Sample records for explains nonlinear modulation

  1. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  2. Real world ocean rogue waves explained without the modulational instability.

    PubMed

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-06-21

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas.

  3. Real world ocean rogue waves explained without the modulational instability

    PubMed Central

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-01-01

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas. PMID:27323897

  4. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  5. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Modulation of radiation in a fiber Sagnac interferometer induced by an external field

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Kasymdzhanov, M. A.; Mirtadzhiev, F. M.; Tartakovskiĭ, G. Kh; Khabibullaev, P. K.

    1988-12-01

    A study was made of the influence of the Kerr nonlinearity of a fiber waveguide on fluctuations of the output signal from a fiber-optic interferometer. The intensity fluctuations were modeled using the radiation from a pulsed high-power laser with a controlled intensity and pulse profile. Interferograms of the output radiation were obtained for different interferometer configurations. A comparison of the experiment and theory made it possible to explain the observed changes in the signal and to estimate the phase noise due to the Kerr nonlinearity in the investigated fiber waveguide.

  6. Gain-phase modulation in chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gao, Gan; Meng, Yuan; Fu, Xing; Gong, Mali

    2017-10-01

    The cross-modulation between the gain and chirped phase in chirped-pulse amplification (CPA) is theoretically and experimentally demonstrated. We propose a gain-phase coupled nonlinear Schrödinger equation (GPC-NLSE) for solving chirped-pulse propagation in a nonlinear gain medium involved in the gain-phase modulation (GPM) process. With the GPC-NLSE, the space-time-frequency-dependent gain, chirped phase, pulse, and spectrum evolutions can be precisely calculated. Moreover, a short-length high-gain Yb-doped fiber CPA experiment is presented in which a self-steepening distortion of the seed pulse is automatically compensated after amplification. This phenomenon can be explained by the GPM theory whereas conventional models cannot. The experimental results for the temporal and spectral intensities show excellent agreement with our theory. Our GPM theory paves the way for further investigations of the finer structures of the pulse and spectrum in CPA systems.

  7. Time-Reversal Generation of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  8. Modeling of testosterone regulation by pulse-modulated feedback: An experimental data study

    NASA Astrophysics Data System (ADS)

    Mattsson, Per; Medvedev, Alexander

    2013-10-01

    The continuous part of a hybrid (pulse-modulated) model of testosterone feedback regulation is extended with infinite-dimensional and nonlinear dynamics, to better explain the testosterone concentration profiles observed in clinical data. A linear least-squares based optimization algorithm is developed for the purpose of detecting impulses of gonadotropin-realsing hormone from measured concentration of luteinizing hormone. The parameters in the model are estimated from hormone concentration measured in human males, and simulation results from the full closed-loop system are provided.

  9. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

    NASA Astrophysics Data System (ADS)

    Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi

    2017-12-01

    In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

  10. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    PubMed

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-08

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  11. On the benefit of DMT modulation in nonlinear VLC systems.

    PubMed

    Qian, Hua; Cai, Sunzeng; Yao, Saijie; Zhou, Ting; Yang, Yang; Wang, Xudong

    2015-02-09

    In a visible light communication (VLC) system, the nonlinear characteristic of the light emitting diode (LED) in transmitter is a limiting factor of system performance. Modern modulation signals with large peak-to-power-ratio (PAPR) suffers uneven distortion. The nonlinear response directly impacts the intensity modulation and direct detection VLC system with pulse-amplitude modulation (PAM). The amplitude of the PAM signal is distorted unevenly and large signal is vulnerable to noise. Orthogonal linear transformations, such as discrete multi-tone (DMT) modulation, can spread the nonlinear effects evenly to each data symbol, thus perform better than PAM signals. In this paper, we provide theoretical analysis on the benefit of DMT modulation in nonlinear VLC system. We show that the DMT modulation is a better choice than the PAM modulation for the VLC system as the DMT modulation is more robust against nonlinearity. We also show that the post-distortion nonlinear elimination method, which is applied at the receiver, can be a reliable solution to the nonlinear VLC system. Simulation results show that the post-distortion greatly improves the system performance for the DMT modulation.

  12. Vector rogue waves and baseband modulation instability in the defocusing regime.

    PubMed

    Baronio, Fabio; Conforti, Matteo; Degasperis, Antonio; Lombardo, Sara; Onorato, Miguel; Wabnitz, Stefan

    2014-07-18

    We report and discuss analytical solutions of the vector nonlinear Schrödinger equation that describe rogue waves in the defocusing regime. This family of solutions includes bright-dark and dark-dark rogue waves. The link between modulational instability (MI) and rogue waves is displayed by showing that only a peculiar kind of MI, namely baseband MI, can sustain rogue-wave formation. The existence of vector rogue waves in the defocusing regime is expected to be a crucial progress in explaining extreme waves in a variety of physical scenarios described by multicomponent systems, from oceanography to optics and plasma physics.

  13. RM-SORN: a reward-modulated self-organizing recurrent neural network.

    PubMed

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.

  14. Studies with spike initiators - Linearization by noise allows continuous signal modulation in neural networks

    NASA Technical Reports Server (NTRS)

    Yu, Xiaolong; Lewis, Edwin R.

    1989-01-01

    It is shown that noise can be an important element in the translation of neuronal generator potentials (summed inputs) to neuronal spike trains (outputs), creating or expanding a range of amplitudes over which the spike rate is proportional to the generator potential amplitude. Noise converts the basically nonlinear operation of a spike initiator into a nearly linear modulation process. This linearization effect of noise is examined in a simple intuitive model of a static threshold and in a more realistic computer simulation of spike initiator based on the Hodgkin-Huxley (HH) model. The results are qualitatively similar; in each case larger noise amplitude results in a larger range of nearly linear modulation. The computer simulation of the HH model with noise shows linear and nonlinear features that were earlier observed in spike data obtained from the VIIIth nerve of the bullfrog. This suggests that these features can be explained in terms of spike initiator properties, and it also suggests that the HH model may be useful for representing basic spike initiator properties in vertebrates.

  15. Periodic nonlinear waves resulting from the contact interaction of a crack

    NASA Astrophysics Data System (ADS)

    Lee, Sang Eon; Jin, Suyeong; Hong, Jung-Wuk

    2017-09-01

    When two different inputs of distinct low and high frequencies are applied to a medium, the linear responses are composed of waves of two dominant frequencies. However, microcracks such as fatigue cracks generate nonlinear waves by modulating the characteristics of the incident waves. Although this phenomenon has been observed and used to detect microcracks, the underlying principles have not been thoroughly elucidated. The hysteresis properties were introduced to describe the nonlinear relationship between the stress and strain to explain these phenomena [Van Den Abeele et al., Res. Nondestruct. Eval. 12, 17 (2000) and Nazarov et al., Acoust. Phys. 49, 344 (2003)]. The generation of harmonics was explained by superimposing stress-strain relations that vary with crack width and excitation magnitude. As the crack depth increases, the ratio of magnitudes of the second harmonic to the first harmonic increases, but the increment becomes smaller [Kawashima et al., Ultrasonics 40, 611 (2002)]. Here, we show that the waves affected by the contact motion of the crack surfaces cultivate the nonlinearity in waveforms, resulting in high frequency off-band signals. With the hypothesis that the clapping of cracks might generate nonlinear components close to the high excitation frequency, we prove that the generation of the high frequency off-band peaks is directly affected by the clapping contact interaction of the crack surfaces. The amount of energy transmitted is closely related to the size of the crack width and the magnitudes of low and high frequency excitations.

  16. 100 Gb/s optical discrete multi-tone transceivers for intra- and inter-datacenter networks

    NASA Astrophysics Data System (ADS)

    Okabe, Ryo; Tanaka, Toshiki; Nishihara, Masato; Kai, Yutaka; Takahara, Tomoo; Liu, Bo; Li, Lei; Tao, Zhenning; Rasmussen, Jens C.

    2016-03-01

    Discrete multi-tone (DMT) technology is an attractive modulation technology for short-reach application due to its high spectral efficiency and simple configuration. In this paper, we first explain the features of DMT technology then discuss the impact of fiber dispersion and chirp on the frequency responses of the DMT signal and the importance in the relationship between chirp and the optical transmission band. Next, we explain our experiments of 100-Gb/s DMT transmission of 10 km in the O-band using directly modulated lasers for low-cost application. In an inter-datacenter network of more than several tens of kilometers, fiber dispersion mainly limits system performance. We also discuss our experiment of 100-Gb/s DMT transmission up to 100 km in the C-band without a dispersion compensator by using vestigial sideband spectrum shaping and nonlinear compensation.

  17. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    PubMed

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.

  18. Investigation of giant Kerr nonlinearity in quantum cascade lasers using mid-infrared femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hong; Liu, Sheng; Department of Physics, University of Maryland, Baltimore County

    2015-02-02

    We study the Kerr nonlinearity of quantum cascade lasers (QCLs) by coupling resonant and off-resonant mid-infrared (mid-IR) femtosecond (fs) pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-infrared (mid-IR) pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. Wemore » experimentally estimate the nonlinear refractive index n{sub 2} of a QCL to be ∼8 × 10{sup −9 }cm{sup 2}/W using the far-field beam profile of the transmitted pulses. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results.« less

  19. Transfer and dissipation of energy during wave group propagation on a gentle beach slope

    NASA Astrophysics Data System (ADS)

    Padilla, Enrique M.; Alsina, José M.

    2017-08-01

    The propagation of bichromatic wave groups over a constant 1:100 beach slope and the influence of the group modulation is presented. The modulation is controlled by varying the group frequency, fg, which is shown to remarkably affect the energy transfer to high and low frequency components. The growth of the high frequency (hf) wave skewness increases when fg decreases. This is explained by nonlinear coupling between the primary frequencies, which results in a larger growth of hf components as fg decreases, causing the hf waves to break earlier. Due to high spatial resolution, wave tracking has provided an accurate measurement of the varying breakpoint. These breaking locations are very well described (R2>0.91) by the wave-height to effective-depth ratio (γ). However, for any given Iribarren number, this γ is shown to increase with fg. Therefore, a modified Iribarren number is proposed to include the grouping structure, leading to a considerable improvement in reproducing the measured γ-values. Within the surf zone, the behavior of the Incident Long Wave also depends on the group modulation. For low fg conditions, the lf wave decays only slightly by transferring energy back to the hf wave components. However, for high fg wave conditions, strong dissipation of low frequency (lf) components occurs close to the shoreline associated with lf wave breaking. This mechanism is explained by the growth of the lf wave height, induced partly by the self-self interaction of fg, and partly by the nonlinear coupling between the primary frequencies and fg.

  20. Bright-type and dark-type vector solitons of the (2 + 1)-dimensional spatially modulated quintic nonlinear Schrödinger equation in nonlinear optics and Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Yu; Jiang, Li-Hong

    2018-03-01

    We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.

  1. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    NASA Astrophysics Data System (ADS)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  2. All-optical switch with two periodically modulated nonlinear waveguides.

    PubMed

    Xie, Qiongtao; Luo, Xiaobing; Wu, Biao

    2010-02-01

    We propose a type of all-optical switch which consists of two periodically modulated nonlinear optical waveguides placed in parallel. Compared to the all-optical switch based on the traditional nonlinear directional coupler without periodic modulation, this all-optical switch has much lower switching threshold power and sharper switching width.

  3. Narrowband supercontinuum control using phase shaping

    NASA Astrophysics Data System (ADS)

    Austin, Dane R.; Bolger, Jeremy A.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Brown, Thomas G.

    2006-12-01

    We study theoretically, numerically and experimentally the effect of self-phase modulation of ultrashort pulses with spectrally narrow phase features. We show that spectral enhancement and depletion is caused by changing the relative phase between the initial field and the nonlinearly generated components. Our theoretical results explain observations of supercontinuum enhancement by fiber Bragg gratings, and predict similar enhancements for spectrally shaped pulses in uniform fiber. As proof of principle, we demonstrate this effect in the laboratory using a femtosecond pulse shaper.

  4. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Chian, A. C.-L.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  5. Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope

    PubMed Central

    Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.

    2012-01-01

    Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580

  6. All-optical regenerator of multi-channel signals.

    PubMed

    Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael

    2017-10-12

    One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.

  7. Behavioral modeling and digital compensation of nonlinearity in DFB lasers for multi-band directly modulated radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun

    2014-11-01

    The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.

  8. New evidence and impact of electron transport non-linearities based on new perturbative inter-modulation analysis

    NASA Astrophysics Data System (ADS)

    van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group

    2017-12-01

    A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.

  9. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  10. Traveling wave solution of driven nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-09-01

    The traveling solitary and cnoidal wave solutions of the one dimensional driven nonlinear Schrödinger equation with a generalized form of nonlinearity are presented in this paper. We examine the modulation of nonlinear solitary excitations in two known weakly nonlinear models of classic oscillators, namely, the Helmholtz and Duffing oscillators and envelope structure formations for different oscillator and driver parameters. It is shown that two distinct regimes of subcritical and supercritical modulations may occur for nonlinear excitations with propagation speeds v <√{4 F0 } and v >√{4 F0 } , respectively, in which F0 is the driver force strength. The envelope soliton and cnoidal waves in these regimes are observed to be fundamentally different. The effect of pseudoenergy on the structure of the modulated envelope excitations is studied in detail for both sub- and supercritical modulation types. The current model for traveling envelope excitations may be easily extended to pseudopotentials with full nonlinearity relevant to more realistic gases, fluids, and plasmas.

  11. Method and apparatus of highly linear optical modulation

    DOEpatents

    DeRose, Christopher; Watts, Michael R.

    2016-05-03

    In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.

  12. Mean-state SST Response to global warming caused by the ENSO Nonlinearity

    NASA Astrophysics Data System (ADS)

    Kohyama, T.; Hartmann, D. L.

    2017-12-01

    The majority of the models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) exhibit El Niño-like trends under global warming. GFDL-ESM2M, however, is an exception that exhibits a La Niña-like response with strengthened trade winds. Our previous studies have shown that this La Niña-like trend could be a physically consistent warming response, and we proposed the Nonlinear ENSO Warming Suppression (NEWS) mechanism to explain this La Niña-like response to global warming. The most important necessary condition of NEWS is the ENSO skewness (El Niños are stronger than La Niñas). Most CMIP5 models do not reproduce the observed ENSO skewness, while GFDL-ESM2M exhibits the realistic ENSO skewness, which suggests that, despite being in the minority, the La Niña-like trend of GFDL-ESM2M could be a plausible equatorial Pacific response to warming. In this study, we introduce another interesting outlier, MIROC5, which reproduces the observed skewness, yet exhibits an El Niño-like response. By decomposing the source of the ENSO nonlinearity into the following three components: "SST anomalies modulate winds", "winds excite oceanic waves", and "oceanic waves modulate the subsurface temperature", we show that the large inter-model spread of the third component appears to explain the most important cause of the poor reproducibility of the ENSO nonlinearity in CMIP5 models. It is concluded that the change in the response of subsurface temperature to oceanic waves is the primary explanation for the different warming response of GFDL-ESM2M and MIROC5. Our analyses suggest that the difference of the warming response are caused by difference in the climatological thermal stratification. This study may shed new light on the fundamental question of why observed ENSO has a strong skewness and on the implications of this skewed ENSO for the mean-state sea surface temperature response to global warming.

  13. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  14. Electronegative nonlinear oscillating modes in plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin

    2018-02-01

    The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.

  15. Exact states in waveguides with periodically modulated nonlinearity

    NASA Astrophysics Data System (ADS)

    Ding, E.; Chan, H. N.; Chow, K. W.; Nakkeeran, K.; Malomed, B. A.

    2017-09-01

    We introduce a one-dimensional model based on the nonlinear Schrödinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi {dn} function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. A numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. The exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered. The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.

  16. Modulation instability induced by cross-phase modulation with higher-order dispersions and cubic-quintic nonlinearities in metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Chuanxi; Xue, Yan Ling; Liu, Ying

    2014-07-01

    Based on the dispersive Drude model in metamaterials (MMs), coupled nonlinear Schodinger equations are derived for two co-propagating optical waves with higher-order dispersions and cubic-quintic nonlinearities. And modulation instabilities induced by the cross -phase modulation (XMI) are studied. The impact of 3rd-, 4th-order of dispersion and quintic nonlinearity on the gain spectra of XMI is analyzed. It is shown that the 3rd-order dispersion has no effect on XMI and its gain spectra. With the increment of 4th-order dispersion, the gain spectra appear in higher frequency region (2nd spectrum region) and gain peaks become smaller.

  17. Damage detection and locating using tone burst and continuous excitation modulation method

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  18. Self-excited oscillation and monostable operation of a bistable light emitting diode (BILED)

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Ogawa, Y.; Ito, H.; Inaba, H.

    1983-07-01

    A new simple opto-electronic bistable device has been obtained by combining a light emitting diode (LED) and a photodetector (PD) with electronic feedback using a broad bandpass filter. This has interesting dynamic characteristics which are expected to have such various applications as optical oscillators, optical pulse generators and optical pulsewidth modulators. The dynamic characteristics are represented by second-order nonlinear differential equations. In the analyses of these nonlinear systems, instead of numerical analyses with a computer, an approximate analytical method devised for this purpose has been used. This method has been used for investigating the characteristics of the proposed device quantitatively. These include the frequency of oscillations, pulsewidths and hysteresis. The results of the analyses agree approximately with experimentally observed values, thus the dynamic characteristics of the proposed device can be explained.

  19. Blind I/Q imbalance and nonlinear ISI mitigation in Nyquist-SCM direct detection system with cascaded widely linear and Volterra equalizer

    NASA Astrophysics Data System (ADS)

    Liu, Na; Ju, Cheng

    2018-02-01

    Nyquist-SCM signal after fiber transmission, direct detection (DD), and analog down-conversion suffers from linear ISI, nonlinear ISI, and I/Q imbalance, simultaneously. Theoretical analysis based on widely linear (WL) and Volterra series is given to explain the relationship and interaction of these three interferences. A blind equalization algorithm, cascaded WL and Volterra equalizer, is designed to mitigate these three interferences. Furthermore, the feasibility of the proposed cascaded algorithm is experimentally demonstrated based on a 40-Gbps data rate 16-quadrature amplitude modulation (QAM) virtual single sideband (VSSB) Nyquist-SCM DD system over 100-km standard single mode fiber (SSMF) transmission. In addition, the performances of conventional strictly linear equalizer, WL equalizer, Volterra equalizer, and cascaded WL and Volterra equalizer are experimentally evaluated, respectively.

  20. Linear and nonlinear interactions of an electron beam with oblique whistler and electrostatic waves in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Matsumoto, H.; Omura, Y.

    1993-12-01

    Both linear and nonlinear interactions between oblique whistler, electrostatic, quasi-upper hybrid mode waves and an electron beam are studied by linear analyses and electromagnetic particle simulations. In addition to a background cold plasma, we assumed a hot electron beam drifting along a static magnetic field. Growth rates of the oblique whistler, oblique electrostatic, and quasi-upper hybrid instabilities were first calculated. We found that there are four kinds of unstable mode waves for parallel and oblique propagations. They are the electromagnetic whistler mode wave (WW1), the electrostatic whistler mode wave (WW2), the electrostatic mode wave (ESW), and the quasi-upper hybrid mode wave (UHW). A possible mechanism is proposed to explain the satellite observations of whistler mode chorus and accompanied electrostatic waves, whose amplitudes are sometimes modulated at the chorus frequency.

  1. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Theory of four-wave mixing in photorefractive media when the response of a medium is nonlinear in respect of the modulation parameter

    NASA Astrophysics Data System (ADS)

    Zozulya, A. A.

    1988-12-01

    A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.

  2. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  3. Nonlinear optical modulation in a plasmonic Bi:YIG Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Firby, C. J.; Elezzabi, A. Y.

    2017-02-01

    In this work, we propose a magnetoplasmonic modulator for nonlinear radio-frequency (RF) modulation of an integrated optical signal. The modulator consists of a plasmonic Mach-Zehnder interferometer (MZI), constructed of the ferrimagnetic garnet, bismuth-substituted yttrium iron garnet (Bi:YIG). The transverse component of the Bi:YIG magnetization induces a nonreciprocal phase shift (NRPS) onto the guided optical mode, which can be actively modulated through external magnetic fields. In an MZI, the modulated phase shift in turn modulates the output optical intensity. Due to the highly nonlinear evolution of the Bi:YIG magnetization, we show that the spectrum of the output modulated intensity signal can contain harmonics of the driving RF field, frequency splitting around the driving frequency, down-conversion, or mixing of multiple RF signals. This device provides a unique mechanism of simultaneously generating a number of modulation frequencies within a single device.

  4. Efficient, nonlinear phase estimation with the nonmodulated pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Frazin, Richard A.

    2018-04-01

    The sensitivity of the the pyramid wavefront sensor (PyWFS) has made it a popular choice for astronomical adaptive optics (AAO) systems, and it is at its most sensitive when it is used without modulation of the input beam. In non-modulated mode, the device is highly nonlinear. Hence, all PyWFS implementations on current AAO systems employ modulation to make the device more linear. The upcoming era of 30-m class telescopes and the demand for ultra-precise wavefront control stemming from science objectives that include direct imaging of exoplanets make using the PyWFS without modulation desirable. This article argues that nonlinear estimation based on Newton's method for nonlinear optimization can be useful for mitigating the effects of nonlinearity in the non-modulated PyWFS. The proposed approach requires all optical modeling to be pre-computed, which has the advantage of avoiding real-time simulations of beam propagation. Further, the required real-time calculations are amenable to massively parallel computation. Numerical experiments simulate a currently operational PyWFS. A singular value analysis shows that the common practice of calculating two "slope" images from the four PyWFS pupil images discards critical information and is unsuitable for the non-modulated PyWFS simulated here. Instead, this article advocates estimators that use the raw pixel values not only from the four geometrical images of the pupil, but from surrounding pixels as well. The simulations indicate that nonlinear estimation can be effective when the Strehl ratio of the input beam is greater than 0.3, and the improvement relative to linear estimation tends to increase at larger Strehl ratios. At Strehl ratios less than about 0.5, the performances of both the nonlinear and linear estimators are relatively insensitive to noise, since they are dominated by nonlinearity error.

  5. Modulational instability and discrete breathers in a nonlinear helicoidal lattice model

    NASA Astrophysics Data System (ADS)

    Ding, Jinmin; Wu, Tianle; Chang, Xia; Tang, Bing

    2018-06-01

    We investigate the problem on the discrete modulation instability of plane waves and discrete breather modes in a nonlinear helicoidal lattice model, which is described by a discrete nonlinear Schrödinger equation with the first-, second-, and third-neighbor coupling. By means of the linear stability analysis, we present an analytical expression of the instability growth rate and identify the regions of modulational instability of plane waves. It is shown that the introduction of the third-neighbor coupling will affect the shape of the areas of modulational instability significantly. Based on the results obtained by the modulational instability analysis, we predict the existence conditions for the stationary breather modes. Otherwise, by making use of the semidiscrete multiple-scale method, we obtain analytical solutions of discrete breather modes and analyze their properties for different types of nonlinearities. Our results show that the discrete breathers obtained are stable for a long time only when the system exhibits the repulsive nonlinearity. In addition, it is found that the existence of the stable bright discrete breather closely relates to the presence of the third-neighbor coupling.

  6. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  7. Measuring of nonlinear properties of spatial light modulator with different wavelengths

    NASA Astrophysics Data System (ADS)

    Khalid, Farah G.; Younis Al-Dabagh, Samar; Ahmed, Sudad S.; Mahmood, Aseel I.; Al-Naimee, Kais

    2018-05-01

    The non-linear optical properties of Spatial Light Modulator(SLM) represented by Nonlinear Refractive Index (NLR) and nonlinear Absorption coefficient has been measured in this work using highly sensitive method known as Z-scan technique for different wavelengths (red and green). The capability to do instant measurements of different nonlinear optical parameters lead to consider these techniques as a one of the most desired and effective methods that could apply for different materials. The results showed that the NLR were in the same power for the different wavelengths while the nonlinear absorption is higher in case of green laser.

  8. ENSO and its modulations on annual and multidecadal timescales revealed by Nonlinear Laplacian Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Giannakis, D.; Slawinska, J. M.

    2016-12-01

    The variability of the Indo-Pacific Ocean on interannual to multidecadal timescales is investigated in a millennial control run of CCSM4 and in observations using a recently introduced technique called Nonlinear Laplacian Spectral Analysis (NLSA). Through this technique, drawbacks associated with ad hoc pre-filtering of the input data are avoided, enabling recovery of low-frequency and intermittent modes not accessible previously via classical approaches. Here, a multiscale hierarchy of modes is identified for Indo-Pacific SST and numerous linkages between these patterns are revealed. On interannual timescales, a mode with spatiotemporal pattern corresponding to the fundamental component of ENSO emerges, along with modulations of the annual cycle by ENSO in agreement with ENSO combination mode theory. In spatiotemporal reconstructions, these patterns capture the seasonal southward migration of SST and zonal wind anomalies associated with termination of El Niño and La Niña events. Notably, this family of modes explains a significant portion of SST variance in Eastern Indian Ocean regions employed in the definition of Indian Ocean dipole (IOD) indices, suggesting that it should be useful for understanding the linkage of these indices with ENSO and the interaction of the Indian and Pacific Oceans. In model data, we find that the ENSO and ENSO combination modes are modulated on multidecadal timescales by a mode predominantly active in the western tropical Pacific - we call this mode West Pacific Multidecadal Oscillation (WPMO). Despite the relatively low variance explained by this mode, its dynamical role appears to be significant as it has clear sign-dependent modulating relationships with the interannual modes carrying most of the variance. In particular, cold WPMO events are associated with anomalous Central Pacific westerlies favoring stronger ENSO events, while warm WPMO events suppress ENSO activity. Moreover, the WPMO has significant climatic impacts as demonstrated here through its strong correlation with decadal precipitation over Australia. As an extension of this work, we discuss the deterministic and stochastic aspects of the variability of these modes and their potential predictability based on nonparametric kernel analog forecasting techniques.

  9. Baroclinic Adjustment of the Eddy-Driven Jet

    NASA Astrophysics Data System (ADS)

    Novak, Lenka; Ambaum, Maarten H. P.; Harvey, Ben J.

    2017-04-01

    The prediction of poleward shift in the midlatitude eddy-driven jets due to anthropogenic climate change is now a robust feature of climate models, but the magnitude of this shift or the processes responsible for it are less certain. This uncertainty comes from the complex response in storm tracks to large-scale forcing and their nonlinear modulation of the jet. This study uses global circulation models to reveal a relationship between eddy growth rate (referred to as baroclinicity) and eddy activity, whereby baroclinicity responds most rapidly to an eddy-dissipating forcing whereas eddy activity responds most rapidly to a baroclinicity-replenishing forcing. This nonlinearity can be generally explained using a two-dimensional dynamical system essentially describing the baroclinic adjustment as a predator-prey relationship. Despite this nonlinearity, the barotropic changes in the eddy-driven jet appear to be of a comparable magnitude for the ranges of both types of forcing tested in this study. It is implied that while changes in eddy activity or baroclinicity may indicate the sign of latitudinal jet shifting, the precise magnitude of this shifting is a result of a balance between these two quantities.

