Questions & Answers for the New Chemicals Program under the Toxic Substances Control Act (TSCA)
This Questions & Answers document for the New Chemicals Program is intended only to explain the requirements of TSCA section 5 and selected EPA regulations implementing section 5, and to provide useful information to persons subject to these requirements.
Dooley, Andrew J; Gupta, Avinash; Middleton, Mark R
2016-08-01
The selective BRAF inhibitors vemurafenib and dabrafenib yield high response rates and improved overall survival in patients with BRAF V600E-mutant metastatic melanoma. Treatment traditionally continues until disease progression or the development of unacceptable toxicity. Acquired drug resistance and toxicity are key challenges with the use of these drugs. Resistance to vemurafenib usually develops within 6-8 months. Management of drug toxicity typically involves stopping vemurafenib until resolution, before restarting at a lower dose, or permanently ceasing vemurafenib therapy. We have recently considered whether intermittent dosing could be used as an alternative to dose reduction/termination in the management of vemurafenib toxicity. One patient treated with intermittent vemurafenib was an 89-year-old woman with metastatic melanoma, who initially showed a good response to continuous dosing. Recurrent toxicity meant that the continuous vemurafenib dosage was repeatedly ceased before restarting at a lower dose. Ten months after vemurafenib was first begun, an intermittent dosing regimen was introduced in an attempt to control toxicity. This continued for 2 months, before cessation due to continued unacceptable toxicity. A further 24 months later, the patient remains fit and well in complete clinical remission, with no recurrence of her previous melanoma and no new primary malignancies. To the best of our knowledge, a continued response after the cessation of selective BRAF inhibitors has never before been described in melanoma. Induction of an immune response and/or epigenetic changes could explain continued disease response after cessation of vemurafenib therapy. Care should be taken when extrapolating the findings from the continued response after vemurafenib cessation to other tumour types. We recommend the collection and analysis of data to investigate the clinical responses seen after cessation of vemurafenib due to intolerable toxicities, which could help further explain vemurafenib's mechanism of action.
Widdows, John; Chaparro, Oscar R.; Ortíz, Alejandro; Mellado, Carla; Villanueva, Paola A.
2018-01-01
This study investigates the effects of toxic and non-toxic dinoflatellates on two sympatric bivalves, the clam Mulinia edulis and the mussel Mytilus chilensis. Groups of bivalves were fed one of three diets: (i) the toxic paralytic shellfish producing (PSP) Alexandrium catenella + Isochrysis galbana; (ii) the non-toxic Alexandrium affine + Isochrysis galbana and (iii) the control diet of Isochrysis galbana. Several physiological traits were measured, such as, clearance rate, pre-ingestive selection efficiency and particle transport velocity in the gill. The clearance rates of both M. chilensis and M. edulis showed a significant reduction when fed a mixed toxic diet of 50% Alexandrium catenella: 50% Isochrysis galbana. Similarly, when both species of bivalves were fed with the non-toxic diet (50% A. affine: 50% I. galbana), clearance rate was significantly lower compared with a diet of 100% I. galbana. Under all the experimental diets, M. chilensis showed higher clearance rate values, slightly more than double that of M. edulis. M. edulis and M. chilensis have the ability to select particles at the pre-ingestive level, thus eliminating a larger proportion of the toxic dinoflagellate A. catenella as well as the non-toxic A. affine in the form of pseudofaeces. Higher values of selection efficiency were registered in M. edulis than in M. chilensis when exposed to the toxic diet. Similar results were observed when these two species were exposed to the diet containing the non-toxic dinoflagellate, explained by the fact that the infaunal Mulinia edulis is adapted to dealing with larger particle sizes and higher particle densities (Navarro et al., 1993). The lower transport particle velocity observed in the present work for both species, is related to the reduced clearance rate, the higher particle concentration, and the presence of larger, toxic dinoflagellates. In addition, the species differ in their feeding responses to diets, with and without A. catenella or A. affine, largely reflecting their adaptations to different environmental conditions. The results suggest that the presence of a dinoflagellate bloom, whether toxic or non-toxic spp in Yaldad Bay, is likely to have a greater impact on the Mytilus chilensis than the infaunal Mulinia edulis, based on the combined effects on clearance rate, selection efficiency and particle transport velocity. PMID:29474467
Navarro, Jorge M; Widdows, John; Chaparro, Oscar R; Ortíz, Alejandro; Mellado, Carla; Villanueva, Paola A
2018-01-01
This study investigates the effects of toxic and non-toxic dinoflatellates on two sympatric bivalves, the clam Mulinia edulis and the mussel Mytilus chilensis. Groups of bivalves were fed one of three diets: (i) the toxic paralytic shellfish producing (PSP) Alexandrium catenella + Isochrysis galbana; (ii) the non-toxic Alexandrium affine + Isochrysis galbana and (iii) the control diet of Isochrysis galbana. Several physiological traits were measured, such as, clearance rate, pre-ingestive selection efficiency and particle transport velocity in the gill. The clearance rates of both M. chilensis and M. edulis showed a significant reduction when fed a mixed toxic diet of 50% Alexandrium catenella: 50% Isochrysis galbana. Similarly, when both species of bivalves were fed with the non-toxic diet (50% A. affine: 50% I. galbana), clearance rate was significantly lower compared with a diet of 100% I. galbana. Under all the experimental diets, M. chilensis showed higher clearance rate values, slightly more than double that of M. edulis. M. edulis and M. chilensis have the ability to select particles at the pre-ingestive level, thus eliminating a larger proportion of the toxic dinoflagellate A. catenella as well as the non-toxic A. affine in the form of pseudofaeces. Higher values of selection efficiency were registered in M. edulis than in M. chilensis when exposed to the toxic diet. Similar results were observed when these two species were exposed to the diet containing the non-toxic dinoflagellate, explained by the fact that the infaunal Mulinia edulis is adapted to dealing with larger particle sizes and higher particle densities (Navarro et al., 1993). The lower transport particle velocity observed in the present work for both species, is related to the reduced clearance rate, the higher particle concentration, and the presence of larger, toxic dinoflagellates. In addition, the species differ in their feeding responses to diets, with and without A. catenella or A. affine, largely reflecting their adaptations to different environmental conditions. The results suggest that the presence of a dinoflagellate bloom, whether toxic or non-toxic spp in Yaldad Bay, is likely to have a greater impact on the Mytilus chilensis than the infaunal Mulinia edulis, based on the combined effects on clearance rate, selection efficiency and particle transport velocity.
NASA Astrophysics Data System (ADS)
Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.
Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.
Avoiding Toxic Levels of Essential Minerals: A Forgotten Factor in Deer Diet Preferences
Ceacero, Francisco; Landete-Castillejos, Tomás; Olguín, Augusto; Miranda, María; García, Andrés; Martínez, Alberto; Cassinello, Jorge; Miguel, Valentín; Gallego, Laureano
2015-01-01
Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences. PMID:25615596
Avoiding toxic levels of essential minerals: a forgotten factor in deer diet preferences.
Ceacero, Francisco; Landete-Castillejos, Tomás; Olguín, Augusto; Miranda, María; García, Andrés; Martínez, Alberto; Cassinello, Jorge; Miguel, Valentín; Gallego, Laureano
2015-01-01
Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences.
Furuhama, A; Hasunuma, K; Aoki, Y
2015-01-01
In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.
Kim, Jungkon; Park, Jeongim; Kim, Pan-Gyi; Lee, Chulwoo; Choi, Kyunghee; Choi, Kyungho
2010-04-01
Global environmental change poses emerging environmental health challenges throughout the world. One of such threats could be found in chemical safety in aquatic ecosystem. In the present study, we evaluated the effect of several environmental factors, such as water pH, temperature and ultraviolet light on the toxicity of pharmaceutical compounds in water, using freshwater invertebrate Daphnia magna. Seven pharmaceuticals including ibuprofen, acetaminophen, lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline and sulfathiazole were chosen as test compounds based on their frequent detection in water. The experimental conditions of environmental parameters were selected within the ranges that could be encountered in temperate environment, i.e., water temperature (15, 21, and 25 degrees C), pH (7.4, 8.3, and 9.2), and UV-B light intensity (continuous irradiation of 15.0 microW/cm(2)). For acetaminophen, enrofloxacin and sulfathiazole, decrease in water pH generally led to increase of acute lethal toxicity, which could be explained by the unionized fraction of pharmaceuticals. Increase of water temperature enhanced the acute toxicity of the acetaminophen, enrofloxacin and chlortetracycline, potentially due to alteration in toxicokinetics of chemicals as well as impact on physiological mechanisms of the test organism. The presence of UV-B light significantly increased the toxicity of sulfathiazole, which could be explained by photo-modification of this chemical that lead to oxidative stress. Under the UV light, however, acute toxicity of enrofloxacin decreased, which might be due to photo-degradation. Since changing environmental conditions could affect exposure and concentration-response profile of environmental contaminants, such conditions should be identified and evaluated in order to better manage ecosystem health under changing global environment.
Mondal Roy, Sutapa; Roy, Debesh R; Sahoo, Suban K
2015-11-01
The applicability of Density Functional Theory (DFT) based descriptors for the development of quantitative structure-toxicity relationships (QSTR) is assessed for two different series of toxic aromatic compounds, viz., polyhalogenated dibenzo-p-dioxins (PHDDs) and phenols (PHs). A series of 20 compounds each for PHDDs and PHs with their experimental toxicities (IC50 and IGC50) is chosen in the present study to develop DFT based efficient quantum chemical parameters (QCPs) for explaining the toxin potential of the considered compounds. A systematic analysis to find out the electron donation/acceptance nature of these selected compounds with the considered model biosystems, viz., nucleic acid (NA) bases and DNA base pairs, is performed to identify potential QCPs. Accordingly, PHDDs is found to be electron acceptors whereas phenols as donors, during their interaction with biosystems. Two parameter regression model is carried out comprising global charge transfer (ΔN), and local Fukui Function's for nucleophilic attack (fk(+)) for PHDDs and the same for electrophilic attack (fk(-)) in case of PHs. It is heartening to note that our chosen descriptors, viz, charge transfer (ΔN) and Fukui Function (fk(±)) plays a crucial role by explaining more than 90% of the observed toxic behavior (in terms of correlation-coefficient, R) of PHDDs and PHs. The developed QCPs, viz., ΔN and fk(±) can be added as the new descriptors in the QSTR parlance. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Plath, Martin; Riesch, Rüdiger; Oranth, Alexandra; Dzienko, Justina; Karau, Nora; Schießl, Angela; Stadler, Stefan; Wigh, Adriana; Zimmer, Claudia; Arias-Rodriguez, Lenin; Schlupp, Ingo; Tobler, Michael
2010-08-01
Adaptation to ecologically heterogeneous environments can drive speciation. But what mechanisms maintain reproductive isolation among locally adapted populations? Using poeciliid fishes in a system with naturally occurring toxic hydrogen sulfide, we show that (a) fish from non-sulfidic sites ( Poecilia mexicana) show high mortality (95 %) after 24 h when exposed to the toxicant, while locally adapted fish from sulfidic sites ( Poecilia sulphuraria) experience low mortality (13 %) when transferred to non-sulfidic water. (b) Mate choice tests revealed that P. mexicana females exhibit a preference for conspecific males in non-sulfidic water, but not in sulfidic water, whereas P. sulphuraria females never showed a preference. Increased costs of mate choice in sulfidic, hypoxic water, and the lack of selection for reinforcement due to the low survival of P. mexicana may explain the absence of a preference in P. sulphuraria females. Taken together, our study may be the first to demonstrate independent—but complementary—effects of natural and sexual selection against immigrants maintaining differentiation between locally adapted fish populations.
Plath, Martin; Riesch, Rüdiger; Oranth, Alexandra; Dzienko, Justina; Karau, Nora; Schiessl, Angela; Stadler, Stefan; Wigh, Adriana; Zimmer, Claudia; Arias-Rodriguez, Lenin; Schlupp, Ingo; Tobler, Michael
2010-08-01
Adaptation to ecologically heterogeneous environments can drive speciation. But what mechanisms maintain reproductive isolation among locally adapted populations? Using poeciliid fishes in a system with naturally occurring toxic hydrogen sulfide, we show that (a) fish from non-sulfidic sites (Poecilia mexicana) show high mortality (95 %) after 24 h when exposed to the toxicant, while locally adapted fish from sulfidic sites (Poecilia sulphuraria) experience low mortality (13 %) when transferred to non-sulfidic water. (b) Mate choice tests revealed that P. mexicana females exhibit a preference for conspecific males in non-sulfidic water, but not in sulfidic water, whereas P. sulphuraria females never showed a preference. Increased costs of mate choice in sulfidic, hypoxic water, and the lack of selection for reinforcement due to the low survival of P. mexicana may explain the absence of a preference in P. sulphuraria females. Taken together, our study may be the first to demonstrate independent-but complementary-effects of natural and sexual selection against immigrants maintaining differentiation between locally adapted fish populations.
Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.
de Morais E Silva, Luana; Alves, Mateus Feitosa; Scotti, Luciana; Lopes, Wilton Silva; Scotti, Marcus Tullius
2018-05-30
Persistent organic products are compounds used for various purposes, such as personal care products, surfactants, colorants, industrial additives, food, pesticides and pharmaceuticals. These substances are constantly introduced into the environment and many of these pollutants are difficult to degrade. Toxic compounds classified as MoA 1 (Mode of Action 1) are low toxicity compounds that comprise nonreactive chemicals. In silico methods such as Quantitative Structure-Activity Relationships (QSARs) have been used to develop important models for prediction in several areas of science, as well as aquatic toxicity studies. The aim of the present study was to build a QSAR model-based set of theoretical Volsurf molecular descriptors using the fish acute toxicity values of compounds defined as MoA 1 to identify the molecular properties related to this mechanism. The selected Partial Least Squares (PLS) results based on the values of cross-validation coefficients of determination (Q cv 2 ) show the following values: Q cv 2 = 0.793, coefficient of determination (R 2 ) = 0.823, explained variance in external prediction (Q ext 2 ) = 0.87. From the selected descriptors, not only the hydrophobicity is related to the toxicity as already mentioned in previously published studies but other physicochemical properties combined contribute to the activity of these compounds. The symmetric distribution of the hydrophobic moieties in the structure of the compounds as well as the shape, as branched chains, are important features that are related to the toxicity. This information from the model can be useful in predicting so as to minimize the toxicity of organic compounds. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.T.; Wang, L.S.; Chen, S.P.
1996-12-31
The fundamental differentiation of toxicity is between reactive and nonreactive toxicity. Reactive toxicity is associated with a specific mechanism for the reaction with an enzyme or inhibition of a metabolic pathway, and nonreactive toxicity is related directly to the quantity of toxicant acting upon the cell. The quantitative structure-activity relationships (QSARs) have been successfully used in the nonreactive toxicity, such as prediction of the toxicity of nonreactive compounds based on their solubility in the lipids of organisms. The elements of molecular structure that are most closely related to nonreactive toxicity are those that describe the partitioning of the toxicant intomore » the organism, while QSARs for the reactive toxicity are less common in the environmental toxicology literature. With the recent increase in the use of synthetic substituted benzenes as industrial chemicals, the accurate analysis of the effect of reactive toxic chemicals has become recognized with QSAR. For this purpose, we selected the fish (Carassias auratus) as the test organism, measured the acute toxicity of 50% lethal concentration (LC{sub 50}) of the chemicals and the adenosine triphosphate (ATP) content of the liver cells for the organism. These determined the relationships of the acute toxicity of some substituted benzenes with their physicochemical structural parameters. The effects on the ATP content was also compared to predict biological reactivities of the chemicals, so as to find some clues to explain the mode of mechanism of the toxicity. 17 refs., 1 tab.« less
Comparison of Pharmacological Potency and Safety of Glutamate Blocker IEM-1913 and Memantine.
Gmiro, V E; Serdyuk, S E; Veselkina, O S
2015-11-01
Adamantane-containing glutamate blocker IEM-1913 (1-amino-4-(1-adamantane-amino)-butane dihydrochloride) equals to memantine in antiparkinsonian potency, but surpasses it in anticonvulsive, antidepressant, and analgesic activities. Moreover, its use is less toxic and safer. IEM-1913 produces significant pharmacological effects at a wide concentration diapason (0.03-1.00 mg/kg), while memantine is effective within a narrow range only (15-20 mg/kg). High pharmacological efficacy and low toxicity of IEM-1913 can be explained by the fact that in contrast to monocationic selective NMDA antagonist memantine, the dicationic glutamate blocker IEM-1913 produces a combined block of cerebral NMDA and AMPA receptors.
ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function
Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.
2016-01-01
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965
Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A
2016-02-04
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.
Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing
2014-01-01
Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca2+ and Mg2+ but not with K+ and Na+. The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H+ competition with Cr3+ bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH2+ in solution culture. Stability constants were obtained for the binding of Cr3+, CrOH2+, Ca2+, Mg2+ and H+ with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics. PMID:25119269
Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing
2014-01-01
Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca(2+) and Mg(2+) but not with K(+) and Na(+). The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H(+) competition with Cr(3+) bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH(2+) in solution culture. Stability constants were obtained for the binding of Cr(3+), CrOH(2+), Ca(2+), Mg(2+) and H(+) with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics.
Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics.
Wang, Huiliang; Hsieh, Bing; Jiménez-Osés, Gonzalo; Liu, Peng; Tassone, Christopher J; Diao, Ying; Lei, Ting; Houk, Kendall N; Bao, Zhenan
2015-01-07
Regioregular poly(3-alkylthiophene) (P3AT) polymers have been previously reported for the selective, high-yield dispersion of semiconducting single-walled carbon nanotubes (SWCNTs) in toluene. Here, five alternative solvents are investigated, namely, tetrahydrofuran, decalin, tetralin, m-xylene, and o-xylene, for the dispersion of SWCNTs by poly(3-dodecylthiophene) P3DDT. The dispersion yield could be increased to over 40% using decalin or o-xylene as the solvents while maintaining high selectivity towards semiconducting SWCNTs. Molecular dynamics (MD) simulations in explicit solvents are used to explain the improved sorting yield. In addition, a general mechanism is proposed to explain the selective dispersion of semiconducting SWCNTs by conjugated polymers. The possibility to perform selective sorting of semiconducting SWCNTs using various solvents provides a greater diversity of semiconducting SWCNT ink properties, such as boiling point, viscosity, and surface tension as well as toxicity. The efficacy of these new semiconducting SWCNT inks is demonstrated by using the high boiling point and high viscosity solvent tetralin for inkjet-printed transistors, where solvent properties are more compatible with the inkjet printing head and improved droplet formation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corsi, Steven R; Geis, Steven W; Loyo-Rosales, Jorge E; Rice, Clifford P; Sheesley, Rebecca I; Failey, Greg G; Cancilla, Devon A
2006-05-15
Snowbank samples were collected from snowbanks within a medium-sized airport for four years to characterize aircraft deicer and anti-icer (ADAF) components and toxicity. Concentrations of ADAF components varied with median glycol concentrations from individual sampling periods ranging from 65 to 5940 mg/L. Glycol content in snowbanks ranged from 0.17 to 11.4% of that applied to aircraft. Glycol, a freezing point depressant, was selectively removed during melt periods before snow and ice resulting in lower glycol concentrations after melt periods. Concentrations of ADAF components in airport runoff were similar during periods of snowmelt as compared to active ADAF application periods; however, due to the long duration of snowmelt events, greater masses of glycol were transported during snowmelt events. Alkylphenol ethoxylates (APEO), selected APEO degradation products, and 4- and 5-methyl-1H-benzotriazole were detected in snowbank samples and airport snowmelt. Concentrations of APEO parent products were greater in snowbank samples than in runoff samples. Relative abundance of APEO degradation products increased in the downstream direction from the snowbank to the outfalls and the receiving stream with respect to APEO parent compounds and glycol. Toxicity in Microtox assays remained in snowbanks after most glycol had been removed during melt periods. Increased toxicity in airport snowbanks as compared to other urban snowbanks was not explained by additional combustion or fuel contribution in airport snow. Organic markers suggest ADAF additives as a possible explanation for this increased toxicity. Results indicate that glycol cannot be used as a surrogate for fate and transport of other ADAF components.
Corsi, S.R.; Geis, S.W.; Loyo-Rosales, J. E.; Rice, C.P.; Sheesley, R.J.; Failey, G.G.; Cancilla, Devon A.
2006-01-01
Snowbank samples were collected from snowbanks within a medium-sized airport for four years to characterize aircraft deicer and anti-icer (ADAF) components and toxicity. Concentrations of ADAF components varied with median glycol concentrations from individual sampling periods ranging from 65 to 5940 mg/L. Glycol content in snowbanks ranged from 0.17 to 11.4% of that applied to aircraft. Glycol, a freezing point depressant, was selectively removed during melt periods before snow and ice resulting in lower glycol concentrations after melt periods. Concentrations of ADAF components in airport runoff were similar during periods of snowmelt as compared to active ADAF application periods; however, due to the long duration of snowmelt events, greater masses of glycol were transported during snowmelt events. Alkylphenol ethoxylates (APEO), selected APEO degradation products, and 4- and 5-methyl-1H-benzotriazole were detected in snowbank samples and airport snowmelt. Concentrations of APEO parent products were greater in snowbank samples than in runoff samples. Relative abundance of APEO degradation products increased in the downstream direction from the snowbank to the outfalls and the receiving stream with respect to APEO parent compounds and glycol. Toxicity in Microtox assays remained in snowbanks after most glycol had been removed during melt periods. Increased toxicity in airport snowbanks as compared to other urban snowbanks was not explained by additional combustion or fuel contribution in airport snow. Organic markers suggest ADAF additives as a possible explanation for this increased toxicity. Results indicate that glycol cannot be used as a surrogate for fate and transport of other ADAF components. ?? 2006 American Chemical Society.
Arning, Jürgen; Matzke, Marianne; Stolte, Stefan; Nehen, Frauke; Bottin-Weber, Ulrike; Böschen, Andrea; Abdulkarim, Salha; Jastorff, Bernd; Ranke, Johannes
2009-12-01
To demonstrate how baseline toxicity can be separated from other more specific modes of toxic action and to address possible pitfals when dealing with hydrophobic substances, the four isothiazol-3-one biocides N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT), and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) as an example for reactive electrophilic xenobiotics were tested for their cytotoxic effects on the human hepatoblastoma cell line Hep G2, on the marine bacterium Vibrio fischeri, and on the limnic green alga Scenedesmus vacuolatus. In each of the three test systems, toxic effects were observed in a consistent pattern. The two chlorinated compounds and OIT were found to be significantly more toxic than MIT. As compared to baseline toxicants, the small and polar MIT and CIT exhibited pronounced excess toxicity in each of the three test systems that is presumably triggered by their intrinsic reactivity toward cellular thiols. In contrast, OIT and DCOIT showed mainly toxicities that could be explained by their hydrophobicity. Analyzing and comparing these results using the toxic ratio concept and with data that indicate a dramatic depletion of cellular glutathione levels after incubation with DCOIT reveals that for highly hydrophobic substances, baseline level toxicity in an assay for acute toxicity can lead to an oversight of other more specific modes of toxic action that may cause significant effects that might be less reversible than those caused by unreactive baseline toxicants. This possibility should be taken into account in the hazard assessment of chemicals that are both hydrophobic and reactive.
PH DEPENDENT TOXICITY OF FIVE METALS TO THREE MARINE ORGANISMS
The pH of natural marine systems is relatively stable; this may explain why metal toxicity changes with pH have not been well documented. However, changes in metal toxicity with pH in marine waters are of concern in toxicity testing. During porewater toxicity testing pH can chang...
Toxics Use Reduction to Achieve Enhanced Pollution Prevention Success
Training material from the Massachusetts Toxics Use Reduction Institute, University of Massachusetts Lowell. This training explains toxic use reduction, process mapping and materials accounting. Helps identify TUR opportunities and TUR options evaluation
Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing
2014-09-01
Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.
Küster, Eberhard; Dorusch, Falk; Vogt, Carsten; Weiss, Holger; Altenburger, Rolf
2004-07-15
Success of groundwater remediation is typically controlled via snapshot analysis of selected chemical substances or physical parameters. Biological parameters, i.e. ecotoxicological assays, are rarely employed. Hence the aim of the study was to develop a bioassay tool, which allows an on line monitoring of contaminated groundwater, as well as a toxicity reduction evaluation (TRE) of different remediation techniques in parallel and may furthermore be used as an additional tool for process control to supervise remediation techniques in a real time mode. Parallel testing of groundwater remediation techniques was accomplished for short and long time periods, by using the energy dependent luminescence of the bacterium Vibrio fischeri as biological monitoring parameter. One data point every hour for each remediation technique was generated by an automated biomonitor. The bacteria proved to be highly sensitive to the contaminated groundwater and the biomonitor showed a long standing time despite the highly corrosive groundwater present in Bitterfeld, Germany. The bacterial biomonitor is demonstrated to be a valuable tool for remediation success evaluation. Dose response relationships were generated for the six quantitatively dominant groundwater contaminants (2-chlortoluene, 1,2- and 1,4-dichlorobenzene, monochlorobenzene, ethylenbenzene and benzene). The concentrations of individual volatile organic chemicals (VOCs) could not explain the observed effects in the bacteria. An expected mixture toxicity was calculated for the six components using the concept of concentration addition. The calculated EC(50) for the mixture was still one order of magnitude lower than the observed EC(50) of the actual groundwater. The results pointed out that chemical analysis of the six most quantitative substances alone was not able to explain the effects observed with the bacteria. Thus chemical analysis alone may not be an adequate tool for remediation success evaluation in terms of toxicity reduction.
Turning the Tide on Toxics in the Home.
ERIC Educational Resources Information Center
Washington State Dept. of Ecology, Olympia.
This booklet provides a guide for the safe use and disposal of toxic chemicals found around the home. Toxicity ratings given to compounds are explained along with the amount needed for a probable fatal dose for a 150-pound person. Each category of hazardous waste is provided with typical examples of the toxicants, a toxicity rating, several…
NASA Astrophysics Data System (ADS)
Acosta, Oscar; Dowling, Jason; Cazoulat, Guillaume; Simon, Antoine; Salvado, Olivier; de Crevoisier, Renaud; Haigron, Pascal
The prediction of toxicity is crucial to managing prostate cancer radiotherapy (RT). This prediction is classically organ wise and based on the dose volume histograms (DVH) computed during the planning step, and using for example the mathematical Lyman Normal Tissue Complication Probability (NTCP) model. However, these models lack spatial accuracy, do not take into account deformations and may be inappropiate to explain toxicity events related with the distribution of the delivered dose. Producing voxel wise statistical models of toxicity might help to explain the risks linked to the dose spatial distribution but is challenging due to the difficulties lying on the mapping of organs and dose in a common template. In this paper we investigate the use of atlas based methods to perform the non-rigid mapping and segmentation of the individuals' organs at risk (OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from a population of patients treated for prostate cancer by radiotherapy. The prostate and the OAR (Rectum, Bladder, Bones) were then manually delineated by an expert and constituted the training data. After a number of affine and non rigid registration iterations, an average image (template) representing the whole population was obtained. The amount of consensus between labels was used to generate probabilistic maps for each organ. We validated the accuracy of the approach by segmenting the organs using the training data in a leave one out scheme. The agreement between the volumes after deformable registration and the manually segmented organs was on average above 60% for the organs at risk. The proposed methodology provides a way to map the organs from a whole population on a single template and sets the stage to perform further voxel wise analysis. With this method new and accurate predictive models of toxicity will be built.
Četojević-Simin, Dragana D; Armaković, Sanja J; Šojić, Daniela V; Abramović, Biljana F
2013-10-01
Toxicity of metoprolol (MET) alone and in mixtures with its photocatalytic degradation intermediates obtained by using TiO2 Wackherr and Degussa P25 under UV irradiation in the presence of O2 was evaluated in vitro in a panel of three histologically different cell lines: rat hepatoma (H-4-II-E), human colon adenocarcinoma (HT-29) and human fetal lung (MRC-5). Both catalysts promoted a time-dependent increase in the toxicity of the photodegradation products, and those obtained using Degussa P25 photocatalyst were more toxic. The most pronounced and selective toxic action of MET and products of its photodegradation was observed in the hepatic cell line. The higher toxicity of the mixtures obtained using Degussa P25 catalyst could be explained by a different mechanism of MET degradation, i.e. by the presence or higher concentrations of some intermediates. Although the concentrations of intermediates obtained using TiO2 Wackherr catalyst were higher, they did not affect significantly the growth of the examined cell lines, indicating their lower toxicity. This suggests that a treatment aiming at complete mineralization should be performed bearing in mind that the type of catalyst, the concentration of target molecule, and the duration of the process are significant factors that determine the nature and toxicity of the resulting mixtures. Although the EC50 values of MET obtained in mammalian cell lines were higher compared to the bioassays for lower trophic levels, the time-dependent promotion of toxicity of degradation mixtures should be attributed to the higher sensitivity of mammalian cell bioassays. © 2013 Elsevier B.V. All rights reserved.
Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula.
Bogacki, Paul; Peck, David M; Nair, Ramakrishnan M; Howie, Jake; Oldach, Klaus H
2013-03-27
Medicago truncatula Gaertn. (barrel medic) is cultivated as a pasture legume for its high protein content and ability to improve soils through nitrogen fixation. Toxic concentrations of the micronutrient Boron (B) in agricultural soils hamper the production of cereal and leguminous crops. In cereals, the genetic analysis of B tolerance has led to the development of molecular selection tools to introgress and maintain the B tolerance trait in breeding lines. There is a comparable need for selection tools in legumes that grow on these toxic soils, often in rotation with cereals. Genetic variation for B tolerance in Medicago truncatula was utilised to generate two F2 populations from crosses between tolerant and intolerant parents. Phenotyping under B stress revealed a close correlation between B tolerance and biomass production and a segregation ratio explained by a single dominant locus. M. truncatula homologues of the Arabidopsis major intrinsic protein (MIP) gene AtNIP5;1 and the efflux-type transporter gene AtBOR1, both known for B transport, were identified and nearby molecular markers screened across F2 lines to verify linkage with the B-tolerant phenotype. Most (95%) of the phenotypic variation could be explained by the SSR markers h2_6e22a and h2_21b19a, which flank a cluster of five predicted MIP genes on chromosome 4. Three CAPS markers (MtBtol-1,-2,-3) were developed to dissect the region further. Expression analysis of the five predicted MIPs indicated that only MtNIP3 was expressed when leaf tissue and roots were assessed. MtNIP3 showed low and equal expression in the roots of tolerant and intolerant lines but a 4-fold higher expression level in the leaves of B-tolerant cultivars. The expression profile correlates closely with the B concentration measured in the leaves and roots of tolerant and intolerant plants. Whereas no significant difference in B concentration exists between roots of tolerant and intolerant plants, the B concentration in the leaves of tolerant plants is less than half that of intolerant plants, which further supports MtNIP3 as the best candidate for the tolerance trait-defining gene in Medicago truncatula. The close linkage of the MtNIP3 locus to B toxicity tolerance provides a source of molecular selection tools to pasture breeding programs. The economical importance of the locus warrants further investigation of the individual members of the MIP gene cluster in other pasture and in grain legumes.
Genetic analysis of tolerance to Boron toxicity in the legume Medicago truncatula
2013-01-01
Background Medicago truncatula Gaertn. (barrel medic) is cultivated as a pasture legume for its high protein content and ability to improve soils through nitrogen fixation. Toxic concentrations of the micronutrient Boron (B) in agricultural soils hamper the production of cereal and leguminous crops. In cereals, the genetic analysis of B tolerance has led to the development of molecular selection tools to introgress and maintain the B tolerance trait in breeding lines. There is a comparable need for selection tools in legumes that grow on these toxic soils, often in rotation with cereals. Results Genetic variation for B tolerance in Medicago truncatula was utilised to generate two F2 populations from crosses between tolerant and intolerant parents. Phenotyping under B stress revealed a close correlation between B tolerance and biomass production and a segregation ratio explained by a single dominant locus. M. truncatula homologues of the Arabidopsis major intrinsic protein (MIP) gene AtNIP5;1 and the efflux-type transporter gene AtBOR1, both known for B transport, were identified and nearby molecular markers screened across F2 lines to verify linkage with the B-tolerant phenotype. Most (95%) of the phenotypic variation could be explained by the SSR markers h2_6e22a and h2_21b19a, which flank a cluster of five predicted MIP genes on chromosome 4. Three CAPS markers (MtBtol-1,-2,-3) were developed to dissect the region further. Expression analysis of the five predicted MIPs indicated that only MtNIP3 was expressed when leaf tissue and roots were assessed. MtNIP3 showed low and equal expression in the roots of tolerant and intolerant lines but a 4-fold higher expression level in the leaves of B-tolerant cultivars. The expression profile correlates closely with the B concentration measured in the leaves and roots of tolerant and intolerant plants. Whereas no significant difference in B concentration exists between roots of tolerant and intolerant plants, the B concentration in the leaves of tolerant plants is less than half that of intolerant plants, which further supports MtNIP3 as the best candidate for the tolerance trait-defining gene in Medicago truncatula. Conclusion The close linkage of the MtNIP3 locus to B toxicity tolerance provides a source of molecular selection tools to pasture breeding programs. The economical importance of the locus warrants further investigation of the individual members of the MIP gene cluster in other pasture and in grain legumes. PMID:23531152
Lee, Sundong; Cho, Myung-Haing
2014-01-01
Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011
Llama-derived single domain antibodies specific for Abrus agglutinin.
Goldman, Ellen R; Anderson, George P; Zabetakis, Dan; Walper, Scott; Liu, Jinny L; Bernstein, Rachael; Calm, Alena; Carney, James P; O'Brien, Thomas W; Walker, Jennifer L; Garber, Eric A E
2011-11-01
Llama derived single domain antibodies (sdAb), the recombinantly expressed variable heavy domains from the unique heavy-chain only antibodies of camelids, were isolated from a library derived from llamas immunized with a commercial abrin toxoid preparation. Abrin is a potent toxin similar to ricin in structure, sequence and mechanism of action. The selected sdAb were evaluated for their ability to bind to commercial abrin as well as abrax (a recombinant abrin A-chain), purified abrin fractions, Abrus agglutinin (a protein related to abrin but with lower toxicity), ricin, and unrelated proteins. Isolated sdAb were also evaluated for their ability to refold after heat denaturation and ability to be used in sandwich assays as both capture and reporter elements. The best binders were specific for the Abrus agglutinin, showing minimal binding to purified abrin fractions or unrelated proteins. These binders had sub nM affinities and regained most of their secondary structure after heating to 95 °C. They functioned well in sandwich assays. Through gel analysis and the behavior of anti-abrin monoclonal antibodies, we determined that the commercial toxoid preparation used for the original immunizations contained a high percentage of Abrus agglutinin, explaining the selection of Abrus agglutinin binders. Used in conjunction with anti-abrin monoclonal and polyclonal antibodies, these reagents can fill a role to discriminate between the highly toxic abrin and the related, but much less toxic, Abrus agglutinin and distinguish between different crude preparations.
Llama-Derived Single Domain Antibodies Specific for Abrus Agglutinin
Goldman, Ellen R.; Anderson, George P.; Zabetakis, Dan; Walper, Scott; Liu, Jinny L.; Bernstein, Rachael; Calm, Alena; Carney, James P.; O’Brien, Thomas W.; Walker, Jennifer L.; Garber, Eric A. E.
2011-01-01
Llama derived single domain antibodies (sdAb), the recombinantly expressed variable heavy domains from the unique heavy-chain only antibodies of camelids, were isolated from a library derived from llamas immunized with a commercial abrin toxoid preparation. Abrin is a potent toxin similar to ricin in structure, sequence and mechanism of action. The selected sdAb were evaluated for their ability to bind to commercial abrin as well as abrax (a recombinant abrin A-chain), purified abrin fractions, Abrus agglutinin (a protein related to abrin but with lower toxicity), ricin, and unrelated proteins. Isolated sdAb were also evaluated for their ability to refold after heat denaturation and ability to be used in sandwich assays as both capture and reporter elements. The best binders were specific for the Abrus agglutinin, showing minimal binding to purified abrin fractions or unrelated proteins. These binders had sub nM affinities and regained most of their secondary structure after heating to 95 °C. They functioned well in sandwich assays. Through gel analysis and the behavior of anti-abrin monoclonal antibodies, we determined that the commercial toxoid preparation used for the original immunizations contained a high percentage of Abrus agglutinin, explaining the selection of Abrus agglutinin binders. Used in conjunction with anti-abrin monoclonal and polyclonal antibodies, these reagents can fill a role to discriminate between the highly toxic abrin and the related, but much less toxic, Abrus agglutinin and distinguish between different crude preparations. PMID:22174977
Ginn, B R
2017-07-01
Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINs), tend to be diploid while haploidy tends to be restricted to relatively simple organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection
NASA Astrophysics Data System (ADS)
Phillips, Charles M.; Tan, Huwei
2010-04-01
This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.
Is the chronic Tier-1 effect assessment approach for insecticides protective for aquatic ecosystems?
Brock, Theo Cm; Bhatta, Ranjana; van Wijngaarden, René Pa; Rico, Andreu
2016-10-01
We investigated the appropriateness of several methods, including those recommended in the Aquatic Guidance Document of the European Food Safety Authority (EFSA), for the derivation of chronic Tier-1 regulatory acceptable concentrations (RACs) for insecticides and aquatic organisms. The insecticides represented different chemical classes (organophosphates, pyrethroids, benzoylureas, insect growth regulators, biopesticides, carbamates, neonicotinoids, and miscellaneous). Chronic Tier-1 RACs derived using toxicity data for the standard species Daphnia magna, Chironomus spp., and/or Americamysis bahia, were compared with Tier-3 RACs derived from micro- and mesocosm studies on basis of the ecological threshold option (ETO-RACs). ETO-RACs could be derived for 31 insecticides applied to micro- and mesocosms in single or multiple applications, yielding a total number of 36 cases for comparison. The chronic Tier-1 RACs calculated according to the EFSA approach resulted in a sufficient protection level, except for 1 neonicotinoid (slightly underprotective) and for several pyrethroids if toxicity data for A. bahia were not included. This latter observation can be explained by 1) the fact that A. bahia is the most sensitive standard test species for pyrethroids, 2) the hydrophobic properties of pyrethroids, and 3) the fact that long-term effects observed in (epi) benthic arthropods may be better explained by exposure via the sediment than via overlying water. Besides including toxicity data for A. bahia, the protection level for pyrethroids can be improved by selecting both D. magna and Chironomus spp. as standard test species for chronic Tier-1 derivation. Although protective in the majority of cases, the conservativeness of the recommended chronic Tier-1 RACs appears to be less than an order of magnitude for a relatively large proportion of insecticides when compared with their Tier-3 ETO-RACs. This may leave limited options for refinement of the chronic effect assessment using laboratory toxicity data for additional species. Integr Environ Assess Manag 2016;12:747-758. © 2015 SETAC. © 2015 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrill, Alison H., E-mail: ahharrill@uams.edu; The Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709; Eaddy, John S.
NP260 was designed as a first-in-class selective antagonist of α4-subtype GABA{sub A} receptors that had promising efficacy in animal models of pain, epilepsy, psychosis, and anxiety. However, development of NP260 was complicated following a 28-day safety study in dogs in which pronounced elevations of serum aminotransferase levels were observed, although there was no accompanying histopathological indication of hepatocellular injury. To further investigate the liver effects of NP260, we assayed stored serum samples from the 28-day dog study for liver specific miRNA (miR-122) as well as enzymatic biomarkers glutamate dehydrogenase and sorbitol dehydrogenase, which indicate liver necrosis. Cytotoxicity assessments were conductedmore » in hepatocytes derived from dog, rat, and human liver samples to address the species specificity of the liver response to NP260. All biomarkers, except ALT, returned toward baseline by Day 29 despite continued drug treatment, suggesting adaptation to the initial injury. In vitro analysis of the toxicity potential of NP260 to primary hepatocytes indicated a relative sensitivity of dog > human > rat, which may explain, in part, why the liver effects were not evident in the rodent safety studies. Taken together, the data indicate that a diagnostic biomarker approach, coupled with sensitive in vitro screening strategies, may facilitate interpretation of toxicity potential when an adaptive event masks the underlying toxicity. - Highlights: • NP260 caused ALT elevations in dogs without evidence of hepatocellular injury. • SDH, GLDH, and miRNA-122 elevations occurred, confirming hepatocellular necrosis. • NP260 toxicity is greater in dog and human hepatocytes than in rat hepatocytes. • Species sensitivity may explain why the rodent studies failed to indicate risk. • Diagnostic biomarkers and hepatocyte studies aid interpretation of hepatotoxicity.« less
This presentation explains the importance of the fine-scale features for air toxics exposure modeling. The paper presents a new approach to combine local-scale and regional model results for the National Air Toxic Assessment. The technique has been evaluated with a chemical tra...
Mixture toxicity of wood preservative products in the fish embryo toxicity test.
Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja
2012-06-01
Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.
Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water
Beitz; Bechmann; Mitzner
1999-01-01
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.
Sahoo, S K; Žunić, Z S; Kritsananuwat, R; Zagrodzki, P; Bossew, P; Veselinovic, N; Mishra, S; Yonehara, H; Tokonami, S
2015-07-01
Human hair and nails can be considered as bio-indicators of the public exposure to certain natural radionuclides and other toxic metals over a long period of months or even years. The level of elements in hair and nails usually reflect their levels in other tissues of body. Niška Banja, a spa town located in southern Serbia, with locally high natural background radiation was selected for the study. To assess public exposure to the trace elements, hair and nail samples were collected and analyzed. The concentrations of uranium, thorium and some trace and toxic elements (Mn, Ni, Cu, Sr, Cd, and Cs) were determined using inductively coupled plasma mass spectrometry (ICP-MS). U and Th concentrations in hair varied from 0.0002 to 0.0771 μg/g and from 0.0002 to 0.0276 μg/g, respectively. The concentrations in nails varied from 0.0025 to 0.0447 μg/g and from 0.0023 to 0.0564 μg/g for U and Th, respectively. We found significant correlations between some elements in hair and nails. Also indications of spatial clustering of high values could be found. However, this phenomenon as well as the large variations in concentrations of heavy metals in hair and nail could not be explained. As hypotheses, we propose possible exposure pathways which may explain the findings, but the current data does not allow testing them. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Modeling Aquatic Toxicity through Chromatographic Systems.
Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí
2017-08-01
Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.
Persistent Environmental Toxicants in Breast Milk and Rapid Infant Growth.
Criswell, Rachel; Lenters, Virissa; Mandal, Siddhartha; Stigum, Hein; Iszatt, Nina; Eggesbø, Merete
2017-01-01
Many environmental toxicants are passed to infants in utero and through breast milk. Exposure to toxicants during the perinatal period can alter growth patterns, impairing growth or increasing obesity risk. Previous studies have focused on only a few toxicants at a time, which may confound results. We investigated levels of 26 toxicants in breast milk and their associations with rapid infant growth, a risk factor for later obesity. We used data from the Norwegian HUMIS study, a multi-center cohort of 2,606 mothers and newborns enrolled between 2002 and 2008. Milk samples collected 1 month after delivery from a subset of 789 women oversampled by overweight were analyzed for toxicants including polychlorinated biphenyls (PCBs), heavy metals, and pesticides. Growth was defined as change in weight-for-age z-score between 0 and 6 months among the HUMIS population, and rapid growth was defined as change in z-score above 0.67. We used a Bayesian variable selection method to determine the exposures that most explained variation in the outcome. Identified toxicants were included in logistic and linear regression models to estimate associations with growth, adjusting for maternal age, smoking, education, pre-pregnancy body mass index (BMI), gestational weight gain, parity, child sex, cumulative breastfeeding, birth weight, gestational age, and preterm status. Of 789 infants, 19.2% displayed rapid growth. The median maternal age was 29.6 years, and the median pre-pregnancy BMI was 24.0 kg/m2, with 45.3% of mothers overweight or obese. Rapid growers were more likely to be firstborn. Hexachlorobenzene, β-hexachlorocyclohexane (β-HCH), and PCB-74 were identified in the variable selection method. An interquartile range (IQR) increase in β-HCH exposure was associated with a lower odds of rapid growth (OR 0.63, 95% CI 0.42-0.94). Newborns exposed to high levels of β-HCH showed reduced infant growth (β = -0.03, 95% CI -0.05 to -0.01 for IQR increase in breast milk concentration). No other significant associations were found. Our results suggest that early life β-HCH exposure may be linked to slowed growth. Further research is warranted on the potential mechanism behind this association and the longer-term metabolic effects of perinatal β-HCH exposure. © 2017 S. Karger AG, Basel.
Is non-host pollen suitable for generalist bumblebees?
Vanderplanck, Maryse; Decleves, Sylvain; Roger, Nathalie; Decroo, Corentin; Caulier, Guillaume; Glauser, Gaetan; Gerbaux, Pascal; Lognay, Georges; Richel, Aurore; Escaravage, Nathalie; Michez, Denis
2018-04-01
Current evidence suggests that pollen is both chemically and structurally protected. Despite increasing interest in studying bee-flower networks, the constraints for bee development related to pollen nutritional content, toxicity and digestibility as well as their role in the shaping of bee-flower interactions have been poorly studied. In this study we combined bioassays of the generalist bee Bombus terrestris on pollen of Cirsium, Trifolium, Salix, and Cistus genera with an assessment of nutritional content, toxicity, and digestibility of pollen. Microcolonies showed significant differences in their development, non-host pollen of Cirsium being the most unfavorable. This pollen was characterized by the presence of quite rare δ7-sterols and a low digestibility. Cirsium consumption seemed increase syrup collection, which is probably related to a detoxification mixing behavior. These results strongly suggest that pollen traits may act as drivers of plant selection by bees and partly explain why Asteraceae pollen is rare in bee generalist diet. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Long- and short-term effects of boron excess to root form and function in two tomato genotypes.
Princi, Maria Polsia; Lupini, Antonio; Longo, Caterina; Miller, Anthony J; Sunseri, Francesco; Abenavoli, Maria Rosa
2016-12-01
Boron (B) is an essential plant nutrient, but when present in excess it is toxic. Morphological measurements were made to assess the impact of B toxicity on the growth of two different tomato hybrids, Losna and Ikram. Contrasting long and short-term B responses in these tomato hybrids, were observed. Losna showed less toxicity symptoms, maintaining higher growth and showing much less B content in both root and shoot tissues compared to Ikram. Root morphological differences did not explain the tolerance between the two hybrids. Under excess B supply, a significant inhibition on net nitrate uptake rate was observed in Ikram, but not in Losna. This effect may be explained by a decrease of nitrate transporter transcripts in Ikram, which was not measured in Losna. There was a different pattern of B transporter expression in two tomatoes and this can explain the contrasting tolerance observed. Indeed, Losna may be able to exclude or efflux B resulting in less accumulation in the shoot. Particularly, SlBOR4 expression showed significant differences between the tomato hybrids, with higher expression in Losna explaining the improved B-tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Shahid, Naeem; Becker, Jeremias Martin; Krauss, Martin; Brack, Werner; Liess, Matthias
2018-06-22
Risk assessments of toxicants in aquatic environments are typically based on the evaluation of concentrations in water or sediment. However, concentrations in water are highly variable, while the body burden may provide a better time-integrated measure of pesticide exposure and potential effects in aquatic organisms. Here, we quantified pesticide body burdens in a dominant invertebrate species from agricultural streams, Gammarus pulex, compared them pesticide concentrations in water samples, and linked the pesticide contamination with observed ecological effects on macroinvertebrate communities. In total, 19 of 61 targeted analytes were found in the organisms, ranging from 0.037 to 93.94 ng g-1 (wet weight). Neonicotinoids caused the highest toxic pressure among the pesticides detected in G. pulex. Using linear solvation energy relationships (LSERs), we derived equivalent pesticide concentrations in stream water based on the body burden. These equivalent concentrations correlated with the concentrations in water samples collected after run-off (65% of variance explained). Pesticide pressure significantly affected the aquatic macroinvertebrate community structure, expressed as SPEARpesticides, and caused, on average, threefold increased insecticide tolerance in G. pulex as a result of adaptation. The toxic pressure derived from body burden and from water samples similarly explained the change in community structure (68% and 64%). However, the increased tolerance of G. pulex to pesticides was better explained by the toxicity derived from body burden (70%) than by the toxicity from water samples (53%). We conclude that the internal body burden of macroinvertebrates is suitable to assess the overall pesticide exposure and effects in agricultural streams.
