Sample records for explanation based learning

  1. Contrastive Constraints Guide Explanation-Based Category Learning

    ERIC Educational Resources Information Center

    Chin-Parker, Seth; Cantelon, Julie

    2017-01-01

    This paper provides evidence for a contrastive account of explanation that is motivated by pragmatic theories that recognize the contribution that context makes to the interpretation of a prompt for explanation. This study replicates the primary findings of previous work in explanation-based category learning (Williams & Lombrozo, 2010),…

  2. Explanatory Preferences Shape Learning and Inference.

    PubMed

    Lombrozo, Tania

    2016-10-01

    Explanations play an important role in learning and inference. People often learn by seeking explanations, and they assess the viability of hypotheses by considering how well they explain the data. An emerging body of work reveals that both children and adults have strong and systematic intuitions about what constitutes a good explanation, and that these explanatory preferences have a systematic impact on explanation-based processes. In particular, people favor explanations that are simple and broad, with the consequence that engaging in explanation can shape learning and inference by leading people to seek patterns and favor hypotheses that support broad and simple explanations. Given the prevalence of explanation in everyday cognition, understanding explanation is therefore crucial to understanding learning and inference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Learning to Explain Astronomy Across Moving Frames of Reference: Exploring the role of classroom and planetarium-based instructional contexts

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-05-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children learn to move between frames of reference in astronomy wherein one explains Earth-based descriptions of the Sun's, Moon's, and stars' apparent motion using the Earth's daily rotation. We analysed interviews with 8-9-year-old students (N = 99) who participated in one of four instructional conditions emphasizing: the space-based perspective; the Earth-based perspective in the planetarium; constructing explanations for the Earth-based observations; and a combination of the planetarium plus constructing explanations in the classroom. We used an embodied cognition framework to analyse outcomes while also considering challenges learners face due to the high cognitive demands of spatial reasoning. Results support the hypothesis that instruction should engage students in learning both the Earth-based observations and space-based explanations, as focusing on a single frame of reference resulted in less sophisticated explanations; however, few students were able to construct a fully scientific explanation after instruction.

  4. A Five-Stage Prediction-Observation-Explanation Inquiry-Based Learning Model to Improve Students' Learning Performance in Science Courses

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Jon-Chao; Chen, Po-Hsi; Lu, Chow-Chin; Chen, Sherry Y.

    2017-01-01

    A five-stage prediction-observation-explanation inquiry-based learning (FPOEIL) model was developed to improve students' scientific learning performance. In order to intensify the science learning effect, the repertory grid technology-assisted learning (RGTL) approach and the collaborative learning (CL) approach were utilized. A quasi-experimental…

  5. Self-Explanation and Explanatory Feedback in Games: Individual Differences, Gameplay, and Learning

    ERIC Educational Resources Information Center

    Killingsworth, Stephen S.; Clark, Douglas B.; Adams, Deanne M.

    2015-01-01

    Previous research has demonstrated the efficacy of two explanation-based approaches for increasing learning in educational games. The first involves asking students to explain their answers (self-explanation) and the second involves providing correct explanations (explanatory feedback). This study (1) compared self-explanation and explanatory…

  6. Kindergarten students' explanations during science learning

    NASA Astrophysics Data System (ADS)

    Harris, Karleah

    The study examines kindergarten students' explanations during science learning. The data on children's explanations are drawn from videotaped and transcribed discourse collected from four public kindergarten science classrooms engaged in a life science inquiry unit on the life cycle of the monarch butterfly. The inquiry unit was implemented as part of a larger intervention conducted as part of the Scientific Literacy Project or SLP (Mantzicopoulos, Patrick & Samarapungavan, 2005). The children's explanation data were coded and analyzed using quantitative content analysis procedures. The coding procedures involved initial "top down" explanation categories derived from the existing theoretical and empirical literature on scientific explanation and the nature of students' explanations, followed by an inductive or "bottom up" analysis, that evaluated and refined the categorization scheme as needed. The analyses provide important descriptive data on the nature and frequency of children's explanations generated in classroom discourse during the inquiry unit. The study also examines how teacher discourse strategies during classroom science discourse are related to children's explanations. Teacher discourse strategies were coded and analyzed following the same procedures as the children's explanations as noted above. The results suggest that, a) kindergarten students have the capability of generating a variety of explanations during inquiry-based science learning; b) teachers use a variety of classroom discourse strategies to support children's explanations during inquiry-based science learning; and c) The conceptual discourse (e.g., asking for or modeling explanations, asking for clarifications) to non-conceptual discourse (e.g., classroom management discourse) is related to the ratio of explanatory to non-explanatory discourse produced by children during inquiry-based science learning.

  7. Learning from instructional explanations: effects of prompts based on the active-constructive-interactive framework.

    PubMed

    Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten

    2015-01-01

    Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge.

  8. Learning from Instructional Explanations: Effects of Prompts Based on the Active-Constructive-Interactive Framework

    PubMed Central

    Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten

    2015-01-01

    Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active < constructive learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active < constructive learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive < interactive learning hypothesis, the learners who received adapted remedial explanations and revision prompts as add-ons to reduced explanations and inference prompts acquired more conceptual knowledge. PMID:25853629

  9. Investigating the Effect of the Activities Based on Explanation Assisted REACT Strategy on Learning Impulse, Momentum and Collisions Topics

    ERIC Educational Resources Information Center

    Ültay, Eser; Alev, Nedim

    2017-01-01

    The purpose of this study was to investigate the effect of explanation assisted REACT strategy which was based on context-based learning approach on prospective science teachers' (PSTs) learning in impulse, momentum and collisions topics. The sequential explanatory strategy within mixed methods design was employed in this study. The first phase of…

  10. Bothered by abstractness or engaged by cohesion? Experts' explanations enhance novices' deep-learning.

    PubMed

    Lachner, Andreas; Nückles, Matthias

    2015-03-01

    Experts' explanations have been shown to better enhance novices' transfer as compared with advanced students' explanations. Based on research on expertise and text comprehension, we investigated whether the abstractness or the cohesion of experts' and intermediates' explanations accounted for novices' learning. In Study 1, we showed that the superior cohesion of experts' explanations accounted for most of novices' transfer, whereas the degree of abstractness did not impact novices' transfer performance. In Study 2, we investigated novices' processing while learning with experts' and intermediates' explanations. We found that novices studying experts' explanations actively self-regulated their processing of the explanations, as they showed mainly deep-processing activities, whereas novices learning with intermediates' explanations were mainly engaged in shallow-processing activities by paraphrasing the explanations. Thus, we concluded that subject-matter expertise is a crucial prerequisite for instructors. Despite the abstract character of experts' explanations, their subject-matter expertise enables them to generate highly cohesive explanations that serve as a valuable scaffold for students' construction of flexible knowledge by engaging them in deep-level processing. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  11. Learning to improve iterative repair scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene

    1992-01-01

    This paper presents a general learning method for dynamically selecting between repair heuristics in an iterative repair scheduling system. The system employs a version of explanation-based learning called Plausible Explanation-Based Learning (PEBL) that uses multiple examples to confirm conjectured explanations. The basic approach is to conjecture contradictions between a heuristic and statistics that measure the quality of the heuristic. When these contradictions are confirmed, a different heuristic is selected. To motivate the utility of this approach we present an empirical evaluation of the performance of a scheduling system with respect to two different repair strategies. We show that the scheduler that learns to choose between the heuristics outperforms the same scheduler with any one of two heuristics alone.

  12. Discovery Learning, Representation, and Explanation within a Computer-Based Simulation: Finding the Right Mix

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.; Tzeng, Shyh-Chii; Tribble, Kelly

    2004-01-01

    The purpose of this research was to explore how adult users interact and learn during an interactive computer-based simulation supplemented with brief multimedia explanations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion of a simple…

  13. Explanation-based learning in infancy.

    PubMed

    Baillargeon, Renée; DeJong, Gerald F

    2017-10-01

    In explanation-based learning (EBL), domain knowledge is leveraged in order to learn general rules from few examples. An explanation is constructed for initial exemplars and is then generalized into a candidate rule that uses only the relevant features specified in the explanation; if the rule proves accurate for a few additional exemplars, it is adopted. EBL is thus highly efficient because it combines both analytic and empirical evidence. EBL has been proposed as one of the mechanisms that help infants acquire and revise their physical rules. To evaluate this proposal, 11- and 12-month-olds (n = 260) were taught to replace their current support rule (that an object is stable when half or more of its bottom surface is supported) with a more sophisticated rule (that an object is stable when half or more of the entire object is supported). Infants saw teaching events in which asymmetrical objects were placed on a base, followed by static test displays involving a novel asymmetrical object and a novel base. When the teaching events were designed to facilitate EBL, infants learned the new rule with as few as two (12-month-olds) or three (11-month-olds) exemplars. When the teaching events were designed to impede EBL, however, infants failed to learn the rule. Together, these results demonstrate that even infants, with their limited knowledge about the world, benefit from the knowledge-based approach of EBL.

  14. Case-based explanation of non-case-based learning methods.

    PubMed Central

    Caruana, R.; Kangarloo, H.; Dionisio, J. D.; Sinha, U.; Johnson, D.

    1999-01-01

    We show how to generate case-based explanations for non-case-based learning methods such as artificial neural nets or decision trees. The method uses the trained model (e.g., the neural net or the decision tree) as a distance metric to determine which cases in the training set are most similar to the case that needs to be explained. This approach is well suited to medical domains, where it is important to understand predictions made by complex machine learning models, and where training and clinical practice makes users adept at case interpretation. PMID:10566351

  15. Example-based learning: comparing the effects of additionally providing three different integrative learning activities on physiotherapy intervention knowledge.

    PubMed

    Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara

    2015-03-07

    Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.

  16. Eliciting explanations: Constraints on when self-explanation aids learning.

    PubMed

    Rittle-Johnson, Bethany; Loehr, Abbey M

    2017-10-01

    Generating explanations for oneself in an attempt to make sense of new information (i.e., self-explanation) is often a powerful learning technique. Despite its general effectiveness, in a growing number of studies, prompting for self-explanation improved some aspects of learning, but reduced learning of other aspects. Drawing on this recent research, as well as on research comparing self-explanation under different conditions, we propose four constraints on the effectiveness of self-explanation. First, self-explanation promotes attention to particular types of information, so it is better suited to promote particular learning outcomes in particular types of domains, such as transfer in domains guided by general principles or heuristics. Second, self-explaining a variety of types of information can improve learning, but explaining one's own solution methods or choices may reduce learning under certain conditions. Third, explanation prompts focus effort on particular aspects of the to-be-learned material, potentially drawing effort away from other important information. Explanation prompts must be carefully designed to align with target learning outcomes. Fourth, prompted self-explanation often promotes learning better than unguided studying, but alternative instructional techniques may be more effective under some conditions. Attention to these constraints should optimize the effectiveness of self-explanation as an instructional technique in future research and practice.

  17. Does Medical Students' Diagnostic Performance Improve by Observing Examples of Self-Explanation Provided by Peers or Experts?

    ERIC Educational Resources Information Center

    Chamberland, Martine; Mamede, Sílvia; St-Onge, Christina; Setrakian, Jean; Schmidt, Henk G.

    2015-01-01

    Educational strategies that promote the development of clinical reasoning in students remain scarce. Generating self-explanations (SE) engages students in active learning and has shown to be an effective technique to improve clinical reasoning in clerks. Example-based learning has been shown to support the development of accurate knowledge…

  18. Another Piece of the "Silence in PBL" Puzzle: Students' Explanations of Dominance and Quietness as Complementary Group Roles

    ERIC Educational Resources Information Center

    Skinner, Vicki J.; Braunack-Mayer, Annette; Winning, Tracey A.

    2016-01-01

    A problem-based learning (PBL) assumption is that silence is incompatible with collaborative learning. Although sociocultural studies have reinterpreted silence as collaborative, we must understand how silence occurs in PBL groups. This essay presents students' explanations of dominance, leadership, and silence as PBL group roles. An ethnographic…

  19. An intelligent computer tutor to guide self-explanation while learning from examples

    NASA Astrophysics Data System (ADS)

    Conati, Cristina

    1999-11-01

    Many studies in cognitive science show that self-explanation---the process of clarifying and making more complete to oneself the solution of an example---improves learning, and that guiding self-explanation extends these benefits. This thesis presents an intelligent computer tutor that aims to improve learning from examples by supporting self-explanation. The tutor, known as the SE (self-explanation) Coach, is innovative in two ways. First, it represents the first attempt to develop a computer tutor that supports example studying instead of problem solving. Second, it explicitly guides a domain-general, meta-cognitive skill: self-explanation. The SE-Coach is part of the Andes tutoring system for college physics and is meant to be used in conjunction with the problem solving tasks that Andes supports. In order to maximize the system capability to trigger the same beneficial cognitive processes, every element of the SE-Coach embeds existing hypotheses about the features that make self-explanation effective for learning. Designing the SE-Coach involved finding solutions for three main challenges: (1) To design an interface that effectively monitors and supports self-explanation. (2) To devise a student model that allows the assessment of example understanding from reading and self-examination actions. (3) To effectively elicit further self-explanation that improves student's example understanding. In this work we present our solutions to these challenges: (1) An interface including principled, interactive tools to explore examples and build self-explanations under the SECoach's supervision. (2) A probabilistic student model based on a Bayesian network, which integrates a model of correct self-explanation and information on the student's knowledge and studying actions to generate a probabilistic assessment of the student's example understanding. (3) Tutorial interventions that rely on the student model to detect deficits in the student's example understanding and elicit self-explanations that overcome them. In this thesis we also present the results of a formal study with 56 college students to evaluate the effectiveness of the SE-Coach. We discuss some hypotheses to explain the obtained results, based on the analysis of the data collected during the experiment.

  20. Beyond Epistemological Deficits: Dynamic Explanations of Engineering Students' Difficulties with Mathematical Sense-Making

    ERIC Educational Resources Information Center

    Gupta, Ayush; Elby, Andrew

    2011-01-01

    Researchers have argued against deficit-based explanations of students' difficulties with mathematical sense-making, pointing instead to factors such as epistemology. Students' beliefs about knowledge and learning can hinder the activation and integration of productive knowledge they have. Such explanations, however, risk falling into a…

  1. Enhancing Student Explanations of Evolution: Comparing Elaborating and Competing Theory Prompts

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Namdar, Bahadir; Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.

    2016-01-01

    In this study, we explore how two different prompt types within an online computer-based inquiry learning environment enhance 392 7th grade students' explanations of evolution with three teachers. In the "elaborating" prompt condition, students are prompted to write explanations that support the accepted theory of evolution. In the…

  2. "What I Learn Is What I Like." How Do Students in ICT Supported Problem-Based Learning Rate the Quality of the Learning Experience, and How Does It Relate to the Acquisition of Competences?

    ERIC Educational Resources Information Center

    Scholkmann, Antonia

    2017-01-01

    Although advocated in theory, research findings on the benefits of ICT integration into inquiry-based learning arrangements such as problem-based learning (PBL) are still ambiguous. One explanation might be that until now students' subjective views on learning in ICT-integrated, inquiry-based arrangements have not been considered extensively. The…

  3. Learner Performance in Multimedia Learning Arrangements: An Analysis across Instructional Approaches

    ERIC Educational Resources Information Center

    Eysink, Tessa H. S.; de Jong, Ton; Berthold, Kirsten; Kolloffel, Bas; Opfermann, Maria; Wouters, Pieter

    2009-01-01

    In this study, the authors compared four multimedia learning arrangements differing in instructional approach on effectiveness and efficiency for learning: (a) hypermedia learning, (b) observational learning, (c) self-explanation-based learning, and (d) inquiry learning. The approaches all advocate learners' active attitude toward the learning…

  4. Using Self-Explanations in the Laboratory to Connect Theory and Practice: The Decision/ Explanation/Observation/Inference Writing Method

    ERIC Educational Resources Information Center

    Van Duzor, Andrea Gay

    2016-01-01

    While many faculty seek to use student-centered, inquiry-based approaches in teaching laboratories, transitioning from traditional to inquiry instruction can be logistically challenging. This paper outlines use of a laboratory notebook and report writing-to-learn method that emphasizes student self-explanations of procedures and outcomes,…

  5. ExplaNet: A Collaborative Learning Tool and Hybrid Recommender System for Student-Authored Explanations

    ERIC Educational Resources Information Center

    Masters, Jessica; Madhyastha, Tara; Shakouri, Ali

    2008-01-01

    ExplaNet is a web-based, anonymous, asynchronous explanation-sharing network. Instructors post questions to the network and students submit explanatory answers. Students then view and rank the explanations submitted by their peers before optionally resubmitting a final and revised answer. Three classroom evaluations of ExplaNet showed that by…

  6. Creating visual explanations improves learning.

    PubMed

    Bobek, Eliza; Tversky, Barbara

    2016-01-01

    Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.

  7. The effect of scaffolded strategies on content learning in a designed science cyberlearning environment

    NASA Astrophysics Data System (ADS)

    Kern, Cynthia Lee

    Scientific inscriptions---graphs, diagrams, and data---and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in inscriptions. Furthermore, when learners engage in argumentation, learning science content becomes secondary to the learning of argumentation skills. This design-based research study is nested within the larger effort to inform the design and development of the 5-Featured Dynamic Inquiry Enterprise design framework (5-DIE) for cyberlearning environments and to advance theory associated with the difficulties learners have with scientific inscriptions and the consequences related to using argumentation to learn science content. In an attempt to engage participants in the process of learning science content with scientific inscriptions and argumentation, two learning strategies were embedded in a 5-DIE lessons. The two learning strategies evaluated in this study were (1) self-explanation prompts paired with a scientific inscription and (2) faded worked examples for the evaluation and development of scientific knowledge claims. The participants consisted of ninth and tenth grade students (age: 13-16 years; N=245) enrolled in one of three state-mandated biology courses taught by four different teachers. A three factor mixed model analysis of variance (ANOVA) with two between factors (self-explanation prompts and faded worked examples) and one within factor (pre, post, delayed post-test) was used to evaluate the effects of the learning strategies on the acquisition and retention of domain-specific content knowledge. Both between factors had two levels (with & without) and are described by the following experimental conditions: (1) control condition (general prompts), (2) self-explanation condition, (3) faded worked examples condition, and (4) combined condition with both self-explanation and faded worked examples. Acquisition and retention of content knowledge was assessed with a 17-item multiple-choice, researcher-developed content knowledge test. Results indicated that self-explanation prompts and faded worked examples learning strategies did not influence acquisition and retention of science content in a positive (i.e., learning) way. Based on the finding of this study, it may be concluded that the use of general prompts is as effective as self-explanation prompts and faded worked examples for scaffolding learner engagement with scientific inscriptions and argumentation. Furthermore, the finding indicated additional research is warranted evaluating the generalizability of scaffolds from college to pre-college populations.

  8. Teaching Economics: A Cooperative Learning Model.

    ERIC Educational Resources Information Center

    Caropreso, Edward J.; Haggerty, Mark

    2000-01-01

    Describes an alternative approach to introductory economics based on a cooperative learning model, "Learning Together." Discussion of issues in economics education and cooperative learning in higher education leads to explanation of how to adapt the Learning Together Model to lesson planning in economics. A flow chart illustrates the process for a…

  9. Learning communication from erroneous video-based examples: A double-blind randomised controlled trial.

    PubMed

    Schmitz, Felix Michael; Schnabel, Kai Philipp; Stricker, Daniel; Fischer, Martin Rudolf; Guttormsen, Sissel

    2017-06-01

    Appropriate training strategies are required to equip undergraduate healthcare students to benefit from communication training with simulated patients. This study examines the learning effects of different formats of video-based worked examples on initial communication skills. First-year nursing students (N=36) were randomly assigned to one of two experimental groups (correct v. erroneous examples) or to the control group (no examples). All the groups were provided an identical introduction to learning materials on breaking bad news; the experimental groups also received a set of video-based worked examples. Each example was accompanied by a self-explanation prompt (considering the example's correctness) and elaborated feedback (the true explanation). Participants presented with erroneous examples broke bad news to a simulated patient significantly more appropriately than students in the control group. Additionally, they tended to outperform participants who had correct examples, while participants presented with correct examples tended to outperform the control group. The worked example effect was successfully adapted for learning in the provider-patient communication domain. Implementing video-based worked examples with self-explanation prompts and feedback can be an effective strategy to prepare students for their training with simulated patients, especially when examples are erroneous. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Exploring the Effect of Embedded Scaffolding within Curricular Tasks on Third-Grade Students' Model-Based Explanations about Hydrologic Cycling

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Schwarz, Christina V.

    2015-01-01

    Opportunities to generate model-based explanations are crucial for elementary students, yet are rarely foregrounded in elementary science learning environments despite evidence that early learners can reason from models when provided with scaffolding. We used a quasi-experimental research design to investigate the comparative impact of a scaffold…

  11. A Lecture Supporting System Based on Real-Time Learning Analytics

    ERIC Educational Resources Information Center

    Shimada, Atsushi; Konomi, Shin'ichi

    2017-01-01

    A new lecture supporting system based on real-time learning analytics is proposed. Our target is on-site classrooms where teachers give their lectures, and a lot of students listen to teachers' explanation, conduct exercises etc. We utilize not only an e-Learning system, but also an e-Book system to collect real-time learning activities during the…

  12. Design, Explanation, and Evaluation of Training Model Structures Based on Learning Organization--In the Cement Industry with a Nominal Production Capacity of Ten Thousand Tons

    ERIC Educational Resources Information Center

    Rahimian, Hamid; Kazemi, Mojtaba; Abbspour, Abbas

    2017-01-01

    This research aims to determine the effectiveness of training based on learning organization in the staff of cement industry with production capacity over ten thousand tons. The purpose of this study is to propose a training model based on learning organization. For this purpose, the factors of organizational learning were introduced by…

  13. Learning to Explain Astronomy across Moving Frames of Reference: Exploring the Role of Classroom and Planetarium-Based Instructional Contexts

    ERIC Educational Resources Information Center

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-01-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children…

  14. Axis: Generating Explanations at Scale with Learnersourcing and Machine Learning

    ERIC Educational Resources Information Center

    Williams, Joseph Jay; Kim, Juho; Rafferty, Anna; Heffernan, Neil; Maldonado, Samuel; Gajos, Krzysztof Z.; Lasecki, Walter S.; Heffernan, Neil

    2016-01-01

    While explanations may help people learn by providing information about why an answer is correct, many problems on online platforms lack high-quality explanations. This paper presents AXIS (Adaptive eXplanation Improvement System), a system for obtaining explanations. AXIS asks learners to generate, revise, and evaluate explanations as they solve…

  15. Considerations of Elder Sibling Closeness in Predicting Younger Sibling Substance Use: Social Learning versus Social Bonding Explanations

    PubMed Central

    Samek, Diana R.; Rueter, Martha A.

    2011-01-01

    Adolescent siblings are often similar in a variety of adjustment outcomes, yet little is known about the processes that explain sibling influences during adolescence. Two alternative explanations were tested, attachment (based in social bonding theory) and anaclitic identification (based in social learning theory). Hypotheses were tested using a sample of 613 adolescent sibling pairs (206 non-adopted, 407 adopted; elder sibling Mage = 16.1, younger sibling Mage = 13.8) across three sibling contexts (gender composition, age difference, and genetic similarity). Attachment explanations were supported such that the greater the perceived sibling emotional and behavioral closeness, the lower the likelihood of substance use; however, there were considerable moderating effects of sibling gender composition. Anaclitic identification explanations were not supported; closeness and elder sibling substance use did not interact to predict younger sibling substance use. Overall, this research adds to a body of work demonstrating important sibling influences on adolescent substance use. PMID:21988080

  16. Developing computer-based training programs for basic mammalian histology: Didactic versus discovery-based design

    NASA Astrophysics Data System (ADS)

    Fabian, Henry Joel

    Educators have long tried to understand what stimulates students to learn. The Swiss psychologist and zoologist, Jean Claude Piaget, suggested that students are stimulated to learn when they attempt to resolve confusion. He reasoned that students try to explain the world with the knowledge they have acquired in life. When they find their own explanations to be inadequate to explain phenomena, students find themselves in a temporary state of confusion. This prompts students to seek more plausible explanations. At this point, students are primed for learning (Piaget 1964). The Piagetian approach described above is called learning by discovery. To promote discovery learning, a teacher must first allow the student to recognize his misconception and then provide a plausible explanation to replace that misconception (Chinn and Brewer 1993). One application of this method is found in the various learning cycles, which have been demonstrated to be effective means for teaching science (Renner and Lawson 1973, Lawson 1986, Marek and Methven 1991, and Glasson & Lalik 1993). In contrast to the learning cycle, tutorial computer programs are generally not designed to correct student misconceptions, but rather follow a passive, didactic method of teaching. In the didactic or expositional method, the student is told about a phenomenon, but is neither encouraged to explore it, nor explain it in his own terms (Schneider and Renner 1980).

  17. Supporting Reform-Oriented Secondary Science Teaching Through the Use of a Framework to Analyze Construction of Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora

    2016-08-01

    The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice outlined in the NGSS necessary for supporting students' learning of science in this 3D way. We examined TCs' ability to give explanations that include explicit statements of underlying reasons for natural phenomena, as opposed to simply describing patterns or laws. In their methods courses, TCs were taught to organize explanations into a what/how/why framework, where what refers to what happens in specific cases (data or observations); how refers to how things usually happen and is equivalent to patterns or laws; and why refers to causal explanations or models. We examined TCs' ability to do this spontaneously and in a resource-rich environment as a first step in gauging their preparedness for NGSS-aligned teaching. We found that (1) the ability of TCs to articulate complete and accurate causal scientific explanations for phenomena exists along a continuum; (2) TCs in our sample whose explanations fell on the upper end of this continuum were more likely to provide complete and accurate explanations even in the absence of support from explicit standards; and (3) teacher candidate's ability to construct complete and accurate explanations did not correlate with cross-course performance or academic major. The implications of these findings for the preparation of teachers for NGSS-based science instruction are discussed.

  18. Commentary on: "Toward Computer-Based Support of Metacognitive Skills: A Computational Framework to Coach Self Explanation"

    ERIC Educational Resources Information Center

    Conati, Cristina

    2016-01-01

    This paper is a commentary on "Toward Computer-Based Support of Meta-Cognitive Skills: a Computational Framework to Coach Self-Explanation", by Cristina Conati and Kurt Vanlehn, published in the "IJAED" in 2000 (Conati and VanLehn 2010). This work was one of the first examples of Intelligent Learning Environments (ILE) that…

  19. Using Narrative-Based Design Scaffolds within a Mobile Learning Environment to Support Learning Outdoors with Young Children

    ERIC Educational Resources Information Center

    Seely, Brian J.