  10. Improvement of SPM nonlinear limit by chirped duobinary PolSK transmission

    NASA Astrophysics Data System (ADS)

    Yang, Lixiu; Fan, Jiayu; Wang, Lutang; Huang, Zhaoming

    2005-02-01

    In today's terrestrial long-haul optical fiber communication systems, high channel powers are required to obtain a large transmission distance with reasonable optical amplifier spacing. In such systems, however, the presence of nonlinear effects such as the self-phase modulation (SPM) and the fiber dispersion as well as their combined effects, called SPM-induced nonlinear limitation or SPM limit, will seriously degrade the system performances in respect of the effective transmission distance and ultimately become a limiting factor in high-speed, long-haul optical fiber transmission.In this paper, a new transmission format: chirped duobinary PolSK transmission, has been proposed to generate a pre-chirped duobianry signal with fixed polarity (either positive or negative), which is modulated by a PolSK modulator. This format is based on a transmitter setup consisting of a duobinary PolSK Modulation transmitter followed by an additional phase modulator. The chirped duobinary PolSK transmission reduces the signal degradation and spectral broadening in the nonlinear regime significantly. Thus it shifts this SPM nonlinear limit to enable more relaxed dispersion compensation at high optical power compared to the conventional duobinary schemes.The simulation results show chirped duobinary PolSK transmission enlarges the dispersion limited transmission distance, increases the dispersion tolerance and overcome the SPM nonlinear limit.

  11. Nonlinear Fano-Resonant Dielectric Metasurfaces

    DOE PAGES

    Yang, Yuanmu; Wang, Wenyi; Boulesbaa, Abdelaziz; ...

    2015-10-26

    Strong nonlinear light matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. We present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. Here, we measure a third harmonic generation enhancement factormore » of 1.5 105 with respect to an unpatterned silicon film and an absolute conversion efficiency of 1.2 10 6 with a peak pump intensity of 3.2 GW cm 2. The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. Finally, the modulation mechanism is studied by pump probe experiments« less

  12. Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients. [for cosmic ray propagation in interstellar and interplanetary space

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1977-01-01

    In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.

  13. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  14. Nonlinear modulation near the Lighthill instability threshold in 2+1 Whitham theory

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Ratliff, Daniel J.

    2018-04-01

    The dispersionless Whitham modulation equations in 2+1 (two space dimensions and time) are reviewed and the instabilities identified. The modulation theory is then reformulated, near the Lighthill instability threshold, with a slow phase, moving frame and different scalings. The resulting nonlinear phase modulation equation near the Lighthill surfaces is a geometric form of the 2+1 two-way Boussinesq equation. This equation is universal in the same sense as Whitham theory. Moreover, it is dispersive, and it has a wide range of interesting multi-periodic, quasi-periodic and multi-pulse localized solutions. For illustration the theory is applied to a complex nonlinear 2+1 Klein-Gordon equation which has two Lighthill surfaces in the manifold of periodic travelling waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  15. Analysis of dynamic channel power equalization by using nonlinear amplifying Sagnac interferometer for ASK-WDM optical transmission

    NASA Astrophysics Data System (ADS)

    Qu, Feng; Liu, Xiaoming; Zhao, Jianhui

    2004-05-01

    A power equalization using an asymmetric nonlinear amplifying Sagnac interferometer (NASI) for ASK modulation is studied numerically. A nonreciprocal phase bias was proposed to be introduced into the structure. The nonreciprocal phase bias reduces not only the demanding for amplifier power or fiber non-linearity, but also increase the dynamic input power range. The power equalization is demonstrated for RZ modulation by nonlinear phase analysis and eye diagram simulation.

  16. One-dimensional optical wave turbulence: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    2012-05-01

    We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

  17. Linearization of microwave photonic link based on nonlinearity of distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Kang, Zi-jian; Gu, Yi-ying; Zhu, Wen-wu; Fan, Feng; Hu, Jing-jing; Zhao, Ming-shan

    2016-02-01

    A microwave photonic link (MPL) with spurious-free dynamic range (SFDR) improvement utilizing the nonlinearity of a distributed feedback (DFB) laser is proposed and demonstrated. First, the relationship between the bias current and nonlinearity of a semiconductor DFB laser is experimentally studied. On this basis, the proposed linear optimization of MPL is realized by the combination of the external intensity Mach-Zehnder modulator (MZM) modulation MPL and the direct modulation MPL with the nonlinear operation of the DFB laser. In the external modulation MPL, the MZM is biased at the linear point to achieve the radio frequency (RF) signal transmission. In the direct modulation MPL, the third-order intermodulation (IMD3) components are generated for enhancing the SFDR of the external modulation MPL. When the center frequency of the input RF signal is 5 GHz and the two-tone signal interval is 10 kHz, the experimental results show that IMD3 of the system is effectively suppressed by 29.3 dB and the SFDR is increased by 7.7 dB.

  18. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    NASA Astrophysics Data System (ADS)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  19. Modulational instability of helicon waves in a magnetoactive semiconductor n-InSb

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Ferdous, T.

    1984-03-01

    In this paper the modulational instabilithy of a beam of high amplitude helicon wave in a magnetoactive piezoelectric semiconductor is studied. The nonlinear response of electrons in the semiconductor plasma has been found by following the fluid model of homogeneous plasmas. The low frequency nonlinearity has been taken through the ponderomotive force on electrons, whereas the nonlinearity in the scattered helicon waves arises through the nonlinear current densities of electrons. For typical plasma parameters in n-type indium antimonide and for a considerable power density (approximately 20 kW/sq cm) of the incident helicon beam, the growth rate of the modulational instability is quite high (approximately 10 to the 7th rad/s).

  20. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  1. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  2. Interharmonic modulation products as a means to quantify nonlinear D-region interactions

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.

  3. Rogue wave modes for a derivative nonlinear Schrödinger model.

    PubMed

    Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin

    2014-03-01

    Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.

  4. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  5. Properties of Nonlinear Dynamo Waves

    NASA Technical Reports Server (NTRS)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  6. The modulational instability for the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we study the modulational instability for the TDNLS equations derived by Hada (1993) and Brio, Hunter, and Johnson to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. We employ Whitham's averaged Lagrangian method to study the modulational instability. This complements studies of the modulational instability by Hada (1993) and Hollweg (1994), who did not use the averaged Lagrangian approach.

  7. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    NASA Astrophysics Data System (ADS)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  8. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre

    PubMed Central

    Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.

    2015-01-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290

  9. Nonlinear dynamics and numerical uncertainties in CFD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  10. Evaluation of the heat transfer module (FAHT) of Failure Analysis Nonlinear Thermal And Structural Integrated Code (FANTASTIC)

    NASA Technical Reports Server (NTRS)

    Keyhani, Majid

    1989-01-01

    The heat transfer module of FANTASTIC Code (FAHT) is studied and evaluated to the extend possible during the ten weeks duration of this project. A brief background of the previous studies is given and the governing equations as modeled in FAHT are discussed. FAHT's capabilities and limitations based on these equations and its coding methodology are explained in detail. It is established that with improper choice of element size and time step FAHT's temperature field prediction at some nodes will be below the initial condition. The source of this unrealistic temperature prediction is identified and a procedure is proposed for avoiding this phenomenon. It is further shown that the proposed procedure will converge to an accurate prediction upon mesh refinement. Unfortunately due to lack of time FAHT's ability to accurately account for pyrolysis and surface ablation has not been verified. Therefore, at the present time it can be stated with confidence that FAHT can accurately predict the temperature field for a transient multi-dimensional, orthotropic material with directional dependence, variable property, with nonlinear boundary condition. Such a prediction will provide an upper limit for the temperature field in an ablating decomposing nozzle liner. The pore pressure field, however, will not be known.

  11. Real-Time Optical Image Processing Techniques

    DTIC Science & Technology

    1988-10-31

    pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-chan- nel spatial...required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness...pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the

  12. Pulsed ytterbium-doped fibre laser with a combined modulator based on single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khudyakov, D V; Borodkin, A A; Vartapetov, S K

    2015-09-30

    This paper describes an all-normal-dispersion pulsed ytterbium-doped fibre ring laser mode-locked by a nonlinear combined modulator based on single-wall carbon nanotubes. We have demonstrated 1.7-ps pulse generation at 1.04 μm with a repetition rate of 35.6 MHz. At the laser output, the pulses were compressed to 180 fs. We have examined an intracavity nonlinear modulator which utilises nonlinear polarisation ellipse rotation in conjunction with a saturable absorber in the form of a polymer-matrix composite film containing single-wall carbon nanotubes. (lasers)

  13. Large-area and highly crystalline MoSe2 for optical modulator

    NASA Astrophysics Data System (ADS)

    Yin, Jinde; Chen, Hao; Lu, Wei; Liu, Mengli; Li, Irene Ling; Zhang, Min; Zhang, Wenfei; Wang, Jinzhang; Xu, Zihan; Yan, Peiguang; Liu, Wenjun; Ruan, Shuangchen

    2017-12-01

    Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm-2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.

  14. Contribution a la caracterisation des betons endommages par des methodes de l'acoustique non lineaire. Application a la reaction alcalis-silice

    NASA Astrophysics Data System (ADS)

    Kodjo, Apedovi

    The aim of this thesis is to contribute to the non-destructive characterization of concrete materials damaged by alkali-silica reaction (ASR). For this purpose, some nonlinear characterization techniques have been developed, as well as a nonlinear resonance test device. In order to optimize the sensitivity of the test device, the excitation module and signal processing have been improved. The nonlinear tests were conducted on seven samples of concrete damaged by ASR, three samples of concrete damaged by heat, three concrete samples damaged mechanically and three sound concrete samples. Since, nonlinear behaviour of the material is often attribute to its micro-defects hysteretic behaviour, it was shown at first that concrete damaged by ASR exhibits an hysteresis behaviour. To conduct this study, an acoustoelastic test was set, and then nonlinear resonance test device was used for characterizing sound concrete and concrete damaged by ASR. It was shown that the nonlinear technique can be used for characterizing the material without knowing its initial state, and also for detecting early damage in the reactive material. Studies were also carried out on the effect of moisture regarding the nonlinear parameters; they allowed understanding the low values of nonlinear parameters measured on concrete samples that were kept in high moisture conditions. In order to find a specific characteristic of damage caused by ASR, the viscosity of ASR gel was used. An approach, based on static creep analysis, performed on the material, while applying the nonlinear resonance technique. The spring-damping model of Maxwell was used for the interpretation of the results. Then, the creep time was analysed on samples damaged by ASR. It appears that the ASR gel increases the creep time. Finally, the limitations of the nonlinear resonance technique for in situ application have been explained and a new applicable nonlinear technique was initiated. This technique use an external source such as a mass for making non-linearity behaviour in the material, while an ultrasound wave is investigating the medium. Keywords. Concrete, Alkali-silica reaction, Nonlinear acoustics, Nonlinearity, Hysteresis, Damage diagnostics.

  15. Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response

    NASA Astrophysics Data System (ADS)

    Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki

    2016-07-01

    In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.

  16. Higher-order modulation instability in nonlinear fiber optics.

    PubMed

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  17. Nonlinear computations shaping temporal processing of precortical vision.

    PubMed

    Butts, Daniel A; Cui, Yuwei; Casti, Alexander R R

    2016-09-01

    Computations performed by the visual pathway are constructed by neural circuits distributed over multiple stages of processing, and thus it is challenging to determine how different stages contribute on the basis of recordings from single areas. In the current article, we address this problem in the lateral geniculate nucleus (LGN), using experiments combined with nonlinear modeling capable of isolating various circuit contributions. We recorded cat LGN neurons presented with temporally modulated spots of various sizes, which drove temporally precise LGN responses. We utilized simultaneously recorded S-potentials, corresponding to the primary retinal ganglion cell (RGC) input to each LGN cell, to distinguish the computations underlying temporal precision in the retina from those in the LGN. Nonlinear models with excitatory and delayed suppressive terms were sufficient to explain temporal precision in the LGN, and we found that models of the S-potentials were nearly identical, although with a lower threshold. To determine whether additional influences shaped the response at the level of the LGN, we extended this model to use the S-potential input in combination with stimulus-driven terms to predict the LGN response. We found that the S-potential input "explained away" the major excitatory and delayed suppressive terms responsible for temporal patterning of LGN spike trains but revealed additional contributions, largely PULL suppression, to the LGN response. Using this novel combination of recordings and modeling, we were thus able to dissect multiple circuit contributions to LGN temporal responses across retina and LGN, and set the foundation for targeted study of each stage. Copyright © 2016 the American Physiological Society.

  18. Non-destructive phase and intensity distributed measurements of the nonlinear stage of modulation instability in optical fibers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Naveau, Corentin; Szriftgiser, Pascal; Copie, François; Kudlinski, Alexandre; Conforti, Matteo; Trillo, Stefano

    2018-02-01

    We report a novel experimental setup to perform distributed characterization in intensity and phase of the nonlinear stage of modulation instability by means of a non-invasive experimental setup : a heterodyne time domain reflectometer.

  19. Undular bore theory for the Gardner equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.

    2012-09-01

    We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.

  20. Some Aspects of Nonlinear Dynamics and CFD

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  1. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

    PubMed Central

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.

    2016-01-01

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics. PMID:27991513

  2. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  3. Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity.

    PubMed

    Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M

    2011-01-01

    We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.

  4. Influence of cross-phase modulation in SPM-based nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Pitois, Stéphane

    2005-09-01

    We study the role of cross-phase modulation (CPM) occurring between the two counter-propagating parts of a signal wave in a standard SPM-based nonlinear optical fiber loop mirror (NOLM). For pulse train with high duty-cycle, we experimentally observe the influence of cross-phase modulation on NOLM transmittivity. Finally, we propose a solution based on properly designed dispersion imbalanced NOLM to overcome undesirable CPM effects.

  5. On the nonlinear aerodynamic and stability characteristics of a generic chine-forebody slender-wing fighter configuration

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Brandon, Jay M.

    1987-01-01

    An exploratory investigation was conducted of the nonlinear aerodynamic and stability characteristics of a tailless generic fighter configuration featuring a chine-shaped forebody coupled to a slender cropped delta wing in the NASA Langley Research Center's 12-Foot Low-Speed Wind Tunnel. Forebody and wing vortex flow mechanisms were identified through off-body flow visualizations to explain the trends in the longitudinal and lateral-directional characteristics at extreme attitudes (angles of attack and sideslip). The interactions of the vortical motions with centerline and wing-mounted vertical tail surfaces were studied and the flow phenomena were correlated with the configuration forces and moments. Single degree of freedom, free-to-roll tests were used to study the wing rock susceptibility of the generic fighter model. Modifications to the nose region of the chine forebody were examined and fluid mechanisms were established to account for their ineffectiveness in modulating the highly interactive forebody and wing vortex systems.

  6. Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk

    2017-10-01

    Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train.more » The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.« less

  7. Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator.

    PubMed

    Capmany, José; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz

    2002-02-11

    In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.

  8. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.

  9. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; hide

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  10. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  11. Nonlinear optical and light emission studies of special organic molecules and crystals

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.

    The nonlinear optical properties and light emission characteristics of some special organic molecules and crystals have been studied in detail. The second-order nonlinear optical effects were measured in the single- crystal films of the materials. The crystallographic orientations of the films were determined using x-ray diffraction measurements. The second-order susceptibility tensor elements of 4-aminobenzophenone (ABP) and 8- (4'-acetylphenyl)-1,4-dioxa-8- azaspiro[4.5]decane (APDA) films were measured using polarization selective second-harmonic generation experiments. The d-coefficients of ABP are: d 23 = 7.3 +/- 0.4 pm/V and d22 = 0.73 +/- 0.04 pm/V, while those of APDA are: d33 = 54 +/- 6 pm/V and d15 = 18 +/- 3 pm/V at 1064 nm. Phase-matched propagation directions were identified on the films. The application of these films in measuring ultra-short laser pulse-width was demonstrated. Polarized optical absorption and photo- luminescence were measured in 4'- dimethylamino-N-methyl-4-stilbazolium tosylate (DAST). The electro-optic properties of single- crystal films of DAST and styryl pyridinium cyanine dye (SPCD) were studied over a broad range of wavelengths. The measured r-coefficients are the largest reported in any material. Thin-film electro-optic modulators were demonstrated using these films which have insignificant insertion and propagation losses compared to the traditional waveguide based devices. The response was observed to be flat over the measured frequency range (2 kHz-100 MHz), which indicates the origin of the electro-optic effect to be predominantly electronic. Thus these materials have significant potential for applications in high-speed optical signal processing. Spectral broadening of femtosecond laser pulses in poly- [2,4 hexadiyne-1,6 diol-bis-(p-toluene sulfonate)] (PTS) single-crystals due to self-phase modulation was studied. The magnitudes of the nonlinear refractive index were determined over the wavelength range of 720-1064 nm. The two-photon absorption spectrum, determined from nonlinear transmission measurements, was observed to have no discernible influence on the dispersion of the nonlinear index at these wavelengths. Highly efficient spectrally narrowed emission has been observed for the first time in strongly dipolar organic salts based on the stilbazolium chromophore. An unusually high conversion efficiency (40%) with a low excitation threshold (<1 μJ) has been observed despite a very low photoluminescence efficiency (~0.3%). The results are explained in terms of cooperative emission upon short-pulse optical excitation. These materials have a wide range of potential applications in photonics, including frequency conversion, high-speed electro-optic modulation, sensors, and novel laser-like light sources.

  12. Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.

  13. Fatigue crack detection by nonlinear spectral correlation with a wideband input

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Sohn, Hoon

    2017-04-01

    Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.

  14. Nonlinear impairment compensation for DFT-S OFDM signal transmission with directly modulated laser and direct detection

    NASA Astrophysics Data System (ADS)

    Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun

    2017-03-01

    We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.

  15. A method searching for optimum fractional order and its application in self-phase modulation induced nonlinear phase noise estimation in coherent optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Huang, Chuan; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-07-01

    In single channel systems, the nonlinear phase noise only comes from the channel itself through self-phase modulation (SPM). In this paper, a fast-nonlinear effect estimation method is proposed based on fractional Fourier transformation (FrFT). The nonlinear phase noise caused by Self-phase modulation effect is accurately estimated for single model 10Gbaud OOK and RZ-QPSK signals with the fiber length range of 0-200 km and the launch power range of 1-10 mW. The pulse windowing is adopted to search the optimum fractional order for the OOK and RZ-QPSK signals. Since the nonlinear phase shift caused by the SPM effect is very small, the accurate optimum fractional order of the signal cannot be found based on the traditional method. In this paper, a new method magnifying the phase shift is proposed to get the accurate optimum order and thus the nonlinear phase shift is calculated. The simulation results agree with the theoretical analysis and the method is applicable to signals whose pulse type has the similar characteristics with Gaussian pulse.

  16. Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals

    NASA Astrophysics Data System (ADS)

    Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing

    2003-12-01

    Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.

  17. Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou

    2011-09-01

    To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.

  18. Modulation Instability of Copropagating Optical Beams in Fractional Coupled Nonlinear Schrödinger Equations

    NASA Astrophysics Data System (ADS)

    Zhang, Jinggui

    2018-06-01

    In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.

  19. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  20. Analysis of nonlinear modulation between sound and vibrations in metallic structure and its use for damage detection

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Gang, Tie; Wan, Chuhao; Wang, Changxi; Luo, Zhiwei

    2015-07-01

    Vibro-acoustic modulation technique is a nonlinear ultrasonic method in nondestructive testing. This technique detects the defects by monitoring the modulation components generated by the interaction between the vibration and the ultrasound wave due to the nonlinear material behaviour caused by the damage. In this work, a swept frequency signal was used as high frequency excitation, then the Hilbert transform based amplitude and phase demodulation and synchronous demodulation (SD) were used to extract the modulation information from the received signal, the results were graphed in the time-frequency domain after the short time Fourier transform. The demodulation results were quite different from each other. The reason for the difference was investigated by analysing the demodulation process of the two methods. According to the analysis and the subsequent verification test, it was indicated that the SD method was more proper for the test and a new index called MISD was defined to evaluate the structure quality in the Vibro-acoustic modulation test with swept probing excitation.

  1. Nonlinear Focal Modulation Microscopy.

    PubMed

    Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M; Toussaint, Kimani C; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu

    2018-05-11

    We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ∼60  nm (∼λ/10). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.

  2. Nonlinear Focal Modulation Microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M.; Toussaint, Kimani C.; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu

    2018-05-01

    We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ˜60 nm (˜λ /10 ). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.

  3. Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gutierrez, Alberto, Jr.

    1995-01-01

    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical suboptimal MLSD receiver, requiring only a single receive filter, is evaluated.

  4. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  5. Fermi-Pasta-Ulam recurrence and modulation instability

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.

    2017-01-01

    We give a qualitative conceptual explanation of the Fermi-Pasta-Ulam (FPU) like recurrence in the onedimensional focusing nonlinear Schrodinger equation (NLSE). The recurrence can be considered as a result of the nonlinear development of the modulation instability. All known exact localized solitary wave solutions describing propagation on the background of the modulationally unstable condensate show the recurrence to the condensate state after its interaction with solitons. The condensate state locally recovers its original form with the same amplitude but a different phase after soliton leave its initial region. Based on the integrability of the NLSE, we demonstrate that the FPU recurrence takes place not only for condensate, but also for a more general solution in the form of the cnoidal wave. This solution is periodic in space and can be represented as a solitonic lattice. That lattice reduces to isolated soliton solution in the limit of large distance between solitons. The lattice transforms into the condensate in the opposite limit of dense soliton packing. The cnoidal wave is also modulationally unstable due to soliton overlapping. The recurrence happens at the nonlinear stage of the modulation instability. Due to generic nature of the underlying mathematical model, the proposed concept can be applied across disciplines and nonlinear systems, ranging from optical communications to hydrodynamics.

  6. Modulational-instability-induced supercontinuum generation with saturable nonlinear response

    NASA Astrophysics Data System (ADS)

    Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.

    2010-07-01

    We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS2-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schrödinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We also observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.

  7. Modulational-instability-induced supercontinuum generation with saturable nonlinear response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.

    2010-07-15

    We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS{sub 2}-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schroedinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We alsomore » observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.« less

  8. Nonlinear Stage of Modulation Instability for a Fifth-Order Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Jia, Hui-Xian; Shan, Dong-Ming

    2017-10-01

    In this article, a fifth-order nonlinear Schrödinger equation, which can be used to characterise the solitons in the optical fibre and inhomogeneous Heisenberg ferromagnetic spin system, has been investigated. Akhmediev breather, Kuzentsov soliton, and generalised soliton have all been attained via the Darbox transformation. Propagation and interaction for three-type breathers have been studied: the types of breather are determined by the module and complex angle of parameter ξ; interaction between Akhmediev breather and generalised soliton displays a phase shift, whereas the others do not. Modulation instability of the generalised solitons have been analysed: a small perturbation can develop into a rogue wave, which is consistent with the results of rogue wave solutions.

  9. Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, M. E., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com; Alfimov, G. L., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com; Malomed, Boris A., E-mail: malomed@post.tau.ac.il

    We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate thatmore » one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.« less

  10. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing

    2016-08-17

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response.

  11. Difference between the vocalizations of two sister species of pigeons explained in dynamical terms.

    PubMed

    Alonso, R Gogui; Kopuchian, Cecilia; Amador, Ana; Suarez, Maria de Los Angeles; Tubaro, Pablo L; Mindlin, Gabriel B

    2016-05-01

    Vocal communication is an unique example, where the nonlinear nature of the periphery can give rise to complex sounds even when driven by simple neural instructions. In this work we studied the case of two close-related bird species, Patagioenas maculosa and Patagioenas picazuro, whose vocalizations differ only in the timbre. The temporal modulation of the fundamental frequency is similar in both cases, differing only in the existence of sidebands around the fundamental frequency in the P. maculosa. We tested the hypothesis that the qualitative difference between these vocalizations lies in the nonlinear nature of the syrinx. In particular, we propose that the roughness of maculosa's vocalizations is due to an asymmetry between the right and left vibratory membranes, whose nonlinear dynamics generate the sound. To test the hypothesis, we generated a biomechanical model for vocal production with an asymmetric parameter Q with which we can control the level of asymmetry between these membranes. Using this model we generated synthetic vocalizations with the principal acoustic features of both species. In addition, we confirmed the anatomical predictions by making post mortem inspection of the syrinxes, showing that the species with tonal song (picazuro) has a more symmetrical pair of membranes compared to maculosa.

  12. Difference between the vocalizations of two sister species of pigeons explained in dynamical terms

    PubMed Central

    Alonso, R. Gogui; Kopuchian, Cecilia; Amador, Ana; de los Angeles Suarez, Maria; Tubaro, Pablo L.; Mindlin, Gabriel B.

    2016-01-01

    Vocal communication is a unique example where the nonlinear nature of the periphery can give rise to complex sounds even when driven by simple neural instructions. In this work we studied the case of two close-related bird species, Patagioenas maculosa and Patagioenas picazuro, whose vocalizations differ only in the timbre. The temporal modulation of the fundamental frequency is similar in both cases, differing only in the existence of sidebands around the fundamental frequency in the Patagioenas maculosa. We tested the hypothesis that the qualitative difference between these vocalizations lies in the nonlinear nature of the syrinx. In particular, we propose that the roughness of maculosa's vocalizations is due to an asymmetry between the right and left vibratory membranes, whose nonlinear dynamics generate the sound. To test the hypothesis, we generated a biomechanical model for vocal production with an asymmetric parameter Q with which we can control the level of asymmetry between these membranes. Using this model we generated synthetic vocalizations with the principal acoustic features of both species. In addition, we confirmed the anatomical predictions by making post-mortem inspection of the syrinxes, showing that the species with tonal song (picazuro) has a more symmetrical pair of membranes compared to maculosa. PMID:27033354

  13. Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems.

    PubMed

    Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Semrau, Daniel; Liga, Gabriele; Alvarado, Alex; Killey, Robert I; Bayvel, Polina

    2017-02-20

    The relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format. For any given target information rate, there exists a possible trade-off between modulation format and back-propagated bandwidth, which could be used to reduce the computational complexity requirement of MC-DBP.

  14. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers

    NASA Astrophysics Data System (ADS)

    Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan

    2018-03-01

    Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.

  15. New methods of testing nonlinear hypothesis using iterative NLLS estimator

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.

  16. An enstrophy-based linear and nonlinear receptivity theory

    NASA Astrophysics Data System (ADS)

    Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata

    2018-05-01

    In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.

  17. Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive.

    PubMed

    Richardson, Magnus J E

    2007-08-01

    Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative approaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models, receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the model parameters, but is an important determinant of neuronal response and network stability. For the linear integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solution, generalized analytical forms for the high-frequency response are provided. A special case is also identified--time-constant modulation--for which the response to an arbitrarily strong modulation can be calculated exactly.

  18. Handling Nonlinearities in ELF/VLF Generation Using Modulated Heating at HAARP

    NASA Astrophysics Data System (ADS)

    Jin, G.; Spasojevic, M.; Cohen, M.; Inan, U. S.