Petschenka, Georg; Fandrich, Steffi; Sander, Nils; Wagschal, Vera; Boppré, Michael; Dobler, Susanne
2013-09-01
Despite the monarch butterfly (Danaus plexippus) being famous for its adaptations to the defensive traits of its milkweed host plants, little is known about the macroevolution of these traits. Unlike most other animal species, monarchs are largely insensitive to cardenolides, because their target site, the sodium pump (Na(+)/K(+) -ATPase), has evolved amino acid substitutions that reduce cardenolide binding (so-called target site insensitivity, TSI). Because many, but not all, species of milkweed butterflies (Danaini) are associated with cardenolide-containing host plants, we analyzed 16 species, representing all phylogenetic lineages of milkweed butterflies, for the occurrence of TSI by sequence analyses of the Na(+)/K(+) -ATPase gene and by enzymatic assays with extracted Na(+)/K(+) -ATPase. Here we report that sensitivity to cardenolides was reduced in a stepwise manner during the macroevolution of milkweed butterflies. Strikingly, not all Danaini typically consuming cardenolides showed TSI, but rather TSI was more strongly associated with sequestration of toxic cardenolides. Thus, the interplay between bottom-up selection by plant compounds and top-down selection by natural enemies can explain the evolutionary sequence of adaptations to these toxins. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Kaga, Akimune; Watanabe, Hiroshi; Miyabayashi, Hiroki; Metoki, Takaya; Kitaoka, Setsuko; Kumaki, Satoru
2016-10-01
Neonatal toxic shock syndrome-like exanthematous disease (NTED) is a newly recognized neonatal infectious disease, caused by the superantigen toxic shock syndrome toxin-1 (TSST-1). TSST-1 is mainly produced by methicillin-resistant Staphylococcus aureus, and the immune responses to TSST-1 are known to cause toxic shock syndrome, a life-threatening infectious disease. The clinical symptoms of NTED are skin rash, fever, and thrombocytopenia, but severe thrombocytopenia is rare in term infants with NTED. Although the cause of NTED is the same as that of toxic shock syndrome, the clinical symptoms of NTED are milder than toxic shock syndrome. The mild phenotype of NTED has been explained by selectively elevated serum levels of anti-inflammatory cytokine interleukin (IL)-10, which suppress immune responses to TSST-1. In the present study, we report a term female infant of NTED complicated with hemophagocytic syndrome (HPS). HPS is characterized by systemic inflammation and hemophagocytosis, caused by uncontrolled activation of T cells and macrophages. The serum IL-10 level of the patient at 4 days of age was relatively low (67 pg/mL) for NTED but still higher than normal controls (< 2.0 pg/mL). The patient also showed severe thrombocytopenia. We speculate that the serum IL-10 level of the patient was enough to supress immune responses to TSST-1, thereby resulting in NTED, but not enough to suppress the onset of HPS. This is the first reported case of NTED complicated with HPS. If a physician encounters an NTED patient with severe cytopenia, microscopic examination of peripheral blood smear should be carried out to exclude HPS.
The Role of Nitrogen Fixation in Cyanobacterial Bloom Toxicity in a Temperate, Eutrophic Lake
Beversdorf, Lucas J.; Miller, Todd R.; McMahon, Katherine D.
2013-01-01
Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N) speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA), possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS) region to determine population dynamics. In parallel, we measured microcystin concentrations, N2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN) concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N2 fixation rates were observed. Then, following large early summer N2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N2 fixation rates and Aphanizomenon abundance increased before the lake mixed in the fall. Estimated N inputs from N2 fixation were large enough to supplement, or even support, the toxic Microcystis blooms. PMID:23405255
Mercurio, Philip; Eaglesham, Geoff; Parks, Stephen; Kenway, Matt; Beltran, Victor; Flores, Florita; Mueller, Jochen F; Negri, Andrew P
2018-03-19
The toxicity of herbicide degradation (transformation) products is rarely taken into account, even though these are commonly detected in the marine environment, sometimes at concentrations higher than the parent compounds. Here we assessed the potential contribution of toxicity by transformation products of five photosystem II herbicides to coral symbionts (Symbiodinium sp.), the green algae Dunaliella sp., and prawn (Penaeus monodon) larvae. Concentration-dependent inhibition of photosynthetic efficiency (∆F/F m ') was observed for all herbicides in both microalgal species. The toxicity of solutions of aged diuron solutions containing transformation products to Symbiodinium sp. and Dunaliella sp. was greater than could be explained by the concentrations of diuron measured, indicating transformation products contributed to the inhibition of ∆F/F m '. However, the toxicity of aged atrazine, simazine, hexazinone, and ametryn solutions could be explained by the concentration of parent herbicide, indicating no contribution by transformation products. Prawn larval metamorphosis was not sensitive to the herbicides, but preliminary results indicated some toxicity of the transformation products of atrazine and diuron. Risk assessments should take into account the contribution of herbicide transformation products; however, further studies are clearly needed to test the toxicity of a far wider range of transformation products to a representative diversity of relevant taxa.
Toxicology of spacecraft materials
NASA Technical Reports Server (NTRS)
Harris, E. S.
1971-01-01
The procedures for determining the toxicity of products outgassed from spacecraft structures are discussed. The test equipment involved in the tests and the criteria for acceptability are described. The use of animals as the final step in determining toxicity of a spacecraft environment is explained.
Watson-Leung, Trudy; Graham, Matt; Hartman, Erin; Welsh, Paul G
2017-01-01
Potential adverse impacts to the aquatic environment should be minimized whenever possible during an environmental dredging project by selecting realistic and technically feasible environmental targets. These targets need to balance short term impacts with the longer term benefit of removing contaminated sediments from the environment. Environmental dredging is part of the planned remediation of Randle Reef (a 60 hectare zone of mostly PAH-contaminated sediments) in Hamilton, Ontario, Canada. In this study, we describe the results of dredging elutriate toxicity testing (DETE) to assess the potential risks from dredging this PAH contaminated site. A modified elutriate preparation method intended as an alternative measure of conditions within the dredging plume was assessed with both standard water column species (Daphnia magna and fathead minnow [Pimephales promelas]) and alternative benthic and epibenthic test organisms (Chironomus dilutus and Hyalella azteca). The standard DETE test was also conducted with H. azteca to compare with the modified DETE results. The greatest toxic response was seen in the alternative test species; however, the modified DETE method resulted in less toxicity than the standard protocol. The relationship between toxicity results and chemical and/or physical characteristics of the samples was examined, but differences in toxicity could only be explained by differences in the total suspended solids concentrations in the elutriate samples. Challenges associated with DETE assessment of PAH-contaminated sediments and the implications for establishing dredging benchmarks are discussed. Integr Environ Assess Manag 2017;13:155-166. © 2016 SETAC. © 2016 SETAC.
Inhalational mold toxicity: fact or fiction? A clinical review of 50 cases.
Khalili, Barzin; Montanaro, Marc T; Bardana, Emil J
2005-09-01
Three well-accepted mechanisms of mold-induced disease exist: allergy, infection, and oral toxicosis. Epidemiologic studies suggest a fourth category described as a transient aeroirritation effect. Toxic mold syndrome or inhalational toxicity continues to cause public concern despite a lack of scientific evidence that supports its existence. To conduct a retrospective review of 50 cases of purported mold-induced toxic effects and identify unrecognized conditions that could explain presenting symptoms; to characterize a subgroup with a symptom complex suggestive of an aeroirritation-mediated mechanism and compare this group to other diagnostic categories, such as sick building syndrome and idiopathic chemical intolerance; and to discuss the evolution of toxic mold syndrome from a clinical perspective. Eighty-two consecutive medical evaluations were analyzed of which 50 met inclusion criteria. These cases were critically reviewed and underwent data extraction of 23 variables, including demographic data, patient symptoms, laboratory, imaging, and pulmonary function test results, and an evaluation of medical diagnoses supported by medical record review, examination, and/or test results. Upper respiratory tract, lower respiratory tract, systemic, and neurocognitive symptoms were reported in 80%, 94%, 74%, and 84% of patients, respectively. Thirty patients had evidence of non-mold-related conditions that explained their presenting complaints. Two patients had evidence of allergy to mold allergens, whereas 1 patient exhibited mold-induced psychosis best described as toxic agoraphobia. Seventeen patients displayed a symptom complex that could be postulated to be caused by a transient mold-induced aeroirritation. The clinical presentation of patients with perceived mold-induced toxic effects is characterized by a disparate constellation of symptoms. Close scrutiny revealed a number of preexisting diagnoses that could plausibly explain presenting symptoms. The pathogenesis of aeroirritation implies completely transient symptoms linked to exposures at the incriminated site. Toxic mold syndrome represents the furtive evolution of aeroirritation from a transient to permanent symptom complex in patients with a psychogenic predisposition. In this respect, the core symptoms of toxic mold syndrome and their gradual transition to chronic symptoms related to nonspecific environmental fragrances and irritants appear to mimic what has been observed with other pseudodiagnostic categories, such as sick building syndrome and idiopathic chemical intolerance.
Alterations of mitochondrial DNA in CEM cells selected for resistance toward ddC toxicity.
Bjerke, M; Franco, M; Johansson, M; Balzarini, J; Karlsson, A
2006-01-01
2 ',3 '-dideoxycytidine (ddC) is a nucleoside analog that has been shown to produce a delayed toxicity which may be due to the depletion of mitochondrial DNA (mtDNA). In order to gain further understanding of the events involved in mitochondrial toxicity, two different CEM cell lines were selected for resistance to the delayed ddC toxicity.
Streptococcus agalactiae Toxic Shock-Like Syndrome
Al Akhrass, Fadi; Abdallah, Lina; Berger, Steven; Hanna, Rami; Reynolds, Nina; Thompson, Shellie; Hallit, Rabih; Schlievert, Patrick M.
2013-01-01
Abstract We present 2 patients with Streptococcus agalactiae toxic shock-like syndrome and review another 11 well-reported cases from the literature. Streptococcal toxic shock-like syndrome is a devastating illness with a high mortality rate, therefore we stress the importance of early supportive management, antimicrobial therapy, and surgical intervention. Toxic shock-like syndrome is likely to be underestimated in patients with invasive Streptococcus agalactiae infection who present with shock. Early diagnosis requires high suspicion of the illness, along with a thorough mucocutaneous examination. Streptococcus agalactiae produces uncharacterized pyrogenic toxins, which explains the ability of the organism to cause toxic shock-like syndrome. PMID:23263717
Zheleva, A M; Gadjeva, V G
2001-01-16
Physicochemical properties, such as half life time (tau0.5), alkylating and carbamoylating activity and in vivo antimelanomic effects against B16 melanoma of spin labeled (containing nitroxyl free radical moiety) amino acid nitrosoureas, synthesized in our laboratory, have been studied and compared to those of the antitumor drug N'-cyclohexyl-N-(2-chloroethyl)-N-nitrosourea (lomustine, CCNU). We have shown that the introduction of amino acid moieties and the replacement of cyclohexylamine with nitroxyl moiety leads to a faster decomposition, higher alkylating, lower carbamoylating activity, better antimelanomic activity and lower general toxicity, when compared to those of CCNU. It was also established that spin labeled triazenes, previously synthesized by us, were more stable in phosphate saline than their nonlabeled analogue, 5-(3,3-dimethyltriazene-1-yl)-imidazole-4-carboxamide (dacarbazine, DTIC). A higher cytotoxicity to B16 melanoma cells than to YAC-1 and lymphocytes was demonstrated for all spin labeled triazenes, in comparison with DTIC. An assumption has been made to explain the lower general toxicity of the spin labeled nitrosoureas compared to that of CCNU. Based on the results presented, we accept that a new trend for synthesis of more selective and less toxic nitrosourea and triazene derivatives as potential antimelanomic drugs might be developed.
Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress
Fu, Longwen; Liu, Zuoyi
2018-01-01
Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612
Rasmann, Sergio; Agrawal, Anurag A
2011-05-01
Attempts over the past 50 years to explain variation in the abundance, distribution and diversity of plant secondary compounds gave rise to theories of plant defense. Remarkably, few phylogenetically robust tests of these long-standing theories have been conducted. Using >50 species of milkweed (Asclepias spp.), we show that variation among plant species in the induction of toxic cardenolides is explained by latitude, with higher inducibility evolving more frequently at lower latitudes. We also found that: (1) the production of cardenolides showed positive-correlated evolution with the diversity of cardenolides, (2) greater cardenolide investment by a species is accompanied by an increase in an estimate of toxicity (measured as chemical polarity) and (3) instead of trading off, constitutive and induced cardenolides were positively correlated. Analyses of root and shoot cardenolides showed concordant patterns. Thus, milkweed species from lower latitudes are better defended with higher inducibility, greater diversity and added toxicity of cardenolides. © 2011 Blackwell Publishing Ltd/CNRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirocha, C.J.; Pawlosky, R.J.; Gunther, R.
1989-12-22
Methods of analysis for T-2 toxin, HT-2 and T-2-tetraol in blood and urine were developed using hybrid tandem mass spectrometry, more specifically, Multiple Reaction Monitoring (MRM). Essentially, the mass spectra of the above toxins were obtained in electron impact, the fragments studied for selection of appropriate parent and daughters were generated with the objective of using them analytically. As an example, m/z 478 of the trifluoroacetate derivative of T-2 toxin was reacted in the collision chamber (field free region three) with argon and 23 eV to produce daughters 12, 138 and 180. These were used in method development so thatmore » T-2 was detected in a biological matrix with a sensitivity of 1 part per billion. A field method of urine collection was developed for the analysis of T-2 toxin. An attempt was made to find toxic isolates of Fusarium in soils of the Arctic of Norway that would explain some of the hemorrhagic activity noted with this genus. More specifically, descriptions of toxicity of biological warfare agents originating in Southeast Asia included extreme hemorrhaging. To this end, toxic isolates were found that caused extreme hemorrhaging in rats. The natural product responsible for the toxicity was isolated, purified and characterized as wortmannin. Wortmannin was shown to cause hemorrhaging in the heart, bladder, stomach and thymus. The chemistry, NMR and mass spectra of wortmannin are presented.« less
Toxicity of Cold Lake Blend and Western Canadian Select dilbits to standard aquatic test species
Dilbits are blends of bitumen and natural gas condensates or crude oils with only limited toxicity data. Two dilbits, Cold Lake Blend and Western Canadian Select, were tested as either unweathered or weathered oils for acute and chronic toxicity to standard freshwater and estuari...
Bobone, Sara; Bocchinfuso, Gianfranco; Park, Yoonkyung; Palleschi, Antonio; Hahm, Kyung-Soo; Stella, Lorenzo
2013-12-01
Antimicrobial peptides (AMPs) are promising compounds for developing new antibiotic drugs against drug-resistant bacteria. Many of them kill bacteria by perturbing their membranes but exhibit no significant toxicity towards eukaryotic cells. The identification of the features responsible for this selectivity is essential for their pharmacological development. AMPs exhibit few conserved features, but a statistical analysis of an AMP sequence database indicated that many α-helical AMPs surprisingly have a helix-breaking Pro residue in the middle of their sequence. To discriminate among the different possible hypotheses for the functional role of this feature, we designed an analogue of the antimicrobial peptide P5, in which the central Pro was deleted (analogue P5Del). Pro removal resulted in a dramatic increase of toxicity. This was explained by the observation that P5Del binds both charged and neutral membranes, whereas P5 has no appreciable affinity towards neutral bilayers. CD and simulative data provided a rationalization of this behavior. In solution P5, due to the presence of Pro, attains compact conformations, in which its apolar residues are partially shielded from the solvent, whereas P5Del is more helical. These structural differences reduce the hydrophobic driving force for association of P5 to neutral membranes, whereas its binding to anionic bilayers can still take place because of electrostatic attraction. After membrane binding, the Pro residue does not preclude the attainment of a membrane-active amphiphilic helical conformation. These findings shed light on the role of Pro residues in the selectivity of AMPs and provide hints for the design of new, highly selective compounds. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.
Tier 3 Toxicity Value White Paper
The purpose of this white paper is to articulate the issues pertaining to Tier 3 toxicity values and provide recommendations on processes that will improve the transparency and consistency of identifying, evaluating, selecting, and documenting Tier 3 toxicity values for use in the Superfund and Resource Conservation and Recovery Act (RCRA) programs. This white paper will be used to assist regional risk assessors in selecting Tier 3 toxicity values as well as provide the foundation for future regional and national efforts to improve guidance and policy on Tier 3 toxicity values.
NASA Astrophysics Data System (ADS)
Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.
2013-06-01
Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.
Streptococcus agalactiae toxic shock-like syndrome: two case reports and review of the literature.
Al Akhrass, Fadi; Abdallah, Lina; Berger, Steven; Hanna, Rami; Reynolds, Nina; Thompson, Shellie; Hallit, Rabih; Schlievert, Patrick M
2013-01-01
We present 2 patients with Streptococcus agalactiae toxic shock-like syndrome and review another 11 well-reported cases from the literature. Streptococcal toxic shock-like syndrome is a devastating illness with a high mortality rate, therefore we stress the importance of early supportive management, antimicrobial therapy, and surgical intervention. Toxic shock-like syndrome is likely to be underestimated in patients with invasive Streptococcus agalactiae infection who present with shock. Early diagnosis requires high suspicion of the illness, along with a thorough mucocutaneous examination. Streptococcus agalactiae produces uncharacterized pyrogenic toxins, which explains the ability of the organism to cause toxic shock-like syndrome.
Picking Cell Lines for High-Throughput Transcriptomic Toxicity ...
High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captures the diversity of potential responses across chemicals. The ideal dataset to select these cell types would consist of hundreds of cell types treated with thousands of chemicals, but does not yet exist. However, basal gene expression data may be useful as a surrogate for representing the relevant biological space necessary for cell type selection. The goal of this study was to identify a small (< 20) number of cell types that capture a large, quantifiable fraction of basal gene expression diversity. Three publicly available collections of Affymetrix U133+2.0 cellular gene expression data were used: 1) 59 cell lines from the NCI60 set; 2) 303 primary cell types from the Mabbott et al (2013) expression atlas; and 3) 1036 cell lines from the Cancer Cell Line Encyclopedia. The data were RMA normalized, log-transformed, and the probe sets mapped to HUGO gene identifiers. The results showed that <20 cell lines capture only a small fraction of the total diversity in basal gene expression when evaluated using either the entire set of 20960 HUGO genes or a subset of druggable genes likely to be chemical targets. The fraction of the total gene expression variation explained was consistent when
Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells.
Gutiérrez-Escobar, Andrés Julián; Méndez-Callejas, Gina
2017-12-01
Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Prolonged neurophysiologic effects of levetiracetam after oral administration in humans.
Epstein, Charles M; Girard-Siqueira, Lhys; Ehrenberg, Joshua Andrew
2008-07-01
To determine whether neurophysiological effects of levetiracetam (LEV) outlast its serum half-life of approximately 7 h. Demonstration of prolonged effects would help to explain the efficacy of LEV at conventional dosing intervals that are longer than the serum half-life. Following an oral dose of LEV 3 g in 12 normal volunteers, we compared transcranial magnetic stimulation (TMS) measures of motor threshold (MT) and recruitment with LEV serum levels and subjective ratings of toxicity over 48 h. Subjects used a two-dimensional visual-analog scale to estimate the time course of any side effects. LEV serum levels and subjective toxicity both peaked around 1 h after oral administration. MT elevation was delayed in comparison to peak serum levels and subjective toxicity. MT was maximally elevated at 6-9 h, and recruitment maximally reduced at 0.6-9 h. Changes in both measures had recovered by approximately 50% at 24 h. Despite the time difference between toxicity and TMS changes, toxicity estimates correlated with the maximum increase in MT. There is a substantial time lag between LEV serum levels and TMS measures of neuronal effects, and a similar temporal dissociation between subjective toxicity and maximum TMS change. The time course of neurophysiological effects, as measured by TMS, may help to explain the sustained clinical efficacy of LEV despite a short peripheral half-life.
The Use of Paramecium to Observe the Toxic Effect of Cigarette Smoke.
ERIC Educational Resources Information Center
Bardell, David
1986-01-01
Describes a laboratory experiment in which Paramecium caudatum was used to demonstrate the toxic effect of cigarette smoke on the cilia of epithelium cells lining the trachea and bronchi of smokers. Provides background information and explains the procedure, including how to make a simple mechanical smoking device. (TW)
Wise, John Pierce; Wise, Sandra S.; Holmes, Amie L.; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim
2010-01-01
In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760
Coelho, Euricléia Gomes; Amaral, Ana Claudia F; Ferreira, José Luiz P; dos Santos, Adriane G; Pinheiro, Maria Lúcia B; Silva, Jefferson Rocha de A
2007-03-01
The species of the genus Palicourea (Rubiaceae family) is well-known for its toxicity towards animals, particularly livestock. This work reports the occurrence of skin irritation during the manipulation of Palicourea longiflora, considering the prevalence of the monofluoracetic acid (MFAA) and another toxic compound: methyl salicylate. The MFAA was identified by 19F-NMR and methyl salicylate by gas chromatography linked to mass spectrometry (GC/MS) analysis. Additionally, an anatomical study of leaves had been used to explain the mechanism of penetration of the toxic principles.
Anticancer activity of the new photosensitizers: dose and cell type dependence
NASA Astrophysics Data System (ADS)
Gyulkhandanyan, Grigor V.; Ghambaryan, Sona S.; Amelyan, Gayane V.; Ghazaryan, Robert K.; Haroutiunian, Samvel G.; Gyulkhandanyan, Aram G.; Gasparyan, Gennadi H.
2005-04-01
The necessity of researches of antitumor efficiency of new photosensitizers (PS) is explained by the opportunity of their application in photodynamic therapy of tumors. PS, selectively accumulated in cancer cells and activated by the light, generate the active oxygen species that cause apoptosis. Earlier, it was shown that PS chlorin e6 (0.3-0.5 μg/ml) induces rat embryo fibroblast-like cell apoptosis. In present work antitumor activity of the new photosensitizers, water-soluble cationic porphyrins and their metal complexes, is investigated. The dose-dependent destruction of cancer cells was shown on PC-12 (pheochromocytoma, rat adrenal gland) and Jurkat (human lymphoma) cell lines. Meso-tetra-[4-N-(2 `- oxyethyl) pyridyl] porphyrin (TOEPyP) and chlorin e6 possessed the same toxicity at LD50 dose on PC-12 cell line, whereas phototoxicity of TOEPyP was 3 times less compared to chlorin e6(LD50=0.2 and 0.075 μg/ml accordingly). The results have shown weak photosensitizing effect of Zn-and Ag-derivatives of TOEPyP on PC-12 cell line. TOEPyP and Zn-TOEPyP (0.1 - 50 μg/ml) were non-toxic for Jurkat cell line, whereas Ag-TOEPyP was toxic at 10 μg/ml (LD90). TOEPyP and chlorin e6 have shown phototoxic effect in the same dose range (LD50=0.5 and 0.3 μg/ml accordingly). The investigation of toxic and phototoxic effects of the new porphyrins revealed significantly different sensitivity of various cell lines to PSs.
Screening level mixture risk assessment of pharmaceuticals in STP effluents.
Backhaus, Thomas; Karlsson, Maja
2014-02-01
We modeled the ecotoxicological risks of the pharmaceutical mixtures emitted from STP effluents into the environment. The classic mixture toxicity concept of Concentration Addition was used to calculate the total expected risk of the analytically determined mixtures, compare the expected impact of seven effluent streams and pinpoint the most sensitive group of species. The risk quotient of a single, randomly selected pharmaceutical is often more than a factor of 1000 lower than the mixture risk, clearly indicating the need to systematically analyse the overall risk of all pharmaceuticals present. The MCR, which is the ratio between the most risky compound and the total mixture risk, varies between 1.2 and 4.2, depending on the actual scenario and species group under consideration. The mixture risk quotients, based on acute data and an assessment factor of 1000, regularly exceed 1, indicating a potential risk for the environment, depending on the dilution in the recipient stream. The top 10 mixture components explain more than 95% of the mixture risk in all cases. A mixture toxicity assessment cannot go beyond the underlying single substance data. The lack of data on the chronic toxicity of most pharmaceuticals as well as the very few data available for in vivo fish toxicity has to be regarded as a major knowledge gap in this context. On the other hand, ignoring Independent Action or even using the sum of individual risk quotients as a rough approximation of Concentration Addition does not have a major impact on the final risk estimate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pesticide mobility and leachate toxicity in two abandoned mine soils. Effect of organic amendments.
Rodríguez-Liébana, José Antonio; Mingorance, M Dolores; Peña, Aránzazu
2014-11-01
Abandoned mine areas, used in the past for the extraction of minerals, constitute a degraded landscape which needs to be reintegrated to productive or leisure activities. However these soils, mainly composed by silt or sand and with low organic matter content, are vulnerable to organic and inorganic pollutants posing a risk to the surrounding ecosystems and groundwater. Soils from two mining areas from Andalusia were evaluated: one from Nerva (NCL) in the Iberian Pyrite Belt (SW Andalusia) and another one from the iron Alquife mine (ALQ) (SE Andalusia). To improve soil properties and fertility two amendments, stabilised sewage sludge (SSL) and composted sewage sludge (CSL), were selected. The effect of amendment addition on the mobility of two model pesticides, thiacloprid and fenarimol, was assessed using soil columns under non-equilibrium conditions. Fenarimol, more hydrophobic than thiacloprid, only leached from native ALQ, a soil with lower organic carbon (OC) content than NCL (0.21 and 1.4%, respectively). Addition of amendments affected differently pesticide mobility: thiacloprid in the leachates was reduced by 14% in NCL-SSL and by 4% in ALQ-CSL. Soil OC and dissolved OC were the parameters which explained pesticide residues in soil. Chemical analysis revealed that leachates from the different soil columns did not contain toxic element levels, except As in NCL soil. Finally ecotoxicological data showed moderate toxicity in the initial leachates, with an increase coinciding with pesticide maximum concentration. The addition of SSL slightly reduced the toxicity towards Vibrio fischeri, likely due to enhanced retention of pesticides by amended soils. Copyright © 2014 Elsevier B.V. All rights reserved.
The Installation Restoration Program Toxicology Guide. Volume 4
1989-07-01
64.15 64-5 JP-4 Fuel-Water Partition Coefficients (K,) for Selected Hydrocarbons .......................... 64-20 04-6 Acute Toxicity of Components of JP...65.11 65-3 Equilibrium Partitioning of Select Gasoline Hydrocarbons in Model Environments ............... 65-14 65-4 Acute Toxicity of Components o...66-27 66-5 Acute Toxicity of Components of Fuel Oils ............ 66-37 67-1 Composition Dat,- for Stoddard Solvent
NASA Astrophysics Data System (ADS)
Orr, Philip T.; Willis, Anusuya; Burford, Michele A.
2018-04-01
Cyanobacteria are oxygenic photosynthetic Gram-negative bacteria that can form potentially toxic blooms in eutrophic and slow flowing aquatic ecosystems. Bloom toxicity varies spatially and temporally, but understanding the mechanisms that drive these changes remains largely a mystery. Changes in bloom toxicity may result from changes in intracellular toxin pool sizes of cyanotoxins with differing molecular toxicities, and/or from changes in the cell concentrations of toxic and non-toxic cyanobacterial species or strains within bloom populations. We show here how first-order rate kinetics at the cellular level can be used to explain how environmental conditions drive changes in bloom toxicity at the ecological level. First order rate constants can be calculated for changes in cell concentration (μ c: specific cell division rate) or the volumetric biomass concentration (μ g: specific growth rate) between short time intervals throughout the cell cycle. Similar first order rate constants can be calculated for changes in nett volumetric cyanotoxin concentration (μ tox: specific cyanotoxin production rate) over similar time intervals. How μ c (or μ g ) covaries with μ tox over the cell cycle shows conclusively when cyanotoxins are being produced and metabolised, and how the toxicity of cells change in response to environment stressors. When μ tox/μ c>1, cyanotoxin cell quotas increase and individual cells become more toxic because the nett cyanotoxin production rate is higher than the cell division rate. When μ tox/μ c=1, cell cyanotoxin quotas remains fixed because the nett cyanotoxin production rate matches the cell division rate. When μ tox/μ c<1, the cyanotoxin cell quota decreases because either the nett cyanotoxin production rate is lower than the cell division rate, or metabolic breakdown and/or secretion of cyanotoxins is occurring. These fundamental equations describe cyanotoxin metabolism dynamics at the cellular level and provide the necessary physiological background to understand how environmental stressors drive changes in bloom toxicity.
Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.
Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B
2017-11-01
Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.
Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan
2016-05-05
This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. Copyright © 2016 Elsevier B.V. All rights reserved.
SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.
Patterns and trends in sediment toxicity in the San Francisco Estuary
Anderson, B.; Hunt, J.; Phillips, B.; Thompson, B.; Lowe, S.; Taberski, K.; Scott, Carr R.
2007-01-01
Widespread sediment toxicity has been documented throughout the San Francisco Estuary since the mid-1980s. Studies conducted in the early 1990s as part of the Bay Protection and Toxic Cleanup Program (BPTCP), and more recently as part of the Regional Monitoring Program (RMP) have continued to find sediment toxicity in the Estuary. Results of these studies have shown a number of sediment toxic hotspots located at selected sites in the margins of the Estuary. Recent RMP monitoring has indicated that the magnitude and frequency of sediment toxicity is greater in the winter wet season than in the summer dry season, which suggests stormwater inputs are associated with sediment toxicity. Additionally, spatial trends in sediment toxicity data indicate that toxic sediments are associated with inputs from urban creeks surrounding the Estuary, and from Central Valley rivers entering the northern Estuary via the Delta. Sediment toxicity has been correlated with a number of contaminants, including selected metals, PAHs and organochlorine pesticides. While toxicity identification evaluations (TIEs) suggest that metals are the primary cause of sediment toxicity to bivalve embryos; TIEs conducted with amphipods have been inconclusive. ?? 2006 Elsevier Inc. All rights reserved.
Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa.
Belz, Regina G; Patama, Marjo; Sinkkonen, Aki
2018-08-01
Toxicants are known to have negligible or stimulatory, i.e. hormetic, effects at low doses below those that decrease the mean response of a plant population. Our earlier observations indicated that at such low toxicant doses the growth of very fast- and slow-growing seedlings is selectively altered, even if the population mean remains constant. Currently, it is not known how common these selective low-dose effects are, whether they are similar among fast- and slow-growing seedlings, and whether they occur concurrently with hormetic effects. We tested the response of Lactuca sativa in complete dose-response experiments to six different toxicants at doses that did not decrease population mean and beyond. The tested toxicants were IAA, parthenin, HHCB, 4-tert-octylphenol, glyphosate, and pelargonic acid. Each experiment consisted of 14,400-16,800 seedlings, 12-14 concentrations, 24 replicates per concentration and 50 germinated seeds per replicate. We analyzed the commonness of selective low-dose effects and explored if toxic effects and hormetic stimulation among fast- and slow-growing individuals occurred at the same concentrations as they occur at the population level. Irrespective of the observed response pattern and toxicant, selective low-dose effects were found. Toxin effects among fast-growing individuals usually started at higher doses compared to the population mean, while the opposite was found among slow-growing individuals. Very low toxin exposures tended to homogenize plant populations due to selective effects, while higher, but still hormetic doses tended to heterogenize plant populations. Although the extent of observed size segregation varied with the specific toxin tested, we conclude that a dose-dependent alteration in size distribution of a plant population may generally apply for many toxin exposures. Copyright © 2018 Elsevier B.V. All rights reserved.
Qiu, Hao; Versieren, Liske; Rangel, Georgina Guzman; Smolders, Erik
2016-01-19
Soil contamination with copper (Cu) is often associated with zinc (Zn), and the biological response to such mixed contamination is complex. Here, we investigated Cu and Zn mixture toxicity to Hordeum vulgare in three different soils, the premise being that the observed interactions are mainly due to effects on bioavailability. The toxic effect of Cu and Zn mixtures on seedling root elongation was more than additive (i.e., synergism) in soils with high and medium cation-exchange capacity (CEC) but less than additive (antagonism) in a low-CEC soil. This was found when we expressed the dose as the conventional total soil concentration. In contrast, antagonism was found in all soils when we expressed the dose as free-ion activities in soil solution, indicating that there is metal-ion competition for binding to the plant roots. Neither a concentration addition nor an independent action model explained mixture effects, irrespective of the dose expressions. In contrast, a multimetal BLM model and a WHAM-Ftox model successfully explained the mixture effects across all soils and showed that bioavailability factors mainly explain the interactions in soils. The WHAM-Ftox model is a promising tool for the risk assessment of mixed-metal contamination in soils.
Landrum, Peter F.; Fisher, Susan W.; Hwang, Haejo; Hickey, James P.
1999-01-01
Toxicities of ten organophosphorus (OP) insecticides were measured against midge larvae (Chironomus riparius) under varying temperature (11, 18, and 25°C) and pH (6, 7, and 8) conditions and with and without sediment. Toxicity usually increased with increasing temperature and was greater in the absence of sediment. No trend was found with varying pH. A series of unidimensional parameters and multidimensional models were used to describe the changes in toxicity. Log Kow was able to explain about 40–60% of the variability in response data for aqueous exposures while molecular volume and aqueous solubility were less predictive. Likewise, the linear solvation energy relationship (LSER) model only explained 40–70% of the response variability, suggesting that factors other than solubility were most important for producing the observed response. Molecular connectivity was the most useful for describing the variability in the response. In the absence of sediment, 1χv and 3κ were best able to describe the variation in response among all compounds at each pH (70–90%). In the presence of sediment, even molecular connectivity could not describe the variability until the partitioning potential to sediment was accounted for by assuming equilibrium partitioning. After correcting for partitioning, the same molecular connectivity terms as in the aqueous exposures described most of the variability, 61–87%, except for the 11°C data where correlations were not significant. Molecular connectivity was a better tool than LSER or the unidimensional variables to explain the steric fitness of OP insecticides which was crucial to the toxicity.
Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza
2017-04-15
We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.
This Scientific Advisory Panel meeting will address selected scientific issues associated with assessing the potential ecological risks resulting from use of a pesticide active ingredient which has persistent, bioaccumulative, and toxic (PBT) characteristics. EPA will pose speci...
Levels of selected carcinogens and toxicants in vapour from electronic cigarettes.
Goniewicz, Maciej Lukasz; Knysak, Jakub; Gawron, Michal; Kosmider, Leon; Sobczak, Andrzej; Kurek, Jolanta; Prokopowicz, Adam; Jablonska-Czapla, Magdalena; Rosik-Dulewska, Czeslawa; Havel, Christopher; Jacob, Peyton; Benowitz, Neal
2014-03-01
Electronic cigarettes, also known as e-cigarettes, are devices designed to imitate regular cigarettes and deliver nicotine via inhalation without combusting tobacco. They are purported to deliver nicotine without other toxicants and to be a safer alternative to regular cigarettes. However, little toxicity testing has been performed to evaluate the chemical nature of vapour generated from e-cigarettes. The aim of this study was to screen e-cigarette vapours for content of four groups of potentially toxic and carcinogenic compounds: carbonyls, volatile organic compounds, nitrosamines and heavy metals. Vapours were generated from 12 brands of e-cigarettes and the reference product, the medicinal nicotine inhaler, in controlled conditions using a modified smoking machine. The selected toxic compounds were extracted from vapours into a solid or liquid phase and analysed with chromatographic and spectroscopy methods. We found that the e-cigarette vapours contained some toxic substances. The levels of the toxicants were 9-450 times lower than in cigarette smoke and were, in many cases, comparable with trace amounts found in the reference product. Our findings are consistent with the idea that substituting tobacco cigarettes with e-cigarettes may substantially reduce exposure to selected tobacco-specific toxicants. E-cigarettes as a harm reduction strategy among smokers unwilling to quit, warrants further study. (To view this abstract in Polish and German, please see the supplementary files online.).
NASA Astrophysics Data System (ADS)
Coarfa, Violeta Florentina
2007-12-01
Air toxics, also called hazardous air pollutants (HAPs), pose a serious threat to human health and the environment. Their study is important in the Houston area, where point sources, mostly located along the Ship Channel, mobile and area sources contribute to large emissions of such toxic pollutants. Previous studies carried out in this area found dangerous levels of different HAPs in the atmosphere. This thesis presents several studies that were performed for the aromatic and non-aromatic air toxics in the HGA. For these studies we developed several tools: (1) a refined chemical mechanism, which explicitly represents 18 aromatic air toxics that were lumped under two model species by the previous version, based on their reactivity with the hydroxyl radical; (2) an engineering version of an existing air toxics photochemical model that enables us to perform much faster long-term simulations compared to the original model, that leads to a 8--9 times improvement in the running time across different computing platforms; (3) a combined emission inventory based on the available emission databases. Using the developed tools, we quantified the mobile source impact on a few selected air toxics, and analyzed the temporal and spatial variation of selected aromatic and non-aromatic air toxics in a few regions within the Houston area; these regions were characterized by different emissions and environmental conditions.
New directions in the toxicokinetics of human lead exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushak, P.
An important determinant of body lead (Pb) burden and Pb toxicity in exposed humans is Pb metabolism, or more correctly, Pb toxicokinetics. It affects the former through the quantitative processes of uptake, distribution and retention/excretion and the latter via delivery of toxic doses to cellular/molecular sites of action. Pb toxicokinetics has useful application in understanding Pb's behavior in populations. Several of these applications have been studied and results are presented for the toxicokinetic basis of dose-neurotoxic effect relationships in selected longitudinal studies and the use of toxicokinetic modeling for estimation of body lead burden in early populations. Three well-known, ongoingmore » longitudinal studies of developmental neurotoxicity--in Boston, Cincinnati, and Port Pirie, Australia--involve cohorts who differ markedly as to their pre- and postnatal lead exposure profiles. Toxicokinetic examination of these exposure differences helps to explain the temporal variability seen in blood Pb-toxic effect relationships and supports a causal role for lead. Toxicokinetic models of Pb uptake and in-vivo behavior are increasingly being considered for estimating Pb-B levels in lieu of direct measurement. A linear biokinetic model, using reliable input data for natural/prehistoric levels of Pb in sources, was applied to estimation of prehistoric/preindustrial children's blood lead. A range of 0.06 to 0.12 microgram/dl was estimated for two lead intakes. These estimates are still two orders of magnitude (85 to 165-fold) lower than the newly issued CDC toxicity guideline for children of 10 micrograms/dl. Lastly, the toxicokinetics of lead in bone, particularly its resorption with metabolic stimuli, is of concern, particularly for baby boom women who are either of childbearing age or approaching menopause and who had greatly elevated environmental lead exposures in the 1940s to 1970s. 115 refs.« less
Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M
2015-04-01
Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.
Toxicity of selected insecticides applied to western spruce budworm
Jacqueline L. Robertson; Nancy L. Gillette; Melvin Look; Barbara A. Lucas; Robert L. Lyon
1975-01-01
The contact toxicity of 100 insecticides to last stage larvae of Choristoneura occidentalis Freeman was tested by topical application in a 10-yr series of screening experiments. Pyrethroids were generally the most toxic group of chemicals tested. Compounds more toxic than the standard, mexacarbate, at Ld50 were:...
In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents
Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali
2015-01-01
The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. PMID:25679975
Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity
2009-01-01
nanoparticles were more acutely toxic to zebrafish than could be explained by dissolution alone. Derfus et al. (12) reported that oxidation of CdSe...extracts that are generated during some nanomanufacturing processes (21). Metals-laden wastes are of particular concern given the known toxicological ...that researchers continue to evaluate the toxicological behavior of engineered nanomaterials, our results emphasize the need for studies to evaluate
Carr, R.S.; Nipper, M.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.
2001-01-01
A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log Kow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses.
Causes of highway road dust toxicity to an estuarine amphipod: Evaluating the effects of nicotine.
Hiki, Kyoshiro; Nakajima, Fumiyuki; Tobino, Tomohiro
2017-02-01
Urban road dust can potentially have adverse effects on ecosystems if it is discharged into receiving waters. This study investigated the causes of highway road dust toxicity by performing sediment toxicity identification evaluation (TIE) tests with an estuarine amphipod, Grandidierella japonica. In addition to metals and polycyclic aromatic hydrocarbons, which are traditionally considered to be the major toxicants in road runoff, we focused on dissolved nicotine as a causative toxicant. The sediment TIE results suggested that organic contaminants contributed to the majority of toxicity, and that the contribution of unionized nicotine to the toxicity was the highest among the chemicals considered. However, additional mortality tests with 48-h pulsed nicotine exposure demonstrated that exposure to nicotine at the same concentration as the baseline level in TIE tests did not cause significant 10-day amphipod mortality. Thus, the road dust toxicity could not be explained only by unionized nicotine, thereby suggesting contributions from joint effects of the measured toxicants and the presence of other unmeasured factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hartzell, Sharon E; Unger, Michael A; Vadas, George G; Yonkos, Lance T
2018-03-01
Although the complexity of contaminant mixtures in sediments can confound the identification of causative agents of adverse biological response, understanding the contaminant(s) of primary concern at impacted sites is critical to sound environmental management and remediation. In the present study, a stock mixture of 18 polycyclic aromatic hydrocarbon (PAH) compounds was prepared to reflect the variety and relative proportions of PAHs measured in surface sediment samples collected from discrete areas of a historically contaminated industrial estuary. This site-specific PAH stock mixture was spiked into nontoxic in-system and out-of-system field-collected reference sediments in dilution series spanning the range of previously measured total PAH concentrations from the region. Spiked sediments were evaluated in 10-d Leptocheirus plumulosus tests to determine whether toxicity in laboratory-created PAH concentrations was similar to the toxicity found in field-collected samples with equivalent PAH concentrations. The results show that toxicity of contaminated sediments was not explained by PAH exposure, while indicating that toxicity in spiked in-system (fine grain, high total organic carbon [TOC]) and out-of-system (course grain, low TOC) sediments was better explained by porewater PAH concentrations, measured using an antibody-based biosensor that quantified 3- to 5-ring PAHs, than total sediment PAH concentrations. The study demonstrates the application of site-specific spiking experiments to evaluate sediment toxicity at sites with complex mixtures of multiple contaminant classes and the utility of the PAH biosensor for rapid sediment-independent porewater PAH analysis. Environ Toxicol Chem 2018;37:893-902. © 2017 SETAC. © 2017 SETAC.
Anthroposophic lifestyle influences the concentration of metals in placenta and cord blood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagerstedt, Sara; Kippler, Maria; Scheynius, Annika
Allergic diseases develop in genetically susceptible individuals in a complex interplay with the environment, usually early in life. We have previously shown that the anthroposophic lifestyle is associated with reduced risk of allergic disease in children, but details on the influencing environmental factors are largely unknown. This study aims to elucidate if anthroposophic lifestyle influences fetal exposure to selected toxic and essential elements. Randomly selected non-smoking mothers with (n=40) and without (n=40) anthroposophic lifestyle from the prospective birth cohort ALADDIN were included. Concentrations of 12 toxic and essential elements were analyzed in full term placentas and in the erythrocyte fractionsmore » of maternal peripheral blood and of umbilical cord blood, using inductively coupled plasma mass spectrometry. Cadmium concentrations in maternal blood and placenta were significantly higher in mothers with an anthroposophic lifestyle (p<0.001), while concentrations in cord blood were generally low, irrespective of lifestyle. Cobalt concentrations were higher in both maternal blood, placenta and cord blood in the anthroposophic group. Lead concentrations were higher in maternal blood and cord blood, but not placenta, of mothers with anthroposophic lifestyle. Analysis of covariance, including lifestyle, parity, maternal age, gestational age, vegetarian diet, use of herbal medicine and occupation in the model, showed that mainly the anthroposophic lifestyle was significantly associated with cadmium concentrations. In conclusion, women with an anthroposophic lifestyle had higher concentrations of cadmium, cobalt and lead concentrations. Cadmium concentrations might have been influenced by a diet rich in vegetables and/or low iron status of the mothers. - Highlights: • Toxic elements in mother–newborn pairs in relation to anthroposophic lifestyle. • Anthroposophic lifestyle was associated with higher levels of cadmium, cobalt and lead. • A diet rich in vegetables and/or low iron status may explain observed findings. • Nine other elements showed no differences by lifestyle.« less
Schreier, Theresa M.; Hubert, Terrance D.
2015-01-01
Three invasive fishes of considerable concern to aquatic resource managers are the Hypophthalmichthys nobilis (bighead carp),Hypophthalmichthys molitrix (silver carp), and Ctenopharyngodon idella (grass carp), collectively known as Asian carps. There is a need for an effective chemical control agent for Asian carps. Isoniazid was identified as a potential toxicant for grass carp. The selective toxicity of isoniazid to grass carp was verified as a response to an anecdotal report received in 2013. In addition, the toxicity of isoniazid to bighead carp, silver carp, and Oncorhynchus mykiss (rainbow trout) was evaluated. Isoniazid was not toxic to grass carp at the reported anecdotal concentration, which was 13 milligrams per liter. Isoniazid (130 milligrams per liter) was not selectively toxic to bighead carp, silver carp, or grass carp when compared to rainbow trout.
Neale, Peta A; Altenburger, Rolf; Aït-Aïssa, Selim; Brion, François; Busch, Wibke; de Aragão Umbuzeiro, Gisela; Denison, Michael S; Du Pasquier, David; Hilscherová, Klára; Hollert, Henner; Morales, Daniel A; Novák, Jiří; Schlichting, Rita; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Tindall, Andrew J; Tollefsen, Knut Erik; Williams, Timothy D; Escher, Beate I
2017-10-15
Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental quality standards. This study not only demonstrates the utility of fingerprinting single chemicals for an improved understanding of the biological effect of pollutants, but also highlights the need to apply bioassays for water quality monitoring in order to prevent underestimation of the overall biological effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites
Rondeau, Gary; Sánchez-Bayo, Francisco; Tennekes, Henk A.; Decourtye, Axel; Ramírez-Romero, Ricardo; Desneux, Nicolas
2014-01-01
Imidacloprid, one of the most commonly used insecticides, is highly toxic to bees and other beneficial insects. The regulatory challenge to determine safe levels of residual pesticides can benefit from information about the time-dependent toxicity of this chemical. Using published toxicity data for imidacloprid for several insect species, we construct time-to-lethal-effect toxicity plots and fit temporal power-law scaling curves to the data. The level of toxic exposure that results in 50% mortality after time t is found to scale as t1.7 for ants, from t1.6 to t5 for honeybees, and from t1.46 to t2.9 for termites. We present a simple toxicological model that can explain t2 scaling. Extrapolating the toxicity scaling for honeybees to the lifespan of winter bees suggests that imidacloprid in honey at 0.25 μg/kg would be lethal to a large proportion of bees nearing the end of their life. PMID:24993452
Son, Jino; Shin, Key-il; Cho, Kijong
2009-11-01
A central composite design (CCD) was employed to investigate the effects of organic matter (OM) content and soil pH on the reproduction, and chronic toxicity (28-d EC(50-reproduction)) of cadmium for Paronychiurus kimi after 28days exposure in a standard artificial soil. Two statistical models were developed, one describing reproduction in control artificial soils as a function of OM content and pH, and the other describing cadmium toxicity to the same soil parameters. In the reproduction model, pH was the most important factor, followed by two quadratic factors of OM(2) and pH(2). The parameter pH alone could explain 75.5% of the response variation. The reproduction model will allow us to predict a mean reproduction in the non-treated control soils that contain various combinations of OM content and different pH values. In the chronic toxicity model, only the linear factor of the OM content and pH significantly (p<0.05) affect cadmium toxicity, which explains the 78.9% and 14.9% of total response variance, respectively. Therefore, the final polynomial regression describing the chronic toxicity of cadmium to P. kimi is as follows: predicted 28-d EC(50) of cadmium (mgkg(-1))=-21.231+2.794 x OM+4.874 x pH. The present study show that soil characteristics, which can alter the toxicity of cadmium, can also act as stressors themselves in regards to the reproduction of P. kimi. Based on the physico-chemical characteristics of the test media, the response surface model developed in this study can be used to provide initial toxicity information for cadmium within a region of interest in terms of OM content and pH, and may lead to more scientific based risk assessment for metals.
The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...
The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...
Ochiai, K; Uemura, S; Shimizu, A; Okumoto, Y; Matoh, T
2008-06-01
Boron toxicity tolerance of rice plants was studied. Modern japonica subspecies such as Koshihikari, Nipponbare, and Sasanishiki were tolerant, whereas indica subspecies such as Kasalath and IR36 were intolerant to excessive application of boron (B), even though their shoot B contents under B toxicity were not significantly different. Recombinant inbred lines (RILs) of japonica Nekken-1 and indica IR36 were used for quantitative trait locus (QTL) analysis to identify the gene responsible for B toxicity tolerance. A major QTL that could explain 45% of the phenotypic variation was detected in chromosome 4. The QTL was confirmed using a population derived from a recombinant inbred line which is heterogenic at the QTL region. The QTL was also confirmed in other chromosome segment substitution lines (CSSLs).
Toxicological Profiles of Poisonous, Edible, and Medicinal Mushrooms
Jo, Woo-Sik; Hossain, Md. Akil
2014-01-01
Mushrooms are a recognized component of the human diet, with versatile medicinal properties. Some mushrooms are popular worldwide for their nutritional and therapeutic properties. However, some species are dangerous because they cause toxicity. There are many reports explaining the medicinal and/or toxic effects of these fungal species. Cases of serious human poisoning generally caused by the improper identification of toxic mushroom species are reported every year. Different substances responsible for the fatal signs and symptoms of mushroom toxicity have been identified from various poisonous mushrooms. Toxicity studies of mushroom species have demonstrated that mushroom poisoning can cause adverse effects such as liver failure, bradycardia, chest pain, seizures, gastroenteritis, intestinal fibrosis, renal failure, erythromelalgia, and rhabdomyolysis. Correct categorization and better understanding are essential for the safe and healthy consumption of mushrooms as functional foods as well as for their medicinal use. PMID:25346597
Meena, Ramu; Datta, S P; Golui, Debasis; Dwivedi, B S; Meena, M C
2016-07-01
A case study was undertaken to assess the risk of sewage-irrigated soils in relation to the transfer of trace elements to rice and wheat grain. For this purpose, peri-urban agricultural lands under the Keshopur Effluent Irrigation Scheme (KEIS) of Delhi were selected. These agricultural lands have been receiving irrigation through sewage effluents since 1979. Sewage effluent, groundwater, soil, and plant (rice and wheat grain) samples were collected with GPS coordinates from this peri-urban area. Under wheat crop, sewage irrigation for four decades resulted into a significant buildup of zinc (141 %), copper (219 %), iron (514 %), nickel (75.0 %), and lead (28.1 %) in sewage-irrigated soils over adjacent tube well water-irrigated ones. Under rice crop, there was also a significant buildup of phosphorus (339 %), sulfur (130 %), zinc (287 %), copper (352 %), iron (457 %), nickel (258 %), lead (136 %), and cadmium (147 %) in sewage-irrigated soils as compared to that of tube well water-irrigated soils. The values of hazard quotient (HQ) for intake of trace toxic elements by humans through consumption of rice and wheat grain grown on these sewage-irrigated soils were well within the safe permissible limit. The variation in Zn, Ni, and Cd content in wheat grain could be explained by solubility-free ion activity model (FIAM) to the extent of 50.1, 56.8, and 37.2 %, respectively. Corresponding values for rice grain were 49.9, 41.2, and 42.7 %, respectively. As high as 36.4 % variation in As content in rice grain could be explained by solubility-FIAM model. Toxic limit of extractable Cd and As in soil for rice in relation to soil properties and human health hazard associated with consumption of rice grain by humans was established. A similar exercise was also done in respect of Cd for wheat. The conceptual framework of fixing the toxic limit of extractable metals and metalloid in soils with respect to soil properties and human health hazard under the modeling framework was established.
Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo
King-Heiden, Tisha C.; Wiecinski, Paige N.; Mangham, Andrew N.; Metz, Kevin M.; Nesbit, Dorothy; Pedersen, Joel A.; Hamers, Robert J.; Heideman, Warren; Peterson, Richard E.
2009-01-01
Quantum dots (QDs) hold promise for several biomedical, life sciences and photovoltaic applications. Substantial production volumes and environmental release are anticipated. QD toxicity may be intrinsic to their physicochemical properties, or result from the release of toxic components during breakdown. We hypothesized that developing zebrafish could be used to identify and distinguish these different types of toxicity. Embryos were exposed to aqueous suspensions of CdSecore/ZnSshell QDs functionalized with either poly-L-lysine or poly(ethylene glycol) terminated with methoxy, carboxylate, or amine groups. Toxicity was influenced by the QD coating, which also contributed to the QD suspension stability. At sublethal concentrations, many QD preparations produced characteristic signs of Cd toxicity that weakly correlated with metallothionein expression, indicating that QDs are only slightly degraded in vivo. QDs also produced distinctly different toxicity that could not be explained by Cd release. Using the zebrafish model, we were able to distinguish toxicity intrinsic to QDs from that caused by released metal ions. We conclude that developing zebrafish provide a rapid, low- cost approach for assessing structure-toxicity relationships of nanoparticles. PMID:19350942
USDA-ARS?s Scientific Manuscript database
Glass vial bioassay were conducted to evaluate the toxicity of selected insecticides and insecticide mixtures to the brown stink bug (BSB), Euschistus servus (Say) collected from blacklight traps, cotton plants and weeds in farming areas in the Brazos Valley of Texas. Dicrotophos was 5- and 18-fold...
The relative toxic response of 27 selected phenols in the 96-hr acute flowthrough Pimephales promelas (fathead minnow) and the 48- to 60-hr chronic static Tetrahymena pyriformis (ciliate protozoan) test systems was evaluated. Log Kow-dependent linear regression analyses revealed ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belinsky, S. A.; Hoover, M. D.; Bradley, P. L.
This document from the Inhalation Toxicology Research Institute includes annual reports in the following general areas: (I) Aerosol Technology and Characterization of Airborne Materials; (II) Deposition, transport, and clearance of inhaled Toxicants; (III) Metabolism and Markers of Inhaled Toxicants; (IV) Carcinogenic Responses to Toxicants; (V) Mechanisms of carcinogenic response to Toxicants; (VI) Non carcinogenic responses to inhaled toxicants; (VII) Mechanisms of noncarcinogenic Responses to Inhaled Toxicants; (VIII) The application of Mathematical Modeling to Risk Estimates. 9 appendices are also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
Mantzouki, Evanthia; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Budzyńska, Agnieszka; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Messyasz, Beata; Pełechata, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Karakaya, Nusret; Häggqvist, Kerstin; Beklioğlu, Meryem; Filiz, Nur; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Boscaini, Adriano; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Köker, Latife; Albay, Meriç; Maronić, Dubravka Špoljarić; Stević, Filip; Pfeiffer, Tanja Žuna; Fonvielle, Jeremy; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Trapote, Mari Carmen; Obrador, Biel; Grabowska, Magdalena; Chmura, Damian; Úbeda, Bárbara; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Picazo, Antonio; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Udovič, Marija Gligora; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Kangro, Kersti; Ibelings, Bas W.
2018-01-01
Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains. PMID:29652856
Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.
Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.
2018-04-13
Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
URBAN STORMWATER TOXIC POLLUTANTS: ASSESSMENT, SOURCES, AND TREATABILITY
This paper summarizes an investigation to characterize and treat selected storm water contaminants that are listed as toxic pollutants (termed toxicants in this paper) in the Clean Water Act, Section 307 (Arbuckle et al., 1991). The first project phase investigated typical toxica...
TOXIC TRACE METALS IN MAMMALIAN HAIR AND NAILS
Data have been compiled from the available world literature on the accumulation and bioconcentration of selected toxic trace metals in human hair and nails and other mammalian hair, fur, nails, claws, and hoofs. The toxic trace metals and metalloids include antimony, arsenic, bor...
Horton, Bethany Jablonski; Wages, Nolan A.; Conaway, Mark R.
2016-01-01
Toxicity probability interval designs have received increasing attention as a dose-finding method in recent years. In this study, we compared the two-stage, likelihood-based continual reassessment method (CRM), modified toxicity probability interval (mTPI), and the Bayesian optimal interval design (BOIN) in order to evaluate each method's performance in dose selection for Phase I trials. We use several summary measures to compare the performance of these methods, including percentage of correct selection (PCS) of the true maximum tolerable dose (MTD), allocation of patients to doses at and around the true MTD, and an accuracy index. This index is an efficiency measure that describes the entire distribution of MTD selection and patient allocation by taking into account the distance between the true probability of toxicity at each dose level and the target toxicity rate. The simulation study considered a broad range of toxicity curves and various sample sizes. When considering PCS, we found that CRM outperformed the two competing methods in most scenarios, followed by BOIN, then mTPI. We observed a similar trend when considering the accuracy index for dose allocation, where CRM most often outperformed both the mTPI and BOIN. These trends were more pronounced with increasing number of dose levels. PMID:27435150
A genome-wide siRNA screen was employed to identify genes that were selectively toxic for a non-small cell lung cancer (NSCLC) cell line that lacked expression of SMARCA4, but were not toxic in non-cancerous immortalized human bronchial epithelial cells lacking SMARCA4 expression. Among the selectively toxic genes were several mapping to the molecular machinery regulating activity of Aurora kinase A on the mitotic spindle.
A genome-wide siRNA screen was employed to identify genes that were selectively toxic for a non-small cell lung cancer (NSCLC) cell line that lacked expression of SMARCA4, but were not toxic in non-cancerous immortalized human bronchial epithelial cells lacking SMARCA4 expression. Among the selectively toxic genes were several mapping to the molecular machinery regulating activity of Aurora kinase A on the mitotic spindle.
The classification and application of toxic Chinese materia medica.
Liu, Xinmin; Wang, Qiong; Song, Guangqing; Zhang, Guangping; Ye, Zuguang; Williamson, Elizabeth M
2014-03-01
Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China. Copyright © 2013 John Wiley & Sons, Ltd.
2009-05-01
of chemicals agents . Changes in gene expression are among the most sensitive indicators of chemical exposure. Toxicogenomics, which is based on DNA...assessing gene expression changes and subsequently the mechanism of renal injury following exposure to nephrotoxins selected for their regional...Serine Treatment on Selected Serum Chemistry Parameters ........................ 8 Table 4: Effect of PUR Treatment on Selected Serum Chemistry
NASA Astrophysics Data System (ADS)
Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.
2007-11-01
This study focuses on the interactions between toxic phytoplankton and zooplankton grazers. The experimental conditions used are an attempt to simulate situations that have, so far, received little attention. We presume the phytoplankton community to be a set of species where a population of a toxic species is intrinsically diverse by the presence of coexisting strains with different toxic properties. The other species in the community may not always be high-quality food for herbivorous zooplankton. Zooplankton populations may have developed adaptive responses to sympatric toxic phytoplankton species. Zooplankton grazers may perform a specific feeding behaviour and its consequences on fitness will depend on the species ingested, the effect of toxins, and the presence of mechanisms of toxin dilution and compensatory feeding. Our target species are a strain of the dinoflagellate Alexandrium minutum and a sympatric population of the copepod Acartia clausi. Mixed diets were used with two kinds of A. minutum cells: non-toxic and toxic. The flagellate Rhodomonas baltica and the non-toxic dinoflagellate Alexandrium tamarense were added as accompanying species. The effect of each alga was studied in separate diets. The toxic A. minutum cells were shown to have negative effects on egg production, hatching success and total reproductive output, while, in terms of its effect on fitness, the non-toxic A. minutum was the best quality food offered. R. baltica and A. tamarense were in intermediate positions. In the mixed diets, copepods showed a strong preference for toxic A. minutum cells and a weaker one for A. tamarense cells, while non-toxic A. minutum was slightly negatively selected and R. baltica strongly negatively selected. Although the level of toxins accumulated by copepods was very similar, in both the diet with only toxic A. minutum cells and in the mixed diet, the negative effects on fitness in the mixed diet could be offset by toxin dilution mechanisms. The implications of these findings are the fact that mesozooplankton may not play an important role in phytoplankton blooms development. Phytoplankton endotoxin production does not seem to be an evolutionary stable strategy as a defence against some herbivores.
Aquatic toxicity of petroleum products and dispersant agents ...
The U.S. EPA Office of Research and Development has developed baseline data on the ecotoxicity of selected petroleum products and several chemical dispersants as part of its oil spills research program. Two diluted bitumens (dilbits) from the Alberta Tar Sands were tested for acute and chronic toxicity to standard freshwater and marine organisms given their spill potential during shipment within the United States. Separately, two reference crude oils representing a range of characteristics, and their mixtures with four representative dispersants, were tested to evaluate acute and chronic toxicity to marine organisms in support of Subpart J of the U.S. National Contingency Plan. Water accommodated fractions (WAF) of oil were prepared using traditional slow-stir methods and toxicity tests generally followed U.S. EPA standard effluent testing guidelines. WAFs were characterized for petroleum hydrocarbons including alkyl PAH homologs. The results of these studies will assist the U.S. EPA to assess toxicity data for unconventional oils (dilbits), and establish baseline toxicity data for selected crude oils and dispersant in support of planning and response activities. Abstract reporting the results of EPA's oil and dispersant toxicity testing program
In Vitro Methods To Measure Toxicity Of Chemicals
2004-12-01
industrial compounds for toxicity will require high-throughput in vitro assays with which to select candidate compounds for more intensive animal...for estimating the starting dose for the rat oral acute toxicity test, thus reducing and refining the use of animals in the toxicological
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, L.J.; Johnson, E.M.; Newman, L.M.
A series of seven randomly selected potential halogenated water disinfection by-products were evaluated in vitro by the hydra assay to determine their developmental toxicity hazard potential. For six of the chemicals tested by this assay (dibromoacetonitrile; trichloroacetonitrile; 2-chlorophenol; 2,4,6-trichlorophenol; trichloroacetic acid; dichloroacetone) it was predicted that they would be generally equally toxic to both adult and embryonic mammals when studied by means of standard developmental toxicity teratology tests. However, the potential water disinfection by-product chloroacetic acid (CA) was determined to be over eight times more toxic to the embryonic developmental portion of the assay than it was to the adults.more » Because of this potential selectivity, CA is a high-priority item for developmental toxicity tests in pregnant mammals to confirm or refute its apparent unique developmental hazard potential and/or to establish a NOAEL by the route of most likely human exposure.« less
Identification of the Toxic Principle in a Sample of Poaefusarin
Mirocha, C. J.; Pathre, S.
1973-01-01
A sample of poaefusarin (a mycotoxin suspected of being one of the toxins involved in alimentary toxic aleukia in the U.S.S.R.) was received from a Soviet scientist for evaluation and comparison with other mycotoxins. Although poaefusarin is presumed to be a steroid, analyses by thin-layer chromatography, gas-liquid chromatography, and infrared, ultraviolet, and mass spectrometry could not confirm the presence of a steroid structure. However, 2.5% of the sample was made up of the trichothecene T-2 toxin, an amount sufficient to explain the toxicity found in the rat and rabbit skin toxicity tests. In addition, neosolaniol (0.14%), T-2 tetraol (0.6%), and zearalenone (F-2) (0.43%) were present in the sample. Since the toxicity was found to be associated only with T-2 toxin, no attempt was made to determine the nature of the other nontoxic components of the sample. PMID:4357651
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
Kroese, E Dinant; Bosgra, Sieto; Buist, Harrie E; Lewin, Geertje; van der Linden, Sander C; Man, Hai-yen; Piersma, Aldert H; Rorije, Emiel; Schulpen, Sjors H W; Schwarz, Michael; Uibel, Frederik; van Vugt-Lussenburg, Barbara M A; Wolterbeek, Andre P M; van der Burg, Bart
2015-08-01
Previously we showed a battery consisting of CALUX transcriptional activation assays, the ReProGlo assay, and the embryonic stem cell test, and zebrafish embryotoxicity assay as 'apical' tests to correctly predict developmental toxicity for 11 out of 12 compounds, and to explain the one false negative [7]. Here we report on applying this battery within the context of grouping and read across, put forward as a potential tool to fill data gaps and avoid animal testing, to distinguish in vivo non- or weak developmental toxicants from potent developmental toxicants within groups of structural analogs. The battery correctly distinguished 2-methylhexanoic acid, monomethyl phthalate, and monobutyltin trichloride as non- or weak developmental toxicants from structurally related developmental toxicants valproic acid, mono-ethylhexyl phthalate, and tributyltin chloride, respectively, and, therefore, holds promise as a biological verification model in grouping and read across approaches. The relevance of toxicokinetic information is indicated. Copyright © 2014 Elsevier Inc. All rights reserved.
Street, Steven T. G.; Chin, Donovan N.; Hollingworth, Gregory J.; Berry, Monica
2017-01-01
Abstract Selective G‐quadruplex ligands offer great promise for the development of anti‐cancer therapies. A novel series of divalent cationic naphthalene diimide ligands that selectively bind to the hybrid form of the human telomeric G‐quadruplex in K+ buffer are described herein. We demonstrate that an imidazolium‐bearing mannoside‐conjugate is the most selective ligand to date for this quadruplex against several other quadruplex and duplex structures. We also show that a similarly selective methylpiperazine‐bearing ligand was more toxic to HeLa cancer cells than doxorubicin, whilst exhibiting three times less toxicity towards fetal lung fibroblasts WI‐38. PMID:28257554
McGary, Kriston L; Slot, Jason C; Rokas, Antonis
2013-07-09
Genomic analyses have proliferated without being tied to tangible phenotypes. For example, although coordination of both gene expression and genetic linkage have been offered as genetic mechanisms for the frequently observed clustering of genes participating in fungal metabolic pathways, elucidation of the phenotype(s) favored by selection, resulting in cluster formation and maintenance, has not been forthcoming. We noted that the cause of certain well-studied human metabolic disorders is the accumulation of toxic intermediate compounds (ICs), which occurs when the product of an enzyme is not used as a substrate by a downstream neighbor in the metabolic network. This raises the hypothesis that the phenotype favored by selection to drive gene clustering is the mitigation of IC toxicity. To test this, we examined 100 diverse fungal genomes for the simplest type of cluster, gene pairs that are both metabolic neighbors and chromosomal neighbors immediately adjacent to each other, which we refer to as "double neighbor gene pairs" (DNGPs). Examination of the toxicity of their corresponding ICs shows that, compared with chromosomally nonadjacent metabolic neighbors, DNGPs are enriched for ICs that have acutely toxic LD50 doses or reactive functional groups. Furthermore, DNGPs are significantly more likely to be divergently oriented on the chromosome; remarkably, ∼40% of these DNGPs have ICs known to be toxic. We submit that the structure of synteny in metabolic pathways of fungi is a signature of selection for protection against the accumulation of toxic metabolic intermediates.
McGary, Kriston L.; Slot, Jason C.; Rokas, Antonis
2013-01-01
Genomic analyses have proliferated without being tied to tangible phenotypes. For example, although coordination of both gene expression and genetic linkage have been offered as genetic mechanisms for the frequently observed clustering of genes participating in fungal metabolic pathways, elucidation of the phenotype(s) favored by selection, resulting in cluster formation and maintenance, has not been forthcoming. We noted that the cause of certain well-studied human metabolic disorders is the accumulation of toxic intermediate compounds (ICs), which occurs when the product of an enzyme is not used as a substrate by a downstream neighbor in the metabolic network. This raises the hypothesis that the phenotype favored by selection to drive gene clustering is the mitigation of IC toxicity. To test this, we examined 100 diverse fungal genomes for the simplest type of cluster, gene pairs that are both metabolic neighbors and chromosomal neighbors immediately adjacent to each other, which we refer to as “double neighbor gene pairs” (DNGPs). Examination of the toxicity of their corresponding ICs shows that, compared with chromosomally nonadjacent metabolic neighbors, DNGPs are enriched for ICs that have acutely toxic LD50 doses or reactive functional groups. Furthermore, DNGPs are significantly more likely to be divergently oriented on the chromosome; remarkably, ∼40% of these DNGPs have ICs known to be toxic. We submit that the structure of synteny in metabolic pathways of fungi is a signature of selection for protection against the accumulation of toxic metabolic intermediates. PMID:23798424
Ansari, Humaira; Weinberg, Laurence; Spencer, Narelle
2013-09-13
Topical ocular anaesthetic agents are frequently used for ophthalmic diagnosis and surgery. While corneal complications following long-term use or misuse of local anaesthetic solutions have been described, toxic epitheliopathy after a single application of six drops of preservative free oxybuprocaine is rare. In order to increase the awareness of this ocular complication, we report such a case in a patient with Sjogren's syndrome who presented for elective cataract surgery. We outline the mechanisms proposed to explain the ocular toxic effects of oxybuprocaine and discuss the management principles in preventing this complication in the context of Sjogren's syndrome.
Ansari, Humaira; Weinberg, Laurence; Spencer, Narelle
2013-01-01
Topical ocular anaesthetic agents are frequently used for ophthalmic diagnosis and surgery. While corneal complications following long-term use or misuse of local anaesthetic solutions have been described, toxic epitheliopathy after a single application of six drops of preservative free oxybuprocaine is rare. In order to increase the awareness of this ocular complication, we report such a case in a patient with Sjogren's syndrome who presented for elective cataract surgery. We outline the mechanisms proposed to explain the ocular toxic effects of oxybuprocaine and discuss the management principles in preventing this complication in the context of Sjogren's syndrome. PMID:24038291
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-08-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-01-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971
Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird
van Gils, Jan A.; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J.; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis
2013-01-01
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative. PMID:23740782
Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird.
van Gils, Jan A; van der Geest, Matthijs; Leyrer, Jutta; Oudman, Thomas; Lok, Tamar; Onrust, Jeroen; de Fouw, Jimmy; van der Heide, Tjisse; van den Hout, Piet J; Spaans, Bernard; Dekinga, Anne; Brugge, Maarten; Piersma, Theunis
2013-07-22
Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.
Li, Hao; Ponder, Elizabeth L.; Verdoes, Martijn; Asbjornsdottir, Kristijana H.; Deu, Edgar; Edgington, Laura E.; Lee, Jeong Tae; Kirk, Christopher J.; Demo, Susan D.; Williamson, Kim C.; Bogyo, Matthew
2012-01-01
Summary The Plasmodium proteasome has been suggested to be a potential anti-malarial drug target, however toxicity of inhibitors has prevented validation of this enzyme in vivo. We report here a screen of a library of 670 analogs of the recently FDA approved inhibitor, carfilzomib, to identify compounds that selectively kill parasites. We identified one compound, PR3, that has significant parasite killing activity in vitro but dramatically reduced toxicity in host cells. We found that this parasite-specific toxicity is not due to selective targeting of the Plasmodium proteasome over the host proteasome, but instead is due to a lack of activity against one of the human proteasome subunits. Subsequently, we used PR3 to significantly reduce parasite load in P. berghei infected mice without host toxicity, thus validating the proteasome as a viable anti-malarial drug target. PMID:23142757
Phillips, Ben; Shine, Richard
2007-12-01
In arms races between predators and prey, some evolved tactics are unbeatable by the other player. For example, many types of prey are inedible because they have evolved chemical defenses. In this case, prey death removes any selective advantage of toxicity to the prey but not the selective advantage to a predator of being able to consume the prey. In the absence of effective selection for postmortem persistence of the toxicity then, some chemical defenses probably break down rapidly after prey death. If so, predators can overcome the toxic defense simply by waiting for that breakdown before consuming the prey. Floodplain death adders (Acanthophis praelongus) are highly venomous frog-eating elapid snakes native to northern Australia. Some of the frogs they eat are nontoxic (Litoria nasuta), others produce gluelike mucus when seized by a predator (Limnodynastes convexiusculus), and one species (Litoria dahlii) is dangerously toxic to snakes. Both the glue and the toxin degrade within about 20 min of prey death. Adders deal with these prey types in different and highly stereotyped ways: they consume nontoxic frogs directly but envenomate and release the other taxa, waiting until the chemical defense loses its potency before consuming the prey.
Cunico, Miriam M; Trebien, Herbert A; Galetti, Fábio C; Miguel, Obdulio G; Miguel, Marilis D; Auer, Celso G; Silva, Célio L; de Souza, Ana Olívia
2015-01-01
Ottonia martiana is a plant popularly known in Brazil by the use for toothache. Ethanolic extract (EE), hexane fraction (HF), dichloromethane fraction (DF) and piperovatine obtained from O. martiana were assayed in vitro and in vivo. The acute toxicity of EE was determined, and LD50 values of 164.5 and 65.0 mg/kg by the oral and intraperitoneal routes, respectively, indicated a high toxicity for EE in vivo, explaining its popular use by topical administration only. A local anesthetic-like effect of EE and its fractions was observed in experimental models using pain induction, and such effect involved an analgesic action. The antimycobacterial activity of EE, HF, DF and piperovatine was evaluated against Mycobacterium tuberculosis H37Rv ATCC 27924. EE, HF, DF, and piperovatine showed a potential antimycobacterial effect with MICs of 16.0, 62.0, 62.0 and 8.0 μg/mL, respectively. Piperovatine was more effective than the EE or the other fractions. The selectivity index (SI=IC50/MIC) values calculated for EE, HF, DF and piperovatine based on the MICs and the cytotoxicity against J774 macrophages (IC50 by MTT assay) revealed values of 6.43, 2.34, 1.5 and 9.66, respectively.
Case report: a metabolic disorder presenting as pediatric manganism.
Sahni, Vanita; Léger, Yves; Panaro, Linda; Allen, Mark; Giffin, Scott; Fury, Diane; Hamm, Nadine
2007-12-01
Manganese is a trace element, essential for physiologic functioning but neurotoxic at high doses. Common exposure sources include dietary intake as well as drinking water in some regions; toxicity is most often associated with inhalation exposures in occupational settings. In this article we describe the investigation of a pediatric case of manganism using both clinical and environmental assessment methods. A previously healthy 6-year-old child presented with severe Mn neurotoxicity, iron deficiency, and elevated cobalt levels. Immediate and selected extended family members had elevated plasma Mn but remained asymptomatic. An exposure assessment identified seasonal ingestion exposures to Mn at the family's summer cottage; these were common to the four immediate family members. Well water used for drinking and cooking exceeded recommended guidelines, and foods high in Mn predominated in their diet. No inhalation exposures were identified. Only pica was unique to the patient. The combined evidence of the environmental assessment and biomonitoring of blood Mn levels supported a seasonal ingestion exposure source; this alone was insufficient to explain the toxicity because the patient's 7-year-old sibling was asymptomatic with almost identical exposures (except pica). A metabolic disorder involving divalent metals (Mn, Fe, and Co) interacting with environmental exposures is the most likely explanation. This case report adds to the emerging body of evidence linking neurologic effects to ingestion Mn exposure.
The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals
Lahiani, Adi; Yavin, Ephraim; Lazarovici, Philip
2017-01-01
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases. PMID:28300784
Modeling adverse event counts in phase I clinical trials of a cytotoxic agent.
Muenz, Daniel G; Braun, Thomas M; Taylor, Jeremy Mg
2018-05-01
Background/Aims The goal of phase I clinical trials for cytotoxic agents is to find the maximum dose with an acceptable risk of severe toxicity. The most common designs for these dose-finding trials use a binary outcome indicating whether a patient had a dose-limiting toxicity. However, a patient may experience multiple toxicities, with each toxicity assigned an ordinal severity score. The binary response is then obtained by dichotomizing a patient's richer set of data. We contribute to the growing literature on new models to exploit this richer toxicity data, with the goal of improving the efficiency in estimating the maximum tolerated dose. Methods We develop three new, related models that make use of the total number of dose-limiting and low-level toxicities a patient experiences. We use these models to estimate the probability of having at least one dose-limiting toxicity as a function of dose. In a simulation study, we evaluate how often our models select the true maximum tolerated dose, and we compare our models with the continual reassessment method, which uses binary data. Results Across a variety of simulation settings, we find that our models compare well against the continual reassessment method in terms of selecting the true optimal dose. In particular, one of our models which uses dose-limiting and low-level toxicity counts beats or ties the other models, including the continual reassessment method, in all scenarios except the one in which the true optimal dose is the highest dose available. We also find that our models, when not selecting the true optimal dose, tend to err by picking lower, safer doses, while the continual reassessment method errs more toward toxic doses. Conclusion Using dose-limiting and low-level toxicity counts, which are easily obtained from data already routinely collected, is a promising way to improve the efficiency in finding the true maximum tolerated dose in phase I trials.
Jaiswal, Yogini; Liang, Zhitao; Ho, Alan; Wong, LaiLai; Yong, Peng; Chen, Hubiao; Zhao, Zhongzhen
2014-11-01
Aconite poisoning continues to be a major type of poisoning caused by herbal drugs in many countries. Nevertheless, despite its toxic characteristics, aconite is used because of its valuable therapeutic benefits. The aim of the present study was to determine the distribution of toxic alkaloids in tissues of aconite roots through chemical profiling. Three species were studied, all being used in traditional Chinese Medicine (TCM) and traditional Indian medicine (Ayurveda), namely: Aconitum carmichaelii, Aconitum kusnezoffii and Aconitum heterophyllum. Laser micro-dissection was used for isolation of target microscopic tissues, such as the metaderm, cortex, xylem, pith, and phloem, with ultra-high performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) employed for detection of metabolites. Using a multi-targeted approach through auto and targeted LC-MS/MS, 48 known compounds were identified and the presence of aconitine, mesaconitine and hypaconitine that are the biomarkers of this plant was confirmed in the tissues. These results suggest that the three selected toxic alkaloids were exclusively found in A. carmichaelii and A. kusnezoffii. The most toxic components were found in large A. carmichaelii roots with more lateral root projections, and specifically in the metaderm, cork and vascular bundle tissues. The results from metabolite profiling were correlated with morphological features to predict the tissue specific distribution of toxic components and toxicity differences among the selected species. By careful exclusion of tissues having toxic diester diterpenoid alkaloids, the beneficial effects of aconite can still be retained and the frequency of toxicity occurrences can be greatly reduced. Knowledge of tissue-specific metabolite distribution can guide users and herbal drug manufacturers in prudent selection of relatively safer and therapeutically more effective parts of the root. The information provided from this study can contribute towards improved and effective management of therapeutically important, nonetheless, toxic drug such as Aconite. Copyright © 2014 Elsevier Ltd. All rights reserved.
Matson, Liana M; McCarren, Hilary S; Cadieux, C Linn; Cerasoli, Douglas M; McDonough, John H
2018-01-15
Genetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies. Here, we discuss the available literature on strain and selected line differences in cholinesterase activity levels and response to nerve agent-induced toxicity and seizures. We also discuss the available cholinesterase and toxicity literature across different non-human primate species. The available data suggest that robust genetic differences exist in cholinesterase activity, nerve agent-induced toxicity, and chemical-induced seizures. Available cholinesterase data suggest that acetylcholinesterase activity differs across strains, but are limited by the paucity of carboxylesterase data in strains and selected lines. Toxicity and seizures, two outcomes of nerve agent exposure, have not been fully evaluated for genetic differences, and thus further studies are required to understand baseline strain and selected line differences. Published by Elsevier B.V.
Castañeda-Arriaga, Romina; Galano, Annia
2017-06-19
Several chemical routes related to the toxicity of paracetamol (APAP, also known as acetaminophen), its analogue N-acetyl-m-aminophenol (AMAP), and their deacetylated derivatives, were investigated using the density functional theory. It was found that AMAP is more resilient to chemical oxidation than APAP. The chemical degradation of AMAP into radical intermediates is predicted to be significant only when it is induced by strong oxidants. This might explain the apparent contradictions among experimental evidence regarding AMAP toxicity. All of the investigated species are incapable of oxidizing DNA, but they can damage lipids by H atom transfer (HAT) from the bis-allylic site, with the phenoxyl radical of AMAP being the most threatening to the lipids' chemical integrity. Regarding protein damage, Cys residues were identified as the most likely targets. The damage in this case may involve two different routes: (i) HAT from the thiol site by phenoxyl radicals and (ii) protein arylation by the quinone imine (QI) derivatives. Both are not only thermochemically viable, but also are very fast reactions. According to the mechanism identified here as the most likely one for protein arylation, a rather large concentration of QI would be necessary for this damage to be significant. This might explain why APAP is nontoxic in therapeutic doses, while overdoses can result in hepatic toxicity. In addition, the QI derived from both APAP and AMAP were found to be capable of inflicting this kind of damage. In addition, it is proposed that they might increase • OH production via the Fenton reaction, which would contribute to their toxicity.
Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore
Ulappa, Amy C.; Kelsey, Rick G.; Frye, Graham G.; Rachlow, Janet L.; Shipley, Lisa A.; Bond, Laura; Pu, Xinzhu; Forbey, Jennifer Sorensen
2015-01-01
For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites, PSMs) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to other plants. Pygmy rabbits (Brachylagus idahoensis) are dietary specialists that feed on sagebrush (Artemisia spp.) and forage on specific plants more than others within a foraging patch. We predicted that the plants with evidence of heavy foraging (browsed plants) would be of higher dietary quality than plants that were not browsed (unbrowsed). We used model selection to determine which phytochemical variables best explained the difference between browsed and unbrowsed plants. Higher crude protein increased the odds that plants would be browsed by pygmy rabbits and the opposite was the case for certain PSMs. Additionally, because pygmy rabbits can occupy foraging patches (burrows) for consecutive years, their browsing may influence the nutritional and PSM constituents of plants at the burrows. In a post hoc analysis, we did not find a significant relationship between phytochemical concentrations, browse status and burrow occupancy length. We concluded that pygmy rabbits use nutritional and chemical cues while making foraging decisions. PMID:26366011
Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.
Venables, K M
1989-01-01
The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411
Toxicity of selected insecticides applied to western spruce budworm
Jacqueline E. Robertson; Nancy L. Gillette; Barbara A. Lucas; Robert L. Lyon
1976-01-01
The contact toxlaty of 100 insecticides to last stage larvae of Choristoneura occidentalis Freeman was tested by topical application in a 10-yr series of screening experiments. Pyrethroids were generally the most toxic group of chemicals tested. Compounds more toxic than the standard, mexacarbate, at LD90 were:...
Molluscicidal properties and selective toxicity of surface-active agents
Visser, S. A.
1965-01-01
Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185
Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay.
Li, Ji; Huang, Yizong; Hu, Ying; Jin, Shulan; Bao, Qiongli; Wang, Fei; Xiang, Meng; Xie, Huiting
2016-06-01
The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds. Copyright © 2016. Published by Elsevier B.V.
Behavioral toxicity of selected radioprotectors
NASA Astrophysics Data System (ADS)
Landauer, M. R.; Davis, H. D.; Kumar, K. S.; Weiss, J. F.
1992-10-01
Effective radioprotection with minimal behavioral disruption is essential for the selection of protective agents to be used in manned spaceflight. This overview summarizes the studies on the behavioral toxicity of selected radioprotectors classified as phosphorothioates (WR-2721, WR-3689), bioactive lipids (16, 16 dimethylprostaglandin E2(DiPGE2), platelet activating factor (PAF), leukotriene C4), and immunomodulators (glucan, synthetic trehalose dicorynomycolate, and interleukin-1). Behavioral toxicity was examined in laboratory mice using a locomotor activity test. For all compounds tested, there was a dose-dependent decrease in locomotor behavior that paralleled the dose-dependent increase in radioprotection. While combinations of radioprotective compounds (DiPGE2 plus WR-2721) increased radioprotection, they also decreased locomotor activity. The central nervous system stimulant, caffeine, was able to mitigate the locomotor decrement produced by WR-3689 or PAF.
Select Dietary Phytochemicals Function as Inhibitors of COX-1 but Not COX-2
Li, Haitao; Zhu, Feng; Sun, Yanwen; Li, Bing; Oi, Naomi; Chen, Hanyong; Lubet, Ronald A.; Bode, Ann M.; Dong, Zigang
2013-01-01
Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses. PMID:24098505
Estuarine sediment toxicity tests on diatoms: Sensitivity comparison for three species
NASA Astrophysics Data System (ADS)
Moreno-Garrido, Ignacio; Lubián, Luis M.; Jiménez, Begoña; Soares, Amadeu M. V. M.; Blasco, Julián
2007-01-01
Experimental populations of three marine and estuarine diatoms were exposed to sediments with different levels of pollutants, collected from the Aveiro Lagoon (NW of Portugal). The species selected were Cylindrotheca closterium, Phaeodactylum tricornutum and Navicula sp. Previous experiments were designed to determine the influence of the sediment particle size distribution on growth of the species assayed. Percentage of silt-sized sediment affect to growth of the selected species in the experimental conditions: the higher percentage of silt-sized sediment, the lower growth. In any case, percentages of silt-sized sediment less than 10% did not affect growth. In general, C. closterium seems to be slightly more sensitive to the selected sediments than the other two species. Two groups of sediment samples were determined as a function of the general response of the exposed microalgal populations: three of the six samples used were more toxic than the other three. Chemical analysis of the samples was carried out in order to determine the specific cause of differences in toxicity. After a statistical analysis, concentrations of Sn, Zn, Hg, Cu and Cr (among all physico-chemical analyzed parameters), in order of importance, were the most important factors that divided the two groups of samples (more and less toxic samples). Benthic diatoms seem to be sensitive organisms in sediment toxicity tests. Toxicity data from bioassays involving microphytobentos should be taken into account when environmental risks are calculated.
Tikhonov, Denis B; Zhorov, Boris S
2011-01-28
In the absence of x-ray structures of sodium and calcium channels their homology models are used to rationalize experimental data and design new experiments. A challenge is to model the outer-pore region that folds differently from potassium channels. Here we report a new model of the outer-pore region of the NaV1.4 channel, which suggests roles of highly conserved residues around the selectivity filter. The model takes from our previous study (Tikhonov, D. B., and Zhorov, B. S. (2005) Biophys. J. 88, 184-197) the general disposition of the P-helices, selectivity filter residues, and the outer carboxylates, but proposes new intra- and inter-domain contacts that support structural stability of the outer pore. Glycine residues downstream from the selectivity filter are proposed to participate in knob-into-hole contacts with the P-helices and S6s. These contacts explain the adapted tetrodotoxin resistance of snakes that feed on toxic prey through valine substitution of isoleucine in the P-helix of repeat IV. Polar residues five positions upstream from the selectivity filter residues form H-bonds with the ascending-limb backbones. Exceptionally conserved tryptophans are engaged in inter-repeat H-bonds to form a ring whose π-electrons would facilitate passage of ions from the outer carboxylates to the selectivity filter. The outer-pore model of CaV1.2 derived from the NaV1.4 model is also stabilized by the ring of exceptionally conservative tryptophans and H-bonds between the P-helices and ascending limbs. In this model, the exceptionally conserved aspartate downstream from the selectivity-filter glutamate in repeat II facilitates passage of calcium ions to the selectivity-filter ring through the tryptophan ring. Available experimental data are discussed in view of the models.
Pyrrolizidine Alkaloids: Testing for Toxic Constituents of Comfrey.
ERIC Educational Resources Information Center
Vollmer, John J.; And Others
1987-01-01
Discusses the possibilities of toxins present in medicinal herbs. Describes an experiment in which toxic constituents can be selectively detected by thin-layer chromatography and NMR spectroscopy. (TW)
Toxicity and biodegradability of selected N-substituted phenols under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.; Razo-Flores, E.; Hwu, C.S.
1995-12-31
The anaerobic toxicity and biodegradability of N-substituted aromatics were evaluated in order to obtain information on their ultimate biotreatment. The toxicity of selected N-substituted aromatic compounds toward acetoclastic methanogens in granular sludge was measured in batch assays. This toxicity was highly correlated with compound hydrophobicity, indicating that partitioning into the bacterial membranes was an important factor in the toxicity. However, other factors, such as chemical interactions with key cell components, were suggested to be playing an important role. Nitroaromatic compounds were, on the average, over 300-fold more toxic than their amino-substituted counterparts. This finding suggests that the facile reduction ofmore » nitro-groups known to occur in anaerobic environments would result in a high level of detoxification. To test this hypothesis, continuous lab-scale upward-flow anaerobic sludge bed reactors treating 2-nitrophenol and 4-nitrophenol were established. The 4-nitrophenol was readily converted to the corresponding 4-aminophenol, whereas complete mineralization of 2-nitrophenol via intermediate formation of 2-aminophenol was obtained. These conversions led to a dramatic detoxification of the nitrophenols, because it was feasible to treat the highly toxic nitrophenolics at high organic loading rates.« less
Evidence of auditory insensitivity to vocalization frequencies in two frogs.
Goutte, Sandra; Mason, Matthew J; Christensen-Dalsgaard, Jakob; Montealegre-Z, Fernando; Chivers, Benedict D; Sarria-S, Fabio A; Antoniazzi, Marta M; Jared, Carlos; Almeida Sato, Luciana; Felipe Toledo, Luís
2017-09-21
The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discrimination from background noise and heterospecific calls. However, we present here evidence that two anurans, Brachycephalus ephippium and B. pitanga, are insensitive to the sound of their own calls. Both species produce advertisement calls outside their hearing sensitivity range and their inner ears are partly undeveloped, which accounts for their lack of high-frequency sensitivity. If unheard by the intended receivers, calls are not beneficial to the emitter and should be selected against because of the costs associated with signal production. We suggest that protection against predators conferred by their high toxicity might help to explain why calling has not yet disappeared, and that visual communication may have replaced auditory in these colourful, diurnal frogs.
Genome-environment associations in sorghum landraces predict adaptive traits
Lasky, Jesse R.; Upadhyaya, Hari D.; Ramu, Punna; Deshpande, Santosh; Hash, C. Tom; Bonnette, Jason; Juenger, Thomas E.; Hyma, Katie; Acharya, Charlotte; Mitchell, Sharon E.; Buckler, Edward S.; Brenton, Zachary; Kresovich, Stephen; Morris, Geoffrey P.
2015-01-01
Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these could be used to predict phenotypic variation for adaptive traits. We tested this proposition in the global food crop Sorghum bicolor, characterizing 1943 georeferenced landraces at 404,627 SNPs and quantifying allelic associations with bioclimatic and soil gradients. Environment explained a substantial portion of SNP variation, independent of geographical distance, and genic SNPs were enriched for environmental associations. Further, environment-associated SNPs predicted genotype-by-environment interactions under experimental drought stress and aluminum toxicity. Our results suggest that genomic signatures of environmental adaptation may be useful for crop improvement, enhancing germplasm identification and marker-assisted selection. Together, genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation. PMID:26601206
Milan Army Ammunition Plant remedial investigation report: Volume 1. Final report 89-91
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okusu, N.; Hall, H.; Orndorff, A.
1991-12-09
A Remedial Investigation at the Milan Army Ammunition Plant, TN, was conducted for the US Army Toxic and Hazardous Materials Agency, under the terms of an Interagency Agreement with the State of Tennessee and the US Environmental Protection Agency. The study focused on the CERCLA site and selected RCRA regulated units identified by previous studies as potential sources of contamination. A broad range of chemicals including metals, explosives, and other organic compounds were found in source areas and in groundwater. The results of a risk assessment indicate that unacceptable levels of human health risks potentially exist. Conceptual models of sitemore » and unit characteristics were formulated to explain major findings, and areas not contributing to the problem were identified. For many source areas, major unknowns exist regarding hydrology, extent of contamination, and current and future impacts to groundwater quality.« less
Ehrlich, Kenneth C; Chang, Perng-Kuang; Scharfenstein, Leslie L; Cary, Jeffrey W; Crawford, Jason M; Townsend, Craig A
2010-04-01
Biosynthesis of the highly toxic and carcinogenic aflatoxins in select Aspergillus species from the common intermediate O-methylsterigmatocystin has been postulated to require only the cytochrome P450 monooxygenase, OrdA (AflQ). We now provide evidence that the aryl alcohol dehydrogenase NorA (AflE) encoded by the aflatoxin biosynthetic gene cluster in Aspergillus flavus affects the accumulation of aflatoxins in the final steps of aflatoxin biosynthesis. Mutants with inactive norA produced reduced quantities of aflatoxin B(1) (AFB(1)), but elevated quantities of a new metabolite, deoxyAFB(1). To explain this result, we suggest that, in the absence of NorA, the AFB(1) reduction product, aflatoxicol, is produced and is readily dehydrated to deoxyAFB(1) in the acidic medium, enabling us to observe this otherwise minor toxin produced in wild-type A. flavus.
Kim, Kwang-Ho; Yi, Chang-Geun; Ahn, Young-Joon; Kim, Soon Il; Lee, Sang-Guei; Kim, Jun-Ran
2015-09-01
This study was aimed at assessing the fumigant toxicity to adult Thrips palmi (a serious insect pest) and Orius strigicollis (a beneficial predator insect) of basil (Ocimum basilicum) essential oil compounds and structurally related compounds using vapour-phase toxicity bioassays. Against adult T. palmi, linalool (LD50 0.0055 mg cm(-3) ) was the most toxic fumigant and was 15.2-fold more effective than dichlorvos (0.0837 mg cm(-3) ). Strong fumigant toxicity was also observed in pulegone (0.0095 mg cm(-3) ), (±)-camphor (0.0097 mg cm(-3) ) and 1,8-cineole (0.0167 mg cm(-3) ). Moderate toxicity was produced by camphene, 3-carene, (-)-menthone, (+)-α-pinene, (+)-β-pinene, α-terpineol and (-)-α-thujone (0.0215-0.0388 mg cm(-3) ). Against adult O. strigicollis, dichlorvos (LD50 9.0 × 10(-10) mg cm(-3) ) was the most toxic fumigant, whereas the LD50 values of these compounds ranged from 0.0127 to >0.23 mg cm(-3) . Based upon the selective toxicity ratio, the compounds described are more selective than dichlorvos. The basil oil compounds described merit further study as potential insecticides for control of T. palmi in greenhouses because of their generally lower toxicity to O. strigicollis and their greater activity as a fumigant than dichlorvos. © 2014 Society of Chemical Industry.
Macrophage-selective toxicity as a mechanism of hydroquinone-induced myelotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.J.
1989-01-01
This research has focused upon the role of the bone marrow stroma in the etiology of benzene hematotoxicity. Treatment with the metabolite hydroquinone results in a reduced capacity of the stroma to support myelopoiesis. The goal of this research was to examine stromal cell selective toxicity following hydroquinone treatment. Populations of macrophages and a fibroblastoid cell line (LTF) or primary fibroblasts were developed from mouse bone marrow. Following treatment of with hydroquinone, treated or control fibroblastoid cells were reconstituted with control or treated macrophages, respectively, and the cultures were assayed for their ability to support myelopoiesis. To examine mechanisms ofmore » selective toxicity, macrophage and LTF cultures were incubated with 14C-hydroquinone and bioactivation was examined. After 24 hours, macrophages had 16-fold higher levels of bound {sup 14}C than LTF cells. Peroxide-dependent bioactivation in cell homogenates revealed that peroxide could support formation of covalent-binding species in macrophage homogenates but not in LTF homogenates. It was determined that macrophages, but not LTF cells, contained detectable levels of peroxidase activity which was consistent with the postulate that increased binding was due to peroxidase-mediated bioactivation of hydroquinone. Accordingly, purified myeloperoxidase incubated with {sup 14}C-hydroquinone, resulted in bioactivation to a covalent-binding species. This study provided evidence supporting selective bioactivation as a mechanism of selective toxicity of hydroquinone to bone marrow stromal macrophages.« less
Elzen, G W; Maldonado, S N; Rojas, M G
2000-04-01
A laboratory culture of Catolaccus grandis (Burks), an ectoparasitoid of the boll weevil, Anthonomus grandis grandis Boheman, was exposed to lethal and sublethal doses of insecticides and an insect growth regulator using a spray chamber bioassay. Materials tested were azinphos-methyl, endosulfan, fipronil, malathion, cyfluthrin, dimethoate, spinosad, methyl parathion, acephate, oxamyl, and tebufenozide. At full rates, spinosad was significantly less toxic to female C. grandis than other treatments except endosulfan. Fipronil and malathion were significantly more toxic to females than other treatments. Most of the chemicals tested were highly toxic to male C. grandis; spinosad was least toxic. At reduced rates, most of 4 selected chemicals tested were low in toxicity to C. grandis; however, a reduced rate of malathion was significantly more toxic to females than other treatments. No C. grandis pupae developed from parasitism during a 24-h treatment period with malathion or spinosad. The sex ratio of progeny from sprayed adults appeared to be unaffected by the treatments.
Use of porewater extracts to identify the cause of toxicity in marine and estuarine sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, W.S.
1994-12-31
Amphipod toxicity tests in the evaluation of dredged material proposed for ocean disposal has come under increased scrutiny by the regulated community in the Port of NY/NJ. In recent large-scale assessments of sediment quality in the harbor, the vast majority of locations were deemed highly contaminated when tested with Ampelisca abdita. Toxicity tests, by themselves, do not provide data regarding the cause of toxicity of these sediments. The enormous potential costs associated with most proposed alternatives to ocean disposal of dredged sediments has prompted the investigation of the causative agents of toxicity in sediments of the NY/NJ Harbor. Sediment frommore » five locations in the harbor, selected in consultation with local regulatory agencies to represent diverse potential contamination scenarios, was collected and tested for toxicity to the amphipods Ampelisca abdita, Leptocheirus plumulosus, Eohaustorius estuadus, Rhepoxynius abronius, and the mysid shrimp, Mysidopsis bahia, using 10-day static bioassays. Porewater from each of the five sediments was extracted under centrifugation and used in water-only toxicity tests with A. abdita, L. plumulosus, R. abronius, E. estuadus, M. bahia, M. beryllina, and Microtox. A Phase 1 Toxicity Identification Evaluation of the three most toxic porewater samples was conducted using several of the species tested. Results from the preliminary investigations and the ongoing TIE`s will be presented. Species selection, porewater toxicity test procedures, and Phase 1, 2, and 3 paradigms will be discussed.« less
Shen, Dan-na; Yi, Xu-fu; Chen, Xiao-gang; Xu, Tong-li; Cui, Li-juan
2007-10-01
Individual response to drugs, toxicants, environmental chemicals and allergens varies with genotype. Some respond well to these substances without significant consequences, while others may respond strongly with severe consequences and even death. Toxicogenetics and toxicogenomics as well as pharmacogenetics explain the genetic basis for the variations of individual response to toxicants by sequencing the human genome and large-scale identification of genome polymorphism. The new disciplines will provide a new route for forensic specialists to determine the cause of death.
Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P
2009-07-01
Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).
Güngördü, Abbas
2013-09-15
The assessments of pesticide toxicity on nontarget organisms have largely been focused on the determination of median lethal concentration (LC50) values using single/laboratory species. Although useful, these studies cannot describe the biochemical mechanisms of toxicity and also cannot explain the effects of pesticides on natural species. In this study, the toxic effects of glyphosate and methidathion were evaluated comparatively on early developmental stages of 3 anurans-2 natural (Pelophylax ridibundus, Pseudepidalea viridis) and 1 laboratory species (Xenopus laevis). The 96-h LC50 values for methidathion and glyphosate were determined as 25.7-19.6 mg active ingredient (AI)/L for P. viridis, 27.4-22.7 mg AI/L for P. ridibundus, and 15.3-5.05 mg AI/L for X. laevis tadpoles. Furthermore, as early signs of intoxication, glutathione S-transferase (GST), acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione reductase, lactate dehydrogenase, and aspartate aminotrasferase were assayed in 4-day-old tadpoles after 96-h pesticide exposure. The GST induction after 3.2mg AI/L methidathion exposure was determined to be 173%, 83%, and 38% of control, and the AChE inhibition for the same dose was determined to be 86%, 96%, and 30% of control for P. ridibundus, P. viridis, and X. laevis, respectively. Unlike the application of methidathion, all enzyme activities showed statistically significant increases on glyphosate exposure compared to controls. However, these increases in enzyme activities were not shown to be parallel with the increase of concentration. The levels of increases of GST and AChE were determined to be 111% and 31% for P. ridibundus, 13% and 51% for P. viridis, and 15% and 36% for X. laevis after 3.2mg AI/L glyphosate exposure, respectively. The findings of the study suggest that the most sensitive species to pesticide exposure is X. laevis. The selected biomarker enzymes AChE, CaE, and GST are useful in understanding the toxic mechanisms of these pesticides in anuran tadpoles as early warning indicators. Copyright © 2013 Elsevier B.V. All rights reserved.