    2015-01-01

    This study aims to advance learning outdoors with mobile devices. As part of the ongoing Tree Investigators design-based research study, this research investigated a mobile application to support observation, identification, and explanation of the tree life cycle within an authentic, outdoor setting. Recognizing the scientific and conceptual…

  20. Teaching Significant Figures Using a Learning Cycle.

    ERIC Educational Resources Information Center

    Guymon, E. Park; And Others

    1986-01-01

    Describes an instructional strategy based on the learning cycle for teaching the use of significant figures. Provides explanations of teaching activities for each phase of the learning cycle (exploration, invention, application). Compares this approach to teaching significant figures with the traditional textbook approach. (TW)

  1. Moral vindications.

    PubMed

    Kumar, Victor

    2017-10-01

    Psychologists and neuroscientists have recently been unearthing the unconscious processes that give rise to moral intuitions and emotions. According to skeptics like Joshua Greene, what has been found casts doubt on many of our moral beliefs. However, a new approach in moral psychology develops a learning-theoretic framework that has been successfully applied in a number of other domains. This framework suggests that model-based learning shapes intuitions and emotions. Model-based learning explains how moral thought and feeling are attuned to local material and social conditions. Philosophers can draw on these explanations, in some cases, in order to vindicate episodes of moral change. Explanations can support justifications by showing that they are not mere rationalizations. In addition, philosophical justifications are a fertile source for empirical hypotheses about the rational learning mechanisms that shape moral intuitions and emotions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Piagetian Learning Cycle for Introductory Chemical Kinetics.

    ERIC Educational Resources Information Center

    Batt, Russell H.

    1980-01-01

    Described is a Piagetian learning cycle based on Monte Carlo modeling of several simple reaction mechanisms. Included are descriptions of learning cycle phases (exploration, invention, and discovery) and four BASIC-PLUS computer programs to be used in the explanation of chemical reacting systems. (Author/DS)

  3. Learning and teaching with a computer scanner

    NASA Astrophysics Data System (ADS)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-09-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like scientists. They will conduct simple experiments, construct different explanations for their observations, test their explanations in new experiments and represent their ideas in multiple ways.

  4. Generalizing the Structure of Explanations in Explanation-Based Learning.

    DTIC Science & Technology

    1987-12-01

    eating at an 21 %S ’t expensive restaurant would suffice. This schema includes such preconditions as being hungry for French food , having a lot of...actual values. Thus. instead of specifying lo French food . seven pm. and three hours. it states the mutual interdependence among the restaurant chosen

  5. Promoting Self-Explanation to Improve Mathematics Learning: A Meta-Analysis and Instructional Design Principles

    ERIC Educational Resources Information Center

    Rittle-Johnson, Bethany; Loehr, Abbey M.; Durkin, Kelley

    2017-01-01

    Promoting self-explanation (i.e., generating explanations for oneself in an attempt to make sense of new information) is a recommended study strategy and instructional practice. A meta-analysis of the literature on prompting self-explanation to improve mathematics learning confirmed that prompted self-explanation leads to a small to moderate…

  6. The education of attention as explanation of variability of practice effects: learning the final approach phase in a flight simulator.

    PubMed

    Huet, Michaël; Jacobs, David M; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles

    2011-12-01

    The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice conditions than under constant practice conditions. This finding is attributed to the education of attention to the more useful informational variables: Variability of practice reduces the usefulness of initially used informational variables, which leads to a quicker change in variable use, and hence to a larger improvement in performance. In the practice phase of Experiment 2 variability was selectively applied to some experimental factors but not to others. Participants tended to converge toward the variables that were useful in the specific conditions that they encountered during practice. This indicates that an explanation for variability of practice effects in terms of the education of attention is a useful alternative to traditional explanations based on the notion of the generalized motor program and to explanations based on the notions of noise and local minima.

  7. ArcAtlas in the Classroom: Pattern Identification, Description, and Explanation

    ERIC Educational Resources Information Center

    DeMers, Michael N.; Vincent, Jeffrey S.

    2007-01-01

    The use of geographic information systems (GIS) in the classroom provides a robust and effective method of teaching the primary spatial skills of identification, description, and explanation of spatial pattern. A major handicap for the development of GIS-based learning experiences, especially for non-GIS specialist educators, is the availability…

  8. Two-Year Community: Construction with Scaffolds: Helping Community College Students Build Explanations

    ERIC Educational Resources Information Center

    Bennett, Steve; Gotwals, Amelia Wenk

    2017-01-01

    Science education reform documents call for students to learn science by engaging in inquiry and using science practices. One such science practice is constructing evidence-based explanations. Few students enter community college science classrooms having experience with, or being proficient in, using evidence to explain scientific phenomena.…

  9. Children's success at detecting circular explanations and their interest in future learning.

    PubMed

    Mills, Candice M; Danovitch, Judith H; Rowles, Sydney P; Campbell, Ian L

    2017-10-01

    These studies explore elementary-school-aged children's ability to evaluate circular explanations and whether they respond to receiving weak explanations by expressing interest in additional learning. In the first study, 6-, 8-, and 10-year-olds (n = 53) heard why questions about unfamiliar animals. For each question, they rated the quality of single explanations and later selected the best explanation between pairs of circular and noncircular explanations. When judging single explanations, 8- and 10-year-olds, and to some extent 6-year-olds, provided higher ratings for noncircular explanations compared to circular ones. When selecting between pairs of explanations, all age groups preferred noncircular explanations to circular ones, but older children did so more consistently than 6-year-olds. Children who recognized the weakness of the single circular explanations were more interested in receiving additional information about the question topics. In Study 2, all three age groups (n = 87) provided higher ratings for noncircular explanations compared to circular ones when listening to responses to how questions, but older children showed a greater distinction in their ratings than 6-year-olds. Moreover, the link between recognizing circular explanations as weak and interest in future learning could not be accounted for solely by individual differences in verbal intelligence. These findings illustrate the developmental trajectory of explanation evaluation and support that recognition of weak explanations is linked to interest in future learning across the elementary years. Implications for education are discussed.

  10. Validity Evidence for a Learning Progression of Scientific Explanation

    ERIC Educational Resources Information Center

    Yao, Jian-Xin; Guo, Yu-Ying

    2018-01-01

    Providing scientific explanations for natural phenomena is a fundamental aim of science; therefore, scientific explanation has been selected as one of the key practices in science education policy documents around the world. To further elaborate on existing educational frameworks of scientific explanation in K-12, we propose a learning progression…

  11. Toward an Episodic Context Account of Retrieval-Based Learning: Dissociating Retrieval Practice and Elaboration

    ERIC Educational Resources Information Center

    Lehman, Melissa; Smith, Megan A.; Karpicke, Jeffrey D.

    2014-01-01

    We tested the predictions of 2 explanations for retrieval-based learning; while the elaborative retrieval hypothesis assumes that the retrieval of studied information promotes the generation of semantically related information, which aids in later retrieval (Carpenter, 2009), the episodic context account proposed by Karpicke, Lehman, and Aue (in…

  12. Effects of Experiential-Based Videos in Multi-Disciplinary Learning

    ERIC Educational Resources Information Center

    Jabbar, Khalid Bin Abdul; Ong, Alex; Choy, Jeanette; Lim, Lisa

    2013-01-01

    This study examined the use of authentic experiential-based videos in self-explanation activities on 32 polytechnic students' learning and motivation, using a mixed method quasi-experimental design. The control group analysed a set of six pre-recorded videos of a subject performing the standing broad jump (SBJ). The experimental group captured…

  13. Improving performance through concept formation and conceptual clustering

    NASA Technical Reports Server (NTRS)

    Fisher, Douglas H.

    1992-01-01

    Research from June 1989 through October 1992 focussed on concept formation, clustering, and supervised learning for purposes of improving the efficiency of problem-solving, planning, and diagnosis. These projects resulted in two dissertations on clustering, explanation-based learning, and means-ends planning, and publications in conferences and workshops, several book chapters, and journals; a complete Bibliography of NASA Ames supported publications is included. The following topics are studied: clustering of explanations and problem-solving experiences; clustering and means-end planning; and diagnosis of space shuttle and space station operating modes.

  14. Two Instructional Aids to Optimise Processing and Learning from Instructional Explanations

    ERIC Educational Resources Information Center

    Roelle, Julian; Berthold, Kirsten; Renkl, Alexander

    2014-01-01

    Although instructional explanations are commonly used to introduce learners to new learning content, previous studies have often shown that their effects on learning outcomes are minimal. This failure might partly be due to mental passivity of the learners while processing introductory explanations and to a lack of opportunity to revise potential…

  15. In Pursuit of Knowledge: Comparing Self-Explanations, Concepts, and Procedures as Pedagogical Tools

    ERIC Educational Resources Information Center

    Matthews, Percival; Rittle-Johnson, Bethany

    2009-01-01

    Explaining new ideas to oneself can promote learning and transfer, but questions remain about how to maximize the pedagogical value of self-explanations. This study investigated how type of instruction affected self-explanation quality and subsequent learning outcomes for second- through fifth-grade children learning to solve mathematical…

  16. Engaging Karen Refugee Students in Science Learning through a Cross-Cultural Learning Community

    ERIC Educational Resources Information Center

    Harper, Susan G.

    2017-01-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as…

  17. Promoting Vicarious Learning of Physics Using Deep Questions with Explanations

    ERIC Educational Resources Information Center

    Craig, Scotty D.; Gholson, Barry; Brittingham, Joshua K.; Williams, Joah L.; Shubeck, Keith T.

    2012-01-01

    Two experiments explored the role of vicarious "self" explanations in facilitating student learning gains during computer-presented instruction. In Exp. 1, college students with low or high knowledge on Newton's laws were tested in four conditions: (a) monologue (M), (b) questions (Q), (c) explanation (E), and (d) question + explanation (Q + E).…

  18. Social Facilitation Effects by Pedagogical Conversational Agent: Lexical Network Analysis in an Online Explanation Task

    ERIC Educational Resources Information Center

    Hayashi, Yugo

    2015-01-01

    The present study investigates web-based learning activities of undergraduate students who generate explanations about a key concept taught in a large-scale classroom. The present study used an online system with Pedagogical Conversational Agent (PCA), asked to explain about the key concept from different points and provided suggestions and…

  19. Adjusting Claims as New Evidence Emerges: Do Students Incorporate New Evidence into Their Scientific Explanations?

    ERIC Educational Resources Information Center

    Novak, Ann M.; Treagust, David F.

    2018-01-01

    Constructing explanations of complex phenomena is an important part of doing science and it is also an important component of learning science. Students need opportunities to make claims based on available evidence and then use science concepts to justify why evidence supports the claim. But what happens when "new" evidence emerges for…

  20. Empirical Validation of Integrated Learning Performances for Hydrologic Phenomena: 3rd-Grade Students' Model-Driven Explanation-Construction

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-01-01

    Water is a crucial topic that spans the K-12 science curriculum, including the elementary grades. Students should engage in the articulation, negotiation, and revision of model-based explanations about hydrologic phenomena. However, past research has shown that students, particularly early learners, often struggle to understand hydrologic…

  1. Effects of Visual Cues and Self-Explanation Prompts: Empirical Evidence in a Multimedia Environment

    ERIC Educational Resources Information Center

    Lin, Lijia; Atkinson, Robert K.; Savenye, Wilhelmina C.; Nelson, Brian C.

    2016-01-01

    The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load, and intrinsic motivation in an interactive multimedia environment that was designed to deliver a computer-based lesson about the human cardiovascular system. A total of 126 college students were…

  2. K-5 Mentor Teachers' Journeys toward Reform-Oriented Science within a Professional Development School Context

    ERIC Educational Resources Information Center

    Manno, Jacqueline L.

    2011-01-01

    Reform-oriented science teaching with a specific focus on evidence and explanation provides a student-centered learning environment which encourages children to question, seek answers to those questions, experience phenomena, share ideas, and develop explanations of science concepts based on evidence. One of the ways schools have risen to meet the…

  3. Children's Ability to Learn Evolutionary Explanations for Biological Adaptation

    ERIC Educational Resources Information Center

    Shtulman, Andrew; Neal, Cara; Lindquist, Gabrielle

    2016-01-01

    Research Findings: Evolution by natural selection is often relegated to the high school curriculum on the assumption that younger students cannot grasp its complexity. We sought to test that assumption by teaching children ages 4-12 (n = 96) a selection-based explanation for biological adaptation and comparing their success to that of adults…

  4. [Beeckman's medical learning by reading].

    PubMed

    Honma, Eio

    2008-01-01

    Isaac Beeckman (1588-1637) is a self-learning man. He learned medicine by his reading medical books (contemporary and classic). In this paper I study how Beeckman read and understood them. He did not merely memorize them. But he gave some supplementary explanations to their (he thought) insufficient passages, sometimes criticized them and gave mechanical explanation that was based on atomism with hydrostatics. We can find similar ways of reading in the works of Lucretius and Cardano which young Beeckman read repeatedly. Beeckman learned the way of explaining natural phenomena with atomism from Lucretius' De rerum natura, and the way of explaining mechanics with natural philosophy and of demonstrating the principles of natural philosophy with machines from Cardano's De subtilitate. Beeckman's interactive reading is a good style of self-learning, but to avoid some bad effects of self-learning, he had to talk actually to a good respondent such as young Descartes.

  5. Introspective Reasoning Models for Multistrategy Case-Based and Explanation

    DTIC Science & Technology

    1997-03-10

    symptoms and diseases to causal 30 principles about diseases and first-principle analysis grounded in basic science. Based on research in process...the symptoms of the failure to conclusion that the process which posts learning goals a causal explanation of the failure. Secondl,,. the learner...the vernacular, a "jones" is a drug habit accompanied the faucet for water. Therefore, the story can end with by withdrawal symptoms . The verb "to jones

  6. Simple explanations and reasoning: From philosophy of science to expert systems

    NASA Technical Reports Server (NTRS)

    Rochowiak, Daniel

    1988-01-01

    A preliminary prototype of a simple explanation system was constructed. Although the system, based on the idea of storytelling, did not incorporate all of the principles of simple explanation, it did demonstrate the potential of the approach. The system incorporated a hypertext system, an inference engine, and facilities for constructing contrast type explanations. The continued development of such a system should prove to be valuable. By extending the resources of the expert system paradigm, the knowledge engineer is not forced to learn a new set of skills, and the domain knowledge already acquired by him is not lost. Further, both the beginning user and the more advanced user can be accommodated. For the beginning user, corrective explanations and ES explanations provide facilities for more clearly understanding the way in which the system is functioning. For the more advanced user, the instance and state explanations allow him to focus on the issues at hand. The simple model of explanation attempts to exploit and show how the why and how facilities of the expert system paradigm can be extended by attending to the pragmatics of explanation and adding texture to the ordinary pattern of reasoning in a rule based system.

  7. Prospective Teachers' Learning to Provide Instructional Explanations: How Does It Look and What Might It Take?

    ERIC Educational Resources Information Center

    Charalambous, Charalambos Y.; Hill, Heather C.; Ball, Deborah L.

    2011-01-01

    Several studies have documented prospective teachers' (PSTs) difficulties in offering instructional explanations. However, less is known about PSTs' learning to provide explanations. To address this gap, we trace changes in the explanations offered by a purposeful sample of PSTs before and after a mathematics content/methods course sequence.…

  8. Proceedings of the Workshop on Models of Complex Human Learning Held in Ithaca, New York on June 27-28, 1989

    DTIC Science & Technology

    1989-06-01

    to facilitate in-depth communication of research results in a multi-disciplinary gathering led to a decision to have long presentations and limit the...learning subfields such as computational learning theory and explanation based learning? Second, as the machine learning field increases its emphasis...Architecture, Pat Langley, University of California, Irvine .................................................... 22 A Theory of Human Plausible Reasoning

  9. A process for developing and revising a learning progression on sea level rise using learners' explanations

    NASA Astrophysics Data System (ADS)

    McDonald, Robert Christopher

    The purpose of this study was to explore the process of developing a learning progression (LP) on constructing explanations about sea level rise. I used a learning progressions theoretical framework informed by the situated cognition learning theory. During this exploration, I explicitly described my decision-making process as I developed and revised a hypothetical learning progression. Correspondingly, my research question was: What is a process by which a hypothetical learning progression on sea level rise is developed into an empirical learning progression using learners' explanations? To answer this question, I used a qualitative descriptive single case study with multiple embedded cases (Yin, 2014) that employed analytic induction (Denzin, 1970) to analyze data collected on middle school learners (grades 6-8). Data sources included written artifacts, classroom observations, and semi-structured interviews. Additionally, I kept a researcher journal to track my thinking about the learning progression throughout the research study. Using analytic induction to analyze collected data, I developed eight analytic concepts: participant explanation structures varied widely, global warming and ice melt cause sea level rise, participants held alternative conceptions about sea level rise, participants learned about thermal expansion as a fundamental aspect of sea level rise, participants learned to incorporate authentic scientific data, participants' mental models of the ocean varied widely, sea ice melt contributes to sea level rise, and participants held vague and alternative conceptions about how pollution impacts the ocean. I started with a hypothetical learning progression, gathered empirical data via various sources (especially semi-structured interviews), revised the hypothetical learning progression in response to those data, and ended with an empirical learning progression comprising six levels of learner thinking. As a result of developing an empirically based LP, I was able to compare two learning progressions on the same topic. By comparing my learning progression with the LP in Breslyn, McGinnis, McDonald, and Hestness (2016), I was able to confirm portions of the two learning progressions and explore different possible pathways for learners to achieve progress towards upper anchors of the LPs through targeted instruction. Implications for future LP research, curriculum, instruction, assessment, and policy related to learning progressions are presented.

  10. An Analysis of Looking Back Method in Problem-Based Learning: Case Study on Congruence and Similarity in Junior High School

    NASA Astrophysics Data System (ADS)

    Kosasih, U.; Wahyudin, W.; Prabawanto, S.

    2017-09-01

    This study aims to understand how learners do look back their idea of problem solving. This research is based on qualitative approach with case study design. Participants in this study were xx students of Junior High School, who were studying the material of congruence and similarity. The supporting instruments in this research are test and interview sheet. The data obtained were analyzed by coding and constant-comparison. The analysis find that there are three ways in which the students review the idea of problem solving, which is 1) carried out by comparing answers to the completion measures exemplified by learning resources; 2) carried out by examining the logical relationship between the solution and the problem; and 3) carried out by means of confirmation to the prior knowledge they have. This happens because most students learn in a mechanistic way. This study concludes that students validate the idea of problem solving obtained, influenced by teacher explanations, learning resources, and prior knowledge. Therefore, teacher explanations and learning resources contribute to the success or failure of students in solving problems.

  11. Artificial Language Learning and Feature-Based Generalization

    ERIC Educational Resources Information Center

    Finley, Sara; Badecker, William

    2009-01-01

    Abstract representations such as subsegmental phonological features play such a vital role in explanations of phonological processes that many assume that these representations play an equally prominent role in the learning process. This assumption is tested in three artificial grammar experiments involving a mini language with morpho-phonological…

  12. When Does Provision of Instruction Promote Learning?

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Anderson, Abraham; Betts, Shawn; Anderson, John R.

    2011-01-01

    Contradictory evidence has been reported on the effects of discovery learning approach and the role of instructional explanations. By manipulating the presence of instruction (verbal explanation) and transparency of problem structures, we investigated how effects of instructional explanations differed depending on the transparency of problem…

  13. What Art Educators Can Learn from the Fan-Based Artmaking of Adolescents and Young Adults

    ERIC Educational Resources Information Center

    Manifold, Marjorie Cohee

    2009-01-01

    The explanations of 101 adolescents and young adults, who are fans of popular culture narratives and make art inspired by these phenomena, provide insight into why these youth were drawn to create fan-based artworks, how they learned to make these art forms, and what the creative activities mean to them. Emergent themes highlight (a) the…

  14. Kindergarten Students' Explanations during Science Learning

    ERIC Educational Resources Information Center

    Harris, Karleah

    2010-01-01

    The study examines kindergarten students' explanations during science learning. The data on children's explanations are drawn from videotaped and transcribed discourse collected from four public kindergarten science classrooms engaged in a life science inquiry unit on the life cycle of the monarch butterfly. The inquiry unit was implemented as…

  15. Engaging Karen refugee students in science learning through a cross-cultural learning community

    NASA Astrophysics Data System (ADS)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  16. Rational Learning and Information Sampling: On the "Naivety" Assumption in Sampling Explanations of Judgment Biases

    ERIC Educational Resources Information Center

    Le Mens, Gael; Denrell, Jerker

    2011-01-01

    Recent research has argued that several well-known judgment biases may be due to biases in the available information sample rather than to biased information processing. Most of these sample-based explanations assume that decision makers are "naive": They are not aware of the biases in the available information sample and do not correct for them.…

  17. The Effects of Self-Explanation and Metacognitive Instruction on Undergraduate Students' Learning of Statistics Materials Containing Multiple External Representations in a Web-Based Environment

    ERIC Educational Resources Information Center

    Hsu, Yu-Chang

    2009-01-01

    Students in the Science, Technology, Engineering, and Mathematics (STEM) fields are confronted with multiple external representations (MERs) in their learning materials. The ability to learn from and communicate with these MERs requires not only that students comprehend each representation individually but also that students recognize how the…

  18. Scaffolding Middle School Students' Construction of Scientific Explanations: Comparing a cognitive versus a metacognitive evaluation approach

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Yu

    2015-01-01

    This study investigated the effects of scaffolds as cognitive prompts and as metacognitive evaluation on seventh-grade students' growth of content knowledge and construction of scientific explanations in five inquiry-based biology activities. Students' scores on multiple-choice pretest and posttest and worksheets for five inquiry-based activities were analyzed. The results show that the students' content knowledge in all conditions significantly increased from the pretest to posttest. Incorporating cognitive prompts with the explanation scaffolds better facilitated knowledge integration and resulted in greater learning gains of content knowledge and better quality evidence and reasoning. The metacognitive evaluation instruction improved all explanation components, especially claims and reasoning. This metacognitive approach also significantly reduced students' over- or underestimation during peer-evaluation by refining their internal standards for the quality of scientific explanations. The ability to accurately evaluate the quality of explanations was strongly associated with better performance on explanation construction. The cognitive prompts and metacognitive evaluation instruction address different aspects of the challenges faced by the students, and show different effects on the enhancement of content knowledge and the quality of scientific explanations. Future directions and suggestions are provided for improving the design of the scaffolds to facilitate the construction of scientific explanations.

  19. Animal social learning: associations and adaptations.

    PubMed

    Reader, Simon M

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on 'ordinary' processes but with extraordinary consequences.

  20. The Effect of Eliciting Repair of Mathematics Explanations of Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Liu, Jia; Xin, Yan Ping

    2017-01-01

    Mathematical reasoning is important in conceptual understanding and problem solving. In current reform-based, discourse-oriented mathematics classrooms, students with learning disabilities (LD) encounter challenges articulating or explaining their reasoning processes. Enlightened by the concept of conversational repair borrowed from the field of…

  1. Geometrical Constructions in Dynamic and Interactive Mathematics Learning Environment

    ERIC Educational Resources Information Center

    Kondratieva, Margo

    2013-01-01

    This paper concerns teaching Euclidean geometry at the university level. It is based on the authors' personal experience. It describes a sequence of learning activities that combine geometrical constructions with explorations, observations, and explanations of facts related to the geometry of triangle. Within this approach, a discussion of the…

  2. A Learning Progression for Water in Socio-Ecological Systems

    ERIC Educational Resources Information Center

    Gunckel, Kristin L.; Covitt, Beth A.; Salinas, Ivan; Anderson, Charles W.

    2012-01-01

    Providing model-based accounts (explanations and predictions) of water and substances in water moving through environmental systems is an important practice for environmental science literacy and necessary for citizens confronting global and local water quantity and quality issues. In this article we present a learning progression for water in…

  3. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-01-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate…

  4. Effects of Self-Explanation and Game-Reward on Sixth Graders' Algebra Variable Learning

    ERIC Educational Resources Information Center

    Sun-Lin, Hong-Zheng; Chiou, Guey-Fa

    2017-01-01

    This study examined the interaction effects of self-explanation and game-reward strategies on sixth graders' algebra variable learning achievement, learning attitude, and meta-cognitive awareness. A learning system was developed to support the learning activity, and a 2×2 quasi-experiment was conducted. Ninety-seven students were invited to…

  5. Engaging Undergraduate Education Majors in the Practice of Astronomy through a Coherent Science Content Storyline Course

    NASA Astrophysics Data System (ADS)

    Plummer, Julia; Palma, Christopher

    2015-08-01

    For the next generation of students to learn astronomy as both a body of knowledge and a process of continually extending, refining, and revising that knowledge, teachers at all levels must learn how to engage their students in the practices of astronomy. This begins by designing science coursework for undergraduate education majors in ways that reflect how we hope they will teach their own future students. We have designed an undergraduate astronomy course for elementary education majors around a coherent science content storyline (CSCS) framework in order to investigate methods that support education majors’ uptake of astronomy practices. CSCS instruction purposefully sequences lessons in ways that make explicit the connections between science ideas in order to move students towards increasingly sophisticated explanations for a single big idea in science. We used this framework to organize our course around a series of astronomical investigations that build towards a big idea in astronomy: how the formation model explains current patterns observed in the Solar System. Each investigation helps students begin to explain observations of the Solar System from a coherent, systems-based perspective as they make choices on how to design their own data collection and analysis strategies. Through these investigations, future teachers begin to view astronomy as a process of answering scientific questions using evidence-based explanations and model-based reasoning. The course design builds on our prior research into students’ ideas about Solar System phenomena and its formation as well as students’ ideas about how astronomers carry out investigations. Preliminary results, based on analysis of student conversations during in-class investigations, science notebook entries, and scientific reports, suggest that the course helps students learn to construct evidence-based explanations while also increasing the accuracy of the explanations for astronomical phenomena. We will discuss implications for undergraduate astronomy education towards increasing future teachers’ proficiency in doing astronomy in ways that move them towards understanding how astronomers investigate the universe.

  6. Teachers as Informal Learners: Workplace Professional Learning in the United States and Lithuania

    ERIC Educational Resources Information Center

    Jurasaite-Harbison, Elena; Rex, Lesley A.

