrid expert system for supporting diagnosis of bone diseases.
Hatzilygeroudis, I; Vassilakos, P J; Tsakalidis, A
1997-01-01
In this paper, XBONE, a hybrid medical expert system that supports diagnosis of bone diseases is presented. Diagnosis is based on various patient data and is performed in two stages. In the early stage, diagnosis is based on demographic and clinical data of the patient, whereas in the late stage it is mainly based on nuclear medicine image data. Knowledge is represented via an integrated formalism that combines production rules and the Adaline artificial neural unit. Each condition of a rule is assigned a number, called its significance factor, representing its significance in drawing the conclusion of the rule. This results in better representation, reduction of the knowledge base size and gives the system learning capabilities.
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor); Dent, Carolyn P. (Editor)
1989-01-01
Theoretical and implementation aspects of AI systems for space applications are discussed in reviews and reports. Sections are devoted to planning and scheduling, fault isolation and diagnosis, data management, modeling and simulation, and development tools and methods. Particular attention is given to a situated reasoning architecture for space repair and replace tasks, parallel plan execution with self-processing networks, the electrical diagnostics expert system for Spacelab life-sciences experiments, diagnostic tolerance for missing sensor data, the integration of perception and reasoning in fast neural modules, a connectionist model for dynamic control, and applications of fuzzy sets to the development of rule-based expert systems.
NASA Technical Reports Server (NTRS)
Wu, Cathy; Taylor, Pam; Whitson, George; Smith, Cathy
1990-01-01
This paper describes the building of a corn disease diagnostic expert system using CLIPS, and the development of a neural expert system using the fact representation method of CLIPS for automated knowledge acquisition. The CLIPS corn expert system diagnoses 21 diseases from 52 symptoms and signs with certainty factors. CLIPS has several unique features. It allows the facts in rules to be broken down to object-attribute-value (OAV) triples, allows rule-grouping, and fires rules based on pattern-matching. These features combined with the chained inference engine result to a natural user query system and speedy execution. In order to develop a method for automated knowledge acquisition, an Artificial Neural Expert System (ANES) is developed by a direct mapping from the CLIPS system. The ANES corn expert system uses the same OAV triples in the CLIPS system for its facts. The LHS and RHS facts of the CLIPS rules are mapped into the input and output layers of the ANES, respectively; and the inference engine of the rules is imbedded in the hidden layer. The fact representation by OAC triples gives a natural grouping of the rules. These features allow the ANES system to automate rule-generation, and make it efficient to execute and easy to expand for a large and complex domain.
Integration of perception and reasoning in fast neural modules
NASA Technical Reports Server (NTRS)
Fritz, David G.
1989-01-01
Artificial neural systems promise to integrate symbolic and sub-symbolic processing to achieve real time control of physical systems. Two potential alternatives exist. In one, neural nets can be used to front-end expert systems. The expert systems, in turn, are developed with varying degrees of parallelism, including their implementation in neural nets. In the other, rule-based reasoning and sensor data can be integrated within a single hybrid neural system. The hybrid system reacts as a unit to provide decisions (problem solutions) based on the simultaneous evaluation of data and rules. Discussed here is a model hybrid system based on the fuzzy cognitive map (FCM). The operation of the model is illustrated with the control of a hypothetical satellite that intelligently alters its attitude in space in response to an intersecting micrometeorite shower.
ERIC Educational Resources Information Center
Ryan, William C., Ed.
The papers presented at the 1989 National Educational Computing Conference focused on ways of using technology to improve educational quality. Topics of the 50 papers and more than 120 abstracts provided in these proceedings include applications of artificial intelligence and the development of expert systems; authoring systems; using the computer…
An artificial reality environment for remote factory control and monitoring
NASA Technical Reports Server (NTRS)
Kosta, Charles Paul; Krolak, Patrick D.
1993-01-01
Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.
ERIC Educational Resources Information Center
McCrank, Lawrence J.
1992-01-01
Discusses trends in the fields of knowledge engineering and historical sciences to speculate about possibilities of converging interests and applications. Topics addressed include artificial intelligence and expert systems; the history of information science; history as a related field; historians as information scientists; multidisciplinary…
Takada, Kenji
2016-09-01
New approach for the diagnosis of extractions with neural network machine learning. Seok-Ki Jung and Tae-Woo Kim. Am J Orthod Dentofacial Orthop 2016;149:127-33. Not reported. Mathematical modeling. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of an expert data reduction assistant
NASA Technical Reports Server (NTRS)
Miller, Glenn E.; Johnston, Mark D.; Hanisch, Robert J.
1993-01-01
We propose the development of an expert system tool for the management and reduction of complex datasets. the proposed work is an extension of a successful prototype system for the calibration of CCD (charge coupled device) images developed by Dr. Johnston in 1987. (ref.: Proceedings of the Goddard Conference on Space Applications of Artificial Intelligence). The reduction of complex multi-parameter data sets presents severe challenges to a scientist. Not only must a particular data analysis system be mastered, (e.g. IRAF/SDAS/MIDAS), large amounts of data can require many days of tedious work and supervision by the scientist for even the most straightforward reductions. The proposed Expert Data Reduction Assistant will help the scientist overcome these obstacles by developing a reduction plan based on the data at hand and producing a script for the reduction of the data in a target common language.
NASA Technical Reports Server (NTRS)
Shewhart, Mark
1991-01-01
Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.
Intelligent computer-aided training and tutoring
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Savely, Robert T.
1991-01-01
Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed.
Adaptive neural network/expert system that learns fault diagnosis for different structures
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
Expert System for ASIC Imaging
NASA Astrophysics Data System (ADS)
Gupta, Shri N.; Arshak, Khalil I.; McDonnell, Pearse; Boyce, Conor; Duggan, Andrew
1989-07-01
With the developments in the techniques of artificial intelligence over the last few years, development of advisory, scheduling and similar class of problems has become very convenient using tools such as PROLOG. In this paper an expert system has been described which helps lithographers and process engineers in several ways. The methodology used is to model each work station according to its input, output and control parameters, combine these work stations in a logical sequence based on past experience and work out process schedule for a job. In addition, all the requirements vis-a-vis a particular job parameters are converted into decision rules. One example is the exposure time, develop time for a wafer with different feature sizes would be different. This expert system has been written in Turbo Prolog. By building up a large number of rules, one can tune the program to any facility and use it for as diverse applications as advisory help, trouble shooting etc. Leitner (1) has described an advisory expert system that is being used at National Semiconductor. This system is quite different from the one being reported in the present paper. The approach is quite different for one. There is stress on job flow and process for another.
Northeast Artificial Intelligence Consortium (NAIC) Review of Technical Tasks. Volume 2, Part 1.
1987-07-01
34- . 6.2 Transformation Invariant Attributes for S Digitized Object Outlines ................................. 469 6.3 Design of an Inference Engine for an...Attributes for Digital Object Outlines ...................................... 597 7 SPEECH UNDERSTANDING RESEARCH ( Rochester Institute of Technology...versatile maintenance expert system ES) for trouble-shooting--’ digital circuits. +" Some diagnosis systems, such as MYCLN [19] for medical diagnosis and CRIB
Neural Networks for the Beginner.
ERIC Educational Resources Information Center
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
Development of the Spacecraft Materials Selector Expert System
NASA Technical Reports Server (NTRS)
Pippin, H. G.
2000-01-01
A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft is being developed under contract to the NASA SEE program. An artificial intelligence software package, the Boeing Expert System Tool (BEST), contains an inference engine used to operate knowledge bases constructed to selectively recall and distribute information about materials performance in space applications. This same system is used to make estimates of the environmental exposures expected for a given space flight. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described in this paper. A case history for a planned flight experiment on ISS is shown as an example of the use of the SMS, and capabilities and limitations of the knowledge base are discussed.
Structure of the knowledge base for an expert labeling system
NASA Technical Reports Server (NTRS)
Rajaram, N. S.
1981-01-01
One of the principal objectives of the NASA AgRISTARS program is the inventory of global crop resources using remotely sensed data gathered by Land Satellites (LANDSAT). A central problem in any such crop inventory procedure is the interpretation of LANDSAT images and identification of parts of each image which are covered by a particular crop of interest. This task of labeling is largely a manual one done by trained human analysts and consequently presents obstacles to the development of totally automated crop inventory systems. However, development in knowledge engineering as well as widespread availability of inexpensive hardware and software for artificial intelligence work offers possibilities for developing expert systems for labeling of crops. Such a knowledge based approach to labeling is presented.
Artificial Intelligence: Bayesian versus Heuristic Method for Diagnostic Decision Support.
Elkin, Peter L; Schlegel, Daniel R; Anderson, Michael; Komm, Jordan; Ficheur, Gregoire; Bisson, Leslie
2018-04-01
Evoking strength is one of the important contributions of the field of Biomedical Informatics to the discipline of Artificial Intelligence. The University at Buffalo's Orthopedics Department wanted to create an expert system to assist patients with self-diagnosis of knee problems and to thereby facilitate referral to the right orthopedic subspecialist. They had two independent sports medicine physicians review 469 cases. A board-certified orthopedic sports medicine practitioner, L.B., reviewed any disagreements until a gold standard diagnosis was reached. For each case, the patients entered 126 potential answers to 26 questions into a Web interface. These were modeled by an expert sports medicine physician and the answers were reviewed by L.B. For each finding, the clinician specified the sensitivity (term frequency) and both specificity (Sp) and the heuristic evoking strength (ES). Heuristics are methods of reasoning with only partial evidence. An expert system was constructed that reflected the posttest odds of disease-ranked list for each case. We compare the accuracy of using Sp to that of using ES (original model, p < 0.0008; term importance * disease importance [DItimesTI] model, p < 0.0001: Wilcoxon ranked sum test). For patient referral assignment, Sp in the DItimesTI model was superior to the use of ES. By the fifth diagnosis, the advantage was lost and so there is no difference between the techniques when serving as a reminder system. Schattauer GmbH Stuttgart.
Applications of artificial intelligence to scientific research
NASA Technical Reports Server (NTRS)
Prince, Mary Ellen
1986-01-01
Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.
Accident diagnosis system based on real-time decision tree expert system
NASA Astrophysics Data System (ADS)
Nicolau, Andressa dos S.; Augusto, João P. da S. C.; Schirru, Roberto
2017-06-01
Safety is one of the most studied topics when referring to power stations. For that reason, sensors and alarms develop an important role in environmental and human protection. When abnormal event happens, it triggers a chain of alarms that must be, somehow, checked by the control room operators. In this case, diagnosis support system can help operators to accurately identify the possible root-cause of the problem in short time. In this article, we present a computational model of a generic diagnose support system based on artificial intelligence, that was applied on the dataset of two real power stations: Angra1 Nuclear Power Plant and Santo Antônio Hydroelectric Plant. The proposed system processes all the information logged in the sequence of events before a shutdown signal using the expert's knowledge inputted into an expert system indicating the chain of events, from the shutdown signal to its root-cause. The results of both applications showed that the support system is a potential tool to help the control room operators identify abnormal events, as accidents and consequently increase the safety.
Proceedings of the Air Force Forum for Intelligent Tutoring Systems
1989-04-01
interface help the students find facts? I recently developed an expert system that is used at the JFK Airport to help workers assign incoming planes to...of their errors and to make comparisons with optimal solution paths. Chapters 2, and 5 BIP, BIP II: Basic Instructional Program BIP applied knowledge...OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION Center for Applied Artificial (If applicable) Training Systems Division Intelligence 1 6. ADDRESS (City
Knowledge based systems: A preliminary survey of selected issues and techniques
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Kavi, Srinu
1984-01-01
It is only recently that research in Artificial Intelligence (AI) is accomplishing practical results. Most of these results can be attributed to the design and use of expert systems (or Knowledge-Based Systems, KBS) - problem-solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. But many computer systems designed to see images, hear sounds, and recognize speech are still in a fairly early stage of development. In this report, a preliminary survey of recent work in the KBS is reported, explaining KBS concepts and issues and techniques used to construct them. Application considerations to construct the KBS and potential KBS research areas are identified. A case study (MYCIN) of a KBS is also provided.
An integrated knowledge system for wind tunnel testing - Project Engineers' Intelligent Assistant
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Hoyt, W. A.; Steinle, Frank W., Jr.
1993-01-01
The Project Engineers' Intelligent Assistant (PEIA) is an integrated knowledge system developed using artificial intelligence technology, including hypertext, expert systems, and dynamic user interfaces. This system integrates documents, engineering codes, databases, and knowledge from domain experts into an enriched hypermedia environment and was designed to assist project engineers in planning and conducting wind tunnel tests. PEIA is a modular system which consists of an intelligent user-interface, seven modules and an integrated tool facility. Hypermedia technology is discussed and the seven PEIA modules are described. System maintenance and updating is very easy due to the modular structure and the integrated tool facility provides user access to commercial software shells for documentation, reporting, or database updating. PEIA is expected to provide project engineers with technical information, increase efficiency and productivity, and provide a realistic tool for personnel training.
Launching AI in NASA ground systems
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Truszkowski, Walter F.
1990-01-01
This paper will discuss recent operational successes in implementing expert systems to support the complex functions of NASA mission control systems at the Goddard Space Flight Center, including fault detection and diagnosis for real time and engineering analysis functions in the Cosmic Background Explorer and Gamma Ray Observatory missions and automation of resource planning and scheduling functions for various missions. It will also discuss ongoing developments and prototypes that will lead to increasingly sophisticated applications of artificial intelligence. These include the use of neural networks to perform telemetry monitoring functions, the implementation of generic expert system shells that can be customized to telemetry handling functions specific to NASA control centers, the applications of AI in training and user support, the long-term potential of implementing systems based around distributed, cooperative problem solving, and the use of AI to control and assist system development activities.
Automation of the space station core module power management and distribution system
NASA Technical Reports Server (NTRS)
Weeks, David J.
1988-01-01
Under the Advanced Development Program for Space Station, Marshall Space Flight Center has been developing advanced automation applications for the Power Management and Distribution (PMAD) system inside the Space Station modules for the past three years. The Space Station Module Power Management and Distribution System (SSM/PMAD) test bed features three artificial intelligence (AI) systems coupled with conventional automation software functioning in an autonomous or closed-loop fashion. The AI systems in the test bed include a baseline scheduler/dynamic rescheduler (LES), a load shedding management system (LPLMS), and a fault recovery and management expert system (FRAMES). This test bed will be part of the NASA Systems Autonomy Demonstration for 1990 featuring cooperating expert systems in various Space Station subsystem test beds. It is concluded that advanced automation technology involving AI approaches is sufficiently mature to begin applying the technology to current and planned spacecraft applications including the Space Station.
Predicting IVF Outcome: A Proposed Web-based System Using Artificial Intelligence.
Siristatidis, Charalampos; Vogiatzi, Paraskevi; Pouliakis, Abraham; Trivella, Marialenna; Papantoniou, Nikolaos; Bettocchi, Stefano
2016-01-01
To propose a functional in vitro fertilization (IVF) prediction model to assist clinicians in tailoring personalized treatment of subfertile couples and improve assisted reproduction outcome. Construction and evaluation of an enhanced web-based system with a novel Artificial Neural Network (ANN) architecture and conformed input and output parameters according to the clinical and bibliographical standards, driven by a complete data set and "trained" by a network expert in an IVF setting. The system is capable to act as a routine information technology platform for the IVF unit and is capable of recalling and evaluating a vast amount of information in a rapid and automated manner to provide an objective indication on the outcome of an artificial reproductive cycle. ANNs are an exceptional candidate in providing the fertility specialist with numerical estimates to promote personalization of healthcare and adaptation of the course of treatment according to the indications. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Genie: An Inference Engine with Applications to Vulnerability Analysis.