Sauer, J M; Hooser, S B; Badger, D A; Baines, A; Sipes, I G
1995-01-01
Retinol (vitamin A) is an essential nutrient which has many physiological effects throughout the body. Our studies have demonstrated that retinol modulation of immune response, through alteration of macrophage and neutrophil function, can have dramatic effects on the toxicity of some compounds. Based on these studies, our current hypothesis for retinol potentiation of chemical-induced liver injury is that retinol administered to rats prior to the hepatotoxicant (CCl4 and AA in rats; and AA, APAP, and GalN in mice) primes the Kupffer cells to a more active state. This may occur in part as a result of increases in chemical mediators such as TNF from these Kupffer cells. Following hepatocyte damage by a toxicant, Kupffer cells are activated to release reactive oxygen species, immune mediators, and chemotactic factors which all serve to enhance the inflammatory response. This increased inflammatory response then results in increased injury to the already toxicant-damaged hepatocytes. In addition, retinol modulation of toxicant activation and detoxification may also make important contributions to the potentiation of some toxicants such as AA. Retinol protection of CCl4 hepatotoxicity in mice is more difficult to explain at this time but is possibly related to alterations in CCl4 metabolism in this species. Differences in response between pulmonary and liver macrophages (Kupffer cells) may explain the retinol protection from 1-NN pulmonary toxicity. Retinol may decrease the inflammatory response through downregulation of pulmonary macrophage function, thus resulting in decreased pulmonary injury. Finally, since retinol protection of cadmium toxicity in the liver and testis requires 7 days of retinol pretreatment, we suspect that retinol is inducing protective protein(s) in these organs. Aside from its normal biological role in rhe body, clinical medicine has found new uses for retinol in the treatment and prevention of some cancers, and in the treatment of certain dermatologic conditions. Since these patients are frequently administered or exposed to other potentially toxic compounds, it is obviously prudent and necessary to continue research into the effects of retinol on immune modulation and interaction with other compounds. More importantly, these studies demonstrate the modulation of immune function is one mechanism by which one chemical can influence the toxicity of another.
Chemical Principles Exemplified
ERIC Educational Resources Information Center
Plumb, Robert C.
1974-01-01
Describes bonding properties that account for the difference in toxicity between hydrogen cyanide and carbon monoxide. Uses the concepts of intermolecular and intramolecular forces in explaining the operation of pressure sensitive adhesives. Gives a definition of a cubic crystal class. (GS)
George, D R; Sparagano, O A E; Port, G; Okello, E; Shiel, R S; Guy, J H
2010-03-01
Seven essential oils with potential as acaricides for use against the poultry red mite, Dermanyssus gallinae (De Geer) (Acari: Dermanyssidae), were selected for study. These products (essential oils of manuka, cade, pennyroyal, thyme, garlic, clove bud and cinnamon bark) were deployed against different life stages of D. gallinae in laboratory tests at the (lethal concentration) LC(50) level for adult mites. For all essential oils tested, toxicity to D. gallinae juveniles was as high as toxicity to adults, if not higher. However, at the LC(50) level determined for adults, some oils were ineffective in preventing hatching of D. gallinae eggs. The essential oils were also tested under laboratory conditions at their LC(90) levels for D. gallinae adults on two model non-target species, the brine shrimp, Artemia salina (L.), and the mealworm beetle, Tenebrio molitor (L.). Results showed that not all essential oils were as toxic to A. salina and T. molitor as they were to D. gallinae, suggesting that it may be possible to select certain oils for development as acaricides against D. gallinae that would have minimal impact on non-target organisms. However, the level of toxicity to A. salina and T. molitor was not consistent across the selected essential oils.
Lee, Tsair-Fwu; Liou, Ming-Hsiang; Ting, Hui-Min; Chang, Liyun; Lee, Hsiao-Yi; Wan Leung, Stephen; Huang, Chih-Jen; Chao, Pei-Ju
2015-08-20
We investigated the incidence of moderate to severe patient-reported xerostomia among nasopharyngeal carcinoma (NPC) patients treated with helical tomotherapy (HT) and identified patient- and therapy-related factors associated with acute and chronic xerostomia toxicity. The least absolute shrinkage and selection operator (LASSO) normal tissue complication probability (NTCP) models were developed using quality-of-life questionnaire datasets from 67 patients with NPC. For acute toxicity, the dosimetric factors of the mean doses to the ipsilateral submandibular gland (Dis) and the contralateral submandibular gland (Dcs) were selected as the first two significant predictors. For chronic toxicity, four predictive factors were selected: age, mean dose to the oral cavity (Doc), education, and T stage. The substantial sparing data can be used to avoid xerostomia toxicity. We suggest that the tolerance values corresponded to a 20% incidence of complications (TD20) for Dis = 39.0 Gy, Dcs = 38.4 Gy, and Doc = 32.5 Gy, respectively, when mean doses to the parotid glands met the QUANTEC 25 Gy sparing guidelines. To avoid patient-reported xerostomia toxicity, the mean doses to the parotid gland, submandibular gland, and oral cavity have to meet the sparing tolerance, although there is also a need to take inherent patient characteristics into consideration.
Riesch, Rüdiger; Plath, Martin; Schlupp, Ingo
2010-05-01
Life-history traits are very sensitive to extreme environmental conditions, because resources that need to be invested in somatic maintenance cannot be invested in reproduction. Here we examined female life-history traits in the Mexican livebearing fish Poecilia mexicana from a variety of benign surface habitats, a creek with naturally occurring toxic hydrogen sulfide (H2S), a sulfidic cave, and a non-sulfidic cave. Previous studies revealed pronounced genetic and morphological divergence over very small geographic scales in this system despite the absence of physical barriers, suggesting that local adaptation to different combinations of two selection factors, toxicity (H2S) and darkness, is accompanied by very low rates of gene flow. Hence, we investigated life-history divergence between these populations in response to the selective pressures of darkness and/or toxicity. Our main results show that toxicity and darkness both select for (or impose constraints on) the same female trait dynamics: reduced fecundity and increased offspring size. Since reduced fecundity in the sulfur cave population was previously shown to be heritable, we discuss how divergent life-history evolution may promote further ecological divergence: for example, reduced fecundity and increased offspring autonomy are clearly beneficial in extreme environments, but fish with these traits are outcompeted in benign habitats.
Decaleside: a new class of natural insecticide targeting tarsal gustatory sites
NASA Astrophysics Data System (ADS)
Rajashekar, Yallappa; Rao, Lingamallu J. M.; Shivanandappa, Thimmappa
2012-10-01
Natural sources for novel insecticide molecules hold promise in view of their eco-friendly nature, selectivity, and mammalian safety. Recent progress in understanding the biology of insect olfaction and taste offers new strategies for developing selective pest control agents. We have isolated two natural insecticidal molecules from edible roots of Decalepis hamiltonii named Decalesides I and II, which are novel trisaccharides, highly toxic to household insect pests and stored-product insects. We have experimentally shown that insecticidal activity requires contact with tarsi on the legs but is not toxic orally. The insecticidal activity of molecules is lost by hydrolysis, and various sugars modify toxic response, showing that the insecticidal activity is via gustatory sites on the tarsi. Selective toxicity to insects by virtue of their gustatory site of action and the mammalian safety of the new insecticides is inherent in their chemical structure with 1-4 or 1-1 α linkage that is easily hydrolyzed by digestive enzymes of mammals. Decalesides represent a new chemical class of natural insecticides with a unique mode of action targeting tarsal chemosensory/gustatory system of insects.
Moreno, Shaiene C; Silvério, Flaviano O; Lopes, Mayara C; Ramos, Rodrigo S; Alvarenga, Elson S; Picanço, Marcelo C
2017-04-03
There is increasing demand for new products for vegetable pest management. Thus, the aim of this study was to assess the toxicity of pyrethroids with acid moiety modifications to measure the insecticidal activity of these compounds on the lepidopteran vegetable pests Diaphania hyalinata (L.) (Lepidoptera: Pyralidae) and Asciamonuste (Latreille) (Lepidoptera: Pieridae) and evaluate their selectivity for the predatory ant Solenopsis saevissima (F. Smith) (Hymenoptera: Formicidae) and pollinator Tetragonisca angustula (Latreille) (Hymenoptera: Apidae: Meliponinae). Racemic mixtures of five new pyrethroids (30 µg molecule mg -1 insect body weight) resulted in high (100%) and rapid (stable LD 50 after 12 h) mortality in D. hyalinata and A. monuste. In A. monuste, the trans-pyrethroid [12] isomer showed similar toxicity to permethrin. For D. hyalinata, the trans-pyrethroid [9] isomer and cis-pyrethroid [10] isomer were as toxic as permethrin. Due to their low selectivity, these new pyrethroids should be applied on the basis of ecological selectivity principles to minimize impacts on nontarget organisms S. saevissima and T. angustula.
Kuca, Kamil; Karasova, Jana Zdarova; Soukup, Ondrej; Kassa, Jiri; Novotna, Eva; Sepsova, Vendula; Horova, Anna; Pejchal, Jaroslav; Hrabinova, Martina; Vodakova, Eva; Jun, Daniel; Nepovimova, Eugenie; Valis, Martin; Musilek, Kamil
2018-01-01
Background Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. PMID:29563775
A model for field toxicity tests
Kaiser, Mark S.; Finger, Susan E.
1996-01-01
Toxicity tests conducted under field conditions present an interesting challenge for statistical modelling. In contrast to laboratory tests, the concentrations of potential toxicants are not held constant over the test. In addition, the number and identity of toxicants that belong in a model as explanatory factors are not known and must be determined through a model selection process. We present one model to deal with these needs. This model takes the record of mortalities to form a multinomial distribution in which parameters are modelled as products of conditional daily survival probabilities. These conditional probabilities are in turn modelled as logistic functions of the explanatory factors. The model incorporates lagged values of the explanatory factors to deal with changes in the pattern of mortalities over time. The issue of model selection and assessment is approached through the use of generalized information criteria and power divergence goodness-of-fit tests. These model selection criteria are applied in a cross-validation scheme designed to assess the ability of a model to both fit data used in estimation and predict data deleted from the estimation data set. The example presented demonstrates the need for inclusion of lagged values of the explanatory factors and suggests that penalized likelihood criteria may not provide adequate protection against overparameterized models in model selection.
Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Straalen, Nico M; van Gestel, Cornelis A M
2013-07-01
To assess the effect of long-term dissolution on bioavailability and toxicity, triethoxyoctylsilane coated and uncoated zinc oxide nanoparticles (ZnO-NP), non-nano ZnO and ZnCl2 were equilibrated in natural soil for up to twelve months. Zn concentrations in pore water increased with time for all ZnO forms but peaked at intermediate concentrations of ZnO-NP and non-nano ZnO, while for coated ZnO-NP such a clear peak only was seen after 12 months. Dose-related increases in soil pH may explain decreased soluble Zn levels due to fixation of Zn released from ZnO at higher soil concentrations. At T = 0 uncoated ZnO-NP and non-nano ZnO were equally toxic to the springtail Folsomia candida, but not as toxic as coated ZnO-NP, and ZnCl2 being most toxic. After three months equilibration toxicity to F. candida was already reduced for all Zn forms, except for coated ZnO-NP which showed reduced toxicity only after 12 months equilibration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Knöbel, Melanie; Busser, Frans J M; Rico-Rico, Angeles; Kramer, Nynke I; Hermens, Joop L M; Hafner, Christoph; Tanneberger, Katrin; Schirmer, Kristin; Scholz, Stefan
2012-09-04
The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide range of physicochemical properties, toxicities, and modes of toxic action. Moreover, the relevance of using measured versus nominal (intended) exposure concentrations, inclusion of sublethal endpoints, and different exposure durations for the comparability with reported fish acute toxicity was explored. Our results confirm a very strong correlation of zebrafish embryo to fish acute toxicity. When toxicity values were calculated based on measured exposure concentrations, the slope of the type II regression line was 1 and nearly passed through the origin (1 to 1 correlation). Measured concentrations also explained several apparent outliers. Neither prolonged exposure (up to 120 h) nor consideration of sublethal effects led to a reduced number of outliers. Yet, two types of compounds were less lethal to embryos than to adult fish: a neurotoxic compound acting via sodium channels (permethrin) and a compound requiring metabolic activation (allyl alcohol).
Shim, Taeyong; Yoo, Jisu; Ryu, Changkook; Park, Yong-Kwon; Jung, Jinho
2015-12-01
This study aims to evaluate the physiochemical properties, sorption characteristics, and toxicity effects of biochar (BC) produced from Miscanthus sacchariflorus via slow pyrolysis at 500°C and its steam activation product (ABC). Although BC has a much lower surface area than ABC (181 and 322m(2)g(-1), respectively), the Cu sorption capacities of BC and ABC are not significantly different (p>0.05). A two-compartment model successfully explains the sorption of BC and ABC as being dominated by fast and slow sorption processes, respectively. In addition, both BC and ABC efficiently eliminate the toxicity of Cu towards Daphnia magna. However, ABC itself induced acute toxicity to D. magna, which is possibly due to increased aromaticity upon steam activation. These findings suggest that activation of BC produced from M. sacchariflorus at a pyrolytic temperature of 500°C may not be appropriate in terms of Cu sorption and toxicity reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
2009-05-30
in the polyphenols chlorogenic acid , quinic acid and caffeic acid ). It appears in variable concentrations in urine and at much lower concentrations...liver, kidney, toxicity, gene, expression, nephrotoxin, D-serine, hippuric acid , Puromycin, Amphotericin B 16. SECURITY CLASSIFICATION OF: 17...6 1.4.4. Hippuric Acid
Agarwal, Rashmi A
2018-03-09
A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr 2 O 3 /CrO 2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.
NASA Astrophysics Data System (ADS)
Agarwal, Rashmi A.
2018-03-01
A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr2O3/CrO2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.
Hu, Li-Xin; Ying, Guang-Guo; Chen, Xiao-Wen; Huang, Guo-Yong; Liu, You-Sheng; Jiang, Yu-Xia; Pan, Chang-Gui; Tian, Fei; Martin, Francis L
2017-02-01
Traditional duckweed toxicity tests only measure plant growth inhibition as an endpoint, with limited effects-based data. The present study aimed to investigate whether Fourier-transform infrared (FTIR) spectroscopy could enhance the duckweed (Lemna minor L.) toxicity test. Four chemicals (Cu, Cd, atrazine, and acetochlor) and 4 metal-containing industrial wastewater samples were tested. After exposure of duckweed to the chemicals, standard toxicity endpoints (frond number and chlorophyll content) were determined; the fronds were also interrogated using FTIR spectroscopy under optimized test conditions. Biochemical alterations associated with each treatment were assessed and further analyzed by multivariate analysis. The results showed that comparable x% of effective concentration (ECx) values could be achieved based on FTIR spectroscopy in comparison with those based on traditional toxicity endpoints. Biochemical alterations associated with different doses of toxicant were mainly attributed to lipid, protein, nucleic acid, and carbohydrate structural changes, which helped to explain toxic mechanisms. With the help of multivariate analysis, separation of clusters related to different exposure doses could be achieved. The present study is the first to show successful application of FTIR spectroscopy in standard duckweed toxicity tests with biochemical alterations as new endpoints. Environ Toxicol Chem 2017;36:346-353. © 2016 SETAC. © 2016 SETAC.
40 CFR 763.179 - Confidential business information claims.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Prohibition of the Manufacture, Importation, Processing, and Distribution in Commerce of Certain Asbestos-Containing Products; Labeling Requirements § 763.179 Confidential... asbestos on human health and the environment? If your answer is yes, explain. ...
Part of a May 1999 series on the Risk Management Program Rule and issues related to chemical emergency management. Explains hazard versus risk, worst-case and alternative release scenarios, flammable endpoints and toxic endpoints.
Broughton, Sonya; Harrison, Jessica; Rahman, Touhidur
2014-03-01
Orius armatus (Gross) is an important predator of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Australian glasshouse grown sweet pepper. The failure of O. armatus to establish in some glasshouses has been attributed to the use of newer, more non-selective pesticides, some of which are regarded to be compatible with integrated pest management. The residual toxicity (via direct and indirect contact) of several older and newer chemistry pesticides were evaluated. In addition, the effect of several systemic insecticides through insecticide-treated food-chain uptake was tested. Older chemistry pesticides (methamidophos, dimethoate) were toxic to Orius armatus, except pirimicarb which was non-toxic. Newer chemistry pesticides differed in their suitability. Abamectin was toxic to adults and nymphs. Chlorantraniliprole, imidacloprid and spirotetramat were non-toxic. Spinosad and spinetoram were moderately toxic to O. armatus. Spinosad also reduced fecundity by 20% compared to the untreated control. Pymetrozine was non-toxic, but females exposed to treated beans produced 30% fewer eggs and 20% fewer nymphs hatched compared to the untreated control. The selective pesticides do not necessarily facilitate the conservation of beneficials, and further assessment of the various developmental stages and other sub-lethal effects of chlorantraniliprole, imidacloprid, pymetrozine, spinetoram, and spirotetramat is recommended. © 2013 Society of Chemical Industry.
Chen, Liping; Li, Qian; Weng, Bixia; Wang, Jiabing; Zhou, Yangyang; Cheng, Dezhi; Sirirak, Thanchanok; Qiu, Peihong; Wu, Jianzhang
2018-05-10
EF24 and F35 both were effective monocarbonyl curcumin analogues (MCACs) with excellent anti-tumor activity, however, drug defect such as toxicity may limit their further development. To get anti-lung cancer drugs with high efficiency, low toxicity and chemosensitization, a series of analogues based on EF24 and F35 were designed and synthesized. A number of compounds were found to exhibit cytotoxic activities selectively towards lung cancer cells compared to normal cells. Among these compounds, 5B was considered as an optimal anti-tumor agent for lung cancer cells with IC 50 values ranging from 1.0 to 1.7 μM, selectivity index (SI, as a logarithm of a ratio of IC 50 value for normal and cancer cells) were all above 1.1, while the SI of EF24 and F35 were less than 0.8. Consistent with selectivity in vitro, 5B was observed to show lower toxicity in acute toxicity experiment than EF24 and F35 respectively. Further, 5B was found to exert anti-tumor effects through ROS-mediated activation of JNK pathway and inhibition of NF-κB pathway. 5B could significantly enhance the sensitivity of A549 cells to cisplatin or 5-Fu. These findings suggested that 5B was an effective and less toxic MCAC and provided a promising candidate for anti-tumor drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Fight, Flight or Freeze: Common Responses for Follower Coping with Toxic Leadership.
Webster, Vicki; Brough, Paula; Daly, Kathleen
2016-10-01
Sustained destructive leadership behaviours are associated with negative outcomes that produce serious workplace problems, yet there is scant research into how followers effectively cope with toxic leader behaviours. Despite numerous attempts to develop typologies of coping behaviours, there remains much to learn, especially in relation to this specific workplace stressor. This mixed method research investigates the coping strategies reported by 76 followers to cope with the psychological, emotional and physical consequences of their leader's adverse behaviour. Coping instances were categorized using two existing theoretical coping frameworks, and the ability of these frameworks to explain responses to real-world experiences with toxic leadership are discussed. Common coping strategies reported included assertively challenging the leader, seeking social support, ruminating, taking leave and leaving the organization. Organizational interventions to increase effectiveness of follower coping with the impact of toxic leadership are also discussed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Aflatoxin B1 Induced Systemic Toxicity in Poultry and Rescue Effects of Selenium and Zinc.
Mughal, Muhammad Jameel; Peng, Xi; Kamboh, Asghar Ali; Zhou, Yi; Fang, Jing
2017-08-01
Among many challenges, exposure to aflatoxins, particularly aflatoxin B 1 (AFB 1 ), is one of the major concerns in poultry industry. AFB 1 intoxication results in decreased meat/egg production, hepatotoxicity, nephrotoxicity, disturbance in gastrointestinal tract (GIT) and reproduction, immune suppression, and increased disease susceptibility. Selenium (Se) and zinc (Zn), in dietary supplementation, offer easy, cost-effective, and efficient ways to neutralize the toxic effect of AFB 1 . In the current review, we discussed the impact of AFB 1 on poultry industry, its biotransformation, and organ-specific noxious effects, along with the action mechanism of AFB 1 -induced toxicity. Moreover, we explained the biological and detoxifying roles of Se and Zn in avian species as well as the protection mechanism of these two trace elements. Ultimately, we discussed the use of Se and Zn supplementation against AFB 1 -induced toxicity in poultry birds.
The weaker points of fish acute toxicity tests and how tests on embryos can solve some issues.
Wedekind, Claus; von Siebenthal, Beat; Gingold, Ruth
2007-07-01
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Development of Medical Technology for Contingency Response to Marrow Toxic Agents
2014-05-06
Development of Medical Technology for Contingency Response to Marrow Toxic Agents - Final Performance/Technical Report for January 01, 2011 to...Enhancing HLA Data for Selected Donors 44 IIB.1.6 Maintain a Quality Control Program 44 IIB.2.1 Collection of Primary Data 45 IIB.2.2 Validation of...Receptor Donor Selection KORI Korean LD Linkage Disequilibrium LTA Lymphotoxin Alpha MALDI-TOF Matrix-Assisted Laser Desorption/Ionization – Time Of
Corsi, Steven R; Geis, Steven W; Loyo-Rosales, Jorge E; Rice, Clifford P
2006-12-01
Characterization of the effects of aircraft deicer and anti-icer fluid (ADAF) runoff on aquatic organisms in receiving streams is a complex issue because the identities of numerous toxic additives are proprietary and not publicly available. Most potentially toxic and endocrine disrupting effects caused by ADAF are due to the numerous additive package ingredients which vary among manufacturers and types of ADAF formulation. Toxicity investigations of nine ADAF formulations indicate that endpoint concentrations for formulations of different manufacturers are widely variable. Type IV ADAF (anti-icers) are more toxic than Type I (deicers) for the four organisms tested (Vibrio fischeri, Pimephales promelas, Ceriodaphnia dubia, and Selenastrum capricornutum). Acute toxicity endpoint concentrations ranged from 347 to 7700 mg/L as ADAF for Type IV and from 1550 to 45,100 mg/L for Type I formulations. Chronic endpoint concentrations ranged from 70 to 1300 mg/L for Type IV and from 37 to 18,400 mg/L for Type I formulations. Alkylphenol ethoxylates and tolyltriazoles are two known classes of additives. Nonylphenol, nonylphenol ethoxylates, octylphenol, octylphenol ethoxylates, and 4,5-methyl-1H-benzotriazoles were quantified in the nine ADAF formulations, and toxicity tests were conducted with nonylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles. Toxicity units computed for glycol and these additives, with respect to toxicity of the ADAF formulations, indicate that a portion of ADAF toxicity can be explained by the known additives and glycols, but much of the toxicity is due to unidentified additives.
Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.
Li, Ying; Bentzley, Catherine M; Tarloff, Joan B
2005-04-01
Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations of reduced NPSH in renal epithelial cells than in hepatocytes.
Armaković, Sanja J; Armaković, Stevan; Četojević-Simin, Dragana D; Šibul, Filip; Abramović, Biljana F
2018-02-01
In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO 2 Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO 2 suspension under SSI, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clavijo, Araceli; Kronberg, María Florencia; Rossen, Ariana; Moya, Aldana; Calvo, Daniel; Salatino, Santa Esmeralda; Pagano, Eduardo Antonio; Morábito, José Antonio; Munarriz, Eliana Rosa
2016-11-01
Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
Robust EM Continual Reassessment Method in Oncology Dose Finding
Yuan, Ying; Yin, Guosheng
2012-01-01
The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities. PMID:22375092
Serotonin toxicity caused by moclobemide too soon after paroxetine-selegiline.
Wu, Ming-Ling; Deng, Jou-Fang
2009-08-01
Serotonin toxicity is an iatrogenic complication of serotonergic drug therapy. It is due to an overstimulation of central and peripheral serotonin receptors that lead to neuromuscular, mental and autonomic changes. Moclobemide is a reversible inhibitor of monoamine oxidase (MAO)-A, selegiline is an irreversible selective inhibitor of MAO-B, and paroxetine is a selective serotonin reuptake inhibitor. Combined use of these agents is known to cause serotonin toxicity. A 53-year-old woman had been treated with paroxetine and selegiline. After moclobemide was prescribed in place of paroxetine without a washout period, she quickly developed confusion, agitation, ataxia, diaphoresis, tremor, mydriasis, ocular clonus, hyperreflexia, tachycardia, moderately elevated blood pressure and high fever, symptoms that were consistent with serotonin toxicity. Discontinuation of the drugs, hydration and supportive care were followed by remarkable improvement of baseline status within 3 days. This case demonstrates that serotonin toxicity may occur even with small doses of paroxetine, selegiline and moclobemide in combination. Physicians managing patients with depression must be aware of the potential for serotonin toxicity and should be able to recognize and treat or, ideally, anticipate and avoid this pharmacodynamically-mediated interaction that may occur between prescribed drugs.
Safety and feasibility of targeted agent combinations in solid tumours.
Park, Sook Ryun; Davis, Myrtle; Doroshow, James H; Kummar, Shivaani
2013-03-01
The plethora of novel molecular-targeted agents (MTAs) has provided an opportunity to selectively target pathways involved in carcinogenesis and tumour progression. Combination strategies of MTAs are being used to inhibit multiple aberrant pathways in the hope of optimizing antitumour efficacy and to prevent development of resistance. While the selection of specific agents in a given combination has been based on biological considerations (including the role of the putative targets in cancer) and the interactions of the agents used in combination, there has been little exploration of the possible enhanced toxicity of combinations resulting from alterations in multiple signalling pathways in normal cell biology. Owing to the complex networks and crosstalk that govern normal and tumour cell proliferation, inhibiting multiple pathways with MTA combinations can result in unpredictable disturbances in normal physiology. This Review focuses on the main toxicities and the lack of tolerability of some common MTA combinations, particularly where evidence of enhanced toxicity compared to either agent alone is documented or there is development of unexpected toxicity. Toxicities caused by MTA combinations highlight the need to introduce new preclinical testing paradigms early in the drug development process for the assessment of chronic toxicities resulting from such combinations.
Bowen, Joanne; Gibson, Rachel; Tan, Thean; Okera, Meena; Stringer, Andrea
2011-01-01
Summary. The introduction of molecularly targeted anticancer therapies has brought the promise of longer survival times for select patients with cancers previously considered untreatable. However, it has also brought new toxicities that require understanding and management, sometimes for long periods of time. Vascular endothelial growth factor inhibitors are associated with a broad range of adverse effects, with vascular toxicity being particularly serious. This review focuses on the current understanding of the pathophysiology and mechanisms of macrovascular toxicities (hypertension, hemorrhage, and thromboembolism), their incidence and severity, the current clinical management, and implications in the advanced cancer setting. Movement of these agents into the early disease setting will alter the impact of these toxicities. Search Strategy and Selection Criteria. Information for this review was collected by searching PubMed/Medline and American Society of Clinical Oncology abstract databases. The medical subject heading terms used included toxicity, hypertension, thromboembolism, hemorrhage, intestinal perforation, risk factors, pharmacokinetics, and metabolism, combined with free text search terms including, but not limited to, VEGF inhibitor*, bevacizumab, sunitinib, and sorafenib. Articles published in English before March 2010 were included, in addition to information from case reports and pharmaceutical agent package inserts. PMID:21441297
De Matteis, Valeria; Cascione, Mariafrancesca; Toma, Chiara Cristina; Leporatti, Stefano
2018-05-10
The large use of nanomaterials in many fields of application and commercial products highlights their potential toxicity on living organisms and the environment, despite their physico-chemical properties. Among these, silver nanoparticles (Ag NPs) are involved in biomedical applications such as antibacterial agents, drug delivery vectors and theranostics agents. In this review, we explain the common synthesis routes of Ag NPs using physical, chemical, and biological methods, following their toxicity mechanism in cells. In particular, we analyzed the physiological cellular pathway perturbations in terms of oxidative stress induction, mitochondrial membrane potential alteration, cell death, apoptosis, DNA damage and cytokines secretion after Ag NPs exposure. In addition, their potential anti-cancer activity and theranostic applications are discussed.
Electrical Insulation Fire Characteristics : Volume 2. Toxicity.
DOT National Transportation Integrated Search
1978-12-01
The purpose of this research was to determine the relative inhalation toxicity of the thermal degradation products or gaseous pyrolysis of selected types of electrical wiring insulations. The specific materials to be evaluated were supplied by the Bo...
Manganelli, Maura; Scardala, Simona; Stefanelli, Mara; Vichi, Susanna; Mattei, Daniela; Bogialli, Sara; Ceccarelli, Piegiorgio; Corradetti, Ernesto; Petrucci, Ines; Gemma, Simonetta; Testai, Emanuela; Funari, Enzo
2010-03-01
Increasing concern for human health related to cyanotoxin exposure imposes the identification of pattern and level of exposure; however, current monitoring programs, based on cyanobacteria cell counts, could be inadequate. An integrated approach has been applied to a small lake in Italy, affected by Planktothrix rubescens blooms, to provide a scientific basis for appropriate monitoring program design. The cyanobacterium dynamic, the lake physicochemical and trophic status, expressed as nutrients concentration and recycling rates due to bacterial activity, the identification/quantification of toxic genotype and cyanotoxin concentration have been studied. Our results indicate that low levels of nutrients are not a marker for low risk of P. rubescens proliferation and confirm that cyanobacterial density solely is not a reliable parameter to assess human exposure. The ratio between toxic/non-toxic cells, and toxin concentrations, which can be better explained by toxic population dynamic, are much more diagnostic, although varying with time and environmental conditions. The toxic fraction within P. rubescens population is generally high (30-100%) and increases with water depth. The ratio toxic/non-toxic cells is lowest during the bloom, suggesting a competitive advantage for non-toxic cells. Therefore, when P. rubescens is the dominant species, it is important to analyze samples below the thermocline, and quantitatively estimate toxic genotype abundance. In addition, the identification of cyanotoxin content and congeners profile, with different toxic potential, are crucial for risk assessment. Copyright 2009 Elsevier Ltd. All rights reserved.
Escher, Beate I; Lawrence, Michael; Macova, Miroslava; Mueller, Jochen F; Poussade, Yvan; Robillot, Cedric; Roux, Annalie; Gernjak, Wolfgang
2011-06-15
Advanced water treatment of secondary treated effluent requires stringent quality control to achieve a water quality suitable for augmenting drinking water supplies. The removal of micropollutants such as pesticides, industrial chemicals, endocrine disrupting chemicals (EDC), pharmaceuticals, and personal care products (PPCP) is paramount. As the concentrations of individual contaminants are typically low, frequent analytical screening is both laborious and costly. We propose and validate an approach for continuous monitoring by applying passive sampling with Empore disks in vessels that were designed to slow down the water flow, and thus uptake kinetics, and ensure that the uptake is only marginally dependent on the chemicals' physicochemical properties over a relatively narrow molecular size range. This design not only assured integrative sampling over 27 days for a broad range of chemicals but also permitted the use of a suite of bioanalytical tools as sum parameters, representative of mixtures of chemicals with a common mode of toxic action. Bioassays proved to be more sensitive than chemical analysis to assess the removal of organic micropollutants by reverse osmosis, followed by UV/H₂O₂ treatment, as many individual compounds fell below the quantification limit of chemical analysis, yet still contributed to the observed mixture toxicity. Nonetheless in several cases, the responses in the bioassays were also below their quantification limits and therefore only three bioassays were evaluated here, representing nonspecific toxicity and two specific end points for estrogenicity and photosynthesis inhibition. Chemical analytical techniques were able to quantify 32 pesticides, 62 PCPPs, and 12 EDCs in reverse osmosis concentrate. However, these chemicals could explain only 1% of the nonspecific toxicity in the Microtox assay in the reverse osmosis concentrate and 0.0025% in the treated water. Likewise only 1% of the estrogenic effect in the E-SCREEN could be explained by the quantified EDCs after reverse osmosis. In comparison, >50% of the estrogenic effect can typically be explained in sewage. Herbicidal activity could be fully explained by chemical analysis as the sampling period coincided with an illegal discharge and two herbicides dominated the mixture effect. The mass balance of the reverse osmosis process matched theoretical expectations for both chemical analysis and bioanalytical tools. Overall the investigated treatment train removed >97% estrogenicity, >99% herbicidal activity, and >96% baseline toxicity, confirming the suitability of the treatment train for polishing water for indirect potable reuse. The product water was indistinguishable from local tap water in all three bioassays. This study demonstrates the suitability and robustness of passive sampling linked with bioanalytical tools for semicontinuous monitoring of advanced water treatment with respect to micropollutant removal.
Lee, Tsair-Fwu; Liou, Ming-Hsiang; Ting, Hui-Min; Chang, Liyun; Lee, Hsiao-Yi; Wan Leung, Stephen; Huang, Chih-Jen; Chao, Pei-Ju
2015-01-01
We investigated the incidence of moderate to severe patient-reported xerostomia among nasopharyngeal carcinoma (NPC) patients treated with helical tomotherapy (HT) and identified patient- and therapy-related factors associated with acute and chronic xerostomia toxicity. The least absolute shrinkage and selection operator (LASSO) normal tissue complication probability (NTCP) models were developed using quality-of-life questionnaire datasets from 67 patients with NPC. For acute toxicity, the dosimetric factors of the mean doses to the ipsilateral submandibular gland (Dis) and the contralateral submandibular gland (Dcs) were selected as the first two significant predictors. For chronic toxicity, four predictive factors were selected: age, mean dose to the oral cavity (Doc), education, and T stage. The substantial sparing data can be used to avoid xerostomia toxicity. We suggest that the tolerance values corresponded to a 20% incidence of complications (TD20) for Dis = 39.0 Gy, Dcs = 38.4 Gy, and Doc = 32.5 Gy, respectively, when mean doses to the parotid glands met the QUANTEC 25 Gy sparing guidelines. To avoid patient-reported xerostomia toxicity, the mean doses to the parotid gland, submandibular gland, and oral cavity have to meet the sparing tolerance, although there is also a need to take inherent patient characteristics into consideration. PMID:26289304
Al-Delaimy, Wael K; Larsen, Catherine Wood; Pezzoli, Keith
2014-09-15
Living near landfills is a known health hazard prompting recognition of environmental injustice. The study aim was to compare self-reported symptoms of ill health among residents of four neighborhoods, living in haphazardly constructed settlements surrounded by illegal dumpsites in Tijuana, Mexico. One adult from each of 388 households located in Los Laureles Canyon were interviewed about demographics, health status, and symptoms. Distance from each residence to both the nearest dumpsite and the canyon bottom was assessed. The neighborhoods were selected from locations within the canyon, and varied with respect to proximity to dump sites. Residents of San Bernardo reported significantly higher frequencies of ill-health symptoms than the other neighborhoods, including extreme fatigue (OR 3.01 (95% CI 1.6-5.5)), skin problems/irritations (OR 2.73 (95% CI 1.3-5.9)), stomach discomfort (OR 2.47 (1.3-4.8)), eye irritation/tears (OR 2.02 (1.2-3.6)), and confusion/difficulty concentrating (OR 2.39 (1.2-4.8)). Proximity to dumpsites did not explain these results, that varied only slightly when adjusted for distance to nearest dumpsite or distance to the canyon bottom. Because San Bernardo has no paved roads, we hypothesize that dust and the toxicants it carries is a possible explanation for this difference. Studies are needed to further document this association and sources of toxicants.
Structural-functional adaptations of porcine CYP1A1 to metabolize polychlorinated dibenzo-p-dioxins.
Molcan, Tomasz; Swigonska, Sylwia; Orlowska, Karina; Myszczynski, Kamil; Nynca, Anna; Sadowska, Agnieszka; Ruszkowska, Monika; Jastrzebski, Jan Pawel; Ciereszko, Renata E
2017-02-01
Polychlorinated dibenzo-p-dioxins (PCDDs) are widespread by-products of human industrial activity. They accumulate in tissues of animals and humans, exerting numerous adverse effects on different systems. In living organisms, dioxins are metabolized by enzymes of the cytochrome P450 family, including CYP1A1. Particular dioxin congeners differ in their toxicity level and ability to undergo biodegradation. Since the molecular mechanisms underlying dioxin susceptibility or resistance to biodegradation are unknown, in the present study the molecular interactions between five selected dioxins and porcine CYP1A1 protein were investigated. It was found that the ability of a dioxin to undergo CYP1A1-mediated degradation is associated mainly with the number and position of chlorine atoms in the dioxin molecule. Among all examined congeners, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) demonstrated the highest affinity to CYP1A1 and, at the same time, the greatest distance to the active site of the enzyme. Interestingly, in contrast to other dioxins, the binding of the TCDD molecule to the porcine CYP1A1 active site resulted in a rapid and continuous closure of substrate channels. All the information may help to explain the extended half-life of TCDD in living organisms as well as its high toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kunita, Itsuki; Ueda, Kei-Ichi; Akita, Dai; Kuroda, Shigeru; Nakagaki, Toshiyuki
2017-09-01
Organisms choose from among various courses of action in response to a wide variety of environmental conditions and the mechanism by which various behaviours are induced is an open question. Interesting behaviour was recently reported: that a unicellular organism of slime mold Physarum polycephalum known as an amoeba had multiple responses (crossing, returning, etc) when the amoeba encounters a zone with toxic levels of quinine, even under carefully controlled conditions. We here examined this elegant example in more detail to obtain insight into behavioural differentiation. We found that the statistical distribution of passage times across a quinine zone switch from unimodal to bimodal (with peaks corresponding to fast crossing and no crossing) when a periodic light stimulation to modulate a biorhythm in amoeba is applied homogeneously across the space, even under the same level of chemical stimuli. Based on a mathematical model for cell movement in amoeba, we successfully reproduced the stimulation-induced differentiation, which was observed experimentally. These dynamics may be explained by a saddle structure around a canard solution. Our results imply that the differentiation of behavioural types in amoeba is modified step-by-step via the compounding of stimulation inputs. The complex behaviour like the differentiation in amoeba may provide a basis for understanding the mechanism of behaviour selection in higher animals from an ethological perspective.
Publication visibility of sensitive public health data: when scientists bury their results.
Rier, David A
2004-10-01
What happens when the scientific tradition of openness clashes with potential societal risks? The work of American toxic-exposure epidemiologists can attract media coverage and lead the public to change health practices, initiate lawsuits, or take other steps a study's authors might consider unwarranted. This paper, reporting data from 61 semi-structured interviews with U.S. toxic-exposure epidemiologists, examines whether such possibilities shaped epidemiologists' selection of journals for potentially sensitive papers. Respondents manifested strong support for the norm of scientific openness, but a significant minority had or would/might, given the right circumstances, publish sensitive data in less visible journals, so as to prevent unwanted media or public attention. Often, even those advocating such limited "burial" upheld openness, claiming that less visible publication allowed them to avoid totally withholding the data from publication. However, 15% of the sample had or would, for the most sensitive types of data, withhold publication altogether. Rather than respondents explaining their actions in terms of an expected split between "pure science" and "social advocacy" models, even those publishing in the more visible journals often described their actions in terms of their "responsibility". Several practical limitations (particularly involving broader access to scientific literature via the Internet) of the strategy of burial are discussed, and some recommendations are offered for scientists, the media, and the public.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, J.R.; Little, J.B.
1977-10-01
Pretreatment of LICH human cells by nontoxic doses (0.1 to 5.0 ..mu..g/ml) of proflavine protects them from inactivation by ultraviolet light. The protection is acquired rapidly after exposure of cells to proflavine, with 50 percent of maximum protection being afforded within 5 min and cells being maximally protected by 20 min. Loss of protection follows similar kinetics upon removal of proflavine from the culture medium. Protection is selective and cannot be explained on the basis of proflavine absorption of uv light. Cellular survival curves after ultraviolet light for cells protected by 1, 2, 3, 4, or 5 ..mu..g/ml of proflavinemore » show that protection alters only the slope of the survival curve, not altering the quasi-threshold dose, D/sub q/. The D/sub 0/ varies from 4.8 J/m/sup 2/ for untreated cells to 10.5 J/m/sup 2/ for cells pretreated with 5 ..mu..g/ml. These data suggest the D/sub 0/ and D/sub q/ do not represent parameters of a single underlying process, manifested in a random stochastic manner, but may reflect different cellular mechanisms or responses to different DNA damage. Proflavine is selective in mitigating only those which predominate at uv doses greater than the D/sub q/.« less
Kapusta, Krzysztof; Stańczyk, Krzysztof
2015-02-01
The effect of coal rank on the composition and toxicity of water effluents resulting from two underground coal gasification experiments with distinct coal samples (lignite and hard coal) was investigated. A broad range of organic and inorganic parameters was determined in the sampled condensates. The physicochemical tests were supplemented by toxicity bioassays based on the luminescent bacteria Vibrio fischeri as the test organism. The principal component analysis and Pearson correlation analysis were adopted to assist in the interpretation of the raw experimental data, and the multiple regression statistical method was subsequently employed to enable predictions of the toxicity based on the values of the selected parameters. Significant differences in the qualitative and quantitative description of the contamination profiles were identified for both types of coal under study. Independent of the coal rank, the most characteristic organic components of the studied condensates were phenols, naphthalene and benzene. In the inorganic array, ammonia, sulphates and selected heavy metals and metalloids were identified as the dominant constituents. Except for benzene with its alkyl homologues (BTEX), selected polycyclic aromatic hydrocarbons (PAHs), zinc and selenium, the values of the remaining parameters were considerably greater for the hard coal condensates. The studies revealed that all of the tested UCG condensates were extremely toxic to V. fischeri; however, the average toxicity level for the hard coal condensates was approximately 56% higher than that obtained for the lignite. The statistical analysis provided results supporting that the toxicity of the condensates was most positively correlated with the concentrations of free ammonia, phenols and certain heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.
Romanok, Kristin M.; Reilly, Timothy J.; Lopez, Anthony R.; Trainor, John J.; Hladik, Michelle; Stanley, Jacob K.; Farrar, Daniel
2014-01-01
A study of bed-sediment toxicity and organic and inorganic contaminants was conducted by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). Bed-sediment samples were collected once from 22 sites in Barnegat Bay and selected major tributaries during August–September 2012 and analyzed for toxicity and a suite of organic and inorganic contaminants by the USGS and the U.S. Army Corps of Engineers. Sampling sites were selected to coincide with an existing water-quality monitoring network used by the NJDEP and others in order to evaluate water-quality conditions in Barnegat Bay and the surrounding watershed. Two of the 22 sites are reference sites and are within or adjacent to the study area; bed-sediment samples from reference sites allow for comparisons of results for the Barnegat Bay watershed to results from less affected settings within the region. Toxicity testing was conducted by exposing the estuarine amphipod Leptocheirus plumulosus and the freshwater amphipod Hyalella azteca to sediments for 28 days, and the percent survival, difference in biomass, and individual dry weights were measured. Reproductive effects also were evaluated for estuarine samples. Bed-sediment samples from four sites within Barnegat Bay were subjected to a toxicity identification evaluation to determine probable causes of toxicity. Samples were analyzed for a suite of 94 currently-used pesticides, 21 legacy pesticides, 24 trace elements, 40 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls (PCBs) as Arochlor mixtures, and 145 individual PCB congeners. Concentrations of detected compounds were compared to sediment-quality guidelines, where appropriate.
Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis?
Kabashi, Edor; Valdmanis, Paul N; Dion, Patrick; Rouleau, Guy A
2007-12-01
The identification in 1993 of superoxide dismutase-1 (SOD1) mutations as the cause of 10 to 20% of familial amyotrophic lateral sclerosis cases, which represents 1 to 2% of all amyotrophic lateral sclerosis (ALS) cases, prompted a substantial amount of research into the mechanisms of SOD1-mediated toxicity. Recent experiments have demonstrated that oxidation of wild-type SOD1 leads to its misfolding, causing it to gain many of the same toxic properties as mutant SOD1. In vitro studies of oxidized/misfolded SOD1 and in vivo studies of misfolded SOD1 have indicated that these protein species are selectively toxic to motor neurons, suggesting that oxidized/misfolded SOD1 could lead to ALS even in individuals who do not carry an SOD1 mutation. It has also been reported that glial cells secrete oxidized/misfolded mutant SOD1 to the extracellular environment, where it can trigger the selective death of motor neurons, offering a possible explanation for the noncell autonomous nature of mutant SOD1 toxicity and the rapid progression of disease once the first symptoms develop. Therefore, considering that sporadic (SALS) and familial ALS (FALS) cases are clinically indistinguishable, the toxic properties of mutated SOD1 are similar to that of oxidized/misfolded wild-type SOD1 (wtSOD1), and secreted/extracellular misfolded SOD1 is selectively toxic to motor neurons, we propose that oxidized/misfolded SOD1 is the cause of most forms of classic ALS and should be a prime target for the design of ALS treatments.
Silva Junqueira, Vinícius; de Azevedo Peixoto, Leonardo; Galvêas Laviola, Bruno; Lopes Bhering, Leonardo; Mendonça, Simone; Agostini Costa, Tania da Silveira; Antoniassi, Rosemar
2016-01-01
The biggest challenge for jatropha breeding is to identify superior genotypes that present high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of this study was to estimate genetic parameters for three important traits (weight of 100 seed, oil seed content, and phorbol ester concentration), and to select superior genotypes to be used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic parameters estimated under the Bayesian multi-trait approach were used to evaluate different selection indices scenarios of 179 half-sib families. Three different scenarios and economic weights were considered. It was possible to simultaneously reduce toxicity and increase seed oil content and weight of 100 seed by using index selection based on genotypic value estimated by the Bayesian multi-trait approach. Indeed, we identified two families that present these characteristics by evaluating genetic diversity using the Ward clustering method, which suggested nine homogenous clusters. Future researches must integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build accurate selection indices models. PMID:27281340
Fardet, Laurence; Nizard, Jacky; Généreau, Thierry
2002-09-28
THE FACTS: Non steroidal anti-inflammatory drugs (NSAI), except aspirin, are classically contraindicated during pregnancy. Nevertheless, they are widely used, in particular by the obstetricians. During pregnancy, the potential toxicity of these drugs is double, maternal and fetal. The maternal toxicity is comparable to that, already known in adults, with however, some particularities at the time of labor and delivery. The fetal toxicity is mainly renal and cardiovascular, with the NSAI responsible for oligoamniosis and premature closure of the arterial canal of the fetus. On the other hand, the use of these molecules during breast-feeding does not seem source of adverse events, notably in the newborn. THE VARIOUS MOLECULES: Among the family of non-selective non-steroidal anti-inflammatories, indications and adverse events of the various molecules differ considerably. Moreover, whereas the majority of these molecules are non-selective, i.e. inhibiting the two isoforms of cyclooxygenase, new therapeutics, specifically inhibiting cyclooxygenase-2, are now available. Few studies have been published concerning their prescription during pregnancy and breast-feeding and their maternal and fetal side effects remain ignored by most of the practitioners.
Abdu-Allah, Gamal A M; Pittendrigh, Barry R
2018-01-01
Selective insecticide application is one important strategy for more precisely targeting harmful insects while avoiding or mitigating collateral damage to beneficial insects like honey bees. Recently, macrocyclic lactone-class insecticides have been introduced into the market place as selective bio-insecticides for controlling many arthropod pests, but how to target this selectivity only to harmful insects has yet to be achieved. In this study, the authors investigated the acute toxicity of fourmacrocyclic lactone insecticides (commercialized as abamectin, emamectin benzoate, spinetoram, and spinosad) both topically and through feeding studies with adult forager honey bees. Results indicated emamectin benzoate as topically 133.3, 750.0, and 38.3-fold and orally 3.3, 7.6, and 31.7-fold more toxic, respectively than abamectin, spinetoram and spinosad. Using Hazard Quotients for estimates of field toxicity, abamectin was measured as the safest insecticide both topically and orally for honey bees. Moreover, a significant reduction of sugar solution consumption by treatment group honey bees for orally applied emamectin benzoate and spinetoram suggests that these insecticides may have repellent properties.
Fedorova, Elena V.; Buryakina, Anna V.; Zakharov, Alexey V.; Filimonov, Dmitry A.; Lagunin, Alexey A.; Poroikov, Vladimir V.
2014-01-01
Based on the data about structure and antidiabetic activity of twenty seven vanadium and zinc coordination complexes collected from literature we developed QSAR models using the GUSAR program. These QSAR models were applied to 10 novel vanadium coordination complexes designed in silico in order to predict their hypoglycemic action. The five most promising substances with predicted potent hypoglycemic action were selected for chemical synthesis and pharmacological evaluation. The selected coordination vanadium complexes were synthesized and tested in vitro and in vivo for their hypoglycemic activities and acute rat toxicity. Estimation of acute rat toxicity of these five vanadium complexes was performed using a freely available web-resource (http://way2drug.com/GUSAR/acutoxpredict.html). It has shown that the selected compounds belong to the class of moderate toxic pharmaceutical agents, according to the scale of Hodge and Sterner. Comparison with the predicted data has demonstrated a reasonable correspondence between the experimental and predicted values of hypoglycemic activity and toxicity. Bis{tert-butyl[amino(imino)methyl]carbamato}oxovanadium (IV) and sodium(2,2′-Bipyridyl)oxo-diperoxovanadate(V) octahydrate were identified as the most potent hypoglycemic agents among the synthesized compounds. PMID:25057899
Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities
Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.