    2013-01-01

    This study demonstrates the understandings that result from teachers' explanations of how they learn when they encounter everyday situations that evoke their learning. The study renders these explanations as a framework for further research on teacher workplace learning in informal settings. The framework emerged from a constant-comparative…

  7. Effects of Semantic Web Based Learning on Pre-Service Teachers' ICT Learning Achievement and Satisfaction

    ERIC Educational Resources Information Center

    Karalar, Halit; Korucu, Agah Tugrul

    2016-01-01

    Although the Semantic Web offers many opportunities for learners, effects of it in the classroom is not well known. Therefore, in this study explanations have been stated as how the learning objects defined by means of using the terminology in a developed ontology and kept in objects repository should be presented to learners with the aim of…

  8. Supporting Teachers to Develop Substantive Discourse in Primary Science Classrooms

    ERIC Educational Resources Information Center

    Smith, Prudence M.; Hackling, Mark W.

    2016-01-01

    Students' thinking and learning in inquiry-based science is contingent on them being able to participate in substantive conversations so they explore their ideas and develop reasons and explanations for the outcomes of their investigations. While teachers understand the importance of talk for student learning, they are often unaware of the impact…

  9. Exploring the Visuospatial Challenge of Learning about Day and Night and the Sun's Path

    ERIC Educational Resources Information Center

    Heywood, David; Parker, Joan; Rowlands, Mark

    2013-01-01

    The role of visualization and model-based reasoning has become increasingly significant in science education across a range of contexts. It is generally recognized that supporting learning in developing causal explanations for observed astronomical events presents considerable pedagogic challenge. Understanding the Sun's apparent movement…

  10. Learning Science in Virtual Reality Multimedia Environments: Role of Methods and Media.

    ERIC Educational Resources Information Center

    Moreno, Roxana; Mayer, Richard E.

    2002-01-01

    College students learned about botany through an agent-based multimedia game. Students received either spoken or identical on-screen text explanations. Results reveal that students scored higher on retention, transfer, and program ratings in narration conditions than in text conditions. The media--desktop displays or headmounted displays--did not…

  11. Explanation and Prior Knowledge Interact to Guide Learning

    ERIC Educational Resources Information Center

    Williams, Joseph J.; Lombrozo, Tania

    2013-01-01

    How do explaining and prior knowledge contribute to learning? Four experiments explored the relationship between explanation and prior knowledge in category learning. The experiments independently manipulated whether participants were prompted to explain the category membership of study observations and whether category labels were informative in…

  12. The Pursuit of a "Better" Explanation as an Organizing Framework for Science Teaching and Learning

    ERIC Educational Resources Information Center

    Papadouris, Nicos; Vokos, Stamatis; Constantinou, Constantinos P.

    2018-01-01

    This article seeks to make the case for the pursuit of a "better" explanation being a productive organizing framework for science teaching and learning. Underlying this position is the idea that this framework allows promoting, in a unified manner, facility with the scientific practice of constructing explanations, appreciation of its…

  13. Is Self-Explanation Worth the Time? A Comparison to Additional Practice

    ERIC Educational Resources Information Center

    McEldoon, Katherine L.; Durkin, Kelley L.; Rittle-Johnson, Bethany

    2013-01-01

    Background: Self-explanation, or generating explanations to oneself in an attempt to make sense of new information, can promote learning. However, self-explaining takes time, and the learning benefits of this activity need to be rigorously evaluated against alternative uses of this time. Aims: In the current study, we compared the effectiveness of…

  14. Building v/s Exploring Models: Comparing Learning of Evolutionary Processes through Agent-based Modeling

    NASA Astrophysics Data System (ADS)

    Wagh, Aditi

    Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both modalities, with students who built models not incorporating slippage explanations in responses. Study 3 compares these modalities with a control using traditional activities. Pre and posttests reveal that the two modalities manifested greater facility with accessing and assembling rules than the control. The dissertation offers implications for the design of learning environments for evolutionary change, design of the two modalities based on their strengths and weaknesses, and teacher training for the same.

  15. Working Notes of the 1990 Spring Symposium on Automated Abduction

    DTIC Science & Technology

    1990-09-27

    possibilities for abstracting the leaf nodes in using apprenticeship learning techniques. In LTCAI.E the proof tree. Morgan Kaufmann, 1987. A detailed...ibm.com Abstract planation process and compute particular operational A major limitation of explanation-based learn - descriptions of the target...for the learning that would be difficult or impos- 3n educated, somewhat abstract guess at why the pro- sible using abduction. I position is likely to

  16. "Why Does Rain Fall?": Children Prefer to Learn from an Informant Who Uses Noncircular Explanations

    ERIC Educational Resources Information Center

    Corriveau, Kathleen H.; Kurkul, Katelyn E.

    2014-01-01

    These two studies explored 3- and 5-year-olds' evaluation of noncircular and circular explanations, and their use of such explanations to determine informant credibility. Although 5-year-olds demonstrated a selective preference for noncircular over circular explanations (Experiment 1: Long Explanations; Experiment 2: Short Explanations),…

  17. Effects of Using Self-Explanation on a Web-Based Chinese Sentence-Learning System

    ERIC Educational Resources Information Center

    Chang, Jia-Wei; Lee, Ming-Che; Su, Chien-Yuan; Wang, Tzone-I

    2017-01-01

    Chinese as a foreign language (CFL) learners generally encounter difficulty in using some special rules of Chinese grammar because such grammar points do not exist in their native languages. CFL learners require an effective learning strategy to assist them in acquiring a greater understanding of Chinese grammar. Thus, we integrated a…

  18. Evaluation of a Digital Learning Object for the Monty Hall Dilemma

    ERIC Educational Resources Information Center

    DiBattista, David

    2011-01-01

    The Monty Hall dilemma (MHD) is a remarkably difficult probability problem with a counterintuitive solution. Undergraduate students used an interactive digital learning object that provided a set-based, animated explanation of the solution to the MHD and let them play games designed to increase understanding of the solution. More than 60% of users…

  19. Introducing Laboratory Safety.

    ERIC Educational Resources Information Center

    DeLorenzo, Ronald

    1985-01-01

    Presents a simple, 10-item quiz designed to make students aware that they must learn laboratory safety. The items include questions on acid/base accidents, several types of fire extinguishers, and safety glassses. Answers and some explanations are included. (DH)

  20. A Model Counting Characterization of Diagnoses

    DTIC Science & Technology

    2002-05-04

    Hamscher et al., 1992] Hamscher W., Console L., and de [ Shanahan , 1993] Shanahan M. Explanation in the Situa- Kleer J. Readings in Model-Based Diagnosis...1998] Kohlas J., Anrig B., Haenni R., and ing: Diagnosis and Learning, Southampton, 1988. Monney P. A. Model-Based Diagnosis and Probabilistic [Struss

  1. Causal learning is collaborative: Examining explanation and exploration in social contexts.

    PubMed

    Legare, Cristine H; Sobel, David M; Callanan, Maureen

    2017-10-01

    Causal learning in childhood is a dynamic and collaborative process of explanation and exploration within complex physical and social environments. Understanding how children learn causal knowledge requires examining how they update beliefs about the world given novel information and studying the processes by which children learn in collaboration with caregivers, educators, and peers. The objective of this article is to review evidence for how children learn causal knowledge by explaining and exploring in collaboration with others. We review three examples of causal learning in social contexts, which elucidate how interaction with others influences causal learning. First, we consider children's explanation-seeking behaviors in the form of "why" questions. Second, we examine parents' elaboration of meaning about causal relations. Finally, we consider parents' interactive styles with children during free play, which constrains how children explore. We propose that the best way to understand children's causal learning in social context is to combine results from laboratory and natural interactive informal learning environments.

  2. The Education of Attention as Explanation of Variability of Practice Effects : Learning the Final Approach Phase in a Flight Simulator

    ERIC Educational Resources Information Center

    Huet, Michael; Jacobs, David M.; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles

    2011-01-01

    The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice…

  3. First-Year Biology Students' Understandings of Meiosis: An Investigation Using a Structural Theoretical Framework

    ERIC Educational Resources Information Center

    Quinn, Frances; Pegg, John; Panizzon, Debra

    2009-01-01

    Meiosis is a biological concept that is both complex and important for students to learn. This study aims to explore first-year biology students' explanations of the process of meiosis, using an explicit theoretical framework provided by the Structure of the Observed Learning Outcome (SOLO) model. The research was based on responses of 334…

  4. An Investigation of the Learning Strategies as Bias Factors in Second Language Cloze Tests

    ERIC Educational Resources Information Center

    Ajideh, Parviz; Yaghoubi-Notash, Massoud; Khalili, Abdolreza

    2017-01-01

    The present study investigated the contribution of the EFL students' learning strategies to the explanation of the variance in their results on language tests. More specifically, it examined the role of these strategies as bias factors in the results of English cloze tests. Based on this aim, first, 158 intermediate EFL learners were selected from…

  5. Assessing Learning Progression of Energy Concepts across Middle School Grades: The Knowledge Integration Perspective

    ERIC Educational Resources Information Center

    Lee, Hee-Sun; Liu, Ou Lydia

    2010-01-01

    We use a construct-based assessment approach to measure learning progression of energy concepts across physical, life, and earth science contexts in middle school grades. We model the knowledge integration construct in six levels in terms of the numbers of ideas and links used in student-generated explanations. For this study, we selected 10 items…

  6. A Normativist Account of Language-Based Learning Disability

    ERIC Educational Resources Information Center

    Tomblin, J. Bruce

    2006-01-01

    Research on learning disabilities (LD) depends upon a conceptual framework that specifies what it should explain, what kinds of data are needed, and how these data are to be arranged in order to provide a meaningful explanation. An argument is made that LD are no different in this respect than any other form of human illness. In this article, a…

  7. Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry

    NASA Astrophysics Data System (ADS)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2017-12-01

    This paper describes a multiple case study on open inquiry-based learning in primary schools. During open inquiry, teachers often experience difficulties in balancing support and transferring responsibility to pupils' own learning. To facilitate teachers in guiding open inquiry, we developed hard and soft scaffolds. The hard scaffolds consisted of documents with explanations and/or exercises regarding difficult parts of the inquiry process. The soft scaffolds included explicit references to and additional explanations of the hard scaffolds. We investigated how teacher implementation of these scaffolds contributed to pupils' self-directed learning during open inquiry. Four classes of pupils, aged 10-11, were observed while they conducted an inquiry lesson module of about 10 lessons in their classrooms. Data were acquired via classroom observations, audio recordings, and interviews with teachers and pupils. The results show that after the introduction of the hard scaffolds by the teacher, pupils were able and willing to apply them to their investigations. Combining hard scaffolds with additional soft scaffolding promoted pupils' scientific understanding and contributed to a shared guidance of the inquiry process by the teacher and her pupils. Our results imply that the effective use of scaffolds is an important element to be included in teacher professionalisation.

  8. The Effects of Self-Explanation and Reading Questions and Answers on Learning Computer Programming Language

    ERIC Educational Resources Information Center

    Lee, Nancy

    2013-01-01

    The current study explored the differential effects of two learning strategies, self-explanation and reading questions and answers, on students' test performance in the computer programming language JavaScript. Students' perceptions toward the two strategies as to their effectiveness in learning JavaScript was also explored by examining students'…

  9. Engagement, Exploration, Explanation, Extension, and Evaluation (5E) Learning Cycle and Conceptual Change Text as Learning Tools

    ERIC Educational Resources Information Center

    Balci, Sibel; Cakiroglu, Jale; Tekkaya, Ceren

    2006-01-01

    The purpose of this study is to investigate the effects of the Engagement, Exploration, Explanation, Extension, and Evaluation (5E) learning cycle, conceptual change texts, and traditional instructions on 8th grade students' understanding of photosynthesis and respiration in plants. Students' understanding of photosynthesis and respiration in…

  10. Young Children Prefer and Remember Satisfying Explanations

    ERIC Educational Resources Information Center

    Frazier, Brandy N.; Gelman, Susan A.; Wellman, Henry M.

    2016-01-01

    Research with preschool children has shown that explanations are important to them in that they actively seek explanations in their conversations with adults. But what sorts of explanations do they prefer, and what, if anything, do young children learn from the explanations they receive? Following a preliminary study with adults (N = 67) to…

  11. Curriculum-­Based Assessment: A Primer. 4th Edition

    ERIC Educational Resources Information Center

    Hargis, Charles H.

    2013-01-01

    Thoroughly updated and expanded, this fourth edition focuses on the use of curriculum-based assessment to ensure learning disabled and low achieving students adequate educational opportunities. The text explores ways of providing detail and explanation in the context of current and emerging issues in educational assessment and standards. The point…

  12. A General Explanation-Based Learning Mechanism and Its Application to Narrative Understanding.

    DTIC Science & Technology

    1987-12-01

    sitive emotional relationship with the victim and conse- cquentlv valued her freedom more than personal possessions. This generalization is important...Generalizing Algorithin 2tc.as - men r.red rh rev;ous foo-.r.ote. *.he Bac&?-,-a~a,.e ucjr.presented i.:ony b dCei rol prCp 711 pro-agatc C r~~sac-oss orcs the...explanation. As men - tioned earlier. PROLOC-EBG elegantly integrates generalization with the theorem proving process. and MRS-EBG elegan ti

  13. A Technology-Enhanced Unit of Modeling Static Electricity: Integrating scientific explanations and everyday observations

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Linn, Marcia C.

    2011-08-01

    What trajectories do students follow as they connect their observations of electrostatic phenomena to atomic-level visualizations? We designed an electrostatics unit, using the knowledge integration framework to help students link observations and scientific ideas. We analyze how learners integrate ideas about charges, charged particles, energy, and observable events. We compare learning enactments in a typical school and a magnet school in the USA. We use pre-tests, post-tests, embedded notes, and delayed post-tests to capture the trajectories of students' knowledge integration. We analyze how visualizations help students grapple with abstract electrostatics concepts such as induction. We find that overall students gain more sophisticated ideas. They can interpret dynamic, interactive visualizations, and connect charge- and particle-based explanations to interpret observable events. Students continue to have difficulty in applying the energy-based explanation.

  14. Dynamic Optimization

    NASA Technical Reports Server (NTRS)

    Laird, Philip

    1992-01-01

    We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.

  15. Communication-Based Classrooms.

    ERIC Educational Resources Information Center

    Kretschmer, Richard R., Jr.; Kretschmer, Laura W.

    1995-01-01

    Addresses three issues in developing the communication abilities of students with hearing impairments: (1) teaching the six primary discourse functions (narration, explanation, contrast-comparison, instruction giving, persuasion, and negotiation); (2) tensions between time needed for language learning and covering curriculum content; and (3)…

  16. Teaching AI Search Algorithms in a Web-Based Educational System

    ERIC Educational Resources Information Center

    Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis

    2013-01-01

    In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…

  17. A Curriculum Guide for Energy Education - Vocational Home Economics Education. A Guide for Planning Performance-Based Energy Education in Home Economics Education Programs.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Home Economics Education Section.

    This guide serves as a resource for performance-based learning experiences designed to assist secondary school home economics students in developing competencies essential for effective energy use and management. A rationale for performance-based vocational education; definitions/explanations of the terms…

  18. Impact of Self-Explanation and Analogical Comparison Support on Learning Processes, Motivation, Metacognition, and Transfer

    NASA Astrophysics Data System (ADS)

    Richey, J. Elizabeth

    Research examining analogical comparison and self-explanation has produced a robust set of findings about learning and transfer supported by each instructional technique. However, it is unclear how the types of knowledge generated through each technique differ, which has important implications for cognitive theory as well as instructional practice. I conducted a pair of experiments to directly compare the effects of instructional prompts supporting self-explanation, analogical comparison, and the study of instructional explanations across a number of fine-grained learning process, motivation, metacognition, and transfer measures. Experiment 1 explored these questions using sequence extrapolation problems, and results showed no differences between self-explanation and analogical comparison support conditions on any measure. Experiment 2 explored the same questions in a science domain. I evaluated condition effects on transfer outcomes; self-reported self-explanation, analogical comparison, and metacognitive processes; and achievement goals. I also examined relations between transfer and self-reported processes and goals. Receiving materials with analogical comparison support and reporting greater levels of analogical comparison were both associated with worse transfer performance, while reporting greater levels of self-explanation was associated with better performance. Learners' self-reports of self-explanation and analogical comparison were not related to condition assignment, suggesting that the questionnaires did not measure the same processes promoted by the intervention, or that individual differences in processing are robust even when learners are instructed to engage in self-explanation or analogical comparison.

  19. Selective effects of explanation on learning during early childhood.

    PubMed

    Legare, Cristine H; Lombrozo, Tania

    2014-10-01

    Two studies examined the specificity of effects of explanation on learning by prompting 3- to 6-year-old children to explain a mechanical toy and comparing what they learned about the toy's causal and non-causal properties with children who only observed the toy, both with and without accompanying verbalization. In Study 1, children were experimentally assigned to either explain or observe the mechanical toy. In Study 2, children were classified according to whether the content of their response to an undirected prompt involved explanation. Dependent measures included whether children understood the toy's functional-mechanical relationships, remembered perceptual features of the toy, effectively reconstructed the toy, and (for Study 2) generalized the function of the toy when constructing a new one. Results demonstrate that across age groups, explanation promotes causal learning and generalization but does not improve (and in younger children can even impair) memory for causally irrelevant perceptual details. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Interactive Explanations: The Functional Role of Gestural and Bodily Action for Explaining and Learning Scientific Concepts in Face-to-Face Arrangements

    NASA Astrophysics Data System (ADS)

    Scopelitis, Stephanie A.

    As human beings, we live in, live with, and live through our bodies. And because of this it is no wonder that our hands and bodies are in motion as we interact with others in our world. Hands and body move as we give directions to another, anticipate which way to turn the screwdriver, and direct our friend to come sit next to us. Gestures, indeed, fill our everyday lives. The purpose of this study is to investigate the functional role of the body in the parts of our lives where we teach and learn with another. This project is an investigation into, what I call, "interactive explanations". I explore how the hands and body work toward the joint achievement of explanation and learning in face-to-face arrangements. The study aims to uncover how the body participates in teaching and learning in and across events as it slides between the multiple, interdependent roles of (1) a communicative entity, (2) a tool for thinking, and (3) a resource to shape interaction. Understanding gestures functional roles as flexible and diverse better explains how the body participates in teaching and learning interactions. The study further aims to show that these roles and functions are dynamic and changeable based on the interests, goals and contingencies of participants' changing roles and aims in interactions, and within and across events. I employed the methodology of comparative microanalysis of pairs of videotaped conversations in which, first, experts in STEM fields (Science, Technology, Engineering and Mathematics) explained concepts to non-experts, and second, these non-experts re-explained the concept to other non-experts. The principle finding is that people strategically, creatively and collaboratively employ the hands and body as vital and flexible resources for the joint achievement of explanation and understanding. Findings further show that gestures used to explain complex STEM concepts travel across time with the non-expert into re-explanations of the concept. My analysis demonstrates that gestures and the body are complex, multi-functional resources that work toward cognitive, communicative, and interactional achievement and, as such, are viable resources for teaching and learning in face-to-face interaction.

  1. Why Sketching May Aid Learning From Science Texts: Contrasting Sketching With Written Explanations.

    PubMed

    Scheiter, Katharina; Schleinschok, Katrin; Ainsworth, Shaaron

    2017-10-01

    The goal of this study was to explore two accounts for why sketching during learning from text is helpful: (1) sketching acts like other constructive strategies such as self-explanation because it helps learners to identify relevant information and generate inferences; or (2) that in addition to these general effects, sketching has more specific benefits due to the pictorial representation that is constructed. Seventy-three seventh-graders (32 girls, M = 12.82 years) were first taught how to either create sketches or self-explain while studying science texts. During a subsequent learning phase, all students were asked to read an expository text about the greenhouse effect. Finally, they were asked to write down everything they remembered and then answer transfer questions. Strategy quality during learning was assessed as the number of key concepts that had either been sketched or mentioned in the self-explanations. The results showed that at an overall performance level there were only marginal group differences. However, a more in-depth analysis revealed that whereas no group differences emerged for students implementing either strategy poorly, the sketching group clearly outperformed the self-explanation group for students who applied the strategies with higher quality. Furthermore, higher sketching quality was strongly related to better learning outcomes. Thus, the study's results are more in line with the second account: Sketching can have a beneficial effect on learning above and beyond generating written explanations; at least, if well deployed. Copyright © 2017 Cognitive Science Society, Inc.

  2. Using Online Measures to Determine How Learners Process Instructional Explanations

    ERIC Educational Resources Information Center

    Sanchez, Emilio; Garcia-Rodicio, Hector

    2013-01-01

    The goal of the present study was to examine the mechanisms underlying a strategy that we developed to make instructional explanations effective. In two experiments participants learned about plate tectonics from a multimedia material, including adjunct explanations that revised common misunderstandings. These explanations were either marked…

  3. The Effect of Self-Explaining on Robust Learning

    ERIC Educational Resources Information Center

    Hausmann, Robert G. M.; VanLehn, Kurt

    2010-01-01

    Self-explaining is a domain-independent learning strategy that generally leads to a robust understanding of the domain material. However, there are two potential explanations for its effectiveness. First, self-explanation generates additional "content" that does not exist in the instructional materials. Second, when compared to…

  4. Constructing Image-Based Culture Definitions Using Metaphors: Impact of a Cross-Cultural Immersive Experience

    ERIC Educational Resources Information Center

    Tuleja, Elizabeth A.

    2017-01-01

    This study provides an approach to teaching and learning in the international business (IB) classroom about cultural values, beliefs, attitudes, and norms through the study of cultural metaphor. The methodology is based on established qualitative methods by using participants' visual pictures and written explanations--representative of their…

  5. Curriculum Based Assessment: A Primer. 3rd Edition

    ERIC Educational Resources Information Center

    Hargis, Charles H.

    2004-01-01

    The use of curriculum based assessment (CBA) to ensure learning disabled and low achieving students adequate educational opportunity remains the focus in this direct and comprehensive third edition. The additions to this edition are in the way of providing detail and explanation in the context of current and emerging issues in educational…

  6. Considering the Efficacy of Web-Based Worked Examples in Introductory Chemistry

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Earl, Boyd L.

    2004-01-01

    Theory suggests that studying worked examples and engaging in self-explanation will improve learning and problem solving. A growing body of evidence supports the use of web-based assessments for improving undergraduate performance in traditional large enrollment courses. This article describes a study designed to investigate these techniques in a…

  7. Learning to Understand the Forms of Causality Implicit in Scientifically Accepted Explanations

    ERIC Educational Resources Information Center

    Grotzer, Tina A.

    2003-01-01

    Considerable research illuminates the development of causal understanding. However, the research base is hardly a coherent whole. Some is based in research on children's understanding of particular science concepts. Some grows out of social psychology and considers how one attributes intentions and behaviors. Some comes from the developmental…

  8. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  9. Development of an Empirically Based Learning Performances Framework for Third-Grade Students' Model-Based Explanations about Plant Processes

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2016-01-01

    To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…

  10. Exploring the Effect of Embedded Scaffolding Within Curricular Tasks on Third-Grade Students' Model-Based Explanations about Hydrologic Cycling

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Forbes, Cory T.; Schwarz, Christina V.

    2015-10-01

    Opportunities to generate model-based explanations are crucial for elementary students, yet are rarely foregrounded in elementary science learning environments despite evidence that early learners can reason from models when provided with scaffolding. We used a quasi-experimental research design to investigate the comparative impact of a scaffold test condition consisting of embedded physical scaffolds within a curricular modeling task on third-grade (age 8-9) students' formulation of model-based explanations for the water cycle. This condition was contrasted to the control condition where third-grade students used a curricular modeling task with no embedded physical scaffolds. Students from each condition ( n scaffold = 60; n unscaffold = 56) generated models of the water cycle before and after completion of a 10-week water unit. Results from quantitative analyses suggest that students in the scaffolded condition represented and linked more subsurface water process sequences with surface water process sequences than did students in the unscaffolded condition. However, results of qualitative analyses indicate that students in the scaffolded condition were less likely to build upon these process sequences to generate model-based explanations and experienced difficulties understanding their models as abstracted representations rather than recreations of real-world phenomena. We conclude that embedded curricular scaffolds may support students to consider non-observable components of the water cycle but, alone, may be insufficient for generation of model-based explanations about subsurface water movement.

  11. Tackling the Difficulties in Learning Evolution: Effects of Adaptive Self-Explanation Prompts

    ERIC Educational Resources Information Center

    Neubrand, Charlotte; Harms, Ute

    2017-01-01

    Teaching and learning evolution is challenging. Biology education research shows that the underlying evolutionary concepts are poorly understood among students. This prevents a meaningful understanding of the central biological concepts. The instructional format of self-explanation prompts seems to be promising to respond to these difficulties.…

  12. Preservice Elementary Teachers and Explanation Construction: Knowledge-"for"-Practice and Knowledge-"in"-Practice

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2013-01-01

    Effectively designed science learning environments revolve around students' sensemaking through the use of evidence to ground explanations about natural phenomena. However, little research has been conducted to investigate elementary teachers' learning to promote students' sensemaking in elementary (K-5) classrooms. The purpose of this…

  13. Explanations and Context in the Emergence of Students' Informal Inferential Reasoning

    ERIC Educational Resources Information Center

    Gil, Einat; Ben-Zvi, Dani

    2011-01-01

    Explanations are considered to be key aids to understanding the study of mathematics, science, and other complex disciplines. This paper discusses the role of students' explanations in making sense of data and learning to reason informally about statistical inference. We closely follow students' explanations in which they utilize their experiences…

  14. The Mismatch between Students' Mental Models of Acids/Bases and Their Sources and Their Teacher's Anticipations Thereof

    ERIC Educational Resources Information Center

    Lin, Jing-Wen; Chiu, Mei-Hung

    2010-01-01

    The aim of this study is to compare the characteristics and sources of students' mental models of acids and bases with a teacher's anticipations and, based on this comparison, to explore some possible explanations why motivated students might fail to learn from a subject-knowledgeable chemistry teacher. The study involves a chemistry teacher and…

  15. Acoustic Salience and Input Frequency in L2 Lexical Tone Learning: Evidence from a Zapotec Revitalization Program in San Pablo Macuiltianguis

    ERIC Educational Resources Information Center

    Riestenberg, Katherine J.

    2017-01-01

    Second language (L2) learners of tone languages do not perceive and produce the different tones of the target language with equal ease. The most common explanation for these asymmetries is that acoustically salient tones are the easiest to learn. An alternative explanation is that tones are easiest to learn when they are highly frequent in the…

  16. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback

    PubMed Central

    Guggenmos, Matthias; Wilbertz, Gregor; Hebart, Martin N; Sterzer, Philipp

    2016-01-01

    It is well established that learning can occur without external feedback, yet normative reinforcement learning theories have difficulties explaining such instances of learning. Here, we propose that human observers are capable of generating their own feedback signals by monitoring internal decision variables. We investigated this hypothesis in a visual perceptual learning task using fMRI and confidence reports as a measure for this monitoring process. Employing a novel computational model in which learning is guided by confidence-based reinforcement signals, we found that mesolimbic brain areas encoded both anticipation and prediction error of confidence—in remarkable similarity to previous findings for external reward-based feedback. We demonstrate that the model accounts for choice and confidence reports and show that the mesolimbic confidence prediction error modulation derived through the model predicts individual learning success. These results provide a mechanistic neurobiological explanation for learning without external feedback by augmenting reinforcement models with confidence-based feedback. DOI: http://dx.doi.org/10.7554/eLife.13388.001 PMID:27021283

  17. Measuring scientific reasoning through behavioral analysis in a computer-based problem solving exercise

    NASA Astrophysics Data System (ADS)

    Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.