1986-06-01
Stanford Artifcial intelligence Laboratory, 1976. 15 D. A. Waterman and F. Hayes-Roth, eds. Pattern-Directed Inference Systems. Academic Press, Inc...Continue an reverse aide It nlecessary mid Identify by block rnmbor) ; f Expert Systems Artificial Intelligence % Vulnerability Analysis Knowledge...deduction it is used wherever possible in data -driven mode (forward chaining). Production rules - JIM 0 g79OOFMV55@S I INCLASSTpnF SECURITY CLASSIFICATION OF
The ZOG Technology Demonstration Project: A System Evaluation of USS CARL VINSON (CVN 70)
1984-12-01
part of a larger project involving development of a wide range of computer technologies, including artifcial intelligence and a long-range computer...shipboard manage- ment, aircraft management, expert systems, menu selection, man- machine interface, artificial intelligence , automation; shipboard It AWM...functions, planning, evaluation, training, hierarchical data bases The objective of this project was to conduct an evaluation of ZOG, a general purpose
Proceedings of GeoTech 85: Personal computers in geology conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference which considered the use of microprocessors in the exploration of petroleum and natural gas deposits. Topics covered at the conference included seismic surveys, geochemistry, expert systems, artificial intelligence, data base management systems, a portable exploration work station, open pit planning on a microcomputer, well logging, fracture analysis, production scheduling of open pit mines, resistivity logging, and coal washability.
Acute asthma severity identification of expert system flow in emergency department
NASA Astrophysics Data System (ADS)
Sharif, Nurul Atikah Mohd; Ahmad, Norazura; Ahmad, Nazihah; Desa, Wan Laailatul Hanim Mat
2017-11-01
Integration of computerized system in healthcare management help in smoothening the documentation of patient records, highly accesses of knowledge and clinical practices guideline, and advice on decision making. Exploit the advancement of artificial intelligent such as fuzzy logic and rule-based reasoning may improve the management of emergency department in terms of uncertainty condition and medical practices adherence towards clinical guideline. This paper presenting details of the emergency department flow for acute asthma severity identification with the embedding of acute asthma severity identification expert system (AASIES). Currently, AASIES is still in preliminary stage of system validation. However, the implementation of AASIES in asthma bay management is hope can reduce the usage of paper for manual documentation and be a pioneer for the development of a more complex decision support system to smoothen the ED management and more systematic.
ERIC Educational Resources Information Center
Richardson, J. Jeffrey; And Others
In keeping with current Department of Defense policies on integrated diagnostics and a reduced reliance on paper-based documentation, the concept of a portable, expert-system-based job aid and training device was proposed to assist inexperienced electronics maintenance technicians in learning to maintain sophisticated equipment. A prototype was…
Living Color Frame System: PC graphics tool for data visualization
NASA Technical Reports Server (NTRS)
Truong, Long V.
1993-01-01
Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.
AiGERM: A logic programming front end for GERM
NASA Technical Reports Server (NTRS)
Hashim, Safaa H.
1990-01-01
AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.
Applications of artificial intelligence to digital photogrammetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kretsch, J.L.
1988-01-01
The aim of this research was to explore the application of expert systems to digital photogrammetry, specifically to photogrammetric triangulation, feature extraction, and photogrammetric problem solving. In 1987, prototype expert systems were developed for doing system startup, interior orientation, and relative orientation in the mensuration stage. The system explored means of performing diagnostics during the process. In the area of feature extraction, the relationship of metric uncertainty to symbolic uncertainty was the topic of research. Error propagation through the Dempster-Shafer formalism for representing evidence was performed in order to find the variance in the calculated belief values due to errorsmore » in measurements made together the initial evidence needed to being labeling of observed image features with features in an object model. In photogrammetric problem solving, an expert system is under continuous development which seeks to solve photogrammetric problems using mathematical reasoning. The key to the approach used is the representation of knowledge directly in the form of equations, rather than in the form of if-then rules. Then each variable in the equations is treated as a goal to be solved.« less
On the use of multi-agent systems for the monitoring of industrial systems
NASA Astrophysics Data System (ADS)
Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil
2016-03-01
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.
NASA Technical Reports Server (NTRS)
Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.
A Distributed Artificial Intelligence Approach To Object Identification And Classification
NASA Astrophysics Data System (ADS)
Sikka, Digvijay I.; Varshney, Pramod K.; Vannicola, Vincent C.
1989-09-01
This paper presents an application of Distributed Artificial Intelligence (DAI) tools to the data fusion and classification problem. Our approach is to use a blackboard for information management and hypothe-ses formulation. The blackboard is used by the knowledge sources (KSs) for sharing information and posting their hypotheses on, just as experts sitting around a round table would do. The present simulation performs classification of an Aircraft(AC), after identifying it by its features, into disjoint sets (object classes) comprising of the five commercial ACs; Boeing 747, Boeing 707, DC10, Concord and Boeing 727. A situation data base is characterized by experimental data available from the three levels of expert reasoning. Ohio State University ElectroScience Laboratory provided this experimental data. To validate the architecture presented, we employ two KSs for modeling the sensors, aspect angle polarization feature and the ellipticity data. The system has been implemented on Symbolics 3645, under Genera 7.1, in Common LISP.
NASA Astrophysics Data System (ADS)
Poryvkina, Larisa; Aleksejev, Valeri; Babichenko, Sergey M.; Ivkina, Tatjana
2011-04-01
The NarTest fluorescent technique is aimed at the detection of analyte of interest in street samples by recognition of its specific spectral patterns in 3-dimentional Spectral Fluorescent Signatures (SFS) measured with NTX2000 analyzer without chromatographic or other separation of controlled substances from a mixture with cutting agents. The illicit drugs have their own characteristic SFS features which can be used for detection and identification of narcotics, however typical street sample consists of a mixture with cutting agents: adulterants and diluents. Many of them interfere the spectral shape of SFS. The expert system based on Artificial Neural Networks (ANNs) has been developed and applied for such pattern recognition in SFS of street samples of illicit drugs.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
A Preliminary Investigation on the Application of Robotics to Missile Fire Control.
1983-11-01
application. Even this is a broad area, but it is one in which Okhe general theories and concepts of robo - tics and/or artificial intelligence can be...K::. 3. Expert Advisors .J1. %4. Data Assimilation and Access Aids 5. Handling Support Systems 6. Support Systems 7...appears, therefore, that a robo - tic forward observer can be manufactured in quantities for a reasonable cost when compared to the cost of training
Pan, Leilei; Yang, Simon X
2007-12-01
This paper introduces a new portable intelligent electronic nose system developed especially for measuring and analysing livestock and poultry farm odours. It can be used in both laboratory and field. The sensor array of the proposed electronic nose consists of 14 gas sensors, a humidity sensor, and a temperature sensor. The gas sensors were especially selected for the main compounds from the livestock farm odours. An expert system called "Odour Expert" was developed to support researchers' and farmers' decision making on odour control strategies for livestock and poultry operations. "Odour Expert" utilises several advanced artificial intelligence technologies tailored to livestock and poultry farm odours. It can provide more advanced odour analysis than existing commercially available products. In addition, a rank of odour generation factors is provided, which refines the focus of odour control research. Field experiments were conducted downwind from the barns on 14 livestock and poultry farms. Experimental results show that the predicted odour strengths by the electronic nose yield higher consistency in comparison to the perceived odour intensity by human panel. The "Odour Expert" is a useful tool for assisting farmers' odour management practises.
NASA Astrophysics Data System (ADS)
Rozenfeld, Pawel; Kuga, Helio Koiti; Orlando, Valcir
An international symposium on spacecraft flight dynamics and ground control systems produced 85 papers in the areas of attitude determination and control, orbit control, satellite constellation strategies, stationkeeping, spacecraft maneuvering, orbit determination, astrodynamics, ground command and control systems, and mission operations. Several papers included discussions on the application of artificial intelligence, neural networks, expert systems, and ion propulsion. For individual titles, see A95-89098 through A95-89182.
The Development and Application of Airway Devices in China
Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong
2017-01-01
Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485
An overview of the program to place advanced automation and robotics on the Space Station
NASA Technical Reports Server (NTRS)
Heydorn, Richard P.
1987-01-01
The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.
GESA--a two-dimensional processing system using knowledge base techniques.
Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S
1988-12-01
The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.
Artificial Intelligence Controls Tape-Recording Sequence
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Otamura, Roy M.; Zottarelli, Lawrence J.
1989-01-01
Developmental expert-system computer program intended to schedule recording of large amounts of data on limited amount of magnetic tape. Schedules recording using two sets of rules. First set incorporates knowledge of locations for recording of new data. Second set incorporates knowledge about issuing commands to recorder. Designed primarily for use on Voyager Spacecraft, also applicable to planning and sequencing in industry.
Progress towards autonomous, intelligent systems
NASA Technical Reports Server (NTRS)
Lum, Henry; Heer, Ewald
1987-01-01
An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.
Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG.
Tagluk, M Emin; Sezgin, Necmettin; Akin, Mehmet
2010-08-01
Analysis and classification of sleep stages is essential in sleep research. In this particular study, an alternative system which estimates sleep stages of human being through a multi-layer neural network (NN) that simultaneously employs EEG, EMG and EOG. The data were recorded through polisomnography device for 7 h for each subject. These collective variant data were first grouped by an expert physician and the software of polisomnography, and then used for training and testing the proposed Artificial Neural Network (ANN). A good scoring was attained through the trained ANN, so it may be put into use in clinics where lacks of specialist physicians.
Wanden-Berghe, C; Pérez de la Cruz, A; Lobo Tamer, G; Calleja Fernández, A; Gómez Candela, C; Zugasti Murillo, A; Apezetxea Celaya, A; Torres Corts, A; Moreno Villarés, J M; de Luis, D; Penacho, Ma Á; Laborda, L; Burgos, R; Irles, J A; Cuerda Compes, C; Virgili Casas, Ma N; Martínez Olmos, M A; García Luna, P P
2012-01-01
To evidence by means of a SWOT-R analysis performed by an expert consensus the most worrying characteristics of the register on Home-based and Outpatient Artificial Nutrition. SWOT-R analysis with expert consensus. We requested the participation of the active members of the NADYA group within the last 5 years with the premise of structuring the SWOT-R based on the characteristics of the NADYA registry from its beginning. 18 experts from hospitals all over Spain have participated. The internal analysis seems to be positive, presenting the registry as having important resources. The external analysis did not show a great number of threats, there are very potent factors, "the voluntariness" of the registry and the "dependence on external financing". The opportunities identified are important. The recommendations are aimed at stabilizing the system by decreasing the threats as one of the main focus of the strategies to develop as well as promoting the items identified as opportunities and strengths. The analysis shows that the NADYA register shows a big potentiality for improvement. The proposed recommendations should be structured in order to stay on the track of development and quality improvement that has characterized the NADYA register from the beginning.
Virtual instrument: remote control and monitoring of an artificial heart driver
NASA Astrophysics Data System (ADS)
Nguyen, An H.; Farrar, David
1993-07-01
A development of a virtual instrument based on the top-down model approach for an artificial heart driver is presented. Driver parameters and status were being dynamically updated on the virtual system at the remote station. The virtual system allowed the remote operator to interact with the physical heart driver as if he/she were at the local station. Besides use as an effective training tool, the system permits an expert operator to monitor and also control the Thoratec heart driver from a distant location. We believe that the virtual instrument for biomedical devices in general and for the Thoratec heart driver in particular, not only improves system reliability but also opens up a real possibility in reducing medical cost. Utilizing the top-down scheme developed recently for telerobotics, realtime operation in both instrument display and remote communication were possible via a low bandwidth telephone medium.
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.
NASA Astrophysics Data System (ADS)
Leon, Barbara D.; Heller, Paul R.
1987-05-01
A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.
[Expert systems and automatic diagnostic systems in histopathology--a review].
Tamai, S
1999-02-01
In this decade, the pathological information system has gradually been settled in many hospitals in Japan. Pathological reports and images are now digitized and managed in the database, and are referred by clinicians at the peripherals. Tele-pathology is also developing; and its users are increasing. However, in many occasions, the problem solving in diagnostic pathology is completely dependent on the solo-pathologist. Considering the need for timely and efficient supports to the solo-pathologist, I reviewed the papers on the knowledge-based interactive expert systems. The interpretations of the histopathological images are dependent on the pathologist, and these expert systems have been evaluated as "educational". With the view of the success in the cytological screening, the development of "image-analysis-based" automatic "histopathological image" classifier has been on ongoing challenges. Our 3 years experience of the development of the pathological image classifier using the artificial neural networks technology is briefly presented. This classifier provides us a "fitting rate" for the individual diagnostic pattern of the breast tumors, such as "fibroadenoma pattern". The diagnosis assisting system with computer technology should provide pathologists, especially solo-pathologists, a useful tool for the quality assurance and improvement of pathological diagnosis.
NASA Astrophysics Data System (ADS)
Yu, Z. P.; Yue, Z. F.; Liu, W.
2018-05-01
With the development of artificial intelligence, more and more reliability experts have noticed the roles of subjective information in the reliability design of complex system. Therefore, based on the certain numbers of experiment data and expert judgments, we have divided the reliability estimation based on distribution hypothesis into cognition process and reliability calculation. Consequently, for an illustration of this modification, we have taken the information fusion based on intuitional fuzzy belief functions as the diagnosis model of cognition process, and finished the reliability estimation for the open function of cabin door affected by the imprecise judgment corresponding to distribution hypothesis.
Artificial intelligence-assisted occupational lung disease diagnosis.
Harber, P; McCoy, J M; Howard, K; Greer, D; Luo, J
1991-08-01
An artificial intelligence expert-based system for facilitating the clinical recognition of occupational and environmental factors in lung disease has been developed in a pilot fashion. It utilizes a knowledge representation scheme to capture relevant clinical knowledge into structures about specific objects (jobs, diseases, etc) and pairwise relations between objects. Quantifiers describe both the closeness of association and risk, as well as the degree of belief in the validity of a fact. An independent inference engine utilizes the knowledge, combining likelihoods and uncertainties to achieve estimates of likelihood factors for specific paths from work to illness. The system creates a series of "paths," linking work activities to disease outcomes. One path links a single period of work to a single possible disease outcome. In a preliminary trial, the number of "paths" from job to possible disease averaged 18 per subject in a general population and averaged 25 per subject in an asthmatic population. Artificial intelligence methods hold promise in the future to facilitate diagnosis in pulmonary and occupational medicine.
Machine learning research 1989-90
NASA Technical Reports Server (NTRS)
Porter, Bruce W.; Souther, Arthur
1990-01-01
Multifunctional knowledge bases offer a significant advance in artificial intelligence because they can support numerous expert tasks within a domain. As a result they amortize the costs of building a knowledge base over multiple expert systems and they reduce the brittleness of each system. Due to the inevitable size and complexity of multifunctional knowledge bases, their construction and maintenance require knowledge engineering and acquisition tools that can automatically identify interactions between new and existing knowledge. Furthermore, their use requires software for accessing those portions of the knowledge base that coherently answer questions. Considerable progress was made in developing software for building and accessing multifunctional knowledge bases. A language was developed for representing knowledge, along with software tools for editing and displaying knowledge, a machine learning program for integrating new information into existing knowledge, and a question answering system for accessing the knowledge base.
Neurocontrol and fuzzy logic: Connections and designs
NASA Technical Reports Server (NTRS)
Werbos, Paul J.
1991-01-01
Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.
Artificial intelligence applications of fast optical memory access
NASA Astrophysics Data System (ADS)
Henshaw, P. D.; Todtenkopf, A. B.
The operating principles and performance of rapid laser beam-steering (LBS) techniques are reviewed and illustrated with diagrams; their applicability to fast optical-memory (disk) access is evaluated; and the implications of fast access for the design of expert systems are discussed. LBS methods examined include analog deflection (source motion, wavefront tilt, and phased arrays), digital deflection (polarization modulation, reflectivity modulation, interferometric switching, and waveguide deflection), and photorefractive LBS. The disk-access problem is considered, and typical LBS requirements are listed as 38,000 beam positions, rotational latency 25 ms, one-sector rotation time 1.5 ms, and intersector space 87 microsec. The value of rapid access for increasing the power of expert systems (by permitting better organization of blocks of information) is illustrated by summarizing the learning process of the MVP-FORTH system (Park, 1983).
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
Guidelines and rules for automated assembly by robots in space
NASA Technical Reports Server (NTRS)
Srivastava, Sadanand
1992-01-01
The development of an expert system for a 'Mechanical Design System' is discussed. Two different implementation approaches are described. One is coded in C, and the other is realized by a software package - 'Exsys.' The first method has the advantage of greater flexibility and quicker responses, while the latter one is easier to develop. This report discusses the feasible ways to establish a real mechanical intelligent design system applying artificial intelligence techniques so that the products designed by this system could best meet the requirements for space assembly.
TOXPERT: An Expert System for Risk Assessment
Soto, R. J.; Osimitz, T. G.; Oleson, A.