    2011-12-01

    George Jin Maria Spasojevic Morris Cohen Umran Inan Stanford University Modulated HF heating of the D-region ionosphere near the auroral electrojet can generate extremely low frequency (ELF) waves in the kilohertz range. This process is nonlinear and generates harmonics at integer multiples of the ELF modulation frequency. The nonlinear distortion has implications for any communications applications since the harmonics contain a substantial fraction of the signal power and use up bandwidth. We examine two techniques for handling the nonlinearity. First we modulate the HF heating with a non-sinusoidal envelope designed to create a sinusoidal change in the Hall conductivity at a particular altitude in the ionosphere to minimize any generated harmonics. The modulation waveform is generated by inverting a numerical HF heating model, starting from the desired conductivity time series, and obtaining the HF power envelope that will result in that conductivity. The second technique attempts to use the energy in the harmonics to improve bit error rates when digital modulation is applied to the ELF carrier. In conventional quadrature phase-shift keying (QPSK), where a ELF carrier is phase-shifted by 0°, 90°, 180°, and 270° in order to transmit a pair of bits, the even harmonics cannot distinguish between the four possible shifts. By using different phase values, all the energy in the harmonics can contribute to determining the phase of the carrier and thus improve the bit error rate.

  19. The effects of control field detuning on the modulation instability in a three-level quantum well system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgohain, Nitu, E-mail: nituborgohain.ism@gmail.com; Konar, S.

    The paper presents a theoretical study of the modulation instability of a continuous or quasi-continuous optical probe in a three level quantum well system under electromagnetically induced transparency. The modulation instability is affected by the control field detuning, as well as even-order dispersion and by the strength of Kerr (third-order) and quintic (fifth-order) nonlinearities. The fourth-order dispersion reduces the bandwidth over which modulation instability occurs, whereas the quintic nonlinearity saturates the growth of the modulation instability. Detuning the control field from resonance can significantly reduce the growth of the modulation instability at both low and high power levels. At lowmore » powers, the system becomes stable against modulation instability for small detuning of the control field and at high powers modulation instability disappears for larger detuning.« less

  20. High sensitive nonlinear modulation magnetoelectric magnetic sensors with a magnetostrictive metglas structure based on bell-shaped geometry

    NASA Astrophysics Data System (ADS)

    Ma, Jiashuai; Jiao, Jie; Fang, Cong; Zhao, Xiangyong; Luo, Haosu

    2016-05-01

    In this paper both linear and nonlinear magnetoelectric (ME) effects have been investigated intensively. In order to obtain magnetic amplification, we fabricated 3 multi-push-pull mode magnetoelectric laminated composites metglas/PMNT/metglas based on dumbbell-shaped metglas. The linear magnetoelectric charge coefficient is enhanced to 2600 pC/Oe at 2 Hz based on dumbbell-shaped metglas and it increases as the end-flange width of the dumbbell-shaped metglas increases at 2 Hz, respectively. Based on these 3 ME composites, we establish an active mode nonlinear modulation system for ME magnetic sensor, the sensitivity of which are enhanced to 80, 100 and 102 pT / √ Hz at 1 Hz for the composites with the end-flange width 20, 15 and 10 mm, respectively, via nonlinear ME modulation method. Strain distribution simulations illustrate the theoretically accurate amplification of the dumbbell-shaped geometry. The center strains of 3 dumbbell-shaped metglas decrease as the width of end-flanges decreases

  1. Nonlinear behaviour of reflectivity of gallium - Silica interface & its applications

    NASA Astrophysics Data System (ADS)

    Naruka, Preeti; Bissa, Shivangi

    2018-05-01

    In this paper Optical properties and nonlinear behaviour of Gallium-Silica Interface is studied. Change in reflectivity of gallium film is explained as a function of thickness of metallic layer and intensity of incident light by using non-thermal mechanism. Here variation of dielectric constant of gallium with temperature is also explained on considering Binary nanoshell model of gallium nanoparticles of spherical shape. In the present paper application of structural phase transformation of gallium is explained as a Grating assisted coupler.

  2. On the Origin of Pulsations of Sub-THz Emission from Solar Flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.; Kaufmann, P.

    2014-08-01

    We propose a model to explain fast pulsations in sub-THz emission from solar flares. The model is based on the approach of a flaring loop as an equivalent electric circuit and explains the pulse-repetition rate, the high-quality factor, Q≥103, low modulation depth, pulse synchronism at different frequencies, and the dependence of the pulse-repetition rate on the emission flux, observed by Kaufmann et al. ( Astrophys. J. 697, 420, 2009). We solved the nonlinear equation for electric current oscillations using a Van der Pol method and found the steady-state value for the amplitude of the current oscillations. Using the pulse rate variation during the flare on 4 November 2003, we found a decrease of the electric current from 1.7×1012 A in the flare maximum to 4×1010 A just after the burst. Our model is consistent with the plasma mechanism of sub-THz emission suggested recently by Zaitsev, Stepanov, and Melnikov ( Astron. Lett. 39, 650, 2013).

  3. Derivation of an applied nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  4. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    NASA Technical Reports Server (NTRS)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  5. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    NASA Astrophysics Data System (ADS)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yunliang; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum; Lü, Xiaoxia

    A theoretical and numerical study of the modulational instability of large amplitude quantum magnetosonic waves (QMWs) in a relativistically degenerate plasma is presented. A modified nonlinear Schrödinger equation is derived by using the reductive perturbation method. The modulational instability regions of the QMWs and the corresponding growth rates are significantly affected by the relativistic degeneracy parameter, the Pauli spin magnetization effects, and the equilibrium magnetic field. The dynamics and nonlinear saturation of the modulational instability of QMWs are investigated numerically. It is found that the increase of the relativistic degeneracy parameter can increase the growth rate of the instability, andmore » the system is saturated nonlinearly by the formation of envelope solitary waves. The current investigation may have relevance to astrophysical magnetized compact objects, such as white dwarfs and pulsar magnetospheres.« less

  7. Chameleon's behavior of modulable nonlinear electrical transmission line

    NASA Astrophysics Data System (ADS)

    Togueu Motcheyo, A. B.; Tchinang Tchameu, J. D.; Fewo, S. I.; Tchawoua, C.; Kofane, T. C.

    2017-12-01

    We show that modulable discrete nonlinear transmission line can adopt Chameleon's behavior due to the fact that, without changing its appearance structure, it can become alternatively purely right or left handed line which is different to the composite one. Using a quasidiscrete approximation, we derive a nonlinear Schrödinger equation, that predicts accurately the carrier frequency threshold from the linear analysis. It appears that the increasing of the linear capacitor in parallel in the series branch induced the selectivity of the filter in the right-handed region while it increases band pass filter in the left-handed region. Numerical simulations of the nonlinear model confirm the forward wave in the right handed line and the backward wave in the left handed one.

  8. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    PubMed

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  9. A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Singh, Karamdeep; Kaur, Gurmeet; Singh, Maninder Lal

    2018-02-01

    Using non-linear effects such as cross-gain modulation (XGM) and cross-phase modulation (XPM) inside two highly non-linear fibres (HNLF) arranged in cascaded configuration, a simultaneous half/full-subtracter is proposed. The proposed simultaneous half/full-subtracter design is attractive due to several features such as input data pattern independence and usage of minimal number of non-linear elements i.e. HNLFs. Proof of concept simulations have been conducted at 100 Gbps rate, indicating fine performance, as extinction ratio (dB) > 6.28 dB and eye opening factors (EO) > 77.1072% are recorded for each implemented output. The proposed simultaneous half/full-subtracter can be used as a key component in all-optical information processing circuits.

  10. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  11. Nonlinear convective flows in a two-layer system under the action of spatial temperature modulation of heat release/consumption at the interface

    NASA Astrophysics Data System (ADS)

    Simanovskii, Ilya B.; Viviani, Antonio; Dubois, Frank

    2018-06-01

    An influence of a spatial temperature modulation of the interfacial heat release/consumption on nonlinear convective flows in the 47v2 silicone oil - water system, is studied. Rigid heat-insulated lateral walls, corresponding to the case of closed cavities, have been considered. Transitions between the flows with different spatial structures, have been investigated. It is shown that the spatial modulation can change the sequence of bifurcations and lead to the appearance of specific steady and oscillatory flows in the system.

  12. Is the normal heart rate ``chaotic'' due to respiration?

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Riedl, Maik; Kurths, Jürgen

    2009-06-01

    The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate `chaotic' due to respiration?"

  13. Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach

    NASA Astrophysics Data System (ADS)

    Tovbis, Alexander; El, Gennady A.

    2016-10-01

    The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated N-phase nonlinear wave solutions to the focusing nonlinear Schrödinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular solutions of the fNLS in the semiclassical (small dispersion) limit that develop slowly modulated N-phase nonlinear wave in the process of evolution. Both approaches have their own merits and limitations. Understanding of the interrelations between them could prove beneficial for a broad range of problems involving the semiclassical fNLS.

  14. Investigation on Nonlinear-Optical Properties of Palm Oil/Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zamiri, R.; Parvizi, R.; Zakaria, A.; Sadrolhosseini, A. R.; Zamiri, G.; Darroudi, M.; Husin, M. S.

    2012-06-01

    We have investigated the spatial self phase modulation of palm oil containing silver nanoparticles (palm oil/Ag-NPs). The study carried out using continuous wave diode pumped solid state laser with wavelength of 405 nm and power of 50 mW. The strong spatial self phase modulation patterns were observed that suggest the palm oil/Ag-NPs have a relatively large nonlinear refractive index. The obtained values of nonlinear refractive index were increased with the increment in the volume fractions. The observed experimental patterns were also theoretically modeled which are in good agreement with experimental results.

  15. Nonlinear distortion of thin liquid sheets

    NASA Astrophysics Data System (ADS)

    Mehring, Carsten Ralf

    Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times are reported for modulated semi-infinite annular and conical sheets. Comparisons between the different geometric configurations are made. For periodically disturbed planar sheets, accuracy of the employed reduced-dimension approach is demonstrated by comparison with more accurate two-dimensional vortex dynamics simulations.

  16. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    NASA Astrophysics Data System (ADS)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  17. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  18. Nonlinear Insolation Forcing: A Physical Mechanism for Climate Change

    NASA Technical Reports Server (NTRS)

    Liu, H. S.

    1998-01-01

    This paper focuses on recent advances in the understanding of nonlinear insolation forcing for climate change. The amplitude-frequency resonances in the insolation variations induced by the Earth's changing obliquity are emergent and may provide a physical mechanism to drive the glaciation cycles. To establish the criterion that nonlinear insolation forcing is responsible for major climate changes, the cooperative phenomena between the frequency and amplitude of the insolation are defined as insolation pulsation. Coupling of the insolation frequency and amplitude variations has established an especially new and interesting series of insolation pulses. These pulses would modulate the insolation in such a way that the mode of insolation variations could be locked to generate the 100-kyr ice age cycle which is a long-time geophysical puzzle. The nonlinear behavior of insolation forcing is tested by energy balance and ice sheet climate models and the physical mechanism behind this forcing is explained in terms of pulse duration in the incoming solar radiation. Calculations of the solar energy flux at the top of the atmosphere show that the duration of the negative and positive insolation pulses is about 2 thousand years which is long enough to prolong glaciation into deep ice ages and cause rapid melting of large ice sheets in the high latitudes of the northern hemisphere. We have performed numerical simulations of climate response to nonlinear insolation forcing for the past 2 million years. Our calculated results of temperature fluctuations are in good agreement with the climate cycles as seen in the terrestrial biogenic silica (BDP-96-2) data as well as in the marine oxygen isotope (delta(sup 18)O) records.

  19. Spatiotemporal polarization modulation microscopy with a microretarder array

    NASA Astrophysics Data System (ADS)

    Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.

    2018-02-01

    A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.

  20. From linear mechanics to nonlinear mechanics

    NASA Technical Reports Server (NTRS)

    Loeb, Julian

    1955-01-01

    Consideration is given to the techniques used in telecommunication where a nonlinear system (the modulator) results in a linear transposition of a signal. It is then shown that a similar method permits linearization of electromechanical devices or nonlinear mechanical devices. A sweep function plays the same role as the carrier wave in radio-electricity. The linearizations of certain nonlinear functionals are presented.

  1. Exact modelling of the optical bistability in ferroelectics via two-wave mixing: A system with full nonlinearity

    NASA Astrophysics Data System (ADS)

    Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.

    2018-05-01

    In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.

  2. Ripple distribution for nonlinear fiber-optic channels.

    PubMed

    Sorokina, Mariia; Sygletos, Stylianos; Turitsyn, Sergei

    2017-02-06

    We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.

  3. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  4. Time series with tailored nonlinearities

    NASA Astrophysics Data System (ADS)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  5. Microcomputer Simulation of Nonlinear Systems: From Oscillations to Chaos.

    ERIC Educational Resources Information Center

    Raw, Cecil J. G.; Stacey, Larry M.

    1989-01-01

    Presents two short microcomputer programs which illustrate features of nonlinear dynamics, including steady states, periodic oscillations, period doubling, and chaos. Logistic maps are explained, inclusion in undergraduate chemistry and physics courses to teach nonlinear equations is discussed, and applications in social and biological sciences…

  6. Nonlinear Spectroscopy.

    DTIC Science & Technology

    1985-03-20

    Finally, the (linear) .response of a Fabry - Perot cavity to a phase modulated light wave is considered because of its relevance to phase locking a laser...prepared and therefore doesn’t contribute. This effect provides the remaining factor of two. IV. FABRY - PEROT We now calculate the response of a plane...mirror Fabry - Perot cavity to a phase-modulated laser beam. This linear problem, which contrasts with the nonlinear atomic case, is the basis of an

  7. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    DTIC Science & Technology

    2014-01-01

    roll -off in attenuation, known as the filter skirt. Therefore, the use of filters can be inadequate if the small signals are close in frequency to the...effect can be avoided by introducing filters into the nonlinear measurement system that have much smaller bandwidths, capable of isolating narrow...contribution from each source of modulation has not been done as isolating each effect during measurement is currently infeasible. To better

  8. Power requirements reducing of FBG based all-optical switching

    NASA Astrophysics Data System (ADS)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  9. Optical solitons and modulation instability analysis with (3 + 1)-dimensional nonlinear Shrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the (3 + 1)-dimensional nonlinear Shrödinger equation (NLSE) that serves as the model to study the propagation of optical solitons through nonlinear optical fibers. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the solitary wave ansatz with Jaccobi elliptic function methods, we present the exact dark, bright and dark-bright or combined optical solitons to the model. The intensity as well as the nonlinear phase shift of the solitons are reported. The modulation instability aspects are discussed using the concept of linear stability analysis. The MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  10. Basic characteristics of high-frequency Stark-effect modulation of CO2 lasers.

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Pao, Y. H.

    1971-01-01

    The molecular Stark effect and its application to the modulation of infrared laser radiation have been investigated both theoretically and experimentally. Using a density matrix approach, a quantum mechanical description of the effect of a time-varying electric field on the absorption coefficient and refractive index of a molecular gas near an absorption line has been formulated. For modulation applications a quantity known as the ?modulation depth' is of prime importance. Theoretical expressions for the frequency dependence of the modulation depth show that the response to the frequency of a time-varying Stark field is separated into a nondispersive and a dispersive region, depending on whether the modulating frequency is less than or greater than the homogeneous absorption linewidth. Experimental results showing nondispersive modulation at frequencies to 30 MHz are presented. In addition it is shown that the response of modulation depth to Stark field amplitude is separated into linear and nonlinear regions, the field at which nonlinearities begin being determined by the absorption spectrum of the molecule being used.

  11. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme wavesa)

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.

    2015-02-01

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  12. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by parametric down-conversion. Third, by ensuring that these down-converted photons have the same frequency, spatial-temporal mode, and the same polarization when they interfere at a beam splitter, quantum interference should occur. Quantum interference of these entangled photons enables high resolution probing of dispersive samples.

  13. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  14. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    PubMed

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  15. Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2017-07-01

    Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper, we develop an analytical model to investigate the performance of these generators in the nonlinear regime. We identify dimensionless parameters determining their performance and provide measures to estimate an acceptable range of thermal and electrical resistances of thermionic generators. We find the relation between the optimum load resistance and the internal resistance and suggest guidelines for the design of thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators can have efficiency values higher than the state-of-the-art thermoelectric modules.

  16. A coupled "AB" system: Rogue waves and modulation instabilities.

    PubMed

    Wu, C F; Grimshaw, R H J; Chow, K W; Chan, H N

    2015-10-01

    Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.

  17. Analysis of originating ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana

    2010-06-01

    We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.

  18. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less

  19. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    DOE PAGES

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.; ...

    2015-11-19

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less

  20. A Japanese Agenda for Management Development.

    ERIC Educational Resources Information Center

    Lim, Howard

    1982-01-01

    Discusses myths about the Japanese management styles; what the West can learn from the Japanese; the concept of nonlinear management; and training modules which teach self-discipline, tolerance, and nonlinear management. (CT)

  1. Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach.

    PubMed

    Petrović, Nikola Z; Aleksić, Najdan B; Belić, Milivoj

    2015-04-20

    We analyze the modulation stability of spatiotemporal solitary and traveling wave solutions to the multidimensional nonlinear Schrödinger equation and the Gross-Pitaevskii equation with variable coefficients that were obtained using Jacobi elliptic functions. For all the solutions we obtain either unconditional stability, or a conditional stability that can be furnished through the use of dispersion management.

  2. Nonlinear dynamics near the stability margin in rotating pipe flow

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  3. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    PubMed

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  4. Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Sohn, Hoon; DeSimio, Martin P.; Brown, Kevin

    2014-04-01

    This study presents a reference-free fatigue crack detection technique using nonlinear ultrasonic modulation. When low frequency (LF) and high frequency (HF) inputs generated by two surface-mounted lead zirconate titanate (PZT) transducers are applied to a structure, the presence of a fatigue crack can provide a mechanism for nonlinear ultrasonic modulation and create spectral sidebands around the frequency of the HF signal. The crack-induced spectral sidebands are isolated using a combination of linear response subtraction (LRS), synchronous demodulation (SD) and continuous wavelet transform (CWT) filtering. Then, a sequential outlier analysis is performed on the extracted sidebands to identify the crack presence without referring any baseline data obtained from the intact condition of the structure. Finally, the robustness of the proposed technique is demonstrated using actual test data obtained from simple aluminum plate and complex aircraft fitting-lug specimens under varying temperature and loading variations.

  5. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser.

    PubMed

    Tian, Xiangling; Wei, Rongfei; Liu, Meng; Zhu, Chunhui; Luo, Zhichao; Wang, Fengqiu; Qiu, Jianrong

    2018-05-24

    Non-equilibrium electrons induced by ultrafast laser excitation in a correlated electron material can disturb the Fermi energy as well as optical nonlinearity. Here, non-equilibrium electrons translate a semiconductor TiS2 material into a plasma to generate broad band nonlinear optical saturable absorption with a sub-picosecond recovery time of ∼768 fs (corresponding to modulation frequencies over 1.3 THz) and a modulation response up to ∼145%. Based on this optical nonlinear modulator, a stable femtosecond mode-locked pulse with a pulse duration of ∼402 fs and a pulse train with a period of ∼175.5 ns is observed in the all-optical system. The findings indicate that non-equilibrium electrons can promote a TiS2-based saturable absorber to be an ultrafast switch for a femtosecond pulse output.

  6. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; Casner, A.; Liberatore, S.; Masse, L. P.

    2015-05-01

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μ m thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  7. Three-photon absorption and nonlinear refraction of BaMgF4 in the ultraviolet region.

    PubMed

    Ma, Yanzhi; Chen, Junjie; Zheng, Yuanlin; Chen, Xianfeng

    2012-08-01

    The nonlinear refraction and nonlinear absorption phenomena are investigated in BaMgF(4) single crystal using the Z-scan technique in the ultraviolet region with a pulsed laser at 400 nm with 1 ps pulse duration. The remarkable nonlinear absorption behavior is identified to be three-photon absorption under the experimental conditions. In addition, both nonlinear refraction and nonlinear absorption have relatively large values and possess small anisotropy along three different crystallographic axes. The large values of nonlinear refractive index are demonstrated through the self-phase modulation effect.

  8. Development of computer program NAS3D using Vector processing for geometric nonlinear analysis of structures

    NASA Technical Reports Server (NTRS)

    Mangalgiri, P. D.; Prabhakaran, R.

    1986-01-01

    An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained.

  9. Impact of Dispersion Slope on SPM Degradation in WDM Systems With High Channel Count

    NASA Astrophysics Data System (ADS)

    Luí; S, Ruben S.; Cartaxo, Adolfo V. T.

    2005-11-01

    Dispersion management design in wavelength division multiplexing (WDM) intensity modulation-direct detection (IM-DD) systems is often difficult due to the complex relation between the dispersion-management parameters (inline and total residual dispersion) and nonlinear impairments, such as cross-phase modulation (XPM). In this paper, we investigate the dependence of the XPM degradation on the dispersion-management parameters of a two-channel system. Afterwards, the XPM degradation on systems with high channel count (161 channels) is analytically evaluated, and the observed behaviors are explained using the results obtained with a two-channel system. In the absence of dispersion-slope compensation (DSC), significant differences in the XPM degradation of different channels in the same system are shown. Such differences result mainly from the strong dependence of the phase-modulation-to-intensity-modulation conversion of the XPM on the dispersion-management parameters of each channel. Due to this dependence, numerical results show that, unlike systems without dispersion compensation (DC), the XPM degradation may increase steadily with the channel count, and the worst-case channel may not be the center channel of the transmitted band. DSC allows a remarkable equalization of the XPM degradation along the transmitted band, facilitating dispersion-management planning. However, variations of the dispersion parameter and excessive residual dispersion that is not compensated may still induce a tilt of the XPM degradation along the transmitted band.

  10. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    PubMed

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  11. Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS).

    PubMed

    Kasten, Florian H; Negahbani, Ehsan; Fröhlich, Flavio; Herrmann, Christoph S

    2018-05-31

    Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6 th -degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Implementation of spatial overlap modulation nonlinear optical microscopy using an electro-optic deflector

    PubMed Central

    Isobe, Keisuke; Kawano, Hiroyuki; Kumagai, Akiko; Miyawaki, Atsushi; Midorikawa, Katsumi

    2013-01-01

    A spatial overlap modulation (SPOM) technique is a nonlinear optical microscopy technique which enhances the three-dimensional spatial resolution and rejects the out-of-focus background limiting the imaging depth inside a highly scattering sample. Here, we report on the implementation of SPOM in which beam pointing modulation is achieved by an electro-optic deflector. The modulation and demodulation frequencies are enhanced to 200 kHz and 400 kHz, respectively, resulting in a 200-fold enhancement compared with the previously reported system. The resolution enhancement and suppression of the out-of-focus background are demonstrated by sum-frequency-generation imaging of pounded granulated sugar and deep imaging of fluorescent beads in a tissue-like phantom, respectively. PMID:24156055

  13. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.

    PubMed

    Choi, Ju Won; Chen, George F R; Ng, D K T; Ooi, Kelvin J A; Tan, Dawn T H

    2016-06-08

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

  14. Experimental implementation of phase locking in a nonlinear interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.

    2015-09-21

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less

  15. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  16. SPM of nonlinear surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Li, Yuee; Zhang, Xiaoping

    2008-10-01

    Pulse propagation equation of nonlinear dispersion surface plasmon waveguide is educed strictly from wave equation. The nonlinear coefficient is defined and then used to assess and compare the nonlinear characteristic of three popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. SPM (self-phase modulation) of the typical surface plasmon waveguide is predicted and discussed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com; El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg

    The nonplanar amplitude modulation of dust acoustic (DA) envelope solitary waves in a strongly coupled dusty plasma (SCDP) has been investigated. By using a reductive perturbation technique, a modified nonlinear Schrödinger equation (NLSE) including the effects of geometry, polarization, and ion superthermality is derived. The modulational instability (MI) of the nonlinear DA wave envelopes is investigated in both planar and nonplanar geometries. There are two stable regions for the DA wave propagation strongly affected by polarization and ion superthermality. Moreover, it is found that the nonlinear DA waves in spherical geometry are the more structurally stable. The larger growth ratemore » of the nonlinear DA MI is observed in the cylindrical geometry. The salient characteristics of the MI in the nonplanar geometries cannot be found in the planar one. The DA wave propagation and the NLSE solutions are investigated both analytically and numerically.« less

  18. Experimental study of the reversible behavior of modulational instability in optical fibers

    NASA Astrophysics Data System (ADS)

    van Simaeys, Gaetan; Emplit, Philippe; Haelterman, Marc

    2002-03-01

    We report what is to our knowledge the first clear-cut experimental evidence of the reversibility of modulational instability in dispersive Kerr media. It was possible to perform this experiment with standard telecommunication fiber because we used a specially designed 550-ps square-pulse laser source based on the two-wavelength configuration of a nonlinear optical loop mirror. Our observations demonstrate that reversibility is due to well-balanced and synchronous energy transfer among a significant number of spectral wave components. These results provide what we believe is the first evidence, in the field of nonlinear optics, of the universal Fermi-Pasta-Ulam recurrence phenomenon that has been predicted for a large number of conservative nonlinear systems, including those described by a nonlinear Schrödinger equation that is relevant to the context of the present study.

  19. Influence of Heart Rate in Non-linear HRV Indices as a Sampling Rate Effect Evaluated on Supine and Standing.

    PubMed

    Bolea, Juan; Pueyo, Esther; Orini, Michele; Bailón, Raquel

    2016-01-01

    The purpose of this study is to characterize and attenuate the influence of mean heart rate (HR) on nonlinear heart rate variability (HRV) indices (correlation dimension, sample, and approximate entropy) as a consequence of being the HR the intrinsic sampling rate of HRV signal. This influence can notably alter nonlinear HRV indices and lead to biased information regarding autonomic nervous system (ANS) modulation. First, a simulation study was carried out to characterize the dependence of nonlinear HRV indices on HR assuming similar ANS modulation. Second, two HR-correction approaches were proposed: one based on regression formulas and another one based on interpolating RR time series. Finally, standard and HR-corrected HRV indices were studied in a body position change database. The simulation study showed the HR-dependence of non-linear indices as a sampling rate effect, as well as the ability of the proposed HR-corrections to attenuate mean HR influence. Analysis in a body position changes database shows that correlation dimension was reduced around 21% in median values in standing with respect to supine position ( p < 0.05), concomitant with a 28% increase in mean HR ( p < 0.05). After HR-correction, correlation dimension decreased around 18% in standing with respect to supine position, being the decrease still significant. Sample and approximate entropy showed similar trends. HR-corrected nonlinear HRV indices could represent an improvement in their applicability as markers of ANS modulation when mean HR changes.

  20. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com; Texas A and M University at Qatar, P.O. Box 23874 Doha; Belić, Milivoj

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number,more » and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.« less

  1. Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics.

    PubMed

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity.