    2016-12-01

    Developing scientific reasoning skills is a common learning objective for general-education science courses. However, effective assessments for such skills typically involve open-ended questions or tasks, which must be hand-scored and may not be usable online. Using computer-based learning environments, reasoning can be assessed automatically by analyzing student actions within the learning environment. We describe such an assessment under development and present pilot results. In our content-neutral instrument, students solve a problem by collecting and interpreting data in a logical, systematic manner. We then infer reasoning skill automatically based on student actions. Specifically, students investigate why Earth has seasons, a scientifically simple but commonly misunderstood topic. Students are given three possible explanations and asked to select a set of locations on a world map from which to collect temperature data. They then explain how the data support or refute each explanation. The best approaches will use locations in both the Northern and Southern hemispheres to argue that the contrasting seasonality of the hemispheres supports only the correct explanation. We administered a pilot version to students at the beginning of an online, introductory science course (n = 223) as an optional extra credit exercise. We were able to categorize students' data collection decisions as more and less logically sound. Students who choose the most logical measurement locations earned higher course grades, but not significantly higher. This result is encouraging, but not definitive. In the future, we will clarify our results in two ways. First, we plan to incorporate more open-ended interactions into the assessment to improve the resolving power of this tool. Second, to avoid relying on course grades, we will independently measure reasoning skill with one of the existing hand-scored assessments (e.g., Critical Thinking Assessment Test) to cross-validate our new assessment.

  18. Characterizing Students' Attempts to Explain Observations from Practical Work: Intermediate Phases of Understanding

    NASA Astrophysics Data System (ADS)

    Mestad, Idar; Kolstø, Stein Dankert

    2017-10-01

    This study aims to characterize a group of students' preliminary oral explanations of a scientific phenomenon produced as part of their learning process. The students were encouraged to use their own wordings to test out their own interpretation of observations when conducting practical activities. They presented their explanations orally in the whole class after having discussed and written down an explanation in a small group. The data consists of transcribed video recordings of the presented explanations, observation notes, and interviews. A genre perspective was used to characterize the students' explanations together with analysis of the students use of scientific terms, gestures, and the language markers "sort of" and "like." Based on the analysis we argue to separate between event-focused explanations, where the students describe how objects move, and object-focused explanations, where the students describe object properties and interactions. The first type uses observable events and few scientific terms, while the latter contains object properties and tentative use of scientific terms. Both types are accompanied by an extensive use of language markers and gestures. A third category, term-focused explanations, is used when the students only provide superficial explanations by expressing scientific terms. Here, the students' use of language markers and gestures are low. The analyses shows how students' explanations can be understood as tentative attempts to build on their current understanding and observations while trying to reach out for a deeper and scientific way of identifying observations and building explanations and new ways of talking.

  19. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2010-03-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought and daily life, it has long been the subject of debate and criticism among philosophers and scientists. In this paper, I begin by providing a description of some general tendencies of common reasoning that have been identified by didactic research. Thereafter, I briefly discuss the role of causality in science, as well as some different types of explanation employed in the field of physics. I then present some results of a study examining the causal reasoning used by students in solid and fluid mechanics. The differences found between the types of reasoning typical of common thought and those usually proposed during instruction can create learning difficulties and impede student motivation. Many students do not seem satisfied by the mere application of formal laws and functional relations. Instead, they express the need for a causal explanation, a mechanism that allows them to understand how a state of affairs has come about. I discuss few didactic strategies aimed at overcoming these problems, and describe, in general terms, two examples of mechanics teaching sequences which were developed and tested in different contexts. The paper ends with a reflection on the possible role to be played in physics learning by intuitive and imaginative thought, and the use of simple explanatory models based on physical analogies and causal mechanisms.

  20. Enhancing Elementary Students' Experiences Learning about Circuits Using an Exploration-Explanation Instructional Sequence

    ERIC Educational Resources Information Center

    Brown, Timothy M.; Brown, Patrick L.

    2010-01-01

    Using an exploration-explanation sequence of science instruction helps teachers unveil students' prior knowledge about circuits and engage them in minds-on science learning. In these lessons, fourth grade students make predictions and test their ideas about circuits in series through hands-on investigations. The teacher helps students make…

  1. The Interrelations between Diagrammatic Representations and Verbal Explanations in Learning from Social Science Texts.

    ERIC Educational Resources Information Center

    Guri-Rozenblit, Sarah

    1988-01-01

    Describes study that examined the instructional effectiveness of abstract diagrams and verbal explanations in learning from social science texts. The control and treatment groups of adult learners at Everyman's University (Israel) are described, verbal and visual aptitude tests are explained, and results are analyzed. (25 references) (Author/LRW)

  2. Competing Motor Responses: A Reply to Black

    ERIC Educational Resources Information Center

    Maier, Steven F.

    1977-01-01

    In his comment, Black (AA 526 155) argued that Maier and Seligman (EJ 138 911) incorrectly interpreted competing motor response explanations of the learned helplessness effect. Here, it is argued that no article that has proposed a competing motor response explanation of the learned helplessness effect has alluded to a mechanism similar to the one…

  3. Children Balance Theories and Evidence in Exploration, Explanation, and Learning

    ERIC Educational Resources Information Center

    Bonawitz, Elizabeth Baraff; van Schijndel, Tessa J. P.; Friel, Daniel; Schulz, Laura

    2012-01-01

    We look at the effect of evidence and prior beliefs on exploration, explanation and learning. In Experiment 1, we tested children both with and without differential prior beliefs about balance relationships (Center Theorists, mean: 82 months; Mass Theorists, mean: 89 months; No Theory children, mean: 62 months). Center and Mass Theory children who…

  4. Development of Mechanistic Reasoning and Multilevel Explanations of Ecology in Third Grade Using Agent-Based Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim; Farris, Amy Voss; Satabdi, Basu

    2016-01-01

    In this paper, we present a third-grade ecology learning environment that integrates two forms of modeling--embodied modeling and agent-based modeling (ABMs)--through the generation of mathematical representations that are common to both forms of modeling. The term "agent" in the context of ABMs indicates individual computational objects…

  5. Problem-Based Teaching in International Management: A Political/Economic Risk Assessment Exercise

    ERIC Educational Resources Information Center

    Daly, Paula S.; White, Marion M.; Zisk, Daniel S.; Cavazos, David E.

    2013-01-01

    This article draws from the current literature to examine problem-based learning (PBL) as a management education tool, and provides an example of how to incorporate PBL into an undergraduate international management course. Also included are an explanation of, and specific guidelines for, a PBL exercise focused on the analysis of "country risk"…

  6. Hotel-Motel Occupations: Hotel-Motel Clerk. Front Office Manager. Competency-Based Education Curriculum.

    ERIC Educational Resources Information Center

    McKinney, L. S.

    A teacher's guide and student curriculum are provided for a hotel-motel occupations competency-based education curriculum designed to facilitate the learning of skills for front office clerks and managers. The teacher's guide contains an explanation of the curriculum and suggested usage, a list of competencies by job title, evaluation aids,…

  7. How Do You Know That?: Guiding Early Elementary Students to Develop Evidence-Based Explanations about Animals

    ERIC Educational Resources Information Center

    Folsom, Jennifer; Hunt, Catherine; Cavicchio, Maria; Schoenemann, Anne; D'Amato, Matthew

    2007-01-01

    The purpose of many animal studies at early grades is to build observation skills, develop a knowledge base, and practice age-appropriate science skills like comparing, describing, and drawing. While these are important learning experiences, the National Science Education Standards also recommend that students engage in scientific inquiry (NRC…

  8. Women's Roles and Vulnerability to Depression.

    ERIC Educational Resources Information Center

    Haussmann, Monika Johanna

    Research has confirmed the prevalence of depression in women, based on theoretical explanations that encompass genetic/endocrinological factors, the learned helplessness model, the cognitive model of depression, the effects of marital and occupational roles, and/or social discrimination. Women (N=215) completed a questionnaire which examined…

  9. The use of tools for learning science in small groups

    NASA Astrophysics Data System (ADS)

    Valdes, Rosa Maria

    2000-10-01

    "Hands-on" learning through the use of tools or manipulatives representative of science concepts has long been an important component of the middle school science curriculum. However, scarce research exists on the impact of tool use on learning of science concepts, particularly on the processes involved in such learning. This study investigated how the use of tools by students engaged in small group discussion about the concept of electrical resistance and the explanations that accompany such use leads to improved understandings of the concept. Specifically, the main hypothesis of the study was that students who observe explanations by their high-ability peers accompanied by accurate tool use and who are highly engaged in these explanations would show learning gains. Videotaped interactions of students working in small groups to solve tasks on electricity were coded using scales that measured the accuracy of the tool use, the accuracy of the explanations presented, and the level of engagement of target students. The data of 48 students whose knowledge of the concept of resistance was initially low and who also were determined to be low achievers as shown by their scores on a set of pretest, was analyzed. Quantitative and qualitative analyses showed that students who observed their peers give explanations using tools and who were engaged at least moderately made gains in their understandings of resistance. Specifically, the results of regression analyses showed that both the level of accuracy of a high-ability peer's explanation and the target student's level of engagement in the explanation significantly predicted target students' outcome scores. The number of presentations offered by a high-ability peer also significantly predicted outcome scores. Case study analyses of six students found that students who improved their scores the most from pretest to posttest had high-ability peers who tended to be verbal and who gave numerous explanations, whereas students who improved the least had high-ability peers who gave no explanations at all. Important implications of this study for teaching are that (1) teachers should group students heterogeneously and should monitor students' small groups to insure that students are producing content-oriented discussion, and (2) students should be allowed to manipulate tools that allow experimentation as students build understandings and promote communication of abstract ideas.

  10. Learning and cognition in insects.

    PubMed

    Giurfa, Martin

    2015-01-01

    Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing. © 2015 John Wiley & Sons, Ltd.

  11. A Meta-analysis Method to Advance Design of Technology-Based Learning Tool: Combining Qualitative and Quantitative Research to Understand Learning in Relation to Different Technology Features

    NASA Astrophysics Data System (ADS)

    Zhang, Lin

    2014-02-01

    Educators design and create various technology tools to scaffold students' learning. As more and more technology designs are incorporated into learning, growing attention has been paid to the study of technology-based learning tool. This paper discusses the emerging issues, such as how can learning effectiveness be understood in relation to different technology features? And how can pieces of qualitative and quantitative results be integrated to achieve a broader understanding of technology designs? To address these issues, this paper proposes a meta-analysis method. Detailed explanations about the structure of the methodology and its scientific mechanism are provided for discussions and suggestions. This paper ends with an in-depth discussion on the concerns and questions that educational researchers might raise, such as how this methodology takes care of learning contexts.

  12. In search for instructional techniques to maximize the use of germane cognitive resources: A case of teaching complex tasks in physics

    NASA Astrophysics Data System (ADS)

    Sliva, Yekaterina

    The purpose of this study was to introduce an instructional technique for teaching complex tasks in physics, test its effectiveness and efficiency, and understand cognitive processes taking place in learners' minds while they are exposed to this technique. The study was based primarily on cognitive load theory (CLT). CLT determines the amount of total cognitive load imposed on a learner by a learning task as combined intrinsic (invested in comprehending task complexity) and extraneous (wasteful) cognitive load. Working memory resources associated with intrinsic cognitive load are defined as germane resources caused by element interactivity that lead to learning, in contrast to extraneous working memory resources that are devoted to dealing with extraneous cognitive load. However, the amount of learner's working memory resources actually devoted to a task depends on how well the learner is engaged in the learning environment. Since total cognitive load has to stay within limits of working memory capacity, both extraneous and intrinsic cognitive load need to be reduced. In order for effective learning to occur, the use of germane cognitive resources should be maximized. In this study, the use of germane resources was maximized for two experimental groups by providing a learning environment that combined problem-solving procedure with prompts to self-explain with and without completion problems. The study tested three hypotheses and answered two research questions. The first hypothesis predicting that experimental treatments would reduce total cognitive load was not supported. The second hypothesis predicting that experimental treatments would increase performance was supported for the self-explanation group only. The third hypothesis that tested efficiency measure as adopted from Paas and van Merrienboer (1993) was not supported. As for the research question of whether the quality of self-explanations would change with time for the two experimental conditions, it was determined that time had a positive effect on such quality. The research question that investigated learners' attitudes towards the instructions revealed that experimental groups understood the main idea behind the suggested technique and positively reacted to it. The results of the study support the conclusions that (a) prompting learners to self-explain while independently solving problems can increase performance, especially on far transfer questions; (b) better performance is achieved in combination with increased mental effort; (c) self-explanations do not increase time on task; and (d) quality of self-explanations can be improved with time. Results based on the analyses of learners' attitudes further support that learners in the experimental groups understood the main idea behind the suggested techniques and positively reacted to them. The study also raised concern about application of efficiency formula for instructional conditions that increase both performance and mental effort in CLT. As a result, an alternative model was suggested to explain the relationship between performance and mental effort based on Yerkes-Dodson law (1908). Keywords: instructional design, cognitive load, complex tasks, problem-solving, self-explanation.

  13. Vocabulary Explanations in CLIL Classrooms: A Conversation Analysis Perspective

    ERIC Educational Resources Information Center

    Morton, Tom

    2015-01-01

    This article uses a conversation analysis methodology to examine how lexical Focus on Form is interactionally accomplished in teachers' vocabulary explanations in secondary Content and Language Integrated Learning (CLIL) classrooms. Recent conversation-analytic work has focused on the interactional organisation of vocabulary explanations in…

  14. Fire and Ecological Disturbance

    ERIC Educational Resources Information Center

    Dentzau, Michael; Sampson, Victor

    2011-01-01

    Misconceptions are not simply factual errors or a lack of understanding, but rather explanations that are constructed based on past experiences (Hewson and Hewson 1988). If students' misconceptions are not directly engaged in the learning process, they may persist--even when faced with instruction to the contrary (Bransford, Brown, and Cocking…

  15. Parent Explanation and Preschoolers' Exploratory Behavior and Learning in a Shadow Exhibition

    ERIC Educational Resources Information Center

    Van Schijndel, Tessa J. P.; Raijmakers, Maartje E. J.

    2016-01-01

    The present study fills a gap in existing visitor research by focusing on the preschool age group. The study explores relationships between parent explanation, children's exploratory behavior, and their domain-specific learning in a shadow exhibition. In addition, the effect of a preceding theater show on child and parent behaviors is examined. In…

  16. Enhancing Learning from Different Visualizations by Self-Explanation Prompts

    ERIC Educational Resources Information Center

    Lin, Lijia; Atkinson, Robert K.

    2013-01-01

    The purpose of the two experiments was to investigate the potential effects of different types of visualizations and self-explanation prompts on learning human cardiovascular system in a multimedia environment. In Experiments 1 and 2, 70 and 44 college students were randomly assigned to one of the four conditions in a 2 × 2 factorial design with…

  17. Supporting Reform-Oriented Secondary Science Teaching through the Use of a Framework to Analyze Construction of Scientific Explanations

    ERIC Educational Resources Information Center

    Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora

    2016-01-01

    The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice…

  18. What Can Be Learned from Inverse Statistics?

    NASA Astrophysics Data System (ADS)

    Ahlgren, Peter Toke Heden; Dahl, Henrik; Jensen, Mogens Høgh; Simonsen, Ingve

    One stylized fact of financial markets is an asymmetry between the most likely time to profit and to loss. This gain-loss asymmetry is revealed by inverse statistics, a method closely related to empirically finding first passage times. Many papers have presented evidence about the asymmetry, where it appears and where it does not. Also, various interpretations and explanations for the results have been suggested. In this chapter, we review the published results and explanations. We also examine the results and show that some are at best fragile. Similarly, we discuss the suggested explanations and propose a new model based on Gaussian mixtures. Apart from explaining the gain-loss asymmetry, this model also has the potential to explain other stylized facts such as volatility clustering, fat tails, and power law behavior of returns.

  19. Design of multiple representations e-learning resources based on a contextual approach for the basic physics course

    NASA Astrophysics Data System (ADS)

    Bakri, F.; Muliyati, D.

    2018-05-01

    This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.

  20. Performance Evaluation of an Online Argumentation Learning Assistance Agent

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Wang, Yu-Wu; Huang, Tz-Hau; Chen, Ying-Chen; Chen, Heng-Ming; Chang, Shun-Chih

    2011-01-01

    Recent research indicated that students' ability to construct evidence-based explanations in classrooms through scientific inquiry is critical to successful science education. Structured argumentation support environments have been built and used in scientific discourse in the literature. To the best of our knowledge, no research work in the…

  1. How to Individualize Mathematics Successfully: With Materials for Implementation.

    ERIC Educational Resources Information Center

    Vinskey, Mildred L.

    Presented is a method for individualizing mathematics which utilizes the "Learning Activities Package" (LAP). LAP is a self-contained unit based on specific behavioral objectives which contains a pretest, a posttest, examples, explanations, and activities. The topics covered include but are not limited to: multiplication and division by powers of…

  2. Connecting Worlds: Interculturality, Identity and Multilingual Digital Stories in the Making

    ERIC Educational Resources Information Center

    Anderson, Jim; Macleroy, Vicky

    2017-01-01

    Based on findings from a 5-year research project called "Critical Connections", this article sets out an integrated framework for language learning in the context of multilingual digital storytelling. Following an explanation of the theoretical approach, four vignettes are presented which illustrate the principles in practice.…

  3. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2015-01-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…

  4. Exploring the Development of Fifth Graders' Practical Epistemologies and Explanation Skills in Inquiry-Based Learning Classrooms

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Wu, Chia-Lien

    2011-01-01

    The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific…

  5. Scientific Explanations: Characterizing and Evaluating the Effects of Teachers' Instructional Practices on Student Learning

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Krajcik, Joseph

    2008-01-01

    Teacher practices are essential for supporting students in scientific inquiry practices, such as the construction of scientific explanations. In this study, we examine what instructional practices teachers engage in when they introduce scientific explanation and whether these practices influence students' ability to construct scientific…

  6. Learning the Language of Evolution: Lexical Ambiguity and Word Meaning in Student Explanations

    ERIC Educational Resources Information Center

    Rector, Meghan A.; Nehm, Ross H.; Pearl, Dennis

    2013-01-01

    Our study investigates the challenges introduced by students' use of lexically ambiguous language in evolutionary explanations. Specifically, we examined students' meaning of five key terms incorporated into their written evolutionary explanations: "pressure", "select", "adapt", "need", and "must". We utilized a new technological tool known as the…

  7. The Effect of Self-Explanation and Prediction on the Development of Principled Understanding of Chess in Novices

    ERIC Educational Resources Information Center

    de Bruin, Anique B. H.; Rikers, Remy M. J. P.; Schmidt, Henk G.

    2007-01-01

    The present study was designed to test the effect of self-explanation and prediction on the development of principled understanding of novices learning to play chess. First-year psychology students, who had no chess experience, first learned the basic rules of chess and were afterwards divided in three conditions. They either observed (control…

  8. Iterated learning and the evolution of language.

    PubMed

    Kirby, Simon; Griffiths, Tom; Smith, Kenny

    2014-10-01

    Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Preserved learning of novel information in amnesia: evidence for multiple memory systems.

    PubMed

    Gordon, B

    1988-06-01

    Four of five patients with marked global amnesia, and others with new learning impairments, showed normal processing facilitation for novel stimuli (nonwords) and/or for familiar stimuli (words) on a word/nonword (lexical) decision task. The data are interpreted as a reflection of the learning capabilities of in-line neural processing stages with multiple, distinct, informational codes. These in-line learning processes are separate from the recognition/recall memory impaired by amygdalohippocampal/dosomedial thalamic damage, but probably supplement such memory in some tasks in normal individuals. Preserved learning of novel information seems incompatible with explanations of spared learning in amnesia that are based on the episodic/semantic or memory/habit distinctions, but is consistent with the procedural/declarative hypothesis.

  10. Supporting students' knowledge integration with technology-enhanced inquiry curricula

    NASA Astrophysics Data System (ADS)

    Chiu, Jennifer Lopseen

    Dynamic visualizations of scientific phenomena have the potential to transform how students learn and understand science. Dynamic visualizations enable interaction and experimentation with unobservable atomic-level phenomena. A series of studies clarify the conditions under which embedding dynamic visualizations in technology-enhanced inquiry instruction can help students develop robust and durable chemistry knowledge. Using the knowledge integration perspective, I designed Chemical Reactions, a technology-enhanced curriculum unit, with a partnership of teachers, educational researchers, and chemists. This unit guides students in an exploration of how energy and chemical reactions relate to climate change. It uses powerful dynamic visualizations to connect atomic level interactions to the accumulation of greenhouse gases. The series of studies were conducted in typical classrooms in eleven high schools across the country. This dissertation describes four studies that contribute to understanding of how visualizations can be used to transform chemistry learning. The efficacy study investigated the impact of the Chemical Reactions unit compared to traditional instruction using pre-, post- and delayed posttest assessments. The self-monitoring study used self-ratings in combination with embedded assessments to explore how explanation prompts help students learn from dynamic visualizations. The self-regulation study used log files of students' interactions with the learning environment to investigate how external feedback and explanation prompts influence students' exploration of dynamic visualizations. The explanation study compared specific and general explanation prompts to explore the processes by which explanations benefit learning with dynamic visualizations. These studies delineate the conditions under which dynamic visualizations embedded in inquiry instruction can enhance student outcomes. The studies reveal that visualizations can be deceptively clear, deterring learners from exploring details. Asking students to generate explanations helps them realize what they don't understand and can spur students to revisit visualizations to remedy gaps in their knowledge. The studies demonstrate that science instruction focused on complex topics can succeed by combining visualizations with generative activities to encourage knowledge integration. Students are more successful at monitoring their progress and remedying gaps in knowledge when required to distinguish among alternative explanations. The results inform the design of technology-enhanced science instruction for typical classrooms.

  11. Supporting students' construction of scientific explanation through curricular scaffolds and teacher instructional practices

    NASA Astrophysics Data System (ADS)

    McNeill, Katherine Lynch

    An essential goal of classroom science is to help all students become scientifically literate to encourage greater public understanding in a science infused world. This type of literacy requires that students participate in scientific inquiry practices such as construction of arguments or scientific explanations in which they justify their claims with appropriate evidence and reasoning. Although scientific explanations are an important learning goal, this complex inquiry practice is frequently omitted from k-12 science classrooms and students have difficulty creating them. I investigated how two different curricular scaffolds (context-specific vs. generic), teacher instructional practices, and the interaction between these two types of support influence student learning of scientific explanations. This study focuses on an eight-week middle school chemistry curriculum, How can I make new stuff from old stuff?, which was enacted by six teachers with 578 students during the 2004-2005 school year. Overall, students' written scientific explanations improved during the unit in which they were provided with multiple forms of teacher and curricular support. A growth curve model of student learning showed that there was a significant difference in the effect of the two curricular scaffolds towards the end of the unit and on the posttest. The context-specific scaffolds resulted in greater student learning of how to write scientific explanations, but only for three of the six teachers. The case studies created from the videotapes of classroom enactments revealed that teachers varied in which instructional practices they engaged in and the quality of those practices. Analyses suggested that the curricular scaffolds and teacher instructional practices were synergistic in that the supports interacted and the effect of the written curricular scaffolds depended on the teacher's enactment of the curriculum. The context-specific curricular scaffolds were more successful in supporting students in this complex task only when teachers' enactments provided generic support for scientific explanation through instructional practices. For teachers who did not provide their students with generic support, neither curricular scaffold was more effective. Classrooms are complex systems in which multiple factors and the interactions between those factors influence student learning.

  12. The role of perspective taking in how children connect reference frames when explaining astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-02-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.

  13. Evidence for social learning in wild lemurs (Lemur catta).

    PubMed

    Kendal, Rachel L; Custance, Deborah M; Kendal, Jeremy R; Vale, Gillian; Stoinski, Tara S; Rakotomalala, Nirina Lalaina; Rasamimanana, Hantanirina

    2010-08-01

    Interest in social learning has been fueled by claims of culture in wild animals. These remain controversial because alternative explanations to social learning, such as asocial learning or ecological differences, remain difficult to refute. Compared with laboratory-based research, the study of social learning in natural contexts is in its infancy. Here, for the first time, we apply two new statistical methods, option-bias analysis and network-based diffusion analysis, to data from the wild, complemented by standard inferential statistics. Contrary to common thought regarding the cognitive abilities of prosimian primates, our evidence is consistent with social learning within subgroups in the ring-tailed lemur (Lemur catta), supporting the theory of directed social learning (Coussi-Korbel & Fragaszy, 1995). We also caution that, as the toolbox for capturing social learning in natural contexts grows, care is required in ensuring that the methods employed are appropriate-in particular, regarding social dynamics among study subjects. Supplemental materials for this article may be downloaded from http://lb.psychonomic-journals.org/content/supplemental.

  14. Assessing recall, conceptualization, and transfer capabilities of novice biochemistry students' across learning style preferences as revealed by self-explanations

    NASA Astrophysics Data System (ADS)

    Hilsenbeck-Fajardo, Jacqueline L.

    2009-08-01

    The research described herein is a multi-dimensional attempt to measure student's abilities to recall, conceptualize, and transfer fundamental and dynamic protein structure concepts as revealed by their own diagrammatic (pictorial) representations and written self-explanations. A total of 120 participants enrolled in a 'Fundamentals of Biochemistry' course contributed to this mixed-methodological study. The population of interest consisted primarily of pre-nursing and sport and exercise science majors. This course is typically associated with a high (<30%) combined drop/failure rate, thus the course provided the researcher with an ideal context in which to apply novel transfer assessment strategies. In the past, students within this population have reported very little chemistry background. In the following study, student-generated diagrammatic representations and written explanations were coded thematically using a highly objective rubric that was designed specifically for this study. Responses provided by the students were characterized on the macroscopic, microscopic, molecular-level, and integrated scales. Recall knowledge gain (i.e., knowledge that was gained through multiple-choice questioning techniques) was quantitatively correlated to learning style preferences (i.e., high-object, low-object, and non-object). Quantitative measures revealed that participants tended toward an object (i.e., snapshot) -based visualization preference, a potentially limiting factor in their desire to consider dynamic properties of fundamental biochemical contexts such as heat-induced protein denaturation. When knowledge transfer was carefully assessed within the predefined context, numerous misconceptions pertaining to the fundamental and dynamic nature of protein structure were revealed. Misconceptions tended to increase as the transfer model shifted away from the context presented in the original learning material. Ultimately, a fundamentally new, novel, and unique measure of knowledge transfer was developed as a main result of this study. It is envisioned by the researcher that this new measure of learning is applicable specifically to physical and chemical science education-based research in the form of deep transfer on the atomic-level scale.