1988-01-01
TOXPERT is an artificial intelligence based system used to model product safety, toxicology (TOX) and regulatory (REG) decision processes. An expert system shell uses backward chaining rule control to link “marketing approval” goals to the type of product, REG agency, exposure conditions and TOX. Marketing risks are primarily a function of the TOX, hazards and exposure potential. The method employed differentiates between REG requirements in goal seeking control for various types of products. This is accomplished by controlling rule execution by defining frames for each REG agency. In addition, TOXPERT produces classifications of TOX ratings and suggested product labeling. This production rule system uses principles of TOX, REGs, corporate guidelines and internal “rules of thumb.” TOXPERT acts as an advisor for this narrow domain. Advantages are that it can make routine decisions freeing professional's time for more complex problem solving, provide backup and training.
The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence
NASA Technical Reports Server (NTRS)
Colombano, Silvano
2000-01-01
There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.
Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E
2012-01-01
In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis.
Assisting Design Given Multiple Performance Criteria
1988-08-01
with uninstantiated operators is created then each operator’s implementation is selected. g - Keywords: computer-aided design, artificial...IEEE Trans- actions on Software Engineering, SE-7(1), 1981. [BG86] Forrest D. Brewer and Daniel D. Gajski . An expert-system paradigm for de- sign. In...Teukolsky, api William T. Vet- terling. Numerical Recipes. Cambridge University Press, Cambridge, England, 1987. [RFS83] G . G . Rassweiler, M. D
NASA Astrophysics Data System (ADS)
Nieten, Joseph L.; Burke, Roger
1993-03-01
The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.
Software Assists in Responding to Anomalous Conditions
NASA Technical Reports Server (NTRS)
James, Mark; Kronbert, F.; Weiner, A.; Morgan, T.; Stroozas, B.; Girouard, F.; Hopkins, A.; Wong, L.; Kneubuhl, J.; Malina, R.
2004-01-01
Fault Induced Document Retrieval Officer (FIDO) is a computer program that reduces the need for a large and costly team of engineers and/or technicians to monitor the state of a spacecraft and associated ground systems and respond to anomalies. FIDO includes artificial-intelligence components that imitate the reasoning of human experts with reference to a knowledge base of rules that represent failure modes and to a database of engineering documentation. These components act together to give an unskilled operator instantaneous expert assistance and access to information that can enable resolution of most anomalies, without the need for highly paid experts. FIDO provides a system state summary (a configurable engineering summary) and documentation for diagnosis of a potentially failing component that might have caused a given error message or anomaly. FIDO also enables high-level browsing of documentation by use of an interface indexed to the particular error message. The collection of available documents includes information on operations and associated procedures, engineering problem reports, documentation of components, and engineering drawings. FIDO also affords a capability for combining information on the state of ground systems with detailed, hierarchically-organized, hypertext- enabled documentation.
Use of artificial intelligence in supervisory control
NASA Technical Reports Server (NTRS)
Cohen, Aaron; Erickson, Jon D.
1989-01-01
Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.
Second Annual Workshop on Space Operations Automation and Robotics (SOAR 1988)
NASA Technical Reports Server (NTRS)
Griffin, Sandy (Editor)
1988-01-01
Papers presented at the Second Annual Workshop on Space Operation Automation and Robotics (SOAR '88), hosted by Wright State University at Dayton, Ohio, on July 20, 21, 22, and 23, 1988, are documented herein. During the 4 days, approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Panel discussions on Human Factors, Artificial Intelligence, Robotics, and Space Systems were held but are not documented herein. Technical topics addressed included knowledge-based systems, human factors, and robotics.
Combining real-time monitoring and knowledge-based analysis in MARVEL
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.
1993-01-01
Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.
Neural network expert system for X-ray analysis of welded joints
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Lapik, N. V.; Popova, N. V.
2018-03-01
The use of intelligent technologies for the automated analysis of product quality is one of the main trends in modern machine building. At the same time, rapid development in various spheres of human activity is experienced by methods associated with the use of artificial neural networks, as the basis for building automated intelligent diagnostic systems. Technologies of machine vision allow one to effectively detect the presence of certain regularities in the analyzed designation, including defects of welded joints according to radiography data.
Object-oriented model-driven control
NASA Technical Reports Server (NTRS)
Drysdale, A.; Mcroberts, M.; Sager, J.; Wheeler, R.
1994-01-01
A monitoring and control subsystem architecture has been developed that capitalizes on the use of modeldriven monitoring and predictive control, knowledge-based data representation, and artificial reasoning in an operator support mode. We have developed an object-oriented model of a Controlled Ecological Life Support System (CELSS). The model based on the NASA Kennedy Space Center CELSS breadboard data, tracks carbon, hydrogen, and oxygen, carbodioxide, and water. It estimates and tracks resorce-related parameters such as mass, energy, and manpower measurements such as growing area required for balance. We are developing an interface with the breadboard systems that is compatible with artificial reasoning. Initial work is being done on use of expert systems and user interface development. This paper presents an approach to defining universally applicable CELSS monitor and control issues, and implementing appropriate monitor and control capability for a particular instance: the KSC CELSS Breadboard Facility.
Use of artificial intelligence in severe accident diagnosis for PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zheng; Okrent, D.; Kastenberg, W.E.
1995-12-31
A combination approach of an expert system and neural networks is used to implement a prototype severe accident diagnostic system which would monitor the progression of the severe accident and provide necessary plant status information to assist the plant staff in accident management during the accident. The station blackout accident in a pressurized water reactor (PWR) is used as the study case. The current phase of research focus is on distinguishing different primary system failure modes and following the accident transient before and up to vessel breach.
A data analysis expert system for large established distributed databases
NASA Technical Reports Server (NTRS)
Gnacek, Anne-Marie; An, Y. Kim; Ryan, J. Patrick
1987-01-01
A design for a natural language database interface system, called the Deductively Augmented NASA Management Decision support System (DANMDS), is presented. The DANMDS system components have been chosen on the basis of the following considerations: maximal employment of the existing NASA IBM-PC computers and supporting software; local structuring and storing of external data via the entity-relationship model; a natural easy-to-use error-free database query language; user ability to alter query language vocabulary and data analysis heuristic; and significant artificial intelligence data analysis heuristic techniques that allow the system to become progressively and automatically more useful.
Problem representation and variation in the forecasts of ’political experts’
2001-06-01
artificial intelligence classification of the themes that were used by the Presidential Commission on Women in Combat. Psychological constraints to...In contrast, controls for expert-novice differences is standard practice in psychology . Cognitive psychologists who have studied how experts and...participant=s Athink aloud@ analysis from Alevel of verbosity.@ By summarizing verbatim statements associated with free-hand cognitive diagrams it
Artificial intelligence in the service of system administrators
NASA Astrophysics Data System (ADS)
Haen, C.; Barra, V.; Bonaccorsi, E.; Neufeld, N.
2012-12-01
The LHCb online system relies on a large and heterogeneous IT infrastructure made from thousands of servers on which many different applications are running. They run a great variety of tasks: critical ones such as data taking and secondary ones like web servers. The administration of such a system and making sure it is working properly represents a very important workload for the small expert-operator team. Research has been performed to try to automatize (some) system administration tasks, starting in 2001 when IBM defined the so-called “self objectives” supposed to lead to “autonomic computing”. In this context, we present a framework that makes use of artificial intelligence and machine learning to monitor and diagnose at a low level and in a non intrusive way Linux-based systems and their interaction with software. Moreover, the multi agent approach we use, coupled with an “object oriented paradigm” architecture should increase our learning speed a lot and highlight relations between problems.
Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches.
Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa
2015-01-01
The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.
Artificial Intelligence and Expert Systems
1986-03-01
O R R E C T I N G • NOT P R O T E C T E D oEMOTION oFATIGUE oUNAVAILABLE oBIAS olMPERIAL • STABLE (COLD) o lNDEFAT IGABLE eAVAILABLE eLESS... oBIAS olMPERIAL • STABLE (COLD) o lNDEFAT IGABLE eAVAILABLE oLESS BIAS o lMPERSONAL DODCI 1085-.85 THE COMPUTER EVOLUTION I I I • C o m p
ERIC Educational Resources Information Center
Hummel, Thomas J.; Robinson, Judith A.
In 1984, the University of Minnesota's College of Education and Wilson Learning Corporation created the Alliance for Learning to support a variety of research projects focused on developing new areas of knowledge about adult learning and new technologies for delivering training and education. This paper describes an Alliance project exploring the…
NASA Technical Reports Server (NTRS)
Culbert, Chris
1990-01-01
Although they have reached a point of commercial viability, expert systems were originally developed in artificial intelligence (AI) research environments. Many of the available tools still work best in such environments. These environments typically utilize special hardware such as LISP machines and relatively unfamiliar languages such as LISP or Prolog. Space Station applications will require deep integration of expert system technology with applications developed in conventional languages, specifically Ada. The ability to apply automation to Space Station functions could be greatly enhanced by widespread availability of state-of-the-art expert system tools based on Ada. Although there have been some efforts to examine the use of Ada for AI applications, there are few, if any, existing products which provide state-of-the-art AI capabilities in an Ada tool. The goal of the ART/Ada Design Project is to conduct research into the implementation in Ada of state-of-the-art hybrid expert systems building tools (ESBT's). This project takes the following approach: using the existing design of the ART-IM ESBT as a starting point, analyze the impact of the Ada language and Ada development methodologies on that design; redesign the system in Ada; and analyze its performance. The research project will attempt to achieve a comprehensive understanding of the potential for embedding expert systems in Ada systems for eventual application in future Space Station Freedom projects. During Phase 1 of the project, initial requirements analysis, design, and implementation of the kernel subset of ART-IM functionality was completed. During Phase 2, the effort has been focused on the implementation and performance analysis of several versions with increasing functionality. Since production quality ART/Ada tools will not be available for a considerable time, and additional subtask of this project will be the completion of an Ada version of the CLIPS expert system shell developed by NASA. This tool will provide full syntactic compatibility with any eventual products of the ART/Ada design while allowing SSFP developers early access to this technology.
Artificial intelligence in the diagnosis of low back pain.
Mann, N H; Brown, M D
1991-04-01
Computerized methods are used to recognize the characteristics of patient pain drawings. Artificial neural network (ANN) models are compared with expert predictions and traditional statistical classification methods when placing the pain drawings of low back pain patients into one of five clinically significant categories. A discussion is undertaken outlining the differences in these classifiers and the potential benefits of the ANN model as an artificial intelligence technique.
Howard University Energy Expert Systems Institute Summer Program (EESI)
NASA Technical Reports Server (NTRS)
Momoh, James A.; Chuku, Arunsi; Abban, Joseph
1996-01-01
Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.
Automated eddy current analysis of materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
This research effort focused on the use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In eddy current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.
Verification and Validation of KBS with Neural Network Components
NASA Technical Reports Server (NTRS)
Wen, Wu; Callahan, John
1996-01-01
Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.
Automation and robotics - Key to productivity. [in industry and space
NASA Technical Reports Server (NTRS)
Cohen, A.
1985-01-01
The automated and robotic systems requirements of the NASA Space Station are prompted by maintenance, repair, servicing and assembly requirements. Trend analyses, fault diagnoses, and subsystem status assessments for the Station's electrical power, guidance, navigation, control, data management and environmental control subsystems will be undertaken by cybernetic expert systems; this will reduce or eliminate on-board or ground facility activities that would otherwise be essential, enhancing system productivity. Additional capabilities may also be obtained through the incorporation of even a limited amount of artificial intelligence in the controllers of the various Space Station systems.
[Application prospect of human-artificial intelligence system in future manned space flight].
Wei, Jin-he
2003-01-01
To make the manned space flight more efficient and safer, a concept of human-artificial (AI) system is proposed in the present paper. The task of future manned space flight and the technique requirement with respect to the human-AI system development were analyzed. The main points are as follows: 1)Astronaut and AI are complementary to each other functionally; 2) Both symbol AI and connectionist AI should be included in the human-AI system, but expert system and Soar-like system are used mainly inside the cabin, the COG-like robots are mainly assigned for EVA either in LEO flight or on the surface of Moon or Mars; 3) The human-AI system is hierarchical in nature with astronaut at the top level; 4) The complex interfaces between astronaut and AI are the key points for running the system reliably and efficiently. As the importance of human-AI system in future manned space flight and the complexity of related technology, it is suggested that the R/D should be planned as early as possible.
NASA Astrophysics Data System (ADS)
Sergey Vasilievich, Buharin; Aleksandr Vladimirovich, Melnikov; Svetlana Nikolaevna, Chernyaeva; Lyudmila Anatolievna, Korobova
2017-08-01
The method of dip of the underlying computational problem of comparing technical object in an expert shell in the class of data mining methods is examined. An example of using the proposed method is given.
NASA Technical Reports Server (NTRS)
Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.
1992-01-01
In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.
2004-10-25
FUSEDOT does not require facial recognition , or video surveillance of public areas, both of which are apparently a component of TIA ([26], pp...does not use fuzzy signal detection. Involves facial recognition and video surveillance of public areas. Involves monitoring the content of voice...fuzzy signal detection, which TIA does not. Second, FUSEDOT would be easier to develop, because it does not require the development of facial
Rule-Based Expert Systems in the Command Estimate: An Operational Perspective
1990-06-01
control measures. 5. Prepare COA statement(s) and sketch(es). The key inputs for developing courses of action are the DFD process of IPB, data stores...mission, or a change of information provides new direction to this process for that particular operation." Formal scientific analysis of the command...30 5. Delivery of outside news . This feature contributes to the commanders insatiable need for current information. Artificial intelligence ana rule
Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings
NASA Technical Reports Server (NTRS)
1993-01-01
This Fifth Annual Technical Symposium, sponsored by the UT-Calspan Center for Space Transportation and Applied Research (CSTAR), is organized to provide an overview of the technical accomplishments of the Center's five Research and Technology focus areas during the past year. These areas include chemical propulsion, electric propulsion, commerical space transportation, computational methods, and laser materials processing. Papers in the area of artificial intelligence/expert systems are also presented.
Intelligent instrumentation applied in environment management
NASA Astrophysics Data System (ADS)
Magheti, Mihnea I.; Walsh, Patrick; Delassus, Patrick
2005-06-01
The use of information and communications technology in environment management and research has witnessed a renaissance in recent years. From optical sensor technology, expert systems, GIS and communications technologies to computer aided harvesting and yield prediction, these systems are increasable used for applications developing in the management sector of natural resources and biodiversity. This paper presents an environmental decision support system, used to monitor biodiversity and present a risk rating for the invasion of pests into the particular systems being examined. This system will utilise expert mobile technology coupled with artificial intelligence and predictive modelling, and will emphasize the potential for expansion into many areas of intelligent remote sensing and computer aided decision-making for environment management or certification. Monitoring and prediction in natural systems, harnessing the potential of computing and communication technologies is an emerging technology within the area of environmental management. This research will lead to the initiation of a hardware and software multi tier decision support system for environment management allowing an evaluation of areas for biodiversity or areas at risk from invasive species, based upon environmental factors/systems.
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
Artificial intelligence applications in space and SDI: A survey
NASA Technical Reports Server (NTRS)
Fiala, Harvey E.
1988-01-01
The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.
Representing Learning With Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence, for instance, in diagnosis and expert systems, as a unified qualitative and quantitative framework for representing and reasoning with probabilities and independencies. Their development and use spans several fields including artificial intelligence, decision theory and statistics, and provides an important bridge between these communities. This paper shows by way of example that these models can be extended to machine learning, neural networks and knowledge discovery by representing the notion of a sample on the graphical model. Not only does this allow a flexible variety of learning problems to be represented, it also provides the means for representing the goal of learning and opens the way for the automatic development of learning algorithms from specifications.
An intercomparison of artificial intelligence approaches for polar scene identification
NASA Technical Reports Server (NTRS)
Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.
1993-01-01
The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.
Cooperative analysis expert situation assessment research
NASA Technical Reports Server (NTRS)
Mccown, Michael G.
1987-01-01
For the past few decades, Rome Air Development Center (RADC) has been conducting research in Artificial Intelligence (AI). When the recent advances in hardware technology made many AI techniques practical, the Intelligence and Reconnaissance Directorate of RADC initiated an applications program entitled Knowledge Based Intelligence Systems (KBIS). The goal of the program is the development of a generic Intelligent Analyst System, an open machine with the framework for intelligence analysis, natural language processing, and man-machine interface techniques, needing only the specific problem domain knowledge to be operationally useful. The development of KBIS is described.