  2. Orientation Selectivity in Inhibition-Dominated Networks of Spiking Neurons: Effect of Single Neuron Properties and Network Dynamics

    PubMed Central

    Sadeh, Sadra; Rotter, Stefan

    2015-01-01

    The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity. PMID:25569445

  3. Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects

    PubMed Central

    Zhang, Jian-Hui; Liu, Chong

    2017-01-01

    We study the higher-order generalized nonlinear Schrödinger (NLS) equation describing the propagation of ultrashort optical pulse in optical fibres. By using Darboux transformation, we derive the superregular breather solution that develops from a small localized perturbation. This type of solution can be used to characterize the nonlinear stage of the modulation instability (MI) of the condensate. In particular, we show some novel characteristics of the nonlinear stage of MI arising from higher-order effects: (i) coexistence of a quasi-Akhmediev breather and a multipeak soliton; (ii) two multipeak solitons propagation in opposite directions; (iii) a beating pattern followed by two multipeak solitons in the same direction. It is found that these patterns generated from a small localized perturbation do not have the analogues in the standard NLS equation. Our results enrich Zakharov’s theory of superregular breathers and could provide helpful insight on the nonlinear stage of MI in presence of the higher-order effects. PMID:28413335

  4. Relativistic laser-plasma interactions in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-04-01

    We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.

  5. Three-dimensional freak waves and higher-order wave-wave resonances

    NASA Astrophysics Data System (ADS)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover period October 14 - November 6, 2009 almost continuously. Antenna of 6 resistance wave gauges (a pentagon with one center gauge) is used to gain information on wave directions. Wave conditions vary from perfect still to storms with significant wave heights up to Hs = 1.7 meters and wind speeds 15m/s. Measurements with frequency 10Hz for dominant frequencies 0.1 - 0.2Hz fixed 40 freak wave events (criterium H/Hs > 2) and showed no dependence on Hs definitely. Data processing within frequency quasi-spectra approach and directional spectra reconstructions found pronounced features of essentially three-dimensional anomalous waves. All the events are associated with dramatic widening of instant frequency spectra in the range fp - f5w and stronger directional spreading. On the contrary, the classic Benjamin-Feir modulations show no definite links with the events and can be likely treated as dynamically neutral part of wave field. The apparent contradiction with the recent study (Saprykina, Dulov, Kuznetsov, Smolov, 2010) based on the same data collection can be explained partially by features of data processing. Physical roots of the inconsistency should be detailed in further studies. The work was supported by the Russian government contract 11.G34.31.0035 (signed 25 November 2010), Russian Foundation for Basic Research grant 11-05-01114-a, Ukrainian State Agency of Science, Innovations and Information under Contract M/412-2011 and ONR grant N000141010991. Authors gratefully acknowledge continuing support of these foundations.

  6. Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential.

    PubMed

    Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li

    2017-04-17

    We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.

  7. Nonlinear phase noise tolerance for coherent optical systems using soft-decision-aided ML carrier phase estimation enhanced with constellation partitioning

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wu, Mingwei; Du, Xinwei; Xu, Zhuoran; Gurusamy, Mohan; Yu, Changyuan; Kam, Pooi-Yuen

    2018-02-01

    A novel soft-decision-aided maximum likelihood (SDA-ML) carrier phase estimation method and its simplified version, the decision-aided and soft-decision-aided maximum likelihood (DA-SDA-ML) methods are tested in a nonlinear phase noise-dominant channel. The numerical performance results show that both the SDA-ML and DA-SDA-ML methods outperform the conventional DA-ML in systems with constant-amplitude modulation formats. In addition, modified algorithms based on constellation partitioning are proposed. With partitioning, the modified SDA-ML and DA-SDA-ML are shown to be useful for compensating the nonlinear phase noise in multi-level modulation systems.

  8. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    PubMed Central

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  9. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations.

    PubMed

    Fernandez, Fernando R; Malerba, Paola; White, John A

    2015-04-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.

  10. N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis

    2004-02-01

    In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.

  11. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  12. Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex

    PubMed Central

    Atencio, Craig A.; Schreiner, Christoph E.

    2012-01-01

    Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed. PMID:22384036

  13. Linear and nonlinear stability characteristics of whistlers

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.

    1972-01-01

    Linear and nonlinear propagating characteristics of right-hand polarized, slow electromagnetic, magnetoplasma waves (whistlers) are discussed in terms of stability and dispersion. An analysis of the stability of whistlers propagating at an angle to the static magnetic field is presented. A new mechanism is derived for the onset of stimulated emissions, and modulational instability for nonlinear whistlers are discussed.

  14. Dielectric elastomer peristaltic pump module with finite deformation

    NASA Astrophysics Data System (ADS)

    Mao, Guoyong; Huang, Xiaoqiang; Liu, Junjie; Li, Tiefeng; Qu, Shaoxing; Yang, Wei

    2015-07-01

    Inspired by various peristaltic structures existing in nature, several bionic peristaltic actuators have been developed. In this study, we propose a novel dielectric elastomer peristaltic pump consisting of short tubular modules, with the saline solution as the electrodes. We investigate the performance of this soft pump module under hydraulic pressure and voltage via experiments and an analytical model based on nonlinear field theory. It is observed that the individual pump module undergoes finite deformation and may experience electromechanical instability during operations. The driving pressure and displaced volume of the peristaltic pump module can be modulated by applied voltage. The efficiency of the pump module is enhanced by alternating current voltage, which can suppress the electromechanical pull-in instability. An analytical model is developed within the framework of the nonlinear field theory, and its predictive capacity is checked by experimental observations. The effects of the prestretch, aspect ratio, and voltage on the performance of the pump modules are characterized by the analytical model. This work can guide the designs of soft active peristaltic pumps in the field of artificial organs and industrial conveying systems.

  15. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.

    PubMed

    Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng

    2015-01-12

    A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.

  16. Modulational instability in a PT-symmetric vector nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2016-12-01

    A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.

  17. Performance improvement of 64-QAM coherent optical communication system by optimizing symbol decision boundary based on support vector machine

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhang, Junfeng; Gao, Mingyi; Shen, Gangxiang

    2018-03-01

    High-order modulation signals are suited for high-capacity communication systems because of their high spectral efficiency, but they are more vulnerable to various impairments. For the signals that experience degradation, when symbol points overlap on the constellation diagram, the original linear decision boundary cannot be used to distinguish the classification of symbol. Therefore, it is advantageous to create an optimum symbol decision boundary for the degraded signals. In this work, we experimentally demonstrated the 64-quadrature-amplitude modulation (64-QAM) coherent optical communication system using support-vector machine (SVM) decision boundary algorithm to create the optimum symbol decision boundary for improving the system performance. We investigated the influence of various impairments on the 64-QAM coherent optical communication systems, such as the impairments caused by modulator nonlinearity, phase skew between in-phase (I) arm and quadrature-phase (Q) arm of the modulator, fiber Kerr nonlinearity and amplified spontaneous emission (ASE) noise. We measured the bit-error-ratio (BER) performance of 75-Gb/s 64-QAM signals in the back-to-back and 50-km transmission. By using SVM to optimize symbol decision boundary, the impairments caused by I/Q phase skew of the modulator, fiber Kerr nonlinearity and ASE noise are greatly mitigated.

  18. Soliton communication lines based on spectrally efficient modulation formats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushko, O V; Redyuk, A A

    2014-06-30

    We report the results of mathematical modelling of optical-signal propagation in soliton fibre-optic communication lines (FOCLs) based on spectrally efficient signal modulation formats. We have studied the influence of spontaneous emission noise, nonlinear distortions and FOCL length on the data transmission quality. We have compared the characteristics of a received optical signal for soliton and conventional dispersion compensating FOCLs. It is shown that in the presence of strong nonlinearity long-haul soliton FOCLs provide a higher data transmission performance, as well as allow higher order modulation formats to be used as compared to conventional communication lines. In the context of amore » coherent data transmission, soliton FOCLs allow the use of phase modulation with many levels, thereby increasing the spectral efficiency of the communication line. (optical communication lines)« less

  19. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  20. High current nonlinear transmission line based electron beam driver

    NASA Astrophysics Data System (ADS)

    Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.

    2017-10-01

    A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).

  1. Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khamis, E. G.; Tovbis, A.

    2016-09-01

    We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.

  2. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.

    PubMed

    Akhmediev, Nail; Ankiewicz, Adrian

    2011-04-01

    We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.

  3. Spin-orbit optical cross-phase-modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasselet, Etienne

    2010-12-15

    We show experimentally that optical phase singularities (PSs) can be written and erased, locally and in a controllable manner, into a light beam using the giant Kerr optical nonlinearities of liquid crystals. The method relies on the nonlinear optical spin-orbit coupling experienced by a collimated probe beam when a collinear focused pump beam imprints a radial birefringent pattern into a nematic film. In addition, experimental data are quantitatively described, accounting for the elastic anisotropy of the material and its nonlocal spatial response to the pump light field. Since we show that the optical intensity of a light beam (the 'pump')more » controls the phase of another beam (the 'probe') in a singular fashion (i.e., with the generation of a screw PS) via their interaction in a nonlinear medium that involves spin-orbit coupling, we dubbed such a nonlinear optical process as spin-orbit optical cross-phase-modulation.« less

  4. Magnetoplasmonic RF mixing and nonlinear frequency generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.

    2016-07-04

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less

  5. Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines

    NASA Astrophysics Data System (ADS)

    Eric, Tala-Tebue; Aurelien, Kenfack-Jiotsa; Marius Hervé, Tatchou-Ntemfack; Timoléon Crépin, Kofané

    2013-07-01

    In this work, we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines. Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch. Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing. On one hand, the difference between the two lines induced the fission for only one mode of propagation. This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton, leading to a possible increasing of the bit rate. On the other hand, the dissymmetry of the two lines converts the network into a good amplifier for the ω_ mode which corresponds to the regime admitting low frequencies.

  6. Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.

    PubMed

    Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo

    2013-11-15

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  7. Power and spectrally efficient M-ARY QAM schemes for future mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Sreenath, K.; Feher, K.

    1990-01-01

    An effective method to compensate nonlinear phase distortion caused by the mobile amplifier is proposed. As a first step towards the future use of spectrally efficient modulation schemes for mobile satellite applications, we have investigated effects of nonlinearities and the phase compensation method on 16-QAM. The new method provides about 2 dB savings in power for 16-QAM operation with cost effective amplifiers near saturation and thereby promising use of spectrally efficient linear modulation schemes for future mobile satellite applications.

  8. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W. Hughes, M. Landreman, B. Li, Y. Ma, P. Phillips, M. Porkolab, W. Rowan, S. Wolfe, and S. Wukitch.[4pt] [1] D. R. Ernst et al., Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, paper IAEA-CN-149/TH/1-3 (2006). http://www-pub.iaea.org/MTCD/Meetings/FEC200/th1-3.pdf[0pt] [2] B. Li and D.R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).

  9. Zero Forcing Conditions for Nonlinear channel Equalisation using a pre-coding scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arfa, Hichem; Belghith, Safya; El Asmi, Sadok

    2009-03-05

    This paper shows how we can present a zero forcing conditions for a nonlinear channel equalisation. These zero forcing conditions based on the rank of nonlinear system are issued from an algebraic approach based on the module theoretical approach, in which the rank of nonlinear channel is clearly defined. In order to improve the performance of equalisation and reduce the complexity of used nonlinear systems, we will apply a pre-coding scheme. Theoretical results are given and computer simulation is used to corroborate the theory.

  10. Nonlinear excited waves on the interventricular septum

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi

    2012-11-01

    Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.

  11. Experimental Observation of Thermal Self-Modulation in OPO

    NASA Technical Reports Server (NTRS)

    Gao, Jiangrui; Wang, Hai; Xie, Changde; Peng, Kunchi

    1996-01-01

    The thermal self-modulation has been observed experimentally via SHG in OPO. The threshold pump power for the thermal self- modulation is much smaller than that of the nonlinear self-pulsing. The thermal effect prevent from realizing the theoretical prediction for the self-pulsing.

  12. Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling

    PubMed Central

    Song, Zhuoyi; Zhou, Yu; Juusola, Mikko

    2016-01-01

    Many diurnal photoreceptors encode vast real-world light changes effectively, but how this performance originates from photon sampling is unclear. A 4-module biophysically-realistic fly photoreceptor model, in which information capture is limited by the number of its sampling units (microvilli) and their photon-hit recovery time (refractoriness), can accurately simulate real recordings and their information content. However, sublinear summation in quantum bump production (quantum-gain-nonlinearity) may also cause adaptation by reducing the bump/photon gain when multiple photons hit the same microvillus simultaneously. Here, we use a Random Photon Absorption Model (RandPAM), which is the 1st module of the 4-module fly photoreceptor model, to quantify the contribution of quantum-gain-nonlinearity in light adaptation. We show how quantum-gain-nonlinearity already results from photon sampling alone. In the extreme case, when two or more simultaneous photon-hits reduce to a single sublinear value, quantum-gain-nonlinearity is preset before the phototransduction reactions adapt the quantum bump waveform. However, the contribution of quantum-gain-nonlinearity in light adaptation depends upon the likelihood of multi-photon-hits, which is strictly determined by the number of microvilli and light intensity. Specifically, its contribution to light-adaptation is marginal (≤ 1%) in fly photoreceptors with many thousands of microvilli, because the probability of simultaneous multi-photon-hits on any one microvillus is low even during daylight conditions. However, in cells with fewer sampling units, the impact of quantum-gain-nonlinearity increases with brightening light. PMID:27445779

  13. The effect of system nonlinearities on system noise statistics

    NASA Technical Reports Server (NTRS)

    Robinson, L. H., Jr.

    1971-01-01

    The effects are studied of nonlinearities in a baseline communications system on the system noise amplitude statistics. So that a meaningful identification of system nonlinearities can be made, the baseline system is assumed to transmit a single biphase-modulated signal through a relay satellite to the receiving equipment. The significant nonlinearities thus identified include square-law or product devices (e.g., in the carrier reference recovery loops in the receivers), bandpass limiters, and traveling wave tube amplifiers.

  14. Efficient, nonlinear phase estimation with the nonmodulated pyramid wavefront sensor.

    PubMed

    Frazin, Richard A

    2018-04-01

    The sensitivity of the pyramid wavefront sensor (PyWFS) has made it a popular choice for astronomical adaptive optics (AAO) systems. The PyWFS is at its most sensitive when it is used without modulation of the input beam. In nonmodulated mode, the device is highly nonlinear. Hence, all PyWFS implementations on current AAO systems employ modulation to make the device more linear. The upcoming era of 30-m class telescopes and the demand for ultra-precise wavefront control stemming from science objectives that include direct imaging of exoplanets make using the PyWFS without modulation desirable. This article argues that nonlinear estimation based on Newton's method for nonlinear optimization can be useful for mitigating the effects of nonlinearity in the nonmodulated PyWFS. The proposed approach requires all optical modeling to be pre-computed, which has the advantage of avoiding real-time simulations of beam propagation. Further, the required real-time calculations are amenable to massively parallel computation. Numerical experiments simulate a PyWFS with faces sloped 3.7° to the horizontal, operating at a wavelength of 0.85 μm, and with an index of refraction of 1.45. A singular value analysis shows that the common practice of calculating two "slope" images from the four PyWFS pupil images discards critical information and is unsuitable for the nonmodulated PyWFS simulated here. Instead, this article advocates estimators that use the raw pixel values not only from the four geometrical images of the pupil, but from surrounding pixels as well. The simulations indicate that nonlinear estimation can be effective when the Strehl ratio of the input beam is greater than 0.3, and the improvement relative to linear estimation tends to increase at larger Strehl ratios. At Strehl ratios less than about 0.5, the performances of both the nonlinear and linear estimators are relatively insensitive to noise since they are dominated by nonlinearity error.

  15. Spatio-temporal instabilities for counterpropagating waves in periodic media.

    PubMed

    Haus, Joseph; Soon, Boon Yi; Scalora, Michael; Bloemer, Mark; Bowden, Charles; Sibilia, Concita; Zheltikov, Alexei

    2002-01-28

    Nonlinear evolution of coupled forward and backward fields in a multi-layered film is numerically investigated. We examine the role of longitudinal and transverse modulation instabilities in media of finite length with a homogeneous nonlinear susceptibility c((3)). The numerical solution of the nonlinear equations by a beam-propagation method that handles backward waves is described.

  16. Rogue Wave Modes for the Long Wave-Short Wave Resonance and the Derivative Nonlinear Schrödinger Models

    NASA Astrophysics Data System (ADS)

    Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin

    2014-11-01

    Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.

  17. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides

    PubMed Central

    Choi, Ju Won; Chen, George F. R.; Ng, D. K. T.; Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2016-01-01

    CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra – silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W−1/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two – fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms. PMID:27272558

  18. Refraction of dispersive shock waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.

    2012-09-01

    We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.

  19. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; ...

    2015-05-29

    In this paper, we investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation frontmore » is achieved for the first time in indirect drive. Finally, the mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.« less

  20. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  1. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.

  2. Investigation of advanced pre- and post-equalization schemes in high-order CAP modulation based high-speed indoor VLC transmission system

    NASA Astrophysics Data System (ADS)

    Wang, Yiguang; Chi, Nan

    2016-10-01

    Light emitting diodes (LEDs) based visible light communication (VLC) has been considered as a promising technology for indoor high-speed wireless access, due to its unique advantages, such as low cost, license free and high security. To achieve high-speed VLC transmission, carrierless amplitude and phase (CAP) modulation has been utilized for its lower complexity and high spectral efficiency. Moreover, to compensate the linear and nonlinear distortions such as frequency attenuation, sampling time offset, LED nonlinearity etc., series of pre- and post-equalization schemes should be employed in high-speed VLC systems. In this paper, we make an investigation on several advanced pre- and postequalization schemes for high-order CAP modulation based VLC systems. We propose to use a weighted preequalization technique to compensate the LED frequency attenuation. In post-equalization, a hybrid post equalizer is proposed, which consists of a linear equalizer, a Volterra series based nonlinear equalizer, and a decision-directed least mean square (DD-LMS) equalizer. Modified cascaded multi-modulus algorithm (M-CMMA) is employed to update the weights of the linear and the nonlinear equalizer, while DD-LMS can further improve the performance after the preconvergence. Based on high-order CAP modulation and these equalization schemes, we have experimentally demonstrated a 1.35-Gb/s, a 4.5-Gb/s and a 8-Gb/s high-speed indoor VLC transmission systems. The results show the benefit and feasibility of the proposed equalization schemes for high-speed VLC systems.

  3. A third-order class-D amplifier with and without ripple compensation

    NASA Astrophysics Data System (ADS)

    Cox, Stephen M.; du Toit Mouton, H.

    2018-06-01

    We analyse the nonlinear behaviour of a third-order class-D amplifier, and demonstrate the remarkable effectiveness of the recently introduced ripple compensation (RC) technique in reducing the audio distortion of the device. The amplifier converts an input audio signal to a high-frequency train of rectangular pulses, whose widths are modulated according to the input signal (pulse-width modulation) and employs negative feedback. After determining the steady-state operating point for constant input and calculating its stability, we derive a small-signal model (SSM), which yields in closed form the transfer function relating (infinitesimal) input and output disturbances. This SSM shows how the RC technique is able to linearise the small-signal response of the device. We extend this SSM through a fully nonlinear perturbation calculation of the dynamics of the amplifier, based on the disparity in time scales between the pulse train and the audio signal. We obtain the nonlinear response of the amplifier to a general audio signal, avoiding the linearisation inherent in the SSM; we thereby more precisely quantify the reduction in distortion achieved through RC. Finally, simulations corroborate our theoretical predictions and illustrate the dramatic deterioration in performance that occurs when the amplifier is operated in an unstable regime. The perturbation calculation is rather general, and may be adapted to quantify the way in which other nonlinear negative-feedback pulse-modulated devices track a time-varying input signal that slowly modulates the system parameters.

  4. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  5. Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate

    NASA Astrophysics Data System (ADS)

    Issokolo, Remi J. Noumana; Dikandé, Alain M.

    2018-05-01

    A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

  6. Third order nonlinear optical response exhibited by mono- and few-layers of WS 2

    DOE PAGES

    Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...

    2016-04-13

    In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.

  7. Dust ion acoustic freak waves in a plasma with two temperature electrons featuring Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.

    2018-02-01

    We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.

  8. Modulated heavy nucleus-acoustic waves and associated rogue waves in a degenerate relativistic quantum plasma system

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.

    2018-01-01

    A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.

  9. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  10. Nonlinear optical properties of organic materials V; Proceedings of the 5th Meeting, San Diego, CA, July 22-24, 1992

    NASA Astrophysics Data System (ADS)

    Williams, David J.

    The present volume on nonlinear optical properties of organic materials discusses organic nonlinear optics, polymers for nonlinear optics, characterization of nonlinear properties, photorefractive and second-order materials, harmonic generation in organic materials, and devices and applications. Particular attention is given to organic semiconductor-doped polymer glasses as novel nonlinear media, heterocyclic nonlinear optical materials, loss measurements in electrooptic polymer waveguides, the phase-matched second-harmonic generation in planar waveguides, electrooptic measurements in poled polymers, transient effects in spatial light modulation by nonlinearity-absorbing molecules, the electrooptic effects in organic single crystals, surface acoustic wave propagation in an organic nonlinear optical crystal, nonlinear optics of astaxanthin thin films; and advanced high-temperature polymers for integrated optical waveguides. (No individual items are abstracted in this volume)

  11. Study of large nonlinear change phase in Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  12. Nonlinear excitation of long-wavelength modes in Hall plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.

    2016-10-01

    Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.

  13. A non-linear 4-wave resonant model for non-perturbative fast ion interactions with Alfv'enic modes in burning plasmas

    NASA Astrophysics Data System (ADS)

    Zonca, Fulvio; Chen, Liu

    2007-11-01

    We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)

  14. Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, V N; Kochetkov, A A; Yakovlev, I V

    2016-02-28

    Spectral broadening of high-power transform-limited laser pulses under self-phase modulation in a medium with cubic nonlinearity is widely used to reduce pulse duration and to increase its power. It is shown that the cubic spectral phase of the initial pulse leads to a qualitatively different broadening of its spectrum: the spectrum has narrow peaks and broadening decreases. However, the use of chirped mirrors allows such pulses to be as effectively compressed as transform-limited pulses. (nonlinear optical phenomena)

  15. Chirped-pulse coherent-OTDR with predistortion

    NASA Astrophysics Data System (ADS)

    Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan

    2018-03-01

    In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.

  16. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    PubMed

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  17. Imprint of non-linear effects on HI intensity mapping on large scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeh, Obinna, E-mail: umeobinna@gmail.com

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on themore » power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.« less

  18. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    NASA Astrophysics Data System (ADS)

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; Diroll, Benjamin T.; Ketterson, John B.; Chang, Robert P. H.

    2016-09-01

    Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.

  19. Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.

    2018-05-01

    We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.

  20. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2017-07-01

    The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.

  1. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2017-12-01

    In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.

  2. Imprint of non-linear effects on HI intensity mapping on large scales

    NASA Astrophysics Data System (ADS)

    Umeh, Obinna

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  3. Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin

    Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  4. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.

    2017-01-01

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor-acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V-1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.

  5. Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films

    DOE PAGES

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; ...

    2017-01-27

    Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  6. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  7. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.

    PubMed

    Romano, P Q; Conlon, S C; Smith, E C

    2013-01-01

    Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators.

  8. Measurement of large nonlinear refractive index of natural pigment extracted from Hibiscus rosa-sinensis leaves with a low power CW laser and by spatial self-phase modulation technique

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Kumbhakar, P.

    2017-02-01

    We have reported here, for the first time, to the best of our knowledge, a high nonlinear refractive index (n2e) of a natural pigment extracted from Hibiscus rosa-sinensis leaves by using spatial self-phase modulation technique (SSPM) with a low power CW He-Ne laser radiation at 632.8 nm. It is found by UV-Vis absorption spectroscopic analysis that chlrophyll-a, chlrophyll-b and carotenoid are present in the pigment extract with 56%, 25% and 19%, respectively. The photoluminescence (PL) emission characteristics of the extracted samples have also been measured at room temperature as well as in the temperature range of 283-333 K to investigate the effect of temperature on luminescent properties of the sample. By analyzing the SSPM experimental data, the nonlinear refractive index value of pigment extract has been determined to be 3.5 × 10- 5 cm2/W. The large nonlinear refractive index has been assigned due to asymmetrical structure, molecular reorientation and thermally induced nonlinearity in the sample. The presented results might open new avenues for the green and economical technique of syntheses of organic dyes with such a large nonlinear optical property.

  9. Broadband unidirectional ultrasound propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Dipen N.; Pantea, Cristian

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystalmore » provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.« less

  10. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence

    PubMed Central

    Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.

    2016-01-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005

  11. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shimin, E-mail: gsm861@126.com; Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numericallymore » investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.« less

  12. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    PubMed

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  13. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  14. Self-Organized Lattices of Nonlinear Optochemical Waves in Photopolymerizable Fluids: The Spontaneous Emergence of 3-D Order in a Weakly Correlated System.

    PubMed

    Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi

    2018-03-01

    Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws of optical interference can be explained through the soliton-like interactions of optochemical waves with nearest neighbors. Critically, this work casts fundamentally new insight into the collective behaviors of poorly correlated nonlinear waves in higher dimensions and provides a rare, accessible platform for further experimental studies of these previously unexplored behaviors. Furthermore, it defines a self-organization paradigm that, unlike conventional counterparts, could generate polymer microstructures with symmetries spanning all the Bravais lattices.

  15. Effects of a hydrotherapy programme on symbolic and complexity dynamics of heart rate variability and aerobic capacity in fibromyalgia patients.

    PubMed

    Zamunér, Antonio Roberto; Andrade, Carolina P; Forti, Meire; Marchi, Andrea; Milan, Juliana; Avila, Mariana Arias; Catai, Aparecida Maria; Porta, Alberto; Silva, Ester

    2015-01-01

    To evaluate the effects of a hydrotherapy programme on aerobic capacity and linear and non-linear dynamics of heart rate variability (HRV) in women with fibromyalgia syndrome (FMS). 20 women with FMS and 20 healthy controls (HC) took part in the study. The FMS group was evaluated at baseline and after a 16-week hydrotherapy programme. All participants underwent cardiopulmonary exercise testing on a cycle ergometer and RR intervals recording in supine and standing positions. The HRV was analysed by linear and non-linear methods. The current level of pain, the tender points, the pressure pain threshold and the impact of FMS on quality of life were assessed. The FMS patients presented higher cardiac sympathetic modulation, lower vagal modulation and lower complexity of HRV in supine position than the HC. Only the HC decreased the complexity indices of HRV during orthostatic stimulus. After a 16-week hydrotherapy programme, the FMS patients increased aerobic capacity, decreased cardiac sympathetic modulation and increased vagal modulation and complexity dynamics of HRV in supine. The FMS patients also improved their cardiac autonomic adjustments to the orthostatic stimulus. Associations between improvements in non-linear dynamics of HRV and improvements in pain and in the impact of FMS on quality of life were found. A 16-week hydrotherapy programme proved to be effective in ameliorating symptoms, aerobic functional capacity and cardiac autonomic control in FMS patients. Improvements in the non-linear dynamics of HRV were related to improvements in pain and in the impact of FMS on quality of life.