2012-01-01
The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561
Kuong, Kawai J.; Kuzminov, Andrei
2009-01-01
Hydroxyurea is a potent remedy against a variety of ailments and an efficient inhibitor of DNA synthesis, yet its pharmacology is unclear. Hydroxyurea acts in Escherichia coli by the same mechanism as it does in eukaryotes, via inhibition of ribonucleotide reductase. When examining a controversy about concentrations of hydroxyurea that prevent thymineless death in E. coli, we found instability in hydroxyurea solutions which avoided prior detection due to its peculiar nature. In contrast to freshly dissolved hydroxyurea, which did not affect respiration and was bacteriostatic, one-day-old hydroxyurea solutions inhibited respiration and were immediately bactericidal. Respiration was inhibited by two gasses, hydrogen cyanide (HCN) and nitric oxide (NO), whose appearance we detected in “aged” hydroxyurea stocks by GC-MS; however, neither gas was bactericidal. While determining the cause of toxicity, we found that hydroxyurea damages DNA directly. We also demonstrated accumulation of peroxides in hydroxyurea solutions by enzymatic assays, which explains the toxicity, as both NO and HCN are known to kill bacteria when combined with hydrogen peroxide. Remarkably, we found that bactericidal effects of NO + H2O2 and HCN + H2O2 mixtures were further synergistic. Accumulation of decomposition products in solutions of hydroxyurea may explain the broad therapeutic effects of this drug. PMID:19467244
Ibandronate metal complexes: solution behavior and antiparasitic activity.
Demoro, Bruno; Rostán, Santiago; Moncada, Mauricio; Li, Zhu-Hong; Docampo, Roberto; Olea Azar, Claudio; Maya, Juan Diego; Torres, Julia; Gambino, Dinorah; Otero, Lucía
2018-03-01
To face the high costs of developing new drugs, researchers in both industry and academy are looking for ways to repurpose old drugs for new uses. In this sense, bisphosphonates that are clinically used for bone diseases have been studied as agents against Trypanosoma cruzi, causative parasite of Chagas disease. In this work, the development of first row transition metal complexes (M = Co 2+ , Mn 2+ , Ni 2+ ) with the bisphosphonate ibandronate (iba, H 4 iba representing the neutral form) is presented. The in-solution behavior of the systems containing iba and the selected 3d metal ions was studied by potentiometry. Mononuclear complexes [M(H x iba)] (2-x)- (x = 0-3) and [M(Hiba) 2 ] 4- together with the formation of the neutral polynuclear species [M 2 iba] and [M 3 (Hiba) 2 ] were detected for all studied systems. In the solid state, complexes of the formula [M 3 (Hiba) 2 (H 2 O) 4 ]·6H 2 O were obtained and characterized. All obtained complexes, forming [M(Hiba)] - species under the conditions of the biological studies, were more active against the amastigote form of T. cruzi than the free iba, showing no toxicity in mammalian Vero cells. In addition, the same complexes were selective inhibitors of the parasitic farnesyl diphosphate synthase (FPPS) enzyme showing poor inhibition of the human one. However, the increase of the anti-T. cruzi activity upon coordination could not be explained neither through the inhibition of TcFPPS nor through the inhibition of TcSPPS (T. cruzi solanesyl-diphosphate synthase). The ability of the obtained metal complexes of catalyzing the generation of free radical species in the parasite could explain the observed anti-T. cruzi activity.
CYP 2E1 mutant mice are resistant to DDC-induced enhancement of MPTP toxicity.
Viaggi, C; Vaglini, F; Pardini, C; Sgadò, P; Caramelli, A; Corsini, G U
2007-01-01
In order to reach a deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, we showed that CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. Furthermore we showed that CYP 2E1 is present in the brain and in the basal ganglia of mice (Vaglini et al., 2004). However, because DAS and PIC are not selective CYP 2E1 inhibitors and in order to provide direct evidence for CYP 2E1 involvement in the enhancement of MPTP toxicity, CYP 2E1 knockout mice (GONZ) and wild type animals (SVI) of the same genetic background were treated with MPTP or the combined DDC + MPTP treatment. In CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity, although enhancement of MPTP toxicity was regularly present in the SVI control animals. The immunohistochemical study confirms our results and suggests that CYP 2E1 may have a detoxifying role.
Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.
A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production.
Diez-Ortiz, Maria; Lahive, Elma; George, Suzanne; Ter Schure, Anneke; Van Gestel, Cornelis A M; Jurkschat, Kerstin; Svendsen, Claus; Spurgeon, David J
2015-08-01
This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and silver nanoparticles (Ag NP) for 1, 9, 30 & 52 weeks, and related this to the total Ag in the soil, Ag in soil pore water and earthworm tissue Ag concentrations. For ionic Ag, a classical pattern of reduced bioavailability and toxicity with time aged in the soil was observed. For the Ag NP, toxicity increased with time apparently driven by Ag ion dissolution from the added Ag NPs. Internal Ag in the earthworms did not always explain toxicity and suggested the presence of an internalised, low-toxicity Ag fraction (as intact or transformed NPs) after shorter aging times. Our results indicate that short-term exposures, without long-term soil aging, are not able to properly assess the environmental risk of Ag NPs and that ultimately, with aging time, Ag ion and Ag NP effect will merge to a common value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Traditional toxicological paradigms have relied on factors such as age, genotype, and disease status to explain variability in responsiveness to toxicant exposure; however, these are neither sufficient to faithfully identify differentially responsive individuals nor are they modi...
To Each Their Own: Molecular Mechanisms of Inter-Individual Variability in Toxic Exposure Effects
Traditional approaches to identifying susceptible populations have relied on factors such as age, genotype, and disease status to explain variability in exposure outcomes; however, these are neither sufficient to faithfully identify differentially responsive individuals nor are t...
Selective Methylation: an Incorrect Hypothesis
Shugart, Lee
1976-01-01
“Selective methylation,” a hypothesis proposed to explain the discrepancy found in the degree of methyl deficiency of transfer ribonucleic acid, cannot be explained on the basis of some biological phenomenon. PMID:770445
Romero-Freire, A; Peinado, F J Martín; Ortiz, M Díez; van Gestel, C A M
2015-10-01
This study aimed at assessing the influence of soil properties on the uptake and toxicity effects of arsenic in the earthworm Eisenia andrei exposed for 4 weeks to seven natural soils spiked with different arsenic concentrations. Water-soluble soil concentrations (AsW) and internal As concentrations in the earthworms (AsE) were greatly different between soils. These two variables were highly correlated and were key factors in earthworm toxicity response. AsW was explained by some soil properties, such as the pH, calcium carbonate content, ionic strength, texture or oxide forms. Toxicity showed a clear variation between soils, in some cases without achieving 50 % adverse effect at the highest As concentration added (600 mg kg(-1)). Nevertheless, soil properties did not show, in general, a high relation with studied toxicity endpoints, although the high correlation with AsW could greatly reduce indirectly As bioavailability and toxicity risk for earthworms. Obtained results suggest that soil properties should be part of the criteria to establishing thresholds for contaminated soils because they will be key in controlling As availability and thus result in different degrees of toxicity.
A systems-level approach for investigating organophosphorus pesticide toxicity.
Zhu, Jingbo; Wang, Jing; Ding, Yan; Liu, Baoyue; Xiao, Wei
2018-03-01
The full understanding of the single and joint toxicity of a variety of organophosphorus (OP) pesticides is still unavailable, because of the extreme complex mechanism of action. This study established a systems-level approach based on systems toxicology to investigate OP pesticide toxicity by incorporating ADME/T properties, protein prediction, and network and pathway analysis. The results showed that most OP pesticides are highly toxic according to the ADME/T parameters, and can interact with significant receptor proteins to cooperatively lead to various diseases by the established OP pesticide -protein and protein-disease networks. Furthermore, the studies that multiple OP pesticides potentially act on the same receptor proteins and/or the functionally diverse proteins explained that multiple OP pesticides could mutually enhance toxicological synergy or additive on a molecular/systematic level. To the end, the integrated pathways revealed the mechanism of toxicity of the interaction of OP pesticides and elucidated the pathogenesis induced by OP pesticides. This study demonstrates a systems-level approach for investigating OP pesticide toxicity that can be further applied to risk assessments of various toxins, which is of significant interest to food security and environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.
Cleuvers, Michael
2004-11-01
The ecotoxicity of the nonsteroidal anti-inflammatory drugs (NSAIDs) diclofenac, ibuprofen, naproxen, and acetylsalicylic acid (ASA) has been evaluated using acute Daphnia and algal tests. Toxicities were relatively low, with half-maximal effective concentration (EC50) values obtained using Daphnia in the range from 68 to 166 mg L(-1) and from 72 to 626 mg L(-1) in the algal test. Acute effects of these substances seem to be quite improbable. The quantitative structure-activity relationships (QSAR) approach showed that all substances act by nonpolar narcosis; thus, the higher the n-octanol/water partitioning coefficient (log Kow) of the substances, the higher is their toxicity. Mixture toxicity of the compounds could be accurately predicted using the concept of concentration addition. Toxicity of the mixture was considerable, even at concentrations at which the single substances showed no or only very slight effects, with some deviations in the Daphnia test, which could be explained by incompatibility of the very steep dose-response curves and the probit analysis of the data. Because pharmaceuticals in the aquatic environment occur usually as mixtures, an accurate prediction of the mixture toxicity is indispensable for environmental risk assessment.
Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.
Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela
2018-04-20
In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic surfactant solution (ether carboxylic acid), a nonionic surfactant solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of surfactants onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic surfactants. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of surfactant solutions. Nevertheless, the toxicity reduction depends on the ionic character of the surfactants. Differences can be explained by the different adsorption behavior of surfactants onto the particle surface, which is weaker for nonionic surfactants than for anionic surfactants. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic surfactants and considerably reduced their CMC, whereas in the case of nonionic surfactants, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.
Frequency-dependent selection predicts patterns of radiations and biodiversity.
Melián, Carlos J; Alonso, David; Vázquez, Diego P; Regetz, James; Allesina, Stefano
2010-08-26
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Peck, Mika R; Klessa, David A; Baird, Donald J
2002-04-01
The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.
Saghir, Shakil A; Marty, Mary S; Zablotny, Carol L; Passage, Julie K; Perala, Adam W; Neal, Barbara H; Hammond, Larry; Bus, James S
2013-12-01
Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥ 1200 ppm (63 mg/kg/day) for P1 males and between 200 and 400 ppm (14-27 mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21-35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies.
Marty, Mary S.
2013-01-01
Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥1200 ppm (63mg/kg/day) for P1 males and between 200 and 400 ppm (14–27mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21–35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies. PMID:24105888
NASA Astrophysics Data System (ADS)
Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.
2005-05-01
A reactive chromophore developed at MIT exhibits sensitive and selective detection of surrogates for G-class nerve agents. This reporter acts by reacting with the agent to form an intermediate that goes through an internal cyclization reaction. The reaction locks the molecule into a form that provides a strong fluorescent signal. Using a fluorescent sensor platform, Nomadics has demonstrated rapid and sensitive detection of reactive simulants such as diethyl chloro-phosphate (simulant for sarin, soman, and related agents) and diethyl cyanophosphate (simulant for tabun). Since the unreacted chromophore does not fluoresce at the excitation wavelength used for the cyclized reporter, the onset of fluo-rescence can be easily detected. This fluorescence-based detection method provides very high sensitivity and could enable rapid detection at permissible exposure levels. Tests with potential interferents show that the reporter is very selective, with responses from only a few highly toxic, electrophilic chemicals such as phosgene, thionyl chloride, and strong acids such as HF, HCl, and nitric acid. Dimethyl methyl phosphonate (DMMP), a common and inactive simu-lant for other CW detectors, is not reactive enough to generate a signal. The unique selectivity to chemical reactivity means that a highly toxic and hazardous chemical is present when the reporter responds and illustrates that this sensor can provide very low false alarm rates. Current efforts focus on demonstrating the sensitivity and range of agents and toxic industrial chemicals detected with this reporter as well as developing additional fluorescent reporters for a range of chemical reactivity classes. The goal is to produce a hand-held sensor that can sensitively detect a broad range of chemical warfare agent and toxic industrial chemical threats.
Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salt, D.E.; Blaylock, M.; Kumar, N. P.B.A.
1995-05-01
Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction: the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration: the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization: the use of plants to eliminate the bioavailability of toxic metals in soils. Biological mechanisms of toxic metal uptake,more » translocation and resistance as well as strategies for improving phytoremediation are also discussed. 83 refs., 4 figs., 1 tab.« less
Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio
2014-01-01
The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.
Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation.
Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai; Gao, Shuyan
2015-02-15
The reaction kinetics and toxicity of diclofenac (DCF) oxidation by ferrate (VI) under simulated water disinfection conditions were investigated. Experimental results indicated that the reaction between DCF and Fe(VI) followed first-order kinetics with respect to each reactant. Furthermore, the effects of pH and temperature on DCF oxidation by Fe(VI) were elucidated using a systematic examination. The apparent second-order rate constants (kapp) increased significantly from 2.54 to 11.6M(-1)s(-1), as the pH of the solution decreased from 11.0 to 7.0, and the acid-base equilibriums of Fe(VI) and DCF were proposed to explain the pH dependence of kapp. The acute toxicity of DCF solution during Fe(VI) oxidation was evaluated using a Microtox bioassay. Overall, the DCF degradation process resulted in a rapid increase of the inhibition rate of luminescent bacteria. These toxicity tests suggest that the formation of enhanced toxic intermediates during the Fe(VI) disinfection process may pose potential health risk to consumers. Copyright © 2014 Elsevier B.V. All rights reserved.
Which chemicals drive biological effects in wastewater and recycled water?
Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I
2014-09-01
Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.
2006-01-01
Aerosol Lidar ........................................................................ 14 3.3 Selection of Target Toxic Release Inventory (TRI...initiated in 2001 to respond to SERDP Statement of Need (SON) CPSON-01-01 to develop and apply an approach to measure emission factors of Toxic Release...businesses are required to submit reports each year on the amount of toxic chemicals their facilities release into the environment, either routinely or
NASA Astrophysics Data System (ADS)
Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard
2015-11-01
Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.
A role for relaxed selection in the evolution of the language capacity
Deacon, Terrence W.
2010-01-01
Explaining the extravagant complexity of the human language and our competence to acquire it has long posed challenges for natural selection theory. To answer his critics, Darwin turned to sexual selection to account for the extreme development of language. Many contemporary evolutionary theorists have invoked incredibly lucky mutation or some variant of the assimilation of acquired behaviors to innate predispositions in an effort to explain it. Recent evodevo approaches have identified developmental processes that help to explain how complex functional synergies can evolve by Darwinian means. Interestingly, many of these developmental mechanisms bear a resemblance to aspects of Darwin's mechanism of natural selection, often differing only in one respect (e.g., form of duplication, kind of variation, competition/cooperation). A common feature is an interplay between processes of stabilizing selection and processes of relaxed selection at different levels of organism function. These may play important roles in the many levels of evolutionary process contributing to language. Surprisingly, the relaxation of selection at the organism level may have been a source of many complex synergistic features of the human language capacity, and may help explain why so much language information is “inherited” socially. PMID:20445088
Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control
METHODS FOR DEVELOPING THE NEXT GENERATION OF AQUATIC LIFE CRITERIA
New experiments and studies are being conducted on selected criteria uncertainties that cannot be addressed with current knowledge, including the importance of dietary metal exposure to toxic response and the significance of increased toxicity from photo-activation of PAHs in nat...
IMAGING ASSESSMENT OF G-PROTEIN-COUPLED ESTROGEN RECEPTOR ACTIVATION
We expect to provide a targeted imaging assay that links chemical mechanism of toxicity to target organ effects and heart physiology within individual 96-hpf zebrafish. Importantly, with the utilization of selective, non-toxic agonists or antagonists for additional xenobiot...
A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS
Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...
Classification of Chemicals Based On Structured Toxicity ...
Thirty years and millions of dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data within the Toxicity Reference Database (ToxRefDB). Toxicity-based classifications of chemicals were performed as a model application of ToxRefDB. These endpoints will ultimately provide the anchoring toxicity information for the development of predictive models and biological signatures utilizing in vitro assay data. Utilizing query and structured data mining approaches, toxicity profiles were uniformly generated for greater than 300 chemicals. Based on observation rate, species concordance and regulatory relevance, individual and aggregated effects have been selected to classify the chemicals providing a set of predictable endpoints. ToxRefDB exhibits the utility of transforming unstructured toxicity data into structured data and, furthermore, into computable outputs, and serves as a model for applying such data to address modern toxicological problems.
Saghir, Shakil A; Bartels, Michael J; Rick, David L; McCoy, Alene T; Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Sue Marty, M; Terry, Claire; Bailey, Jason P; Billington, Richard; Bus, James S
2012-07-01
Integrated toxicokinetics (TK) data provide information on the rate, extent and duration of systemic exposure across doses, species, strains, gender, and life stages within a toxicology program. While routine for pharmaceuticals, TK assessments of non-pharmaceuticals are still relatively rare, and have never before been included in a full range of guideline studies for a new agrochemical. In order to better understand the relationship between diurnal systemic dose (AUC(24h)) and toxicity of agrochemicals, TK analyses in the study animals is now included in all short- (excluding acute), medium- and long-term guideline mammalian toxicity studies including reproduction/developmental tests. This paper describes a detailed procedure for the implementation of TK in short-, medium- and long-term regulatory toxicity studies, without the use of satellite animals, conducted on three agrochemicals (X11422208, 2,4-D and X574175). In these studies, kinetically-derived maximum doses (KMD) from short-term studies instead of, or along with, maximum tolerated doses (MTD) were used for the selection of the high dose in subsequent longer-term studies. In addition to leveraging TK data to guide dose level selection, the integrated program was also used to select the most appropriate method of oral administration (i.e., gavage versus dietary) of test materials for rat and rabbit developmental toxicity studies. The integrated TK data obtained across toxicity studies (without the use of additional/satellite animals) provided data critical to understanding differences in response across doses, species, strains, sexes, and life stages. Such data should also be useful in mode of action studies and to improve human risk assessments. Copyright © 2012 Elsevier Inc. All rights reserved.
Sponza, Delia Teresa
2002-01-01
Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.
Pesticide alters oviposition site selection in gray treefrogs.
Vonesh, James R; Buck, Julia C
2007-11-01
Understanding the impacts of pesticides on non-target organisms is an important issue for conservation biology. Research into the environmental consequences of pesticides has largely focused on pesticide toxicity. We have less understanding of the nonlethal effects of pesticides, and the consequences of nonlethal effects for species and communities. For example, we know very little about whether pesticides alter habitat selection behavior. Understanding whether pesticides alter habitat selection is important because pesticide-induced shifts in habitat selection could either magnify or reduce the toxic effects of contaminants by funneling organisms into or directing them away from contaminated sites. Here we present four field experiments that examine the effect of the commercial pesticide Sevin and its active ingredient, carbaryl, on oviposition site selection by the gray treefrog (Hyla chrysoscelis). Our results show that uncontaminated pools consistently received 2-3 times more eggs than contaminated pools; that treefrogs appeared to respond to Sevin directly, not indirectly via its effects on the aquatic food web, and that this preference persisted across a range of temporal and spatial scales. Both Sevin and carbaryl per se reduced oviposition, while other volatile chemicals (e.g., our solvent control, acetone) had no effect. These findings suggest that in order to understanding the consequences of contaminants in aquatic systems we will need to consider not only toxicity, but also how contaminant effects on habitat selection alter the way organisms distribute themselves in the environment.
Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas
2010-09-15
Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.
Aquatic toxicity information retrieval data base (AQUIRE for non-vms) (1600 bpi). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. During 1992 and early 1993, nine data updates were made to the AQUIRE system. AQUIRE now contains 109,338 individual aquatic toxicity test results for 5,159 chemicals, 2,429 organisms, and over 160 endpoints reviewed from 7,517 publications. New features include a data selection option that permits searches that are restricted to data added or modified through any of the eight most recent updates, and a report generation (Full Record Detail) that displays the entire AQUIRE record for each testmore » identified in a search. Selection of the Full Record Detail feature allows the user to peruse all AQUIRE fields for a given test, including the information stored in the remarks section, while the standard AQUIRE output format presents selected data fields in a concise table. The standard report remains an available option for rapid viewing of system output.« less
Aquatic toxicity information retrieval data base (AQUIRE for non-vms) (6250 bpi). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of AQUIRE is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. During 1992 and early 1993, nine data updates were made to the AQUIRE system. AQUIRE now contains 109,338 individual aquatic toxicity test results for 5,159 chemicals, 2,429 organisms, and over 160 endpoints reviewed from 7,517 publications. New features include a data selection option that permits searches that are restricted to data added or modified through any of the eight most recent updates, and a report generation (Full Record Detail) that displays the entire AQUIRE record for each testmore » identified in a search. Selection of the Full Record Detail feature allows the user to peruse all AQUIRE fields for a given test, including the information stored in the remarks section, while the standard AQUIRE output format presents selected data fields in a concise table. The standard report remains an available option for rapid viewing of system output.« less
Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Łukasz; Heipieper, Hermann J
2017-01-01
Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC 50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br - ). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC 50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C 10 ,C 10 ,C 1 ,C 1 N][MCPP] and [C 10 ,C 10 ,C 1 ,C 1 N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sai Latha, S.; Naveen, S.; Pradeep, C. K.; Sivaraj, C.; Dinesh, M. G.; Anilakumar, K. R.
2018-01-01
Background: Poisoning by different kinds of toxic mushrooms is unfortunately becoming an increasingly important medical problem, evident from the growing number of reports worldwide since the 1950s. Mycetism being a health concern, deserves scientific attention. In this perspective, the present study aims to assess the potential effects of ingesting the selected wild mushrooms from regions of the Western Ghats, India. Methods: The preliminary cytotoxicity of the selected mushrooms was studied in vitro on the intestinal NCM460 and the Chang's liver cell lines on the basis of cell viability. Further, the hepatotoxicity was assessed by measuring biologically relevant endpoints such as membrane integrity, mitochondrial stress and oxidative status. A 28 day sub-acute toxicity study was carried out by orally administering the mushroom extracts to mice at 250 and 500 mg/kg body weight. The hematological and serum analysis as well as histological examinations were carried out to evaluate their in vivo toxicity. GC-MS analysis of the mushrooms facilitated the identification of their volatile chemical profile. Result: The in vitro intestinal cytotoxicity exhibited by these wild mushrooms in comparison to the edible mushroom indicated their potential gastrointestinal toxicity. The pathological findings in small intestine on exposure to Chlorophyllum molybdites and Agaricus endoxanthus also validates the speculations about their intestinal toxicity. The toxic insult to the hepatocytes due to Amanita angustilamellata, Entoloma crassum, and Clarkeinda trachodes was predictive of the observed in vivo hepatotoxicity which was also accompanied by renal toxicity at the higher dose of 500 mg/kg bwt. Conclusion: The potential toxicity exhibited by these representative mushrooms from the wild warrants caution about their consumption. The present work could also have broader implications for global mycetism. PMID:29487528
Białk-Bielińska, Anna; Matzke, Marianne; Caban, Magda; Stolte, Stefan; Kumirska, Jolanta; Stepnowski, Piotr
2018-03-15
Sulphonamides (SAs) are one of the most commonly used veterinary drugs and therefore their residues are regularly found in the environment. So far scientific attention has mostly been paid to the evaluation of their acute ecotoxicological effects with data on long-term effects for non-target organisms still largely missing. Therefore, the main aim of this study was to evaluate the potential toxicities of five sulphonamides to duckweed (Lemna minor) after prolonged exposure time (14days). To elucidate whether their phytotoxic effects result from potential photodegradation products, the toxicity of standard solutions of selected sulphonamides was also investigated in a standard 7-day test but after irradiation (by keeping them under the test conditions) for the selected time (after 7 and 14days). The ecotoxicological tests were accompanied by chemical analyses to be able to link the observed effects to the concentrations and nature of the exposed compounds. The results showed a shift in the toxicity of SAs: a strong decrease in toxicity for the two most toxic sulphonamides (sulphamethoxazole and sulphadimethoxine) and a slight increase in toxicity for three other SAs (sulphadimidine, sulphathiazole, sulphamerazine) in the prolonged test. However, a decrease in the toxicity and concentration of all the SAs was observed when stock solutions were irradiated prior to the toxicity experiment, which suggests that the observed effects towards L. minor of five SAs in the prolonged test cannot be directly associated with the degradation of these compounds under the test conditions but with their different mode of toxic action towards these organisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Nobels, Ingrid; Spanoghe, Pieter; Haesaert, Geert; Robbens, Johan; Blust, Ronny
2011-01-01
The omnipresent group of pesticide adjuvants are often referred to as “inert” ingredients, a rather misleading term since consumers associate this term with “safe”. The upcoming new EU regulation concerning the introduction of plant protection products on the market (EC1107/2009) includes for the first time the demand for information on the possible negative effects of not only the active ingredients but also the used adjuvants. This new regulation requires basic toxicological information that allows decisions on the use/ban or preference of use of available adjuvants. In this study we obtained toxicological relevant information through a multiple endpoint reporter assay for a broad selection of commonly used adjuvants including several solvents (e.g. isophorone) and non-ionic surfactants (e.g. ethoxylated alcohols). The used assay allows the toxicity screening in a mechanistic way, with direct measurement of specific toxicological responses (e.g. oxidative stress, DNA damage, membrane damage and general cell lesions). The results show that the selected solvents are less toxic than the surfactants, suggesting that solvents may have a preference of use, but further research on more compounds is needed to confirm this observation. The gene expression profiles of the selected surfactants reveal that a phenol (ethoxylated tristyrylphenol) and an organosilicone surfactant (ethoxylated trisiloxane) show little or no inductions at EC20 concentrations, making them preferred surfactants for use in different applications. The organosilicone surfactant shows little or no toxicity and good adjuvant properties. However, this study also illustrates possible genotoxicity (induction of the bacterial SOS response) for several surfactants (POEA, AE, tri-EO, EO FA and EO NP) and one solvent (gamma-butyrolactone). Although the number of compounds that were evaluated is rather limited (13), the results show that the used reporter assay is a promising tool to rank commonly used agricultural adjuvants based on toxicity and toxic mode of action data. PMID:22125591
Acute toxicity of some nerve agents and pesticides in rats.
Misik, Jan; Pavlikova, Ruzena; Cabal, Jiri; Kuca, Kamil
2015-01-01
Highly toxic organophosphorus compounds (V- and G-nerve agents) were originally synthesized for warfare or as agricultural pesticides. Data on their acute toxicity are rare and patchy. Therefore, there is a need for integrated summary comparing acute toxicity of organophosphates using different administration routes in the same animal model with the same methodology. Based on original data, a summary of in vivo acute toxicity of selected V- and G-nerve agents (tabun, sarin, soman, VX, Russian VX) and organophosphates paraoxon (POX) and diisopropyl fluorophosphate (DFP) in rats has been investigated. Male Wistar rats were exposed to organophosphates in several administration routes (i.m., i.p., p.o, s.c., p.c.). The acute toxicity was evaluated by the assessment of median lethal dose (LD50, mg kg(-1)) 2, 4, and 24 hours post exposure. V-agents were the most toxic presented with LD50 ranged from 0.0082 mg kg(-1) (VX, i.m.) to 1.402 mg kg(-1) (Russian VX, p.o.), followed by G-agents (LD50 = 0.069 mg kg(-1)/soman, i.m./ - 117.9 mg kg(-1)/sarin, p.c./), organophosphate POX and DFP (LD50 = 0.321 mg kg(-1)/POX, i.m./ - 420 mg kg(-1)/DFP, p.c./). Generally, i.m. administration was the most toxic throughout all tested agents and ways of administration (LD50 = 0.0082 mg kg(-1)/VX/ - 1.399 mg kg(-1)/DFP/) whereas p.c. way was responsible for lowest acute toxicity (LD50 = 0.085 mg kg(-1)/VX/ - 420 mg kg(-1)/DFP/). The acute toxicity of selected organophosphorus compounds is summarized throughout this study. Although the data assessed in rats are rather illustrative prediction for human, it presents a valuable contribution, indicating the toxic potential and harmfulness of organophosphates.
Sohl, Christal D.; Szymanski, Michal R.; Mislak, Andrea C.; Shumate, Christie K.; Amiralaei, Sheida; Schinazi, Raymond F.; Anderson, Karen S.; Yin, Y. Whitney
2015-01-01
Nucleoside analog reverse transcriptase inhibitors (NRTIs) are the essential components of highly active antiretroviral (HAART) therapy targeting HIV reverse transcriptase (RT). NRTI triphosphates (NRTI-TP), the biologically active forms, act as chain terminators of viral DNA synthesis. Unfortunately, NRTIs also inhibit human mitochondrial DNA polymerase (Pol γ), causing unwanted mitochondrial toxicity. Understanding the structural and mechanistic differences between Pol γ and RT in response to NRTIs will provide invaluable insight to aid in designing more effective drugs with lower toxicity. The NRTIs emtricitabine [(-)-2,3′-dideoxy-5-fluoro-3′-thiacytidine, (-)-FTC] and lamivudine, [(-)-2,3′-dideoxy-3′-thiacytidine, (-)-3TC] are both potent RT inhibitors, but Pol γ discriminates against (-)-FTC-TP by two orders of magnitude better than (-)-3TC-TP. Furthermore, although (-)-FTC-TP is only slightly more potent against HIV RT than its enantiomer (+)-FTC-TP, it is discriminated by human Pol γ four orders of magnitude more efficiently than (+)-FTC-TP. As a result, (-)-FTC is a much less toxic NRTI. Here, we present the structural and kinetic basis for this striking difference by identifying the discriminator residues of drug selectivity in both viral and human enzymes responsible for substrate selection and inhibitor specificity. For the first time, to our knowledge, this work illuminates the mechanism of (-)-FTC-TP differential selectivity and provides a structural scaffold for development of novel NRTIs with lower toxicity. PMID:26124101
WAVELENGTH-RESOLVED REMPI MASS SPECTROMETRY FOR THE MONITORING OF TOXIC INCINERATION TRACE GASES
Structure-selective measurement techniques are needed for the assessment of the toxic loading of incinerator gases. This review article shows that wavelength-resolved, resonance-enhanced, multiphoton- ionization (REMPY) mass spectrometry can be used to this end. In this case, how...
Exposure Space: Integrating Exposure Data and Modeling with Toxicity Information
Recent advances have been made in high-throughput (HTP) toxicity testing, e.g. from ToxCast, which will ultimately be combined with HTP predictions of exposure potential to support next-generation chemical safety assessment. Rapid exposure methods are essential in selecting chemi...
Daum, Steffen; Chekhun, Vasiliy F; Todor, Igor N; Lukianova, Natalia Yu; Shvets, Yulia V; Sellner, Leopold; Putzker, Kerstin; Lewis, Joe; Zenz, Thorsten; de Graaf, Inge A M; Groothuis, Geny M M; Casini, Angela; Zozulia, Oleksii; Hampel, Frank; Mokhir, Andriy
2015-02-26
We report on an improved method of synthesis of N-benzylaminoferrocene-based prodrugs and demonstrate its applicability by preparing nine new aminoferrocenes. Their effect on the viability of selected cancer cells having different p53 status was studied. The obtained data are in agreement with the hypothesis that the toxicity of aminoferrocenes is not dependent upon p53 status. Subsequently the toxicity of a selected prodrug (4) was investigated ex vivo using rat precision cut liver slices and in vivo on hybrid male mice BDF1. In both experiments no toxicity was observed: ex vivo, up to 10 μM; in vivo, up to 6 mg/kg. Finally, prodrug 4 was shown to extend the survival of BDF1 mice carrying L1210 leukemia from 13.7 ± 0.6 days to 17.5 ± 0.7 days when injected daily 6 times at a dose of 26 μg/kg starting from the second day after injection of L1210 cells.
Rely and Toxic Shock Syndrome: A Technological Health Crisis
Vostral, Sharra L.
2011-01-01
This essay examines factors leading to the identification of Toxic Shock Syndrome with the bacteria Staphylococcus aureus in 1978 and the specific role of Rely tampons in generating a technologically rooted health crisis. The concept biologically incompatible technology is offered to explain the relationship between constituent bacteria, women’s menstrual cycles, and a reactive technology that converged to create the ideal environment for the S. aureus bacteria to live and flourish in some women. The complicated and reactive relationship of the Rely tampon to emergent disease, corporate interests, public health, and injury law reveals the dangers of naturalizing technologies. PMID:22180682
USGS Toxic Substances Hydrology Program, 2010
Buxton, Herbert T.
2010-01-01
The U.S. Geological Survey (USGS) Toxic Substances Hydrology Program adapts research priorities to address the most important contamination issues facing the Nation and to identify new threats to environmental health. The Program investigates two major types of contamination problems: * Subsurface Point-Source Contamination, and * Watershed and Regional Contamination. Research objectives include developing remediation methods that use natural processes, characterizing and remediating contaminant plumes in fractured-rock aquifers, identifying new environmental contaminants, characterizing new and understudied pesticides in common pesticide-use settings, explaining mercury methylation and bioaccumulation, and developing approaches for remediating watersheds affected by active and historic mining.
40 CFR 798.6400 - Neuropathology.
Code of Federal Regulations, 2014 CFR
2014-07-01
... techniques in this guideline are designed to develop data on morphologic changes in the nervous system for... comparative metabolism of the chemical and species sensitivity to the toxic effects of the test substance, as... design of the experiment shall be provided. This shall include a short justification explaining any...
40 CFR 798.6400 - Neuropathology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... techniques in this guideline are designed to develop data on morphologic changes in the nervous system for... comparative metabolism of the chemical and species sensitivity to the toxic effects of the test substance, as... design of the experiment shall be provided. This shall include a short justification explaining any...
40 CFR 798.6400 - Neuropathology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... techniques in this guideline are designed to develop data on morphologic changes in the nervous system for... comparative metabolism of the chemical and species sensitivity to the toxic effects of the test substance, as... design of the experiment shall be provided. This shall include a short justification explaining any...
Medications and Characteristics of Drugs Causing Ototoxicity.
ERIC Educational Resources Information Center
Pappas, Dennis G.; Pappas, Dennis G., Jr.
1997-01-01
This article discusses medications which, by entering the confines of the inner ear, can be toxic and destroy the structures of hearing. Medications that may produce ototoxicity are explained and include aminoglycosides, quinine, salycilates, and diuretics. Factors that should be considered relating to ototoxicity are provided. Contains…
Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry
2013-08-21
The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.
In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.
Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan
2009-05-01
Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.
Sidestream cigarette smoke toxicity increases with aging and exposure duration
Schick, Suzaynn; Glantz, Stanton A
2006-01-01
Objectives To determine the effects of aging on the toxicity of sidestream tobacco smoke, the complex chemical mixture that enters the air from the lit end of burning cigarettes and constitutes the vast bulk of secondhand smoke. Design Statistical analysis of data from controlled experimental exposures of Sprague Dawley rats to fresh and aged (for more than 30 minutes) sidestream smoke for up to 90 days followed by histological sectioning of the respiratory epithelium. The data were obtained from a series of experiments conducted at Philip Morris' formerly secret INBIFO (Institut für Biologische Forschung) laboratory in Germany. Results Using total particulate material as the measure of smoke exposure, aging sidestream cigarette smoke for at least 30 minutes increases its toxicity fourfold for 21 day exposures and doubles the toxicity for 90 day exposures, relative to fresh sidestream smoke. Conclusions These results help explain the relatively large biological effects of secondhand smoke compared to equivalent mass doses of mainstream smoke. PMID:17130369
Modelling anaerobic digestion acclimatisation to a biodegradable toxicant: application to cyanide.
Zaher, U; Moussa, M S; Widyatmika, I N; van Der Steen, P; Gijzen, H J; Vanrolleghem, P A
2006-01-01
The observed acclimatisation to biodegradable toxicants in anaerobic cassava wastewater treatment is explained by modelling anaerobic cyanide degradation. A complete degradation pathway is proposed for cyanide. Cyanide degradation is modelled as enzymatic hydrolysis to formate and ammonia. Ammonia is added to the inorganic nitrogen content of the digester while formate is degraded by the hydrogenotrophic methanogens. Cyanide irreversible enzyme inhibition is modelled as an inhibition factor to acetate uptake processes. Cyanide irreversible toxicity is modelled as a decay factor to the acetate degraders. Cyanide as well as added phosphorus buffer solution were considered in the chemical equilibrium calculations of pH. The observed reversible effect after acclimatisation of sludge is modelled by a population shift between two aceticlastic methanogens that have different tolerance to cyanide toxicity. The proposed pathway is added to the IWA Anaerobic Digestion Model no.1 (ADM1). The ADM1 model with the designed extension is validated by an experiment using three lab-scale upflow anaerobic sludge bed reactors which were exposed to different cyanide loadings.
Development of Medical Technology for Contingency Response to Marrow Toxic Agents
2012-03-31
Development of Medical Technology for Contingency Response to Marrow Toxic Agents - Final Performance/Technical Report for March 01, 2010 to February 28...Development of Medical Technology for Contingency Response To Marrow Toxic Agents FINAL REPORT March 1, 2010 – March 31, 2012 National...Buccal Swabs 38 IIB.1.5 Enhancing HLA Data for Selected Donors 43 IIB.1.6 Maintain a Quality Control Program 46 IIB.2.1 Collection of Primary Data
Comparative Toxicity of Selected Aviation Fuels as Measured by Insect Bioassay
1982-07-01
structure in termites , ants, and bees can be used to contrast the toxicity of a compound. A comparative study of toxicity can also be made using a...and also serve as sex pheromones , kairomones, and defensive compounds. Cuticular hydrocarbons vary significantly in structure and amount by species...in flour beetles. Flour beetles contain hydrocarbons which function as sex pheromones and also contain a significant amount of 1-pentadecene which
Sadeghi, Amin; Van Damme, Els J.M.; Smagghe, Guy
2009-01-01
An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC50 of 20.4 μg/ml after 24 h, and of 0.24 µg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7–9 µg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. PMID:20053120
Vanengelen, Michael R; Field, Erin K; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M
2010-04-01
In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO(2) (2+)) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO(2) (2+) fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO(2) (2+) and accumulated significantly more UO(2) (2+) in low-bicarbonate concentrations. In addition, UO(2) (2+) growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO(2) (2+) inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO(2) (2+) accumulation was also diminished. The observed patterns were related to UO(2) (2+) aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO(2) (2+)-hydroxide complexes explained both the greater sensitivity of isolate A to UO(2) (2+), and the ability of isolate A to accumulate significant amounts of UO(2) (2+). The exclusive presence of negatively charged and stable UO(2) (2+)-carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of isolate A to UO(2) (2+) toxicity, and limited ability of isolate A to accumulate UO(2) (2+). (c) 2010 SETAC.
Zimmer, Claudia; Bierbach, David; Arias-Rodriguez, Lenin; Plath, Martin
2018-01-01
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system. PMID:29724050
The genomic landscape of rapid repeated evolutionary ...
Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch
[Ecological security of wastewater treatment processes: a review].
Yang, Sai; Hua, Tao
2013-05-01
Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.
Liao, Quan; Yao, Jianhua; Yuan, Shengang
2007-05-01
The study of prediction of toxicity is very important and necessary because measurement of toxicity is typically time-consuming and expensive. In this paper, Recursive Partitioning (RP) method was used to select descriptors. RP and Support Vector Machines (SVM) were used to construct structure-toxicity relationship models, RP model and SVM model, respectively. The performances of the two models are different. The prediction accuracies of the RP model are 80.2% for mutagenic compounds in MDL's toxicity database, 83.4% for compounds in CMC and 84.9% for agrochemicals in in-house database respectively. Those of SVM model are 81.4%, 87.0% and 87.3% respectively.
REMOVAL OF SELECTED POLLUTANTS FROM AQUEOUS MEDIA BY HARDWOOD MULCH
Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mix...
ESTIMATION OF ACUTE TOXICITY BY FITTING A DOSE-TIME RESPONSE SURFACE
In acute toxicity testing, organisms are continuously exposed to progressively increasing concentrations of a chemical and deaths of test organisms are recorded at several selected times. he results of the test are traditionally summarized by a dose-response curve, and the time c...
Lead-free solders: issues of toxicity, availability and impacts of extraction
NASA Technical Reports Server (NTRS)
Ku, A.; Shapiro, A. A.; Kua, A.; Ogunseitan, O.; Saphores, J. D.; Schoenung, J. M.
2003-01-01
This project set out to evaluate the critical issues of toxicity and public health effects, material availability, and the environmental impacts of raw material extraction and metal finishing, with the goal of using environmental impact as a factor in selecting feasible lead-free alloys.
A programmable control system for salinity has been developed and coupled with a flow-through toxicant exposure system. The resulting apparatus allow study of influences of constant and fluctuating salinity regimes on responses of One organisms exposed to selected pollutants. Con...
Relevancy in Basic Courses: Considering Toxic Chemical Disposal.
ERIC Educational Resources Information Center
Sollimo, Vincent J.
1985-01-01
A 2-week unit on toxic chemical waste disposal is used in a physical science course for nonscience majors. Descriptions of the unit, supplementary student activities, and student library project are provided. Also provided are selected student responses to a five-question survey on the unit. (JN)
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
Sediment contamination has resulted in the need to develop an appropriate suite of toxicity tests to assess ecotoxicological impacts on estuarine ecosystems. Existing Environmental Protection Agency (EPA) protocols recommend a number of test organisms, including amphipods, polych...
Some possible reference materials for fire toxicity tests
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Solis, A. N.
1977-01-01
Suitable reference materials need to be selected in order to standardize any test method. The evaluation of cotton, polyethylene, polyether sulfone, polycarbonate, polystyrene, and polyurethane flexible and rigid foams as possible reference materials for the University of San Francisco/NASA toxicity screening test method is discussed.
Khodadadi, Ali; Pipelzadeh, Mohammad Hassan; Vazirianzadeh, Babak; Pipelzadeh, Mahsa; Sharifat, Mossa
2012-09-01
The aim of the present study was to compare the toxic effects of the venoms from Hemiscorpius lepturus (H. lepturus), Androctonus crassicauda (A. crassicauda) and Mesobuthus eupeus (M. eupeus). For this purpose, three in vitro models were employed to compare the toxic effects of various concentrations of the venoms from these three scorpions, namely: hemolytic potential using human RBCs, phospholipase activity using Saubouraud's dextrose agar (SDA) supplemented with 2% egg yolk and lactate dehydrogenase (LDH) enzyme releasing effect using K562 leukemia cell line. In addition, the neutralizing effectiveness of the antivenom against these toxic properties was assessed. The results showed that, unlike the venoms from A. crassicauda and M. eupeus, the venom from H. lepturus produced dose-dependent lysis of human RBCs and showed phospholipase activity. However, all the tested venoms showed variable degrees of LDH releasing properties. The venom from H. lepturus had highest and the venom from M. eupeus had the lowest LDH releasing effect. The antivenom effectively inhibited all the tested toxicities. In conclusion, these results suggest that the venoms from the studied scorpions have variable toxic properties, which may explain the underlying reason for the differences in their clinical manifestations. In addition, the antivenom was effective in neutralizing all the tested toxic effects. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op
The toxic handler: organizational hero--and casualty.
Frost, P; Robinson, S
1999-01-01
You've watched them comfort colleagues, defuse tense situations, and take the heat from tough bosses. You've seen them step in to ease the pain during layoffs and change programs. Who are they? The authors call them toxic handlers--managers who voluntarily shoulder the sandness, frustration, bitterness, and anger of others so that high-quality work continues to get done. Toxic handlers are not new. They are probably as old as organizations themselves. But there has never been a systematic study of the role they play in business. In this article, the authors introduce the role of toxic handlers, explaining what they do and why. Managing the pain of others is hard work. Toxic handlers save organizations from self-destructing, but they often pay a high price--emotionally, professionally, and sometimes physically. Some toxic handlers experience burnout; others suffer far worse consequences, such as ulcers and heart attacks. The authors contend that these unsung corporate heroes have strategic importance in today's business environment. Effective pain management can--and does--contribute to the bottom line. No company can afford to let talented employees burn out. Nor can it afford to have a reputation as an unhappy place to work. The authors offer practical advice for managers and organizations about how to support toxic handlers--before a crisis strikes. The role of toxic handler needs to be given the attention it deserves for everyone's benefit, because the health of employees is a key element in the long-term competitiveness of companies and of society.
7 CFR 613.2 - Policy and objectives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... plant materials work is to find suitable plants to address conservation needs. In contrast, the emphasis... enhancement; (12) Selecting plants that tolerate air pollution agents and toxic soil chemicals; (13) Selecting...
Addressing the selectivity and toxicity of antiviral nucleosides.
Feng, Joy Y
2018-01-01
Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV, HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations for assessing toxicity liability before entering animal toxicity studies.
[Plant physiological and molecular biological mechanism in response to aluminium toxicity].
Liu, Qiang; Zheng, Shaojian; Lin, Xianyong
2004-09-01
Aluminium toxicity is the major factor limiting crop growth on acid soils, which greatly affects the crop productivity on about 40% cultivated soils of the world and 21% of China. In the past decades, a lot of researches on aluminium toxicity and resistant mechanisms have been doing, and great progress was achieved. This paper dealt with the genetic differences in aluminium tolerance among plants, screening and selecting methods and technologies for identifying aluminium resistance in plants, and physiological and molecular mechanism resistance to aluminium toxicity. Some aspects needed to be further studied were also briefly discussed.
Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity
Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie
2014-01-01
The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236
Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles.
Wang, Dali; Lin, Zhifen; Yao, Zhifeng; Yu, Hongxia
2014-08-01
The potential toxicities of nanoparticles (NPs) have been intensively discussed over the past decade. In addition to their single toxicities, NPs can interact with other environmental chemicals and thereby exert joint effects on biological systems and the environment. The present study investigated the combined toxicities of NPs and surfactants, which are among the chemicals that most likely coexist with NPs. Photobacterium phosphoreum was employed as the model organism. The results indicate that surfactants with different ion types can alter the properties of NPs (i.e., particle size and surface charge) in different ways and present complex joint effects on NP toxicities. Mixtures of different NPs and surfactants exhibited antagonistic, synergistic, and additive effects. In particular, the toxicity of ZnO was observed to result from its dissolved Zn(2+); thus, the joint effects of the ZnO NPs and surfactants can be explained by the interactions between the Zn ions and the surfactants. Our study suggests that the potential hazards caused by mixtures of NPs and surfactants are different from those caused by single NPs. Because surfactants are extensively used in the field of nanotechnology and are likely to coexist with NPs in natural waters, the ecological risk assessments of NPs should consider the impacts of surfactants. Copyright © 2014 Elsevier Ltd. All rights reserved.
The evolution of cultural adaptations: Fijian food taboos protect against dangerous marine toxins
Henrich, Joseph; Henrich, Natalie
2010-01-01
The application of evolutionary theory to understanding the origins of our species' capacities for social learning has generated key insights into cultural evolution. By focusing on how our psychology has evolved to adaptively extract beliefs and practices by observing others, theorists have hypothesized how social learning can, over generations, give rise to culturally evolved adaptations. While much field research documents the subtle ways in which culturally transmitted beliefs and practices adapt people to their local environments, and much experimental work reveals the predicted patterns of social learning, little research connects real-world adaptive cultural traits to the patterns of transmission predicted by these theories. Addressing this gap, we show how food taboos for pregnant and lactating women in Fiji selectively target the most toxic marine species, effectively reducing a woman's chances of fish poisoning by 30 per cent during pregnancy and 60 per cent during breastfeeding. We further analyse how these taboos are transmitted, showing support for cultural evolutionary models that combine familial transmission with selective learning from locally prestigious individuals. In addition, we explore how particular aspects of human cognitive processes increase the frequency of some non-adaptive taboos. This case demonstrates how evolutionary theory can be deployed to explain both adaptive and non-adaptive behavioural patterns. PMID:20667878
Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease
Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Lulla, Aaron; Murphy, Niall P.; Lam, Hoa A.; O’Donnell, Kelley C.; Barnhill, Lisa; Casida, John E.; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C.; Maidment, Nigel T.; Ritz, Beate; Bronstein, Jeff M.
2013-01-01
Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis. PMID:23267077
The US EPA has pledged to increase its efforts to provide a safe and healthy environment for children by ensuring that all EPA regulations, standards, policies, and risk assessments take into account special childhood vulnerabilities to environmental toxicants. To help explain...
This paper explains the conventions that are applied to certain listings of chemical substances containing ranges of alkyl chain lengths (i.e., carbon chains of varying lengths) for chemical substances on the Toxic Substances Control Act (TSCA)
Protective Clothing for Pesticide Users.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This brief, largely pictorial guide to protective clothing for pesticide users addresses moderately to highly toxic pesticides. The guide discusses the potential hazards of pesticides and the kinds of clothing and equipment that should be worn for personal protection. It also explains how the type of pesticide formulation affects an individual's…
Identifying factors that explain heterogeneity of risks will help to identify: 1) the populations that are more susceptible/vulnerable to air pollution; and 2) the emission sources, pollutants and pollutant mixtures that are more toxic. The characterization of susceptibility f...