  15. Content-Free Computer Supports for Self-Explaining: Modifiable Typing Interface and Prompting

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Liang, Hung-Ta

    2009-01-01

    Self-explaining, which asks students to generate explanations while reading a text, is a self-constructive activity and is helpful for students' learning. Studies have revealed that prompts by a human tutor promote students' self-explanations. However, most studies on self-explaining focus on spoken self-explanations. This study investigates the…

  16. Occam's Rattle: Children's Use of Simplicity and Probability to Constrain Inference

    ERIC Educational Resources Information Center

    Bonawitz, Elizabeth Baraff; Lombrozo, Tania

    2012-01-01

    A growing literature suggests that generating and evaluating explanations is a key mechanism for learning and inference, but little is known about how children generate and select competing explanations. This study investigates whether young children prefer explanations that are simple, where simplicity is quantified as the number of causes…

  17. What Matters in Scientific Explanations: Effects of Elaboration and Content

    PubMed Central

    Rottman, Benjamin M.; Keil, Frank C.

    2011-01-01

    Given the breadth and depth of available information, determining which components of an explanation are most important is a crucial process for simplifying learning. Three experiments tested whether people believe that components of an explanation with more elaboration are more important. In Experiment 1, participants read separate and unstructured components that comprised explanations of real-world scientific phenomena, rated the components on their importance for understanding the explanations, and drew graphs depicting which components elaborated on which other components. Participants gave higher importance scores for components that they judged to be elaborated upon by other components. Experiment 2 demonstrated that experimentally increasing the amount of elaboration of a component increased the perceived importance of the elaborated component. Furthermore, Experiment 3 demonstrated that elaboration increases the importance of the elaborated information by providing insight into understanding the elaborated information; information that was too technical to provide insight into the elaborated component did not increase the importance of the elaborated component. While learning an explanation, people piece together the structure of elaboration relationships between components and use the insight provided by elaboration to identify important components. PMID:21924709

  18. Mechanistic explanation, cognitive systems demarcation, and extended cognition.

    PubMed

    van Eck, Dingmar; Looren de Jong, Huib

    2016-10-01

    Approaches to the Internalism-Externalism controversy in the philosophy of mind often involve both (broadly) metaphysical and explanatory considerations. Whereas originally most emphasis seems to have been placed on metaphysical concerns, recently the explanation angle is getting more attention. Explanatory considerations promise to offer more neutral grounds for cognitive systems demarcation than (broadly) metaphysical ones. However, it has been argued that explanation-based approaches are incapable of determining the plausibility of internalist-based conceptions of cognition vis-à-vis externalist ones. On this perspective, improved metaphysics is the route along which to solve the Internalist-Externalist stalemate. In this paper we challenge this claim. Although we agree that explanation-orientated approaches have indeed so far failed to deliver solid means for cognitive system demarcation, we elaborate a more promising explanation-oriented framework to address this issue. We argue that the mutual manipulability account of constitutive relevance in mechanisms, extended with the criterion of 'fat-handedness', is capable of plausibly addressing the cognitive systems demarcation problem, and thus able to decide on the explanatory traction of Internalist vs. Externalist conceptions, on a case-by-case basis. Our analysis also highlights why some other recent mechanistic takes on the problem of cognitive systems demarcation have been unsuccessful. We illustrate our claims with a case on gestures and learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Human use regulatory affairs advisor (HURAA): learning about research ethics with intelligent learning modules.

    PubMed

    Hu, Xiangen; Graesser, Arthur C

    2004-05-01

    The Human Use Regulatory Affairs Advisor (HURAA) is a Web-based facility that provides help and training on the ethical use of human subjects in research, based on documents and regulations in United States federal agencies. HURAA has a number of standard features of conventional Web facilities and computer-based training, such as hypertext, multimedia, help modules, glossaries, archives, links to other sites, and page-turning didactic instruction. HURAA also has these intelligent features: (1) an animated conversational agent that serves as a navigational guide for the Web facility, (2) lessons with case-based and explanation-based reasoning, (3) document retrieval through natural language queries, and (4) a context-sensitive Frequently Asked Questions segment, called Point & Query. This article describes the functional learning components of HURAA, specifies its computational architecture, and summarizes empirical tests of the facility on learners.

  20. Learning Methodology for Early Child Education Education (Paud) in the Recognition of Legal Capitals based on Android

    NASA Astrophysics Data System (ADS)

    Siswanto, Didik

    2017-12-01

    School as a place to study require a medium of learning. Instructional media containinginformation about the lessons that will be used by teachers to convey a lesson. School early childhood education Al-Kindy Pekanbaru interms of learning the letter hijaiyah still use conventional learning media. But with the conventionalmedia is not very attractive to use, so the need for an exciting learning medium that can make childrenbecome interested in learningThe purpose of this study was to create a Media Learning Introduction Letter Hijaiyahmultimedia form and benefit from the introduction of letters Hijaiyah Learning Media is a renewal of themedium of learning in School early childhood education Al-Kindy Pekanbaru.In this study the authors tried to make the learning application that contains the basicknowledge of letters hijaiyah dsertai with animation, audio and explanation how to read the letters inorder to complete the learning media letters hijaiyah more interactive.

  1. Student Responses Toward Student Worksheets Based on Discovery Learning for Students with Intrapersonal and Interpersonal Intelligence

    NASA Astrophysics Data System (ADS)

    Yerizon, Y.; Putra, A. A.; Subhan, M.

    2018-04-01

    Students have a low mathematical ability because they are used to learning to hear the teacher's explanation. For that students are given activities to sharpen his ability in math. One way to do that is to create discovery learning based work sheet. The development of this worksheet took into account specific student learning styles including in schools that have classified students based on multiple intelligences. The dominant learning styles in the classroom were intrapersonal and interpersonal. The purpose of this study was to discover students’ responses to the mathematics work sheets of the junior high school with a discovery learning approach suitable for students with Intrapersonal and Interpersonal Intelligence. This tool was developed using a development model adapted from the Plomp model. The development process of this tools consists of 3 phases: front-end analysis/preliminary research, development/prototype phase and assessment phase. From the results of the research, it is found that students have good response to the resulting work sheet. The worksheet was understood well by students and its helps student in understanding the concept learned.

  2. Stimulus-Category and Response-Repetition Effects in Task Switching: An Evaluation of Four Explanations

    ERIC Educational Resources Information Center

    Druey, Michel D.

    2014-01-01

    In many task-switch studies, task sequence and response sequence interact: Response repetitions produce benefits when the task repeats but produce costs when the task switches. Four different theoretical frameworks have been proposed to explain these effects: a reconfiguration-based account, association-learning models, an episodic-retrieval…

  3. Taking Engineering Design out for a Spin

    ERIC Educational Resources Information Center

    Crismond, David; Soobyiah, Mark; Cain, Ryan

    2013-01-01

    This article highlights what inquiry and design have in common, and what makes engineering design uniquely different from inquiry. A case study is presented that gives students practice in conducting fair-test experiments, in troubleshooting to learn how to make designs better, and in building science-based explanations for how things work. The…

  4. Sidestepping the Combinatorial Explosion: An Explanation of "n"-gram Frequency Effects Based on Naive Discriminative Learning

    ERIC Educational Resources Information Center

    Baayen, R. Harald; Hendrix, Peter; Ramscar, Michael

    2013-01-01

    Arnon and Snider ((2010). More than words: Frequency effects for multi-word phrases. "Journal of Memory and Language," 62, 67-82) documented frequency effects for compositional four-grams independently of the frequencies of lower-order "n"-grams. They argue that comprehenders apparently store frequency information about…

  5. "Slow Science": Building Scientific Concepts in Physics in High School

    ERIC Educational Resources Information Center

    Bigozzi, Lucia; Tarchi, Christian; Falsini, Paola; Fiorentini, Carlo

    2014-01-01

    In this study, a progressive-learning approach to physics, based on knowledge-building pedagogy, was compared to a content-centered approach in which explanations, experiments, and discussions are centered on the transmission of knowledge. Forty-six students attending the first year of high school participated in this study over a whole school…

  6. Students' Responses to CL-Based Teaching of English Prepositions

    ERIC Educational Resources Information Center

    Hung, Bui Phu; Truong, Vien; Nguyen, Ngoc Vu

    2018-01-01

    Purpose: Most EFL textbooks suggest the use of vivid pictures and verbal explanations in teaching English prepositions. However, this word class appears in collocations, and rote-learning does not really help learners retain and use this word class successfully. Cognitive linguistics (CL) has implications for English language teaching as it rests…

  7. Exploring the Development of Fifth Graders' Practical Epistemologies and Explanation Skills in Inquiry-Based Learning Classrooms

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Kai; Wu, Chia-Lien

    2011-05-01

    The purposes of this study are to explore fifth graders' epistemological views regarding their own experiences of constructing scientific knowledge through inquiry activities (i.e., practical epistemologies) and to investigate possible interactions between students' practical epistemologies and their inquiry skills to construct scientific explanations (i.e., explanation skills). Quantitative and qualitative data including interview transcripts, classroom video recordings, and pre- and post-tests of explanation skills were collected from 68 fifth graders in two science classes. Analyses of data show that after engaging in 5-week inquiry activities, students developed better inquiry skills to construct scientific explanations. More students realized the existence of experimental errors, viewed experimental data as evidence to support their claims, and had richer understanding about the nature of scientific questions. However, most students' epistemological beliefs were still naïve (the beginning level); they could not differentiate between experimental results and scientific knowledge and believed that the purpose of science is doing experiments or research. The results also show that students who held a more sophisticated epistemology (the intermediate level) tended to develop better inquiry skills than those with naïve beliefs. Analyses of classroom observations suggest possible explanations for how students reflected their epistemological views in their inquiry practices.

  8. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    NASA Astrophysics Data System (ADS)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  9. More than a feeling: incidental learning of array geometry by blindfolded adult humans revealed through touch.

    PubMed

    Sturz, Bradley R; Green, Marshall L; Gaskin, Katherine A; Evans, Alicia C; Graves, April A; Roberts, Jonathan E

    2013-02-15

    View-based matching theories of orientation suggest that mobile organisms encode a visual memory consisting of a visual panorama from a target location and maneuver to reduce discrepancy between current visual perception and this stored visual memory to return to a location. Recent success of such theories to explain the orientation behavior of insects and birds raises questions regarding the extent to which such an explanation generalizes to other species. In the present study, we attempted to determine the extent to which such view-based matching theories may explain the orientation behavior of a mammalian species (in this case adult humans). We modified a traditional enclosure orientation task so that it involved only the use of the haptic sense. The use of a haptic orientation task to investigate the extent to which view-based matching theories may explain the orientation behavior of adult humans appeared ideal because it provided an opportunity for us to explicitly prohibit the use of vision. Specifically, we trained disoriented and blindfolded human participants to search by touch for a target object hidden in one of four locations marked by distinctive textural cues located on top of four discrete landmarks arranged in a rectangular array. Following training, we removed the distinctive textural cues and probed the extent to which participants learned the geometry of the landmark array. In the absence of vision and the trained textural cues, participants showed evidence that they learned the geometry of the landmark array. Such evidence cannot be explained by an appeal to view-based matching strategies and is consistent with explanations of spatial orientation related to the incidental learning of environmental geometry.

  10. Learning class descriptions from a data base of spectral reflectance of soil samples

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Irons, J. R.; Levine, E. R.; Horning, N. A.

    1993-01-01

    Consideration is given to a program developed to learn class descriptions from positive and negative training examples of spectral reflectance data of bare soils. It is a combination of 'learning by example' and the generate-and-test paradigm and is designed to provide a robust learning environment that can handle error-prone data. The program was tested by having it learn class descriptions of various categories of organic carbon content, iron oxide content, and particle size distribution in soils. These class descriptions were then used to classify an array of targets. The program found the sequence of relationships between bands that contained the most important information to distinguish the classes. Physical explanations for the class descriptions obtained are presented.

  11. Prior Knowledge Influence on Self-Explanation Effectiveness when Solving Problems: An Exploratory Study in Science Learning

    ERIC Educational Resources Information Center

    Ionas, Ioan Gelu; Cernusca, Dan; Collier, Harvest L.

    2012-01-01

    This exploratory study presents the outcomes of using self-explanation to improve learners' performance in solving basic chemistry problems. The results of the randomized experiment show the existence of a moderation effect between prior knowledge and the level of support self-explanation provides to learners, suggestive of a synergistic effect…

  12. The Effect of Employing Self-Explanation Strategy with Worked Examples on Acquiring Computer Programing Skills

    ERIC Educational Resources Information Center

    Alhassan, Riyadh

    2017-01-01

    The purpose of this study was to examine the effect of employing self-explanation learning strategy supported with Worked Examples on acquiring computer programing skills among freshmen high school students. The study adopted a quasi-experimental method, where an experimental group (n = 33) used the self-explanation strategy supported with worked…

  13. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    NASA Astrophysics Data System (ADS)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-06-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.

  14. ROENTGEN: case-based reasoning and radiation therapy planning.

    PubMed Central

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  15. Do Junior High School Students Perceive Their Learning Environment as Constructivist?

    NASA Astrophysics Data System (ADS)

    Moustafa, Asely; Ben-Zvi-Assaraf, Orit; Eshach, Haim

    2013-08-01

    The purpose of this study is to examine the manner in which the features of a constructivist learning environment, and the mechanisms at its base, are expressed in junior high school students' conceptions. Our research is based on an integration of quantitative and qualitative approaches, deigned to provide a wider ranging and deeper understanding. Eight hundred and forty eighth- and ninth-grade students from over 15 schools participated in the study. Of the 840 students who completed the questionnaire, the explanations of 200 well-written questionnaires were further analyzed qualitatively. The findings of the study are presented in terms of the four scales employed in the CLES, namely the autonomy scale, the prior knowledge scale, the negotiation scale, and the student-centeredness scale. The quantitative results achieved here concur with parallel studies conducted around the world. The findings indicate that a considerable portion of the students perceive their learning environment as a constructivist one and report positive attitudes toward the way they are being taught. In terms of the qualitative results, however, it appears that in some cases, the students' explanations reveal that in fact, and contrary to the bare quantitative results, some students do not perceive their learning environment as being constructivist. This raises the question of whether the fact that students recognize the factors associated with constructivist teaching is indeed an indication that such teaching exists in practice. This finding emphasizes the importance of combining qualitative and quantitative methods for arriving at a balanced view of classroom occurrences.

  16. Explanation-Construction in Fourth-Grade Classrooms in Germany and the USA: A cross-national comparative video study

    NASA Astrophysics Data System (ADS)

    Forbes, Cory; Lange, Kim; Möller, Kornelia; Biggers, Mandy; Laux, Mira; Zangori, Laura

    2014-09-01

    To help explain the differences in students' performance on internationally administered science assessments, cross-national, video-based observational studies have been advocated, but none have yet been conducted at the elementary level for science. The USA and Germany are two countries with large formal education systems whose students underperform those from peers on internationally administered standardized science assessments. However, evidence from the 2011 Trends in International Mathematics and Science Exam assessment suggests fourth-grade students (9-10 year-olds) in the USA perform higher than those in Germany, despite more instructional time devoted to elementary science in Germany. The purpose of this study is to comparatively analyze fourth-grade classroom science in both countries to learn more about how teachers and students engage in scientific inquiry, particularly explanation-construction. Videorecordings of US and German science instruction (n 1 = 42, n 2 = 42) were sampled from existing datasets and analyzed both qualitatively and quantitatively. Despite German science lessons being, on average, twice as long as those in the USA, study findings highlight many similarities between elementary science in terms of scientific practices and features of scientific inquiry. However, they also illustrate crucial differences around the scientific practice of explanation-construction. While students in German classrooms were afforded more substantial opportunities to formulate evidence-based explanations, US classrooms were more strongly characterized by opportunities for students to actively compare and evaluate evidence-based explanations. These factors may begin to help account for observed differences in student achievement and merit further study grounded in international collaboration.

  17. Learning in Insect Pollinators and Herbivores.

    PubMed

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  18. Supporting 3rd-Grade Students Model-Based Explanations about Groundwater: A Quasi-Experimental Study of a Curricular Intervention

    ERIC Educational Resources Information Center

    Zangori, Laura; Vo, Tina; Forbes, Cory T.; Schwarz, Christina V.

    2017-01-01

    Scientific modelling is a key practice in which K-12 students should engage to begin developing robust conceptual understanding of natural systems, including water. However, little past research has explored primary students' learning about groundwater, engagement in scientific modelling, and/or the ways in which teachers conceptualise and…

  19. The Impact of PBL Technology on the Preparation of Teachers of English Language Learners

    ERIC Educational Resources Information Center

    Ochoa, Theresa A.; Kelly, Mary L.; Stuart, Shannon; Rogers-Adkinson, Diana

    2004-01-01

    This document presents a description and explanation of the MUSE module, a multimedia, computer-supported, problem-based learning (CS-PBL) unit that provides users with a simulation of the special education referral process. The module, developed by Leafstedt et al. (2000) depicts an elementary Hispanic student who is limited in English…

  20. Why dissect a frog when you can simulate a lion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B.K.

    1996-12-31

    We are concerned with creating computer-based learning environments which provide students with opportunities to develop causal explanations of complex phenomena through experimentation and observation. We combine video and simulation to facilitate such exploration in high school biology classrooms. Specifically, we focus on issues in behavioral ecology and the predation behaviors of the Serengeti lion.

  1. Discovering Problem Solving Strategies: What Humans Do and Machines Don’t (Yet)

    DTIC Science & Technology

    1989-07-21

    will.... 124. So, I will go back from B to A. During lines 119-124, the subject waffles abc ,! using rule 6 of the minor move strategy. She seems to...1987). Acquiring effective search control rules: Explanation-based learning in the Prodigy sytem . In P. Langley (Ed.), Proceedings of the Fourth

  2. L1 Use in L2 Vocabulary Learning: Facilitator or Barrier

    ERIC Educational Resources Information Center

    Liu, Jing

    2008-01-01

    Based on empirical research and qualitative analysis, this paper aims to explore the effects of L1 use on L2 vocabulary teaching. The results show that, during L2 vocabulary teaching process, the proper application of L1 can effectively facilitate the memorization of new words, and the bilingual method (both English explanation and Chinese…

  3. "Do You Speak English?": Resistance to Linguistic Acculturation.

    ERIC Educational Resources Information Center

    Adger, Carolyn Temple

    American expatriates, particularly those in business who are assigned abroad, often learn very little of the language and culture of the countries to which they are assigned. Some explanations of this phenomenon are offered based on observation of two U.S. communities in Tripoli, Libya, and Medan (Sumatra) from 1965 to 1973. First, the needs for…

  4. How to Optimize Learning from Animated Models: A Review of Guidelines Based on Cognitive Load

    ERIC Educational Resources Information Center

    Wouters, Pieter; Paas, Fred; van Merrienboer, Jeroen J. G.

    2008-01-01

    Animated models explicate the procedure to solve a problem, as well as the rationale behind this procedure. For abstract cognitive processes, animations might be beneficial, especially when a supportive pedagogical agent provides explanations. This article argues that animated models can be an effective instructional method, provided that they are…

  5. Schema Theories as a Base for the Structural Representation of the Knowledge State.

    ERIC Educational Resources Information Center

    Dochy, F. J. R. C.; Bouwens, M. R. J.

    From the view of schema-transfer theory, the use of schemata with their several functions gives an explanation for the facilitative effect of prior knowledge on learning processes. This report gives a theoretical exploration of the concept of schemata, underlying schema theories, and functions of schemata to indicate the importance of schema…

  6. Toward a Definition of Learning Disability.

    ERIC Educational Resources Information Center

    Campbell, Paul B.

    The paper summarizes several approaches to the identification of learning disability and then discusses the nature of learning disability in the context of competing hypotheses as possible explanations of insufficient or unsatisfactory achievement. Because learning disability may only be inferred as a cause of unsatisfactory learning, the…

  7. The effect of restructuring student writing in the general chemistry laboratory on student understanding of chemistry and on students' approach to the laboratory course

    NASA Astrophysics Data System (ADS)

    Rudd, James Andrew, II

    Many students encounter difficulties engaging with laboratory-based instruction, and reviews of research have indicated that the value of such instruction is not clearly evident. Traditional forms of writing associated with laboratory activities are commonly in a style used by professional scientists to communicate developed explanations. Students probably lack the interpretative skills of a professional, and writing in this style may not support students in learning how to develop scientific explanations. The Science Writing Heuristic (SWH) is an inquiry-based approach to laboratory instruction designed in part to promote student ability in developing such explanations. However, there is not a convincing body of evidence for the superiority of inquiry-based laboratory instruction in chemistry. In a series of studies, the performance of students using the SWH student template in place of the standard laboratory report format was compared to the performance of students using the standard format. The standard reports had Title, Purpose, Procedure, Data & Observations, Calculations & Graphs, and Discussion sections. The SWH reports had Beginning Questions & Ideas, Tests & Procedures, Observations, Claims, Evidence, and Reflection sections. The pilot study produced evidence that using the SWH improved the quality of laboratory reports, improved student performance on a laboratory exam, and improved student approach to laboratory work. A main study found that SWH students statistically exhibited a better understanding of physical equilibrium when written explanations and equations were analyzed on a lecture exam and performed descriptively better on a physical equilibrium practical exam task. In another main study, the activities covering the general equilibrium concept were restructured as an additional change, and it was found that SWH students exhibited a better understanding of chemical equilibrium as shown by statistically greater success in overcoming the common confusion of interpreting equilibrium as equal concentrations and by statistically better performance when explaining aspects of chemical equilibrium. Both main studies found that students and instructors spent less time on the SWH reports and that students preferred the SWH approach because it increased their level of mental engagement. The studies supported the conclusion that inquiry-based laboratory instruction benefits student learning and attitudes.

  8. How the World Gains Understanding of a Planet: Analysis of Scientific Understanding in Earth Sciences and of the Communication of Earth-Scientific Explanation

    NASA Astrophysics Data System (ADS)

    Voute, S.; Kleinhans, M. G.; de Regt, H.

    2010-12-01

    A scientific explanation for a phenomenon is based on relevant theory and initial and background conditions. Scientific understanding, on the other hand, requires intelligibility, which means that a scientist can recognise qualitative characteristic consequences of the theory without doing the actual calculations, and apply it to develop further explanations and predictions. If explanation and understanding are indeed fundamentally different, then it may be possible to convey understanding of earth-scientific phenomena to laymen without the full theoretical background. The aim of this thesis is to analyze how scientists and laymen gain scientific understanding in Earth Sciences, based on the newest insights in the philosophy of science, pedagogy, and science communication. All three disciplines have something to say about how humans learn and understand, even if at very different levels of scientists, students, children or the general public. If different disciplines with different approaches identify and quantify the same theory in the same manner, then there is likely to be something “real” behind the theory. Comparing methodology and learning styles of the different disciplines within the Earth Sciences and by critically analyze earth-scientific exhibitions in different museums may provide insight in the different approaches for earth-scientific explanation and communication. In order to gain earth-scientific understanding, a broad suite of tools is used, such as maps and images, symbols and diagrams, cross-sections and sketches, categorization and classification, modelling, laboratory experiments, (computer) simulations and analogies, remote sensing, and fieldwork. All these tools have a dual nature, containing both theoretical and embodied components. Embodied knowledge is created by doing the actual modelling, intervening in experiments and doing fieldwork. Scientific practice includes discovery and exploration, data collection and analyses, verification or falsification and conclusions that must be well grounded and argued. The intelligibility of theories is improved by the combination of these two types of understanding. This is also attested by the fact that both theoretical and embodied skills are considered essential for the training of university students at all levels. However, from surprised and confounded reactions of the public to natural disasters it appears that just showing scientific results is not enough to convey the scientific understanding to the public. By using the tools used by earth scientists to develop explanations and achieve understanding, laymen could achieve understanding as well without rigorous theoretical training. We are presently investigating in science musea whether engaging the public in scientific activities based on embodied skills leads to understanding of earth-scientific phenomena by laymen.

  9. Specialized hybrid learners resolve Rogers' paradox about the adaptive value of social learning.

    PubMed

    Kharratzadeh, Milad; Montrey, Marcel; Metz, Alex; Shultz, Thomas R

    2017-02-07

    Culture is considered an evolutionary adaptation that enhances reproductive fitness. A common explanation is that social learning, the learning mechanism underlying cultural transmission, enhances mean fitness by avoiding the costs of individual learning. This explanation was famously contradicted by Rogers (1988), who used a simple mathematical model to show that cheap social learning can invade a population without raising its mean fitness. He concluded that some crucial factor remained unaccounted for, which would reverse this surprising result. Here we extend this model to include a more complex environment and limited resources, where individuals cannot reliably learn everything about the environment on their own. Under such conditions, cheap social learning evolves and enhances mean fitness, via hybrid learners capable of specializing their individual learning. We then show that while spatial or social constraints hinder the evolution of hybrid learners, a novel social learning strategy, complementary copying, can mitigate these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Assessing Scientific Practices Using Machine-Learning Methods: How Closely Do They Match Clinical Interview Performance?

    NASA Astrophysics Data System (ADS)

    Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.

    2014-02-01

    The landscape of science education is being transformed by the new Framework for Science Education (National Research Council, A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific practices—such as explanation, argumentation, and communication—in science teaching, learning, and assessment. A major challenge facing the field of science education is developing assessment tools that are capable of validly and efficiently evaluating these practices. Our study examined the efficacy of a free, open-source machine-learning tool for evaluating the quality of students' written explanations of the causes of evolutionary change relative to three other approaches: (1) human-scored written explanations, (2) a multiple-choice test, and (3) clinical oral interviews. A large sample of undergraduates (n = 104) exposed to varying amounts of evolution content completed all three assessments: a clinical oral interview, a written open-response assessment, and a multiple-choice test. Rasch analysis was used to compute linear person measures and linear item measures on a single logit scale. We found that the multiple-choice test displayed poor person and item fit (mean square outfit >1.3), while both oral interview measures and computer-generated written response measures exhibited acceptable fit (average mean square outfit for interview: person 0.97, item 0.97; computer: person 1.03, item 1.06). Multiple-choice test measures were more weakly associated with interview measures (r = 0.35) than the computer-scored explanation measures (r = 0.63). Overall, Rasch analysis indicated that computer-scored written explanation measures (1) have the strongest correspondence to oral interview measures; (2) are capable of capturing students' normative scientific and naive ideas as accurately as human-scored explanations, and (3) more validly detect understanding than the multiple-choice assessment. These findings demonstrate the great potential of machine-learning tools for assessing key scientific practices highlighted in the new Framework for Science Education.