  16. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  17. Nonlinear dynamics behavior analysis of the spatial configuration of a tendril-bearing plant

    NASA Astrophysics Data System (ADS)

    Feng, Jingjing; Zhang, Qichang; Wang, Wei; Hao, Shuying

    2017-03-01

    Tendril-bearing plants appear to have a spiraling shape when tendrils climb along a support during growth. The growth characteristics of a tendril-bearer can be simplified to a model of a thin elastic rod with a cylindrical constraint. In this paper, the connection between some typical configuration characteristics of tendrils and complex nonlinear dynamic behavior are qualitatively analyzed. The space configuration problem of tendrils can be explained through the study of the nonlinear dynamic behavior of the thin elastic rod system equation. In this study, the complex non-Z2 symmetric critical orbits in the system equation under critical parameters were presented. A new function transformation method that can effectively maintain the critical orbit properties was proposed, and a new nonlinear differential equations system containing complex nonlinear terms can been obtained to describe the cross section position and direction of a rod during climbing. Numerical simulation revealed that the new system can describe the configuration of a rod with reasonable accuracy. To adequately explain the growing regulation of the rod shape, the critical orbit and configuration of rod are connected in a direct way. The high precision analytical expressions of these complex non-Z2 symmetric critical orbits are obtained by introducing a suitable analytical method, and then these expressions are used to draw the corresponding three-dimensional configuration figures of an elastic thin rod. Combined with actual tendrils on a live plant, the space configuration of the winding knots of tendril is explained by the concept of heteroclinic orbit from the perspective of nonlinear dynamics, and correctness of the theoretical analysis was verified. This theoretical analysis method could also be effectively applied to other similar slender structures.

  18. A Novel Behavior of Pump Power in the Instability Induced Supercontinuum Generation of Saturable Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Porsezian, K.

    2015-04-01

    We investigate the modulational instability (MI) induced Supercontinuum generation (SCG) in exponential saturable nonlinearity. The pump power (P) is observed to behave in a unique way such that unlike the conventional Kerr case, the effective nonlinearity of saturable nonlinear system does not monotonously increases with an increase in power. The supercontinuum is observed at the shortest distance of propagation at power equal to the saturation power (Ps), whereas for all combinations of powers (P < Ps or P > Ps) spectral broadening occurs at longer distance.

  19. Performance Evaluation and Nonlinear Mitigation through DQPSK Modulation in 32 × 40 Gbps Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Agrawal, Vaibhav M.; Chaubey, V. K.

    2017-08-01

    Higher spectral efficiency and greater data rate per channel are the most cost-effective strategies to meet the exponential demand of data traffic in the optical core network. Multilevel modulation formats being spectrally efficient enhance the transmission capacity by coding information in the amplitude, phase, polarization or a combination of all. This paper presents the design architecture of a 32-channel dense wavelength division multiplexed (DWDM) system, where each channel operates with multi-level phase modulation formats at 40 Gbps. The proposed design has been simulated for 50 GHz channel spacing to numerically compute the performance of both differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) modulation formats in such high-speed DWDM system. The transmission link is analyzed with perfect dispersion compensation and also with under-compensation scheme. The link performance in terms of quality factor (Q) for varying input powers with different dispersion compensation schemes has been evaluated. The simulation study shows significant nonlinear mitigation for both DPSK- and DQPSK-based DWDM systems up to 1,000 km and beyond. It is concluded that at higher power levels DQPSK format having a narrower spectrum shows better tolerance to dispersion and nonlinearities than DPSK format.

  20. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-01

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  1. Introduction to nonlinear acoustics

    NASA Astrophysics Data System (ADS)

    Bjørnø, Leif

    2010-01-01

    A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.

  2. Development of a wireless nonlinear wave modulation spectroscopy (NWMS) sensor node for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon

    2014-03-01

    Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.

  3. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  4. Cross mode modulation in multimode fibers.

    PubMed

    Kroushkov, Dimitar I; Rademacher, Georg; Petermann, Klaus

    2013-05-15

    We show that Kerr nonlinearity induced intermodal power transfer in a particular mode group of a multimode fiber can be formulated by the same type of equation used to describe the effect of cross polarization modulation in single-mode fibers.

  5. Book review: Nonlinear ocean waves and the inverse scattering transform

    USGS Publications Warehouse

    Geist, Eric L.

    2011-01-01

    Nonlinear Ocean Waves and the Inverse Scattering Transform is a comprehensive examination of ocean waves built upon the theory of nonlinear Fourier analysis. The renowned author, Alfred R. Osborne, is perhaps best known for the discovery of internal solitons in the Andaman Sea during the 1970s. In this book, he provides an extensive treatment of nonlinear water waves based on a nonlinear spectral theory known as the inverse scattering transform. The writing is exceptional throughout the book, which is particularly useful in explaining some of the more difficult mathematical concepts.  Review info: Nonlinear Ocean Waves and the Inverse Scattering Transform. By Alfred R. Osborne, 2010. ISBN: 978-125286299, 917 pp.

  6. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    NASA Astrophysics Data System (ADS)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  7. Superconducting nanowires as nonlinear inductive elements for qubits

    NASA Astrophysics Data System (ADS)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2011-03-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a ``crater'' at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. NSF DMR-1005645, DOE DO-FG02-07ER46453.

  8. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  9. Human memory manipulated: dissociating factors contributing to MTL activity, an fMRI study.

    PubMed

    Pustina, Dorian; Gizewski, Elke; Forsting, Michael; Daum, Irene; Suchan, Boris

    2012-04-01

    Memory processes are mainly studied with subjective rating procedures. We used a morphing procedure to objectively manipulate the similarity of target stimuli. While undergoing functional magnetic resonance imaging, nineteen subjects performed a encoding and recognition task on face and scene stimuli, varying the degree of manipulation of previously studied targets at 0%, 20%, 40% or 60%. Analyses were performed with parametric modulations for objective stimulus status (morphing level), subjective memory (confidence rating), and reaction times (RTs). Results showed that medial temporal lobe (MTL) activity can be best explained by a combination of subjective and objective factors. Memory success is associated with activity modulation in the hippocampus both for faces and for scenes. Memory failures correlated with lower hippocampal activity for scenes, but not for faces. Activity changed during retrieval on similar areas activated during encoding. There was a considerable impact of RTs on memory-related areas. Objective perceptual identity correlated with activity in the left MTL, while subjective memory experience correlated with activity in the right MTL for both types of material. Overall, the results indicate that MTL activity is heterogeneous, showing both linear and non-linear activity, depending on the factor analyzed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Optical wave turbulence and the condensation of light

    NASA Astrophysics Data System (ADS)

    Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania

    2009-11-01

    In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.

  11. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    PubMed

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  12. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  13. Preparation, characterization, and nonlinear optical properties of hybridized graphene @ gold nanorods nanocomposites

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Ning, Tingyin; Han, Yanshun; Sheng, Yingqiang; Li, Chonghui; Zhao, Xiaofei; Lu, Zhengyi; Man, Baoyuan; Jiao, Yang; Jiang, Shouzhen

    2018-03-01

    The methods of chemical vapor deposition (CVD) and seed-mediated growth were used to obtain graphene and gold nanorods (GNRs), respectively. We fabricate graphene @ gold nanorods (G@GNRs) nanocomposites by successively using dropping and transferring methods Through SEM, Raman spectra and TEM analysis, the number of graphene layers is 6-7. The diameter of gold nanorods (GNRs) is about 10 nm and the average aspect ratio is 6.5. In addition, we systematically investigate their nonlinear optical responses by using open-aperture Z-scan technique. In contrast with graphene and GNRs, the G@GNRs nanocomposites exhibit excellent nonlinear optical response with a modulation depth of about 51% and a saturable intensity of about 6.23 GW/cm2. The results suggest that the G@GNRs nanocomposites could potentially be used as an optical modulator in pulsed laser generation.

  14. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gaozhong; Zhang, Saifeng, E-mail: sfzhang@siom.ac.cn, E-mail: jwang@siom.ac.cn; Cheng, Xin

    2014-04-07

    Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphenemore » dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.« less

  15. Dark Solitons in FPU Lattice Chain

    NASA Astrophysics Data System (ADS)

    Wang, Deng-Long; Yang, Ru-Shu; Yang, You-Tian

    2007-11-01

    Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.

  16. Note: extraction of temperature-dependent interfacial resistance of thermoelectric modules.

    PubMed

    Chen, Min

    2011-11-01

    This article discusses an approach for extracting the temperature dependency of the electrical interfacial resistance associated with thermoelectric devices. The method combines a traditional module-level test rig and a nonlinear numerical model of thermoelectricity to minimize measurement errors on the interfacial resistance. The extracted results represent useful data to investigating the characteristics of thermoelectric module resistance and comparing performance of various modules. © 2011 American Institute of Physics

  17. Particle trapping and manipulation using hollow beam with tunable size generated by thermal nonlinear optical effect

    NASA Astrophysics Data System (ADS)

    He, Bo; Cheng, Xuemei; Zhang, Hui; Chen, Haowei; Zhang, Qian; Ren, Zhaoyu; Ding, Shan; Bai, Jintao

    2018-05-01

    We report micron-sized particle trapping and manipulation using a hollow beam of tunable size, which was generated by cross-phase modulation via the thermal nonlinear optical effect in an ethanol medium. The results demonstrated that the particle can be trapped stably in air for hours and manipulated in millimeter range with micrometer-level accuracy by modulating the size of the hollow beam. The merits of flexibility in tuning the beam size and simplicity in operation give this method great potential for the in situ study of individual particles in air.

  18. Label-free super-resolution with coherent nonlinear structured-illumination microscopy

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Abbas, Aazad; Upham, Jeremy; Boyd, Robert W.

    2017-08-01

    Structured-illumination microscopy enables up to a two-fold lateral resolution improvement by spatially modulating the intensity profile of the illumination beam. We propose a novel way to generalize the concept of structured illumination to nonlinear widefield modalities by spatially modulating, instead of field intensities, the phase of the incident field while interferometrically measuring the complex-valued scattered field. We numerically demonstrate that for second-order and third-order processes an almost four- and six-fold increase in lateral resolution is achievable, respectively. This procedure overcomes the conventional Abbe diffraction limit and provides new possibilities for label-free super-resolution microscopy.

  19. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  20. Non-autonomous matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and harmonic potential

    NASA Astrophysics Data System (ADS)

    Wang, Deng-Shan; Liu, Jiang; Wang, Lizhen

    2018-03-01

    In this paper, we investigate matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross-Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic-molecular matter-wave solitons.

  1. Plasmon resonance enhancement of nonlinear properties of amino acids

    NASA Astrophysics Data System (ADS)

    de Araujo, Renato E.; Rativa, Diego; Gomes, Anderson S. L.

    2007-02-01

    Here we analyze the influence of 9 nm (mean diameter) silver particles on the nonlinear properties of intrinsic cell molecules. A novel high sensitivity thermal managed eclipse Z-scan technique with a femtosecond laser system was used to analyze the nonlinear susceptibility of water solution of fluorescent and non-fluorescent amino acids (Tryptophan, Tyrosine, Phenylalanine, Proline and Histidine) with different concentration of silver nanoparticles. The generalized Maxwell Garnett model is used to explain the behavior of the measured nonlinear refractive index with the change of the nanoparticles concentration in the sample.

  2. Nonlinear effects of electromagnetic forces on primary resonance of a levitated elastic bar supported by high- Tc superconducting bearings

    NASA Astrophysics Data System (ADS)

    Iori, T.; Ogawa, S.; Sugiura, T.

    2007-10-01

    This research investigates nonlinear dynamics of an elastic body supported at both its ends by electromagnetic forces between superconductors and magnets. We focus on the primary resonance of each eigenmode under vertical excitation of superconducting bulks. Experiment and numerical analysis show the softening tendency in the resonance of the 3rd mode consisting of mainly deflection and slightly translation. This nonlinear response can be theoretically explained only by nonlinear coupling between the 1st and 3rd modes through their quadratic terms.

  3. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Determining the VLF/ULF source height using phase measurements

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D. S.

    2012-12-01

    Generation of ULF/VLF waves in the ionosphere using powerful RF facilities has been studied for the last 40 years, both theoretically and experimentally. During this time, it was proposed several mechanisms for explaining the experimental results: modulation of ionospheric currents based on thermal nonlinearity, ponderomotive mechanisms for generation both VLF and ULF signals, cubic nonlinearity, etc. According mentioned above mechanisms the VLF/ULF signal source could be located in the lower or upper ionosphere. The group velocity of signal propagation in the ionosphere is significantly smaller than speed of light. As a result the appreciable time delay of the received signals will occur at the earth surface. This time delay could be determine by measuring the phase difference between received and reference signals, which are GPS synchronized. The experiment on determining the time delay of ULF signal propagation from the ionospheric source was carried out at SURA facility in 2012 and the results are presented in this paper. The comparison with numerical simulation of the time delay using the adjusted IRI model and ionosonde data shows well agreement with the experimental observations. The work was supported by RFBR grant 11-02-00419-a and RF Ministry of education and science by state contract 16.518.11.7066.

  5. Investigation on thermally-induced optical nonlinearity of alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cheng, Xuemei; He, Bo; Ren, Zhaoyu; Zhang, Ying; Chen, Haowei; Bai, Jintao

    2018-06-01

    In this work, we studied the thermally-induced optical nonlinearity of alcohols by analyzing the far-filed diffraction rings patterns, which are generated when the alcohols are illuminated by a laser beam resonant to their overtones. We deduced the nonlinear refractive index coefficient n2 generated by thermal nonlinear optical effect to be - (20.53 ± 00.03) ×10-8cm2 /W , which is much higher than that of Kerr effect (7.7 ×10-16cm2 /W). The results also demonstrated that the thermally-induced optical nonlinearity increased with the laser power and sample concentration increasing. The notable nonlinearity suggests that thermal effect has potentials in many applications such as optical spatial modulation, and trapping and guiding of atoms.

  6. Advanced induction accelerator designs for ground based and space based FELs

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1994-04-01

    The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.

  7. The periodic structure of the natural record, and nonlinear dynamics.

    USGS Publications Warehouse

    Shaw, H.R.

    1987-01-01

    This paper addresses how nonlinear dynamics can contribute to interpretations of the geologic record and evolutionary processes. Background is given to explain why nonlinear concepts are important. A resume of personal research is offered to illustrate why I think nonlinear processes fit with observations on geological and cosmological time series data. The fabric of universal periodicity arrays generated by nonlinear processes is illustrated by means of a simple computer mode. I conclude with implications concerning patterns of evolution, stratigraphic boundary events, and close correlations of major geologically instantaneous events (such as impacts or massive volcanic episodes) with any sharply defined boundary in the geologic column. - from Author

  8. REPRODUCING THE CORRELATIONS OF TYPE C LOW-FREQUENCY QUASI-PERIODIC OSCILLATION PARAMETERS IN XTE J1550–564 WITH A SPIRAL STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varniere, Peggy; Vincent, Frederic H., E-mail: varniere@apc.univ-paris7.fr

    While it has been observed that the parameters intrinsic to the type C low-frequency quasi-periodic oscillations are related in a nonlinear manner among themselves, there has been, up to now, no model to explain or reproduce how the frequency, the FWHM, and the rms amplitude of the type C low-frequency quasi-periodic oscillations behave with respect to one another. Here we are using a simple toy model representing the emission from a standard disk and a spiral such as that caused by the accretion–ejection instability to reproduce the overall observed behavior and shed some light on its origin. This allows usmore » to prove the ability of such a spiral structure to be at the origin of flux modulation over more than an order of magnitude in frequency.« less

  9. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  10. A theoretical investigation of soliton induced supercontinuum generation in liquid core photonic crystal fiber and dual core optical fiber

    NASA Astrophysics Data System (ADS)

    Porsezian, K.; Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Ganapathy, R.

    2013-07-01

    The supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) with versatile nonlinear response and the spectral broadening in dual core optical fiber is presented. The analysis is presented in two phase, phase I deals with the SCG in LCPCF with the effect of saturable nonlinearity and re-orientational nonlinearity. We identify and discuss the generic nature of the saturable nonlinearity and reorientational nonlinearity in the SCG, using suitable model. For the physical explanation, modulational instability and soliton fission techniques is implemented to investigate the impact of saturable nonlinear response and slow nonlinear response, respectively. It is observed that the saturable nonlinearity inevitably suppresses the MI and the subsequent SCG. On the other hand, the re-orientational nonlinearity contributes to the slow nonlinear response in addition to the conventional fast response due to the electronic contribution. The phase II features the exclusive investigation of the spectral broadening in the dual core optical fiber.

  11. A coherent nonlinear theory of auroral Langmuir-Alfven-whistler (LAW) events in the planetary magnetosphere.

    NASA Astrophysics Data System (ADS)

    Lopes, S. R.; Chian, A. C.-L.

    1996-01-01

    A coherent nonlinear theory of three-wave coupling involving Langmuir, Alfven and whistler waves is formulated and applied to the observation of auroral LAW events in the planetary magnetosphere. The effects of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics are analyzed. The relevance of this theory for understanding the fine structures of auroral whistler-mode emissions and amplitude modulations of auroral Langmuir waves is discussed.

  12. Nonlinear ring resonator: spatial pattern generation

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.

    2000-03-01

    We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.

  13. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.

    PubMed

    Akai-Kasaya, M; Okuaki, Y; Nagano, S; Mitani, T; Kuwahara, Y

    2015-11-06

    Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.

  14. Nonlinear single-spin spectrum analyzer.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  15. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-04-01

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical Correlation of Images With Signal-Dependent Noise Using Constrained-Modulation Filter Devices

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technology. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.

  17. Overview of EO polymers and polymer modulator stability

    NASA Astrophysics Data System (ADS)

    Lindsay, Geoffrey A.; Ashley, Paul R.; Guenther, Andrew P.; Sanghadasa, Mohan

    2005-09-01

    This is a brief overview of the technology of nonlinear optical polymers (NLOP) and their use in electro-optic (EO) modulators. This paper also covers preliminary results from the authors' laboratories on highly active CLD- and FTC-type chromophores in guest-host films of APC amorphous polycarbonate. Emphasis will be given to thermal stability and long-term EO modulator aging.

  18. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  19. Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions

    NASA Astrophysics Data System (ADS)

    Henari, F. Z.; Al-Saie, A.

    2006-12-01

    We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10-4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.

  20. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  1. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    PubMed

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Temporal processing and adaptation in the songbird auditory forebrain.

    PubMed

    Nagel, Katherine I; Doupe, Allison J

    2006-09-21

    Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.

  3. Effect of second harmonic in pulse-width-modulation-based DAC for feedback of digital fluxgate magnetometer

    NASA Astrophysics Data System (ADS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2018-04-01

    Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.

  4. Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?

    PubMed

    Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A

    2017-12-01

    Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.

  5. Mathematical nonlinear optics

    NASA Astrophysics Data System (ADS)

    McLaughlin, David W.

    1995-08-01

    The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.

  6. Photonics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  7. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient.

    PubMed

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2015-02-09

    Nonlinear Schrödinger equation with simple quadratic potential modulated by a spatially-varying diffraction coefficient is investigated theoretically. Second-order rogue wave breather solutions of the model are constructed by using the similarity transformation. A modal quantum number is introduced, useful for classifying and controlling the solutions. From the solutions obtained, the behavior of second order Kuznetsov-Ma breathers (KMBs), Akhmediev breathers (ABs), and Peregrine solitons is analyzed in particular, by selecting different modulation frequencies and quantum modal parameter. We show how to generate interesting second order breathers and related hybrid rogue waves. The emergence of true rogue waves - single giant waves that are generated in the interaction of KMBs, ABs, and Peregrine solitons - is explicitly displayed in our analytical solutions.

  8. Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.

    PubMed

    Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles

    2007-07-01

    Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.

  9. Possibilities and limitations of rod-beam theories. [nonlinear distortion tensor and nonlinear stress tensors

    NASA Technical Reports Server (NTRS)

    Peterson, D.

    1979-01-01

    Rod-beam theories are founded on hypotheses such as Bernouilli's suggesting flat cross-sections under deformation. These assumptions, which make rod-beam theories possible, also limit the accuracy of their analysis. It is shown that from a certain order upward terms of geometrically nonlinear deformations contradict the rod-beam hypotheses. Consistent application of differential geometry calculus also reveals differences from existing rod theories of higher order. These differences are explained by simple examples.

  10. Nonlinear Constitutive Modeling of Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Li, Chao; Wang, Haibo; Zhu, Zhiwen

    2017-12-01

    Nonlinear constitutive modeling of piezoelectric ceramics is discussed in this paper. Van der Pol item is introduced to explain the simple hysteretic curve. Improved nonlinear difference items are used to interpret the hysteresis phenomena of piezoelectric ceramics. The fitting effect of the model on experimental data is proved by the partial least-square regression method. The results show that this method can describe the real curve well. The results of this paper are helpful to piezoelectric ceramics constitutive modeling.

  11. Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability.

    PubMed

    Lama, Pemba; Suslov, Anatoliy; Walser, Ardie D; Dorsinville, Roger

    2014-06-02

    Nonlinear optical characterizations were performed on monodispersed silver (Ag) nanoparticles (NPs) of various sizes using a picosecond Z-scan technique with excitation wavelengths of 532 nm and 1064 nm. The Ag NPs were fabricated using a heterogeneous condensation technique in a gas medium. The nonlinear refraction values were higher for the monodispersed Ag NPs whose surface plasmon resonance (SPR) peak is closer to the excitation wavelength. The higher nonlinear optical response is explained in terms of an electric field enhancement near the SPR. Moreover, the fabrication method allows the tailoring of the nonlinear refraction index of the Ag NPs by tuning the SPR peak of the sample. A comparison of the nonlinear refraction index of the monodispersed and polydispersed Ag NPs showed that the nonlinear refractive index of the monodispersed Ag NPs is higher.

  12. Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations.

    PubMed

    Cardoso, W B; Avelar, A T; Bazeia, D

    2012-08-01

    In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations, with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then used to verify the stability of the localized solutions.

  13. Frequency-noise cancellation in semiconductor lasers by nonlinear heterodyne detection.

    PubMed

    Bondurant, R S; Welford, D; Alexander, S B; Chan, V W

    1986-12-01

    The bit-error-rate (BER) performance of conventional noncoherent, heterodyne frequency-shift-keyed (FSK) optical communications systems can be surpassed by the use of a differential FSK modulation format and nonlinear postdetection processing at the receiver. A BER floor exists for conventional frequency-shift keying because of the frequency noise of the transmitter and local oscillator. The use of differential frequency-shift keying with nonlinear postdetection processing suppresses this BER floor for the semiconductor laser system considered here.

  14. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction.

    PubMed

    Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich

    2002-01-01

    The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.

  15. Effects of intermode nonlinearity and intramode nonlinearity on modulation instability in randomly birefringent two-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong

    2018-05-01

    We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.

  16. Non-linear glasses and metaglasses for photonics, a review: Part II. Kerr nonlinearity and metaglasses of positive and negative refraction

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2008-01-01

    This is the second part of a paper on nonlinear properties of optical glasses and metaglasses. A subject of the paper is a review of the basic properties of several families of high optical quality glasses for photonics. The emphasis is put on nonlinear properties of these glasses, including nonlinearities of higher order. Nonlinear effects were debated and systematized. Interactions between optical wave of high power density with glass were described. All parameters of the glass increasing the optical nonlinearities were categorized. Optical nonlinearities in glasses were grouped into the following categories: time and frequency domain, amplitude and phase, resonant and non-resonant, elastic and inelastic, lossy and lossless, reversible and irreversible, instant and slow, adiabatic and non-adiabatic, with virtual versus real excitation of glass, destroying and non-destroying, etc. Nonlinear effects in glasses are based on the following effects: optical, thermal, mechanical and/or acoustic, electrical, magnetic, density and refraction modulation, chemical, etc.

  17. Constant envelope OFDM scheme for 6PolSK-QPSK

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Ding, Ding

    2018-03-01

    A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.

  18. Controllable parabolic-cylinder optical rogue wave.

    PubMed

    Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola

    2014-10-01

    We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

  19. Utility of coupling nonlinear optimization methods with numerical modeling software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, M.J.

    1996-08-05

    Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less

  20. Modulation of kinetic Alfvén waves in an intermediate low-beta magnetoplasma

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debjani; Misra, A. P.

    2018-05-01

    We study the amplitude modulation of nonlinear kinetic Alfvén waves (KAWs) in an intermediate low-beta magnetoplasma. Starting from a set of fluid equations coupled to the Maxwell's equations, we derive a coupled set of nonlinear partial differential equations (PDEs) which govern the evolution of KAW envelopes in the plasma. The modulational instability (MI) of such KAW envelopes is then studied by a nonlinear Schrödinger equation derived from the coupled PDEs. It is shown that the KAWs can evolve into bright envelope solitons or can undergo damping depending on whether the characteristic ratio ( α ) of the Alfvén to ion-acoustic speeds remains above or below a critical value. The parameter α is also found to shift the MI domains around the k x k z plane, where k x ( k z ) is the KAW number perpendicular (parallel) to the external magnetic field. The growth rate of MI, as well as the frequency shift and the energy transfer rate, are obtained and analyzed. The results can be useful for understanding the existence and formation of bright and dark envelope solitons, or damping of KAW envelopes in space plasmas, e.g., interplanetary space, solar winds, etc.

  1. Enhanced nonlinear current-voltage behavior in Au nanoparticle dispersed CaCu 3 Ti 4 O 12 composite films

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Can; Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Ming, Hai; Wang, Pei; Zhang, Dongxiang; Yang, Guozhen

    2011-10-01

    An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu 3Ti 4O 12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.

  2. Nonlinear modulation of interacting between COMT and depression on brain function.

    PubMed

    Gong, L; He, C; Yin, Y; Ye, Q; Bai, F; Yuan, Y; Zhang, H; Lv, L; Zhang, H; Zhang, Z; Xie, C

    2017-09-01

    The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear. Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function. We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease×COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system). Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Autonomic cardiovascular modulation with three different anesthetic strategies during neurosurgical procedures.

    PubMed

    Guzzetti, S; Bassani, T; Latini, R; Masson, S; Barlera, S; Citerio, G; Porta, A

    2015-01-01

    Autonomic cardiovascular modulation during surgery might be affected by different anesthetic strategies. Aim of the present study was to assess autonomic control during three different anesthetic strategies in the course of neurosurgical procedures by the linear and non-linear analysis of two cardiovascular signals. Heart rate (EKG-RR intervals) and systolic arterial pressure (SAP) signals were analyzed in 93 patients during elective neurosurgical procedures at fixed points: anesthetic induction, dura mater opening, first and second hour of surgery, dura mater and skin closure. Patients were randomly assigned to three anesthetic strategies: sevoflurane+fentanyl (S-F), sevoflurane+remifentanil (S-R) and propofol+remifentanil (P-R). All the three anesthetic strategies were characterized by a reduction of RR and SAP variability. A more active autonomic sympathetic modulation, as ratio of low to high frequency spectral components of RR variability (LF/HF), was present in the P-R group vs. S-R group. This is confirmed by non-linear symbolic analysis of RR series and SAP variability analysis. In addition, an increased parasympathetic modulation was suggested by symbolic analysis of RR series during the second hour of surgery in S-F group. Despite an important reduction of cardiovascular signal variability, the analysis of RR and SAP signals were capable to detect information about autonomic control during anesthesia. Symbolic analysis (non-linear) seems to be able to highlight the differences of both the sympathetic (slow) and vagal (fast) modulation among anesthetics, while spectral analysis (linear) underlines the same differences but only in terms of balance between the two neural control systems.