Healthier Cleaning & Maintenance: Practices and Products for Schools.
ERIC Educational Resources Information Center
New York State Association for Superintendents of School Buildings and Grounds, Albany.
This paper helps all those concerned with keeping schools clean and properly maintained in adopting healthier cleaning and maintenance practices and promoting the purchase and use of environmentally preferable products which perform well and are cost effective. It explains how children are exposed to toxic chemicals in school cleaning and…
Exposure to particulate matter (PM) produces a uniform degree of mortality in exposed populations, in spite of its diverse sources. This suggests a common mechanism of action to explain its initial toxicity. The present study relates certain physicochemical characteristics (i.e.,...
Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?
Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka
2016-04-01
Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota ) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness.
Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?
Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka
2016-01-01
Abstract Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness. PMID:29491897
An exposure system for measuring nasal and lung uptake of vapors in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, A.R.; Brookins, L.K.; Gerde, P.
1995-12-01
Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposuremore » system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.« less
Bollyn, Jessica; Willaert, Bernd; Kerré, Bart; Moens, Claudia; Arijs, Katrien; Mertens, Jelle; Leverett, Dean; Oorts, Koen; Smolders, Erik
2018-04-25
Risk assessment of metallic nanoparticles (NP) is critically affected by the concern that toxicity goes beyond that of the metallic ion. This study addressed this concern for soils with silver (Ag)-NP using the Ag-sensitive nitrification assay. Three agricultural soils (A,B,C) were spiked with equivalent Ag doses of either Ag-NP (d = 13 nm) or AgNO 3 . Soil solution was isolated and monitored over 97 days with due attention to accurate Ag fractionation at low (∼10 µg L -1 ) Ag concentrations. Truly dissolved (<1 kDa) Ag in the AgNO 3 -amended soils decreased with reaction half-lives of 4 to 22 days depending on the soil, denoting important Ag-ageing reactions. In contrast, truly dissolved Ag in Ag-NP-amended soils first increased by dissolution and subsequently decreased by ageing; the concentration never exceeding that in the AgNO 3 -amended soils. The half-lives of Ag-NP transformation-dissolution were about 4 days (soils A&B) and 36 days (soil C). The Ag toxic thresholds (EC10, mg Ag kg -1 soil) of nitrification, either evaluated at 21 or 35 days after spiking, were similar between the two Ag forms (soils A&B) but were factors 3 to 8 lower for AgNO 3 than for Ag-NP (soil C), largely corroborating with dissolution differences. This fate and bio-assay showed that Ag-NPs are not more toxic than AgNO 3 at equivalent total soil Ag concentrations and that differences in Ag-dissolution at least partially explain toxicity differences between the forms and among soils. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Various models have been proposed for describing the time- and concentration-dependence of toxic effects to aquatic organisms, which would improve characterization of risks in natural systems. Selected models were evaluated using results from a study on the lethality of copper t...
Consensus Modeling of Oral Rat Acute Toxicity
An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...
Publications on Toxic Substances: A Descriptive Listing.
ERIC Educational Resources Information Center
Interagency Regulatory Liaison Group, Washington, DC.
Presented are basic facts about toxic substances and a description of selected publications about them which are available from several federal agencies. Instructions on how to order publications from these agencies are provided. The booklet lists publications according to applicability to the home, the workplace, agriculture, the environment, and…
Previous studies indicate that freshwater mollusks are more sensitive than commonly tested organisms to some chemicals, such as copper and ammonia. Nevertheless, mollusks are generally under-represented in toxicity databases. Studies are needed to generate data with which to comp...
The manual can be used to orient personnel involved in inspecting and otherwise evaluating potential toxic chemical release hazards to the fundamentals of release hazard control for 13 of the specific chemicals chosen for evaluation under Section 305(b) of the Superfund Amendment...
USDA-ARS?s Scientific Manuscript database
Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), are important pests that are primarily controlled with insecticides on both onions and cotton in the Lower Rio Grande Valley of Texas. Resistance to various insecticides has been reported so data are needed on toxicity of insecticides r...
This Second Edition of the Compendium has been prepared to provide regional, state and local environmental regulatory agencies with step-by-step sampling and analysis procedures for the determination of selected toxic organic pollutants in ambient air. It is designed to assist t...
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.
1990-01-01
Viewgraphs of increased fire and toxic contaminant detection responsivity by use of distributed, aspirating sensors for space station are presented. Objectives of the concept described are (1) to enhance fire and toxic contaminant detection responsivity in habitable regions of space station; (2) to reduce system weight and complexity through centralized detector/monitor systems; (3) to increase fire signature information from selected locations in a space station module; and (4) to reduce false alarms.
1980-10-01
Organizations Compounds Tested Morphological Tests Toxic Substances Functional Tests rR ACT Cutlue OM v.a e sif nemooery ad Identify by block number) %MITRE has...demonstrated ability to evaluate and predict hepatic impairment rvsulting from toxicant exposures. This directory is a companion to Selected Short-Term...Hepatic Toxicity Tests, which describes the available hepatic testing protocols and assesses their suitability for a screening program. This direc
In vitro anti-Plasmodium falciparum properties of the full set of human secreted phospholipases A2.
Guillaume, Carole; Payré, Christine; Jemel, Ikram; Jeammet, Louise; Bezzine, Sofiane; Naika, Gajendra S; Bollinger, James; Grellier, Philippe; Gelb, Michael H; Schrével, Joseph; Lambeau, Gérard; Deregnaucourt, Christiane
2015-06-01
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
In Vitro Anti-Plasmodium falciparum Properties of the Full Set of Human Secreted Phospholipases A2
Guillaume, Carole; Payré, Christine; Jemel, Ikram; Jeammet, Louise; Bezzine, Sofiane; Naika, Gajendra S.; Bollinger, James; Grellier, Philippe; Gelb, Michael H.; Schrével, Joseph
2015-01-01
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology. PMID:25824843
Al-Delaimy, Wael K.; Wood Larsen, Catherine; Pezzoli, Keith
2014-01-01
Living near landfills is a known health hazard prompting recognition of environmental injustice. The study aim was to compare self-reported symptoms of ill health among residents of four neighborhoods, living in haphazardly constructed settlements surrounded by illegal dumpsites in Tijuana, Mexico. One adult from each of 388 households located in Los Laureles Canyon were interviewed about demographics, health status, and symptoms. Distance from each residence to both the nearest dumpsite and the canyon bottom was assessed. The neighborhoods were selected from locations within the canyon, and varied with respect to proximity to dump sites. Residents of San Bernardo reported significantly higher frequencies of ill-health symptoms than the other neighborhoods, including extreme fatigue (OR 3.01 (95% CI 1.6–5.5)), skin problems/irritations (OR 2.73 (95% CI 1.3–5.9)), stomach discomfort (OR 2.47 (1.3–4.8)), eye irritation/tears (OR 2.02 (1.2–3.6)), and confusion/difficulty concentrating (OR 2.39 (1.2–4.8)). Proximity to dumpsites did not explain these results, that varied only slightly when adjusted for distance to nearest dumpsite or distance to the canyon bottom. Because San Bernardo has no paved roads, we hypothesize that dust and the toxicants it carries is a possible explanation for this difference. Studies are needed to further document this association and sources of toxicants. PMID:25226411
The Exploitation of Low-Energy Electrons in Cancer Treatment.
Rezaee, Mohammad; Hill, Richard P; Jaffray, David A
2017-08-01
Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.
NASA Astrophysics Data System (ADS)
Van Toan, Nguyen; Chien, Nguyen Viet; Van Duy, Nguyen; Vuong, Dang Duc; Lam, Nguyen Huu; Hoa, Nguyen Duc; Van Hieu, Nguyen; Chien, Nguyen Duc
2015-01-01
The detection of H2S, an important gaseous molecule that has been recently marked as a highly toxic environmental pollutant, has attracted increasing attention. We fabricate a wafer-scale SnO2 thin film sensitized with CuO islands using microelectronic technology for the improved detection of the highly toxic H2S gas. The SnO2-CuO island sensor exhibits significantly enhanced H2S gas response and reduced operating temperature. The thickness of CuO islands strongly influences H2S sensing characteristics, and the highest H2S gas response is observed with 20 nm-thick CuO islands. The response value (Ra/Rg) of the SnO2-CuO island sensor to 5 ppm H2S is as high as 128 at 200 °C and increases nearly 55-fold compared with that of the bare SnO2 thin film sensor. Meanwhile, the response of the SnO2-CuO island sensor to H2 (250 ppm), NH3 (250 ppm), CO (250 ppm), and LPG (1000 ppm) are low (1.3-2.5). The enhanced gas response and selectivity of the SnO2-CuO island sensor to H2S gas is explained by the sensitizing effect of CuO islands and the extension of electron depletion regions because of the formation of p-n junctions.
El-Nahas, Amira E; Allam, Ahmed N; Abdelmonsif, Doaa A; El-Kamel, Amal H
2017-11-01
The objectives of this study were to formulate, characterize silymarin-loaded Eudragit nanoparticles (SNPs) and evaluate their hepatoprotective and cytotoxic effects after oral administration. SNPs were prepared by nanoprecipitation technique and were evaluated for particle size, entrapment efficiency, TEM, solid-state characterization, and in vitro drug release. The hepatoprotective activity was evaluated after oral administration of selected SNPs in carbon tetrachloride-intoxicated rats. Potential in vivo acute cytotoxicity study was also assessed. The selected SNPs contained 50 mg silymarin and 50 mg Eudragit polymers (1:1 w/w Eudragit RS 100 & Eudragit LS 100). Morphology of the selected SNPs (particle size of 84.70 nm and entrapment efficiency of 83.45% with 100% drug release after 12 h) revealed spherical and uniformly distributed nanoparticles. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state and absence of chemical interaction. The hepatoprotective evaluation of the selected SNPs in CCl 4 -intoxicated rats revealed significant improvement in the activities of different biochemical parameters (P ≤ 0.01) compared to the marketed product. The histopathological studies suggested that the selected SNPs produced better hepatoprotective effect in CCl 4 -intoxicated rats compared with the commercially marketed product. Toxicity study revealed no evident toxic effect for blank or silymarin-loaded nanoparticles at the dose level of 50 mg/kg body weight. The obtained results suggested that the selected SNPs were safe and potentially offered enhancement in the pharmacological hepatoprotective properties of silymarin.
A novel mechanism of toxic injury to the Papez circuit from chemotherapy.
Kwan, Benjamin Yin Ming; Krings, Timo; Bernstein, Mark; Mandell, Daniel M
2015-04-01
Toxic effects of chemotherapy delivered via Ommaya reservoir include pericatheter necrosis and toxic leukoencephalopathy. Imaging evidence of toxicity is often asymptomatic, but can be clinically consequential. A young patient, treated for cerebrospinal fluid relapse of acute lymphoblastic leukemia with methotrexate and cytarabine via Ommaya reservoir, presented with acute deterioration of short-term memory. MRI demonstrated extra-ventricular Ommaya catheter position and typical methotrexate-induced changes in the deep white matter, but also signal alteration in the forniceal columns and mammillary bodies, components of the Papez circuit. This case presents a novel mechanism of chemotherapy-induced neurotoxicity associated with extra-ventricular Ommaya catheter position. Specifically, the clinical and imaging findings suggest that extra-ventricular Ommaya catheter position may lead to a direct methotrexate-induced toxicity to the Papez circuit. This provides further clinical evidence of the function of the circuit. The possibility that this patient received a supratherapeutic dose of methotrexate may explain why this presentation with profound memory impairment is not more common. However, this case also provides a potential explanation for patients who receive standard dose chemotherapy via extra-ventricular Ommaya catheter and develop milder memory loss. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, Pingping; Wang, Junsong; Dong, Ge; Wei, Dandan; Li, Minghui; Yang, Minghua; Kong, Lingyi
2014-07-29
Ricin, a large, water soluble toxic glycoprotein, is distributed majorly in the kernels of castor beans (the seeds of Ricinus communis L.) and has been used in traditional Chinese medicine (TCM) or other folk remedies throughout the world. The toxicity of crude ricin (CR) from castor bean kernels was investigated for the first time using an NMR-based metabolomic approach complemented with histopathological inspection and clinical chemistry. The chronic administration of CR could cause kidney and lung impairment, spleen and thymus dysfunction and diminished nutrient intake in rats. An orthogonal signal correction partial least-squares discriminant analysis (OSC-PLSDA) of metabolomic profiles of rat biofluids highlighted a number of metabolic disturbances induced by CR. Long-term CR treatment produced perturbations on energy metabolism, nitrogen metabolism, amino acid metabolism and kynurenine pathway, and evoked oxidative stress. These findings could explain well the CR induced nephrotoxicity and pulmonary toxicity, and provided several potential biomarkers for diagnostics of these toxicities. Such a (1)H NMR based metabolomics approach showed its ability to give a systematic and holistic view of the response of an organism to drugs and is suitable for dynamic studies on the toxicological effects of TCM.
Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.
Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J
2011-07-01
Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways.
Haloacetonitriles: metabolism and toxicity.
Lipscomb, John C; El-Demerdash, Ebtehal; Ahmed, Ahmed E
2009-01-01
The haloacetonitriles (HANs) exist in drinking water exclusively as byproducts of disinfection. HANs are found in drinking water more often, and in higher concentrations, when surface water is treated by chloramination. Human exposure occurs through consumption of finished drinking water; oral and dermal contact also occurs, and results from showering, swimming and other activities. HANs are reactive and are toxic to gastrointestinal tissues following oral administration. Such toxicity is characterized by GSH depletion, increased lipid peroxidation, and covalent binding of HAN-associated radioactivity to gut tissues. The presence of GSH in cells is an important protective mechanism against HAN toxicity; depletion of cellular GSH results in increased toxicity. Some studies have demonstrated an apparently synergistic effect between ROS and HAN administration, that may help explain effects observed in GI tissues. ROS are produced in gut tissues, and in vitro evidence indicates that ROS may contribute to the degradation and formation of reactive intermediates from HANs. The rationale for ROS involvement may involve HAN-induced depletion of GSH and the role of GSH in scavenging ROS. In addition to effects on GI tissues, studies show that HAN-derived radiolabel is found covalently bound to proteins and DNA in several organs and tissues. The addition of antioxidants to biologic systems protects against HAN-induced DNA damage. The protection offered by antioxidants supports the role of oxidative stress and the potential for a threshold in han-induced toxicity. However, additional data are needed to substantiate evidence for such a threshold. HANs are readily absorbed from the GI tract and are extensively metabolized. Elimination occurs primarily in urine, as unconjugated one-carbon metabolites. Evidence supports the involvement of mixed function oxidases, the cytochrome P450 enzyme family and GST, in HAN metabolism. Metabolism represents either a detoxification or bioactivation process, depending on the particular HAN and the enzyme involved. HANs can inhibit CYP2E1-mediated metabolism, an effect which may be dependent on a covalent interaction with the enzyme. In addition, HAN compounds inhibit GST-mediated conjugation, but this effect is reversible upon dialysis, indicating that the interaction does not represent covalent binding. No subchronic studies of HAN toxicity are available in the literature. However, studies show that HANs produce developmental toxicity in experimental animals. The nature of developmental toxicity is affected by the type of administration vehicle, which renders interpretation of results more difficult. Skin tumors have been found following dermal application of HANs, but oral studies for carcinogenicity are negative. Pulmonary adenomas were increased following oral administration of HANs, but the A/J strain of mice employed has a characteristically high background rate of such tumors. HANs interact with DNA to produce unscheduled DNA repair, SCE and reverse mutations in Salmonella. HANs did not induce micronuclei or cause alterations in sperm head morphology in mice, but did induce micronuclei in newts. Thus, there is concern for the potential carcinogenicity of HANs. It would be valuable to delineate any relationship between the apparent threshold for micronuclei formation in newts and the potential mechanism of toxicity involving HAN-induced oxidative stress. Dose-response studies in rodents may provide useful information on toxicity mechanisms and dose selection for longer term toxicity studies. Additional studies are warranted before drawing firm conclusions on the hazards of HAN exposure. Moreover, additional studies on HAN-DNA and HAN-protein interaction mechanisms, are needed. Such studies can better characterize the role of metabolism in toxicity of individual HANs, and delineate the role of oxidative stress, both of which enhance the capacity to predict risk. Most needed, now, are new subchronic (and chronic) toxicity studies; the results of such well-planned, controlled, conducted, interpreted and published investigations would be valuable in establishing margins of safety for HANs in human health risk assessment.
Friedman, Mendel
2015-06-01
Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.
Gilderhus, P.A.; Burress, R.M.
1983-01-01
The candidate piscicide, 2-(digeranylamino)-ethanol, (commonly known as GD-174) was subjected to efficacy trials in ponds under a wide variety of conditions. Results of the trials were disappointing considering that laboratory tests had shown the compound to be selectively toxic to common carp (Cyprinus carpio). Results of pretreatment, on-site toxicity tests were misleading and indicated concentrations that failed to kill all of the carp in 19 of 23 ponds. In a few instances, the chemical killed the carp with little or no effect on nontarget fishes. No fish were killed in some trials and large numbers of nontarget fishes were killed in others. Twenty of 25 pond trials were judged to be unsuccessful. Success or failure of pond treatments could not be correlated with any particular combination of physical, chemical, and biological factors. Because the activity of GD-174 against mixed populations of fish cannot be predicted, further development of this compound as a selective toxicant for carp has been discontinued at the National Fishery Research Laboratory.
Saxena, Roopali; Yang, Chunhua; Rao, Mukkavilli; Turaga, Ravi Chakra; Garlapati, Chakravarthy; Gundala, Sushma Reddy; Myers, Kimberly; Ghareeb, Ahmed; Bhattarai, Shristi; Kamilinia, Golnaz; Bristi, Sangina; Su, Dan; Gadda, Giovanni; Rida, Padmashree C. G.; Cantuaria, Guilherme H.; Aneja, Ritu
2018-01-01
Purpose Most currently-available chemotherapeutic agents target rampant cell division in cancer cells, thereby affecting rapidly-dividing normal cells resulting in toxic side-effects. This non-specificity necessitates identification of novel cellular pathways that are reprogrammed selectively in cancer cells and can be exploited to develop pharmacologically superior and less-toxic therapeutics. Despite growing awareness on dysregulation of lipid metabolism in cancer cells, targeting lipid biosynthesis is still largely uncharted territory. Herein, we report development of a novel non-toxic orally-deliverable anticancer formulation of monoethanolamine (Etn), for prostate cancer by targeting the Kennedy pathway of phosphatidylethanolamine (PE) lipid biosynthesis. Experimental Design We first evaluated GI-tract stability, drug-drug interaction liability, pharmacokinetic and toxicokinetic properties of Etn to evaluate its suitability as a non-toxic orally-deliverable agent. We next performed in vitro and in vivo experiments to investigate efficacy and mechanism of action. Results Our data demonstrate that Etn exhibits excellent bioavailability, GI-tract stability, and no drug-drug interaction liability. Remarkably, orally-fed Etn inhibited tumor growth in four weeks by ~67% in mice bearing human prostate cancer PC-3 xenografts without any apparent toxicity. Mechanistically, Etn exploits selective overexpression of choline kinase in cancer cells, resulting in accumulation of phosphoethanolamine (PhosE), accompanied by downregulation of HIF-1α that induces metabolic stress culminating into cell death. Conclusions Our study provides first evidence for the superior anticancer activity of Etn, a simple lipid precursor formulation, whose non-toxicity conforms to FDA-approved standards, compelling its clinical development for prostate cancer management. PMID:28167510
Selection of a battery of rapid toxicity sensors for drinking water evaluation.
van der Schalie, William H; James, Ryan R; Gargan, Thomas P
2006-07-15
Comprehensive identification of chemical contaminants in Army field water supplies can be a lengthy process, but rapid analytical methods suitable for field use are limited. A complementary approach is to directly measure toxicity instead of individual chemical constituents. Ten toxicity sensors utilizing enzymes, bacteria, or vertebrate cells were tested to determine the minimum number of sensors that could rapidly identify toxicity in water samples containing one of 12 industrial chemicals. The ideal sensor would respond at a concentration just exceeding the Military Exposure Guideline (MEG) level for the chemical (an estimated threshold for adverse effects) but below the human lethal concentration. Chemical solutions were provided to testing laboratories as blind samples. No sensors responded to deionized water blanks, and only one sensor responded to a hard water blank. No single toxicity sensor responded to more than six chemicals in the desired response range, and one chemical (nicotine) was not detected by any sensor with the desired sensitivity. A combination of three sensors (Microtox, the Electric Cell Substrate Impedance Sensing (ECIS) test, and the Hepatocyte low density lipoprotein (LDL) uptake test) responded appropriately to nine of twelve chemicals. Adding a fourth sensor (neuronal microelectrode array) to the test battery allowed detection of two additional chemicals (aldicarb and methamidophos), but the neuronal microelectrode array was overly sensitive to paraquat. Evaluating sensor performance using a standard set of chemicals and a desired sensitivity range provides a basis both for selecting among available toxicity sensors and for evaluating emerging sensor technologies. Recommendations for future toxicity sensor evaluations are discussed.
Nathan Glazer Explains the Black Faculty Gap.
ERIC Educational Resources Information Center
Glazer, Nathan
2003-01-01
Contends that the low number of academically high-scoring black students at selective colleges, combined with the attraction of alternate career opportunities, largely explains the shortage of black doctoral candidates. The lower grades black students receive at selective institutions may discourage them from choosing academic careers. Suggests…
The Chemical Aquatic Fate and Effects (CAFE) database is a tool that facilitates assessments of accidental chemical releases into aquatic environments. CAFE contains aquatic toxicity data used in the development of species sensitivity distributions (SSDs) and the estimation of ha...
A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Co...
A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Conc...
For more than three decades chronic studies in rodents have been the benchmark for assessing the potential long-term toxicity, and particularly the carcinogenicity, of chemicals. With doses typically administered for about 2 years (18 months to lifetime), the rodent bioassay has ...
A Simulation Study of Methods for Selecting Subgroup-Specific Doses in Phase I Trials
Morita, Satoshi; Thall, Peter F.; Takeda, Kentaro
2016-01-01
Summary Patient heterogeneity may complicate dose-finding in phase I clinical trials if the dose-toxicity curves differ between subgroups. Conducting separate trials within subgroups may lead to infeasibly small sample sizes in subgroups having low prevalence. Alternatively, it is not obvious how to conduct a single trial while accounting for heterogeneity. To address this problem, we consider a generalization of the continual reassessment method (O’Quigley, et al., 1990) based on a hierarchical Bayesian dose-toxicity model that borrows strength between subgroups under the assumption that the subgroups are exchangeable. We evaluate a design using this model that includes subgroup-specific dose selection and safety rules. A simulation study is presented that includes comparison of this method to three alternative approaches, based on non-hierarchical models, that make different types of assumptions about within-subgroup dose-toxicity curves. The simulations show that the hierarchical model-based method is recommended in settings where the dose-toxicity curves are exchangeable between subgroups. We present practical guidelines for application, and provide computer programs for trial simulation and conduct. PMID:28111916
The role of selective predation in harmful algal blooms
NASA Astrophysics Data System (ADS)
Solé, Jordi; Garcia-Ladona, Emilio; Estrada, Marta
2006-08-01
A feature of marine plankton communities is the occurrence of rapid population explosions. When the blooming species are directly or indirectly noxious for humans, these proliferations are denoted as harmful algal blooms (HAB). The importance of biological interactions for the appearance of HABs, in particular when the proliferating microalgae produce toxins that affect other organisms in the food web, remains still poorly understood. Here we analyse the role of toxins produced by a microalgal species and affecting its predators, in determining the success of that species as a bloom former. A three-species predator-prey model is used to define a criterion that determines whether a toxic microalga will be able to initiate a bloom in competition against a non-toxic one with higher growth rate. Dominance of the toxic species depends on a critical parameter that defines the degree of feeding selectivity by grazers. The criterion is applied to a particular simplified model and to numerical simulations of a full marine ecosystem model. The results suggest that the release of toxic compounds affecting predators may be a plausible biological factor in allowing the development of HABs.
Nieboer, Evert; Martin, Ian D; Liberda, Eric N; Dewailly, Eric; Robinson, Elizabeth; Tsuji, Leonard J S
2017-05-24
this article constitutes a report on the comprehensive Nituuchischaayihtitaau Aschii multi-community environment-and-health study conducted among the Cree peoples (Eeyouch) of northern Quebec, Canada. to interpret observed concentrations of a suite of chemical elements in a multi-media biological monitoring study in terms of sources and predictors. the concentrations of 5 essential and 6 toxic chemical elements were measured in whole blood, and/or in urine or hair by ICP-MS. Concentrations of essential elements are compared to those considered normal (i.e., required for good health) and, when toxic, deemed acceptable at specified concentrations in public health guidelines. Their dependence on age, sex, the specific community lived-in and diet were explored employing multivariate analysis of variance (MANOVA) involving new variables generated by principle component analysis (PCA) and correspondence analysis (CA). the 5 most prominent PCA axes explained 67.7% of the variation, compared to 93.0% by 6 main CA factors. Concentrations of the essential elements in whole blood (WB) and iodine(i) and arsenic (As) in urine were comparable to those reported in the recent Canadian Health Measures survey and are assigned to dietary sources. By contrast, WB cadmium (Cd) was elevated even when smoking was considered. Mercury (Hg) concentrations in WB and hair were also higher in adults, although comparable to those observed for other indigenous populations living at northern latitudes. Fish consumption was identified as the prominent source. Of the 5 coastal communities, all but one had lower Hg exposures than the four inland communities, presumably reflecting the type of fish consumed. Use of firearms and smoking were correlated with WB-lead (Pb). The concentrations of both Hg and Pb increased with age and were higher in men, while WB-Cd and smoking prevalence were higher in women when considering all communities. Hg and Pb were low in children and women of reproductive age, with few exceedances of health guidelines. Although individuals with T2D had somewhat lower WB-Cd, there is some indication that Cd may potentiate renal dysfunction in this subgroup. Plots of selected CA axes grouped those elements expected to be in a normal diet and distinguished them from those with well-known unique sources (especially Hg and As in hair; and Hg, Pb and Cd in WB). the use of multiple biological media in conjunction with the complementary PCA and CA approaches for constructing composite variables allowed a more detailed understanding of both the sources of the essential and toxic elements in body fluids and the dependencies of their observed concentrations on age, sex, community and diet.
An Ill Wind: Methyl Bromide Use Near California Schools, 1998.
ERIC Educational Resources Information Center
Ross, Zev; Walker, Bill
A California study investigates the use of the toxic pesticide methyl bromide near the state's public schools, explains why proposed safety rules have failed to protect children and others from exposure, and examines regions at particular exposure risk. Study results show an increasing exposure to methyl bromide near schools already at risk while…
Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P
2014-12-01
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.
Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes.
Weiller, Markus; Latta, Markus; Kresse, Matthias; Lucas, Rudolf; Wendel, Albrecht
2004-09-01
The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.
Buekers, Jurgen; Mertens, Jelle; Smolders, Erik
2010-06-01
Previous studies have shown that toxicity of cationic trace metals in soil is partially confounded by effects of the accompanying anions. A similar assessment is reported here for toxicity of an oxyanion, i.e., molybdate (MoO(4) (2-)), the soil toxicity of which is relatively unexplored. Solubility and toxicity were compared between the soluble sodium molybdate (Na(2)MoO(4)) and the sparingly soluble molybdenum trioxide (MoO(3)). Confounding effects of salinity were excluded by referencing the Na(2)MoO(4) effect to that of sodium chloride (NaCl). The pH decrease from the acid MoO(3) amendment was equally referenced to a hydrochloric (HCl) treatment or a lime-controlled MoO(3) treatment. The concentrations of molybdenum (Mo) in soil solution or calcium chloride (CaCl(2)) 0.01 M extracts were only marginally affected by either MoO(3) or Na(2)MoO(4) as an Mo source after 10 to 13 days of equilibration. Effects of Mo on soil nitrification were fully confounded by associated changes in salinity or pH. Effects of Mo on growth of wheat seedlings (Triticum aestivum L) were more pronounced than those on nitrification, and toxicity thresholds were unaffected by the form of added Mo. The Mo thresholds for wheat growth were not confounded by pH or salinity at incipient toxicity. It is concluded that oxyanion toxicity might be confounded in relatively insensitive tests for which reference treatments should be included. Copyright 2010 SETAC.
Monaci, Linda; Garbetta, Antonella; Angelis, Elisabetta De; Visconti, Angelo; Minervini, Fiorenza
2015-01-05
Ingestion of food is considered a major route of exposure to many contaminants including mycotoxins. The amount of mycotoxin resisting to the digestion process and potentially absorbable by the systemic circulation is only a smaller part of that ingested. In vitro digestion models turn useful for evaluating mycotoxins bioaccessibility during the intestinal transit and can be intended as a valuable tool for the assessment of mycotoxin bioavailability in food. In this paper we describe a study aimed at investigating toxicity of in vitro gastro-duodenal digests of mycotoxin contaminated bread collected along the digestion time-course. Toxicity tests were carried out on a sensitive RPMI lymphoid B cell line chosen as the most suitable lineage to assess toxicity retained by gastro-duodenal digests. In parallel, a chemical quantification of T-2 and HT-2 toxins contaminating the bread digests was accomplished during the gastric and duodenal transit. The digestive fluids undergoing chemical and toxicological analysis were collected at the beginning and end of gastric phase, and after completion of the duodenal phase. Results proved that a correlation between HT-2 content and toxicity did exist although a more persistent toxic activity was displayed in the later stage of the duodenal phase. This persistent toxicity might be explained by the co-occurrence of unknown HT-2-related conjugates or metabolites formed during digestion. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease.
Uniting sex and eukaryote origins in an emerging oxygenic world.
Gross, Jeferson; Bhattacharya, Debashish
2010-08-23
Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation, prokaryotic DNA recombination, and the universality of nuclear-mediated meiotic activities might corroborate the hypothesis that sex and the nucleus evolved to support DNA repair. Oxygen tolerance emerges as an important principle to investigate eukaryogenesis. The evolution of eukaryotic complexity might be best understood as a synergic process between key evolutionary innovations, of which meiosis (sex) played a central role. This manuscript was reviewed by Eugene V. Koonin, Anthony M. Poole, and Gáspár Jékely.
NASA Astrophysics Data System (ADS)
Leitman, Julia; Ulrich Hartl, F.; Lederkremer, Gerardo Z.
2013-11-01
In Huntington’s disease, as in other neurodegenerative diseases, it was initially thought that insoluble protein aggregates are the toxic species. However, growing evidence implicates soluble oligomeric polyglutamine-expanded huntingtin in cytotoxicity. Here we show that pathogenic huntingtin inhibits endoplasmic reticulum (ER)-associated degradation and induces ER stress before its aggregation into visible inclusions. All three branches of the unfolded protein response are activated. ER stress can be compensated by overexpression of p97/VCP, suggesting its sequestration by pathogenic huntingtin as a main cause. Stress correlates with the presence of huntingtin oligomers and is independent of continual huntingtin synthesis. Stress levels, measured in striatal neurons, are stabilized but only slowly subside on huntingtin aggregation into inclusions. Our results can be explained by the constant conversion of huntingtin monomers to toxic oligomers; large aggregates sequester the former, precluding further conversion, whereas pre-existing toxic oligomers are only gradually depleted.
Pickering, Carolyn E Z; Nurenberg, Katie; Schiamberg, Lawrence
2017-10-01
This grounded theory study examined how the certified nursing assistant (CNA) understands and responds to bullying in the workplace. Constant comparative analysis was used to analyze data from in-depth telephone interviews with CNAs ( N = 22) who experienced bullying while employed in a nursing home. The result of the analysis is a multistep model describing CNA perceptions of how, over time, they recognized and responded to the "toxic" work environment. The strategies used in responding to the "toxic" environment affected their care provision and were attributed to the development of several resident and worker safety outcomes. The data suggest that the etiology of abuse and neglect in nursing homes may be better explained by institutional cultures rather than individual traits of CNAs. Findings highlight the relationship between worker and patient safety, and suggest worker safety outcomes may be an indicator of quality in nursing homes.
Prion-Associated Toxicity is Rescued by Elimination of Cotranslational Chaperones
Keefer, Kathryn M.; True, Heather L.
2016-01-01
The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders. PMID:27828954
Selectivity lists of pesticides to beneficial arthropods for IPM programs in carrot--first results.
Hautier, L; Jansen, J-P; Mabon, N; Schiffers, B
2005-01-01
In order to improve IPM programs in carrot, 7 fungicides, 12 herbicides and 9 insecticides commonly used in Belgium were tested for their toxicity towards five beneficial arthropods representative of most important natural enemies encountered in carrot: parasitic wasps - Aphidius rhopalosiphi (De Stefani-Perez) (Hym., Aphidiidae), ladybirds - Adalia bipunctata (L.) (Col., Coccinellidae), hoverfly - Episyrphus balteatus (Dipt.. Syrphidae), rove beetle - Aleochara bilineata (Col., Staphylinidae) and carabid beetle - Bembidion lampros (Col., Carabidae). Initialy, all plant protection products were tested on inert substrate glass plates or sand according to the insect. Products with a corrected mortality (CM) or a parasitism reduction (PR) lower than 30% were kept for the constitution of positive list (green list). The other compounds were further tested on plant for A. rhopalosiphi, A. bipunctata, E. balteatus and soil for B. lampros and A. bilineata. With these extended laboratory tests results, products were listed in toxicity class: green category [CM or PR < or = 30%], yellow category [30% < CM or PR < or = 60%] and orange category [60% < CM or PR < or = 80%]. Products with toxicity higher than 80% on plants or that reduce parasitism more than 80% on soil were put in red category and are not recommended to Integrated Pest Management programs in carrot. Results showed that all fungicides tested were harmless to beneficials except Tebuconazole, which was slightly harmful for A. bipunctata. Herbicides were also harmless for soil beneficials, except Chlorpropham. This product was very toxic on sand towards A. bilineata and must be tested on soil. All soil insecticides tested were very toxic for ground beneficials and considered as non-selective. Their use in IPM is subject to questioning in view of negative impacts on beneficials. Among foliar insecticides, Dimethoate and Deltamethrin are not recommended for IPM because their high toxicity for all beneficials. The other foliar insecticides were more selective; any of them were harmless for all species tested.
ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS
Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...
NASA Astrophysics Data System (ADS)
Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu
2014-08-01
Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.
Cheung, Y B
1998-03-01
In view of the rising divorce rates, the impact of divorce on health has an increasing importance in public health. The differentials in health between the married and the divorced may be explained by 'marital selection' and 'marital protection'. Using longitudinal data from a study of the 1958 British birth cohort, factors that select people into divorce were identified from the areas of socio-economic status, health, and attractiveness, which included physical attractiveness, health-related behaviour and temperament. Evidence for both positive and adverse selection is found. The different sets of selection factors for females and males appear to be in line with gender role expectations. The health differentials between married and divorced men were weak and can be explained away by the selection factors. Having controlled for the selection effects, there were still significant associations between divorce and physical and psychological health in women. Though these unexplained differentials cannot be definitely interpreted as the consequences of marital dissolution, this interpretation remains plausible.
Tran, Dinh Minh; Clément-Demange, André; Déon, Marine; Garcia, Dominique; Le Guen, Vincent; Clément-Vidal, Anne; Soumahoro, Mouman; Masson, Aurélien; Label, Philippe; Le, Mau Tuy; Pujade-Renaud, Valérie
2016-01-01
An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have to be further investigated.
Tran, Dinh Minh; Clément-Demange, André; Déon, Marine; Garcia, Dominique; Le Guen, Vincent; Clément-Vidal, Anne; Soumahoro, Mouman; Masson, Aurélien; Label, Philippe; Le, Mau Tuy; Pujade-Renaud, Valérie
2016-01-01
An indirect phenotyping method was developed in order to estimate the susceptibility of rubber tree clonal varieties to Corynespora Leaf Fall (CLF) disease caused by the ascomycete Corynespora cassiicola. This method consists in quantifying the impact of fungal exudates on detached leaves by measuring the induced electrolyte leakage (EL%). The tested exudates were either crude culture filtrates from diverse C. cassiicola isolates or the purified cassiicolin (Cas1), a small secreted effector protein produced by the aggressive isolate CCP. The test was found to be quantitative, with the EL% response proportional to toxin concentration. For eight clones tested with two aggressive isolates, the EL% response to the filtrates positively correlated to the response induced by conidial inoculation. The toxicity test applied to 18 clones using 13 toxinic treatments evidenced an important variability among clones and treatments, with a significant additional clone x treatment interaction effect. A genetic linkage map was built using 306 microsatellite markers, from the F1 population of the PB260 x RRIM600 family. Phenotyping of the population for sensitivity to the purified Cas1 effector and to culture filtrates from seven C. cassiicola isolates revealed a polygenic determinism, with six QTL detected on five chromosomes and percentages of explained phenotypic variance varying from 11 to 17%. Two common QTL were identified for the CCP filtrate and the purified cassiicolin, suggesting that Cas1 may be the main effector of CCP filtrate toxicity. The CCP filtrate clearly contrasted with all other filtrates. The toxicity test based on Electrolyte Leakage Measurement offers the opportunity to assess the sensitivity of rubber genotypes to C. cassiicola exudates or purified effectors for genetic investigations and early selection, without risk of spreading the fungus in plantations. However, the power of this test for predicting field susceptibility of rubber clones to CLF will have to be further investigated. PMID:27736862
Novak, Sara; Drobne, Damjana; Vaccari, Lisa; Kiskinova, Maya; Ferraris, Paolo; Birarda, Giovanni; Remškar, Maja; Hočevar, Matej
2013-10-01
Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects.
Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D
2012-03-01
A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Davoudi, Bahar; Damodaran, Vani; Bizheva, Kostadinka; Yang, Victor; Dinniwell, Robert; Levin, Wilfred; Vitkin, Alex
2013-03-01
Late oral radiation toxicity is a common condition occurring in a considerable percentage of head and neck cancer patients after radiation therapy which reduces their quality of life. The current examination of these patients is based on a visual inspection of the surface of the oral cavity; however, it is well known that many of the complications start in the subsurface layers before any superficial manifestation. Considering the currently suboptimal examination techniques, we address this clinical problem by using optical coherence tomography (OCT) to monitor the subsurface oral layers with micron-scale resolution images. A spectral-domain OCT system and a specialized oral imaging probe were designed and built for a clinical study to image late oral radiation toxicity patients. In addition to providing qualitative 2D and 3D images of the subsurface oral layers, quantitative metrics were developed to assess the back-scattering and thickness properties of different layers. Metric derivations are explained and preliminary results from late radiation toxicity patients and healthy volunteers are presented and discussed.
Cox, David P.; Drury, Bertram E.; Gould, Timothy R.; Kavanagh, Terrance J.; Paulsen, Michael H.; Sheppard, Lianne; Simpson, Christopher D.; Stewart, James A.; Larson, Timothy V.; Kaufman, Joel D.
2014-01-01
Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects. PMID:26539254
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oikari, A.O.J.
Relevance of the choice of a test organism intended to be representative for a given environment seems to be under continual debate in aquatic ecotoxicology. For instance, it is commonly argue that acute toxicity tests with rainbow trout, the species most often recommended as a standard cold water teleost, were not representative for Nordic countries because the species is an alien in local faunas. A comparative study with several freshwater species was therefore initiated to clarify the validity of this assumption. As a first approximation, standard LC 50 assays were conducted. The species used were chosen only on the basismore » of their local availability, i.e, they randomly represented the fish fauna of Nordic inland waters. Furthermore, inter-species variation of toxicity response was compared with certain other, quantitatively more important, intra-species sources of variability affecting the toxicity of chemicals. Use of reference toxicants has been recommended as a means of standardizing bioassays. Compounds, characteristic of effluents from the pulp and paper industry, were selected for the present study. The toxicity of organic acids such a phenols and resin acids, as well as that of pupmill effluents, strongly depends on water pH. Because of the possibility that species differences could exist in this respect, effects of water acidity on toxicity of these types of substances to a randomly selected local species was investigated. Finally, as an example of the biological source of assay variability, the effect of yolk absorption was studied with a subsequent crisis period due to moderate starvation under laboratory conditions.« less
Aquatic Toxicity Information Retrieval Data Base (ACQUIRE). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of Acquire is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for ACQUIRE. Independently compiled data files that meet ACQUIRE parameter and quality assurance criteria are also included. Selected toxicity test results and related testing information for any individual chemical from laboratory and field aquatic toxicity effects are included for tests with freshwater and marine organisms. The total number of data records in ACQUIRE is now over 105,300.more » This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into ACQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows.« less
Reis, Beatriz Gasparini; Silveira, Amanda Lemes; Tostes Teixeira, Luiza Procópio; Okuma, Adriana Akemi; Lange, Liséte Celina; Amaral, Miriam Cristina Santos
2017-12-01
This study aimed to compare the performance of a commercial bakers' yeast (MBRy) and conventional bacteria (MBRb) based membrane bioreactor integrated with nanofiltration (NF) in the removal of landfill leachate toxicity. Performances were evaluated using physicochemical analyses, toxicity tests and identification of organic compounds. The MBR b and MBR y were operated with a hydraulic retention time (HRT) of 48h and solids retention time (SRT) of 60 d. The MBR y demonstrated better removal efficiencies for COD (69±7%), color (54±11%) and ammoniacal nitrogen (34±7%) compared to MBR b , which showed removal efficiencies of 27±5%, 33±4% and 27±7%, for COD, color and ammoniacal nitrogen. Although the MBR y seems to be the configuration that presented the highest efficiency; it generated toxic permeate whose toxicity cannot be explained by physicochemical results. The identification of compounds shows that there is a wide range of compounds in the landfill leachate in addition to others that are produced in the biological treatment steps. The NF plays a crucial role in the polishing of the final effluents by the either complete or partial retention of compounds, that attribute toxicity to the leachate, and inorganic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ricco, Giuseppina; Tomei, M C M Concetta; Ramadori, Roberto; Laera, Giuseppe
2004-04-01
The toxicity of four xenobiotic compounds 3,5-dichlorophenol, formaldehyde, 4-nitrophenol and dichloromethane, representative of industrial wastewater contaminants was evaluated by a simple respirometric procedure set up on the basis of OECD Method 209 and by the Microtox bioassay. Very good reproducibility was observed for both methods, the variation coefficients being in the range of 2-10% for the respirometric procedure and 6-15% for Microtox, values that can be considered very good for a biological method. Comparison of EC(50) data obtained with the two methods shows that in both cases 3,5-dichlorophenol is more toxic than other compounds investigated and dichloromethane has a very low toxicity value. Intermediate EC(50) values were found for the two other chemicals, formaldehyde and 4-nitrophenol. Moreover, the Microtox EC(50) values are generally lower (except for dichloromethane) than the respirometric ones: these differences could be explained by the fact that the Microtox method uses a pure culture of marine species and, therefore, should not necessarily be expected to behave like a community of activated sludge bacteria. In conclusion, both methods can be usefully applied for toxicity detection in wastewater treatment plants but it is advisable to take into account that Microtox is more sensitive than respirometry in estimating the acute toxicity effect on the biomass operating in the plant.
Pirali, Tracey; Ciraolo, Elisa; Aprile, Silvio; Massarotti, Alberto; Berndt, Alex; Griglio, Alessia; Serafini, Marta; Mercalli, Valentina; Landoni, Clarissa; Campa, Carlo Cosimo; Margaria, Jean Piero; Silva, Rangel L.; Grosa, Giorgio; Sorba, Giovanni; Williams, Roger
2017-01-01
Abstract Activation of the phosphoinositide 3‐kinase (PI3K) pathway is a key signaling event in cancer, inflammation, and other proliferative diseases. PI3K inhibitors are already approved for some specific clinical indications, but their systemic on‐target toxicity limits their larger use. In particular, whereas toxicity is tolerable in acute treatment of life‐threatening diseases, this is less acceptable in chronic conditions. In the past, the strategy to overcome this drawback was to block selected isoforms mainly expressed in leukocytes, but redundancy within the PI3K family members challenges the effectiveness of this approach. On the other hand, decreasing exposure to selected target cells represents a so‐far unexplored alternative to circumvent systemic toxicity. In this manuscript, we describe the generation of a library of triazolylquinolones and the development of the first prodrug pan‐PI3K inhibitor. PMID:28857471
Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François
2005-09-01
An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account for the sensitivity range within a community.
Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T; Leist, Marcel; Li, Abby; Mundi, William R; Padilla, Stephanie; Piersma, Aldert H; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H; Zimmer, Bastian; Lein, Pamela J
2017-01-01
There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e., alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of > 50 endpoint-specific control compounds was identified. For further test development, an additional "test" set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the > 100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems.
Yang, Ning; Gilman, Paul; Mirzayans, Razmik; Sun, Xuejun; Touret, Nicolas; Weinfeld, Michael; Goping, Ing Swie
2015-01-01
Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation. PMID:25927702
Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T.; Leist, Marcel; Li, Abby; Mundy, William R.; Padilla, Stephanie; Piersma, Aldert H.; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H.; Zimmer, Bastian; Lein, Pamela J.
2016-01-01
Summary There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e. alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of >50 endpoint-specific control compounds was identified. For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the >100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems. PMID:27452664
Shi, Weiwei; Bugrim, Andrej; Nikolsky, Yuri; Nikolskya, Tatiana; Brennan, Richard J
2008-01-01
ABSTRACT The ideal toxicity biomarker is composed of the properties of prediction (is detected prior to traditional pathological signs of injury), accuracy (high sensitivity and specificity), and mechanistic relationships to the endpoint measured (biological relevance). Gene expression-based toxicity biomarkers ("signatures") have shown good predictive power and accuracy, but are difficult to interpret biologically. We have compared different statistical methods of feature selection with knowledge-based approaches, using GeneGo's database of canonical pathway maps, to generate gene sets for the classification of renal tubule toxicity. The gene set selection algorithms include four univariate analyses: t-statistics, fold-change, B-statistics, and RankProd, and their combination and overlap for the identification of differentially expressed probes. Enrichment analysis following the results of the four univariate analyses, Hotelling T-square test, and, finally out-of-bag selection, a variant of cross-validation, were used to identify canonical pathway maps-sets of genes coordinately involved in key biological processes-with classification power. Differentially expressed genes identified by the different statistical univariate analyses all generated reasonably performing classifiers of tubule toxicity. Maps identified by enrichment analysis or Hotelling T-square had lower classification power, but highlighted perturbed lipid homeostasis as a common discriminator of nephrotoxic treatments. The out-of-bag method yielded the best functionally integrated classifier. The map "ephrins signaling" performed comparably to a classifier derived using sparse linear programming, a machine learning algorithm, and represents a signaling network specifically involved in renal tubule development and integrity. Such functional descriptors of toxicity promise to better integrate predictive toxicogenomics with mechanistic analysis, facilitating the interpretation and risk assessment of predictive genomic investigations.
Griggs, Amy M.; Agim, Zeynep S.; Mishra, Vartika R.; Tambe, Mitali A.; Director-Myska, Alison E.; Turteltaub, Kenneth W.; McCabe, George P.; Rochet, Jean-Christophe; Cannon, Jason R.
2014-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4′-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4′-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704
Amacher, David E
2010-05-15
Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in biological fluids with varying immunoreactivity which can present bioanalytical challenges when first discovered. The potential success of these efforts is greatly enhanced by recent advances in two closely linked technologies, toxicoproteomics and targeted, quantitative mass spectrometry. This review focuses on the examination of the current status of these technologies as they relate to the discovery and development of novel preclinical biomarkers of hepatotoxicity. A critical assessment of the current literature reveals two distinct lines of safety biomarker investigation, (1) peripheral fluid biomarkers of organ toxicity and (2) tissue or cell-based toxicity signatures. Improved peripheral fluid biomarkers should allow the sensitive detection of potential organ toxicity prior to the onset of overt organ pathology. Advancements in tissue or cell-based toxicity biomarkers will provide sensitive in vitro or ex vivo screening systems based on toxicity pathway markers. An examination of the current practices in clinical pathology and the critical evaluation of some recently proposed biomarker candidates in comparison to the desired characteristics of an ideal toxicity biomarker lead this author to conclude that a combination of selected biomarkers will be more informative if not predictive of potential animal organ toxicity than any single biomarker, new or old. For the practical assessment of combinations of conventional and/or novel toxicity biomarkers in rodent and large animal preclinical species, mass spectrometry has emerged as the premier analytical tool compared to specific immunoassays or functional assays. Selected and multiple reaction monitoring mass spectrometry applications make it possible for this same basic technology to be used in the progressive stages of biomarker discovery, development, and more importantly, routine study applications without the use of specific antibody reagents. This technology combined with other "omics" technologies can provide added selectivity and sensitivity in preclinical drug safety testing.
Johnson, Ian; Hutchings, Matt; Benstead, Rachel; Thain, John; Whitehouse, Paul
2004-07-01
In the UK Direct Toxicity Assessment Programme, carried out in 1998-2000, a series of internationally recognised short-term toxicity test methods for algae, invertebrates and fishes, and rapid methods (ECLOX and Microtox) were used extensively. Abbreviated versions of conventional tests (algal growth inhibition tests, Daphnia magna immobilisation test and the oyster embryo-larval development test) were valuable for toxicity screening of effluent discharges and the identification of causes and sources of toxicity. Rapid methods based on chemiluminescence and bioluminescence were not generally useful in this programme, but may have a role where the rapid test has been shown to be an acceptable surrogate for a standardised test method. A range of quality assurance and control measures were identified. Requirements for quality control/assurance are most stringent when deriving data for characterising the toxic hazards of effluents and monitoring compliance against a toxicity reduction target. Lower quality control/assurance requirements can be applied to discharge screening and the identification of causes and sources of toxicity.