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
A variety of artificial intelligence techniques which could be used with regard to NASA space applications and robotics were evaluated. The techniques studied were decision tree manipulators, problem solvers, rule based systems, logic programming languages, representation language languages, and expert systems. The overall structure of a robotic simulation tool was defined and a framework for that tool developed. Nonlinear and linearized dynamics equations were formulated for n link manipulator configurations. A framework for the robotic simulation was established which uses validated manipulator component models connected according to a user defined configuration.
METEOR - an artificial intelligence system for convective storm forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elio, R.; De haan, J.; Strong, G.S.
1987-03-01
An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.
Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network
NASA Astrophysics Data System (ADS)
Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.
2006-06-01
The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.
Satellite operations support expert system
NASA Technical Reports Server (NTRS)
1985-01-01
The Satellite Operations Support Expert System is an effort to identify aspects of satellite ground support activity which could profitably be automated with artificial intelligence (AI) and to develop a feasibility demonstration for the automation of one such area. The hydrazine propulsion subsystems (HPS) of the International Sun Earth Explorer (ISEE) and the International Ultraviolet Explorer (IUS) were used as applications domains. A demonstration fault handling system was built. The system was written in Franz Lisp and is currently hosted on a VAX 11/750-11/780 family machine. The system allows the user to select which HPS (either from ISEE or IUE) is used. Then the user chooses the fault desired for the run. The demonstration system generates telemetry corresponding to the particular fault. The completely separate fault handling module then uses this telemetry to determine what and where the fault is and how to work around it. Graphics are used to depict the structure of the HPS, and the telemetry values displayed on the screen are continually updated. The capabilities of this system and its development cycle are described.
Rapid prototyping 3D virtual world interfaces within a virtual factory environment
NASA Technical Reports Server (NTRS)
Kosta, Charles Paul; Krolak, Patrick D.
1993-01-01
On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.
Satellite on-board applications of expert systems
NASA Astrophysics Data System (ADS)
Ciarlo, A.; Donzelli, P.; Katzenbelsser, R.; Moller, B. A.
The article discusses some aspects of the on-board application of expert systems (ES) in artificial satellites. The implementation of two prototypes on a dedicated AI machine are described. Consideration is given to: (1) the interrelationship between the ES and the architecture of the satellite and its impact on the mission-definition phase of the satellite life-cycle; (2) the identification of those tasks that at the current stage seem most likely to be delegated to on-board ES; and (3) the main obstacles that need to be overcome before operational use of ES on-board can take place, and particularly the matters of testing, knowledge collection, and availability of computing resources. Finally, the activities that are currently planned or that appear to be required in the near future to prepare the way for the full exploitation of this technology for satellite autonomy are briefly outlined.
Expert system verification and validation study. Delivery 3A and 3B: Trip summaries
NASA Technical Reports Server (NTRS)
French, Scott
1991-01-01
Key results are documented from attending the 4th workshop on verification, validation, and testing. The most interesting part of the workshop was when representatives from the U.S., Japan, and Europe presented surveys of VV&T within their respective regions. Another interesting part focused on current efforts to define industry standards for artificial intelligence and how that might affect approaches to VV&T of expert systems. The next part of the workshop focused on VV&T methods of applying mathematical techniques to verification of rule bases and techniques for capturing information relating to the process of developing software. The final part focused on software tools. A summary is also presented of the EPRI conference on 'Methodologies, Tools, and Standards for Cost Effective Reliable Software Verification and Validation. The conference was divided into discussion sessions on the following issues: development process, automated tools, software reliability, methods, standards, and cost/benefit considerations.
An expert support system for breast cancer diagnosis using color wavelet features.
Issac Niwas, S; Palanisamy, P; Chibbar, Rajni; Zhang, W J
2012-10-01
Breast cancer diagnosis can be done through the pathologic assessments of breast tissue samples such as core needle biopsy technique. The result of analysis on this sample by pathologist is crucial for breast cancer patient. In this paper, nucleus of tissue samples are investigated after decomposition by means of the Log-Gabor wavelet on HSV color domain and an algorithm is developed to compute the color wavelet features. These features are used for breast cancer diagnosis using Support Vector Machine (SVM) classifier algorithm. The ability of properly trained SVM is to correctly classify patterns and make them particularly suitable for use in an expert system that aids in the diagnosis of cancer tissue samples. The results are compared with other multivariate classifiers such as Naïves Bayes classifier and Artificial Neural Network. The overall accuracy of the proposed method using SVM classifier will be further useful for automation in cancer diagnosis.
Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf
2018-05-01
Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.
A Hybrid Multiuser Detector Based on MMSE and AFSA for TDRS System Forward Link
Yin, Zhendong; Liu, Xiaohui
2014-01-01
This study mainly focuses on multiuser detection in tracking and data relay satellite (TDRS) system forward link. Minimum mean square error (MMSE) is a low complexity multiuser detection method, but MMSE detector cannot achieve satisfactory bit error ratio and near-far resistance, whereas artificial fish swarm algorithm (AFSA) is expert in optimization and it can realize the global convergence efficiently. Therefore, a hybrid multiuser detector based on MMSE and AFSA (MMSE-AFSA) is proposed in this paper. The result of MMSE and its modified formations are used as the initial values of artificial fishes to accelerate the speed of global convergence and reduce the iteration times for AFSA. The simulation results show that the bit error ratio and near-far resistance performances of the proposed detector are much better, compared with MF, DEC, and MMSE, and are quite close to OMD. Furthermore, the proposed MMSE-AFSA detector also has a large system capacity. PMID:24883418
Artificial Intelligence: Expert Systems for Corps Tactical Planning and Other Applications.
1987-03-23
territory; and prepares to continue the attack into East Germany to secure Magdeburg and crossing sites on the Elbe River.. 3. EXECUTION. a. Concept of...14th Armored Cavalry Regiment, and the 22d Aviation Brigade to West Germany . The theater commander assigned the 1 Ith Corps and attached units to the...newly formed Middle Army Group (MIDAG), which had been given responsibility for a sector in the vicinity of Hannover, West Germany . Prior to issuing
1985-03-01
maturation process in the laboratory. Females can then be artificially inseminated . One advantage of this technology is a much reduced cost of obtaining...installed at canal zones. Artificial cascades and dams are also considered effective when installed at canal zones. Therefore, these two types have...centrifuge or a filter press "procedure. These methods release nutrients dynami- cally by artificial forces duri 4 water separation. However, the
An expert system for integrated structural analysis and design optimization for aerospace structures
NASA Technical Reports Server (NTRS)
1992-01-01
The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.
An expert system for integrated structural analysis and design optimization for aerospace structures
NASA Astrophysics Data System (ADS)
1992-04-01
The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.
Data management system advanced development
NASA Technical Reports Server (NTRS)
Douglas, Katherine; Humphries, Terry
1990-01-01
The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.
2015-01-01
Summary The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970’s drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford’s SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975. PMID:26123911
Kulikowski, C A
2015-08-13
The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970's drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford's SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975.
Recent developments of artificial intelligence in drying of fresh food: A review.
Sun, Qing; Zhang, Min; Mujumdar, Arun S
2018-03-01
Intellectualization is an important direction of drying development and artificial intelligence (AI) technologies have been widely used to solve problems of nonlinear function approximation, pattern detection, data interpretation, optimization, simulation, diagnosis, control, data sorting, clustering, and noise reduction in different food drying technologies due to the advantages of self-learning ability, adaptive ability, strong fault tolerance and high degree robustness to map the nonlinear structures of arbitrarily complex and dynamic phenomena. This article presents a comprehensive review on intelligent drying technologies and their applications. The paper starts with the introduction of basic theoretical knowledge of ANN, fuzzy logic and expert system. Then, we summarize the AI application of modeling, predicting, and optimization of heat and mass transfer, thermodynamic performance parameters, and quality indicators as well as physiochemical properties of dried products in artificial biomimetic technology (electronic nose, computer vision) and different conventional drying technologies. Furthermore, opportunities and limitations of AI technique in drying are also outlined to provide more ideas for researchers in this area.
Fiuzy, Mohammad; Haddadnia, Javad; Mollania, Nasrin; Hashemian, Maryam; Hassanpour, Kazem
2012-01-01
Accurate Diagnosis of Breast Cancer is of prime importance. Fine Needle Aspiration test or "FNA", which has been used for several years in Europe, is a simple, inexpensive, noninvasive and accurate technique for detecting breast cancer. Expending the suitable features of the Fine Needle Aspiration results is the most important diagnostic problem in early stages of breast cancer. In this study, we introduced a new algorithm that can detect breast cancer based on combining artificial intelligent system and Fine Needle Aspiration (FNA). We studied the Features of Wisconsin Data Base Cancer which contained about 569 FNA test samples (212 patient samples (malignant) and 357 healthy samples (benign)). In this research, we combined Artificial Intelligence Approaches, such as Evolutionary Algorithm (EA) with Genetic Algorithm (GA), and also used Exact Classifier Systems (here by Fuzzy C-Means (FCM)) to separate malignant from benign samples. Furthermore, we examined artificial Neural Networks (NN) to identify the model and structure. This research proposed a new algorithm for an accurate diagnosis of breast cancer. According to Wisconsin Data Base Cancer (WDBC) data base, 62.75% of samples were benign, and 37.25% were malignant. After applying the proposed algorithm, we achieved high detection accuracy of about "96.579%" on 205 patients who were diagnosed as having breast cancer. It was found that the method had 93% sensitivity, 73% specialty, 65% positive predictive value, and 95% negative predictive value, respectively. If done by experts, Fine Needle Aspiration (FNA) can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples. FNA can be the first line of diagnosis in women with breast masses, at least in deprived regions, and may increase health standards and clinical supervision of patients. Such a smart, economical, non-invasive, rapid and accurate system can be introduced as a useful diagnostic system for comprehensive treatment of breast cancer. Another advantage of this method is the possibility of diagnosing breast abnormalities. If done by experts, FNA can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples.
Workflow Agents vs. Expert Systems: Problem Solving Methods in Work Systems Design
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Seah, Chin
2009-01-01
During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving methods as part of an effort called "second generation expert systems" (2nd GES). How do the motivations and results of this research relate to building tools for the workplace today? We provide an historical review of how the theory of expertise has developed, a progress report on a tool for designing and implementing model-based automation (Brahms), and a concrete example how we apply 2nd GES concepts today in an agent-based system for space flight operations (OCAMS). Brahms incorporates an ontology for modeling work practices, what people are doing in the course of a day, characterized as "activities." OCAMS was developed using a simulation-to-implementation methodology, in which a prototype tool was embedded in a simulation of future work practices. OCAMS uses model-based methods to interactively plan its actions and keep track of the work to be done. The problem solving methods of practice are interactive, employing reasoning for and through action in the real world. Analogously, it is as if a medical expert system were charged not just with interpreting culture results, but actually interacting with a patient. Our perspective shifts from building a "problem solving" (expert) system to building an actor in the world. The reusable components in work system designs include entire "problem solvers" (e.g., a planning subsystem), interoperability frameworks, and workflow agents that use and revise models dynamically in a network of people and tools. Consequently, the research focus shifts so "problem solving methods" include ways of knowing that models do not fit the world, and ways of interacting with other agents and people to gain or verify information and (ultimately) adapt rules and procedures to resolve problematic situations.
Automated eddy current analysis of materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.
Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin
2018-04-01
Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.
Saybani, Mahmoud Reza; Shamshirband, Shahaboddin; Golzari, Shahram; Wah, Teh Ying; Saeed, Aghabozorgi; Mat Kiah, Miss Laiha; Balas, Valentina Emilia
2016-03-01
Tuberculosis is a major global health problem that has been ranked as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus. Diagnosis based on cultured specimens is the reference standard; however, results take weeks to obtain. Slow and insensitive diagnostic methods hampered the global control of tuberculosis, and scientists are looking for early detection strategies, which remain the foundation of tuberculosis control. Consequently, there is a need to develop an expert system that helps medical professionals to accurately diagnose the disease. The objective of this study is to diagnose tuberculosis using a machine learning method. Artificial immune recognition system (AIRS) has been used successfully for diagnosing various diseases. However, little effort has been undertaken to improve its classification accuracy. In order to increase the classification accuracy, this study introduces a new hybrid system that incorporates real tournament selection mechanism into the AIRS. This mechanism is used to control the population size of the model and to overcome the existing selection pressure. Patient epacris reports obtained from the Pasteur laboratory in northern Iran were used as the benchmark data set. The sample consisted of 175 records, from which 114 (65 %) were positive for TB, and the remaining 61 (35 %) were negative. The classification performance was measured through tenfold cross-validation, root-mean-square error, sensitivity, and specificity. With an accuracy of 100 %, RMSE of 0, sensitivity of 100 %, and specificity of 100 %, the proposed method was able to successfully classify tuberculosis cases. In addition, the proposed method is comparable with top classifiers used in this research.
NASA Technical Reports Server (NTRS)
Davis, Robert P.; Underwood, Ian M.
1987-01-01
The use of database management systems (DBMS) and AI to minimize human involvement in the planning of optical navigation pictures for interplanetary space probes is discussed, with application to the Galileo mission. Parameters characterizing the desirability of candidate pictures, and the program generating them, are described. How these parameters automatically build picture records in a database, and the definition of the database structure, are then discussed. The various rules, priorities, and constraints used in selecting pictures are also described. An example is provided of an expert system, written in Prolog, for automatically performing the selection process.
Production Systems as a Programming Language for Artificial Intelligence Applications. Volume III.
1976-12-01
that the reader has some familiarity with Volume I of this report, which discusses the goals and conclusions of the thesis as a whole, and which...probably a suitable domain only for chess experts (which I am not), it will still be useful for the present thesis for the following reasons. As Berliner...chapters of this thesis do focus on such storage problems. Three other representational and low-level PS issues can be mentioned. Words are
1986-01-15
within that - group , has led naturally to the study of the possible role of belief functions in medicine (Gordon & Shortliffe, 1984). Much attention is...Street ,- Washington, DC 20052 Arlington, VA 22217 HENRY SOLOMON BEN P. WISE Graduate School of Arts & Carnegie-Mellon University Sciences Robotics...Bayesian methods and place the theory of belief functions in this iii--’ historical context. Sections 3 studies some strands of the development within
1991-03-01
management methodologies claim to be "expert systems" with security intelligence built into them to I derive a body of both facts and speculative data ... Data Administration considerations . III -21 IV. ARTIFICIAL INTELLIGENCE . .. .. .. . .. IV - 1 A. Description of Technologies . . . . . .. IV - 1 1...as intelligent gateways, wide area networks, and distributed databases for the distribution of logistics products. The integrity of CALS data and the
1990-12-01
expected values. However, because the same good /bad output pattern of a device always gives rise to the same initial ordering, the method has its limitation...For any device and good /bad output pattern, it is easy to come up with an example on which the method does poorly in the sense that the actual...submodule is hss likely to be faulty if it is connec d to more good primary outputs. Initially, candidates are ordered according to their relat -nships with
Natural Language Interactions with Artificial Experts
1986-07-01
description. Such a belief is revealed when a noun phrase is used in particular con- texts. For example, for Q to ask the question “Which French ...majors failed CIS531 last term?” Q would have to believe that: 1) CIS531 was given last term, 2) there are French majors, and 3) there are French majors...the user’s part and responds accordingly; e.g., User: Which French majors failed CIS531 last term? System: I do not know of any French majors
Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.
2016-01-01
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196
Rodrigues, J M; Trombert-Paviot, B; Baud, R; Wagner, J; Meusnier-Carriot, F
1998-01-01
GALEN has developed a language independent common reference model based on a medically oriented ontology and practical tools and techniques for managing healthcare terminology including natural language processing. GALEN-IN-USE is the current phase which applied the modelling and the tools to the development or the updating of coding systems for surgical procedures in different national coding centers co-operating within the European Federation of Coding Centre (EFCC) to create a language independent knowledge repository for multicultural Europe. We used an integrated set of artificial intelligence terminology tools named CLAssification Manager workbench to process French professional medical language rubrics into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation we generate controlled French natural language. The French national coding centre is then able to retrieve the initial professional rubrics with different categories of concepts, to compare the professional language proposed by expert clinicians to the French generated controlled vocabulary and to finalize the linguistic labels of the coding system in relation with the meanings of the conceptual system structure.
Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J
2016-01-14
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
NASA Astrophysics Data System (ADS)
Ibrahim, Wael Refaat Anis
The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an alarm is instigated predicting the advent of system abnormal operation. The incoming data could be compared to previous trends as well as matched to trends developed through computer simulations and stored using fuzzy learning.
Artificial Organs 2017: A Year in Review.
Malchesky, Paul S
2018-03-01
In this Editor's Review, articles published in 2017 are organized by category and summarized. We provide a brief reflection of the research and progress in artificial organs intended to advance and better human life while providing insight for continued application of these technologies and methods. Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. Peer-reviewed Special Issues this year included contributions from the 12th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Undar, Artificial Oxygen Carriers edited by Drs. Akira Kawaguchi and Jan Simoni, the 24th Congress of the International Society for Mechanical Circulatory Support edited by Dr. Toru Masuzawa, Challenges in the Field of Biomedical Devices: A Multidisciplinary Perspective edited by Dr. Vincenzo Piemonte and colleagues and Functional Electrical Stimulation edited by Dr. Winfried Mayr and colleagues. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A secure communication using cascade chaotic computing systems on clinical decision support.
Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat
2016-06-01
Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.
Expert system for surveillance and diagnosis of breach fuel elements
Gross, K.C.
1988-01-21
An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.
Expert system for surveillance and diagnosis of breach fuel elements
Gross, Kenny C.
1989-01-01
An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.
Taylor, Andrew T; Garcia, Ernest V
2014-01-01
The goal of artificial intelligence, expert systems, decision support systems and computer assisted diagnosis (CAD) in imaging is the development and implementation of software to assist in the detection and evaluation of abnormalities, to alert physicians to cognitive biases, to reduce intra and inter-observer variability and to facilitate the interpretation of studies at a faster rate and with a higher level of accuracy. These developments are needed to meet the challenges resulting from a rapid increase in the volume of diagnostic imaging studies coupled with a concurrent increase in the number and complexity of images in each patient data. The convergence of an expanding knowledge base and escalating time constraints increases the likelihood of physician errors. Errors are even more likely when physicians interpret low volume studies such as 99mTc-MAG3 diuretic scans where imagers may have had limited training or experience. Decision support systems include neural networks, case-based reasoning, expert systems and statistical systems. iRENEX (renal expert) is an expert system for diuretic renography that uses a set of rules obtained from human experts to analyze a knowledge base of both clinical parameters and quantitative parameters derived from the renogram. Initial studies have shown that the interpretations provided by iRENEX are comparable to the interpretations of a panel of experts. iRENEX provides immediate patient specific feedback at the time of scan interpretation, can be queried to provide the reasons for its conclusions and can be used as an educational tool to teach trainees to better interpret renal scans. iRENEX also has the capacity to populate a structured reporting module and generate a clear and concise impression based on the elements contained in the report; adherence to the procedural and data entry components of the structured reporting module assures and documents procedural competency. Finally, although the focus is CAD applied to diuretic renography, this review offers a window into the rationale, methodology and broader applications of computer assisted diagnosis in medical imaging. PMID:24484751
Computer network defense through radial wave functions
NASA Astrophysics Data System (ADS)
Malloy, Ian J.
The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.
2017-01-01
3.2 Generic Network Architecture ........................................................................................ 11 3.3 Neuron Non ...The magnitude of the importance of these technologies is hard to overstate, and we thus feel that technically minded, non -expert readers should be...The result is often billions of weights and biases which need to be calculated. 13 3.3 Neuron Non -Linearity The big, early advance in
EXADS - EXPERT SYSTEM FOR AUTOMATED DESIGN SYNTHESIS
NASA Technical Reports Server (NTRS)
Rogers, J. L.
1994-01-01
The expert system called EXADS was developed to aid users of the Automated Design Synthesis (ADS) general purpose optimization program. Because of the general purpose nature of ADS, it is difficult for a nonexpert to select the best choice of strategy, optimizer, and one-dimensional search options from the one hundred or so combinations that are available. EXADS aids engineers in determining the best combination based on their knowledge of the problem and the expert knowledge previously stored by experts who developed ADS. EXADS is a customized application of the AESOP artificial intelligence program (the general version of AESOP is available separately from COSMIC. The ADS program is also available from COSMIC.) The expert system consists of two main components. The knowledge base contains about 200 rules and is divided into three categories: constrained, unconstrained, and constrained treated as unconstrained. The EXADS inference engine is rule-based and makes decisions about a particular situation using hypotheses (potential solutions), rules, and answers to questions drawn from the rule base. EXADS is backward-chaining, that is, it works from hypothesis to facts. The rule base was compiled from sources such as literature searches, ADS documentation, and engineer surveys. EXADS will accept answers such as yes, no, maybe, likely, and don't know, or a certainty factor ranging from 0 to 10. When any hypothesis reaches a confidence level of 90% or more, it is deemed as the best choice and displayed to the user. If no hypothesis is confirmed, the user can examine explanations of why the hypotheses failed to reach the 90% level. The IBM PC version of EXADS is written in IQ-LISP for execution under DOS 2.0 or higher with a central memory requirement of approximately 512K of 8 bit bytes. This program was developed in 1986.
Intelligent fault-tolerant controllers
NASA Technical Reports Server (NTRS)
Huang, Chien Y.
1987-01-01
A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning bayesian expert system; a natural language generation system for a heterogeneous distributed database system; competence-switching'' managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning Bayesian Expert System; a natural language generation system for a heterogeneous distributed database system; ``competence-switching`` managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
Inflatable artificial sphincter - series (image)
... sphincter dysfunction related to spinal cord injury or multiple sclerosis. Most experts advise their patients to try medication and bladder retraining therapy first before resorting to this treatment. Alternatives to ...
An artificial intelligence approach to lithostratigraphic correlation using geophysical well logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olea, R.A.; Davis, J.C.
1986-01-01
Computer programs for lithostratigraphic correlation of well logs have achieved limited success. Their algorithms are based on an oversimplified view of the manual process used by analysts to establish geologically correct correlations. The programs experience difficulties if the correlated rocks deviate from an ideal geometry of perfectly homogeneous, parallel layers of infinite extent. Artificial intelligence provides a conceptual basis for formulating the task of lithostratigraphic correlation, leading to more realistic procedures. A prototype system using the ''production rule'' approach of expert systems successfully correlates well logs in areas of stratigraphic complexity. Two digitized logs are used per well, one formore » curve matching and the other for lithologic comparison. The software has been successfully used to correlate more than 100,000 ft (30 480 m) of section, through clastic sequences in Louisiana and through carbonate sequences in Kansas. Correlations have been achieved even in the presence of faults, unconformities, facies changes, and lateral variations in bed thickness.« less
Artificial intelligence in hematology.
Zini, Gina
2005-10-01
Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.
Technologies for space station autonomy
NASA Technical Reports Server (NTRS)
Staehle, R. L.
1984-01-01
This report presents an informal survey of experts in the field of spacecraft automation, with recommendations for which technologies should be given the greatest development attention for implementation on the initial 1990's NASA Space Station. The recommendations implemented an autonomy philosophy that was developed by the Concept Development Group's Autonomy Working Group during 1983. They were based on assessments of the technologies' likely maturity by 1987, and of their impact on recurring costs, non-recurring costs, and productivity. The three technology areas recommended for programmatic emphasis were: (1) artificial intelligence expert (knowledge based) systems and processors; (2) fault tolerant computing; and (3) high order (procedure oriented) computer languages. This report also describes other elements required for Station autonomy, including technologies for later implementation, system evolvability, and management attitudes and goals. The cost impact of various technologies is treated qualitatively, and some cases in which both the recurring and nonrecurring costs might be reduced while the crew productivity is increased, are also considered. Strong programmatic emphasis on life cycle cost and productivity is recommended.
SCAILET - An intelligent assistant for satellite ground terminal operations
NASA Technical Reports Server (NTRS)
Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.
1992-01-01
Space communication artificial intelligence for the link evaluation terminal (SCAILET) is an experimenter interface to the link evaluation terminal (LET) developed by NASA through the application of artificial intelligence to an advanced ground terminal. The high-burst-rate (HBR) LET provides the required capabilities for wideband communications experiments with the advanced communications technology satellite (ACTS). The HBR-LET terminal consists of seven major subsystems and is controlled and monitored by a minicomputer through an IEEE-488 or RS-232 interface. Programming scripts configure HBR-LET and allow data acquisition but are difficult to use and therefore the full capabilities of the system are not utilized. An intelligent assistant module was developed as part of the SCAILET module and solves problems encountered during configuration of the HBR-LET system. This assistant is a graphical interface with an expert system running in the background and allows users to configure instrumentation, program sequences and reference documentation. The simplicity of use makes SCAILET a superior interface to the ASCII terminal and continuous monitoring allows nearly flawless configuration and execution of HBR-LET experiments.
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
An Artificial Intelligence System to Predict Quality of Service in Banking Organizations
Popovič, Aleš
2016-01-01
Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge. PMID:27313604
An Artificial Intelligence System to Predict Quality of Service in Banking Organizations.
Castelli, Mauro; Manzoni, Luca; Popovič, Aleš
2016-01-01
Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge.
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Elemental Study on Auscultaiting Diagnosis Support System of Hemodialysis Shunt Stenosis by ANN
NASA Astrophysics Data System (ADS)
Suzuki, Yutaka; Fukasawa, Mizuya; Mori, Takahiro; Sakata, Osamu; Hattori, Asobu; Kato, Takaya
It is desired to detect stenosis at an early stage to use hemodailysis shunt for longer time. Stethoscope auscultation of vascular murmurs is useful noninvasive diagnostic approach, but an experienced expert operator is necessary. Some experts often say that the high-pitch murmurs exist if the shunt becomes stenosed, and some studies report that there are some features detected at high frequency by time-frequency analysis. However, some of the murmurs are difficult to detect, and the final judgment is difficult. This study proposes a new diagnosis support system to screen stenosis by using vascular murmurs. The system is performed using artificial neural networks (ANN) with the analyzed frequency data by maximum entropy method (MEM). The author recorded vascular murmurs both before percutaneous transluminal angioplasty (PTA) and after. Examining the MEM spectral characteristics of the high-pitch stenosis murmurs, three features could be classified, which covered 85 percent of stenosis vascular murmurs. The features were learnt by the ANN, and judged. As a result, a percentage of judging the classified stenosis murmurs was 100%, and that of normal was 86%.
Logic programming and metadata specifications
NASA Technical Reports Server (NTRS)
Lopez, Antonio M., Jr.; Saacks, Marguerite E.
1992-01-01
Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.
Sojda, R.S.
2007-01-01
Decision support systems are often not empirically evaluated, especially the underlying modelling components. This can be attributed to such systems necessarily being designed to handle complex and poorly structured problems and decision making. Nonetheless, evaluation is critical and should be focused on empirical testing whenever possible. Verification and validation, in combination, comprise such evaluation. Verification is ensuring that the system is internally complete, coherent, and logical from a modelling and programming perspective. Validation is examining whether the system is realistic and useful to the user or decision maker, and should answer the question: “Was the system successful at addressing its intended purpose?” A rich literature exists on verification and validation of expert systems and other artificial intelligence methods; however, no single evaluation methodology has emerged as preeminent. At least five approaches to validation are feasible. First, under some conditions, decision support system performance can be tested against a preselected gold standard. Second, real-time and historic data sets can be used for comparison with simulated output. Third, panels of experts can be judiciously used, but often are not an option in some ecological domains. Fourth, sensitivity analysis of system outputs in relation to inputs can be informative. Fifth, when validation of a complete system is impossible, examining major components can be substituted, recognizing the potential pitfalls. I provide an example of evaluation of a decision support system for trumpeter swan (Cygnus buccinator) management that I developed using interacting intelligent agents, expert systems, and a queuing system. Predicted swan distributions over a 13-year period were assessed against observed numbers. Population survey numbers and banding (ringing) studies may provide long term data useful in empirical evaluation of decision support.
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Hoskinson; J. R. Hess; R. K. Fink
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
Geophysical phenomena classification by artificial neural networks
NASA Technical Reports Server (NTRS)
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
An artificial intelligence approach to classify and analyse EEG traces.
Castellaro, C; Favaro, G; Castellaro, A; Casagrande, A; Castellaro, S; Puthenparampil, D V; Salimbeni, C Fattorello
2002-06-01
We present a fully automatic system for the classification and analysis of adult electroencephalograms (EEGs). The system is based on an artificial neural network which classifies the single epochs of trace, and on an Expert System (ES) which studies the time and space correlation among the outputs of the neural network; compiling a final report. On the last 2000 EEGs representing different kinds of alterations according to clinical occurrences, the system was able to produce 80% good or very good final comments and 18% sufficient comments, which represent the documents delivered to the patient. In the remaining 2% the automatic comment needed some modifications prior to be presented to the patient. No clinical false-negative classifications did arise, i.e. no altered traces were classified as 'normal' by the neural network. The analysis method we describe is based on the interpretation of objective measures performed on the trace. It can improve the quality and reliability of the EEG exam and appears useful for the EEG medical reports although it cannot totally substitute the medical doctor who should now read the automatic EEG analysis in light of the patient's history and age.
Fiuzy, Mohammad; Haddadnia, Javad; Mollania, Nasrin; Hashemian, Maryam; Hassanpour, Kazem
2012-01-01
Background Accurate Diagnosis of Breast Cancer is of prime importance. Fine Needle Aspiration test or "FNA”, which has been used for several years in Europe, is a simple, inexpensive, noninvasive and accurate technique for detecting breast cancer. Expending the suitable features of the Fine Needle Aspiration results is the most important diagnostic problem in early stages of breast cancer. In this study, we introduced a new algorithm that can detect breast cancer based on combining artificial intelligent system and Fine Needle Aspiration (FNA). Methods We studied the Features of Wisconsin Data Base Cancer which contained about 569 FNA test samples (212 patient samples (malignant) and 357 healthy samples (benign)). In this research, we combined Artificial Intelligence Approaches, such as Evolutionary Algorithm (EA) with Genetic Algorithm (GA), and also used Exact Classifier Systems (here by Fuzzy C-Means (FCM)) to separate malignant from benign samples. Furthermore, we examined artificial Neural Networks (NN) to identify the model and structure. This research proposed a new algorithm for an accurate diagnosis of breast cancer. Results According to Wisconsin Data Base Cancer (WDBC) data base, 62.75% of samples were benign, and 37.25% were malignant. After applying the proposed algorithm, we achieved high detection accuracy of about "96.579%” on 205 patients who were diagnosed as having breast cancer. It was found that the method had 93% sensitivity, 73% specialty, 65% positive predictive value, and 95% negative predictive value, respectively. If done by experts, Fine Needle Aspiration (FNA) can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples. FNA can be the first line of diagnosis in women with breast masses, at least in deprived regions, and may increase health standards and clinical supervision of patients. Conclusion Such a smart, economical, non-invasive, rapid and accurate system can be introduced as a useful diagnostic system for comprehensive treatment of breast cancer. Another advantage of this method is the possibility of diagnosing breast abnormalities. If done by experts, FNA can be a reliable replacement for open biopsy in palpable breast masses. Evaluation of FNA samples during aspiration can decrease insufficient samples. PMID:25352966
Prototype space station automation system delivered and demonstrated at NASA
NASA Technical Reports Server (NTRS)
Block, Roger F.
1987-01-01
The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.
NASA Technical Reports Server (NTRS)
Pippin, H. G.; Woll, S. L. B.