  4. Social Contagion, Adolescent Sexual Behavior, and Pregnancy: A Nonlinear Dynamic EMOSA Model.

    ERIC Educational Resources Information Center

    Rodgers, Joseph Lee; Rowe, David C.; Buster, Maury

    1998-01-01

    Expands an existing nonlinear dynamic epidemic model of onset of social activities (EMOSA), motivated by social contagion theory, to quantify the likelihood of pregnancy for adolescent girls of different sexuality statuses. Compares five sexuality/pregnancy models to explain variance in national prevalence curves. Finds that adolescent girls have…

  5. Linear and Non-Linear Thermal Lens Signal of the Fifth C-H Vibrational Overtone of Naphthalene in Liquid Solutions of Hexane

    NASA Astrophysics Data System (ADS)

    Manzanares, Carlos; Diaz, Marlon; Barton, Ann; Nyaupane, Parashu R.

    2017-06-01

    The thermal lens technique is applied to vibrational overtone spectroscopy of solutions of naphthalene in n-hexane. The pump and probe thermal lens technique is found to be very sensitive for detecting samples of low composition (ppm) in transparent solvents. In this experiment two different probe lasers: one at 488 nm and another 568 nm were used. The C-H fifth vibrational overtone spectrum of benzene is detected at room temperature for different concentrations. A plot of normalized integrated intensity as a function of concentration of naphthalene in solution reveals a non-linear behavior at low concentrations when using the 488 nm probe and a linear behavior over the entire range of concentrations when using the 568 nm probe. The non-linearity cannot be explained assuming solvent enhancement at low concentrations. A two color absorption model that includes the simultaneous absorption of the pump and probe lasers could explain the enhanced magnitude and the non-linear behavior of the thermal lens signal. Other possible mechanisms will also be discussed.

  6. Superconducting nanowires as nonlinear inductive elements for qubits

    NASA Astrophysics Data System (ADS)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2010-10-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a “crater” at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. We also propose a concept of a nanowire-based qubit that relies on the current dependence of the kinetic inductance of a superconducting nanowire.

  7. Dark and grey compressional dispersive Alfven solitons in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, P. K.; Eliasson, B.; Stenflo, L.

    2011-06-15

    The amplitude modulation of compressional dispersive Alfven (CDA) waves in a low-{beta} plasma is considered. It is shown that the dynamics of modulated CDA waves is governed by a cubic nonlinear Schroedinger equation, which depicts the formation of a dark/grey envelope CDA soliton.

  8. Qualitative analysis of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia

    2011-02-01

    An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.

  9. Nonlinear THz absorption and cyclotron resonance in InSb

    NASA Astrophysics Data System (ADS)

    Heffernan, Kate; Yu, Shukai; Talbayev, Diyar

    The emergence of coherent high-field terahertz (THz) sources in the past decade has allowed the exploration of nonlinear light-matter interaction at THz frequencies. Nonlinear THz response of free electrons in semiconductors has received a great deal of attention. Such nonlinear phenomena as saturable absorption and self-phase modulation have been reported. InSb is a narrow-gap (bandgap 0.17 eV) semiconductor with a very low electron effective mass and high electron mobility. Previous high-field THz work on InSb reported the observation of ultrafast electron cascades via impact ionization. We study the transmission of an intense THz electric field pulse by an InSb wafer at different incident THz amplitudes and 10 K temperature. Contrary to previous reports, we observe an increased transmission at higher THz field. Our observation appears similar to the saturable THz absorption reported in other semiconductors. Along with the increased absorption, we observe a strong modulation of the THz phase at high incident fields, most likely due to the self-phase modulation of the THz pulse. We also study the dependence of the cyclotron resonance on the incident THz field amplitude. The cyclotron resonance exhibits a lower strength and frequency at the higher incident THz field. The work at Tulane was supported by the Louisiana Board of Regents through the Board of Regents Support Fund Contract No. LEQSF(2012-15)-RD-A-23 and through the Pilot Funding for New Research (PFund) Contract No. LEQSF-EPS(2014)-PFUND-378.

  10. Reconstructing baryon oscillations: A Lagrangian theory perspective

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Cohn, J. D.

    2009-03-01

    Recently Eisenstein and collaborators introduced a method to “reconstruct” the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum.

  11. Archimedes' law explains penetration of solids into granular media.

    PubMed

    Kang, Wenting; Feng, Yajie; Liu, Caishan; Blumenfeld, Raphael

    2018-03-16

    Understanding the response of granular matter to intrusion of solid objects is key to modelling many aspects of behaviour of granular matter, including plastic flow. Here we report a general model for such a quasistatic process. Using a range of experiments, we first show that the relation between the penetration depth and the force resisting it, transiently nonlinear and then linear, is scalable to a universal form. We show that the gradient of the steady-state part, K ϕ , depends only on the medium's internal friction angle, ϕ, and that it is nonlinear in μ = tan ϕ, in contrast to an existing conjecture. We further show that the intrusion of any convex solid shape satisfies a modified Archimedes' law and use this to: relate the zero-depth intercept of the linear part to K ϕ and the intruder's cross-section; explain the curve's nonlinear part in terms of the stagnant zone's development.

  12. Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.

    PubMed

    Capmany, José

    2009-04-13

    We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.

  13. Dynamics of a linear system coupled to a chain of light nonlinear oscillators analyzed through a continuous approximation

    NASA Astrophysics Data System (ADS)

    Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.

    2018-07-01

    The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.

  14. Modal method for Second Harmonic Generation in nanostructures

    NASA Astrophysics Data System (ADS)

    Héron, S.; Pardo, F.; Bouchon, P.; Pelouard, J.-L.; Haïdar, R.

    2015-05-01

    Nanophotonic devices show interesting features for nonlinear response enhancement but numerical tools are mandatory to fully determine their behaviour. To address this need, we present a numerical modal method dedicated to nonlinear optics calculations under the undepleted pump approximation. It is brie y explained in the frame of Second Harmonic Generation for both plane waves and focused beams. The nonlinear behaviour of selected nanostructures is then investigated to show comparison with existing analytical results and study the convergence of the code.

  15. Higher-order Kerr effect and harmonic cascading in gases.

    PubMed

    Bache, Morten; Eilenberger, Falk; Minardi, Stefano

    2012-11-15

    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.

  16. Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udayabhaskar, R.; Karthikeyan, B., E-mail: bkarthik@nitt.edu; Ollakkan, Muhamed Shafi

    2014-01-06

    Metallic nanowires show excellent Plasmon absorption which is tunable based on its aspect ratio and alloying nature. We prepared Cu and CuNi metallic nanowires and studied its optical and nonlinear optical behavior. Optical properties of nanowires are theoretically explained using Gans theory. Nonlinear optical behavior is studied using a single beam open aperture z-scan method with the use of 5 ns Nd: YAG laser. Optical limiting is found to arise from two-photon absorption.

  17. Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires

    NASA Astrophysics Data System (ADS)

    Udayabhaskar, R.; Ollakkan, Muhamed Shafi; Karthikeyan, B.

    2014-01-01

    Metallic nanowires show excellent Plasmon absorption which is tunable based on its aspect ratio and alloying nature. We prepared Cu and CuNi metallic nanowires and studied its optical and nonlinear optical behavior. Optical properties of nanowires are theoretically explained using Gans theory. Nonlinear optical behavior is studied using a single beam open aperture z-scan method with the use of 5 ns Nd: YAG laser. Optical limiting is found to arise from two-photon absorption.

  18. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing.

    PubMed

    Nie, W J; Zhang, Y X; Yu, H H; Li, R; He, R Y; Dong, N N; Wang, J; Hübner, R; Böttger, R; Zhou, S Q; Amekura, H; Chen, F

    2018-03-01

    We report on the synthesis of embedded gold (Au) nanoparticles (NPs) in Nd:YAG single crystals using ion implantation and subsequent thermal annealing. Both linear and nonlinear absorption of the Nd:YAG crystals have been enhanced significantly due to the embedded Au NPs, which is induced by the surface plasmon resonance (SPR) effect in the visible light wavelength band. Particularly, through a typical Z-scan system excited by a femtosecond laser at 515 nm within the SPR band, the nonlinear absorption coefficients of crystals with Au NPs have been observed to be nearly 5 orders of magnitude larger than that without Au NPs. This giant enhancement of nonlinear absorption properties is correlated with the saturable absorption (SA) effect, which is the basis of passive Q-switching or mode-locking for pulsed laser generation. In addition, the linear and nonlinear absorption enhancement could be tailored by varying the fluence of implanted Au + ions, corresponding to the NP size and concentration modulation. Finally, the Nd:YAG wafer with embedded Au NPs has been applied as a saturable absorber in a Pr:LuLiF 4 crystal laser cavity, and efficient pulsed laser generation at 639 nm has been realized, which presents superior performance to the MoS 2 saturable absorber based system. This work opens an avenue to enhance and modulate the nonlinearities of dielectrics by embedding plasmonic Au NPs for efficient pulsed laser operation.

  19. Nonlinear simulations of Jupiter's 5-micron hot spots

    NASA Technical Reports Server (NTRS)

    Showman, A. P.; Dowling, T. E.

    2000-01-01

    Large-scale nonlinear simulations of Jupiter's 5-micron hot spots produce long-lived coherent structures that cause subsidence in local regions, explaining the low cloudiness and the dryness measured by the Galileo probe inside a hot spot. Like observed hot spots, the simulated coherent structures are equatorially confined, have periodic spacing, propagate west relative to the flow, are generally confined to one hemisphere, and have an anticyclonic gyre on their equatorward side. The southern edge of the simulated hot spots develops vertical shear of up to 70 meters per second in the eastward wind, which can explain the results of the Galileo probe Doppler wind experiment.

  20. A Mechanism for Frequency Modulation in Songbirds Shared with Humans

    PubMed Central

    Margoliash, Daniel

    2013-01-01

    In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways. PMID:23825417

  1. A mechanism for frequency modulation in songbirds shared with humans.

    PubMed

    Amador, Ana; Margoliash, Daniel

    2013-07-03

    In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways.

  2. Nonlinearity in cytoplasm viscosity can generate an essential symmetry breaking in cellular behaviors.

    PubMed

    Tachikawa, Masashi; Mochizuki, Atsushi

    2015-01-07

    The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (center, foreground) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  4. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (third from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  5. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  6. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (right) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (second from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  7. (DARPA) Nonlinear Optics at Low Light Levels

    DTIC Science & Technology

    2010-05-28

    of 104. The receiver modulator, M2 is run in anti-phase to the transmitter modulator so as to demodulate the photon beam and reduce its bandwidth to...spectrum that is wider than 3.5 MHz. After passing through the second phase modulator the anti-Stokes photon is sent through a 65-MHz fiber based Fabry ... Perot filter (Micron Optics) with a free spectral range of 13.6 GHz. If the spectral width of the photon after the second phase modulator is less than

  8. Demonstration of pulse controlled all-optical switch/modulator.

    PubMed

    Akin, Osman; Dinleyici, M S

    2014-03-15

    An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.

  9. Resonant Triad in Boundary-Layer Stability. Part 2; Composite Solution and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.

  10. System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies

    NASA Technical Reports Server (NTRS)

    Nolte, L. J.; Stephenson, D. S.

    1973-01-01

    A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.

  11. Nonlinear photonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  12. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixingmore » zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.« less

  13. Spatially tuned normalization explains attention modulation variance within neurons.

    PubMed

    Ni, Amy M; Maunsell, John H R

    2017-09-01

    Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical area can be largely explained by between-neuron differences in normalization strength. Here we demonstrate that attention modulation size varies within neurons as well and that this variance is largely explained by within-neuron differences in normalization strength. We provide a new spatially tuned normalization model that explains this broad range of observed normalization and attention effects. Copyright © 2017 the American Physiological Society.

  14. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    PubMed

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  15. Cooperativity and Heterogeneity in Plastic Crystals Studied by Nonlinear Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Michl, M.; Bauer, Th.; Lunkenheimer, P.; Loidl, A.

    2015-02-01

    The glassy dynamics of plastic-crystalline cyclo-octanol and ortho-carborane, where only the molecular reorientational degrees of freedom freeze without long-range order, is investigated by nonlinear dielectric spectroscopy. Marked differences to canonical glass formers show up: While molecular cooperativity governs the glassy freezing, it leads to a much weaker slowing down of molecular dynamics than in supercooled liquids. Moreover, the observed nonlinear effects cannot be explained with the same heterogeneity scenario recently applied to canonical glass formers. This supports ideas that molecular relaxation in plastic crystals may be intrinsically nonexponential. Finally, no nonlinear effects were detected for the secondary processes in cyclo-octanol.

  16. Depth Of Modulation And Spot Size Selection In Bar-Code Laser Scanners

    NASA Astrophysics Data System (ADS)

    Barkan, Eric; Swartz, Jerome

    1982-04-01

    Many optical and electronic considerations enter into the selection of optical spot size in flying spot laser scanners of the type used in modern industrial and commerical environments. These include: the scale of the symbols to be read, optical background noise present in the symbol substrate, and factors relating to the characteristics of the signal processor. Many 'front ends' consist of a linear signal conditioner followed by nonlinear conditioning and digitizing circuitry. Although the nonlinear portions of the circuit can be difficult to characterize mathematically, it is frequently possible to at least give a minimum depth of modulation measure to yield a worst-case guarantee of adequate performance with respect to digitization accuracy. Depth of modulation actually delivered to the nonlinear circuitry will depend on scale, contrast, and noise content of the scanned symbol, as well as the characteristics of the linear conditioning circuitry (eg. transfer function and electronic noise). Time and frequency domain techniques are applied in order to estimate the effects of these factors in selecting a spot size for a given system environment. Results obtained include estimates of the effects of the linear front end transfer function on effective spot size and asymmetries which can affect digitization accuracy. Plots of convolution-computed modulation patterns and other important system properties are presented. Considerations are limited primarily to Gaussian spot profiles but also apply to more general cases. Attention is paid to realistic symbol models and to implications with respect to printing tolerances.

  17. Thermal: Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Polarized Microscopy Instrumentation for the Analysis of Field-Controlled Anisotropic Nanomaterials

    DTIC Science & Technology

    2014-11-14

    figure 1.2.1, right). The discovery TGA furnace design employs a silicon carbide ( SiC ) inner chamber. Four halogen lamps surrounded by a water...amplification,(13, 17) self-phase modulation (18, 19), and new nonlinear phenomena such as the nonlinear optical mirror ,(20) and the mirrorless optical

  18. Masking effects of low-frequency sinusoidal gratings on the detection of contrast modulation in high-frequency carriers

    NASA Astrophysics Data System (ADS)

    Henning, G. Bruce

    2004-04-01

    A modification and extension of Kortum and Geisler's model [Vision Res. 35, 1595 (1995)] of early visual nonlinearities that incorporates an expansive nonlinearity (consistent with neurophysiological findings [Vision Res. 35, 2725 (1995)], a normalization based on a local average retinal illumination, similar to Mach's proposal [F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, Calif., 1965)], and a subsequent compression suggested by Henning et al. [J. Opt. Soc. Am A 17, 1147 (2000)] captures a range of hitherto unexplained interactions between a sinusoidal grating of low spatial frequency and a contrast-modulated grating 2 octaves higher in spatial frequency.

  19. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  20. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  1. Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation

    NASA Astrophysics Data System (ADS)

    Zou, L. E.; He, P. P.; Chen, B. X.; Iso, M.

    2017-02-01

    Optical nonlinearities in the undoped As20S80, low doped P2As20S78 and Sn1As20S79 chacogenide glasses are investigated by using Z-scan method. These experiments show that at 1064 nm the figure of merit (FOM) for As20S80 is ˜1.02, while for Sn1As20S79 increases to ˜1.42, and for P2As20S78 decreases to ˜0.83. These resulted data indicate the addition of Sn in As20S80 system chalcogenide glass can enhance FOM due to creating narrow energy gaps. In addition, the self-phase modulation (SPM) width experiment for Sn1As20S79 strip waveguide displays that the full width half maximum (FWHM) of spectral width increases approximately 0.8 nm under the induction of bandgap light, meaning that the bandgap light can induce to enhance its optical nonlinearity with the nonlinear refractive index of n2≅5.27×10-14 cm2/W.

  2. Tuned Normalization Explains the Size of Attention Modulations

    PubMed Central

    Ni, Amy M.; Ray, Supratim; Maunsell, John H. R.

    2012-01-01

    SUMMARY The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron’s receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the non-preferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention. PMID:22365552

  3. Constraints and spandrels of interareal connectomes

    PubMed Central

    Rubinov, Mikail

    2016-01-01

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls. PMID:27924867

  4. Constraints and spandrels of interareal connectomes.

    PubMed

    Rubinov, Mikail

    2016-12-07

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.

  5. Tuned normalization explains the size of attention modulations.

    PubMed

    Ni, Amy M; Ray, Supratim; Maunsell, John H R

    2012-02-23

    The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron's receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the nonpreferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Probabilistic model of nonlinear penalties due to collision-induced timing jitter for calculation of the bit error ratio in wavelength-division-multiplexed return-to-zero systems

    NASA Astrophysics Data System (ADS)

    Sinkin, Oleg V.; Grigoryan, Vladimir S.; Menyuk, Curtis R.

    2006-12-01

    We introduce a fully deterministic, computationally efficient method for characterizing the effect of nonlinearity in optical fiber transmission systems that utilize wavelength-division multiplexing and return-to-zero modulation. The method accurately accounts for bit-pattern-dependent nonlinear distortion due to collision-induced timing jitter and for amplifier noise. We apply this method to calculate the error probability as a function of channel spacing in a prototypical multichannel return-to-zero undersea system.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. P.; Wang, Y. D.; Hao, Y. L.

    Two main explanations exist for the deformation mechanisms in Ti-Nb-based gum metals, i.e. the formation of reversible nanodisturbance and reversible stress-induced martensitic transformation. In this work, we used the in situ synchrotron-based high-energy X-ray diffuse-scattering technique to reveal the existence of a specific deformation mechanism, i.e. deformation-induced spatially confined martensitic transformations, in Ti-24Nb-4Zr-8Sn-0.10O single crystals with cubic 13 parent phase, which explains well some anomalous mechanical properties of the alloy such as low elastic modulus and nonlinear superelasticity. Two kinds of nanosized martensites with different crystal structures were found during uniaxial tensile loading along the [11 0](beta) axis at roommore » temperature and 190 K, respectively. The detailed changes in the martensitic phase transformation characteristics and the transformation kinetics were experimentally observed at different temperatures. The domain switch from non-modulated martensite to a modulated one occurred at 190 K, with its physical origin attributed to the heterogeneity of local phonon softening depending on temperature and inhomogeneous composition in the parent phase. An in-depth understanding of the formation of stress-induced spatially confined nanosized martensites with a large gradient in chemical composition may benefit designs of high-strength and high-ductility alloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  8. N-SCAN: new vibromodulation system for detection and monitoring of cracks and other contact-type defects

    NASA Astrophysics Data System (ADS)

    Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei

    2003-08-01

    In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and application of the technique.

  9. Monitoring localized cracks on under pressure concrete nuclear containment wall using linear and nonlinear ultrasonic coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Legland, J.-B.; Abraham, O.; Durand, O.; Henault, J.-M.

    2018-04-01

    Civil engineering is constantly demanding new methods for evaluation and non-destructive testing (NDT), particularly to prevent and monitor serious damage to concrete structures. Tn this work, experimental results are presented on the detection and characterization of cracks using nonlinear modulation of coda waves interferometry (NCWT) [1]. This method consists in mixing high-amplitude low-frequency acoustic waves with multi-scattered probe waves (coda) and analyzing their effects by interferometry. Unlike the classic method of coda analysis (CWT), the NCWT does not require the recording of a coda as a reference before damage to the structure. Tn the framework of the PTA-ENDE project, a 1/3 model of a preconstrained concrete containment (EDF VeRCoRs mock-up) is placed under pressure to study the leakage of the structure. During this evaluation protocol, specific areas are monitored by the NCWT (during 5 days, which correspond to the protocol of nuclear power plant pressurization under maintenance test). The acoustic nonlinear response due to the high amplitude of the acoustic modulation gives pertinent information about the elastic and dissipative nonlinearities of the concrete. Tts effective level is evaluated by two nonlinear observables extracted from the interferometry. The increase of nonlinearities is in agreement with the creation of a crack with a network of microcracks located at its base; however, a change in the dynamics of the evolution of the nonlinearities may indicate the opening of a through crack. Tn addition, as during the experimental campaign, reference codas have been recorded. We used CWT to follow the stress evolution and the gas leaks ratio of the structure. Both CWT and NCWT results are presented in this paper.

  10. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries determines the power law index, using results of numerical simulations in the tidal environment. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn's rings a chaotic non-linear driven system?

  11. Application of the nonlinear Blinder-Oaxaca decomposition to study racial/ethnic disparities in antiobesity medication use in the United States.

    PubMed

    Mehta, Hemalkumar B; Rajan, Suja S; Aparasu, Rajender R; Johnson, Michael L

    2013-01-01

    The nonlinear Blinder-Oaxaca (BO) decomposition method is gaining popularity in health services research because of its ability to explain disparity issues. The present study demonstrates the use of this method for categorical variables by addressing antiobesity medication use disparity. To examine racial/ethnic disparity in antiobesity medication use and to quantify the observed factor contribution behind the disparity using the nonlinear BO decomposition. Medical Expenditure Panel Survey data, 2002-2007, were used in this retrospective cross-sectional study. Adults with body mass index (BMI) >30, or BMI ≥27 and comorbidities such as hypertension, cardiovascular diseases, diabetes, or hyperlipidemia were included in the cohort (N=65,886,625). Multivariable logistic regression was performed to examine racial/ethnic disparity in antiobesity medication use controlling for predisposing, enabling, and need factors. The nonlinear BO decomposition was used to identify the contribution of each predisposing, enabling, and need factors in explaining the racial/ethnic disparity and to estimate the residual unexplained disparity. Non-Hispanic Blacks were 46% (odds ratio [OR]: 0.54; 95% confidence interval [CI]: 0.35-0.83) less likely to use antiobesity drugs compared with non-Hispanic Whites, whereas no difference was observed between Hispanics and non-Hispanic Whites. A 0.22 percentage point of disparity existed between non-Hispanic Whites and Blacks. The nonlinear BO decomposition estimated a decomposition coefficient of -0.0013 indicating that the observed disparity would have been 58% higher (-0.0013/0.0022) if non-Hispanic Blacks had similar observed characteristics as non-Hispanic Whites. Age, gender, marital status, region, and BMI were significant factors in the decomposition model; only marital status explained the racial/ethnic disparity among all observed characteristics. The study revealed that differences in the predisposing, enabling, and need characteristics (except marital status) did not successfully explain the racial/ethnic disparity in antiobesity medication use. Further studies examining racial/ethnic differences in individual beliefs, behavioral patterns, and provider prescription patterns are vital to understand these disparities. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Non-Linear Dynamics of Saturn’s Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects of the rings and can renew rings by shielding and recycling the material within them, depending on how long the mass is sequestered. We can ask: Are Saturn’s rings a chaotic non-linear driven system?

  13. Effects of group velocity and multiplasmon resonances on the modulation of Langmuir waves in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert

    2017-11-01

    We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.

  14. Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting.

    PubMed

    Scalora, Michael; Mattiucci, Nadia; D'Aguanno, Giuseppe; Larciprete, MariaCristina; Bloemer, Mark J

    2006-01-01

    We numerically study the nonlinear optical properties of metal-dielectric photonic band gap structures in the pulsed regime. We exploit the high chi3 of copper metal to induce nonlinear effects such as broadband optical limiting, self-phase modulation, and unusual spectral narrowing of high intensity pulses. We show that in a single pass through a typical, chirped multilayer stack nonlinear transmittance and peak powers can be reduced by nearly two orders of magnitude compared to low light intensity levels across the entire visible range. Chirping dielectric layer thickness dramatically improves the linear transmittance through the stack and achieves large fields inside the copper to access the large nonlinearity. At the same time, the linear properties of the stack block most of the remaining electromagnetic spectrum.

  15. Evolution of diffraction and self-diffraction phenomena in thin films of Gelite Bloom/Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar

    2017-09-01

    In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.

  16. KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach (second from left) explains recovery and reconstruction efforts of Columbia to the Executive Director of NASDA Koji Yamamoto (fourth from left) and others visiting the Columbia Debris Hangar. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  17. Autonomous Non-Linear Classification of LPI Radar Signal Modulations

    DTIC Science & Technology

    2007-09-01

    Wigner - Ville distribution ( WVD ), the Choi-Williams distribution (CWD) and a Quadrature...accomplished using the images from the Wigner - Ville distribution and the Choi-Williams distribution for polyphase modulations. For the WVD images, radon...this work. Four detection techniques including the Wigner - Ville distribution ( WVD ), the Choi-Williams distribution (CWD), Quadrature Mirror

  18. Formed photovoltaic module busbars

    DOEpatents

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  19. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.

    PubMed

    Liang, Xiaojun; Kumar, Shiva

    2017-03-06

    We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.

  20. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  1. Off-resonant third-order optical nonlinearities of squarylium and croconium dyes

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Xu, Song; Niu, Lihong; Zhang, Zhi; Chen, Zihui; Zhang, Fushi

    2008-01-01

    The magnitude and dynamic response of the third-order optical nonlinearities of squarylium and croconium dyes in methanol solution were measured by femtosecond degenerate four-wave mixing (DFWM) technique at 800 nm. Ultrafast nonlinear optical responses have been observed, and the magnitude of the second-order hyperpolarizabilities was evaluated to be 5.80 × 10 -31 esu for the squarylium dye and 8.69 × 10 -31 esu for the croconium dye, respectively. The large optical nonlinearities of the dyes can be attributed to their rigid and intramolecular charge transfer structure, and the instantaneous NLO responses of dyes are shorter than the experimental time resolution (50 fs), which is mainly contributed from the electron delocalization. The fast nonlinear response and large third-order optical nonlinearities show that the studied squarylium and croconium dyes might a kind of promising materials for the applications in all-optical switching and modulator.

  2. Increasing the information rates of optical communications via coded modulation: a study of transceiver performance

    NASA Astrophysics Data System (ADS)

    Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina

    2016-02-01

    Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver.

  3. Chaotic component obscured by strong periodicity in voice production system

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2008-06-01

    The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity.

  4. Chaotic component obscured by strong periodicity in voice production system

    PubMed Central

    Tao, Chao; Jiang, Jack J.