Metabolite toxicity determines the pace of molecular evolution within microbial populations.
Lilja, Elin E; Johnson, David R
2017-02-14
The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.
Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz; Woźniak-Karczewska, Marta; Piotrowska-Cyplik, Agnieszka; Ławniczak, Łukasz; Szulc, Alicja; Zgoła-Grześkowiak, Agnieszka; Heipieper, Hermann J; Chrzanowski, Łukasz
2018-01-01
Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P 66614 ][Br] and [P 66614 ][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Low-basicity 5-HT7 Receptor Agonists Synthesized Using the van Leusen Multicomponent Protocol.
Hogendorf, Adam S; Hogendorf, Agata; Kurczab, Rafał; Satała, Grzegorz; Lenda, Tomasz; Walczak, Maria; Latacz, Gniewomir; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Wierońska, Joanna M; Woźniak, Monika; Cieślik, Paulina; Bugno, Ryszard; Staroń, Jakub; Bojarski, Andrzej J
2017-05-04
A series of 5-aryl-1-alkylimidazole derivatives was synthesized using the van Leusen multicomponent reaction. The chemotype is the first example of low-basicity scaffolds exhibiting high affinity for 5-HT 7 receptor together with agonist function. The chosen lead compounds 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-1H-indole (AGH-107, 1o, K i 5-HT7 = 6 nM, EC 50 = 19 nM, 176-fold selectivity over 5-HT 1A R) and 1e (5-methoxy analogue, K i 5-HT7 = 30 nM, EC 50 = 60 nM) exhibited high selectivity over related CNS targets, high metabolic stability and low toxicity in HEK-293 and HepG2 cell cultures. A rapid absorption to the blood, high blood-brain barrier permeation and a very high peak concentration in the brain (C max = 2723 ng/g) were found for 1o after i.p. (5 mg/kg) administration in mice. The compound was found active in novel object recognition test in mice, at 0.5, 1 and 5 mg/kg. Docking to 5-HT 7 R homology models indicated a plausible binding mode which explain the unusually high selectivity over the related CNS targets. Halogen bond formation between the most potent derivatives and the receptor is consistent with both the docking results and SAR. 5-Chlorine, bromine and iodine substitution resulted in a 13, 27 and 89-fold increase in binding affinities, respectively, and in enhanced 5-HT 1A R selectivity.
In-vehicle, roadside and community-based measurements of particulate matter (PM) and select air toxics were measured as part of a study involving patrol cars from the North Carolina Highway Patrol. One goal of this study was to characterize PM and related air pollutant concentra...
Our study assesses the value of both in vitro assay and quantitative structure activity relationship (QSAR) data in predicting in vivo toxicity using numerous statistical models and approaches to process the data. Our models are built on datasets of (i) 586 chemicals for which bo...
Yvette M. Karchesy; Rick G. Kelsey; George Constantine; Joseph J. Karchesy
2016-01-01
The brine shrimp (Artemia salina) bioassay was used to screen 211 methanol extracts from 128 species of Pacific Northwest plants in search of general cytotoxic activity. Strong toxicity (LC50 < 100 μg/ml) was found for 17 extracts from 13 species, with highest activity observed for Angelica arguta...
USDA-ARS?s Scientific Manuscript database
The brown stink bug (BSB), Euschistus servus (Say) has become the predominant species among the stink bug complex on cotton in Central Texas. Control options to suppress the insect are largely dependent upon and limited to the use of insecticides. Data are needed to determine the toxicity of current...
In order to develop effective strategies for toxics management, the Great Lakes National Program Office (GLNPO) of the United States Environmental Protection Agency (U.S. EPA), in 1994, launched an ambitious five year program to conduct a mass balance study of selected toxics p...
Photodynamic Therapy for Gynecological Diseases and Breast Cancer
Shishkova, Natashis; Kuznetsova, Olga; Berezov, Temirbolat
2012-01-01
Photodynamic therapy (PDT) is a minimally invasive and promising new method in cancer treatment. Cytotoxic reactive oxygen species (ROS) are generated by the tissue-localized non-toxic sensitizer upon illumination and in the presence of oxygen. Thus, selective destruction of a targeted tumor may be achieved. Compared with traditional cancer treatment, PDI has advantages including higher selectivity and lower rate of toxicity. The high degree of selectivity of the proposed method was applied to cancer diagnosis using fluorescence. This article reviews previous studies done on PDT treatment and photodetection of cervical intraepithelial neoplasia, vulvar intraepithelial neoplasia, ovarian and breast cancer, and PDT application in treating non-cancer lesions. The article also highlights the clinical responses to PDT, and discusses the possibility of enhancing treatment efficacy by combination with immunotherapy and targeted therapy. PMID:23691448
Toxicity assessment of heavy metal mixtures by Lemna minor L.
Horvat, Tea; Vidaković-Cifrek, Zeljka; Orescanin, Visnja; Tkalec, Mirta; Pevalek-Kozlina, Branka
2007-10-01
The discharge of untreated electroplating wastewaters directly into the environment is a certain source of heavy metals in surface waters. Even though heavy metal discharge is regulated by environmental laws many small-scale electroplating facilities do not apply adequate protective measures. Electroplating wastewaters contain large amounts of various heavy metals (the composition depending on the facility) and the pH value often bellow 2. Such pollution diminishes the biodiversity of aquatic ecosystems and also endangers human health. The aim of our study was to observe/measure the toxic effects induced by a mixture of seven heavy metals on a bioindicator species Lemna minor L. Since artificial laboratory metal mixtures cannot entirely predict behaviour of metal mixtures nor provide us with informations relating to the specific conditions in the realistic environment we have used an actual electroplating wastewater sample discharged from a small electroplating facility. In order to obtain three more samples with the same composition of heavy metals but at different concentrations, the original electroplating wastewater sample has undergone a purification process. The purification process used was developed by Orescanin et al. [Orescanin V, Mikelić L, Lulić S, Nad K, Rubcić M, Pavlović G. Purification of electroplating wastewaters utilizing waste by-product ferrous sulphate and wood fly ash. J Environ Sci Health A 2004; 39 (9): 2437-2446.] in order to remove the heavy metals and adjust the pH value to acceptable values for discharge into the environment. Studies involving plants and multielemental waters are very rare because of the difficulty in explaining interactions of the combined toxicities. Regardless of the complexity in interpretation, Lemna bioassay can be efficiently used to assess combined effects of multimetal samples. Such realistic samples should not be avoided because they can provide us with a wide range of information which can help explain many different interactions of metals on plant growth and metabolism. In this study we have primarily evaluated classical toxicity endpoints (relative growth rate, Nfronds/Ncolonies ratio, dry to fresh weight ratio and frond area) and measured guaiacol peroxidase (GPX) activity as early indicator of oxidative stress. Also, we have measured metal accumulation in plants treated with waste ash water sample with EDXRF analysis and have used toxic unit (TU) approach to predict which metal will contribute the most to the general toxicity of the tested samples.
[Use of dinoflagellates as a metal toxicity assessment tool in aquatic system].
Yuan, Li-juan; He, Meng-chang
2009-10-15
Although dinoflagellates have been used to assess biological toxicity of contaminants, this method still lacks of corresponding toxicity assessment standard. This study appraised the toxicity of selected heavy metals to dinoflagellates based on the dinoflagellates bioluminescence with QwikLite developed by the United States Navy. The results show that single heavy metal biological toxicity is in the order: Hg2+ > Cu2+ > Cd2+ > As5+ > Pb2+ > Cr6+; Two, three and four heavy metal mixture experiments show synergism primarily, antagonism is in minority. pH has not remarkable effect on dinoflagellates, they can be applied directly in natural water, but pH influence Hg2+ and Cu2+ toxicity greatly, eliminating the influence of pH is essential when doing these two kind of ions measurements. The nutrients has little influence on dinoflagellates, change in COD has obvious effect on the response relationships between dinoflagellates and Hg2+ or CU2+. Metal toxicity assessment using dinoflagellates shows great sensitivity, narrow response scope and high stability. Dinoflagellates are good species for heavy metal biological toxicity test in aquatic system.
A Conceptual Characterization of Online Videos Explaining Natural Selection
ERIC Educational Resources Information Center
Bohlin, Gustav; Göransson, Andreas; Höst, Gunnar E.; Tibell, Lena A. E.
2017-01-01
Educational videos on the Internet comprise a vast and highly diverse source of information. Online search engines facilitate access to numerous videos claiming to explain natural selection, but little is known about the degree to which the video content match key evolutionary content identified as important in evolution education research. In…
An Attempt to Influence Selected Portions of Student Learning.
ERIC Educational Resources Information Center
Anderson, Edwin R.
In an attempt to selectively improve student performance, one-half of a set of difficult test items from a FORTRAN programming class had handouts explaining the concepts underlying the items distributed to the students. Each handout contained a written learning objective, a short prose passage explaining the objective, and one or more practice…
SNRB{trademark} air toxics monitoring. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less
Stehly, G.R.; Gingerich, W.H.
1999-01-01
A preliminary evaluation of efficacy and minimum toxic concentration of AQUI-S(TM), a fish anaesthetic/sedative, was determined in two size classes of six species of fish important to US public aquaculture (bluegill, channel catfish, lake trout, rainbow trout, walleye and yellow perch). In addition, efficacy and minimum toxic concentration were determined in juvenile-young adult (fish aged 1 year or older) rainbow trout acclimated to water at 7 ??C, 12 ??C and 17 ??C. Testing concentrations were based on determinations made with range-finding studies for both efficacy and minimum toxic concentration. Most of the tested juvenile-young adult fish species were induced in 3 min or less at a nominal AQUI-S(TM) concentration of 20 mg L-1. In juvenile-young adult fish, the minimum toxic concentration was at least 2.5 times the selected efficacious concentration. Three out of five species of fry-fingerlings (1.25-12.5 cm in length and < 1 year old) were induced in ??? 4.1 min at a nominal concentration of 20 mg L-1 AQUI-S(TM), with the other two species requiring nominal concentrations of 25 and 35 mg L-1 for similar times of induction. Recovery times were ??? 7.3 rain for all species in the two size classes. In fry-fingerlings, the minimum toxic concentration was at least 1.4 times the selected efficacious concentration. There appeared to be little relationship between size of fish and concentrations or times to induction, recovery times and minimum toxic concentration. The times required for induction and for recovery were increased in rainbow trout as the acclimation temperature was reduced.
Salin, J T; Salkinoja-Salonen, M; Salin, P J; Nelo, K; Holma, T; Ohtonen, P; Syrjälä, H
2017-04-01
Indoor microbial toxicity is suspected to cause some building-related symptoms, but supporting epidemiological data are lacking. We examined whether the in vitro toxicity of indoor samples from school buildings was associated with work-related health symptoms (building-related symptoms, BRS). Administrators of the Helsinki City Real Estate Department selected 15 schools for the study, and a questionnaire on symptoms connected to work was sent to the teachers in the selected schools for voluntary completion. The cellular toxicity of classroom samples was determined by testing substances extracted from wiped indoor dust and by testing microbial biomass that was cultured on fallout plates. Boar sperm cells were used as indicator cells, and motility loss was the indicator for toxic effects. The effects were expressed as the half maximal effective concentration (EC 50 ) at which >50% of the exposed boar sperm cells were immobile compared to vehicle control. Completed symptom questionnaires were received from 232 teachers [median age, 43 years; 190 (82.3%) women] with a median time of 6 years working at their school. Samples from their classrooms were available and were assessed for cellular toxicity. The Poisson regression model showed that the impact of extracts of surface-wiped school classroom dust on teacher work-related BRS was 2.8-fold (95% CI: 1.6-4.9) higher in classrooms with a toxic threshold EC 50 of 6µgml -1 versus classrooms with insignificant EC 50 values (EC 50 >50µgml -1 ); P<0.001. The number of symptoms that were alleviated during vacation was higher in school classrooms with high sperm toxicity compared to less toxic sites; the RR was 1.9 (95% CI: 1.1-3.3, P=0.03) for wiped dust extracts. Teachers working in classrooms where the samples showed high sperm toxicity had more BRS. The boar sperm cell motility inhibition assay appears promising as a tool for demonstrating the presence of indoor substances associated with BRS. Copyright © 2017 Elsevier Inc. All rights reserved.
Bamdad, M; David, L; Grolière, C A
1995-12-01
A study of the toxicity of epinigericin, an antibiotic ionophor, towards the ciliate Tetrahymena pyriformis showed that this molecule stopped cell division, increased cell volume and led to a more basic intracellular pH. The action of epinigericin was probably linked to its function as an ionophor. The ionic selectivity of this molecule is still not known. The raising of the intracellular pH of ciliates by this antibiotic may be linked to its toxic action and its iontransport mechanism in Tetrahymena.
Enhanced monitor system for water protection
Hill, David E [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias [Knoxville, TN
2009-09-22
An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.
Nahid, Noor Ahmed; Apu, Mohd Nazmul Hasan; Islam, Md Reazul; Shabnaz, Samia; Chowdhury, Surid Mohammad; Ahmed, Maizbha Uddin; Nahar, Zabun; Islam, Md Siddiqul; Islam, Mohammad Safiqul; Hasnat, Abul
2018-01-01
Significant inter-individual variation in the sensitivity to 5-fluorouracil (5-FU) represents a major therapeutic hindrance either by impairing drug response or inducing adverse drug reactions (ADRs). This study aimed at exploring the cause behind this inter-individual alterations in consequences of 5-fluorouracil-based chemotherapy by investigating the effects of DPYD*2A and MTHFR C677T polymorphisms on toxicity and response of 5-FU in Bangladeshi colorectal cancer patients. Colorectal cancer patients (n = 161) receiving 5-FU-based chemotherapy were prospectively enrolled. DPYD and MTHFR polymorphisms were assessed in peripheral leukocytes. Multivariate analyses were applied to evaluate which variables could predict chemotherapy-induced toxicity and efficacy. Multivariate analyses showed that DPYD*2A polymorphism was a predictive factor (P = 0.023) for grade 3 and grade 4 5-fluorouracil-related toxicities. Although MTHFR C677T polymorphism might act as forecasters for grade 3 or grade 4 neutropenia, diarrhea, and mucositis, this polymorphism was found to increase significantly (P = 0.006) the response of 5-FU. DPYD*2A and MTHFR C677T polymorphisms could explain 5-FU toxicity or clinical outcome in Bangladeshi colorectal patients.
Inhalation toxicity of 316L stainless steel powder in relation to bioaccessibility.
Stockmann-Juvala, H; Hedberg, Y; Dhinsa, N K; Griffiths, D R; Brooks, P N; Zitting, A; Wallinder, I Odnevall; Santonen, T
2013-11-01
The Globally Harmonized System for Classification and Labelling of Chemicals (GHS) considers metallic alloys, such as nickel (Ni)-containing stainless steel (SS), as mixtures of substances, without considering that alloys behave differently compared to their constituent metals. This study presents an approach using metal release, explained by surface compositional data, for the prediction of inhalation toxicity of SS AISI 316L. The release of Ni into synthetic biological fluids is >1000-fold lower from the SS powder than from Ni metal, due to the chromium(III)-rich surface oxide of SS. Thus, it was hypothesized that the inhalation toxicity of SS is significantly lower than what could be predicted based on Ni metal content. A 28-day inhalation study with rats exposed to SS 316L powder (<4 µm, mass median aerodynamic diameter 2.5-3.0 µm) at concentrations up to 1.0 mg/L showed accumulation of metal particles in the lung lobes, but no signs of inflammation, although Ni metal caused lung toxicity in a similar published study at significantly lower concentrations. It was concluded that the bioaccessible (released) fraction, rather than the elemental nominal composition, predicts the toxicity of SS powder. The study provides a basis for an approach for future validation, standardization and risk assessment of metal alloys.
Brogi, Simone; Butini, Stefania; Maramai, Samuele; Colombo, Raffaella; Verga, Laura; Lanni, Cristina; De Lorenzi, Ersilia; Lamponi, Stefania; Andreassi, Marco; Bartolini, Manuela; Andrisano, Vincenza; Novellino, Ettore; Campiani, Giuseppe; Brindisi, Margherita; Gemma, Sandra
2014-07-01
We recently described multifunctional tools (2a-c) as potent inhibitors of human Cholinesterases (ChEs) also able to modulate events correlated with Aβ aggregation. We herein propose a thorough biological and computational analysis aiming at understanding their mechanism of action at the molecular level. We determined the inhibitory potency of 2a-c on Aβ1-42 self-aggregation, the interference of 2a with the toxic Aβ oligomeric species and with the postaggregation states by capillary electrophoresis analysis and transmission electron microscopy. The modulation of Aβ toxicity was assessed for 2a and 2b on human neuroblastoma cells. The key interactions of 2a with Aβ and with the Aβ-preformed fibrils were computationally analyzed. 2a-c toxicity profile was also assessed (human hepatocytes and mouse fibroblasts). Our prototypical pluripotent analogue 2a interferes with Aβ oligomerization process thus reducing Aβ oligomers-mediated toxicity in human neuroblastoma cells. 2a also disrupts preformed fibrils. Computational studies highlighted the bases governing the diversified activities of 2a. Converging analytical, biological, and in silico data explained the mechanism of action of 2a on Aβ1-42 oligomers formation and against Aβ-preformed fibrils. This evidence, combined with toxicity data, will orient the future design of safer analogues. © 2014 John Wiley & Sons Ltd.
Losso, Chiara; Novelli, Alessandra Arizzi; De Salvador, Davide; Ghetti, Pier Francesco; Ghirardini, Annamaria Volpi
2010-12-01
Marine and coastal quality assessment, based on test batteries involving a wide array of endpoints, organisms and test matrices, needs for setting up toxicity indices that integrate multiple toxicological measures for decision-making processes and that classify the continuous toxicity response into discrete categories according to the European Water Framework Directive. Two toxicity indices were developed for the lagoon environment such as the Venice Lagoon. Stepwise procedure included: the construction of a database that identified test-matrix pairs (indicators); the selection of a minimum number of ecotoxicological indicators, called toxicological core metrics (CMs-tox) on the basis of specific criteria; the development of toxicity scores for each CM-tox; the integration of the CMs-tox into two indices, the Toxicity Effect Index (TEI), based on the transformation of Toxic Unit (TU) data that were integrated as logarithmic sum, and the Weighted Average Toxicity Index (WATI), starting from toxicity classes integrated as weighted mean. Results from the indices are compared; advantages and drawbacks of both approaches are discussed. Copyright © 2010. Published by Elsevier Ltd.
"Selective" switching from non-selective to selective non-steroidal anti-inflammatory drugs.
Bennett, Kathleen; Teeling, Mary; Feely, John
2003-11-01
Non-steroidal anti inflammatory drugs (NSAIDs) are thought to account for almost 25% of all reported adverse drug reactions, primarily gastrointestinal (GI) toxicity. Selective cyclo-oxygenase-2 (COX-2) inhibitors have been shown to preferentially inhibit activity of the COX-2 enzyme, which maintains anti-inflammatory activity but reduces GI toxicity. To determine the degree of switching from non-selective NSAIDs to COX-2 inhibitors and to examine the factors that were associated with switching. The General Medical Services prescription database (1.2 million people) was examined for NSAID prescriptions from December 1999 through November 2001. All those receiving non-selective NSAIDs and those switching to selective COX-2 inhibitors after at least 1 month on a non-selective NSAID were identified (non-switchers and switchers, respectively). Age, sex, dose of non-selective NSAID and co-prescribing of anti-peptic ulcer (anti-PU) drugs were considered between switchers and non-switchers, and odds ratios (OR) calculated using logistic regression. The effect of chronic use (> or =3 months prescription of a non-selective NSAID during the study period) on switching was also evaluated. A total of 81,538 of 480,573 patients (17%) initially prescribed non-selective NSAIDs were switched to COX-2 inhibitors during the study. The elderly (65 years or older) were more likely to be switched to a COX-2 inhibitor [OR=1.81, 95% confidence interval (CI) 1.79, 1.84]. Women were also more likely to be switched to COX-2 inhibitor therapy (OR=1.25, 95% CI 1.23, 1.27). Previous but not subsequent prescribing of anti-PU drugs was also associated with switching. Chronic users showed similar switching patterns. Prescribers are more likely to switch older female patients and those with a past history of peptic ulcers from non-selective NSAIDs to COX-2 inhibitors. This suggests that doctors take risk factors into consideration when prescribing NSAIDs. The relatively low rate of switching may suggest that prescribers still have concerns over the place of COX-2 inhibitors and reserve their use to those patients particularly at risk of NSAID-induced GI toxicity.
COMPILATION OF AVAILABLE DATA ON BUILDING DECONTAMINATION ALTERNATIVES
The report presents an analysis of selected technologies that have been tested for their potential effectiveness in decontaminating a building that has been attacked using biological or chemical warfare agents, or using toxic industrial compounds. The technologies selected to be ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amacher, David E.
Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intendedmore » human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in biological fluids with varying immunoreactivity which can present bioanalytical challenges when first discovered. The potential success of these efforts is greatly enhanced by recent advances in two closely linked technologies, toxicoproteomics and targeted, quantitative mass spectrometry. This review focuses on the examination of the current status of these technologies as they relate to the discovery and development of novel preclinical biomarkers of hepatotoxicity. A critical assessment of the current literature reveals two distinct lines of safety biomarker investigation, (1) peripheral fluid biomarkers of organ toxicity and (2) tissue or cell-based toxicity signatures. Improved peripheral fluid biomarkers should allow the sensitive detection of potential organ toxicity prior to the onset of overt organ pathology. Advancements in tissue or cell-based toxicity biomarkers will provide sensitive in vitro or ex vivo screening systems based on toxicity pathway markers. An examination of the current practices in clinical pathology and the critical evaluation of some recently proposed biomarker candidates in comparison to the desired characteristics of an ideal toxicity biomarker lead this author to conclude that a combination of selected biomarkers will be more informative if not predictive of potential animal organ toxicity than any single biomarker, new or old. For the practical assessment of combinations of conventional and/or novel toxicity biomarkers in rodent and large animal preclinical species, mass spectrometry has emerged as the premier analytical tool compared to specific immunoassays or functional assays. Selected and multiple reaction monitoring mass spectrometry applications make it possible for this same basic technology to be used in the progressive stages of biomarker discovery, development, and more importantly, routine study applications without the use of specific antibody reagents. This technology combined with other 'omics' technologies can provide added selectivity and sensitivity in preclinical drug safety testing.« less
The influence of genetic variation on late toxicities in childhood cancer survivors: A review.
Clemens, E; van der Kooi, A L F; Broer, L; van Dulmen-den Broeder, E; Visscher, H; Kremer, L; Tissing, W; Loonen, J; Ronckers, C M; Pluijm, S M F; Neggers, S J C M M; Zolk, O; Langer, T; Zehnhoff-Dinnesen, A Am; Wilson, C L; Hudson, M M; Carleton, B; Laven, J S E; Uitterlinden, A G; van den Heuvel-Eibrink, M M
2018-06-01
The variability in late toxicities among childhood cancer survivors (CCS) is only partially explained by treatment and baseline patient characteristics. Inter-individual variability in the association between treatment exposure and risk of late toxicity suggests that genetic variation possibly modifies this association. We reviewed the available literature on genetic susceptibility of late toxicity after childhood cancer treatment related to components of metabolic syndrome, bone mineral density, gonadal impairment and hearing impairment. A systematic literature search was performed, using Embase, Cochrane Library, Google Scholar, MEDLINE, and Web of Science databases. Eligible publications included all English language reports of candidate gene studies and genome wide association studies (GWAS) that aimed to identify genetic risk factors associated with the four late toxicities, defined as toxicity present after end of treatment. Twenty-seven articles were identified, including 26 candidate gene studies: metabolic syndrome (n = 6); BMD (n = 6); gonadal impairment (n = 2); hearing impairment (n = 12) and one GWAS (metabolic syndrome). Eighty percent of the genetic studies on late toxicity after childhood cancer had relatively small sample sizes (n < 200), leading to insufficient power, and lacked adjustment for multiple comparisons. Only four (4/26 = 15%) candidate gene studies had their findings validated in independent replication cohorts as part of their own report. Genetic susceptibility associations are not consistent or not replicated and therefore, currently no evidence-based recommendations can be made for hearing impairment, gonadal impairment, bone mineral density impairment and metabolic syndrome in CCS. To advance knowledge related to genetic variation influencing late toxicities among CCS, future studies need adequate power, independent cohorts for replication, harmonization of disease outcomes and sample collections, and (international) collaboration. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.C.; Ferraro, S.P.; Lamberson, J.O.
1997-10-01
The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration series of either single compounds or as approximately equitoxic mixtures of all four compounds. Standard 10-d sediment toxicity tests were conducted under fluorescent lighting. After 10 d, survivors were exposed for 1 h to ultraviolet (UV) radiation in the absence of sediment and then tested for their ability to bury in uncontaminated sediment. The 10-d median lethal concentrations (LC50s) were 2.31 mg acenaphthene/g organic carbon (OC),more » 2.22 mg phenanthrene/g OC, 3.31 mg fluoranthene/g OC, and 2.81 mg pyrene/g OC. These LC50s were used to calculate the sum of toxic units ({Sigma}TU) of the four PAHs in the approximately equitoxic mixtures. The {Sigma}TU LC50 was then calculated for the mixture treatments. If the toxicologic interaction of a mixture of contaminants is additive, {Sigma}TU LC50 = 1.0. The observed LC50 (1.55 {Sigma}TU) was slightly, but significantly, greater than unity, indicating that the interaction of PAHs in the mixture was less than additive. Exposure to UV radiation enhanced the toxic effects of fluoranthene and pyrene, but did not affect the toxicity of acenaphthene and phenanthrene. Effects of UV radiation on the toxicity of the mixture of four PAHs could be explained by the photoactivation of fluoranthene and pyrene alone. These results are consistent with predictions based on photophysical properties of PAH compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smit, C.E.; Van Gestel, C.A.M.
1998-06-01
Soil properties are a major influence on the bioavailability and toxicity of metals and represent one of the important factors that complicate the extrapolation of results from laboratory tests to field situations. The influence of soil characteristics and way of contamination on the bioaccumulation and toxicity of zinc was investigated for the springtail Folsomia candida, and the applicability of chemical extraction techniques for the prediction of zinc uptake and toxicity was evaluated. Bioaccumulation of zinc in F. candida was related to water-soluble zinc concentrations, and uptake was dependent on the test soil used. Effects of zinc for F. candida couldmore » not be fully explained by bioaccumulation. This indicates that the existence of a fixed internal threshold concentration of zinc above which physiological functions are impaired is not likely for F. candida. In freshly contaminated soils, zinc toxicity was related to organic matter and clay content of the soil; however, the use of these soils overestimated the effects of zinc for F. candida by a factor of 5 to 8 compared to a test soil that was subjected to ageing under field conditions for 1.5 years. Equilibration of the zinc contamination by percolating the soils with water before use in the toxicity experiment strongly reduced the difference in zinc toxicity between laboratory-treated and aged soils. Water-soluble concentrations are most appropriate to predict effects of zinc on reproduction of F. candida in soils with unknown contamination histories. For laboratory toxicity tests, it is recommended to percolate soils with water after contamination and to include an equilibration period prior to use to achieve a more realistic exposure situation.« less
Evaluating the zebrafish embryo toxicity test for pesticide hazard screening.
Glaberman, Scott; Padilla, Stephanie; Barron, Mace G
2017-05-01
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r 2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r 2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-operation and Development Fish Embryo Acute Toxicity Test for routine pesticide hazard assessment, although embryo testing could be used with other screening tools for testing prioritization. Environ Toxicol Chem 2017;36:1221-1226. © 2016 SETAC. © 2016 SETAC.
Armstead, Mindy Yeager; Bitzer-Creathers, Leah; Wilson, Mandee
2016-01-01
Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities. PMID:27814378
NASA Technical Reports Server (NTRS)
Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.;
2015-01-01
Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.
Zhu, Yi; Doornebal, Ewald J; Pirtskhalava, Tamar; Giorgadze, Nino; Wentworth, Mark; Fuhrmann-Stroissnigg, Heike; Niedernhofer, Laura J; Robbins, Paul D; Tchkonia, Tamara; Kirkland, James L
2017-03-08
Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-X L inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.
Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin.
Brecht, Karin; Riebel, Virginie; Couttet, Philippe; Paech, Franziska; Wolf, Armin; Chibout, Salah-Dine; Pognan, Francois; Krähenbühl, Stephan; Uteng, Marianne
2017-04-01
Arctigenin has previously been identified as a potential anti-tumor treatment for advanced pancreatic cancer. However, the mechanism of how arctigenin kills cancer cells is not fully understood. In the present work we studied the mechanism of toxicity by arctigenin in the human pancreatic cell line, Panc-1, with special emphasis on the mitochondria. A comparison of Panc-1 cells cultured in glucose versus galactose medium was applied, allowing assessments of effects in glycolytic versus oxidative phosphorylation (OXPHOS)-dependent Panc-1 cells. For control purposes, the mitochondrial toxic response to treatment with arctigenin was compared to the anti-cancer drug, sorafenib, which is a tyrosine kinase inhibitor known for mitochondrial toxic off-target effects (Will et al., 2008). In both Panc-1 OXPHOS-dependent and glycolytic cells, arctigenin dissipated the mitochondrial membrane potential, which was demonstrated to be due to inhibition of the mitochondrial complexes II and IV. However, arctigenin selectively killed only the OXPHOS-dependent Panc-1 cells. This selective killing of OXPHOS-dependent Panc-1 cells was accompanied by generation of ER stress, mitochondrial membrane permeabilization and caspase activation leading to apoptosis and aponecrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sensitivity of submersed freshwater macrophytes and endpoints in laboratory toxicity tests.
Arts, Gertie H P; Belgers, J Dick M; Hoekzema, Conny H; Thissen, Jac T N M
2008-05-01
The toxicological sensitivity and variability of a range of macrophyte endpoints were statistically tested with data from chronic, non-axenic, macrophyte toxicity tests. Five submersed freshwater macrophytes, four pesticides/biocides and 13 endpoints were included in the statistical analyses. Root endpoints, reflecting root growth, were most sensitive in the toxicity tests, while endpoints relating to biomass, growth and shoot length were less sensitive. The endpoints with the lowest coefficients of variation were not necessarily the endpoints, which were toxicologically most sensitive. Differences in sensitivity were in the range of 10-1000 for different macrophyte-specific endpoints. No macrophyte species was consistently the most sensitive. Criteria to select endpoints in macrophyte toxicity tests should include toxicological sensitivity, variance and ecological relevance. Hence, macrophyte toxicity tests should comprise an array of endpoints, including very sensitive endpoints like those relating to root growth.
Módenes, Aparecido Nivaldo; Sanderson, Karina; Trigueros, Daniela Estelita Goes; Schuelter, Adilson Ricken; Espinoza-Quiñones, Fernando Rodolfo; Neves, Camila Vargas; Zanão Junior, Luiz Antônio; Kroumov, Alexander Dimitrov
2018-05-01
Leakage of transformer dielectric fluids is a concern because it may pose a risk of environmental contamination. In this study, the deleterious effects of vegetable and mineral dielectric fluids in water bodies were investigated using biodegradability and acute toxicity tests with Danio rerio and Artemia salina. Regarding biodegradability, all four tested vegetable oils (soy, canola, sunflower and crambe) were considered as easily biodegradable, presenting degradation rates significantly higher than the Lubrax-type mineral fluid. Acute toxicity tests were performed in two separate experiments without solution renewal. In the first experiment, the organisms were exposed in direct contact to different concentrations of vegetable (soy) and mineral (Lubrax) oils. Total soy-type vegetable oil has a higher toxic effect than Lubrax-type mineral oil. In the second experiment, the organisms were exposed to increasing percentages of the water-soluble fraction (WSF) of both types of tested oils. The LC 50 values for the water-soluble fraction of the Lubrax-type mineral oil were about 5 and 8% for the Danio rerio and Artemia salina bioindicators, respectively, whereas the vegetable oil did not present toxic effect, regardless of its WSF. These results have shown that a strict selection of dielectric fluids and monitoring the leakage from power transformers is a serious duty of environmental protection agencies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Russo, Giacomo; Capuozzo, Antonella; Barbato, Francesco; Irace, Carlo; Santamaria, Rita; Grumetto, Lucia
2018-06-01
Bisphenol A (BPA) is a chemical used in numerous industrial applications. Due to its well ascertained toxicity as endocrine disruptor, industries have started to replace it with other bisphenols whose alleged greater safety is scarcely supported by literature studies. In this study, the toxicity of seven BPA analogues was evaluated using both in silico and in vitro techniques, as compared to BPA toxicity. Furthermore, their affinity indexes for phospholipids (i.e. phospholipophilicity) were determined by immobilized artificial membrane liquid chromatography (IAM-LC) and possible relationships with in vitro toxic activity were also investigated. The results on four different cell cultures yielded similar ranking of toxicity for the bisphenols considered, with IC 50 values confirming their poor acute toxicity. As compared to BPA, bisphenol AF, bisphenol B, bisphenol M, and bisphenol A diglycidyl ether resulted more toxic, while bisphenol S, bisphenol F and bisphenol E were found as the less toxic congeners. These results are partly consistent with the scale of phospholipid affinity showing that toxicity increases at increasing membrane affinity. Therefore, phospholipophilicity determination can be assumed as a useful preliminary tool to select less toxic congeners to surrogate BPA in industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seiler, Claudia; Berendonk, Thomas U
2012-01-01
The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account.
Seiler, Claudia; Berendonk, Thomas U.
2012-01-01
The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account. PMID:23248620
Anaka, Alison; Wickstrom, Mark; Siciliano, Steven Douglas
2008-03-01
Industrial and human activities in the Arctic regions may pose a risk to terrestrial Arctic ecosystem functions. One of the most common terrestrial toxicological end points, primary productivity, typically is assessed using a plant phytotoxicity test. Because of cryoturbation, a soil mixing process common in polar regions, we hypothesized that phytotoxicity test results in Arctic soils would be highly variable compared to other terrestrial ecosystems. The variability associated with phytotoxicity tests was evaluated using Environment Canada's standardized plant toxicity test in three cryoturbated soils from Canada's Arctic exposed to a reference toxicant, boric acid. Northern wheatgrass (Elymus lanceolatus) not only was more sensitive to toxicants in Arctic soils, its response to toxicants was more variable compared to that in temperate soils. The phytotoxicity of boric acid in cryosols was much greater than commonly reported in other soils, with a boric acid concentration of less than 150 microg/g soil needed to inhibit root and shoot growth by 20%. Large variability also was found in the phytotoxicity test results, with coefficients of variation for 10 samples ranging from 160 to 79%. The increased toxicity of boric acid in cryosols and variability in test response was not explained by soil properties. Based on our admittedly limited data set of three different Arctic soils, we recommend that more than 30 samples be taken from each control and potentially impacted area to accurately assess contaminant effects at sites in northern Canada. Such intensive sampling will insure that false-negative results for toxicant impacts in Arctic soils are minimized.
Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.
Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio
2006-07-15
Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.
George, Saji; Lin, Sijie; Ji, Zhaoxia; Thomas, Courtney; Li, LinJiang; Mecklenburg, Mathew; Meng, Huan; Wang, Xiang; Zhang, Haiyuan; Xia, Tian; Lin, Shuo; Hohman, J. Nathan; Zink, Jeffrey I.; Weiss, Paul; Nel, André E.
2014-01-01
We investigated and compared nano-size Ag spheres, plates, and wires in a fish gill epithelial cell line (RT-W1) and in zebrafish embryos to understand the mechanism of toxicity of an engineered nanomaterial raising considerable environmental concern. While most of the Ag nanoparticles induced N-acetyl cysteine sensitive toxic oxidative stress effects in RT-W1, Ag nanoplates were considerably more toxic than other particle shapes. Interestingly, while Ag ion shedding and bioavailability failed to explain the high toxicity of the nanoplates, cellular injury required direct particle contact, resulting in cell membrane lysis in RT-W1 as well as red blood cells (RBC). Ag nanoplates were also considerably more toxic in zebrafish embryos in spite of their lesser ability to shed Ag into the exposure medium. In order to elucidate the “surface reactivity” of Ag nanoplates, high-resolution transmission electron microscopy was performed and demonstrated a high level of crystal defects (stacking faults and point defects) on the nanoplate surfaces. Surface coating with cysteine was used to passivate the surface defects and demonstrated a reduction of toxicity in RT-W1 cells, RBC, and zebrafish embryos. This study demonstrates the important role of crystal defects in contributing to Ag nanoparticle toxicity in addition to the established roles of Ag ion shed from spherical nanoparticles. The excellent correlation between the in vitro and in vivo toxicological assessment illustrates the utility of using a fish cell line in parallel with zebrafish embryos to perform a predictive environmental toxicological paradigm. PMID:22482460
Milićević, Dragan R.; Jovanović, Milijan; Jurić, Verica B.; Petrović, Zoran I.; Stefanović, Srđan M.
2009-01-01
In order to ensure the safety of consumers in Serbia the prevalence of toxic elements (As, Cd, Hg, Pb) in swine kidney collected from three different areas in Serbia (n = 90) was determined by atomic absorption spectrometry. Also, in order to find information on the effects of accumulation of toxic elements on swine kidney, pathohistological examination of the kidneys was performed. The presence of mercury was found in 33.3% of kidney samples in the range of 0.005–0.055 mg/kg, while the presence of cadmium was detected less often (27.7%) but in larger amounts (0.05–1.23 mg/kg). The presence of arsenic was found only in one sample, while no lead was found. The results of the metal-to-metal correlation analysis supported there were the result of different sources of contamination. Pathohistological examination of kidneys confirms tubulopathies with oedema and cell vacuolization. In addition, haemorrhages and necrosis of proximal kidney tubule cells were found. This study demonstrates that toxic elements in Serbian slaughtered pigs are found at levels comparable to those reported in other countries, and consequently the levels reported in this study do not represent a concern from a consumer safety point of view. The lack of a strong correlation between histopathological changes and the incidence of toxic elements found in this study might be explained as the result of synergism among toxic elements and other nephrotoxic compounds which enhance the toxicity of the individual toxins even at the relatively low mean concentrations observed in this study. PMID:20049251
Chey, W D; Eswaren, S; Howden, C W; Inadomi, J M; Fendrick, A M; Scheiman, J M
2006-03-01
To assess primary care physician perceptions of non-steroidal anti-inflammatory drug (NSAID) and aspirin-associated toxicity. A group of gastroenterologists and internal medicine physicians created a survey, which was administered via the Internet to a large number of primary care physicians from across the US. One thousand primary care physicians participated. Almost one-third of primary care physicians recommended 325 mg rather than 81 mg of aspirin/day for cardioprotection. Fifty-nine percent thought enteric-coated or buffered aspirin reduced the risk of upper gastrointestinal (GI) bleeding. Seventy-six percent believed that Helicobacter pylori infection increased the risk of NSAID ulcers but fewer than 25% tested NSAID users for this infection. More than two-thirds were aware that aspirin co-therapy decreased the GI safety benefits of the cyclo-oxygenase 2 selective NSAIDs. However, 84% felt that aspirin with a cyclo-oxygenase 2 selective NSAID was safer than aspirin with a non-selective NSAID. When presented a patient at high risk for NSAID-related GI toxicity, almost 50% of primary care physicians recommended a proton pump inhibitor and cyclo-oxygenase 2 selective NSAID. This survey has identified areas of misinformation regarding the risk-benefit of NSAIDs and aspirin and the utilization of gastroprotective strategies. Further education on NSAIDs for primary care physicians is warranted.
Kamimura, Hidetaka; Ito, Satoshi
2016-01-01
1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.
Toxicity of six heterocyclic nitrogen compounds to Daphnia pulex
Perry, Cynthia M.; Smith, Stephen B.
1988-01-01
We determined the relative toxicities to the aquatic crustacean Daphniz pulex of six heterocyclic nitrogen compunds. These compounds were selected because they were detected in lake trout or walleyes and were commercially available. Stress to the daphnid populations may affect forage fish populations that depend either directly or indirectly on zooplankton as a food source in the Great Lakes.
James S. Han
1999-01-01
Lignocellulosic materials were evaluated for their effectiveness in filtering toxic heavy metals from stormwater. Kenaf, alfalfa, juniper, and aspen fibers were used as models to evaluate the effectiveness and limitations of chemical modification and the extent of fiber degradation. Individual and mixed aqueous solutions of nickel, copper, zinc, and cadmium in various...
Dey, Biswajit; Mukherjee, Priyanka; Mondal, Ranjan Kumar; Chattopadhyay, Asoke Prasun; Hauli, Ipsit; Mukhopadhyay, Subhra Kanti; Fleck, Michel
2014-12-14
A highly selective femtomolar level sensing of inorganic arsenic(III) as arsenious acid has been accomplished in water medium and in living-systems (on pollen grains of Tecoma stans; Candida albicans cells (IMTECH No. 3018) and Peperomia pellucida stem section) using a non-toxic fluorescent probe of a Cu(II)-complex.
Annotated Bibliography of Bioassays Related to Sediment Toxicity Testing in Washington State
1990-10-01
effects of sediments contaminated with heavy metals, petroleum hydrocarbons , synthetic organic compounds and radionuclides. It also provides an... molluscs (adults only), echinoderm larvae and fish), and bioassay procedures with selected toxicants (metals, petrochemicals, pesticides, contaminated...reference sediment + 15 mm test sediment. Bioaccumulation tests (with same organisms) are a’so discussed. EPA/COE (U.S. Environmental Protection Agency
Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice.
Tian, Fengwei; Zhai, Qixiao; Zhao, Jianxin; Liu, Xiaoming; Wang, Gang; Zhang, Hao; Zhang, Heping; Chen, Wei
2012-12-01
Lead causes a broad range of adverse effects in humans and animals. The objective was to evaluate the potency of lactobacilli to bind lead in vitro and the protective effects of a selected Lactobacillus plantarum CCFM8661 against lead-induced toxicity in mice. Nine strains of bacteria were used to investigate their binding abilities of lead in vitro, and L. plantarum CCFM8661 was selected for animal experiments because of its excellent lead binding capacity. Both living and dead L. plantarum CCFM8661 were used to treat 90 male Kunming mice during or after the exposure to 1 g/L lead acetate in drinking water. The results showed oral administration of both living and dead L. plantarum CCFM8661 offered a significant protective effect against lead toxicity by recovering blood δ-aminolevulinic acid dehydratase activity, decreasing the lead levels in blood and tissues, and preventing alterations in the levels of glutathione, glutathione peroxidase, malondialdehyde, superoxide dismutase, and reactive oxygen species caused by lead exposure. Moreover, L. plantarum CCFM8661 was more effective when administered consistently during the entire lead exposure, not after the exposure. Our results suggest that L. plantarum CCFM8661 has the potency to provide a dietary strategy against lead toxicity.
NASA Astrophysics Data System (ADS)
You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo
2017-06-01
Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.
Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, Raj
2016-08-01
Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.
Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig
2015-10-07
Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.
Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R. Craig
2015-01-01
Exposure to antibiotics induces the expression of mutagenic bacterial stress–response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress–response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. PMID:26446807
Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter E; Nybroe, Ole; Brandt, Kristian Koefoed
2014-11-01
Copper (Cu) is known to accumulate in agricultural soils receiving urban waste products as fertilizers. We here report the use of the leucine incorporation technique to determine pollution-induced community tolerance (Leu-PICT) to Cu in a long-term agricultural field trial. A significantly increased bacterial community tolerance to Cu was observed for soils amended with organic waste fertilizers and was positively correlated with total soil Cu. However, metal speciation and whole-cell bacterial biosensor analysis demonstrated that the observed PICT responses could be explained entirely by Cu speciation and bioavailability artifacts during Leu-PICT detection. Hence, the agricultural application of urban wastes (sewage sludge or composted municipal waste) simulating more than 100 years of use did not result in sufficient accumulation of Cu to select for Cu resistance. Our findings also have implications for previously published PICT field studies and demonstrate that stringent PICT detection criteria are needed for field identification of specific toxicants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Costantini, Adrien; Grynovska, Marta; Lucibello, Francesca; Moisés, Jorge; Pagès, Franck; Tsao, Ming S; Shepherd, Frances A; Bouchaab, Hasna; Garassino, Marina; Aerts, Joachim G J V; Mazières, Julien; Mondini, Michele; Berghmans, Thierry; Meert, Anne-Pascale; Cadranel, Jacques
2018-02-01
In May 2017, the second European Respiratory Society research seminar of the Thoracic Oncology Assembly entitled "Immunotherapy, a new standard of care in thoracic malignancies?" was held in Paris, France. This seminar provided an opportunity to review the basis of antitumour immunity and to explain how immune checkpoint inhibitors (ICIs) work. The main therapeutic trials that have resulted in marketing authorisations for use of ICIs in lung cancer were reported. A particular focus was on the toxicity of these new molecules in relation to their immune-related adverse events. The need for biological selection, currently based on immunohistochemistry testing to identify the tumour expression of programmed death ligand (PD-L)1, was stressed, as well as the need to harmonise PD-L1 testing and techniques. Finally, sessions were dedicated to the combination of ICIs and radiotherapy and the place of ICIs in nonsmall cell lung cancer with oncogenic addictions. Finally, an important presentation was dedicated to the future of antitumour vaccination and of all ongoing trials in thoracic oncology. Copyright ©ERS 2018.
Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity.
Di Pisa, Flavio; Landi, Giacomo; Dello Iacono, Lucia; Pozzi, Cecilia; Borsari, Chiara; Ferrari, Stefania; Santucci, Matteo; Santarem, Nuno; Cordeiro-da-Silva, Anabela; Moraes, Carolina B; Alcantara, Laura M; Fontana, Vanessa; Freitas-Junior, Lucio H; Gul, Sheraz; Kuzikov, Maria; Behrens, Birte; Pöhner, Ina; Wade, Rebecca C; Costi, Maria Paola; Mangani, Stefano
2017-03-08
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues ( 1 - 3 ) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes ( Trypanosoma brucei PTR1- Tb PTR1 and Leishmania major-Lm PTR1) and parasites ( Trypanosoma brucei and Leishmania infantum ). A crystal structure of Tb PTR1 in complex with compound 1 and the first crystal structures of Lm PTR1-flavanone complexes (compounds 1 and 3 ) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.
Melcher, J R; Knudson, I M; Fullerton, B C; Guinan, J J; Norris, B E; Kiang, N Y
1996-04-01
This paper is the first in a series aimed at identifying the cellular generators of the brainstem auditory evoked potential (BAEP) in cats. The approach involves (1) developing experimental procedures for making small selective lesions and determining the corresponding changes in BAEP waveforms, (2) identifying brainstem regions involved in BAEP generation by examining the effects of lesions on the BAEP and (3) identifying specific cell populations involved by combining the lesion results with electrophysiological and anatomical information from other kinds of studies. We created lesions in the lower brainstem by injecting kainic acid which is generally toxic for neuronal cell bodies but not for axons and terminals. This first paper describes the justifications for using kainic acid, explains the associated problems, and develops a methodology that addresses the main difficulties. The issues and aspects of the specific methods are generally applicable to physiological and anatomical studies using any neurotoxin, as well as to the present BAEP study. The methods chosen involved (1) measuring the BAEP at regular intervals until it reached a post-injection steady state and perfusing the animals with fixative shortly after the last BAEP recordings were made, (2) using objective criteria to distinguish injection-related BAEP changes from unrelated ones, (3) making control injections to identify effects not due to kainic acid toxicity, (4) verifying the anatomical and functional integrity of axons in lesioned regions, and (5) examining injected brainstems microscopically for cell loss and cellular abnormalities indicating dysfunction. This combination of methods enabled us to identify BAEP changes which are clearly correlated with lesion locations.
Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops.
Pan, Min; Chu, L M
2016-04-01
Large quantities of veterinary antibiotics (VAs) are being used worldwide in agricultural fields through wastewater irrigation and manure application. They cause damages to the ecosystem when discharged into the environment, but there is a lack of information on their toxicity to plants and animals. This study evaluated the phytotoxic effects of five major VAs, namely tetracycline (TC), sulfamethazine (SMZ), norfloxacin (NOR), erythromycin (ERY) and chloramphenicol (CAP), on seed germination and root elongation in lettuce, tomato, carrot and cucumber, and investigated the relationship between their physicochemical properties and phytotoxicities. Results show that these compounds significantly inhibited root elongation (p<0.05), the most sensitive endpoint for the phytotoxicity test. TC was associated with the highest level of toxicity, followed by NOR, ERY, SMZ and CAP. Regarding crop species, lettuce was found to be sensitive to most of the VAs. The median effect concentration (EC50) of TC, SMZ, NOR, ERY and CAP to lettuce was 14.4, 157, 49.4, 68.8 and 204 mg/L, respectively. A quantitative structure-activity relationship (QSAR) model has been established based on the measured data. It is evident that hydrophobicity was the most important factor governing the phytotoxicity of these compounds to seeds, which could be explained by the polar narcosis mechanism. Lettuce is considered a good biomarker for VAs in the environment. According to the derived equation, phytotoxicities of selected VA compounds on different crops can be calculated, which could be applicable to other VAs. Environmental risks of VAs were summarized based on the phytotoxicity results and other persistent factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Arning, Jürgen; Dringen, Ralf; Schmidt, Maike; Thiessen, Anette; Stolte, Stefan; Matzke, Marianne; Bottin-Weber, Ulrike; Caesar-Geertz, Birgit; Jastorff, Bernd; Ranke, Johannes
2008-04-18
To investigate the toxic mode of action of isothiazol-3-one biocides the four compounds N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT) and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) were purified and tested as single chemical entities for their effects on the human hepatoblastoma cell line Hep G2 and on isolated and cellular glutathione reductase GR). The two chlorinated substances CIT and DCOIT significantly decreased the amount of total cellular glutathione (GSx) in a dose and time dependent manner. Concomitantly, an increase in the level of oxidised glutathione (GSSG) was observed. The resulting shift in the GSH/GSSG ratio entailing the breakdown of the cellular thiol reduction potential was accompanied by necrotic morphological changes like swelling of the plasma membrane and subsequent lysis of the cells. Additionally, CIT and DCOIT were found to inhibit cellular GR in the cells in a concentration dependent manner. The T-SAR-based (thinking in terms of structure-activity relationships) comparison of the chlorine-substituted structures CIT and DCOIT with their non-chlorinated and less active analogues MIT and OIT identified the chlorine substituents and the resulting reaction mechanisms to be the key structural mediators of the observed toxic effects. Furthermore, differences in the activity of both chlorinated substances could be explained using the T-SAR approach to link the lipophilicity and the intrinsic glutathione-reactivity of the compounds to the expected target site concentrations inside the cells.
Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.
Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F
2016-03-01
The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.
Park, Sung Jin; Ogunseitan, Oladele A; Lejano, Raul P
2014-01-01
Regulatory agencies often face a dilemma when regulating chemicals in consumer products-namely, that of making decisions in the face of multiple, and sometimes conflicting, lines of evidence. We present an integrative approach for dealing with uncertainty and multiple pieces of evidence in toxics regulation. The integrative risk analytic framework is grounded in the Dempster-Shafer (D-S) theory that allows the analyst to combine multiple pieces of evidence and judgments from independent sources of information. We apply the integrative approach to the comparative risk assessment of bisphenol-A (BPA)-based polycarbonate and the functionally equivalent alternative, Eastman Tritan copolyester (ETC). Our results show that according to cumulative empirical evidence, the estimated probability of toxicity of BPA is 0.034, whereas the toxicity probability for ETC is 0.097. However, when we combine extant evidence with strength of confidence in the source (or expert judgment), we are guided by a richer interval measure, (Bel(t), Pl(t)). With the D-S derived measure, we arrive at various intervals for BPA, with the low-range estimate at (0.034, 0.250), and (0.097,0.688) for ETC. These new measures allow a reasonable basis for comparison and a justifiable procedure for decision making that takes advantage of multiple sources of evidence. Through the application of D-S theory to toxicity risk assessment, we show how a multiplicity of scientific evidence can be converted into a unified risk estimate, and how this information can be effectively used for comparative assessments to select potentially less toxic alternative chemicals. © 2013 SETAC.
Csupor, Dezso; Borcsa, Botond; Heydel, Barbara; Hohmann, Judit; Zupkó, István; Ma, Yan; Widowitz, Ute; Bauer, Rudolf
2011-10-01
In traditional Chinese medicine, Aconitum (Ranunculaceae) roots are only applied after processing. Nevertheless, several cases of poisoning by improperly processed aconite roots have been reported. The aim of this study was to develop a reliable analytical method to assess the amount of toxic aconite alkaloids in commercial aconite roots, and to compare this method with the commonly used total alkaloid content determination by titration. The content of mesaconitine, aconitine, and hypaconitine in 16 commercial samples of processed aconite roots was determined by an HPLC method and the total alkaloid content by indirect titration. Five samples were selected for in vivo toxicological investigation. In most of the commercial samples, toxic alkaloids were not detectable, or only traces were found. In four samples, we could detect >0.04% toxic aconite alkaloids, the highest with a content of 0.16%. The results of HPLC analysis were compared with the results obtained by titration, and no correlation was found between the two methods. The in vivo results reassured the validity of the HPLC determination. Samples with mesaconitine, aconitine, and hypaconitine content below the HPLC detection limit still contained up to 0.2% alkaloids determined by titration. Since titration of alkaloids gives no information selectively on the aconitine-type alkaloid content and toxicity of aconite roots this method is not appropriate for safety assessment. The HPLC method developed by us provides a quick and reliable assessment of toxicity and should be considered as a purity test in pharmacopoeia monographs.
A robust two-stage design identifying the optimal biological dose for phase I/II clinical trials.
Zang, Yong; Lee, J Jack
2017-01-15
We propose a robust two-stage design to identify the optimal biological dose for phase I/II clinical trials evaluating both toxicity and efficacy outcomes. In the first stage of dose finding, we use the Bayesian model averaging continual reassessment method to monitor the toxicity outcomes and adopt an isotonic regression method based on the efficacy outcomes to guide dose escalation. When the first stage ends, we use the Dirichlet-multinomial distribution to jointly model the toxicity and efficacy outcomes and pick the candidate doses based on a three-dimensional volume ratio. The selected candidate doses are then seamlessly advanced to the second stage for dose validation. Both toxicity and efficacy outcomes are continuously monitored so that any overly toxic and/or less efficacious dose can be dropped from the study as the trial continues. When the phase I/II trial ends, we select the optimal biological dose as the dose obtaining the minimal value of the volume ratio within the candidate set. An advantage of the proposed design is that it does not impose a monotonically increasing assumption on the shape of the dose-efficacy curve. We conduct extensive simulation studies to examine the operating characteristics of the proposed design. The simulation results show that the proposed design has desirable operating characteristics across different shapes of the underlying true dose-toxicity and dose-efficacy curves. The software to implement the proposed design is available upon request. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
7 CFR 613.2 - Policy and objectives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... working with experiment stations, crop improvement associations, and other State and Federal agencies. (b... related to: (1) Controlling soil erosion on all lands; (2) Conserving water; (3) Protecting upstream... enhancement; (12) Selecting plants that tolerate air pollution agents and toxic soil chemicals; (13) Selecting...
Lukianova-Hleb, Ekaterina Y.; Belyanin, Andrey; Kashinath, Shruti; Wu, Xiangwei; Lapotko, Dmitri O.
2012-01-01
Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies. PMID:22137124
The Missing Response to Selection in the Wild.
Pujol, Benoit; Blanchet, Simon; Charmantier, Anne; Danchin, Etienne; Facon, Benoit; Marrot, Pascal; Roux, Fabrice; Scotti, Ivan; Teplitsky, Céline; Thomson, Caroline E; Winney, Isabel
2018-05-01
Although there are many examples of contemporary directional selection, evidence for responses to selection that match predictions are often missing in quantitative genetic studies of wild populations. This is despite the presence of genetic variation and selection pressures - theoretical prerequisites for the response to selection. This conundrum can be explained by statistical issues with accurate parameter estimation, and by biological mechanisms that interfere with the response to selection. These biological mechanisms can accelerate or constrain this response. These mechanisms are generally studied independently but might act simultaneously. We therefore integrated these mechanisms to explore their potential combined effect. This has implications for explaining the apparent evolutionary stasis of wild populations and the conservation of wildlife. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Navas, José M; Babín, Mar; Casado, Susana; Fernández, Carlos; Tarazona, José V
2006-07-01
The Prestige oil spill caused severe effects on the coastal fauna and flora due to direct contact of organisms with the fuel oil. However, the water soluble fraction (WSF) of the fuel oil can also provoke deleterious effects in the long term and even in regions not directly affected by the spill. Our objective was to determine the toxicity of the WSF using a battery of laboratory toxicity tests. To obtain a WSF in the laboratory, a sample of the spilled fuel was mixed with adequate medium, sonicated, agitated and filtered. No cytotoxic effects were detected in RTG-2 cells exposed to the WSF. In an algae growth inhibition test (OECD test guideline 201) the WSF did not affect the growth of Chlorella vulgaris. Furthermore, acute and reproductive toxicity tests (OECD test guideline 202) carried out using Daphnia magna did not indicate any deleterious effect of the WSF. In a bioassay designed in our laboratory, D. magna were fed with algae previously exposed to the fuel, but no toxic effects were detected. However, the WSF was able to induce a dose-dependent increase of ethoxyresorufin-O-deethylase activity in RTG-2 cells, indicating the presence of chemicals that could cause sub-lethal effects to organisms. After chemical analyses it was established that the final total quantity of polyaromatic hydrocarbons dissolved in medium was approximately 70 ng/ml. These low concentrations explain the observed lack of toxicity.
Liu, Tao; Chen, Lei; Pan, Xiaoyong
2018-05-31
Chemical toxicity effect is one of the major reasons for declining candidate drugs. Detecting the toxicity effects of all chemicals can accelerate the procedures of drug discovery. However, it is time-consuming and expensive to identify the toxicity effects of a given chemical through traditional experiments. Designing quick, reliable and non-animal-involved computational methods is an alternative way. In this study, a novel integrated multi-label classifier was proposed. First, based on five types of chemical-chemical interactions retrieved from STITCH, each of which is derived from one aspect of chemicals, five individual classifiers were built. Then, several integrated classifiers were built by integrating some or all individual classifiers. By testing the integrated classifiers on a dataset with chemicals and their toxicity effects in Accelrys Toxicity database and non-toxic chemicals with their performance evaluated by jackknife test, an optimal integrated classifier was selected as the proposed classifier, which provided quite high prediction accuracies and wide applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
AQUIRE: Aquatic Toxicity Information Retrieval data base. Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, E.; Pilli, A.
The purpose of Aquatic Toxicity Information Retrieval (AQUIRE) data base is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for AQUIRE. Independently compiled data files that meet AQUIRE parameter and quality assurance criteria are also included. Selected toxicity-test results and related testing information for any individual chemical from laboratory and field aquatic toxicity tests are extracted and added to AQUIRE. Acute, sublethal, and bioconcentration effects are included for tests withmore » freshwater and marine organisms. The total number of data records in AQUIRE now equals 104,500. This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into AQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows. The complete data file can be accessed by requesting review code 5 as a search parameter.« less
Immune checkpoint inhibitor toxicity review for the palliative care clinician.
Hansen, Eric D; Wang, Xiao; Case, Amy A; Puzanov, Igor; Smith, Tom
2018-05-21
Immune checkpoint inhibitors (ICI) have opened an exciting chapter in the treatment of patients with advanced cancer. For the palliative care clinician, however, ICI present several new challenges, including new ways to define treatment success, as well as treatment-related toxicities which differ in nature and timing from traditional chemotherapy. In this article, we review the mechanism of action of immune checkpoint inhibitors, as well as selected published data supporting the efficacy of ICI in patients with advanced cancer. In addition, we summarize existing data of ICI toxicity prevalence, patterns of severity and timing of onset. Finally, we briefly review key principles from published guidelines on the management of ICI toxicities. Copyright © 2018. Published by Elsevier Inc.
Sarikaya, Rabia; Selvi, Mahmut; Erkoç, Figen
2004-08-01
Fenitrothion, as an organophosphothionate insecticide, is a contact insecticide and selective acaricide, also used as a vector control agent for malaria in public health programs. A 96 h LC50 value of fenitrothion, a potential toxic pollutant contaminating aquatic ecosystems, was determined on the adult peppered corydoras (Corydoras paleatus). The experiments were repeated three times. The static test method of acute toxicity test was used. Water temperature was regulated at 23 +/- 1 degrees C. In addition, behavioral changes at each fenitrothion concentration were observed for the individual fish. Data obtained from acute toxicity tests were evaluated using the Probit Analysis Statistical Method. The 96 h LC50 value for peppered corydoras was estimated as 3.51 mg/l.
Modeling aerosol emissions from the combustion of composite materials
NASA Technical Reports Server (NTRS)
Roop, J. A.; Caldwell, D. J.; Kuhlmann, K. J.
1994-01-01
The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle, and F-22 advanced tactical fighter has rekindled interest concerning the health risk of burned or burning ACM. The objective of this work was to determine smoke production from burning ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method developed at the University of Pittsburgh, and subsequently refined through a US Army-funded basic research project, was used to established controlled combustion conditions which were selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied with the combustion conditions. Previous work with this method showed that the combustion conditions directly influenced the toxicity of the decomposition products from a variety of materials.
Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi
2013-01-01
A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Orr, Christopher R.; Montie, Heather L.; Liu, Yuhong; Bolzoni, Elena; Jenkins, Shannon C.; Wilson, Elizabeth M.; Joseph, James D.; McDonnell, Donald P.; Merry, Diane E.
2010-01-01
Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function. PMID:20826791
Moudgal, Chandrika J; Garrahan, Kevin; Brady-Roberts, Eletha; Gavrelis, Naida; Arbogast, Michelle; Dun, Sarah
2008-11-15
The toxicity value database of the United States Environmental Protection Agency's (EPA) National Homeland Security Research Center has been in development since 2004. The toxicity value database includes a compilation of agent property, toxicity, dose-response, and health effects data for 96 agents: 84 chemical and radiological agents and 12 biotoxins. The database is populated with multiple toxicity benchmark values and agent property information from secondary sources, with web links to the secondary sources, where available. A selected set of primary literature citations and associated dose-response data are also included. The toxicity value database offers a powerful means to quickly and efficiently gather pertinent toxicity and dose-response data for a number of agents that are of concern to the nation's security. This database, in conjunction with other tools, will play an important role in understanding human health risks, and will provide a means for risk assessors and managers to make quick and informed decisions on the potential health risks and determine appropriate responses (e.g., cleanup) to agent release. A final, stand alone MS ACESSS working version of the toxicity value database was completed in November, 2007.
Vinod Kumar, V; Anbarasan, S; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu
2014-08-14
Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS)) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg(2+), Cd(2+) and Pb(2+) metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.
Cancer-selective, single agent chemoradiosensitising gold nanoparticles
Grellet, Sophie; Tzelepi, Konstantina; Roskamp, Meike; Williams, Phil; Sharif, Aquila; Slade-Carter, Richard; Goldie, Peter; Whilde, Nicky; Śmiałek, Małgorzata A.; Mason, Nigel J.
2017-01-01
Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics. PMID:28700660
Diamond structure cannot be stable in nm-sized particles.
Batsanov, Stepan S
2014-12-01
The observed and calculated densities of nanodiamond cannot be reconciled, and the stability of diamond structure explained, if nanodiamond is regarded as a form of pure carbon. The surface-terminating hydrogen and functional groups are an integral part in the stability of these particles which therefore need not be as inert and non-toxic as bulk diamond, with important implications for nanomedicine.
Cats Have Nine Lives, but Only One Liver: The Effects of Acetaminophen
ERIC Educational Resources Information Center
Dewprashad, Brahmadeo
2009-01-01
This case recounts the story of a student who gave her cat half of a Tylenol tablet not knowing its potential harmful effects. The cat survives, but the incident motivates the student to learn more about the reaction mechanism underlying the liver toxicity of acetaminophen. The case outlines three possible reaction schemes that would explain the…
Adaptation and Sensitization to Proteotoxic Stress
Leak, Rehana K.
2014-01-01
Although severe stress can elicit toxicity, mild stress often elicits adaptations. Here we review the literature on stress-induced adaptations versus stress sensitization in models of neurodegenerative diseases. We also describe our recent findings that chronic proteotoxic stress can elicit adaptations if the dose is low but that high-dose proteotoxic stress sensitizes cells to subsequent challenges. In these experiments, long-term, low-dose proteasome inhibition elicited protection in a superoxide dismutase-dependent manner. In contrast, acute, high-dose proteotoxic stress sensitized cells to subsequent proteotoxic challenges by eliciting catastrophic loss of glutathione. However, even in the latter model of synergistic toxicity, several defensive proteins were upregulated by severe proteotoxicity. This led us to wonder whether high-dose proteotoxic stress can elicit protection against subsequent challenges in astrocytes, a cell type well known for their resilience. In support of this new hypothesis, we found that the astrocytes that survived severe proteotoxicity became harder to kill. The adaptive mechanism was glutathione dependent. If these findings can be generalized to the human brain, similar endogenous adaptations may help explain why neurodegenerative diseases are so delayed in appearance and so slow to progress. In contrast, sensitization to severe stress may explain why defenses eventually collapse in vulnerable neurons. PMID:24659932
Fraser, Thomas W K; Khezri, Abdolrahman; Jusdado, Juan G H; Lewandowska-Sabat, Anna M; Henry, Theodore; Ropstad, Erik
2017-07-05
Alterations in zebrafish motility are used to identify neurotoxic compounds, but few have reported how methodology may affect results. To investigate this, we exposed embryos to bisphenol A (BPA) or tetrabromobisphenol A (TBBPA) before assessing larval motility. Embryos were maintained on a day/night cycle (DN) or in constant darkness, were reared in 96 or 24 well plates (BPA only), and behavioural tests were carried out at 96, 100, or 118 (BPA only) hours post fertilisation (hpf). We found that the prior photo-regime, larval age, and/or arena size influence behavioural outcomes in response to toxicant exposure. For example, methodology determined whether 10μM BPA induced hyperactivity, hypoactivity, or had no behavioural effect. Furthermore, the minimum effect concentration was not consistent between different methodologies. Finally, we observed a mechanism previously used to explain hyperactivity following BPA exposure does not appear to explain the hypoactivity observed following minor alterations in methodology. Therefore, we demonstrate how methodology can have notable implications on dose responses and behavioural outcomes in larval zebrafish motility following identical chemical exposures. As such, our results have significant consequences for human and environmental risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.
Willis, Alison M; Oris, James T
2014-09-01
The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms. © 2014 SETAC.
Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.
1998-01-01
Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.
Status and Assessment of Chesapeake Bay Wildlife Contamination
Heinz, G.H.; Wiemeyer, Stanley N.; Clark, D.R.; Albers, P.H.; Henry, P.; Batiuk, R.A.
1992-01-01
As an integral component of its priority setting process, the Chesapeake Bay Program`s Toxics Subcommittee has sought the expertise of Chesapeake Bay researchers and managers in developing a series of Chesapeake Bay toxics status and assessment papers. In the report, evidence for historical and current contaminant effects on key bird species, mammals, reptiles and amphibians which inhabit the Chesapeake Bay basin is examined. For each group of wildlife species, a general overview of effects caused by specific toxic substances is followed by detailed accounts of contaminant effects on selected species. Sponsored by Environmental Protection Agency, Annapolis, MD. Chesapeake Bay Program.
Measures of fish behavior as indicators of sublethal toxicosis during standard toxicity tests
Little, E.E.; DeLonay, A.J.
1996-01-01
Behavioral functions essential for growth and survival can be dramatically altered by sublethal exposure to toxicants. Measures of these behavioral responses are effective in detecting adverse effects of sublethal contaminant exposure. Behavioral responses of fishes can be qualitatively and quantitatively evaluated during routine toxicity tests. At selected intervals of exposure, qualitative evaluations are accomplished through direct observations, whereas video recordings are used for quantitative evaluations. Standardized procedures for behavioral evaluation are readily applicable to different fish species and provide rapid, sensitive, and ecologically relevant assessments of sublethal exposure. The methods are readily applied to standardized test protocols.
Acute aquatic toxicity of biodiesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, B.; Haws, R.; Little, D.
1995-12-31
This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in amore » flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.« less
A Structure-Toxicity Study of Aß42 Reveals a New Anti-Parallel Aggregation Pathway
Vignaud, Hélène; Bobo, Claude; Lascu, Ioan; Sörgjerd, Karin Margareta; Zako, Tamotsu; Maeda, Mizuo; Salin, Benedicte; Lecomte, Sophie; Cullin, Christophe
2013-01-01
Amyloid beta (Aβ) peptides produced by APP cleavage are central to the pathology of Alzheimer’s disease. Despite widespread interest in this issue, the relationship between the auto-assembly and toxicity of these peptides remains controversial. One intriguing feature stems from their capacity to form anti-parallel ß-sheet oligomeric intermediates that can be converted into a parallel topology to allow the formation of protofibrillar and fibrillar Aβ. Here, we present a novel approach to determining the molecular aspects of Aß assembly that is responsible for its in vivo toxicity. We selected Aß mutants with varying intracellular toxicities. In vitro, only toxic Aß (including wild-type Aß42) formed urea-resistant oligomers. These oligomers were able to assemble into fibrils that are rich in anti-parallel ß-sheet structures. Our results support the existence of a new pathway that depends on the folding capacity of Aß . PMID:24244667
2015-05-21
Source Assessment and Feedback OER Officer Evaluation Report PME Professional Military Education TRADOC Training and Doctrine Command...Toxic leadership is a combination of self-centered attitudes, motivations , and behaviors that have adverse effects on subordinates, the...process of influencing people by providing purpose, direction and motivation to accomplish the mission and improve the organization.”28 The ideal
Balancing nanotoxicity and returns in health applications: The Prisoner's Dilemma.
Gkika, D A; Magafas, L; Cool, P; Braet, J
2018-01-15
Over the past 30 years, there have been significant advancements in the field of nanomaterials. The possibility to use them in applications such as cancer treatment is extremely promising; however, the toxicity of many nanomaterials as well as the high costs associated with their use is still a concern. This paper aims to study the connection between nanomaterial toxicity and cost. This synergy may be interpreted as a different version of the classic "Prisoner's Dilemma" game, which in this case attempts to explain the possible outcomes of cooperation versus conflict between science advocating for the use of high-risk, possibly toxic materials due to their high returns, and society that might be dubious about the use of high-risk materials. In an effort to create diverse evaluation methodologies, this work uses a forecast horizon to evaluate the current status and expected future of the nanomaterials market. The historical progress of each market, toxicity information, and possible returns stemming from their use is taken into account to analyze the predictions. Our results suggest various trends for the associated costs and nanotoxicity of the studied materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming
2015-09-28
Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors.
Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis
Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming
2015-01-01
Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors. PMID:26411888
The toxic release inventory: fact or fiction? A case study of the primary aluminum industry.
Koehler, Dinah A; Spengler, John D
2007-10-01
Since 1989 manufacturing facilities across the USA must report toxic chemical emissions to the EPA's toxic release inventory (TRI). Public release of this information and increased public scrutiny are believed to significantly contribute to the over 45% reduction in toxic chemical releases since inception of the program and to growing support for this type of informational regulation instead of traditional command-and-control. However, prior research indicates a tendency to under-report emissions. We find specific evidence of under-reporting of polycyclic aromatic hydrocarbons (PAH) to the TRI by primary aluminum facilities after promulgation of the industry's maximum available control technology (MACT) standard in 1997. We also find evidence of dislocation of emission overseas due to these regulatory requirements. Additionally, changes in energy prices affected aluminum production and further distort reported PAH emissions levels. This suggests the possibility of more widespread under-reporting that is modulated by various factors, including market conditions and new regulations, and which may partially explain the downward trend in TRI emissions. It also suggests that the quality of TRI data may improve once facilities are subject to monitoring of emissions of a TRI listed pollutant due to command-and-control regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Q; Hu, Q; Khan, S
2007-03-05
The toxicity effect of two deleterious elements of arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg {center_dot} kg{sup -1} in soil, and 4.32 {mu}M and 449 mg {center_dot} kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI)more » concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36 TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49 TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd can not explain the discrepancy between the results derived from soil and hydroponics experiments.« less
Reinoso-Pozo, Yaritza; Del Rincón-Castro, Ma Cristina; Ibarra, Jorge E
2016-09-01
The LBIT-1200 strain of Bacillus thuringiensis was recently isolated from soil, and showed a 6.4 and 9.5 increase in toxicity, against Manduca sexta and Trichoplusia ni, respectively, compared to HD-73. However, LBIT-1200 was still highly similar to HD-73, including the production of bipyramidal crystals containing only one protein of ∼130 000 kDa, its flagellin gene sequence related to the kurstaki serotype, plasmid and RepPCR patterns similar to HD-73, no production of β-exotoxin and no presence of VIP genes. Sequencing of its cry gene showed the presence of a cry1Ac-type gene with four amino acid differences, including two amino acid replacements in domain III, compared to Cry1Ac1, which may explain its higher toxicity. In conclusion, the LBIT-1200 strain is a variant of the HD-73 strain but shows a much higher toxicity, which makes this new strain an important candidate to be developed as a bioinsecticide, once it passes other tests, throughout its biotechnological development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Philippe, Guerre
2016-02-15
Different group of alkaloids are produced during the symbiotic development of fungal endophytes of the genus Epichloë in grass. The structure and toxicity of the compounds vary considerably in mammalian herbivores and in crop pests. Alkaloids of the indole-diterpene group, of which lolitrem B is the most toxic, were first characterized in endophyte-infected perennial ryegrass, and are responsible for "ryegrass staggers." Ergot alkaloids, of which ergovaline is the most abundant ergopeptide alkaloid produced, are also found in ryegrass, but generally at a lower rate than lolitrem B. Other alkaloids such as lolines and peramine are toxic for crop pests but have weak toxicological properties in mammals. The purpose of this review is to present indole-diterpene alkaloids produced in endophyte infected ryegrass from the first characterization of ryegrass staggers to the determination of the toxicokinetics of lolitrem B and of their mechanism of action in mammals, focusing on the different factors that could explain the worldwide distribution of the disease. Other indole diterpene alkaloids than lolitrem B that can be found in Epichloë infected ryegrass, and their tremorgenic properties, are presented in the last section of this review.
Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro
2017-07-05
Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.
Marvuglia, Antonino; Kanevski, Mikhail; Benetto, Enrico
2015-10-01
Toxicity characterization of chemical emissions in Life Cycle Assessment (LCA) is a complex task which usually proceeds via multimedia (fate, exposure and effect) models attached to models of dose-response relationships to assess the effects on target. Different models and approaches do exist, but all require a vast amount of data on the properties of the chemical compounds being assessed, which are hard to collect or hardly publicly available (especially for thousands of less common or newly developed chemicals), therefore hampering in practice the assessment in LCA. An example is USEtox, a consensual model for the characterization of human toxicity and freshwater ecotoxicity. This paper places itself in a line of research aiming at providing a methodology to reduce the number of input parameters necessary to run multimedia fate models, focusing in particular to the application of the USEtox toxicity model. By focusing on USEtox, in this paper two main goals are pursued: 1) performing an extensive exploratory analysis (using dimensionality reduction techniques) of the input space constituted by the substance-specific properties at the aim of detecting particular patterns in the data manifold and estimating the dimension of the subspace in which the data manifold actually lies; and 2) exploring the application of a set of linear models, based on partial least squares (PLS) regression, as well as a nonlinear model (general regression neural network--GRNN) in the seek for an automatic selection strategy of the most informative variables according to the modelled output (USEtox factor). After extensive analysis, the intrinsic dimension of the input manifold has been identified between three and four. The variables selected as most informative may vary according to the output modelled and the model used, but for the toxicity factors modelled in this paper the input variables selected as most informative are coherent with prior expectations based on scientific knowledge of toxicity factors modelling. Thus the outcomes of the analysis are promising for the future application of the approach to other portions of the model, affected by important data gaps, e.g., to the calculation of human health effect factors. Copyright © 2015. Published by Elsevier Ltd.
Gawron, Michal; Smith, Danielle M.; Peng, Margaret; Jacob, Peyton; Benowitz, Neal L.
2017-01-01
Introduction: Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. Methods: We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. Results: In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p < .05). After 1 week, the greatest percentage reductions in biomarkers levels were observed for metabolites of 1,3-butadiene, benzene, and acrylonitrile. Total NNAL, a metabolite of NNK, declined by 57% and 64% after 1 and 2 weeks, respectively, while 3-hydroxyfluorene levels declined by 46% at week 1, and 34% at week 2. Conclusions: After switching from tobacco to e-cigarettes, nicotine exposure remains unchanged, while exposure to selected carcinogens and toxicants is substantially reduced. Implications: To our knowledge, this is the first study that demonstrates that substituting tobacco cigarettes with an e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device. PMID:27613896
Goniewicz, Maciej L; Gawron, Michal; Smith, Danielle M; Peng, Margaret; Jacob, Peyton; Benowitz, Neal L
2017-02-01
Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p < .05). After 1 week, the greatest percentage reductions in biomarkers levels were observed for metabolites of 1,3-butadiene, benzene, and acrylonitrile. Total NNAL, a metabolite of NNK, declined by 57% and 64% after 1 and 2 weeks, respectively, while 3-hydroxyfluorene levels declined by 46% at week 1, and 34% at week 2. After switching from tobacco to e-cigarettes, nicotine exposure remains unchanged, while exposure to selected carcinogens and toxicants is substantially reduced. To our knowledge, this is the first study that demonstrates that substituting tobacco cigarettes with an e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms.
Carlson, Hans K; Stoeva, Magdalena K; Justice, Nicholas B; Sczesnak, Andrew; Mullan, Mark R; Mosqueda, Lorraine A; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D
2015-03-17
Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.
Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven
2011-11-01
Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms. Copyright © 2011 SETAC.
THE TOXICITY OF RUBBERS AND PLASTICS USED IN TRANSFUSION-GIVING SETS
Cruickshank, C. N. D.; Hooper, Caroline; Lewis, H. B. M.; MacDougall, J. D. B.
1960-01-01
The toxicity of different rubbers and plastics used in transfusion-giving sets has been investigated by examining their effects on (a) cultures of chick embryo tissues, (b) the oxygen uptake of guinea-pig skin tissue cultures, and (c) the growth of Str. pyogenes. The results of the laboratory tests have been compared with the incidence of thrombophlebitis after prolonged transfusions through the various materials. It was found that where the materials inhibited the growth of Str. pyogenes they were also toxic to tissue cultures, but that some materials which were toxic to tissue cultures did not inhibit bacterial growth. The assessments of the relative toxicity of the materials tested by the two tissue culture methods were in agreement. The skin respiration studies, however, gave more information on the early effects of the toxic materials. The relative toxicity of the materials as revealed by these tests could be correlated with the differences in the incidence of thrombophlebitis following intravenous infusions administered through giving-sets assembled with the materials tested. It is suggested therefore that the toxicity revealed by these tests is of clinical importance, and that tissue culture toxicity tests will prove to be of value in selecting rubbers and plastics for clinical purposes. Images PMID:13813084
Pirali, Tracey; Ciraolo, Elisa; Aprile, Silvio; Massarotti, Alberto; Berndt, Alex; Griglio, Alessia; Serafini, Marta; Mercalli, Valentina; Landoni, Clarissa; Campa, Carlo Cosimo; Margaria, Jean Piero; Silva, Rangel L; Grosa, Giorgio; Sorba, Giovanni; Williams, Roger; Hirsch, Emilio; Tron, Gian Cesare
2017-09-21
Activation of the phosphoinositide 3-kinase (PI3K) pathway is a key signaling event in cancer, inflammation, and other proliferative diseases. PI3K inhibitors are already approved for some specific clinical indications, but their systemic on-target toxicity limits their larger use. In particular, whereas toxicity is tolerable in acute treatment of life-threatening diseases, this is less acceptable in chronic conditions. In the past, the strategy to overcome this drawback was to block selected isoforms mainly expressed in leukocytes, but redundancy within the PI3K family members challenges the effectiveness of this approach. On the other hand, decreasing exposure to selected target cells represents a so-far unexplored alternative to circumvent systemic toxicity. In this manuscript, we describe the generation of a library of triazolylquinolones and the development of the first prodrug pan-PI3K inhibitor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transplantation for myelodysplastic syndromes: who, when, and which conditioning regimens.
Saber, Wael; Horowitz, Mary M
2016-12-02
Allogeneic hematopoietic stem cell transplantation (HCT) is the only curative therapy for myelodysplastic syndrome (MDS). Broad application is hindered by high risks of transplant-related morbidity and mortality, especially in the older age range represented by the MDS population. However, recent advances in strategies to minimize regimen-related toxicity make HCT a viable option for many more patients. Appropriate selection of patients involves consideration of patient factors, including use of geriatric assessment tools and comorbidity scales, that predict risks of regimen-related toxicity as well as disease factors, including genetic markers, which predict survival with both non-HCT and HCT therapy. Optimal timing of HCT for fit patients must consider MDS risk scores and life-years to be gained, with earlier transplantation indicated for patients with intermediate-2 and high-risk disease but judicious delay for lower risk patients. Selection of suitable conditioning regimens must balance risks of toxicity with opportunity for maximum disease control. © 2016 by The American Society of Hematology. All rights reserved.
Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides.
Defarge, N; Spiroux de Vendômois, J; Séralini, G E
2018-01-01
The major pesticides of the world are glyphosate-based herbicides (GBH), and their toxicity is highly debated. To understand their mode of action, the comparative herbicidal and toxicological effects of glyphosate (G) alone and 14 of its formulations were studied in this work, as a model for pesticides. GBH are mixtures of water, with commonly 36-48% G claimed as the active principle. As with other pesticides, 10-20% of GBH consist of chemical formulants. We previously identified these by mass spectrometry and found them to be mainly families of petroleum-based oxidized molecules, such as POEA, and other contaminants. We exposed plants and human cells to the components of formulations, both mixed and separately, and measured toxicity and human cellular endocrine disruption below the direct toxicity experimentally measured threshold. G was only slightly toxic on plants at the recommended dilutions in agriculture, in contrast with the general belief. In the short term, the strong herbicidal and toxic properties of its formulations were exerted by the POEA formulant family alone. The toxic effects and endocrine disrupting properties of the formulations were mostly due to the formulants and not to G. In this work, we also identified by mass spectrometry the heavy metals arsenic, chromium, cobalt, lead and nickel, which are known to be toxic and endocrine disruptors, as contaminants in 22 pesticides, including 11 G-based ones. This could also explain some of the adverse effects of the pesticides. In in vivo chronic regulatory experiments that are used to establish the acceptable daily intakes of pesticides, G or other declared active ingredients in pesticides are assessed alone, without the formulants. Considering these new data, this assessment method appears insufficient to ensure safety. These results, taken together, shed a new light on the toxicity of these major herbicides and of pesticides in general.
[Research advances in eco-toxicological diagnosis of soil pollution].
Liu, Feng; Teng, Hong-Hui; Ren, Bai-Xiang; Shi, Shu-Yun
2014-09-01
Soil eco-toxicology provides a theoretical basis for ecological risk assessment of contaminated soils and soil pollution control. Research on eco-toxicological effects and molecular mechanisms of toxic substances in soil environment is the central content of the soil eco-toxicology. Eco-toxicological diagnosis not only gathers all the information of soil pollution, but also provides the overall toxic effects of soil. Therefore, research on the eco-toxicological diagnosis of soil pollution has important theoretical and practical significance. Based on the research of eco-toxicological diagnosis of soil pollution, this paper introduced some common toxicological methods and indicators, with the advantages and disadvantages of various methods discussed. However, conventional biomarkers can only indicate the class of stress, but fail to explain the molecular mechanism of damage or response happened. Biomarkers and molecular diagnostic techniques, which are used to evaluate toxicity of contaminated soil, can explore deeply detoxification mechanisms of organisms under exogenous stress. In this paper, these biomarkers and techniques were introduced systematically, and the future research trends were prospected.
Karntanut, W; Pascoe, D
2005-03-01
Hydra viridissima is distinctively green due to symbiotic algae within the endodermal cells. The current investigation was designed to see if these algae influenced the response of Hydra to pollutants, by comparing the toxicity of copper, cadmium, and zinc to both symbiotic and aposymbiotic (free of their endosymbiotic algae) H. viridissima. The results demonstrated that the toxicity of the metals was generally similar for both groups of Hydra. However, at the lowest copper concentrations there was a difference between the two group of polyps, with aposymbiotic animals dying at concentrations where symbiotic Hydra survived. The lowest observed effect concentrations were 0.0068 and 0.016 mg/L for aposymbiotic and symbiotic Hydra, respectively. It is suggested that the symbiotic Hydra derive benefits from the association that enable them to better tolerate the toxicant. This work demonstrated that experimental manipulation of symbionts can help to explain their complex interactions and the ways in which they respond to pollutants.
Harrigan, G G; Gunatilaka, A A; Kingston, D G; Chan, G W; Johnson, R K
1994-01-01
The oxoaporphine alkaloids oxophoebine [1] and liriodenine [2] have been isolated from Xylopia aethiopica (Annonaceae). Both showed selective toxicity against DNA repair and recombination deficient mutants of the yeast Saccharomyces cerevisae. Three related but inactive compounds, oxoglaucine [3], O-methylmoschatoline [4], and lysicamine [5], were also isolated from this plant. Selective toxicity was also observed for 10-methoxyliriodenine (lauterine) [6] and 10-hydroxyliriodenine [7], two oxoaporphine alkaloids isolated from Miliusa cf. banacea (Annonaceae). The structure of 10-hydroxyliriodenine [7], a novel oxoaporphine, was determined by spectroscopic methods and chemical conversion to compound 6. The role of the bioactive oxoaporphine alkaloids as DNA topoisomerase inhibitors is discussed.
Tomassoni, Anthony J; French, Robert N E; Walter, Frank G
2015-02-01
Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. Copyright © 2015 Elsevier Inc. All rights reserved.
Selection against Heteroplasmy Explains the Evolution of Uniparental Inheritance of Mitochondria
Christie, Joshua R.; Schaerf, Timothy M.; Beekman, Madeleine
2015-01-01
Why are mitochondria almost always inherited from one parent during sexual reproduction? Current explanations for this evolutionary mystery include conflict avoidance between the nuclear and mitochondrial genomes, clearing of deleterious mutations, and optimization of mitochondrial-nuclear coadaptation. Mathematical models, however, fail to show that uniparental inheritance can replace biparental inheritance under any existing hypothesis. Recent empirical evidence indicates that mixing two different but normal mitochondrial haplotypes within a cell (heteroplasmy) can cause cell and organism dysfunction. Using a mathematical model, we test if selection against heteroplasmy can lead to the evolution of uniparental inheritance. When we assume selection against heteroplasmy and mutations are neither advantageous nor deleterious (neutral mutations), uniparental inheritance replaces biparental inheritance for all tested parameter values. When heteroplasmy involves mutations that are advantageous or deleterious (non-neutral mutations), uniparental inheritance can still replace biparental inheritance. We show that uniparental inheritance can evolve with or without pre-existing mating types. Finally, we show that selection against heteroplasmy can explain why some organisms deviate from strict uniparental inheritance. Thus, we suggest that selection against heteroplasmy explains the evolution of uniparental inheritance. PMID:25880558
SPECIES, TEPEES, SCOTTIES, AND JOCKEYS: SELECTED BY CONSEQUENCES
Wasserman, Edward A
2012-01-01
“Ideas are like species: they must evolve.” This claim forms the conceptual core of an engaging book by Jonnie Hughes (2011), On the Origin of Tepees. Hughes asks: If evolution by natural selection explains the origin of the human species, then does selection by consequences also explain the origin of what we humans make and do? This question prompts consideration of three important analogies: between natural selection and artificial selection, between the law of natural selection and the law of effect, and between biological evolution and cultural evolution. These analogies in turn stimulate examination of the notions of purpose, design, and agency. Finally, discussion moves to the selectionism of Darwin and Skinner; although still controversial, this view remains the best way for natural science to understand the origins of adaptive behavior.
Can pharmacogenetics explain efficacy and safety of cisplatin pharmacotherapy?
Roco, Ángela; Cayún, Juan; Contreras, Stephania; Stojanova, Jana; Quiñones, Luis
2014-01-01
Several recent pharmacogenetic studies have investigated the variability in both outcome and toxicity in cisplatin-based therapies. These studies have focused on the genetic variability of therapeutic targets that could affect cisplatin response and toxicity in diverse type of cancer including lung, gastric, ovarian, testicular, and esophageal cancer. In this review, we seek to update the reader in this area of investigation, focusing primarily on DNA reparation enzymes and cisplatin metabolism through Glutathione S-Transferases (GSTs). Current evidence indicates a potential application of pharmacogenetics in therapeutic schemes in which cisplatin is the cornerstone of these treatments. Therefore, a collaborative effort is required to study these molecular characteristics in order to generate a genetic panel with clinical utility. PMID:25452763
Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling
2016-08-01
Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability.
Judson, Richard S.; Martin, Matthew T.; Egeghy, Peter; Gangwal, Sumit; Reif, David M.; Kothiya, Parth; Wolf, Maritja; Cathey, Tommy; Transue, Thomas; Smith, Doris; Vail, James; Frame, Alicia; Mosher, Shad; Cohen Hubal, Elaine A.; Richard, Ann M.
2012-01-01
Computational toxicology combines data from high-throughput test methods, chemical structure analyses and other biological domains (e.g., genes, proteins, cells, tissues) with the goals of predicting and understanding the underlying mechanistic causes of chemical toxicity and for predicting toxicity of new chemicals and products. A key feature of such approaches is their reliance on knowledge extracted from large collections of data and data sets in computable formats. The U.S. Environmental Protection Agency (EPA) has developed a large data resource called ACToR (Aggregated Computational Toxicology Resource) to support these data-intensive efforts. ACToR comprises four main repositories: core ACToR (chemical identifiers and structures, and summary data on hazard, exposure, use, and other domains), ToxRefDB (Toxicity Reference Database, a compilation of detailed in vivo toxicity data from guideline studies), ExpoCastDB (detailed human exposure data from observational studies of selected chemicals), and ToxCastDB (data from high-throughput screening programs, including links to underlying biological information related to genes and pathways). The EPA DSSTox (Distributed Structure-Searchable Toxicity) program provides expert-reviewed chemical structures and associated information for these and other high-interest public inventories. Overall, the ACToR system contains information on about 400,000 chemicals from 1100 different sources. The entire system is built using open source tools and is freely available to download. This review describes the organization of the data repository and provides selected examples of use cases. PMID:22408426
Judson, Richard S; Martin, Matthew T; Egeghy, Peter; Gangwal, Sumit; Reif, David M; Kothiya, Parth; Wolf, Maritja; Cathey, Tommy; Transue, Thomas; Smith, Doris; Vail, James; Frame, Alicia; Mosher, Shad; Cohen Hubal, Elaine A; Richard, Ann M
2012-01-01
Computational toxicology combines data from high-throughput test methods, chemical structure analyses and other biological domains (e.g., genes, proteins, cells, tissues) with the goals of predicting and understanding the underlying mechanistic causes of chemical toxicity and for predicting toxicity of new chemicals and products. A key feature of such approaches is their reliance on knowledge extracted from large collections of data and data sets in computable formats. The U.S. Environmental Protection Agency (EPA) has developed a large data resource called ACToR (Aggregated Computational Toxicology Resource) to support these data-intensive efforts. ACToR comprises four main repositories: core ACToR (chemical identifiers and structures, and summary data on hazard, exposure, use, and other domains), ToxRefDB (Toxicity Reference Database, a compilation of detailed in vivo toxicity data from guideline studies), ExpoCastDB (detailed human exposure data from observational studies of selected chemicals), and ToxCastDB (data from high-throughput screening programs, including links to underlying biological information related to genes and pathways). The EPA DSSTox (Distributed Structure-Searchable Toxicity) program provides expert-reviewed chemical structures and associated information for these and other high-interest public inventories. Overall, the ACToR system contains information on about 400,000 chemicals from 1100 different sources. The entire system is built using open source tools and is freely available to download. This review describes the organization of the data repository and provides selected examples of use cases.
Molecular and ionic mimicry and the transport of toxic metals
Bridges, Christy C.; Zalups, Rudolfs K.
2008-01-01
Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues. PMID:15845419
Liang, Shenxuan; Yin, Lei; Shengyang Yu, Kevin; Hofmann, Marie-Claude; Yu, Xiaozhong
2017-01-01
Bisphenol A (BPA), an endocrine-disrupting compound, was found to be a testicular toxicant in animal models. Bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) were recently introduced to the market as alternatives to BPA. However, toxicological data of these compounds in the male reproductive system are still limited so far. This study developed and validated an automated multi-parametric high-content analysis (HCA) using the C18-4 spermatogonial cell line as a model. We applied these validated HCA, including nuclear morphology, DNA content, cell cycle progression, DNA synthesis, cytoskeleton integrity, and DNA damage responses, to characterize and compare the testicular toxicities of BPA and 3 selected commercial available BPA analogues, BPS, BPAF, and TBBPA. HCA revealed BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS, including dose- and time-dependent alterations in nuclear morphology, cell cycle, DNA damage responses, and perturbation of the cytoskeleton. Our results demonstrated that this specific culture model together with HCA can be utilized for quantitative screening and discriminating of chemical-specific testicular toxicity in spermatogonial cells. It also provides a fast and cost-effective approach for the identification of environmental chemicals that could have detrimental effects on reproduction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Molecular and ionic mimicry and the transport of toxic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Christy C.; Zalups, Rudolfs K.
Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport ofmore » selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues.« less
Sciullo, Eric M.; Vogel, Christoph F.; Wu, Dalei; Murakami, Akira; Ohigashi, Hajime
2010-01-01
To assess the effectiveness of selected food phytochemicals in reducing the toxic effects of the environmental toxicants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and p,p′-DDT (DDT), we tested the potencies of auraptene, nobiletin, zerumbone, and (±)-13-hydroxy-10-oxo-trans-11-octadecenoic acid (13-HOA) in reversing the inflammatory action of these toxicants in U937 human macrophages. Using quantitative RT–PCR as the initial screening assay, we identified antagonistic actions of zerumbone and auraptene against the action of TCDD and DDT in up-regulating the mRNA expressions of COX-2 and VEGF. The functional significance of the inhibitory action of zerumbone on COX-2 expression was confirmed by demonstrating its suppression of TCDD-induced activation of COX-2 gene expression in mouse MMDD1 cells. We tested auraptene on DDT-induced reactive oxygen species (ROS) formation in U937 macrophages and found that auraptene is a powerful agent antagonizing this action of DDT. To confirm the significance of these actions of zerumbone and auraptene at the cellular level, we assessed their influence on TCDD-induced apoptosis resistance in intact U937 macrophages and found that they are capable of reversing this action of TCDD. In conclusion, zerumbone and auraptene were identified to be the most effective agents in protecting U937 macrophages from developing these cell toxic effects of TCDD and DDT. PMID:20865247
Cationic lipid-conjugated hydrocortisone as selective antitumor agent.
Rathore, Bhowmira; Chandra Sekhar Jaggarapu, Madhan Mohan; Ganguly, Anirban; Reddy Rachamalla, Hari Krishna; Banerjee, Rajkumar
2016-01-27
Hydrocortisone, the endogenously expressed steroidal, hormonal ligand for glucocorticoid receptor (GR), is body's natural anti-inflammatory and xenobiotic metabolizing agent. It has both palliative as well as adverse effects in different cancer patients. Herein, we show that conjugation product of C16-carbon chain-associated cationic lipid and hydrocortisone (namely, HYC16) induces selective toxicity in cancer (e.g. melanoma, breast cancer and lung adenocarcinoma) cells with least toxicity in normal cells, through induction of apoptosis and cell cycle arrest at G2/M phase. Further, significant tumor growth inhibition was observed in syngeneic melanoma tumor model with considerable induction of apoptosis in tumor-associated cells. In contrast to hydrocortisone, significantly higher anti-angiogenic behavior of HYC16 helped in effective tumor shrinkage. This is the first demonstration to convert natural hormone hydrocortisone into a selective bioactive entity possessing anti-tumor effect. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Precise small molecule recognition of a toxic CUG RNA repeat expansion
Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D
2017-01-01
Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context. PMID:27941760
Precise small-molecule recognition of a toxic CUG RNA repeat expansion.
Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D
2017-02-01
Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG) exp ) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG) exp . In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG) exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG) exp in its natural context.
Lukianova-Hleb, Ekaterina Y; Belyanin, Andrey; Kashinath, Shruti; Wu, Xiangwei; Lapotko, Dmitri O
2012-02-01
Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.
Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan
2011-11-01
It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point. Copyright © 2011 SETAC.
Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.
2016-12-01
IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and possibly bioavailability of contaminants in disturbed streambed sediments), the toxicity of water samples to the indicator species Pimephales promelas (fathead minnow) was evaluated by using standard 7-day water-toxicity testing.
Hassan, Ammar Ali; Rylander, Charlotta; Brustad, Magritt; Sandanger, Torkjel M.
2012-01-01
Objectives To gain knowledge on toxic elements in semi-domesticated reindeer and their distribution in meat, liver, tallow and bone marrow. The correlations between concentrations in meat and liver, as well as the use of the latter as an indicator for toxic elements in meat, were also investigated. Study design Cross-sectional study on population of semi-domesticated reindeer from 2 northern Norwegian counties (Finnmark and Nordland). Methods Semi-domesticated reindeer carcasses (n=31) were randomly selected, from which meat, liver, tallow and bone marrow samples were collected. Selected toxic elements (cadmium, lead, arsenic, nickel and vanadium) were studied. Results Liver was the organ with the highest level of all elements except for nickel, which was highest in bone marrow. Meat had the lowest levels, whereas levels in tallow and bone marrow were between those of meat and liver. Concentrations of cadmium, lead and arsenic were significantly different (p<0.05) between meat and liver, while only arsenic and cadmium were significantly correlated in meat (rs=0.71, p<0.01) and liver (rs=0.72, p<0.01). The cadmium level exceeded the European Commission's (EC) maximum level set for bovine meat and live in 52% of the liver samples (n=29). Nevertheless, the estimated monthly cadmium intake from liver of 2.29 µg/kg body weight was well below the provisional tolerable monthly intake of 25 µg/kg body weight set by the FAO/WHO Joint Expert Committee on Food Additives. Conclusions Based on the measured levels and their relation to the maximum level and to the provisional tolerable weekly/monthly intake limits, it could be inferred that consumption of reindeer meat is not associated with any health risk related to the studied toxic elements for consumers. PMID:22564461