2000-01-01
Institutions need ways to retain valuable information even as experienced individuals leave an organization. Modern electronic systems have enough capacity to retain large quantities of information that can mitigate the loss of experience. Performance information for long-term space applications is relatively scarce and specific information (typically held by a few individuals within a single project) is often rather narrowly distributed. Spacecraft operate under severe conditions and the consequences of hardware and/or system failures, in terms of cost, loss of information, and time required to replace the loss, are extreme. These risk factors place a premium on appropriate choice of materials and components for space applications. An expert system is a very cost-effective method for sharing valuable and scarce information about spacecraft performance. Boeing has an artificial intelligence software package, called the Boeing Expert System Tool (BEST), to construct and operate knowledge bases to selectively recall and distribute information about specific subjects. A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft has been developed under contract to the NASA SEE program. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described. The knowledge base is a backward-chaining, rule-based system. The user answers a sequence of questions, and the expert system provides estimates of optical and mechanical performance of selected materials under specific environmental conditions. The initial operating capability of the system will include data for Kapton, silverized Teflon, selected paints, silicone-based materials, and certain metals. For situations where a mission profile (launch date, orbital parameters, mission duration, spacecraft orientation) is not precisely defined, the knowledge base still attempts to provide qualitative observations about materials performance and likely exposures. Prior to the NASA contract, a knowledge base, the Spacecraft Environments Assistant (SEA,) was initially developed by Boeing to estimate the environmental factors important for a specific spacecraft mission profile. The NASA SEE program has funded specific enhancements to the capability of this knowledge base. The SEA qualitatively identifies over 25 environmental factors that may influence the performance of a spacecraft during its operational lifetime. For cases where sufficiently detailed answers are provided to questions asked by the knowledge base, atomic oxygen fluence levels, proton and/or electron fluence and dose levels, and solar exposure hours are calculated. The SMS knowledge base incorporates the previously developed SEA knowledge base. A case history for previous flight experiment will be shown as an example, and capabilities and limitations of the system will be discussed.
Fuzzy logic and neural network technologies
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
A Decision Support System for Optimum Use of Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith
1999-07-01
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.
Buller, G; Lutman, M E
1998-08-01
The increasing use of transiently evoked otoacoustic emissions (TEOAE) in large neonatal hearing screening programmes makes a standardized method of response classification desirable. Until now methods have been either subjective or based on arbitrary response characteristics. This study takes an expert system approach to standardize the subjective judgements of an experienced scorer. The method that is developed comprises three stages. First, it transforms TEOAEs from waveforms in the time domain into a simplified parameter set. Second, the parameter set is classified by an artificial neural network that has been taught on a large database TEOAE waveforms and corresponding expert scores. Third, additional fuzzy logic rules automatically detect probable artefacts in the waveforms and synchronized spontaneous emission components. In this way, the knowledge of the experienced scorer is encapsulated in the expert system software and thereafter can be accessed by non-experts. Teaching and evaluation of the neural network was based on TEOAEs from a database totalling 2190 neonatal hearing screening tests. The database was divided into learning and test groups with 820 and 1370 waveforms respectively. From each recorded waveform a set of 12 parameters was calculated, representing signal static and dynamic properties. The artifical network was taught with parameter sets of only the learning groups. Reproduction of the human scorer classification by the neural net in the learning group showed a sensitivity for detecting screen fails of 99.3% (299 from 301 failed results on subjective scoring) and a specificity for detecting screen passes of 81.1% (421 of 519 pass results). To quantify the post hoc performance of the net (generalization), the test group was then presented to the network input. Sensitivity was 99.4% (474 from 477) and specificity was 87.3% (780 from 893). To check the efficiency of the classification method, a second learning group was selected out of the previous test group, and the previous learning group was used as the test group. Repeating learning and test procedures yielded 99.3% sensitivity and 80.7% specificity for reproduction, and 99.4% sensitivity and 86.7% specificity for generalization. In all respects, performance was better than for a previously optimized method based simply on cross-correlation between replicate non-linear waveforms. It is concluded that classification methods based on neural networks show promise for application to large neonatal screening programmes utilizing TEOAEs.
NASA Astrophysics Data System (ADS)
Chang, Hsien-Cheng
Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.
NASA Technical Reports Server (NTRS)
Mckee, James W.
1989-01-01
The objective is to develop a system that will allow a person not necessarily skilled in the art of programming robots to quickly and naturally create the necessary data and commands to enable a robot to perform a desired task. The system will use a menu driven graphical user interface. This interface will allow the user to input data to select objects to be moved. There will be an imbedded expert system to process the knowledge about objects and the robot to determine how they are to be moved. There will be automatic path planning to avoid obstacles in the work space and to create a near optimum path. The system will contain the software to generate the required robot instructions.
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Astrophysics Data System (ADS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-11-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
Hueso, Miguel; Vellido, Alfredo; Montero, Nuria; Barbieri, Carlo; Ramos, Rosa; Angoso, Manuel; Cruzado, Josep Maria; Jonsson, Anders
2018-02-01
Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve the patient's quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters, and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for the assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of "big data" and will require real-time predictive models. These may come from the fields of machine learning and computational intelligence, both included in artificial intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of artificial intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in artificial intelligence and machine learning, a scientific meeting was organized in the Hospital Universitari Bellvitge (L'Hospitalet, Barcelona). As an outcome of that meeting, the aim of this review is to investigate artificial intel ligence experiences on dialysis, with a focus on potential barriers, challenges, and prospects for future applications of these technologies. Artificial intelligence research on dialysis is still in an early stage, and the main challenge relies on interpretability and/or comprehensibility of data models when applied to decision making. Artificial neural networks and medical decision support systems have been used to make predictions about anemia, total body water, or intradialysis hypotension and are promising approaches for the prescription and monitoring of hemodialysis therapy. Current dialysis machines are continuously improving due to innovative technological developments, but patient safety is still a key challenge. Real-time monitoring systems, coupled with automatic instantaneous biofeedback, will allow changing dialysis prescriptions continuously. The integration of vital sign monitoring with dialysis parameters will produce large data sets that will require the use of data analysis techniques, possibly from the area of machine learning, in order to make better decisions and increase the safety of patients.
1985-09-30
further discussed in Sections 4 and 5. "=:.’. 1 ":210 NRL REPORT 8902 Notice that I have used the plural form, OBJECTS, in Fig. 2.1 to indicate that there...Washington, DC. Artificial Intelligence Center, SRI International , Menlo Park, CA, 1978. i 8. G. Gentzen, "Investigations into Logical Deduction," The...one of the form ( relatio -sm term-i term-Z) or (tuple-name term-I ... term-a) with or without the negation operator oT, and atm-exp denotes a timed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopman, G.; Tu, M.
1997-09-01
It is shown that a combination of two programs, MultiCASE and META, can help assess the biodegradability of industrial organic materials in the ecosystem. MultiCASE is an artificial intelligence computer program that had been trained to identify molecular substructures believed to cause or inhibit biodegradation and META is an expert system trained to predict the aerobic biodegradation products of organic molecules. These two programs can be used to help evaluate the fate of disposed chemicals by estimating their biodegradability and the nature of their biodegradation products under conditions that may model the environment.
1989-03-01
DI _1.3)))an also the wire connecting m419 (id (3))( (tp (P-PORT))(port-of rDim) (m88 ( l l ) (type (P-PORT)) (port-of ( DI -1.1))) (m428 (id (2)) (type (P...research on this project had two dis - tinct but overlapping phases: consolidation of work done during the previous two years and developing new...diagnosis when VMES notices a diagnostic short-cut from the dual device model is present; this will be dis - cussed in the section of "Dual Device Model
Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)
NASA Technical Reports Server (NTRS)
Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.
1992-01-01
A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.
NASA Astrophysics Data System (ADS)
Valach, F.; Revallo, M.; Hejda, P.; Bochníček, J.
2010-12-01
Our modern society with its advanced technology is becoming increasingly vulnerable to the Earth's system disorders originating in explosive processes on the Sun. Coronal mass ejections (CMEs) blasted into interplanetary space as gigantic clouds of ionized gas can hit Earth within a few hours or days and cause, among other effects, geomagnetic storms - perhaps the best known manifestation of solar wind interaction with Earth's magnetosphere. Solar energetic particles (SEP), accelerated to near relativistic energy during large solar storms, arrive at the Earth's orbit even in few minutes and pose serious risk to astronauts traveling through the interplanetary space. These and many other threats are the reason why experts pay increasing attention to space weather and its predictability. For research on space weather, it is typically necessary to examine a large number of parameters which are interrelated in a complex non-linear way. One way to cope with such a task is to use an artificial neural network for space weather modeling, a tool originally developed for artificial intelligence. In our contribution, we focus on practical aspects of the neural networks application to modeling and forecasting selected space weather parameters.
NASA Technical Reports Server (NTRS)
Lee, S. Daniel
1990-01-01
We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.
AI in medicine on its way from knowledge-intensive to data-intensive systems.
Horn, W
2001-08-01
The last 20 years of research and development in the field of artificial intelligence in medicine (AIM) show a path from knowledge-intensive systems, which try to capture the essential knowledge of experts in a knowledge-based system, to data-intensive systems available today. Nowadays enormous amounts of information is accessible electronically. Large datasets are collected continuously monitoring physiological parameters of patients. Knowledge-based systems are needed to make use of all these data available and to help us to cope with the information explosion. In addition, temporal data analysis and intelligent information visualization can help us to get a summarized view of the change over time of clinical parameters. Integrating AIM modules into the daily-routine software environment of our care providers gives us a great chance for maintaining and improving quality of care.
Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center
NASA Technical Reports Server (NTRS)
Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.
1995-01-01
The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.
Saybani, Mahmoud Reza; Shamshirband, Shahaboddin; Golzari Hormozi, Shahram; Wah, Teh Ying; Aghabozorgi, Saeed; Pourhoseingholi, Mohamad Amin; Olariu, Teodora
2015-04-01
Tuberculosis (TB) is a major global health problem, which has been ranked as the second leading cause of death from an infectious disease worldwide. Diagnosis based on cultured specimens is the reference standard, however results take weeks to process. Scientists are looking for early detection strategies, which remain the cornerstone of tuberculosis control. Consequently there is a need to develop an expert system that helps medical professionals to accurately and quickly diagnose the disease. Artificial Immune Recognition System (AIRS) has been used successfully for diagnosing various diseases. However, little effort has been undertaken to improve its classification accuracy. In order to increase the classification accuracy of AIRS, this study introduces a new hybrid system that incorporates a support vector machine into AIRS for diagnosing tuberculosis. Patient epacris reports obtained from the Pasteur laboratory of Iran were used as the benchmark data set, with the sample size of 175 (114 positive samples for TB and 60 samples in the negative group). The strategy of this study was to ensure representativeness, thus it was important to have an adequate number of instances for both TB and non-TB cases. The classification performance was measured through 10-fold cross-validation, Root Mean Squared Error (RMSE), sensitivity and specificity, Youden's Index, and Area Under the Curve (AUC). Statistical analysis was done using the Waikato Environment for Knowledge Analysis (WEKA), a machine learning program for windows. With an accuracy of 100%, sensitivity of 100%, specificity of 100%, Youden's Index of 1, Area Under the Curve of 1, and RMSE of 0, the proposed method was able to successfully classify tuberculosis patients. There have been many researches that aimed at diagnosing tuberculosis faster and more accurately. Our results described a model for diagnosing tuberculosis with 100% sensitivity and 100% specificity. This model can be used as an additional tool for experts in medicine to diagnose TBC more accurately and quickly.
Robot navigation research using the HERMIES mobile robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, D.L.
1989-01-01
In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less
Advances in artificial olfaction: sensors and applications.
Gutiérrez, J; Horrillo, M C
2014-06-01
The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned. Copyright © 2014 Elsevier B.V. All rights reserved.
Battles, J B; Kaplan, H S; Van der Schaaf, T W; Shea, C E
1998-03-01
To design, develop, and implement a prototype medical event-reporting system for use in transfusion medicine to improve transfusion safety by studying incidents and errors. The IDEALS concept of design was used to identify specifications for the event-reporting system, and a Delphi and subsequent nominal group technique meetings were used to reach consensus on the development of the system. An interdisciplinary panel of experts from aviation safety, nuclear power, cognitive psychology, artificial intelligence, and education and representatives of major transfusion medicine organizations participated in the development process. Setting.- Three blood centers and three hospital transfusion services implemented the reporting system. A working prototype event-reporting system was recommended and implemented. The system has seven components: detection, selection, description, classification, computation, interpretation, and local evaluation. Its unique features include no-fault reporting initiated by the individual discovering the event, who submits a report that is investigated by local quality assurance personnel and forwarded to a nonregulatory central system for computation and interpretation. An event-reporting system incorporated into present quality assurance and risk management efforts can help organizations address system structural and procedural weakness where the potential for errors can adversely affect health care outcomes. Input from the end users of the system as well as from external experts should enable this reporting system to serve as a useful model for others who may develop event-reporting systems in other medical domains.
Studying real-world perceptual expertise
Shen, Jianhong; Mack, Michael L.; Palmeri, Thomas J.
2014-01-01
Significant insights into visual cognition have come from studying real-world perceptual expertise. Many have previously reviewed empirical findings and theoretical developments from this work. Here we instead provide a brief perspective on approaches, considerations, and challenges to studying real-world perceptual expertise. We discuss factors like choosing to use real-world versus artificial object domains of expertise, selecting a target domain of real-world perceptual expertise, recruiting experts, evaluating their level of expertise, and experimentally testing experts in the lab and online. Throughout our perspective, we highlight expert birding (also called birdwatching) as an example, as it has been used as a target domain for over two decades in the perceptual expertise literature. PMID:25147533
Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza
2016-09-01
Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Combined expert system/neural networks method for process fault diagnosis
Reifman, Jaques; Wei, Thomas Y. C.
1995-01-01
A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.
Combined expert system/neural networks method for process fault diagnosis
Reifman, J.; Wei, T.Y.C.
1995-08-15
A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.
Natural and Artificial Intelligence in Neurosurgery: A Systematic Review.
Senders, Joeky T; Arnaout, Omar; Karhade, Aditya V; Dasenbrock, Hormuzdiyar H; Gormley, William B; Broekman, Marike L; Smith, Timothy R
2017-09-07
Machine learning (ML) is a domain of artificial intelligence that allows computer algorithms to learn from experience without being explicitly programmed. To summarize neurosurgical applications of ML where it has been compared to clinical expertise, here referred to as "natural intelligence." A systematic search was performed in the PubMed and Embase databases as of August 2016 to review all studies comparing the performance of various ML approaches with that of clinical experts in neurosurgical literature. Twenty-three studies were identified that used ML algorithms for diagnosis, presurgical planning, or outcome prediction in neurosurgical patients. Compared to clinical experts, ML models demonstrated a median absolute improvement in accuracy and area under the receiver operating curve of 13% (interquartile range 4-21%) and 0.14 (interquartile range 0.07-0.21), respectively. In 29 (58%) of the 50 outcome measures for which a P -value was provided or calculated, ML models outperformed clinical experts ( P < .05). In 18 of 50 (36%), no difference was seen between ML and expert performance ( P > .05), while in 3 of 50 (6%) clinical experts outperformed ML models ( P < .05). All 4 studies that compared clinicians assisted by ML models vs clinicians alone demonstrated a better performance in the first group. We conclude that ML models have the potential to augment the decision-making capacity of clinicians in neurosurgical applications; however, significant hurdles remain associated with creating, validating, and deploying ML models in the clinical setting. Shifting from the preconceptions of a human-vs-machine to a human-and-machine paradigm could be essential to overcome these hurdles. Published by Oxford University Press on behalf of Congress of Neurological Surgeons 2017.
Knowledge-based geographic information systems (KBGIS): New analytic and data management tools
Albert, T.M.
1988-01-01
In its simplest form, a geographic information system (GIS) may be viewed as a data base management system in which most of the data are spatially indexed, and upon which sets of procedures operate to answer queries about spatial entities represented in the data base. Utilization of artificial intelligence (AI) techniques can enhance greatly the capabilities of a GIS, particularly in handling very large, diverse data bases involved in the earth sciences. A KBGIS has been developed by the U.S. Geological Survey which incorporates AI techniques such as learning, expert systems, new data representation, and more. The system, which will be developed further and applied, is a prototype of the next generation of GIS's, an intelligent GIS, as well as an example of a general-purpose intelligent data handling system. The paper provides a description of KBGIS and its application, as well as the AI techniques involved. ?? 1988 International Association for Mathematical Geology.
A knowledge-based system for controlling automobile traffic
NASA Technical Reports Server (NTRS)
Maravas, Alexander; Stengel, Robert F.
1994-01-01
Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.
Predicate calculus, artificial intelligence, and workers' compensation.