  11. The role of learning-related dopamine signals in addiction vulnerability.

    PubMed

    Huys, Quentin J M; Tobler, Philippe N; Hasler, Gregor; Flagel, Shelly B

    2014-01-01

    Dopaminergic signals play a mathematically precise role in reward-related learning, and variations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we provide a detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling, with implications for the role of learning-related dopamine signaling in addiction and related disorders. We describe the theoretical and behavioral characteristics of model-free learning based on errors in the prediction of reward, including step-by-step explanations of the underlying equations. We then use recent insights from an animal model that highlights individual variation in learning during a Pavlovian conditioning paradigm to describe overlapping aspects of incentive salience attribution and model-free learning. We argue that this provides a computationally coherent account of some features of addiction. © 2014 Elsevier B.V. All rights reserved.

  12. Critical thinking skills profile of senior high school students in Biology learning

    NASA Astrophysics Data System (ADS)

    Saputri, A. C.; Sajidan; Rinanto, Y.

    2018-04-01

    Critical thinking is an important and necessary skill to confront the challenges of the 21st century. Critical thinking skills accommodate activities that can improve high-order thinking skills. This study aims to determine senior high school students' critical thinking skills in Biology learning. This research is descriptive research using instruments developed based on the core aspects of critical thinking skills according to Facione which include interpretation, analysis, evaluation, explanation, conclusion, and self-regulation. The subjects in this study were 297 students in grade 12 of a senior high school in Surakarta selected through purposive sampling technique. The results of this study showed that the students' critical thinking skills on evaluation and self-regulation are in good criterion with 78% and 66% acquisition while 52% interpretation, 56% analysis, 52% conclusion and 42% explanation indicate sufficient criteria. The conclusion from this research is that critical thinking skill of the students still was in enough category, so that needed a way to enhance it on some indicators.

  13. Young children can be taught basic natural selection using a picture-storybook intervention.

    PubMed

    Kelemen, Deborah; Emmons, Natalie A; Seston Schillaci, Rebecca; Ganea, Patricia A

    2014-04-01

    Adaptation by natural selection is a core mechanism of evolution. It is also one of the most widely misunderstood scientific processes. Misconceptions are rooted in cognitive biases found in preschoolers, yet concerns about complexity mean that adaptation by natural selection is generally not comprehensively taught until adolescence. This is long after untutored theoretical misunderstandings are likely to have become entrenched. In a novel approach, we explored 5- to 8-year-olds' capacities to learn a basic but theoretically coherent mechanistic explanation of adaptation through a custom storybook intervention. Experiment 1 showed that children understood the population-based logic of natural selection and also generalized it. Furthermore, learning endured 3 months later. Experiment 2 replicated these results and showed that children understood and applied an even more nuanced mechanistic causal explanation. The findings demonstrate that, contrary to conventional educational wisdom, basic natural selection is teachable in early childhood. Theory-driven interventions using picture storybooks with rich explanatory structure are beneficial.

  14. Examining Hypermedia Learning: The Role of Cognitive Load and Self-Regulated Learning

    ERIC Educational Resources Information Center

    Moos, Daniel

    2013-01-01

    Distinct theoretical perspectives, Cognitive Load Theory and Self-Regulated Learning (SRL) theory, have been used to examine individual differences the challenges faced with hypermedia learning. However, research has tended to use these theories independently, resulting in less robust explanations of hypermedia learning. This study examined the…

  15. Category transfer in sequential causal learning: the unbroken mechanism hypothesis.

    PubMed

    Hagmayer, York; Meder, Björn; von Sydow, Momme; Waldmann, Michael R

    2011-07-01

    The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis. Copyright © 2011 Cognitive Science Society, Inc.

  16. What's the Alternative?

    ERIC Educational Resources Information Center

    Lombardi, Doug; Sibley, Bret; Carroll, Kristoffer

    2013-01-01

    Scientifically literate citizens need to understand how scientists evaluate competing explanations. Likewise, students must learn to critically evaluate the quality of scientific knowledge and weigh alternative explanations. Regrettably, high school graduates often are not critically evaluative about scientific topics. To help remedy that, this…

  17. Learned Helplessness as a Schedule-Shift Effect.

    ERIC Educational Resources Information Center

    McReynolds, William T.

    1980-01-01

    The essentials of learned helplessness theory are described and supporting evidence surveyed. The explanation Seligman and Maier give for these findings is critically analyzed. A schedule-shift discrimination theory of learned helplessness effects is also discussed. (Author)

  18. Tutorial dialogues and gist explanations of genetic breast cancer risk.

    PubMed

    Widmer, Colin L; Wolfe, Christopher R; Reyna, Valerie F; Cedillos-Whynott, Elizabeth M; Brust-Renck, Priscila G; Weil, Audrey M

    2015-09-01

    The intelligent tutoring system (ITS) BRCA Gist is a Web-based tutor developed using the Shareable Knowledge Objects (SKO) platform that uses latent semantic analysis to engage women in natural-language dialogues to teach about breast cancer risk. BRCA Gist appears to be the first ITS designed to assist patients' health decision making. Two studies provide fine-grained analyses of the verbal interactions between BRCA Gist and women responding to five questions pertaining to breast cancer and genetic risk. We examined how "gist explanations" generated by participants during natural-language dialogues related to outcomes. Using reliable rubrics, scripts of the participants' verbal interactions with BRCA Gist were rated for content and for the appropriateness of the tutor's responses. Human researchers' scores for the content covered by the participants were strongly correlated with the coverage scores generated by BRCA Gist, indicating that BRCA Gist accurately assesses the extent to which people respond appropriately. In Study 1, participants' performance during the dialogues was consistently associated with learning outcomes about breast cancer risk. Study 2 was a field study with a more diverse population. Participants with an undergraduate degree or less education who were randomly assigned to BRCA Gist scored higher on tests of knowledge than those assigned to the National Cancer Institute website or than a control group. We replicated findings that the more expected content that participants included in their gist explanations, the better they performed on outcome measures. As fuzzy-trace theory suggests, encouraging people to develop and elaborate upon gist explanations appears to improve learning, comprehension, and decision making.

  19. Teaching Human Digestion and pH Using Technology

    ERIC Educational Resources Information Center

    Kim, Hanna

    2008-01-01

    Testing the pH of various liquids is one of the most popular activities in 5th- through 8th-grade classrooms. The author presents an extensive pH-testing lesson based on a 5E (engagement, exploration, explanation, extension, and evaluation) teaching model. The activity provides students with the opportunity to learn about pH and how it relates to…

  20. The Classification, Detection and Handling of Imperfect Theory Problems.

    DTIC Science & Technology

    1987-04-20

    Explanation-Based Learning: Failure-Driven Schema Refinement." Proceedings of the Third IEEE Conference on Artificial Intelligence Applications . Orlando...A. Rajamoney. Gerald F. DeJong Artificial Intelligence Research Group " . Coordinated Science Laboratory " University of Illinois at Urbana-Champaign...Urbana. IL 61801 . April 1987 ABSTRACT This paper also appears in the Proceedings of the Tenth International Conference on Artificial Intelligence

  1. Teaching for Hot Conceptual Change: Towards a New Model, beyond the Cold and Warm Ones

    ERIC Educational Resources Information Center

    Kural, Mehmet; Kocakülah, M. Sabri

    2016-01-01

    At the beginning of the 1980s, one of the most striking explanations of conceptual change was made by Posner, Strike, Hewson & Gertzog (1982) with a Conceptual Change Theory based on a Scientific Revolution Theory of Kuhn (1970). In Conceptual Change Theory, learning was explained with the Piaget (1970)'s concepts such as assimilation and…

  2. Teacher Orchestration of Multimodal Resources to Support the Construction of an Explanation in a Year 4 Astronomy Topic

    ERIC Educational Resources Information Center

    Hackling, Mark; Murcia, Karen; Ibrahim-Didi, Khadeeja

    2013-01-01

    Video-based classroom research is opening-up exciting new insights into how teachers generate productive opportunities for student engagement in quality learning. This research reveals the extent to which effective teachers draw on a range of multimodal representations of science phenomena and learners must use these as semiotic resources for…

  3. Teacher Knowledge for Active-Learning Instruction: Expert-Novice Comparison Reveals Differences

    ERIC Educational Resources Information Center

    Auerbach, A. J.; Higgins, M.; Brickman, P.; Andrews, T. C.

    2018-01-01

    Active-learning strategies "can" improve science, technology, engineering, and mathematics (STEM) undergraduates' abilities to learn fundamental concepts and skills. However, the results instructors achieve vary substantially. One explanation for this is that instructors commonly implement active learning differently than intended. An…

  4. Profile of student critical thinking ability on static fluid concept

    NASA Astrophysics Data System (ADS)

    Sulasih; Suparmi, A.; Sarwanto

    2017-11-01

    Critical thinking ability is an important part of educational goals. It has higher complex processes, such as analyzing, synthesizing and evaluating, drawing conclusion and reflection. This study is aimed to know the critical thinking ability of students in learning static fluids of senior high school students. This research uses the descriptive method which its instruments based on the indicator of critical thinking ability developed according to Ennis. The population of this research is XIth grade science class Public Senior High School, SMA N 1, Sambungmacan, Sragen, Central Java. The static fluid teaching material is delivered using Problem Based Learning Model through class experiment. The results of this study shows that the average student of XIth science class have high critical thinking skills, particularly in the ability of providing simple explanation, build basic skill, and provide advanced explanation, but they do not have high enough in ability of drawing conclusion and strategic and tactical components of critical thinking ability in the study of static fluid teaching material. The average of students critical thinking ability is 72.94, with 27,94% of students are in a low category and 72,22% of students in the high category of critical thinking ability.

  5. Analytical learning and term-rewriting systems

    NASA Technical Reports Server (NTRS)

    Laird, Philip; Gamble, Evan

    1990-01-01

    Analytical learning is a set of machine learning techniques for revising the representation of a theory based on a small set of examples of that theory. When the representation of the theory is correct and complete but perhaps inefficient, an important objective of such analysis is to improve the computational efficiency of the representation. Several algorithms with this purpose have been suggested, most of which are closely tied to a first order logical language and are variants of goal regression, such as the familiar explanation based generalization (EBG) procedure. But because predicate calculus is a poor representation for some domains, these learning algorithms are extended to apply to other computational models. It is shown that the goal regression technique applies to a large family of programming languages, all based on a kind of term rewriting system. Included in this family are three language families of importance to artificial intelligence: logic programming, such as Prolog; lambda calculus, such as LISP; and combinatorial based languages, such as FP. A new analytical learning algorithm, AL-2, is exhibited that learns from success but is otherwise quite different from EBG. These results suggest that term rewriting systems are a good framework for analytical learning research in general, and that further research should be directed toward developing new techniques.

  6. Workshop on Friction: Understanding and Addressing Students' Difficulties in Learning Science Through a Hermeneutical Perspective

    NASA Astrophysics Data System (ADS)

    Ha, Sangwoo; Lee, Gyoungho; Kalman, Calvin S.

    2013-06-01

    Hermeneutics is useful in science and science education by emphasizing the process of understanding. The purpose of this study was to construct a workshop based upon hermeneutical principles and to interpret students' learning in the workshop through a hermeneutical perspective. When considering the history of Newtonian mechanics, it could be considered that there are two methods of approaching Newtonian mechanics. One method is called the `prediction approach', and the other is called the `explanation approach'. The `prediction approach' refers to the application of the principles of Newtonian mechanics. We commonly use the prediction approach because its logical process is natural to us. However, its use is correct only when a force, such as gravitation, is exactly known. On the other hand, the `explanation approach' could be used when the nature of a force is not exactly known. In the workshop, students read a short text offering contradicting ideas about whether to analyze a friction situation using the explanation approach or the prediction approach. Twenty-two college students taking an upper-level mechanics course wrote their ideas about the text. The participants then discussed their ideas within six groups, each composed of three or four students. Through the group discussion, students were able to clarify their preconceptions about friction, and they responded to the group discussion positively. Students started to think about their learning from a holistic perspective. As students thought and discussed the friction problems in the manner of hermeneutical circles, they moved toward a better understanding of friction.

  7. Learner-Centered Inquiry in Undergraduate Biology: Positive Relationships with Long-Term Student Achievement

    PubMed Central

    Ebert-May, Diane

    2010-01-01

    We determined short- and long-term correlates of a revised introductory biology curriculum on understanding of biology as a process of inquiry and learning of content. In the original curriculum students completed two traditional lecture-based introductory courses. In the revised curriculum students completed two new learner-centered, inquiry-based courses. The new courses differed significantly from those of the original curriculum through emphases on critical thinking, collaborative work, and/or inquiry-based activities. Assessments were administered to compare student understanding of the process of biological science and content knowledge in the two curricula. More seniors who completed the revised curriculum had high-level profiles on the Views About Science Survey for Biology compared with seniors who completed the original curriculum. Also as seniors, students who completed the revised curriculum scored higher on the standardized Biology Field Test. Our results showed that an intense inquiry-based learner-centered learning experience early in the biology curriculum was associated with long-term improvements in learning. We propose that students learned to learn science in the new courses which, in turn, influenced their learning in subsequent courses. Studies that determine causal effects of learner-centered inquiry-based approaches, rather than correlative relationships, are needed to test our proposed explanation. PMID:21123693

  8. Middle school students' experiences on a science museum field trip as Preparation for Future Learning

    NASA Astrophysics Data System (ADS)

    Watson, William A.

    Exhibits in informal science institutions, like science centers and museums, are often designed to help people learn, but research showing the immediate impact of experiences with exhibits on understanding is limited. This dissertation tested the hypothesis that the value of first-hand experience with an exhibit is not necessarily in its immediate impact on understanding the topic it addresses, but rather in providing the foundation for understanding in the future. The study was guided by the Preparation for Future Learning (PFL) framework (Bransford & Schwartz, 1999), which was applied to a sixth grade class field trip to a science museum (N = 243). A goal of the field trip was to learn about mechanical advantage by engaging with a Giant Lever exhibit. The PFL framework predicted that students who noticed differences in contrasting cases of mechanical advantage at the exhibit and then attempted to explain the reason for the differences would learn better from an expert explanation heard later in school than their peers who engaged with the exhibit in different ways. A quasi-experimental 2 x 2 x 2 factorial design allowed the effects of three independent variables to be examined: first, kinesthetic vs. observation activity as the mechanism to notice the contrast; second, attempting to explain differences vs. not making the attempt; third, hearing an expert explanation in school vs. not hearing it. The dependent variable was conceptual understanding. Results indicated, unexpectedly, that kinesthetic experience and observation of peers were equally effective in helping students to notice differences in mechanical advantage among several lever configurations. As expected, producing a response to explain the differences predicted understanding only for students who subsequently heard the expert explanation at school the following day. Likewise, hearing the explanation only predicted understanding for students who had attempted to explain the phenomenon beforehand. The results provide support for the PFL framework and for the position that learning from exhibits in science museums is most evident when subsequent reinforcing events (Falk & Dierking, 2000), such as the explanation in school, are taken into account.

  9. Assessing Students' Development in Learning Approaches According to Initial Learning Profiles: A Person-Oriented Perspective

    ERIC Educational Resources Information Center

    Vanthournout, Gert; Coertjens, Liesje; Gijbels, David; Donche, Vincent; Van Petegem, Peter

    2013-01-01

    Research regarding the development of students' learning approaches have at times reported unexpected or lack of expected changes. The current study explores the idea of differential developments in learning approaches according to students' initial learning profiles as a possible explanation for these outcomes. A learning profile is conceived as…

  10. Ways of Knowing as Learning Styles: Learning MAGIC with a Partner.

    ERIC Educational Resources Information Center

    Galotti, Kathleen M.; Drebus, David W.; Reimer, Rebecca L.

    2001-01-01

    College student pairs learned a complex card game using a scripted set of turns and written explanations, played the game, rated perceptions of and reactions to the learning session and their partner, and completed the Attitudes Toward Thinking and Learning Scale. Significant differences in perceptions of partners and sessions related to…

  11. From Recurrent Choice to Skill Learning: A Reinforcement-Learning Model

    ERIC Educational Resources Information Center

    Fu, Wai-Tat; Anderson, John R.

    2006-01-01

    The authors propose a reinforcement-learning mechanism as a model for recurrent choice and extend it to account for skill learning. The model was inspired by recent research in neurophysiological studies of the basal ganglia and provides an integrated explanation of recurrent choice behavior and skill learning. The behavior includes effects of…

  12. Dissociations among judgments do not reflect cognitive priority: an associative explanation of memory for frequency information in contingency learning.

    PubMed

    Vadillo, Miguel A; Luque, David

    2013-03-01

    Previous research on causal learning has usually made strong claims about the relative complexity and temporal priority of some processes over others based on evidence about dissociations between several types of judgments. In particular, it has been argued that the dissociation between causal judgments and trial-type frequency information is incompatible with the general cognitive architecture proposed by associative models. In contrast with this view, we conduct an associative analysis of this process showing that this need not be the case. We conclude that any attempt to gain a better insight on the cognitive architecture involved in contingency learning cannot rely solely on data about these dissociations.

  13. Framing Prospective Elementary Teachers' Conceptions of Dissolving as a Ladder of Explanations

    NASA Astrophysics Data System (ADS)

    Subramaniam, Karthigeyan; Esprivalo Harrell, Pamela

    2013-11-01

    The paper details an exploratory qualitative study that investigated 61 prospective teachers' conceptual understanding of dissolving salt and sugar in water respectively. The study was set within a 15-week elementary science methods course that included a 5E learning cycle lesson on dissolving, the instructional context. Oversby's (Prim Sci Rev 63:6-19, 2002, Aspects of teaching secondary science, Routledge Falmer, London, 2002) ladder of explanations for the context of dissolving, current scientific explanations for dissolving and perspectives on conceptions and misconceptions provided the unified framework for the study. Concept maps, interview transcripts, written artifacts, and drawings and narratives were used as data to investigate these prospective teachers' conceptual understanding of dissolving throughout the 15-weeks of the methods course. Analysis revealed that participants' explanations of dissolving were predominantly descriptive explanations (39 %) and interpretative explanations (38 %), with lower percentage occurrences of intentional (14 %) and cause and effect (9 %) level explanations. Most of these explanations were also constructed by a set of loosely connected and reinforcing everyday concepts abstracted from common everyday experiences making them misconceptions. Implications include: (1) the need for science teacher educators to use multiple platforms to derive their prospective elementary teachers' conceptual understandings of science content; and (2) to identify and help them identify their own scientific conceptions and misconceptions and how they influence the construction of scientific/nonscientific explanations. Science teacher educators also need to emphasize the role of meaningful frameworks associated with the concept that is being introduced during the Engage phase of the 5E learning cycle. This is important because, relevant prior knowledge is associated with the knowledge of the particle theory of matter and both are part of larger knowledge system comprised of interrelated scientific concepts.

  14. Building an adaptive agent to monitor and repair the electrical power system of an orbital satellite

    NASA Technical Reports Server (NTRS)

    Tecuci, Gheorghe; Hieb, Michael R.; Dybala, Tomasz

    1995-01-01

    Over several years we have developed a multistrategy apprenticeship learning methodology for building knowledge-based systems. Recently we have developed and applied our methodology to building intelligent agents. This methodology allows a subject matter expert to build an agent in the same way in which the expert would teach a human apprentice. The expert will give the agent specific examples of problems and solutions, explanations of these solutions, or supervise the agent as it solves new problems. During such interactions, the agent learns general rules and concepts, continuously extending and improving its knowledge base. In this paper we present initial results on applying this methodology to build an intelligent adaptive agent for monitoring and repair of the electrical power system of an orbital satellite, stressing the interaction with the expert during apprenticeship learning.

  15. Elementary Students' Mathematical Explanations and Attention to Audience with Screencasts

    ERIC Educational Resources Information Center

    Soto, Melissa

    2015-01-01

    Reasoning and constructing mathematical explanations for an audience have become increasingly important activities in elementary classrooms with the implementation of reform-oriented curriculum and standards. Mobile learning tools and applications, such as screencasts, allow students to generate multimedia presentations of their solution…

  16. Prevention of Learned Helplessness in Humans.

    ERIC Educational Resources Information Center

    Klee, Steven; Meyer, Robert G.

    1979-01-01

    Explored prevention of learned helplessness through the use of thermal biofeedback training and varied explanations of performance. It was found that only in the biofeedback group receiving accurate feedback was there any prevention of the subsequent development of learned helplessness behavior. (Author)

  17. Teacher Implementation and the Impact of Game-Based Science Curriculum Materials

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher D.; Reichsman, Frieda; Mutch-Jones, Karen; Gardner, April; Marchi, Lisa; Kowalski, Susan; Lord, Trudi; Dorsey, Chad

    2018-01-01

    Research-based digital games hold great potential to be effective tools in supporting next-generation science learning. However, as with all instructional materials, teachers significantly influence their implementation and contribute to their effectiveness. To more fully understand the contributions and challenges of teacher implementation of digital games, we studied the replacement of existing high school biology genetics lessons over a 3- to 6-week period with Geniverse, an immersive, game-like learning environment designed to be used in classrooms. The Geniverse materials infuse virtual experimentation in genetics with a narrative of a quest to heal a genetic disease; incorporate the topics of meiosis and protein synthesis with inheritance; and include the science practices of explanation and argumentation. The research design involved a quasi-experiment with 48 high school teachers and about 2000 students, student science content knowledge and argumentation outcome measures, and analysis using hierarchical linear modeling. Results indicate that when Geniverse was implemented as the designers intended, student learning of genetics content was significantly greater than in the comparison, business-as-usual group. However, a wide range of levels of Geniverse implementation resulted in no significant difference between the groups as a whole. Students' abilities to engage in scientific explanation and argumentation were greater in the Geniverse group, but these differences were not statistically significant. Observation, survey, and interview data indicate a range of barriers to implementation and teacher instructional decisions that may have influenced student outcomes. Implications for the role of the teacher in the implementation of game-based instructional materials are discussed.

  18. Supporting 3rd-grade students model-based explanations about groundwater: a quasi-experimental study of a curricular intervention

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Vo, Tina; Forbes, Cory T.; Schwarz, Christina V.

    2017-07-01

    Scientific modelling is a key practice in which K-12 students should engage to begin developing robust conceptual understanding of natural systems, including water. However, little past research has explored primary students' learning about groundwater, engagement in scientific modelling, and/or the ways in which teachers conceptualise and cultivate model-based science learning environments. We are engaged in a multi-year project designed to support 3rd-grade students' formulation of model-based explanations (MBE) for hydrologic phenomenon, including groundwater, through curricular and instructional support. In this quasi-experimental comparative study of five 3rd-grade classrooms, we present findings from analysis of students' MBE generated as part of experiencing a baseline curricular intervention (Year 1) and a modelling-enhanced curricular intervention (Year 2). Findings show that students experiencing the latter version of the unit made significant gains in both conceptual understanding and reasoning about groundwater, but that these gains varied by classroom. Overall, student gains from Year 1 to Year 2 were attributed to changes in two of the five classrooms in which students were provided additional instructional supports and scaffolds to enhance their MBE for groundwater. Within these two classrooms, the teachers enacted the Year 2 curriculum in unique ways that reflected their deeper understanding about the practices of modelling. Their enactments played a critical role in supporting students' MBE about groundwater. Study findings contribute to research on scientific modelling in elementary science learning environments and have important implications for teachers and curriculum developers.

  19. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    PubMed Central

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students’ written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors’ and nonmajors’ written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of “near-perfect” agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations. PMID:22135372

  20. Applying computerized-scoring models of written biological explanations across courses and colleges: prospects and limitations.

    PubMed

    Ha, Minsu; Nehm, Ross H; Urban-Lurain, Mark; Merrill, John E

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored student responses are needed to build scoring models suitable for cross-institutional application? 3) What factors limit computer-scoring efficacy, and how can these factors be mitigated? To answer these questions, two biology experts scored a corpus of 2556 short-answer explanations (from biology majors and nonmajors) at two universities for the presence or absence of five key concepts of evolution. Human- and computer-generated scores were compared using kappa agreement statistics. We found that machine-learning software was capable in most cases of accurately evaluating the degree of scientific sophistication in undergraduate majors' and nonmajors' written explanations of evolutionary change. In cases in which the software did not perform at the benchmark of "near-perfect" agreement (kappa > 0.80), we located the causes of poor performance and identified a series of strategies for their mitigation. Machine-learning software holds promise as an assessment tool for use in undergraduate biology education, but like most assessment tools, it is also characterized by limitations.

  1. Simple minds: a qualified defence of associative learning

    PubMed Central

    Heyes, Cecilia

    2012-01-01

    Using cooperation in chimpanzees as a case study, this article argues that research on animal minds needs to steer a course between ‘association-blindness’—the failure to consider associative learning as a candidate explanation for complex behaviour—and ‘simple-mindedness’—the assumption that associative explanations trump more cognitive hypotheses. Association-blindness is challenged by the evidence that associative learning occurs in a wide range of taxa and functional contexts, and is a major force guiding the development of complex human behaviour. Furthermore, contrary to a common view, association-blindness is not entailed by the rejection of behaviourism. Simple-mindedness is founded on Morgan's canon, a methodological principle recommending ‘lower’ over ‘higher’ explanations for animal behaviour. Studies in the history and philosophy of science show that Morgan failed to offer an adequate justification for his canon, and subsequent attempts to justify the canon using evolutionary arguments and appeals to simplicity have not been successful. The weaknesses of association-blindness and simple-mindedness imply that there are no short-cuts to finding out about animal minds. To decide between associative and yet more cognitive explanations for animal behaviour, we have to spell them out in sufficient detail to allow differential predictions, and to test these predictions through observation and experiment. PMID:22927568

  2. Building Capacity in Understanding Foundational Biology Concepts: A K-12 Learning Progression in Genetics Informed by Research on Children's Thinking and Learning

    NASA Astrophysics Data System (ADS)

    Elmesky, Rowhea

    2013-06-01

    This article describes the substance, structure, and rationale of a learning progression in genetics spanning kindergarten through twelfth grade (K-12). The learning progression is designed to build a foundation towards understanding protein structure and activity and should be viewed as one possible pathway to understanding concepts of genetics and ultimately protein expression, based on the existing research. The kindergarten through fifth grade segment reflects findings that show children have a rich knowledge base and sophisticated cognitive abilities, and therefore, is designed so that elementary-aged children can learn content in deep and abstract manners, as well as apply scientific explanations appropriate to their knowledge level. The article also details the LP segment facilitating secondary students' understanding by outlining the overlapping conceptual frames which guide student learning from cell structures and functions to cell splitting (both cell division and gamete formation) to genetics as trait transmission, culminating in genetics as protein expression. The learning progression product avoids the use of technical language, which has been identified as a prominent source of student misconceptions in learning cellular biology, and explicit connections between cellular and macroscopic phenomena are encouraged.