    2010-01-01

    The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenomenon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude chaotic component. The only difference between the two-mass model and the composite model is in their descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a small-amplitude chaotic component obscured by strong periodicity. PMID:18643315

  5. Increasing the information rates of optical communications via coded modulation: a study of transceiver performance

    PubMed Central

    Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina

    2016-01-01

    Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver. PMID:26864633

  6. Quantum effects on compressional Alfven waves in compensated semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linearmore » and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.« less

  7. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  8. The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali Shan, S.; National Centre for Physics; Pakistan Institute of Engineering and Applied Sciences

    2016-07-15

    In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positronmore » beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.« less

  9. Vector matter waves in two-component Bose-Einstein condensates with spatially modulated nonlinearities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.

    2018-02-01

    We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.

  10. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.

    PubMed

    Tien, Ming-Chun; Bauters, Jared F; Heck, Martijn J R; Blumenthal, Daniel J; Bowers, John E

    2010-11-08

    We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si3N4 core has low loss and high power handling capability, with an effective n2 of about 9×10(-16) cm2/W.

  11. Heterodyne interferometer with subatomic periodic nonlinearity.

    PubMed

    Wu, C M; Lawall, J; Deslattes, R D

    1999-07-01

    A new, to our knowledge, heterodyne interferometer for differential displacement measurements is presented. It is, in principle, free of periodic nonlinearity. A pair of spatially separated light beams with different frequencies is produced by two acousto-optic modulators, avoiding the main source of periodic nonlinearity in traditional heterodyne interferometers that are based on a Zeeman split laser. In addition, laser beams of the same frequency are used in the measurement and the reference arms, giving the interferometer theoretically perfect immunity from common-mode displacement. We experimentally demonstrated a residual level of periodic nonlinearity of less than 20 pm in amplitude. The remaining periodic error is attributed to unbalanced ghost reflections that drift slowly with time.

  12. Nonlinear random response prediction using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.

    1993-01-01

    An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.

  13. Modulated phase matching and high-order harmonic enhancement mediated by the carrier-envelope phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccio, Daniele; CNISM and Department of Physics and Mathematics, Universita dell'Insubria, Via Valleggio 11, I-22100 Como; Serrat, Carles

    2010-01-15

    The process of high-order harmonic generation in gases is numerically investigated in the presence of a few-cycle pulsed-Bessel-beam pump, featuring a periodic modulation in the peak intensity due to large carrier-envelope-phase mismatch. A two-decade enhancement in the conversion efficiency is observed and interpreted as the consequence of a mechanism known as a nonlinearly induced modulation in the phase mismatch.

  14. Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems

    NASA Technical Reports Server (NTRS)

    Feher, Kamilo

    1991-01-01

    A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could cancel the phase noise-caused degradations of CPM and GMSK modems.

  15. Charge of a macroscopic particle in a plasma sheath.

    PubMed

    Samarian, A A; Vladimirov, S V

    2003-06-01

    Charging of a macroscopic body levitating in a rf plasma sheath is studied experimentally and theoretically. The nonlinear charge vs size dependence is obtained. The observed nonlinearity is explained on the basis of an approach taking into account different plasma conditions for the levitation positions of different particles. The importance of suprathermal electrons' contribution to the charging process is demonstrated.

  16. Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.

    2016-06-01

    The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.

  17. The Creative Chaos: Speculations on the Connection Between Non-Linear Dynamics and the Creative Process

    NASA Astrophysics Data System (ADS)

    Zausner, Tobi

    Chaos theory may provide models for creativity and for the personality of the artist. A collection of speculative hypotheses examines the connection between art and such fundamentals of non-linear dynamics as iteration, dissipative processes, open systems, entropy, sensitivity to stimuli, autocatalysis, subsystems, bifurcations, randomness, unpredictability, irreversibility, increasing levels of organization, far-from-equilibrium conditions, strange attractors, period doubling, intermittency and self-similar fractal organization. Non-linear dynamics may also explain why certain individuals suffer mental disorders while others remain intact during a lifetime of sustained creative output.

  18. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  19. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    NASA Astrophysics Data System (ADS)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.

  20. Iron and its complexation by phenolic cellular metabolites

    PubMed Central

    Chobot, Vladimir

    2010-01-01

    Iron is a transition metal that forms chelates and complexes with various organic compounds, also with phenolic plant secondary metabolites. The ligands of iron affect the redox potential of iron. Electrons may be transferred either to hydroxyl radicals, hydrogen peroxide or molecular oxygen. In the first case, oxidative stress is decreased, in the latter two cases, oxidative stress is increased. This milieu-dependent mode of action may explain the non-linear mode of action of juglone and other secondary metabolites. Attention to this phenomenon may help to explain idiosyncratic and often nonlinear effects that result in biological assays. Current chemical assays are discussed that help to explore these aspects of redox chemistry. PMID:20592800

  1. Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics.

    PubMed

    Stratoudaki, Theodosia; Ellwood, Robert; Sharples, Steve; Clark, Matthew; Somekh, Michael G; Collison, Ian J

    2011-04-01

    A dual frequency mixing technique has been developed for measuring velocity changes caused by material nonlinearity. The technique is based on the parametric interaction between two surface acoustic waves (SAWs): The low frequency pump SAW generated by a transducer and the high frequency probe SAW generated and detected using laser ultrasonics. The pump SAW stresses the material under the probe SAW. The stress (typically <5 MPa) is controlled by varying the timing between the pump and probe waves. The nonlinear interaction is measured as a phase modulation of the probe SAW and equated to a velocity change. The velocity-stress relationship is used as a measure of material nonlinearity. Experiments were conducted to observe the pump-probe interaction by changing the pump frequency and compare the nonlinear response of aluminum and fused silica. Experiments showed these two materials had opposite nonlinear responses, consistent with previously published data. The technique could be applied to life-time predictions of engineered components by measuring changes in nonlinear response caused by fatigue.

  2. A nonlinear macromodel of the bipolar integrated circuit operational amplifier for electromagnetic interference analysis

    NASA Astrophysics Data System (ADS)

    Chen, G. K. C.

    1981-06-01

    A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.

  3. The lead-lag relationships between spot and futures prices of natural gas

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Liu, Li

    2018-01-01

    The lead-lag relationships between spot and futures markets are of great interest for academics. Previous studies neglect the possibility of nonlinear behaviors which may be caused by asymmetry or persistence. To fill this gap, this paper uses the MF-DCCA method and the linear and nonlinear causality tests to explore the causal relationships between natural gas spot and futures prices in the New York Mercantile Exchange. We find that spot and futures prices are positive cross-correlated, the natural gas futures can linearly Granger cause spot price, and there are bidirectional nonlinear causality relationships between natural gas spot and futures prices. Further, we explore the sources of nonlinear causality relationships, and find that the volatility spillover can partly explain the nonlinear causality and affect their cross-correlations.

  4. Mechanics of the acoustic radiation force in tissue-like solids

    NASA Astrophysics Data System (ADS)

    Dontsov, Egor V.

    The acoustic radiation force (ARF) is a phenomenon affiliated with the nonlinear effects of high-intensity wave propagation. It represents the mean momentum transfer from the sound wave to the medium, and allows for an effective computation of the mean motion (e.g. acoustic streaming in fluids) induced by a high-intensity sound wave. Nowadays, the high-intensity focused ultrasound is frequently used in medical diagnosis applications due to its ability to "push" inside the tissue with the radiation body force and facilitate the local quantification of tissue's viscoelastic properties. The main objectives of this study include: i) the theoretical investigation of the ARF in fluids and tissue-like solids generated respectively by the amplitude modulated plane wave and focused ultrasound; ii) computation of the nonlinear acoustic wave propagation when the amplitude of the focused ultrasound field is modulated by a low-frequency signal, and iii) modeling of the ARF-induced motion in tissue-like solids for the purpose of quantifying their nonlinear elasticity via the magnitude of the ARF. Regarding the first part, a comparison with the existing theory of the ARF reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam. In the second part, the hybrid time-frequency domain algorithm for the numerical analysis of the nonlinear wave equation is proposed. The approach is validated by comparing the results to the finite-difference modeling in time domain. Regarding the third objective, the Fourier transform approach is used to compute the ARF-induced shear wave motion in tissue-mimicking phantoms. A comparison between the experiment (tests performed at the Mayo Clinic) and model permitted the estimation of a particular coefficient of nonlinear tissue elasticity from the amplitude of the ARF-generated shear waves. For completeness, the ARF estimates of this coefficient are verified via an established technique known as acoustoelasticity.

  5. On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space Mp,q (R)

    NASA Astrophysics Data System (ADS)

    Chaichenets, Leonid; Hundertmark, Dirk; Kunstmann, Peer; Pattakos, Nikolaos

    2017-10-01

    We prove global existence for the one-dimensional cubic nonlinear Schrödinger equation in modulation spaces Mp,p‧ for p sufficiently close to 2. In contrast to known results, [9] and [14], our result requires no smallness condition on initial data. The proof adapts a splitting method inspired by work of Vargas-Vega, Hyakuna-Tsutsumi and Grünrock to the modulation space setting and exploits polynomial growth of the free Schrödinger group on modulation spaces.

  6. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    PubMed

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamışlıoğlu, Miraç, E-mail: m.kamislioglu@gmail.com; Külahcı, Fatih, E-mail: fatihkulahci@firat.edu.tr

    Nonlinear time series analysis techniques have large application areas on the geoscience and geophysics fields. Modern nonlinear methods are provided considerable evidence for explain seismicity phenomena. In this study nonlinear time series analysis, fractal analysis and spectral analysis have been carried out for researching the chaotic behaviors of release radon gas ({sup 222}Rn) concentration occurring during seismic events. Nonlinear time series analysis methods (Lyapunov exponent, Hurst phenomenon, correlation dimension and false nearest neighbor) were applied for East Anatolian Fault Zone (EAFZ) Turkey and its surroundings where there are about 35,136 the radon measurements for each region. In this paper weremore » investigated of {sup 222}Rn behavior which it’s used in earthquake prediction studies.« less

  8. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    NASA Astrophysics Data System (ADS)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the laboratory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  9. Direct biomechanical modeling of trabecular bone using a nonlinear manifold-based volumetric representation

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.

    2017-03-01

    Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This preliminary results show the accuracy of the new nonlinear manifold modelling algorithm for TB, and demonstrate the feasibility of a new direct mechanical strain-strain analysis on a nonlinear manifold model of a highly complex biological structure.

  10. Respiratory muscle strength effect on linear and nonlinear heart rate variability parameters in COPD patients.

    PubMed

    Goulart, Cássia Da Luz; Simon, Julio Cristiano; Schneiders, Paloma De Borba; San Martin, Elisabete Antunes; Cabiddu, Ramona; Borghi-Silva, Audrey; Trimer, Renata; da Silva, Andréa Lúcia Gonçalves

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is recognized as a multisystemic inflammatory disease associated with extrapulmonary comorbidities, including respiratory muscle weakness and cardiovascular and cardiac autonomic regulation disorders. We investigated whether alterations in respiratory muscle strength (RMS) would affect cardiac autonomic modulation in COPD patients. This study was a cross-sectional study done in ten COPD patients affected by moderate to very severe disease. The heart rate variability (HRV) signal was recorded using a Polar cardiofrequencimeter at rest in the sitting position (10 minutes) and during a respiratory sinus arrhythmia maneuver (RSA-M; 4 minutes). Linear analysis in the time and frequency domains and nonlinear analysis were performed on the recorded signals. RMS was assessed using a digital manometer, which provided the maximum inspiratory pressure (PImax) and the maximum expiratory pressure (PEmax). During the RSA-M, patients presented an HRV power increase in the low-frequency band (LFnu) (46.9±23.7 vs 75.8±27.2; P=0.01) and a decrease in the high-frequency band (HFnu) (52.8±23.5 vs 24.0±27.0; P=0.01) when compared to the resting condition. Significant associations were found between RMS and HRV spectral indices: PImax and LFnu (r=-0.74; P=0.01); PImax and HFnu (r=0.74; P=0.01); PEmax and LFnu (r=-0.66; P=0.01); PEmax and HFnu (r=0.66; P=0.03); between PEmax and sample entropy (r=0.83; P<0.01) and between PEmax and approximate entropy (r=0.74; P=0.01). Using a linear regression model, we found that PImax explained 44% of LFnu behavior during the RSA-M. COPD patients with impaired RMS presented altered cardiac autonomic control, characterized by marked sympathetic modulation and a reduced parasympathetic response; reduced HRV complexity was observed during the RSA-M.

  11. Optical solitons and modulation instability analysis of an integrable model of (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the nonlinear Schrödinger type equation (NLSE) in (2+1)-dimensions which describes the nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) with anisotropic and bilinear interactions in the semiclassical limit. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the generalized tanh methods. Dark, dark-bright or combined optical and singular soliton solutions of the equation are derived. Furthermore, the modulational instability (MI) is studied based on the standard linear-stability analysis and the MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  12. Heterodyne lock-in thermography of early demineralized in dental tissues

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Mohummad, Oliullah; Wang, Xiao-chun; Wang, Yang

    2017-12-01

    Heterodyne lock-in thermography (HeLIT) is a highly sensitive method to detect early demineralized in dental tissues, which is based on nonlinear photothermal phenomena of dental tissues. In this paper, the nonlinear photothermal phenomena of dental tissues was introduced, and then the system of HeLIT was developed. The relationship between laser modulated parameters (modulated frequency and laser intensity) and heterodyne lock-in thermal wave signal was investigated. The comparison between HeLIT and homodyne lock-in thermography (HoLIT) for detecting the different types of dental caries (smooth surface caries, proximal surface caries and occlusal surface caries) were carried out. Experimental results illustrate that the HeLIT has the merits of high sensitivity and high specificity in detecting different types of early caries.

  13. Fast novel nonlinear optical NLC system with local response

    NASA Astrophysics Data System (ADS)

    Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto

    2017-06-01

    Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.

  14. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  15. Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syrchin, M.S.; Zheltikov, A.M.; International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow

    Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact both pulse shape and the evolution of the phase.

  16. Modulational instability of beat waves in a transversely magnetized plasma: Ion effects

    NASA Astrophysics Data System (ADS)

    Ferdous, T.; Amin, M. R.; Salimullah, M.

    1996-05-01

    The effect of ion dynamics on the modulational instability of the electrostatic beat wave at the difference frequency of two incident laser beams in a hot, collisionless, and transversely magnetized plasma has been studied theoretically. The full Vlasov equation in terms of gyrokinetic variables is employed to obtain the nonlinear response of ions and electrons. It is found that the growth rate of modulational instability is about two orders higher when ion motions are included.

  17. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    PubMed

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  18. Nonlinear Coherent Structures, Microbursts and Turbulence

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.

    2015-12-01

    Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.

  19. Current understanding of the physics of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1980-01-01

    One of the most exciting plasma physics investigations of recent years has been connected with the understanding of a new strong turbulent plasma state excited by propagating electron beams. This new state is initiated on the linear level by parametric instabilities (OTS, modulational, etc.) and results in a very dynamic state composed of collective clusters of modes called solitons, cavitons, spikons, etc. Introduction of these concepts into the classic beam-plasma interaction problem has rendered quasi-linear and weak turbulence theories inapplicable over most of the interesting parameter range, and helped explain many paradoxes connected with the propagation of beams in the laboratory and space. Following a brief review of these nonlinear notions, the means by which their application to type III solar radiobursts has revolutionized understanding of their propagation, radioemission and scaling properties and has guided the in situ observations towards a more complete understanding are demonstrated. A particular burst (May 16, 1971) is analyzed in detail and compared with numerical predictions.

  20. [Radiotherapy and chaos theory: the tit bird and the butterfly...].

    PubMed

    Denis, F; Letellier, C

    2012-09-01

    Although the same simple laws govern cancer outcome (cell division repeated again and again), each tumour has a different outcome before as well as after irradiation therapy. The linear-quadratic radiosensitivity model allows an assessment of tumor sensitivity to radiotherapy. This model presents some limitations in clinical practice because it does not take into account the interactions between tumour cells and non-tumoral bystander cells (such as endothelial cells, fibroblasts, immune cells...) that modulate radiosensitivity and tumor growth dynamics. These interactions can lead to non-linear and complex tumor growth which appears to be random but that is not since there is not so many tumors spontaneously regressing. In this paper we propose to develop a deterministic approach for tumour growth dynamics using chaos theory. Various characteristics of cancer dynamics and tumor radiosensitivity can be explained using mathematical models of competing cell species. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  1. System performance enhancement with pre-distorted OOFDM signal waveforms in DM/DD systems.

    PubMed

    Sánchez, C; Ortega, B; Capmany, J

    2014-03-24

    In this work we propose a pre-distortion technique for the mitigation of the nonlinear distortion present in directly modulated/detected OOFDM systems and explore the system performance achieved under varying system parameters. Simulation results show that the proposed pre-distortion technique efficiently mitigates the nonlinear distortion, achieving transmission information rates around 40 Gbits/s and 18.5 Gbits/s over 40 km and 100 km of single mode fiber links, respectively, under optimum operating conditions. Moreover, the proposed pre-distortion technique can potentially provide higher system performance to that obtained with nonlinear equalization at the receiver.

  2. Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection.

    PubMed

    Zhu, Mingyue; Zhang, Jing; Yi, Xingwen; Ying, Hao; Li, Xiang; Luo, Ming; Song, Yingxiong; Huang, Xiatao; Qiu, Kun

    2018-03-19

    We present the design and optimization of the optical single side-band (SSB) Nyquist four-level pulse amplitude modulation (PAM-4) transmission using dual-drive Mach-Zehnder modulator (DDMZM)modulation and direct detection (DD), aiming at the C-band cost-effective, high-speed and long-distance transmission. At the transmitter, the laser line width should be small to avoid the phase noise to amplitude noise conversion and equalization-enhanced phase noise due to the large chromatic dispersion (CD). The optical SSB signal is generated after optimizing the optical modulation index (OMI) and hence the minimum phase condition which is required by the Kramers-Kronig (KK) receiver can also be satisfied. At the receiver, a simple AC-coupled photodiode (PD) is used and a virtual carrier is added for the KK operation to alleviate the signal-to-signal beating interference (SSBI).A Volterra filter (VF) is cascaded for remaining nonlinearities mitigation. When the fiber nonlinearity becomes significant, we elect to use an optical band-pass filter with offset filtering. It can suppress the simulated Brillouin scattering and the conjugated distortion by filtering out the imaging frequency components. With our design and optimization, we achieve single-channel, single polarization 102.4-Gb/s Nyquist PAM-4 over 800-km standard single-mode fiber (SSMF).

  3. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  4. Coupling nonlinear optical waves to photoreactive and phase-separating soft matter: Current status and perspectives

    NASA Astrophysics Data System (ADS)

    Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.

    2017-10-01

    Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.

  5. Optical double-locked semiconductor lasers

    NASA Astrophysics Data System (ADS)

    AlMulla, Mohammad

    2018-06-01

    Self-sustained period-one (P1) nonlinear dynamics of a semiconductor laser are investigated when both optical injection and modulation are applied for stable microwave frequency generation. Locking the P1 oscillation through modulation on the bias current, injection strength, or detuning frequency stabilizes the P1 oscillation. Through the phase noise variance, the different modulation types are compared. It is demonstrated that locking the P1 oscillation through optical modulation on the output of the master laser outperforms bias-current modulation of the slave laser. Master laser modulation shows wider P1-oscillation locking range and lower phase noise variance. The locking characteristics of the P1 oscillation also depend on the operating conditions of the optical injection system

  6. Performance Analysis and Design Synthesis (PADS) computer program. Volume 2: Program description, part 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The QL module of the Performance Analysis and Design Synthesis (PADS) computer program is described. Execution of this module is initiated when and if subroutine PADSI calls subroutine GROPE. Subroutine GROPE controls the high level logical flow of the QL module. The purpose of the module is to determine a trajectory that satisfies the necessary variational conditions for optimal performance. The module achieves this by solving a nonlinear multi-point boundary value problem. The numerical method employed is described. It is an iterative technique that converges quadratically when it does converge. The three basic steps of the module are: (1) initialization, (2) iteration, and (3) culmination. For Volume 1 see N73-13199.

  7. Nonlinear modulation of an extraordinary wave under the conditions of parametric decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2012-06-15

    A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less

  8. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.

    PubMed

    Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F

    2006-03-01

    The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.

  9. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  10. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  11. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    DTIC Science & Technology

    2016-07-02

    great potential of chalcogenide microwires for applications in the mid-IR ranging from absorption spectroscopy to entangled photon pairs generation...modulation instability) gain. Stochastic nonlinear Schrödinger equation simulations were shown to be in very good agreement with experiment. This...as the seed coherence decreases. Stochastic nonlinear Schrödinger equation simulations of spectral and noise properties are in excellent agreement with

  12. Nonlinear and Dissipation Characteristics of Ocean Surface Waves in Estuarine Environments

    DTIC Science & Technology

    2014-09-30

    transformation and evolution . In addition these modules would allow for feedback between the surface wave and the energy dissipating feature. OBJECTIVES...dissipation on wave processes. 3) Develop and test low-dimension, reduced representations of estuarine effects for inclusion into operational wave models...Sheremet (PI), Miao Tian and Cihan Sahin (Ph.D. students) who are working on modeling nonlinear wave evolution in dissipative environments (mud), and

  13. III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    DOE PAGES

    Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...

    2016-06-10

    We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

  14. 6 DOF Nonlinear AUV Simulation Toolbox

    DTIC Science & Technology

    1997-01-01

    is to supply a flexible 3D -simulation platform for motion visualization, in-lab debugging and testing of mission-specific strategies as well as those...Explorer are modular designed [Smith] in order to cut time and cost for vehicle recontlguration. A flexible 3D -simulation platform is desired to... 3D models. Current implemented modules include a nonlinear dynamic model for the OEX, shared memory and semaphore manager tools, shared memory monitor

  15. Nonlinear effective permittivity of field grading composite dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang

    2018-02-01

    Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.

  16. Soliton interactions and the formation of solitonic patterns

    NASA Astrophysics Data System (ADS)

    Sears, Suzanne M.

    From the stripes of a zebra, to the spirals of cream in a hot cup of coffee, we are surrounded by patterns in the natural world. But why are there patterns? Why drives their formation? In this thesis we study some of the diverse ways patterns can arise due to the interactions between solitary waves in nonlinear systems, sometimes starting from nothing more than random noise. What follows is a set of three studies. In the first, we show how a nonlinear system that supports solitons can be driven to generate exact (regular) Cantor set fractals. As an example, we use numerical simulations to demonstrate the formation of Cantor set fractals by temporal optical solitons. This fractal formation occurs in a cascade of nonlinear optical fibers through the dynamical evolution of a single input soliton. In the second study, we investigate pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns such as grids and stripes. For the final study, we demonstrate the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. Experimental observations are in agreement with theoretical predictions and are confirmed using numerical simulations.

  17. A colloquium on the influence of versatile class of saturable nonlinear responses in the instability induced supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.; Uthayakumar, T.

    2013-08-01

    We investigate the modulational instability induced supercontinuum generation (MI-SCG) under versatile saturable nonlinear (SNL) responses. We identify and discuss the salient features of saturable nonlinear responses of various functional forms such as exponential, conventional and coupled type on modulational instability (MI) and the subsequent supercontinuum (SC) process. Firstly, we analyze the impact of SNL on the MI spectrum and found both analytically and numerically that MI gain and bandwidth is maximum for exponential nonlinearity in comparison to other types of SNL's. We also reported the unique behavior of the SNL system in the MI dynamics. Following the MI analysis, the proceeding section deals with the supercontinuum generation (SCG) process by virtue of MI. We examine exclusively the impact of each form of SNL on the SC spectrum and predicted numerically that exponential case attains the phase matching earlier and thus enable to achieve broad spectrum at a relatively shorter distance of propagation than the other cases of SNL's. Thus a direct evidence of SCG from MI is emphasized and the impact of SNL in MI-SCG is highlighted. To analyze the quality of the output continuum spectrum, we performed the coherence analysis for MI-SCG in the presence of SNL.

  18. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  19. Task-dependent recurrent dynamics in visual cortex

    PubMed Central

    Tajima, Satohiro; Koida, Kowa; Tajima, Chihiro I; Suzuki, Hideyuki; Aihara, Kazuyuki; Komatsu, Hidehiko

    2017-01-01

    The capacity for flexible sensory-action association in animals has been related to context-dependent attractor dynamics outside the sensory cortices. Here, we report a line of evidence that flexibly modulated attractor dynamics during task switching are already present in the higher visual cortex in macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the neural population response that reflects the task-induced emergence of bistable attractor dynamics in a neural population, which could be obscured by standard unsupervised dimensionality reductions such as PCA. The dynamical modulation selectively increases the information relevant to task demands, indicating that such modulation is beneficial for perceptual decisions. A computational model that features nonlinear recurrent interaction among neurons with a task-dependent background input replicates the key properties observed in the experimental data. These results suggest that the context-dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities. DOI: http://dx.doi.org/10.7554/eLife.26868.001 PMID:28737487

  20. Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators.

    PubMed

    Goto, Hayato; Lin, Zhirong; Nakamura, Yasunobu

    2018-05-08

    A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.

  1. Predicted Risk of Radiation-Induced Cancers After Involved Field and Involved Node Radiotherapy With or Without Intensity Modulation for Early-Stage Hodgkin Lymphoma in Female Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Damien C., E-mail: damien.weber@unige.ch; Johanson, Safora; Peguret, Nicolas

    2011-10-01

    Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results:more » The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.« less

  2. Stochastic modular analysis for gene circuits: interplay among retroactivity, nonlinearity, and stochasticity.

    PubMed

    Kim, Kyung Hyuk; Sauro, Herbert M

    2015-01-01

    This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of modules while taking into account stochasticity, system nonlinearity, and retroactivity. (1) ANALOG ELECTRICAL CIRCUIT REPRESENTATION FOR GENE CIRCUITS: A connection between two gene circuit components is often mediated by a transcription factor (TF) and the connection signal is described by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and regulates downstream transcription. This sequestration has been known to affect the dynamics of the TF by increasing its response time. The downstream effect-retroactivity-has been shown to be explicitly described in an electrical circuit representation, as an input capacitance increase. We provide a brief review on this topic. (2) MODULAR DESCRIPTION OF NOISE PROPAGATION: Gene circuit signals are noisy due to the random nature of biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus, noise can propagate throughout the connected system components. This can cause different circuit components to behave in a statistically dependent manner, hampering a modular analysis. Here, we show that the modular analysis is still possible at the linear noise approximation level. (3) NOISE EFFECT ON MODULE INPUT-OUTPUT RESPONSE: We investigate how to deal with a module input-output response and its noise dependency. Noise-induced phenotypes are described as an interplay between system nonlinearity and signal noise. Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which we call "stochastic modular analysis." This method can provide an analysis framework for gene circuit dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into account.

  3. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers.

    PubMed

    Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F

    2016-07-01

    In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Perceptual asymmetry in texture perception.

    PubMed

    Williams, D; Julesz, B

    1992-07-15

    A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.

  5. KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - On a KSC visit, Executive Director of NASDA Koji Yamamoto (kneeling, left) reaches out to a piece of Columbia debris in the Columbia Debris Hangar. At right is Shuttle Launch Director Mike Leinbach, who is explaining recovery and reconstruction efforts. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  6. Cross-quadrature modulation with the Raman-induced Kerr effect

    NASA Astrophysics Data System (ADS)

    Levenson, M. D.; Holland, M. J.; Walls, D. F.; Manson, P. J.; Fisk, P. T. H.; Bachor, H. A.