Harber, P; McCoy, J M
1989-05-01
Application of principles of predicate calculus (PC) and artificial intelligence (AI) search methods to occupational medicine can meet several goals. First, they can improve understanding of the diagnostic process and recognition of the sources of uncertainty in knowledge and in case specific information. Second, PC provides a rational means of resolving differences in conclusion based upon the same premises. Third, understanding of these principles allows separation of knowledge (facts) from the process by which they are used and therefore facilitates development of AI-based expert systems. Application of PC to recognizing causation of pulmonary fibrosis is demonstrated in this paper, providing a method that can be generalized to other problems in occupational medicine. Application of PC and understanding of AI search routines may be particularly applicable to workers' compensation where explicit statement of rational and inferential process is necessary. This approach is useful in the diagnosis of occupational lung disease and may be particularly valuable in workers' compensation considerations, wherein explicit statement of rationale is needed.
Artificial Intelligence in Medical Practice: The Question to the Answer?
Miller, D Douglas; Brown, Eric W
2018-02-01
Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly benefitting modern society-forecasting weather, recognizing faces, detecting fraud, and deciphering genomics. AI's future role in medical practice remains an unanswered question. Machines (computers) learn to detect patterns not decipherable using biostatistics by processing massive datasets (big data) through layered mathematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence. AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diagnostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches 100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are impacting medical practice by applying natural language processing to read the rapidly expanding scientific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Glaser, Robert
This paper briefly reviews research on tasks in knowledge-rich domains including developmental studies, work in artificial intelligence, studies of expert/novice problem solving, and information processing analysis of aptitude test tasks that have provided increased understanding of the nature of expertise. Particularly evident is the finding that…
NASA Astrophysics Data System (ADS)
Krishnan, Govindarajapuram Subramaniam
1997-12-01
The National Aeronautics & Space Administration (NASA), the European Space Agency (ESA), and the Canadian Space Agency (CSA) missions involve the performance of scientific experiments in Space. Instruments used in such experiments are fabricated using electronic parts such as microcircuits, inductors, capacitors, diodes, transistors, etc. For instruments to perform reliably the selection of commercial parts must be monitored and strictly controlled. The process used to achieve this goal is by a manual review and approval of every part used to build the instrument. The present system to select and approve parts for space applications is manual, inefficient, inconsistent, slow and tedious, and very costly. In this dissertation a computer based decision support model is developed for implementing this process using artificial intelligence concepts based on the current information (expert sources). Such a model would result in a greater consistency, accuracy, and timeliness of evaluation. This study presents the methodology of development and features of the model, and the analysis of the data pertaining to the performance of the model in the field. The model was evaluated for three different part types by experts from three different space agencies. The results show that the model was more consistent than the manual evaluation for all part types considered. The study concludes with the cost and benefits analysis of implementing the models and shows that implementation of the model will result in significant cost savings. Other implementation details are highlighted.
Artificial Organs 2016: A Year in Review.
Hadsell, Angela T; Malchesky, Paul S
2017-03-01
In this Editor's Review, articles published in 2016 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Mechanical Circulatory Support, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We were pleased to publish our second Virtual Issue in April 2016 on "Tissue Engineering in Bone" by Professor Tsuyoshi Takato. Our first was published in 2011 titled "Intra-Aortic Balloon Pumping" by Dr. Ashraf Khir. Other peer-reviewed Special Issues this year included contributions from the 11th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Ündar and selections from the 23rd Congress of the International Society for Rotary Blood Pumps edited by Dr. Bojan Biocina. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Building a case-based diet recommendation system without a knowledge engineer.
Khan, Abdus Salam; Hoffmann, Achim
2003-02-01
We present a new approach to the effective development of menu construction systems that allow to automatically construct a menu that is strongly tailored to the individual requirements and food preferences of a client. In hospitals and other health care institutions dietitians develop diets for clients which need to change their eating habits. Many clients have special needs in regards to their medical conditions, cultural backgrounds, or special levels of nutrient requirements for better recovery from diseases or surgery, etc. Existing computer support for this task is insufficient-many diets are not specifically tailored for the client's needs or require substantial time of a dietitian to be manually developed. Our approach is based on case-based reasoning, an artificial intelligence technique that finds increasing entry into industrial practice. Our approach goes beyond the traditional case-based reasoning (CBR) approach by allowing an incremental improvement of the system's competency during routine use of the system. The improvement of the system takes place through a direct expert user-system interaction while the expert is accomplishing their tasks of constructing a diet for a given client. Whenever the system performs unsatisfactorily, the expert will need to modify the system-produced diet 'manually', i.e. by entering the desired modifications into the system. Our implemented system, menu construction using an incremental knowledge acquisition system (MIKAS), asks the expert for simple explanations for each of the manual actions he/she takes and incorporates the explanations automatically into its knowledge base (KB) so that the system will perform these manually conducted actions automatically at the next occasion. We present MIKAS and discuss the results of our case study. While still being a prototype, the senior clinical dietitian involved in our evaluation studies judges the approach to have considerable potential to improve the daily routine of hospital dietitians as well as to improve the average quality of the dietary advice given to patients within the limited available time for dietary consultations. Our approach opens up a new avenue towards building highly specialised CBR systems in a more cost-effective way. Hence, our approach promises to allow a significantly more widespread development and practical deployment of CBR systems in a large variety of application domains including many medical applications.
Tuberculosis control, and the where and why of artificial intelligence
Falzon, Dennis; Thomas, Bruce V.; Temesgen, Zelalem; Sadasivan, Lal; Raviglione, Mario
2017-01-01
Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB. PMID:28656130
Tuberculosis control, and the where and why of artificial intelligence.
Doshi, Riddhi; Falzon, Dennis; Thomas, Bruce V; Temesgen, Zelalem; Sadasivan, Lal; Migliori, Giovanni Battista; Raviglione, Mario
2017-04-01
Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB.
Concurrent evolution of feature extractors and modular artificial neural networks
NASA Astrophysics Data System (ADS)
Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter
2009-05-01
This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.
Reasoning and Data Representation in a Health and Lifestyle Support System.
Hanke, Sten; Kreiner, Karl; Kropf, Johannes; Scase, Marc; Gossy, Christian
2017-01-01
Case-based reasoning and data interpretation is an artificial intelligence approach that capitalizes on past experience to solve current problems and this can be used as a method for practical intelligent systems. Case-based data reasoning is able to provide decision support for experts and clinicians in health systems as well as lifestyle systems. In this project we were focusing on developing a solution for healthy ageing considering daily activities, nutrition as well as cognitive activities. The data analysis of the reasoner followed state of the art guidelines from clinical practice. Guidelines provide a general framework to guide clinicians, and require consequent background knowledge to become operational, which is precisely the kind of information recorded in practice cases; cases complement guidelines very well and helps to interpret them. It is expected that the interest in case-based reasoning systems in the health.
A self-learning rule base for command following in dynamical systems
NASA Technical Reports Server (NTRS)
Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander
1992-01-01
In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.
Faultfinder: A diagnostic expert system with graceful degradation for onboard aircraft applications
NASA Technical Reports Server (NTRS)
Abbott, Kathy H.; Schutte, Paul C.; Palmer, Michael T.; Ricks, Wendell R.
1988-01-01
A research effort was conducted to explore the application of artificial intelligence technology to automation of fault monitoring and diagnosis as an aid to the flight crew. Human diagnostic reasoning was analyzed and actual accident and incident cases were reconstructed. Based on this analysis and reconstruction, diagnostic concepts were conceived and implemented for an aircraft's engine and hydraulic subsystems. These concepts are embedded within a multistage approach to diagnosis that reasons about time-based, causal, and qualitative information, and enables a certain amount of graceful degradation. The diagnostic concepts are implemented in a computer program called Faultfinder that serves as a research prototype.
Semantic mediation in the national geologic map database (US)
Percy, D.; Richard, S.; Soller, D.
2008-01-01
Controlled language is the primary challenge in merging heterogeneous databases of geologic information. Each agency or organization produces databases with different schema, and different terminology for describing the objects within. In order to make some progress toward merging these databases using current technology, we have developed software and a workflow that allows for the "manual semantic mediation" of these geologic map databases. Enthusiastic support from many state agencies (stakeholders and data stewards) has shown that the community supports this approach. Future implementations will move toward a more Artificial Intelligence-based approach, using expert-systems or knowledge-bases to process data based on the training sets we have developed manually.
Shared direct memory access on the Explorer 2-LX
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1990-01-01
Advances in Expert System technology and Artificial Intelligence have provided a framework for applying automated Intelligence to the solution of problems which were generally perceived as intractable using more classical approaches. As a result, hybrid architectures and parallel processing capability have become more common in computing environments. The Texas Instruments Explorer II-LX is an example of a machine which combines a symbolic processing environment, and a computationally oriented environment in a single chassis for integrated problem solutions. This user's manual is an attempt to make these capabilities more accessible to a wider range of engineers and programmers with problems well suited to solution in such an environment.
Software for Data Analysis with Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Roy, H. Scott
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence and statistics, for instance, in diagnosis and expert systems, as a framework for representing and reasoning with probabilities and independencies. They come with corresponding algorithms for performing statistical inference. This offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper illustrates the framework with an example and then presents some basic techniques for the task: problem decomposition and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-07
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
Kuo, R J; Wu, P; Wang, C P
2002-09-01
Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.
SCAILET: An intelligent assistant for satellite ground terminal operations
NASA Technical Reports Server (NTRS)
Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.
1993-01-01
NASA Lewis Research Center has applied artificial intelligence to an advanced ground terminal. This software application is being deployed as an experimenter interface to the link evaluation terminal (LET) and was named Space Communication Artificial Intelligence for the Link Evaluation Terminal (SCAILET). The high-burst-rate (HBR) LET provides 30-GHz-transmitting and 20-GHz-receiving, 220-Mbps capability for wide band communications technology experiments with the Advanced Communication Technology Satellite (ACTS). The HBR-LET terminal consists of seven major subsystems. A minicomputer controls and monitors these subsystems through an IEEE-488 or RS-232 protocol interface. Programming scripts (test procedures defined by design engineers) configure the HBR-LET and permit data acquisition. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. This discourages experimenters from utilizing the full capabilities of the HBR-LET system. An intelligent assistant module was developed as part of the SCAILET software. The intelligent assistant addresses critical experimenter needs by solving and resolving problems that are encountered during the configuring of the HBR-LET system. The intelligent assistant is a graphical user interface with an expert system running in the background. In order to further assist and familiarize an experimenter, an on-line hypertext documentation module was developed and included in the SCAILET software.
Artificial intelligence: contemporary applications and future compass.
Khanna, Sunali
2010-08-01
The clinical use of information technology in the dental profession has increased substantially in the past 10 to 20 years. In most developing countries an insufficiency of medical and dental specialists has increased the mortality of patients suffering from various diseases. Employing technology, especially artificial intelligence technology, in medical and dental application could reduce cost, time, human expertise and medical error. This approach has the potential to revolutionise the dental public health scenario in developing countries. Clinical decision support systems (CDSS) are computer programs that are designed to provide expert support for health professionals. The applications in dental sciences vary from dental emergencies to differential diagnosis of orofacial pain, radiographic interpretations, analysis of facial growth in orthodontia to prosthetic dentistry. However, despite the recognised need for CDSS, the implementation of these systems has been limited and slow. This can be attributed to lack of formal evaluation of the systems, challenges in developing standard representations, cost and practitioner scepticism about the value and feasibility of CDSS. Increasing public awareness of safety and quality has accelerated the adoption of generic knowledge based CDSS. Information technology applications for dental practice continue to develop rapidly and will hopefully contribute to reduce the morbidity and mortality of oral and maxillofacial diseases and in turn impact patient care.
NASA Astrophysics Data System (ADS)
Greene, Casey S.; Hill, Douglas P.; Moore, Jason H.
The relationship between interindividual variation in our genomes and variation in our susceptibility to common diseases is expected to be complex with multiple interacting genetic factors. A central goal of human genetics is to identify which DNA sequence variations predict disease risk in human populations. Our success in this endeavour will depend critically on the development and implementation of computational intelligence methods that are able to embrace, rather than ignore, the complexity of the genotype to phenotype relationship. To this end, we have developed a computational evolution system (CES) to discover genetic models of disease susceptibility involving complex relationships between DNA sequence variations. The CES approach is hierarchically organized and is capable of evolving operators of any arbitrary complexity. The ability to evolve operators distinguishes this approach from artificial evolution approaches using fixed operators such as mutation and recombination. Our previous studies have shown that a CES that can utilize expert knowledge about the problem in evolved operators significantly outperforms a CES unable to use this knowledge. This environmental sensing of external sources of biological or statistical knowledge is important when the search space is both rugged and large as in the genetic analysis of complex diseases. We show here that the CES is also capable of evolving operators which exploit one of several sources of expert knowledge to solve the problem. This is important for both the discovery of highly fit genetic models and because the particular source of expert knowledge used by evolved operators may provide additional information about the problem itself. This study brings us a step closer to a CES that can solve complex problems in human genetics in addition to discovering genetic models of disease.
Artificial intelligence. Fears of an AI pioneer.
Russell, Stuart; Bohannon, John
2015-07-17
From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.
An intelligent interface for satellite operations: Your Orbit Determination Assistant (YODA)
NASA Technical Reports Server (NTRS)
Schur, Anne
1988-01-01
An intelligent interface is often characterized by the ability to adapt evaluation criteria as the environment and user goals change. Some factors that impact these adaptations are redefinition of task goals and, hence, user requirements; time criticality; and system status. To implement adaptations affected by these factors, a new set of capabilities must be incorporated into the human-computer interface design. These capabilities include: (1) dynamic update and removal of control states based on user inputs, (2) generation and removal of logical dependencies as change occurs, (3) uniform and smooth interfacing to numerous processes, databases, and expert systems, and (4) unobtrusive on-line assistance to users of concepts were applied and incorporated into a human-computer interface using artificial intelligence techniques to create a prototype expert system, Your Orbit Determination Assistant (YODA). YODA is a smart interface that supports, in real teime, orbit analysts who must determine the location of a satellite during the station acquisition phase of a mission. Also described is the integration of four knowledge sources required to support the orbit determination assistant: orbital mechanics, spacecraft specifications, characteristics of the mission support software, and orbit analyst experience. This initial effort is continuing with expansion of YODA's capabilities, including evaluation of results of the orbit determination task.
A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration
Lobo, Daniel; Feldman, Erica B.; Shah, Michelle; Malone, Taylor J.
2014-01-01
Abstract Amphibians and molting arthropods have the remarkable capacity to regenerate amputated limbs, as described by an extensive literature of experimental cuts, amputations, grafts, and molecular techniques. Despite a rich history of experimental effort, no comprehensive mechanistic model exists that can account for the pattern regulation observed in these experiments. While bioinformatics algorithms have revolutionized the study of signaling pathways, no such tools have heretofore been available to assist scientists in formulating testable models of large‐scale morphogenesis that match published data in the limb regeneration field. Major barriers to preventing an algorithmic approach are the lack of formal descriptions for experimental regenerative information and a repository to centralize storage and mining of functional data on limb regeneration. Establishing a new bioinformatics of shape would significantly accelerate the discovery of key insights into the mechanisms that implement complex regeneration. Here, we describe a novel mathematical ontology for limb regeneration to unambiguously encode phenotype, manipulation, and experiment data. Based on this formalism, we present the first centralized formal database of published limb regeneration experiments together with a user‐friendly expert system tool to facilitate its access and mining. These resources are freely available for the community and will assist both human biologists and artificial intelligence systems to discover testable, mechanistic models of limb regeneration. PMID:25729585
Electromagnetic braking for Mars spacecraft
NASA Technical Reports Server (NTRS)
Holt, A. C.
1986-01-01
Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.
Small, Steven L.; Muechler, Eberhard K.
1985-01-01
The education and practice of clinical medicine can benefit significantly from the use of computational assistants. This article describes the development of a prototype system called SURGES (Strong/University of Rochester Gynecological Expert System) for representing medical knowledge and then applying this knowledge to suggest diagnostic procedures in medical gynecology. The paper focuses on the representation technique of property inheritance, which facilitates the simple common sense reasoning required to enable execution of the more complex medical inferences. Such common sense can be viewed as a collection mundane inferences, which are the simple conclusions drawn from knowledge that an exclusive or (XOR) relation (i.e., mutual exclusion) holds among a number of facts. The paper discusses the use of a property hierarchy for this purpose and shows how it simplifies knowledge representation in medical artificial intelligence (AIM) computer systems.
NASA Astrophysics Data System (ADS)
Costoiu, M.; Ioana, A.; Semenescu, A.; Marcu, D.