  3. Can Infants Be "Taught" to Attend to a New Physical Variable in an Event Category? The Case of Height in Covering Events

    ERIC Educational Resources Information Center

    Wang, Su-hua; Baillargeon, Renee

    2008-01-01

    As they observe or produce events, infants identify variables that help them predict outcomes in each category of events. How do infants identify a new variable? An explanation-based learning (EBL) account suggests three essential steps: (1) observing contrastive outcomes relevant to the variable; (2) discovering the conditions associated with…

  4. Popular Explanations of Physical Phenomena: Broken Ruler, Oxygen in the Air and Water Attracted by Electric Charges

    ERIC Educational Resources Information Center

    Riveros, Héctor G.

    2012-01-01

    The inquiry-based approach to learning has proven to be quite effective, since Socrates, but it is difficult to found good questions to induce reasoning. Many sources explain wrongly some experimental results, which can be used as discrepant events. Some use the breaking of a ruler with a newspaper to "show" that the atmospheric pressure…

  5. Self-Explanations: How Students Study and Use Examples in Learning to Solve Problems.

    DTIC Science & Technology

    1987-11-03

    the conversion of the declarativ ;? knowledge Into the procedural knowledge, whereas the encoding of the declarative knowledge is taken to be a...self-explanations during studying examples may make other latent or implicit components more accessible. Our data cannot discriminate between the

  6. Leading a Community of Learners: Learning to Be Moral by Engaging the Morality of Learning

    ERIC Educational Resources Information Center

    Starratt, Robert J.

    2007-01-01

    This article attempts to provide a foundational understanding of school learning as moral activity as well as intellectual activity. It first develops a distinction between general ethics and professional ethics, and provides an initial explanation of the moral good involved in learning. The moral good of learning is then connected to the…

  7. "Some Explanation Here": A Case Study of Learning Opportunities and Tensions in an Informal Science Learning Environment

    ERIC Educational Resources Information Center

    Stewart, Olivia G.; Jordan, Michelle E.

    2017-01-01

    Recent scholarship highlights the wealth of varied and interconnected opportunities for learning science that informal environments can provide; yet, participants with different experiences, knowledge, and backgrounds do not all learn in the same ways. Thus, studies are needed that examine how particular participants take up learning opportunities…

  8. Learning Biochemistry through Manga--Helping Students Learn and Remember, and Making Lectures More Exciting.

    ERIC Educational Resources Information Center

    Nagata, Ryoichi

    1999-01-01

    Uses panels taken from manga, Japanese comics and cartoons, to supplement explanations of biochemical terms and topics in biochemistry classes. Results indicate that the use of manga helped students remember what they had learned. (Author/CCM)

  9. Using variability to guide dimensional weighting: Associative mechanisms in early word learning

    PubMed Central

    Apfelbaum, Keith S.; McMurray, Bob

    2013-01-01

    At 14 months, children appear to struggle to apply their fairly well developed speech perception abilities to learning similar sounding words (e.g. bih/dih; Stager & Werker, 1997). However, variability in non-phonetic aspects of the training stimuli seems to aid word learning at this age. Extant theories of early word learning cannot account for this benefit of variability. We offer a simple explanation for this range of effects based on associative learning. Simulations suggest that if infants encode both non-contrastive information (e.g. cues to speaker voice) and meaningful linguistic cues (e.g. place of articulation or voicing), then associative learning mechanisms predict these variability effects in early word learning. Crucially, this means that despite the importance of task variables in predicting performance, this body of work shows that phonological categories are still developing in this age, and that the structure of non-informative cues has critical influences on word learning abilities. PMID:21609356

  10. Comprehension of idioms by children with learning disabilities: metaphoric transparency and syntactic frozenness.

    PubMed

    Abrahamsen, Eileen P; Burke-Williams, Debra

    2004-05-01

    Third and fifth grade children with and without learning disabilities participated in this study. Syntactically frozen and flexible idioms and transparent and opaque idioms were used as stimuli to examine the ability to identify the correct idiom and to explain idiom meanings. Grade and diagnostic category affected performance on the explanation task but not on the forced choice task. Idiom type was also a factor affecting comprehension and explanation. Literal responses occurred rarely and were more likely to occur on the forced choice task.

  11. Assessing Elementary Prospective Teachers' Mathematical Explanations after Engagement in Online Mentoring Modules

    ERIC Educational Resources Information Center

    Wall, Jennifer; Selmer, Sarah; Bingham Brown, Amy

    2016-01-01

    Prospective elementary teachers at three universities engaged in online modules called the Virtual Field Experience, created by the Math Forum. The prospective teachers learned about problem solving and mentoring elementary students in composing solutions and explanations to nonroutine challenge problems. Finally, through an asynchronous online…

  12. A Contextual View of Adult Learning and Memory.

    ERIC Educational Resources Information Center

    Glynn, Shawn M.

    Explanations of age-related differences in adult memory usually assume two forms: processing deficits and structural deficits. Processing deficit explanations attribute recall differences to a failure of older adults to effectively use the processes of attention, organization, mediation (the use of such devices as visual images and verbal images…

  13. Learning Algebra from Worked Examples

    ERIC Educational Resources Information Center

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  14. Students' Affordance of Teleologic Explanations and Anthropomorphic Language in Eliciting Concepts in Physics

    ERIC Educational Resources Information Center

    Bautista, Romiro G.

    2015-01-01

    This study ascertains that the students' affordance of teleologic explanations and anthropomorphic language in eliciting concepts in Physics is influenced by their age and learning exposure and experience. Using Explicative-Reductive Method of Descriptive Research, this study focused on the determinants of students' affordance of…

  15. Misconceived Causal Explanations for Emergent Processes

    ERIC Educational Resources Information Center

    Chi, Michelene T. H.; Roscoe, Rod D.; Slotta, James D.; Roy, Marguerite; Chase, Catherine C.

    2012-01-01

    Studies exploring how students learn and understand science processes such as "diffusion" and "natural selection" typically find that students provide misconceived explanations of how the patterns of such processes arise (such as why giraffes' necks get longer over generations, or how ink dropped into water appears to "flow"). Instead of…

  16. The Source for Learning Disabilities.

    ERIC Educational Resources Information Center

    Currie, Paula S.; Wadlington, Elizabeth M.

    This book is designed to help clinicians and teachers work more effectively with people with learning disabilities and their families. Chapter 1 provides an overview of learning disabilities. It presents commonly accepted medical and educational definitions, prevalence figures, and possible etiological explanations for various disorders. Chapter 2…

  17. Successful Learning with Multiple Graphical Representations and Self-Explanation Prompts

    ERIC Educational Resources Information Center

    Rau, Martina A.; Aleven, Vincent; Rummel, Nikol

    2015-01-01

    Research shows that multiple external representations can significantly enhance students' learning. Most of this research has focused on learning with text and 1 additional graphical representation. However, real instructional materials often employ multiple "graphical" representations (MGRs) in addition to text. An important open…

  18. Neighborhood graph and learning discriminative distance functions for clinical decision support.

    PubMed

    Tsymbal, Alexey; Zhou, Shaohua Kevin; Huber, Martin

    2009-01-01

    There are two essential reasons for the slow progress in the acceptance of clinical case retrieval and similarity search-based decision support systems; the especial complexity of clinical data making it difficult to define a meaningful and effective distance function on them and the lack of transparency and explanation ability in many existing clinical case retrieval decision support systems. In this paper, we try to address these two problems by introducing a novel technique for visualizing inter-patient similarity based on a node-link representation with neighborhood graphs and by considering two techniques for learning discriminative distance function that help to combine the power of strong "black box" learners with the transparency of case retrieval and nearest neighbor classification.

  19. Interpretable Categorization of Heterogeneous Time Series Data

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua

    2017-01-01

    We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.

  20. The Use of Conceptual Change Text toward Students’ Argumentation Skills in Learning Sound

    NASA Astrophysics Data System (ADS)

    Sari, B. P.; Feranie, S.; Winarno, N.

    2017-09-01

    This research aim is to investigate the effect of Conceptual Change Text toward students’ argumentation skills in learning sound concept. The participant comes from one of International school in Bandung, Indonesia. The method that used in this research is a quasi-experimental design with one control group (N=21) and one experimental group (N=21) were involves in this research. The learning model that used in both classes is demonstration model which included teacher explanation and examples, the difference only in teaching materials. In experiment group learn with Conceptual Change Text, while control group learn with conventional book which is used in school. The results showed that Conceptual Change Text instruction was better than the conventional book to improved students’ argumentation skills of sound concept. Based on this results showed that Conceptual Change Text instruction can be an alternative tool to improve students’ argumentation skills significantly.

  1. The Learning Loss Scale as an Assessment Tool: An Empirical Examination of Convergent Validity with Performative Measures

    ERIC Educational Resources Information Center

    Hooker, John; Denker, Katherine

    2014-01-01

    Higher education has placed an increasingly greater value on assessment. The Learning Loss Scale may be an appropriate tool to assess learning across disciplines. In this paper, we review the culture of assessment, conceptualizations of cognitive learning, the Learning Loss Scale, and a theoretical explanation, and then we test this measure to…

  2. Students' explanations in complex learning of disciplinary programming

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.

  3. The Future of Adaptive Learning: Does the Crowd Hold the Key?

    ERIC Educational Resources Information Center

    Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay

    2016-01-01

    Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…

  4. The many roles of "explanation" in science education: a case study

    NASA Astrophysics Data System (ADS)

    Rocksén, Miranda

    2016-12-01

    In this paper the role of explanations is discussed in relation to possible consequences originating in the polysemy of the word explanation. The present study is a response to conceptual confusions that have arisen in the intersection between theory and practice, and between science education literature and communication in authentic science classroom settings. Science classroom communication is examined in terms of one teacher's word use during eleven lessons about evolution. The study contributes empirical examples of how disciplinary norms of valid explanations are manifested in science classroom communication. A dialogical analysis shows how the teacher provides three conversational structures: asking for acts of explanation, providing opportunities to talk about what explanations are in this context and providing opportunities to talk about explanations constructed by students. These three structures facilitate the process of learning how to evaluate and justify explanations. Three potential meanings of the word "explanation" are pointed to: an everyday meaning, a pedagogical-professional meaning and a scientific meaning of the word. It is suggested that the co-existence of these three potential meanings has communicative consequences in science education.

  5. Students' use of atomic and molecular models in learning chemistry

    NASA Astrophysics Data System (ADS)

    O'Connor, Eileen Ann

    1997-09-01

    The objective of this study was to investigate the development of introductory college chemistry students' use of atomic and molecular models to explain physical and chemical phenomena. The study was conducted during the first semester of the course at a University and College II. Public institution (Carnegie Commission of Higher Education, 1973). Students' use of models was observed during one-on-one interviews conducted over the course of the semester. The approach to introductory chemistry emphasized models. Students were exposed to over two-hundred and fifty atomic and molecular models during lectures, were assigned text readings that used over a thousand models, and worked interactively with dozens of models on the computer. These models illustrated various features of the spatial organization of valence electrons and nuclei in atoms and molecules. Despite extensive exposure to models in lectures, in textbook, and in computer-based activities, the students in the study based their explanation in large part on a simple Bohr model (electrons arranged in concentric circles around the nuclei)--a model that had not been introduced in the course. Students used visual information from their models to construct their explanation, while overlooking inter-atomic and intra-molecular forces which are not represented explicitly in the models. In addition, students often explained phenomena by adding separate information about the topic without either integrating or logically relating this information into a cohesive explanation. The results of the study demonstrate that despite the extensive use of models in chemistry instruction, students do not necessarily apply them appropriately in explaining chemical and physical phenomena. The results of this study suggest that for the power of models as aids to learning to be more fully realized, chemistry professors must give more attention to the selection, use, integration, and limitations of models in their instruction.

  6. When cognitive exertion does not yield cognitive gain: toward an informational explanation of learned helplessness.

    PubMed

    Sedek, G; Kofta, M

    1990-04-01

    This study tested a new information-processing explanation of learned helplessness that proposes that an uncontrollable situation produces helplessness symptoms because it is a source of inconsistent, self-contradictory task information during problem-solving attempts. The flow of such information makes hypothesis-testing activity futile. Prolonged and inefficient activity of this kind leads in turn to the emergence of a state of cognitive exhaustion, with accompanying performance deficits. In 3 experiments, Ss underwent informational helplessness training (IHT): They were sequentially exposed to inconsistent task information during discrimination problems. As predicted, IHT was associated with subjective symptoms of irreducible uncertainty and resulted in (a) performance deterioration on subsequent avoidance learning, (b) heightened negative mood, and (c) subjective symptoms of cognitive exhaustion.

  7. Dual learning processes underlying human decision-making in reversal learning tasks: functional significance and evidence from the model fit to human behavior

    PubMed Central

    Bai, Yu; Katahira, Kentaro; Ohira, Hideki

    2014-01-01

    Humans are capable of correcting their actions based on actions performed in the past, and this ability enables them to adapt to a changing environment. The computational field of reinforcement learning (RL) has provided a powerful explanation for understanding such processes. Recently, the dual learning system, modeled as a hybrid model that incorporates value update based on reward-prediction error and learning rate modulation based on the surprise signal, has gained attention as a model for explaining various neural signals. However, the functional significance of the hybrid model has not been established. In the present study, we used computer simulation in a reversal learning task to address functional significance in a probabilistic reversal learning task. The hybrid model was found to perform better than the standard RL model in a large parameter setting. These results suggest that the hybrid model is more robust against the mistuning of parameters compared with the standard RL model when decision-makers continue to learn stimulus-reward contingencies, which can create abrupt changes. The parameter fitting results also indicated that the hybrid model fit better than the standard RL model for more than 50% of the participants, which suggests that the hybrid model has more explanatory power for the behavioral data than the standard RL model. PMID:25161635

  8. Writing for Learning in Science: A Model for Use within Classrooms.

    ERIC Educational Resources Information Center

    Hand, Brian; Prain, Vaughan

    1996-01-01

    Discusses writing for learning within science classrooms. Presents a model that can be used by teachers to promote a greater variety of writing types. Includes examples of its use and an explanation of learning strategies students use in these activities. Discusses the value of the model in framing the planning of writing-for-learning tasks.…

  9. Interpreting Medical Information Using Machine Learning and Individual Conditional Expectation.

    PubMed

    Nohara, Yasunobu; Wakata, Yoshifumi; Nakashima, Naoki

    2015-01-01

    Recently, machine-learning techniques have spread many fields. However, machine-learning is still not popular in medical research field due to difficulty of interpreting. In this paper, we introduce a method of interpreting medical information using machine learning technique. The method gave new explanation of partial dependence plot and individual conditional expectation plot from medical research field.

  10. Teachers' Views of Social-Emotional Skills and Their Perspectives on Social-Emotional Learning Programs

    ERIC Educational Resources Information Center

    Esen-Aygun, Hanife; Sahin-Taskin, Cigdem

    2017-01-01

    This research aimed to understand primary teachers' views of primary teachers' social-emotional learning and social-emotional learning programs in Turkey. Findings revealed that although most of the teachers had heard of the concept of social-emotional learning, they could not give a detailed explanation of it. Additionally, most of them were not…

  11. Learned Attention in Adult Language Acquisition: A Replication and Generalization Study and Meta-Analysis

    ERIC Educational Resources Information Center

    Ellis, Nick C.; Sagarra, Nuria

    2011-01-01

    This study investigates associative learning explanations of the limited attainment of adult compared to child language acquisition in terms of learned attention to cues. It replicates and extends Ellis and Sagarra (2010) in demonstrating short- and long-term learned attention in the acquisition of temporal reference in Latin. In Experiment 1,…

  12. An Explanation of the Relationship between Instructor Humor and Student Learning: Instructional Humor Processing Theory

    ERIC Educational Resources Information Center

    Wanzer, Melissa B.; Frymier, Ann B.; Irwin, Jeffrey

    2010-01-01

    This paper proposes the Instructional Humor Processing Theory (IHPT), a theory that incorporates elements of incongruity-resolution theory, disposition theory, and the elaboration likelihood model (ELM) of persuasion. IHPT is proposed and offered as an explanation for why some types of instructor-generated humor result in increased student…

  13. Applying Computerized-Scoring Models of Written Biological Explanations across Courses and Colleges: Prospects and Limitations

    ERIC Educational Resources Information Center

    Ha, Minsu; Nehm, Ross H.; Urban-Lurain, Mark; Merrill, John E.

    2011-01-01

    Our study explored the prospects and limitations of using machine-learning software to score introductory biology students' written explanations of evolutionary change. We investigated three research questions: 1) Do scoring models built using student responses at one university function effectively at another university? 2) How many human-scored…

  14. Learning by Generating vs. Receiving Instructional Explanations: Two Approaches to Enhance Attention Cueing in Animations

    ERIC Educational Resources Information Center

    de Koning, Bjorn B.; Tabbers, Huib K.; Rikers, Remy M. J. P.; Paas, Fred

    2010-01-01

    This study investigated whether learners construct more accurate mental representations from animations when instructional explanations are provided via narration than when learners attempt to infer functional relations from the animation through self-explaining. Also effects of attention guidance by means of cueing are investigated. Psychology…

  15. Learning Introductory Quantum Physics: Sensori-Motor Experiences and Mental Models

    ERIC Educational Resources Information Center

    Ke, Jiun-Liang; Monk, Martin; Duschl, Richard

    2005-01-01

    This paper reports a cross-sectional study of Taiwanese physics students' understanding of subatomic phenomena that are explained by quantum mechanics. The study uses students' explanations of their answers to items in a questionnaire as a proxy for students' thinking. The variation in students' explanations is discussed as is the development in…

  16. Organic Chemistry YouTube Writing Assignment for Large Lecture Classes

    ERIC Educational Resources Information Center

    Franz, Annaliese K.

    2012-01-01

    This work describes efforts to incorporate and evaluate the use of a YouTube writing assignment in large lecture classes to personalize learning and improve conceptual understanding of chemistry through peer- and self-explanation strategies. Although writing assignments can be a method to incorporate peer- and self-explanation strategies, this…

  17. Beyond Explanations: What Else Do Students Need to Understand Science?

    ERIC Educational Resources Information Center

    Hamza, Karim M.; Wickman, Per-Olof

    2009-01-01

    Students' difficulties with learning science have generally been framed in terms of their generalized conceptual knowledge of a science topic as elicited through their explanations of natural phenomena. In this paper, we empirically explore what more goes into giving a scientific account of a natural phenomenon than giving such generalized…

  18. Post-Secondary Science Students' Explanations of "Randomness" and "Variation" and Implications for Science Learning

    ERIC Educational Resources Information Center

    Gougis, Rebekka Darner; Stomberg, Janet F.; O'Hare, Alicia T.; O'Reilly, Catherine M.; Bader, Nicholas E.; Meixner, Thomas; Carey, Cayelan C.

    2017-01-01

    The concepts of randomness and variation are pervasive in science. The purpose of this study was to document how post-secondary life science students explain randomness and variation, infer relationships between their explanations, and ability to describe and identify appropriate and inappropriate variation, and determine if students can identify…

  19. Learning Edge Momentum: A New Account of Outcomes in CS1

    ERIC Educational Resources Information Center

    Robins, Anthony

    2010-01-01

    Compared to other subjects, the typical introductory programming (CS1) course has higher than usual rates of both failing and high grades, creating a characteristic bimodal grade distribution. In this article, I explore two possible explanations. The conventional explanation has been that learners naturally fall into populations of programmers and…

  20. Detrimental Effects of Immediate Explanation Feedback

    ERIC Educational Resources Information Center

    Roelle, Julian; Rahimkhani-Sagvand, Natalie; Berthold, Kirsten

    2017-01-01

    Adjunct questions are a common means to foster learning from instructional explanations. As the benefit of adjunct questions is mitigated if learner performance on them is low, it is also common to provide feedback as an add-on if learners fail to correctly respond to them. However, if adjunct questions are highly demanding, feedback might not…

  1. Development and Assessment of Self-explaining Skills in College Chemistry Instruction

    NASA Astrophysics Data System (ADS)

    Villalta-Cerdas, Adrian

    The prevalent trend in chemistry instruction relies on what has been described as the classroom game. In this model, students take a passive role and the instructor does all the explaining (thinking), and learning is trivialized to knowing the correct answers (memorizing) and being able to produce them when prompted (regurgitating). The generation of explanations is central to scientific and technological development. In the process of figuring out explanations, the generation of inferences relies on the application of skills associated with scientific behaviors (e.g., analytical reasoning and critical thinking). The process of explanation generation causes a deeper analysis and revision of the scientific models, thus impacting the conceptual understanding of such models. Although the process of generating authentic explanations is closer to the experience of doing science, this process is seldom replicated in science instruction. Self-explaining refers to the generation of inferences about causal connections between objects and events. In science, this may be summarized as making sense of how and why actual or hypothetical phenomena take place. Research findings in educational psychology show that implementing activities that elicit self-explaining improves learning in general and specifically enhances authentic learning in the sciences. Research also suggests that self-explaining influences many aspects of cognition, including acquisition of problem-solving skills and conceptual understanding. Although the evidence that links self-explaining and learning is substantial, most of the research has been conducted in experimental settings. The purpose of this work was to advance knowledge in this area by investigating the effect of different self-explaining tasks on self-explaining behavior and the effect of engaging in different levels of self-explaining on learning chemistry concepts. Unlike most of the research in the field, this work did not focus on advancing procedural knowledge through self-explanation of examples or conceptual understanding through self-explanation of textual information and concepts. Instead, it focused on an experience closer to doing science by presenting a familiar phenomenon to the participants and a fact that would potentially induce cognitive imbalance to then prompt them to self-explain. This work used a multi-condition, mixed-method approach to categorize students' self-explaining behaviors in response to learning tasks and link it to the performance in a post-learning task. Students were randomly assigned to conditions that included the following: studying an experts' explanation, explaining correct and incorrect answers, explaining agreement with another's answer, and explaining one's own answer for others to use. Data were gathered in the classroom ecology of a university, large-enrollment general chemistry course. Content and construct validity evidence support the functionality of the research instruments for the assessment of conceptual understanding of entropy and the Second Law of Thermodynamics. An in-depth analysis of the post-learning task showed that the data collected from the instrument is reliable, consistent and reproducible. Findings supported an association between the self-explaining tasks and students' self-explaining behaviors. Results showed distinct categorical self-explaining behaviors in students' written responses. These self-explaining behaviors were associated with the self-explaining task given to the students. Thoughtful design of learning tasks can effectively elicit engagement in sophisticated self-explaining in natural, large-enrollment college chemistry classroom environments. Comparison analyses of performance in the post-learning task suggested that in the context of large-enrollment college chemistry classroom environments, self-explaining activities improved students' conceptual understanding in chemistry. Overall, the work showed that students can self-explain chemical phenomena and apply the underlying chemistry concepts in the resolution of novel problems without direct intervention of an instructor. This work supports the incorporation of self-explaining activities in the repertoire of teaching practices of both experienced and novice instructors for general chemistry courses.

  2. Exploration of Learning Strategies Associated With Aha Learning Moments.

    PubMed

    Pilcher, Jobeth W

    2016-01-01

    Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.

  3. Focus of Attention and Choice of Text Modality in Multimedia Learning

    ERIC Educational Resources Information Center

    Schnotz, Wolfgang; Mengelkamp, Christoph; Baadte, Christiane; Hauck, Georg

    2014-01-01

    The term "modality effect" in multimedia learning means that students learn better from pictures combined with spoken rather than written text. The most prominent explanations refer to the split attention between visual text reading and picture observation which could affect transfer of information into working memory, maintenance of…

  4. Theoretical Explanation for Success of Deep-Level-Learning Study Tours

    ERIC Educational Resources Information Center

    Bergsteiner, Harald; Avery, Gayle C.

    2008-01-01

    Study tours can help internationalize curricula and prepare students for global workplaces. We examine benefits of tours providing deep-level learning experiences rather than industrial tourism using five main theoretical frameworks to highlight the diverse learning benefits associated with intensive study tours in particular. Relevant theoretical…

  5. Adult Learning Theory: A Primer. Information Series.

    ERIC Educational Resources Information Center

    Baumgartner, Lisa M.; Lee, Ming-Yeh; Birden, Susan; Flowers, Doris

    The purpose of this monograph is to serve as a primer for practitioners on the foundational theories of adult learning. It begins with an explanation two lenses through which learning theory is viewed: behaviorism and constructivism. The next section defines andragogy and delineates Knowles's five assumptions about adult learners. This is followed…

  6. Understanding Learning Cultures

    ERIC Educational Resources Information Center

    Hodkinson, Phil; Biesta, Gert; James, David

    2007-01-01

    This paper sets out an explanation about the nature of learning cultures and how they work. In so doing, it directly addresses some key weaknesses in current situated learning theoretical writing, by working to overcome unhelpful dualisms, such as the individual and the social, and structure and agency. It does this through extensive use of some…

  7. Social Learning Theory and Developmental Psychology: The Legacies of Robert Sears and Albert Bandura.

    ERIC Educational Resources Information Center

    Grusec, Joan E.

    1992-01-01

    Social learning theory is evaluated from a historical perspective that goes up to the present. Sears and others melded psychoanalytic and stimulus-response learning theory into a comprehensive explanation of human behavior. Bandura emphasized cognitive and information-processing capacities that mediate social behavior. (LB)

  8. PBL and beyond: trends in collaborative learning.

    PubMed

    Pluta, William J; Richards, Boyd F; Mutnick, Andrew

    2013-01-01

    Building upon the disruption to lecture-based methods triggered by the introduction of problem-based learning, approaches to promote collaborative learning are becoming increasingly diverse, widespread and generally well accepted within medical education. Examples of relatively new, structured collaborative learning methods include team-based learning and just-in-time teaching. Examples of less structured approaches include think-pair share, case discussions, and the flipped classroom. It is now common practice in medical education to employ a range of instructional approaches to support collaborative learning. We believe that the adoption of such approaches is entering a new and challenging era. We define collaborate learning by drawing on the broader literature, including Chi's ICAP framework that emphasizes the importance of sustained, interactive explanation and elaboration by learners. We distinguish collaborate learning from constructive, active, and passive learning and provide preliminary evidence documenting the growth of methods that support collaborative learning. We argue that the rate of adoption of collaborative learning methods will accelerate due to a growing emphasis on the development of team competencies and the increasing availability of digital media. At the same time, the adoption collaborative learning strategies face persistent challenges, stemming from an overdependence on comparative-effectiveness research and a lack of useful guidelines about how best to adapt collaborative learning methods to given learning contexts. The medical education community has struggled to consistently demonstrate superior outcomes when using collaborative learning methods and strategies. Despite this, support for their use will continue to expand. To select approaches with the greatest utility, instructors must carefully align conditions of the learning context with the learning approaches under consideration. Further, it is critical that modifications are made with caution and that instructors verify that modifications do not impede the desired cognitive activities needed to support meaningful collaborative learning.