    1991-08-01

    The Raman-enhanced third-order optical nonlinearity of calcite potentially can support resonant back-action-evading measurement of the optical-field amplitude. In a preliminary experiment, we have observed cross-quadrature modulation transfer between an amplitude-modulated pump beam and an unmodulated probe beam tuned near the Stokes frequency. The theory of Holland et al. [Phys. Rev. A 42, 2995 (1990)] is extended to the case for which intracavity losses are significant in an attempt to account for the observations.

  7. Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3

    DTIC Science & Technology

    1991-01-12

    84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power

  8. Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle

    NASA Astrophysics Data System (ADS)

    El, G. A.; Kamchatnov, A. M.; Khodorovskii, V. V.; Annibale, E. S.; Gammal, A.

    2009-10-01

    Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schrödinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear “ship-wave” pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.

  9. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    PubMed Central

    Desikan, Radhika

    2016-01-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482

  10. Stix Award: The ponderomotive effect beyond the ponderomotive force

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.

    2014-10-01

    The classical ponderomotive effect (PE) is typically understood as the nonlinear time-average force produced by a rapidly oscillating electromagnetic field on a nonresonant particle. It is instructive to contrast this understanding with the common quantum interpretation of the PE as the ac Stark shift, i.e., phase modulation, or a Kerr effect experienced by the wave function. Then the PE is naturally extended from particles to waves and can be calculated efficiently in general settings, including for strongly nonlinear interactions and resonant dynamics. In particular, photons (plasmons, etc.) are hence seen to have polarizability and contribute to the linear dielectric tensor exactly like ``true'' particles such as electrons and ions. The talk will briefly review the underlying variational theory and some nonintuitive PE-based techniques of wave and particle manipulation that the theory predicts. It will also be shown that the PE can be understood as the cause for the basic properties of both linear and nonlinear waves in plasma, including their dispersion, energy-momentum transport, and various modulational instabilities. Linear collisionless dissipation (both on particles and classical waves, treated on the same footing) also appears merely as a special case of the modulational dynamics. The work was supported by NNSA grant DE274-FG52-08NA28553, DOE contract DE-AC02-09CH11466, and DTRA grant HDTRA1-11-1-0037.

  11. A normalization model suggests that attention changes the weighting of inputs between visual areas

    PubMed Central

    Cohen, Marlene R.

    2017-01-01

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1–MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations. PMID:28461501

  12. A normalization model suggests that attention changes the weighting of inputs between visual areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2017-05-16

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rumeng; Wang, Lifeng, E-mail: walfe@nuaa.edu.cn

    The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the periodmore » of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.« less

  14. The Role of Nonlinear Gradients in Parallel Imaging: A k-Space Based Analysis.

    PubMed

    Galiana, Gigi; Stockmann, Jason P; Tam, Leo; Peters, Dana; Tagare, Hemant; Constable, R Todd

    2012-09-01

    Sequences that encode the spatial information of an object using nonlinear gradient fields are a new frontier in MRI, with potential to provide lower peripheral nerve stimulation, windowed fields of view, tailored spatially-varying resolution, curved slices that mirror physiological geometry, and, most importantly, very fast parallel imaging with multichannel coils. The acceleration for multichannel images is generally explained by the fact that curvilinear gradient isocontours better complement the azimuthal spatial encoding provided by typical receiver arrays. However, the details of this complementarity have been more difficult to specify. We present a simple and intuitive framework for describing the mechanics of image formation with nonlinear gradients, and we use this framework to review some the main classes of nonlinear encoding schemes.

  15. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  16. Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system.

    PubMed

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2016-07-01

    We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.

  17. Precluding nonlinear ISI in direct detection long-haul fiber optic systems

    NASA Technical Reports Server (NTRS)

    Swenson, Norman L.; Shoop, Barry L.; Cioffi, John M.

    1991-01-01

    Long-distance, high-rate fiber optic systems employing directly modulated 1.55-micron single-mode lasers and conventional single-mode fiber suffer severe intersymbol interference (ISI) with a large nonlinear component. A method of reducing the nonlinearity of the ISI, thereby making linear equalization more viable, is investigated. It is shown that the degree of nonlinearity is highly dependent on the choice of laser bias current, and that in some cases the ISI nonlinearity can be significantly reduced by biasing the laser substantially above threshold. Simulation results predict that an increase in signal-to-nonlinear-distortion ratio as high as 25 dB can be achieved for synchronously spaced samples at an optimal sampling phase by increasing the bias current from 1.2 times threshold to 3.5 times threshold. The high SDR indicates that a linear tapped delay line equalizer could be used to mitigate ISI. Furthermore, the shape of the pulse response suggests that partial response precoding and digital feedback equalization would be particularly effective for this channel.

  18. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

    NASA Astrophysics Data System (ADS)

    Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael

    2018-06-01

    Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.

  19. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  20. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    PubMed

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  1. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    PubMed

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  2. Time skewing and amplitude nonlinearity mitigation by feedback equalization for 56 Gbps VCSEL-based PAM-4 links

    NASA Astrophysics Data System (ADS)

    You, Yue; Zhang, Wenjia; Sun, Lin; Du, Jiangbing; Liang, Chenyu; Yang, Fan; He, Zuyuan

    2018-03-01

    The vertical cavity surface emitting laser (VCSEL)-based multimode optical transceivers enabled by pulse amplitude modulation (PAM)-4 will be commercialized in near future to meet the 400-Gbps standard short reach optical interconnects. It is still challenging to achieve over 56/112-Gbps with the multilevel signaling as the multimode property of the device and link would introduce the nonlinear temporal response for the different levels. In this work, we scrutinize the distortions that relates to the multilevel feature of PAM-4 modulation, and propose an effective feedback equalization scheme for 56-Gbps VCSEL-based PAM-4 optical interconnects system to mitigate the distortions caused by eye timing-skew and nonlinear power-dependent noise. Level redistribution at Tx side is theoretically modeled and constructed to achieve equivalent symbol error ratios (SERs) of four levels and improved BER performance. The cause of the eye skewing and the mitigation approach are also simulated at 100-Gbps and experimentally investigated at 56-Gbps. The results indicate more than 2-dB power penalty improvement has been achieved by using such a distortion aware equalizer.

  3. Hydrodynamic optical soliton tunneling

    NASA Astrophysics Data System (ADS)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  4. Damage detection in composites using nonlinear ultrasonically modulated thermography

    NASA Astrophysics Data System (ADS)

    Malfense Fierro, G.-P.; Dionysopoulos, D.; Meo, M.; Ciampa, F.

    2018-03-01

    This paper proposes a novel nonlinear ultrasonically stimulated thermography technique for a quick and reliable assessment of material damage in carbon fibre reinforced plastic (CFRP) composite materials. The proposed nondestructive evaluation (NDE) method requires narrow sweep ultrasonic excitation using contact piezoelectric transducers in order to identify dual excitation frequencies associated with the damage resonance. High-amplitude signals and higher harmonic generation are necessary conditions for an accurate identification of these two input frequencies. Dual periodic excitation using high- and low-frequency input signals was then performed in order to generate frictional heating at the crack location that was measured by an infrared (IR) camera. To validate this concept, an impact damaged CFRP composite panel was tested and the experimental results were compared with traditional flash thermography. A laser vibrometer was used to investigate the response of the material with dual frequency excitation. The proposed nonlinear ultrasonically modulated thermography successfully detected barely visible impact damage in CFRP composites. Hence, it can be considered as an alternative to traditional flash thermography and thermosonics by allowing repeatable detection of damage in composites.

  5. Hydrodynamic optical soliton tunneling.

    PubMed

    Sprenger, P; Hoefer, M A; El, G A

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  6. Effect of geometric nonlinearity on acoustic modulation

    NASA Astrophysics Data System (ADS)

    Warnemuende, Kraig; Wu, Hwai-Chung

    2005-05-01

    Non-linear nondestructive testing is different from linear acoustic in that it correlates the presence and characteristics of a defect with acoustical signals whose frequencies differ from the frequencies of the emitted probe signal. The difference in frequencies between the probe signal and the resulting frequencies is due to a nonlinear transformation of the probe signal as it passes through a defect. Under acoustic interrogation due to longitudinal waves, as the compression phase passes the defect the two sides of the interface are in direct contact and the contact area increases. Similarly, the tensile phase passes through the defect, the two sides separate and the contact area decreases, thereby modulating the signal amplitude. The contact area depends on the roughness of the surface and on the magnitude of the cohesive forces that arise from the small crack openings. Such cohesive forces may be attributed to aggregate interlock (in plain concrete), fiber bridging (in fiber reinforced concrete) or both. In this paper, the frequency shifts of the probe elastic wave will be analytically related to the roughness and varying cohesive forces of the crack-like defect.

  7. PV Degradation Curves: Non-Linearities and Failure Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually,more » in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.« less

  8. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    DOE PAGES

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...

    2016-09-29

    Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide dynamic tuning of their electromagnetic response, which is potentially useful for all-optical information processing. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favorable spectral tunability and beam-steering capability. We semi-quantitatively model the permittivity change, whose large amplitude stems from a significant electron redistribution under intraband pumping due to the low electron concentration. Further, we observe a transient response in themore » microsecond regime associated with the slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Finally, our results demonstrate that all-optical control of the visible spectrum can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.« less

  9. Blade loss transient dynamics analysis, volume 2. Task 2: TETRA 2 user's manual

    NASA Technical Reports Server (NTRS)

    Black, Gerald; Gallardo, Vincente C.

    1986-01-01

    This is the user's manual for the TETRA 2 Computer Code, a program developed in the NASA-Lewis Blade Loss Program. TETRA 2 calculates a turbine engine's dynamic structural response from applied stimuli. The calculation options are: (1) transient response; and (2) steady state forced response. Based on the method of modal syntheses, the program allows the use of linear, as well as nonlinear connecting elements. Both transient and steady state options can include: flexible Bladed Disk Module, and Nonlinear Connecting Elements (including deadband, hardening/softening spring). The transient option has the additional capability to calculate response with a squeeze film bearing module. TETRA 2 output is summarized in a plotfile which permits post processing such as FFT or graphical animation with the proper software and computer equipment.

  10. New classes of solutions in the coupled PT symmetric nonlocal nonlinear Schrödinger equations with four wave mixing

    NASA Astrophysics Data System (ADS)

    Vinayagam, P. S.; Radha, R.; Al Khawaja, U.; Ling, Liming

    2018-06-01

    We investigate generalized nonlocal coupled nonlinear Schorödinger equation containing Self-Phase Modulation, Cross-Phase Modulation and four wave mixing involving nonlocal interaction. By means of Darboux transformation we obtained a family of exact breathers and solitons including the Peregrine soliton, Kuznetsov-Ma breather, Akhmediev breather along with all kinds of soliton-soliton and breather-soltion interactions. We analyze and emphasize the impact of the four-wave mixing on the nature and interaction of the solutions. We found that the presence of four wave mixing converts a two-soliton solution into an Akhmediev breather. In particular, the inclusion of four wave mixing results in the generation of a new solutions which is spatially and temporally periodic called "Soliton (Breather) lattice".

  11. 30W, 10μJ, 10-ps SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fibre amplifier

    NASA Astrophysics Data System (ADS)

    Zaouter, Y.; Cormier, E.; Rigail, P.; Hönninger, C.; Mottay, E.

    2007-02-01

    The concept of spectral compression induced by self phase modulation is used to generate transform-limited 10ps pulses in a rare-earth-doped low nonlinearity fibre amplifier. The seed source of the amplifier stage is a high power, Yb 3+:KGW bulk oscillator which delivers 500 fs transform-limited pulses at 10MHz repetition rate. After a reduction of the repetition rate down to 3MHz, the femtosecond pulses are negatively chirped by transmission gratings in a compressor arrangement. The resulting 10ps pulses are further seeded into the power amplifier and up to 32W output power is obtained while the spectral bandwidth is reduced to less than 0.5 nm by means of self phase modulation.

  12. Enhanced Pulse Compression in Nonlinear Fiber by a WDM Optical Pulse

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1997-01-01

    A new way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the cross phase modulation (CPM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propagating on a different wavelength beam in a wavelength division multiplexed (WDM) single-mode fiber system can be used to enhance the pulse compression of a co-propagating primary pulse.

  13. Nonlinear Brightness Optimization in Compton Scattering

    DOE PAGES

    Hartemann, Fred V.; Wu, Sheldon S. Q.

    2013-07-26

    In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.

  14. Nonlinearity Domination in Hassellmann Equation as a Reason for Alternative Framework of its Numerical Simulation

    DTIC Science & Technology

    2014-09-30

    nonlinear Schrodinger equation. It is well known that dark solitons are exact solutions of such equation. In the present paper it has been shown that gray...Reason for Alternative Framework of its Numerical Simulation Vladimir Zakharov, Andrei Pushkarev Waves and Solitons LLC 1719 W. Marlette Ave...situation; study of the implications of modulational instability on solitons , rogue waves and air-surface interaction. APPROACH Numerical methods

  15. Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers.

    PubMed

    Sorokina, Mariia; Sygletos, Stylianos; Ellis, Andrew D; Turitsyn, Sergei

    2013-12-16

    We investigate the transmission performance of advanced modulation formats in nonlinear regenerative channels based on cascaded phase sensitive amplifiers. We identify the impact of amplitude and phase noise dynamics along the transmission line and show that after a cascade of regenerators, densely packed single ring PSK constellations outperform multi-ring constellations. The results of this study will greatly simplify the design of future nonlinear regenerative channels for ultra-high capacity transmission.

  16. Influence of laminate sequence and fabric type on the inherent acoustic nonlinearity in carbon fiber reinforced composites.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel J; Dayal, Vinay

    2016-05-01

    This paper presents the study of influence of laminate sequence and fabric type on the baseline acoustic nonlinearity of fiber-reinforced composites. Nonlinear elastic wave techniques are increasingly becoming popular in detecting damage in composite materials. It was earlier observed by the authors that the non-classical nonlinear response of fiber-reinforced composite is influenced by the fiber orientation [Chakrapani, Barnard, and Dayal, J. Acoust. Soc. Am. 137(2), 617-624 (2015)]. The current study expands this effort to investigate the effect of laminate sequence and fabric type on the non-classical nonlinear response. Two hypotheses were developed using the previous results, and the theory of interlaminar stresses to investigate the influence of laminate sequence and fabric type. Each hypothesis was tested by capturing the nonlinear response by performing nonlinear resonance spectroscopy and measuring frequency shifts, loss factors, and higher harmonics. It was observed that the laminate sequence can either increase or decrease the nonlinear response based on the stacking sequence. Similarly, tests were performed to compare unidirectional fabric and woven fabric and it was observed that woven fabric exhibited a lower nonlinear response compared to the unidirectional fabric. Conjectures based on the matrix properties and interlaminar stresses were used in an attempt to explain the observed nonlinear responses for different configurations.

  17. Compensation for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  18. Evaluation of crack status in a meter-size concrete structure using the ultrasonic nonlinear coda wave interferometry.

    PubMed

    Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent

    2017-10-01

    The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.

  19. Twistacene contained molecule for optical nonlinearity: Excited-state based negative refraction and optical limiting

    NASA Astrophysics Data System (ADS)

    Wu, Xingzhi; Xiao, Jinchong; Sun, Ru; Jia, Jidong; Yang, Junyi; Ao, Guanghong; Shi, Guang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2018-06-01

    Spindle-type molecules containing twisted acenes (PyBTA-1 &PyBTA-2) are designed, synthesized characterized. Picosecond Z-scan experiments under 532 nm show reverse saturable absorption and negative nonlinear refraction, indicating large third-order optical nonlinearity in PyBTA-1. The mechanism of the optical nonlinearity is investigated and the results show that the nonlinear absorption and refraction in PyBTA-1 originates from a charge transfer (CT) state. Furthermore, relatively long lifetime and absorptive cross section of the CT state are measured. Based on the excited state absorption in PyBTA-1, strong optical limiting with ∼0.3 J/cm2 thresholds are obtained when excited by picoseconds and nanoseconds pulses. The findings on nonlinear optics suggest PyBTA-1 a promising material of all optical modulation and laser protection, which enrich the potential applications of these spindle-type molecules. Comparing to the previously reported spindle-type molecules with analogous structures, the introduction of ICT in PyBTA-1 &PyBTA-2 dramatically decreases the two-photon absorption while enhances the nonlinear refraction. The results could be used to selectively tailor the optical nonlinearity in such kind of compounds.

  20. Generation mechanisms of fundamental rogue wave spatial-temporal structure.

    PubMed

    Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling

    2017-08-01

    We discuss the generation mechanism of fundamental rogue wave structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the pattern of a fundamental rogue wave is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue wave. This finding allows one to predict the rogue wave pattern without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue wave patterns at most. These results can be extended to evaluate the type and number of fundamental rogue wave structure in other coupled nonlinear systems.

  1. Dark-bright quadratic solitons with a focusing effective Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Ping, Xiaorou; Liang, Guo; Guo, Qi; Lu, Daquan; Hu, Wei

    2018-01-01

    Dark solitons are traditionally considered to exist in defocusing Kerr nonlinearity media. We investigate dark quadratic solitons with a focusing effective Kerr nonlinearity and a sine-oscillatory nonlocal response. A nonlinear refractive index with a focusing sine-oscillatory response leads to a defocusing effect with a strong degree of nonlocality, which causes the formation of dark solitons. By analyzing the modulational instability, we determine the parameter domain for dark quadratic solitons with a stable background and numerically obtain dark-bright soliton solutions in the form of pairs, which avoid radiative phenomena. Based on a numerical simulation, we find that all dark-bright soliton pairs are unstable after a relatively long propagation distance, and their stabilities are affected by the soliton interval and the degree of nonlocality.

  2. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  3. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  4. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  5. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  6. A Web Tool for Research in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.

    2016-02-01

    This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.

  7. Particle motions beneath irrotational water waves

    NASA Astrophysics Data System (ADS)

    Bakhoday-Paskyabi, Mostafa

    2015-08-01

    Neutral and buoyant particle motions in an irrotational flow are investigated under the passage of linear, nonlinear gravity, and weakly nonlinear solitary waves at a constant water depth. The developed numerical models for the particle trajectories in a non-turbulent flow incorporate particle momentum, size, and mass (i.e., inertial particles) under the influence of various surface waves such as Korteweg-de Vries waves which admit a three parameter family of periodic cnoidal wave solutions. We then formulate expressions of mass-transport velocities for the neutral and buoyant particles. A series of test cases suggests that the inertial particles possess a combined horizontal and vertical drifts from the locations of their release, with a fall velocity as a function of particle material properties, ambient flow, and wave parameters. The estimated solutions exhibit good agreement with previously explained particle behavior beneath progressive surface gravity waves. We further investigate the response of a neutrally buoyant water parcel trajectories in a rotating fluid when subjected to a series of wind and wave events. The results confirm the importance of the wave-induced Coriolis-Stokes force effect in both amplifying (destroying) the pre-existing inertial oscillations and in modulating the direction of the flow particles. Although this work has mainly focused on wave-current-particle interaction in the absence of turbulence stochastic forcing effects, the exercise of the suggested numerical models provides additional insights into the mechanisms of wave effects on the passive trajectories for both living and nonliving particles such as swimming trajectories of plankton in non-turbulent flows.

  8. The iFlow modelling framework v2.4: a modular idealized process-based model for flow and transport in estuaries

    NASA Astrophysics Data System (ADS)

    Dijkstra, Yoeri M.; Brouwer, Ronald L.; Schuttelaars, Henk M.; Schramkowski, George P.

    2017-07-01

    The iFlow modelling framework is a width-averaged model for the systematic analysis of the water motion and sediment transport processes in estuaries and tidal rivers. The distinctive solution method, a mathematical perturbation method, used in the model allows for identification of the effect of individual physical processes on the water motion and sediment transport and study of the sensitivity of these processes to model parameters. This distinction between processes provides a unique tool for interpreting and explaining hydrodynamic interactions and sediment trapping. iFlow also includes a large number of options to configure the model geometry and multiple choices of turbulence and salinity models. Additionally, the model contains auxiliary components, including one that facilitates easy and fast sensitivity studies. iFlow has a modular structure, which makes it easy to include, exclude or change individual model components, called modules. Depending on the required functionality for the application at hand, modules can be selected to construct anything from very simple quasi-linear models to rather complex models involving multiple non-linear interactions. This way, the model complexity can be adjusted to the application. Once the modules containing the required functionality are selected, the underlying model structure automatically ensures modules are called in the correct order. The model inserts iteration loops over groups of modules that are mutually dependent. iFlow also ensures a smooth coupling of modules using analytical and numerical solution methods. This way the model combines the speed and accuracy of analytical solutions with the versatility of numerical solution methods. In this paper we present the modular structure, solution method and two examples of the use of iFlow. In the examples we present two case studies, of the Yangtze and Scheldt rivers, demonstrating how iFlow facilitates the analysis of model results, the understanding of the underlying physics and the testing of parameter sensitivity. A comparison of the model results to measurements shows a good qualitative agreement. iFlow is written in Python and is available as open source code under the LGPL license.

  9. Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers.

    PubMed

    Mertiri, Alket; Altug, Hatice; Hong, Mi K; Mehta, Pankaj; Mertz, Jerome; Ziegler, Lawrence D; Erramilli, Shyamsunder

    2014-08-20

    We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4'-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump-probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs.

  10. Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers

    PubMed Central

    2015-01-01

    We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical bifurcation. The bifurcation, observed in heterodyne two-color pump–probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as a function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The observation of an apparently universal critical exponent in a nonequilibrium state is explained using an analytical model analogous of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared microspectroscopy using QCLs. PMID:25541620

  11. Nonlinear Landau damping in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kiwamoto, Y.; Benson, R. F.

    1978-01-01

    A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  12. Spherical transceivers for ultrafast optical wireless communications

    NASA Astrophysics Data System (ADS)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  13. Theory and praxis of map analsys in CHEF part 2: Nonlinear normal form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelotti, Leo; /FERMILAB

    2009-04-01

    This is the second of three memos describing how normal form map analysis is implemented in CHEF. The first [1] explained the manipulations required to assure that initial, linear transformations preserved Poincare invariants, thereby confirming correct normalization of action-angle coordinates. In this one, the transformation will be extended to nonlinear terms. The third, describing how the algorithms were implemented within the software of CHEF's libraries, most likely will never be written. The first section, Section 2, quickly lays out preliminary concepts and relationships. In Section 3, we shall review the perturbation theory - an iterative sequence of transformations that convertsmore » a nonlinear mapping into its normal form - and examine the equation which moves calculations from one step to the next. Following that is a section titled 'Interpretation', which identifies connections between the normalized mappings and idealized, integrable, fictitious Hamiltonian models. A final section contains closing comments, some of which may - but probably will not - preview work to be done later. My reasons for writing this memo and its predecessor have already been expressed. [1] To them can be added this: 'black box code' encourages users to proceed with little or no understanding of what it does or how it operates. So far, CHEF has avoided this trap admirably by failing to attract potential users. However, we reached a watershed last year: even I now have difficulty following the software through its maze of operations. Extensions to CHEF's physics functionalities, software upgrades, and even simple maintenance are becoming more difficult than they should. I hope these memos will mark parts of the maze for easier navigation in the future. Despite appearances to the contrary, I tried to include no (or very little) more than the minimum needed to understand what CHEF's nonlinear analysis modules do.1 As with the first memo, material has been lifted - and modified - from Intermediate Classical Dynamics (ICD) [2], old technical memos, seminar viewgraphs, and lecture notes. Finally, for a reason I do not know but am willing to indulge, equation and comment labels start from where they left off in Part 1.« less

  14. High-efficiency THz modulator based on phthalocyanine-compound organic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting; Zhang, Bo, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn; Shen, Jingling, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn

    2015-02-02

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl{sub 2}Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface.

  15. A variable-step-size robust delta modulator.

    NASA Technical Reports Server (NTRS)

    Song, C. L.; Garodnick, J.; Schilling, D. L.

    1971-01-01

    Description of an analytically obtained optimum adaptive delta modulator-demodulator configuration. The device utilizes two past samples to obtain a step size which minimizes the mean square error for a Markov-Gaussian source. The optimum system is compared, using computer simulations, with a linear delta modulator and an enhanced Abate delta modulator. In addition, the performance is compared to the rate distortion bound for a Markov source. It is shown that the optimum delta modulator is neither quantization nor slope-overload limited. The highly nonlinear equations obtained for the optimum transmitter and receiver are approximated by piecewise-linear equations in order to obtain system equations which can be transformed into hardware. The derivation of the experimental system is presented.

  16. Multi-equilibrium property of metabolic networks: SSI module.

    PubMed

    Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan

    2011-06-20

    Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.

  17. Multi-equilibrium property of metabolic networks: SSI module

    PubMed Central

    2011-01-01

    Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474

  18. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  19. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  20. Simultaneous polarization-insensitive phase-space trans-multiplexing and wavelength multicasting via cross-phase modulation in a photonic crystal fiber at 10 GBd

    NASA Astrophysics Data System (ADS)

    Cannon, Brice M.

    This thesis investigates the all-optical combination of amplitude and phase modulated signals into one unified multi-level phase modulated signal, utilizing the Kerr nonlinearity of cross-phase modulation (XPM). Predominantly, the first experimental demonstration of simultaneous polarization-insensitive phase-transmultiplexing and multicasting (PI-PTMM) will be discussed. The PI-PTMM operation combines the data of a single 10-Gbaud carrier-suppressed return-to-zero (CSRZ) on-off keyed (OOK) pump signal and 4x10-Gbaud return-to-zero (RZ) binary phase-shift keyed (BPSK) probe signals to generate 4x10-GBd RZ-quadrature phase-shift keyed (QPSK) signals utilizing a highly nonlinear, birefringent photonic crystal fiber (PCF). Since XPM is a highly polarization dependent nonlinearity, a polarization sensitivity reduction technique was used to alleviate the fluctuations due to the remotely generated signals' unpredictable states of polarization (SOP). The measured amplified spontaneous emission (ASE) limited receiver sensitivity optical signal-to-noise ratio (OSNR) penalty of the PI-PTMM signal relative to the field-programmable gate array (FPGA) pre-coded RZ-DQPSK baseline at a forward-error correction (FEC) limit of 10-3 BER was ≈ 0.3 dB. In addition, the OSNR of the remotely generated CSRZ-OOK signal could be degraded to ≈ 29 dB/0.1nm, before the bit error rate (BER) performance of the PI-PTMM operation began to exponentially degrade. A 138-km dispersion-managed recirculating loop system with a 100-GHz, 13-channel mixed-format dense-wavelength-division multiplexed (DWDM) transmitter was constructed to investigate the effect of metro/long-haul transmission impairments. The PI-PTMM DQPSK and the FPGA pre-coded RZ-DQPSK baseline signals were transmitted 1,900 km and 2,400 km in the nonlinearity-limited transmission regime before reaching the 10-3 BER FEC limit. The relative reduction in transmission distance for the PI-PTMM signal was due to the additional transmitter impairments in the PCF that interact negatively with the transmission fiber.

Top