2016-11-01
The article presents the main advantages of electric arc furnace (EAF): it has a great contribution to reintroduce significant quantities of reusable metallic materials in the economic circuit, it constitutes itself as an important part in the Primary Materials and Energy Recovery (PMER), good productivity, good quality / price ratio, the possibility of developing a wide variety of classes and types of steels, including special steels and high alloy. In this paper it is presented some important developments of electric arc furnace: vacuum electric arc furnace, artificial intelligence expert systems for pollution control Steelworks. Another important aspect presented in the article is an original block diagram for optimization the EAF management system. This scheme is based on the original objective function (criterion function) represented by the price / quality ratio. The article presents an original block diagram for optimization the control system of the EAF. For designing this concept of EAF management system, many principles were used.
Sahan, Seral; Polat, Kemal; Kodaz, Halife; Güneş, Salih
2007-03-01
The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. As the incidence of this disease has increased significantly in the recent years, machine learning applications to this problem have also took a great attention as well as medical consideration. This study aims at diagnosing breast cancer with a new hybrid machine learning method. By hybridizing a fuzzy-artificial immune system with k-nearest neighbour algorithm, a method was obtained to solve this diagnosis problem via classifying Wisconsin Breast Cancer Dataset (WBCD). This data set is a very commonly used data set in the literature relating the use of classification systems for breast cancer diagnosis and it was used in this study to compare the classification performance of our proposed method with regard to other studies. We obtained a classification accuracy of 99.14%, which is the highest one reached so far. The classification accuracy was obtained via 10-fold cross validation. This result is for WBCD but it states that this method can be used confidently for other breast cancer diagnosis problems, too.
A New Perspective on Modeling Groundwater-Driven Health Risk With Subjective Information
NASA Astrophysics Data System (ADS)
Ozbek, M. M.
2003-12-01
Fuzzy rule-based systems provide an efficient environment for the modeling of expert information in the context of risk management for groundwater contamination problems. In general, their use in the form of conditional pieces of knowledge, has been either as a tool for synthesizing control laws from data (i.e., conjunction-based models), or in a knowledge representation and reasoning perspective in Artificial Intelligence (i.e., implication-based models), where only the latter may lead to coherence problems (e.g., input data that leads to logical inconsistency when added to the knowledge base). We implement a two-fold extension to an implication-based groundwater risk model (Ozbek and Pinder, 2002) including: 1) the implementation of sufficient conditions for a coherent knowledge base, and 2) the interpolation of expert statements to supplement gaps in knowledge. The original model assumes statements of public health professionals for the characterization of the exposed individual and the relation of dose and pattern of exposure to its carcinogenic effects. We demonstrate the utility of the extended model in that it: 1)identifies inconsistent statements and establishes coherence in the knowledge base, and 2) minimizes the burden of knowledge elicitation from the experts for utilizing existing knowledge in an optimal fashion.ÿÿ
Knowledge discovery from data as a framework to decision support in medical domains
Gibert, Karina
2009-01-01
Introduction Knowledge discovery from data (KDD) is a multidisciplinary discipline which appeared in 1996 for “non trivial identifying of valid, novel, potentially useful, ultimately understandable patterns in data”. Pre-treatment of data and post-processing is as important as the data exploitation (Data Mining) itself. Different analysis techniques can be properly combined to produce explicit knowledge from data. Methods Hybrid KDD methodologies combining Artificial Intelligence with Statistics and visualization have been used to identify patterns in complex medical phenomena: experts provide prior knowledge (pK); it biases the search of distinguishable groups of homogeneous objects; support-interpretation tools (CPG) assisted experts in conceptualization and labelling of discovered patterns, consistently with pK. Results Patterns of dependency in mental disabilities supported decision-making on legislation of the Spanish Dependency Law in Catalonia. Relationships between type of neurorehabilitation treatment and patterns of response for brain damage are assessed. Patterns of the perceived QOL along time are used in spinal cord lesion to improve social inclusion. Conclusion Reality is more and more complex and classical data analyses are not powerful enough to model it. New methodologies are required including multidisciplinarity and stressing on production of understandable models. Interaction with the experts is critical to generate meaningful results which can really support decision-making, particularly convenient transferring the pK to the system, as well as interpreting results in close interaction with experts. KDD is a valuable paradigm, particularly when facing very complex domains, not well understood yet, like many medical phenomena.
A rapid identification system for metallothionein proteins using expert system
Praveen, Bhoopathi; Vincent, Savariar; Murty, Upadhyayula Suryanarayana; Krishna, Amirapu Radha; Jamil, Kaiser
2005-01-01
Metallothioneins (MT) are low molecular weight proteins mostly rich in cysteine residues with high metal content. Generally, MT proteins are responsible for regulating the intracellular supply of biologically essential metal ions and they protect cells from the deleterious effects of non-essential polarizable transition and post-transition metal ions. Due to their biological importance, proper characterization of MT is necessary. Here we describe a computer program (ID3 algorithm, a part of Artificial Intelligence) developed using available data for the rapid identification of MT. Tissue samples contains several low molecular weight proteins with different physical, chemical and biological characteristics. The described software solution proposes to categorize MT proteins without aromatic amino acids and high metal content. The proposed solution can be expanded to other types of proteins with specific known characteristics. PMID:17597844
NASA Technical Reports Server (NTRS)
Martin, R. G. (Editor); Atkinson, D. J.; James, M. L.; Lawson, D. L.; Porta, H. J.
1990-01-01
The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations.
NASA Technical Reports Server (NTRS)
Rushby, John; Crow, Judith
1990-01-01
The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.
Epistasis analysis using artificial intelligence.
Moore, Jason H; Hill, Doug P
2015-01-01
Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong
2011-12-01
Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks
Cunningham, Corbin A.; Drew, Trafton; Wolfe, Jeremy M.
2017-01-01
In socially important visual search tasks such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer Aided Detection (CAD) programs have been developed specifically to help improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be “Binary”, giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system present an Analog signal that reflected strength of the signal at a location. In the experiments reported here, we compare analog and binary CAD presentations using non-expert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher. PMID:27928658
An Expert System For Multispectral Threat Assessment And Response
NASA Astrophysics Data System (ADS)
Steinberg, Alan N.
1987-05-01
A concept has been defined for an automatic system to manage the self-defense of a combat aircraft. Distinctive new features of this concept include: a. the flexible prioritization of tasks and coordinated use of sensor, countermeasures, flight systems and weapons assets by means of an automated planning function; b. the integration of state-of-the-art data fusion algorithms with event prediction processing; c. the use of advanced Artificial Intelligence tools to emulate the decision processes of tactical EW experts. Threat Assessment functions (a) estimate threat identity, lethality and intent on the basis of multi-spectral sensor data, and (b) predict the time to critical events in threat engagements (e.g., target acquisition, tracking, weapon launch, impact). Response Management functions (a) select candidate responses to reported threat situations; (b) estimate the effects of candidate actions on survival; and (c) coordinate the assignment of sensors, weapons and countermeasures with the flight plan. The system employs Finite State Models to represent current engagements and to predict subsequent events. Each state in a model is associated with a set of observable features, allowing interpretation of sensor data and adaptive use of sensor assets. Defined conditions on state transitions allow prediction of times to critical future states and are used in planning self-defensive responses, which are designed either to impede a particular state transition or to force a transition to a lower threat state.
NASA Technical Reports Server (NTRS)
2002-01-01
A software system that uses artificial intelligence techniques to help with complex Space Shuttle scheduling at Kennedy Space Center is commercially available. Stottler Henke Associates, Inc.(SHAI), is marketing its automatic scheduling system, the Automated Manifest Planner (AMP), to industries that must plan and project changes many different times before the tasks are executed. The system creates optimal schedules while reducing manpower costs. Using information entered into the system by expert planners, the system automatically makes scheduling decisions based upon resource limitations and other constraints. It provides a constraint authoring system for adding other constraints to the scheduling process as needed. AMP is adaptable to assist with a variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction. AMP can benefit vehicle assembly plants, batch processing plants, semiconductor manufacturing, printing and textiles, surface and underground mining operations, and maintenance shops. For most of SHAI's commercial sales, the company obtains a service contract to customize AMP to a specific domain and then issues the customer a user license.
Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology.
Syeda-Mahmood, Tanveer
2018-03-01
The field of diagnostic decision support in radiology is undergoing rapid transformation with the availability of large amounts of patient data and the development of new artificial intelligence methods of machine learning such as deep learning. They hold the promise of providing imaging specialists with tools for improving the accuracy and efficiency of diagnosis and treatment. In this article, we will describe the growth of this field for radiology and outline general trends highlighting progress in the field of diagnostic decision support from the early days of rule-based expert systems to cognitive assistants of the modern era. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Artificial organs 2011: a year in review.
Malchesky, Paul S
2012-03-01
In this Editor's Review, articles published in 2011 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ replacement, recovery, and regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers, the quality expected from such a journal would not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely well-received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ replacement, recovery, and regeneration. We look forward to recording further advances in the coming years. © 2012, Copyright the Author. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Artificial Organs 2012: a year in review.
Malchesky, Paul S
2013-03-01
In this editor's review, articles published in 2012 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ replacement, recovery, and regeneration. As the official journal of the International Federation for Artificial Organs, the International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ replacement, recovery, and regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide such meaningful suggestions to the author's work whether eventually accepted or rejected, and especially to those whose native tongue is not English. Without these excellent and dedicated reviewers, the quality expected from such a journal could not be possible. We also express our special thanks to our publisher, Wiley Periodicals, for their expert attention and support in the production and marketing of Artificial Organs. We look forward to recording further advances in the coming years. © 2013, Copyright the Author. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A Data Analysis Expert System For Large Established Distributed Databases
NASA Astrophysics Data System (ADS)
Gnacek, Anne-Marie; An, Y. Kim; Ryan, J. Patrick
1987-05-01
The purpose of this work is to analyze the applicability of artificial intelligence techniques for developing a user-friendly, parallel interface to large isolated, incompatible NASA databases for the purpose of assisting the management decision process. To carry out this work, a survey was conducted to establish the data access requirements of several key NASA user groups. In addition, current NASA database access methods were evaluated. The results of this work are presented in the form of a design for a natural language database interface system, called the Deductively Augmented NASA Management Decision Support System (DANMDS). This design is feasible principally because of recently announced commercial hardware and software product developments which allow cross-vendor compatibility. The goal of the DANMDS system is commensurate with the central dilemma confronting most large companies and institutions in America, the retrieval of information from large, established, incompatible database systems. The DANMDS system implementation would represent a significant first step toward this problem's resolution.
NASA Technical Reports Server (NTRS)
Campbell, William J.
1985-01-01
Intelligent data management is the concept of interfacing a user to a database management system with a value added service that will allow a full range of data management operations at a high level of abstraction using human written language. The development of such a system will be based on expert systems and related artificial intelligence technologies, and will allow the capturing of procedural and relational knowledge about data management operations and the support of a user with such knowledge in an on-line, interactive manner. Such a system will have the following capabilities: (1) the ability to construct a model of the users view of the database, based on the query syntax; (2) the ability to transform English queries and commands into database instructions and processes; (3) the ability to use heuristic knowledge to rapidly prune the data space in search processes; and (4) the ability to use an on-line explanation system to allow the user to understand what the system is doing and why it is doing it. Additional information is given in outline form.
Behavioral personal digital assistants: The seventh generation of computing
Stephens, Kenneth R.; Hutchison, William R.
1992-01-01
Skinner (1985) described two divergent approaches to developing computer systems that would behave with some approximation to intelligence. The first approach, which corresponds to the mainstream of artificial intelligence and expert systems, models intelligence as a set of production rules that incorporate knowledge and a set of heuristics for inference and symbol manipulation. The alternative is a system that models the behavioral repertoire as a network of associations between antecedent stimuli and operants, and adapts when supplied with reinforcement. The latter approach is consistent with developments in the field of “neural networks.” The authors describe how an existing adaptive network software system, based on behavior analysis and developed since 1983, can be extended to provide a new generation of software systems capable of acquiring verbal behavior. This effort will require the collaboration of the academic and commercial sectors of the behavioral community, but the end result will enable a generational change in computer systems and support for behavior analytic concepts. PMID:22477053
AMFESYS: Modelling and diagnosis functions for operations support
NASA Technical Reports Server (NTRS)
Wheadon, J.
1993-01-01
Packetized telemetry, combined with low station coverage for close-earth satellites, may introduce new problems in presenting to the operator a clear picture of what the spacecraft is doing. A recent ESOC study has gone some way to show, by means of a practical demonstration, how the use of subsystem models combined with artificial intelligence techniques, within a real-time spacecraft control system (SCS), can help to overcome these problems. A spin-off from using these techniques can be an improvement in the reliability of the telemetry (TM) limit-checking function, as well as the telecommand verification function, of the Spacecraft Control systems (SCS). The problem and how it was addressed, including an overview of the 'AMF Expert System' prototype are described, and proposes further work which needs to be done to prove the concept. The Automatic Mirror Furnace is part of the payload of the European Retrievable Carrier (EURECA) spacecraft, which was launched in July 1992.
Support Tool in the Diagnosis of Major Depressive Disorder
NASA Astrophysics Data System (ADS)
Nunes, Luciano Comin; Pinheiro, Plácido Rogério; Pequeno, Tarcísio Cavalcante; Pinheiro, Mirian Calíope Dantas
Major Depressive Disorder have been responsible for millions of professionals temporary removal, and even permanent, from diverse fields of activities around the world, generating damage to social, financial, productive systems and social security, and especially damage to the image of the individual and his family that these disorders produce in individuals who are patients, characteristics that make them stigmatized and discriminated into their society, making difficult their return to the production system. The lack of early diagnosis has provided reactive and late measures, only when the professional suffering psychological disorder is already showing signs of incapacity for working and social relationships. This article aims to assist in the decision making to establish early diagnosis of these types of psychological disorders. It presents a proposal for a hybrid model composed of expert system structured methodologies for decision support (Multi-Criteria Decision Analysis - MCDA) and representations of knowledge structured in logical rules of production and probabilities (Artificial Intelligence - AI).
Workshop on Artificial Intelligence Applied to Materials Discovery and Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This workshop report summarizes the presentations, panel discussions, and breakout group discussions that took place at this event. Note that the results presented here are a snapshot of the viewpoints expressed by the experts who attended the workshop and do not necessarily reflect those of the broader materials development community.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... a public workshop entitled ``Innovations in Technology for the Treatment of Diabetes: Clinical... device innovation to address unmet public health needs. As part of this initiative, CDRH with NIH have... will be an open dialogue between Federal Government and experts from the private and public sectors...
Optimists' Creed: Brave New Cyberlearning, Evolving Utopias (Circa 2041)
ERIC Educational Resources Information Center
Burleson, Winslow; Lewis, Armanda
2016-01-01
This essay imagines the role that artificial intelligence innovations play in the integrated living, learning and research environments of 2041. Here, in 2041, in the context of increasingly complex wicked challenges, whose solutions by their very nature continue to evade even the most capable experts, society and technology have co-evolved to…
Sniffing out the truth: clinical diagnosis using the electronic nose.
Pavlou, A K; Turner, A P
2000-02-01
Recently the use of smell in clinical diagnosis has been rediscovered due to major advances in odour sensing technology and artificial intelligence (AI). It was well known in the past that a number of infectious or metabolic diseases could liberate specific odours characteristic of the disease stage. Later chromatographic techniques identified an enormous number of volatiles in human clinical specimens that might serve as potential disease markers. "Artificial nose" technology has been employed in several areas of medical diagnosis, including rapid detection of tuberculosis (TB), Helicobacter pylori (HP) and urinary tract infections (UTI). Preliminary results have demonstrated the possibility of identifying and characterising microbial pathogens in clinical specimens. A hybrid intelligent model of four interdependent "tools", odour generation "kits", rapid volatile delivery and recovery systems, consistent low drift sensor performance and a hybrid intelligent system of parallel neural networks (NN) and expert systems, have been applied in gastric, pulmonary and urine diagnosis. Initial clinical tests have shown that it may be possible in the near future to use electronic nose technology not only for the rapid detection of diseases such as peptic ulceration, UTI, and TB but also for the continuous dynamic monitoring of disease stages. Major advances in information and gas sensor technology could enhance the diagnostic power of future bio-electronic noses and facilitate global surveillance models of disease control and management.