  9. Retrieval activates related words more than presentation.

    PubMed

    Hausman, Hannah; Rhodes, Matthew G

    2018-03-23

    Retrieving information enhances learning more than restudying. One explanation of this effect is based on the role of mediators (e.g., sand-castle can be mediated by beach). Retrieval is hypothesised to activate mediators more than restudying, but existing tests of this hypothesis have had mixed results [Carpenter, S. K. (2011). Semantic information activated during retrieval contributes to later retention: Support for the mediator effectiveness hypothesis of the testing effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1547-1552. doi: 10.1037/a0024140 ; Lehman, M., & Karpicke, J. D. (2016). Elaborative retrieval: Do semantic mediators improve memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(10), 1573-1591. doi: 10.1037/xlm0000267 ]. The present experiments explored an explanation of the conflicting results, testing whether mediator activation during a retrieval attempt depends on the accessibility of the target information. A target was considered less versus more accessible when fewer versus more cues were given during retrieval practice (Experiments 1 and 2), when the target had been studied once versus three times initially (Experiment 3), or when the target could not be recalled versus could be recalled during retrieval practice (Experiments 1-3). A mini meta-analysis of all three experiments revealed a small effect such that retrieval activated mediators more than presentation, but mediator activation was not reliably related to target accessibility. Thus, retrieval may enhance learning by activating mediators, in part, but these results suggest the role of other processes, too.

  10. Raphanus sativus, Germination, and Inquiry: A Learning Cycle Approach for Novice Experimenters.

    ERIC Educational Resources Information Center

    Rillero, Peter

    1999-01-01

    Describes open-ended experiments with seeds from the common garden radish (Raphanus sativus). The phases of the 5-E learning cycle--Engagement, Exploration, Explanation, Extension, and Evaluation--guide this activity series. (Author/MM)

  11. Explaining the moral of the story.

    PubMed

    Walker, Caren M; Lombrozo, Tania

    2017-10-01

    Although storybooks are often used as pedagogical tools for conveying moral lessons to children, the ability to spontaneously extract "the moral" of a story develops relatively late. Instead, children tend to represent stories at a concrete level - one that highlights surface features and understates more abstract themes. Here we examine the role of explanation in 5- and 6-year-old children's developing ability to learn the moral of a story. Two experiments demonstrate that, relative to a control condition, prompts to explain aspects of a story facilitate children's ability to override salient surface features, abstract the underlying moral, and generalize that moral to novel contexts. In some cases, generating an explanation is more effective than being explicitly told the moral of the story, as in a more traditional pedagogical exchange. These findings have implications for moral comprehension, the role of explanation in learning, and the development of abstract reasoning in early childhood. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamagnini, Paolo; Krause, Josua W.; Dasgupta, Aritra

    2017-05-14

    To realize the full potential of machine learning in diverse real- world domains, it is necessary for model predictions to be readily interpretable and actionable for the human in the loop. Analysts, who are the users but not the developers of machine learning models, often do not trust a model because of the lack of transparency in associating predictions with the underlying data space. To address this problem, we propose Rivelo, a visual analytic interface that enables analysts to understand the causes behind predictions of binary classifiers by interactively exploring a set of instance-level explanations. These explanations are model-agnostic, treatingmore » a model as a black box, and they help analysts in interactively probing the high-dimensional binary data space for detecting features relevant to predictions. We demonstrate the utility of the interface with a case study analyzing a random forest model on the sentiment of Yelp reviews about doctors.« less

  13. Strategies in Reading Comprehension: Individual Differences in Learning from Pictures and Words (A Footnote). Technical Report No. 300.

    ERIC Educational Resources Information Center

    Levin, Joel R.; Guttmann, Joseph

    In a recent experiment it was discovered that although many children learn uniformly well (or poorly) from pictures and words, others learn appreciably better from pictures. The present study rules out an alternative explanation of those data--which had been produced on a single learning task containing both pictures and words--by obtaining…

  14. Learning Achieved in Structured Online Debates: Levels of Learning and Types of Postings

    ERIC Educational Resources Information Center

    Jin, Li; Jeong, Allan

    2013-01-01

    The purpose of this study was to examine the learning process exhibited in restrained online debates in terms of to what extent each of Bloom's six levels of cognitive learning were exhibited among four types of message (argument, critique, evidence, and explanation). Thirty-three graduate students enrolled in an online entry-level course in…

  15. How to Do Things with Mouse Clicks: Applying Austin's Speech Act Theory to Explain Learning in Virtual Worlds

    ERIC Educational Resources Information Center

    Loke, Swee-Kin; Golding, Clinton

    2016-01-01

    This article addresses learning in desktop virtual worlds where students role play for professional education. When students role play in such virtual worlds, they can learn some knowledge and skills that are useful in the physical world. However, existing learning theories do not provide a plausible explanation of how performing non-verbal…

  16. Romantic Agrarianism and Movement Education in the United States: Examining the Discursive Politics of Learning Disability Science

    ERIC Educational Resources Information Center

    Danforth, Scot

    2011-01-01

    The learning disability construct gained scientific and political legitimacy in the United States in the 1960s as an explanation for some forms of childhood learning difficulties. In 1975, federal law incorporated learning disability into the categorical system of special education. The historical and scientific roots of the disorder involved a…

  17. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science Teaching (NARST) Zangori, L., & Forbes, C. T. (2015). Exploring 3rd-grade student model-based explanations about plant process interactions within the hydrosphere Portions of this paper are based on that work.

  18. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    ERIC Educational Resources Information Center

    Besson, Ugo

    2010-01-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…

  19. Characterizing Students' Attempts to Explain Observations from Practical Work: Intermediate Phases of Understanding

    ERIC Educational Resources Information Center

    Mestad, Idar; Kolstø, Stein Dankert

    2017-01-01

    This study aims to characterize a group of students' preliminary oral explanations of a scientific phenomenon produced as part of their learning process. The students were encouraged to use their own wordings to test out their own interpretation of observations when conducting practical activities. They presented their explanations orally in the…

  20. Investigating the Relationship between Student Mathematical Talk, Mathematical Student Roles, and Teacher Discourse around Student Behavior in the Classroom

    ERIC Educational Resources Information Center

    Fernández, Cecilia Henríquez

    2017-01-01

    The purpose of this study was to understand the relationship between teacher discourse around social norms, student mathematical roles, and student mathematical explanations in the classroom. Mathematical explanations are important for learning mathematics and professional organizations encourage their use in the classroom. This study sought to…

  1. Examining the Effect of Self-Explanation on Cognitive Integration of Basic and Clinical Sciences in Novices

    ERIC Educational Resources Information Center

    Lisk, Kristina; Agur, Anne M. R.; Woods, Nicole N.

    2017-01-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of "self-explanation" during learning has the…

  2. Preterite/Imperfect Half-Truths: Problems with Spanish Textbook Rules for Usage.

    ERIC Educational Resources Information Center

    Frantzen, Diana

    1995-01-01

    Preterite/Imperfect (PI) usage is one of the hardest grammatical features of Spanish to learn. Some of the blame lies with misleading textbook explanations. A discussion of problematic P/I textbook explanations shows why the presentation of a more reliable set of principles is a preferable alternative to questionable rules of thumb. (18…

  3. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    ERIC Educational Resources Information Center

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-01-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation…

  4. Quality of Explanation as an Indicator of Fraction Magnitude Understanding

    ERIC Educational Resources Information Center

    Foreman-Murray, Lindsay; Fuchs, Lynn S.

    2018-01-01

    Student explanations of their mathematical thinking and conclusions have become a greater part of the assessment landscape in recent years. With a sample of 71 4th-grade students at-risk for mathematics learning disabilities, we investigated the relation between student accuracy in comparing the magnitude of fractions and the quality of students'…

  5. Unpacking Sensemaking

    ERIC Educational Resources Information Center

    Kapon, Suulamit

    2017-01-01

    Learning science involves an ongoing process in which learners construct and reconstruct self-explanations and evaluate their relative soundness. This work coordinates and aligns complementary methodological and theoretical approaches to learning to both unpack sensemaking and better understand the conditions that facilitate it. I conceptualize…

  6. Generative Learning, Quizzing and Cognitive Learning: An Experimental Study in the Communication Classroom

    ERIC Educational Resources Information Center

    Johnson, Danette Ifert; Mrowka, Kaleigh

    2010-01-01

    This investigation tests Wittrock's generative learning model as an explanation for the positive relationship found between quizzing and student performance in a number of studies. Results support the theory, suggesting that quizzes structured to include multiple levels of Bloom, Engelhart, Furst, Hill and Krathwohl's (1956) taxonomy, and thereby…

  7. Written Identification of Errors to Learn Professional Procedures in VET

    ERIC Educational Resources Information Center

    Boldrini, Elena; Cattaneo, Alberto

    2013-01-01

    Research has demonstrated that the use of worked-out examples to present errors has great potential for procedural knowledge acquirement. Nevertheless, the identification of errors alone does not directly enhance a deep learning process if it is not adequately scaffolded by written self-explanations. We hypothesised that in learning a professional…

  8. Explicit Instruction, Bilingualism, and the Older Adult Learner

    ERIC Educational Resources Information Center

    Cox, Jessica G.

    2017-01-01

    Little is known about older adult language learners and effects of aging on L2 learning. This study investigated learning in older age through interactions of learner-internal and -external variables; specifically, late-learned L2 (bilingualism) and provision of grammar explanation (explicit instruction, EI). Forty-three older adults (age 60+) who…

  9. Models, Matter and Truth in Doing and Learning Science

    ERIC Educational Resources Information Center

    Hardman, Mark

    2017-01-01

    Doing science involves the development and evaluation of models. These models are not objective truths but can be understood as explanations, which scientists use to explore and reason about an aspect of the world. Learning science involves students expressing and engaging with models in the classroom. However, this learning should not be seen as…

  10. Using Transformative Learning as a Framework to Explore Women and Running

    ERIC Educational Resources Information Center

    Hayduk, Dina

    2011-01-01

    This qualitative narrative inquiry explored women's self-perceptions changed through regular participation in running. Transformative learning theory was considered as a possible explanation for the learning and changes adult women experienced. In-depth interviews of 11 adult women who have been running between 1 to 4 years were conducted. Based…

  11. Learning processes in the professional development of mental health counselors: knowledge restructuring and illness script formation.

    PubMed

    Strasser, Josef; Gruber, Hans

    2015-05-01

    An important part of learning processes in the professional development of counselors is the integration of declarative knowledge and professional experience. It was investigated in-how-far mental health counselors at different levels of expertise (experts, intermediates, novices) differ in their availability of experience-based knowledge structures. Participants were prompted with 20 client problems. They had to explain those problems, the explanations were analyzed using think-aloud protocols. The results show that experts' knowledge is organized in script-like structures that integrate declarative knowledge and professional experience and help experts in accessing relevant information about cases. Novices revealed less integrated knowledge structures. It is concluded that knowledge restructuring and illness script formation are crucial parts of the professional learning of counselors.

  12. Modelling sociocognitive aspects of students' learning

    NASA Astrophysics Data System (ADS)

    Koponen, I. T.; Kokkonen, T.; Nousiainen, M.

    2017-03-01

    We present a computational model of sociocognitive aspects of learning. The model takes into account a student's individual cognition and sociodynamics of learning. We describe cognitive aspects of learning as foraging for explanations in the epistemic landscape, the structure (set by instructional design) of which guides the cognitive development through success or failure in foraging. We describe sociodynamic aspects as an agent-based model, where agents (learners) compare and adjust their conceptions of their own proficiency (self-proficiency) and that of their peers (peer-proficiency) in using explanatory schemes of different levels. We apply the model here in a case involving a three-tiered system of explanatory schemes, which can serve as a generic description of some well-known cases studied in empirical research on learning. The cognitive dynamics lead to the formation of dynamically robust outcomes of learning, seen as a strong preference for a certain explanatory schemes. The effects of social learning, however, can account for half of one's success in adopting higher-level schemes and greater proficiency. The model also predicts a correlation of dynamically emergent interaction patterns between agents and the learning outcomes.

  13. A new learning paradigm: learning using privileged information.

    PubMed

    Vapnik, Vladimir; Vashist, Akshay

    2009-01-01

    In the Afterword to the second edition of the book "Estimation of Dependences Based on Empirical Data" by V. Vapnik, an advanced learning paradigm called Learning Using Hidden Information (LUHI) was introduced. This Afterword also suggested an extension of the SVM method (the so called SVM(gamma)+ method) to implement algorithms which address the LUHI paradigm (Vapnik, 1982-2006, Sections 2.4.2 and 2.5.3 of the Afterword). See also (Vapnik, Vashist, & Pavlovitch, 2008, 2009) for further development of the algorithms. In contrast to the existing machine learning paradigm where a teacher does not play an important role, the advanced learning paradigm considers some elements of human teaching. In the new paradigm along with examples, a teacher can provide students with hidden information that exists in explanations, comments, comparisons, and so on. This paper discusses details of the new paradigm and corresponding algorithms, introduces some new algorithms, considers several specific forms of privileged information, demonstrates superiority of the new learning paradigm over the classical learning paradigm when solving practical problems, and discusses general questions related to the new ideas.

  14. Chess knowledge predicts chess memory even after controlling for chess experience: Evidence for the role of high-level processes.

    PubMed

    Lane, David M; Chang, Yu-Hsuan A

    2018-04-01

    The expertise effect in memory for chess positions is one of the most robust effects in cognitive psychology. One explanation of this effect is that chess recall is based on the recognition of familiar patterns and that experts have learned more and larger patterns. Template theory and its instantiation as a computational model are based on this explanation. An alternative explanation is that the expertise effect is due, in part, to stronger players having better and more conceptual knowledge, with this knowledge facilitating memory performance. Our literature review supports the latter view. In our experiment, a sample of 79 chess players were given a test of memory for chess positions, a test of declarative chess knowledge, a test of fluid intelligence, and a questionnaire concerning the amount of time they had played nontournament chess and the amount of time they had studied chess. We determined the numbers of tournament games the players had played from chess databases. Chess knowledge correlated .67 with chess memory and accounted for 16% of the variance after controlling for chess experience. Fluid intelligence accounted for an additional 13% of the variance. These results support the conclusion that both high-level conceptual processing and low-level recognition of familiar patterns play important roles in memory for chess positions.

  15. Additivity pretraining and cue competition effects: developmental evidence for a reasoning-based account of causal learning.

    PubMed

    Simms, Victoria; McCormack, Teresa; Beckers, Tom

    2012-04-01

    The effect of additivity pretraining on blocking has been taken as evidence for a reasoning account of human and animal causal learning. If inferential reasoning underpins this effect, then developmental differences in the magnitude of this effect in children would be expected. Experiment 1 examined cue competition effects in children's (4- to 5-year-olds and 6- to 7-year-olds) causal learning using a new paradigm analogous to the food allergy task used in studies of human adult causal learning. Blocking was stronger in the older than the younger children, and additivity pretraining only affected blocking in the older group. Unovershadowing was not affected by age or by pretraining. In experiment 2, levels of blocking were found to be correlated with the ability to answer questions that required children to reason about additivity. Our results support an inferential reasoning explanation of cue competition effects. (c) 2012 APA, all rights reserved.

  16. Visual working memory gives up attentional control early in learning: ruling out interhemispheric cancellation.

    PubMed

    Reinhart, Robert M G; Carlisle, Nancy B; Woodman, Geoffrey F

    2014-08-01

    Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. Here, we tested the alternative explanation that the role of visual working memory does not actually decline across learning, but instead lateralized representations accumulate in both hemispheres across trials and wash out the lateralized CDA. We show that the decline in CDA amplitude occurred even when the target objects were consistently lateralized to a single visual hemifield. Our findings demonstrate that reductions in the amplitude of the CDA during learning are not simply due to the dilution of the CDA from interhemispheric cancellation. Copyright © 2014 Society for Psychophysiological Research.

  17. Explanation and inference: mechanistic and functional explanations guide property generalization.

    PubMed

    Lombrozo, Tania; Gwynne, Nicholas Z

    2014-01-01

    The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1), experimentally provided (Experiment 2), or experimentally induced (Experiment 2). The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional) can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  18. Talking Physics: Two Case Studies on Short Answers and Self-explanation in Learning Physics

    NASA Astrophysics Data System (ADS)

    Badeau, Ryan C.

    This thesis explores two case studies into the use of short answers and self-explanation to improve student learning in physics. The first set of experiments focuses on the role of short answer questions in the context of computer-based instruction. Through a series of six experiments, we compare and evaluate the performance of computer-assessed short answer questions versus multiple choice for training conceptual topics in physics, controlling for feedback between the two formats. In addition to finding overall similar improvements on subsequent student performance and retention, we identify unique differences in how students interact with the treatments in terms of time spent on feedback and performance on follow-up short answer assessment. In addition, we identify interactions between the level of interactivity of the training, question format, and student attitudinal ratings of each respective training. The second case study focuses on the use of worked examples in the context of multi-concept physics problems - which we call "synthesis problems." For this part of the thesis, four experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. As such, the work presented here represents a novel focus on extending these two techniques to this class of more complicated physics problem. Across the four experiments, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time-on-task.

  19. The Connection Between Forms of Guidance for Inquiry-Based Learning and the Communicative Approaches Applied—a Case Study in the Context of Pre-service Teachers

    NASA Astrophysics Data System (ADS)

    Lehtinen, Antti; Lehesvuori, Sami; Viiri, Jouni

    2017-09-01

    Recent research has argued that inquiry-based science learning should be guided by providing the learners with support. The research on guidance for inquiry-based learning has concentrated on how providing guidance affects learning through inquiry. How guidance for inquiry-based learning could promote learning about inquiry (e.g. epistemic practices) is in need of exploration. A dialogic approach to classroom communication and pedagogical link-making offers possibilities for learners to acquire these practices. The focus of this paper is to analyse the role of different forms of guidance for inquiry-based learning on building the communicative approach applied in classrooms. The data for the study comes from an inquiry-based physics lesson implemented by a group of five pre-service primary science teachers to a class of sixth graders. The lesson was video recorded and the discussions were transcribed. The data was analysed by applying two existing frameworks—one for the forms of guidance provided and another for the communicative approaches applied. The findings illustrate that providing non-specific forms of guidance, such as prompts, caused the communicative approach to be dialogic. On the other hand, providing the learners with specific forms of guidance, such as explanations, shifted the communication to be more authoritative. These results imply that different forms of guidance provided by pre-service teachers can affect the communicative approach applied in inquiry-based science lessons, which affects the possibilities learners are given to connect their existing ideas to the scientific view. Future research should focus on validating these results by also analysing inservice teachers' lessons.

  20. Lexically-based learning and early grammatical development.

    PubMed

    Lieven, E V; Pine, J M; Baldwin, G

    1997-02-01

    Pine & Lieven (1993) suggest that a lexically-based positional analysis can account for the structure of a considerable proportion of children's early multiword corpora. The present study tests this claim on a second, larger sample of eleven children aged between 1;0 and 3;0 from a different social background, and extends the analysis to later in development. Results indicate that the positional analysis can account for a mean of 60% of all the children's multiword utterances and that the great majority of all other utterances are defined as frozen by the analysis. Alternative explanations of the data based on hypothesizing underlying syntactic or semantic relations are investigated through analyses of pronoun case marking and of verbs with prototypical agent-patient roles. Neither supports the view that the children's utterances are being produced on the basis of general underlying rules and categories. The implications of widespread distributional learning in early language development are discussed.

  1. Regional Educational Equity Policies: Learning from Inter-District Integration Programs. Research Brief No. 9

    ERIC Educational Resources Information Center

    Finnigan, Kara S.; Holme, Jennifer Jellison

    2015-01-01

    Across the U.S., urban school districts are in a deepening state of crisis. Problems of academic failure, financial debt, and enrollment loss have been reported in many of the nation's largest cities. In local and national policy debates, there are two distinct explanations about the reasons for these crises. One explanation for school failure…

  2. Games as Formative Assessment Environments: Examining the Impact of Explanations of Scoring and Incentives on Math Learning, Game Performance, and Help Seeking

    ERIC Educational Resources Information Center

    Delacruz, Girlie Castro

    2010-01-01

    To investigate whether games may serve as useful formative assessment environments, this study examined, experimentally, the effects of two aspects of formative assessment on math achievement, game play, and help-seeking behaviors: (a) making assessment criteria explicit through the explanation of scoring rules and (b) incentivizing the use of…

  3. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  4. Examining the Effects of Combining Self-Explanation Principles with an Educational Game on Learning Science Concepts

    ERIC Educational Resources Information Center

    Hsu, Chung-Yuan; Tsai, Chin-Chung

    2013-01-01

    Educational researchers have indicated that although computer games have the potential to promote students' motivation and engagement, the work on how to design effective games that fulfil educational purposes is still in its infancy. This study aimed to examine how integration of self-explanation into a computer game affected primary schoolers'…

  5. Transformational Processes and Learner Outcomes for Online Learning: An Activity Theory Case Study of Spanish Students

    ERIC Educational Resources Information Center

    Terantino, Joseph M.

    2009-01-01

    The purpose of this exploratory study was to examine the actions of online language learners from an activity theoretical perspective. It also attempted to explain how the students' learning outcomes evolved from their online learning experiences. This explanation placed an emphasis on the learners' previous experiences, defining their activity…

  6. Using Cooperative Learning to Teach via Text Types

    ERIC Educational Resources Information Center

    Jacobs, George M.; Yong, Seah-Tay Hui

    2004-01-01

    This article offers ideas as to how students can collaborate as they learn about and utilize a variety of text types (also known as rhetorical modes). The article begins with explanations of the teaching of text types and cooperative learning. The longest section of the article consists of examples of ways that students can use cooperative…

  7. Differences in How Monolingual and Bilingual Children Learn Second Labels for Familiar Objects

    ERIC Educational Resources Information Center

    Rowe, Lindsey; Jacobson, Rebecca; Saylor, Megan M.

    2015-01-01

    Monolingual children sometimes resist learning second labels for familiar objects. One explanation is that they are guided by word learning constraints that lead to the assumption that objects have only one name. It is less clear whether bilingual children observe this constraint. In the current study, we test the hypothesis that bilingual…

  8. A Theoretical Analysis of Learning with Graphics--Implications for Computer Graphics Design.

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan

    This paper reviews the literature pertinent to learning with graphics. The dual coding theory provides explanation about how graphics are stored and precessed in semantic memory. The level of processing theory suggests how graphics can be employed in learning to encourage deeper processing. In addition to dual coding theory and level of processing…

  9. Cohorts and Relatedness: Self-Determination Theory as an Explanation of How Learning Communities Affect Educational Outcomes

    ERIC Educational Resources Information Center

    Beachboard, Martine Robinson; Beachboard, John C.; Li, Wenling; Adkison, Stephen R.

    2011-01-01

    This study examines whether feelings of relatedness constitute a substantial means by which learning communities (cohorts) improve learning outcomes in higher education. It applies Ryan and Deci's Self-Determination Theory to an analysis of the National Survey of Student Engagement. The SDT hypothesizes that environments that support perceptions…

  10. Web 2.0 and Marketing Education: Explanations and Experiential Applications

    ERIC Educational Resources Information Center

    Granitz, Neil; Koernig, Stephen K.

    2011-01-01

    Although both experiential learning and Web 2.0 tools focus on creativity, sharing, and collaboration, sparse research has been published integrating a Web 2.0 paradigm with experiential learning in marketing. In this article, Web 2.0 concepts are explained. Web 2.0 is then positioned as a philosophy that can advance experiential learning through…

  11. The Relationship between Learning Effectiveness, Teacher Competence and Teachers Performance Madrasah Tsanawiyah at Serang, Banten, Indonesia

    ERIC Educational Resources Information Center

    Rahmatullah, Mamat

    2016-01-01

    In this study, the problem is limited factors relating to the learning effectiveness and teacher competence in improving the teacher performance. Therefore, this study will try to get explanations from some main issues which include the learning effectiveness issue, and teacher competence to increase teacher performance in Madrasah Tsanawiyah at…

  12. Advanced Mathematical Thinking and Students' Mathematical Learning: Reflection from Students' Problem-Solving in Mathematics Classroom

    ERIC Educational Resources Information Center

    Sangpom, Wasukree; Suthisung, Nisara; Kongthip, Yanin; Inprasitha, Maitree

    2016-01-01

    Mathematical teaching in Thai tertiary education still employs traditional methods of explanation and the use of rules, formulae, and theories in order for students to memorize and apply to their mathematical learning. This results in students' inability to concretely learn, fully comprehend and understand mathematical concepts and practice. In…

  13. A General Instance-Based Learning Framework for Studying Intuitive Decision-Making in a Cognitive Architecture (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2014-06-19

    decision theory (Berger, 1985), and quantum probability theory (Busemeyer, Pothos, Franco, & Trueblood, 2011). Similarly, explanations in the 1 rch in...trengths of associations) are consciously inaccessible and con- titute the implicit knowledge of the model (Gonzalez & Lebiere, 005; Lebiere, Wallach...in memory (Lebiere et al., 2013). It is important to note hat this wholly implicit process is not consciously available to the odel. The second level

  14. Explanation-Based Knowledge Acquisition of Schemas in Practical Electronics: A Machine Learning Approach

    DTIC Science & Technology

    1990-09-12

    electronics reading to the next. To test this hypothesis and the suitability of EBL to acquiring schemas, I have implemented an automated reader/learner as...used. For example, testing the utility of a kidnapping schema using several readings about kidnapping can only go so far toward establishing the...the cost of carrying the new rules while processing unrelated material will be underestimated. The present research tests the utility of new schemas in

  15. Assessments That Promote Collaborative Learning

    ERIC Educational Resources Information Center

    Watanabe, Maika; Evans, Laura

    2015-01-01

    This article discusses assessments that can be used to help encourage a collaborative classroom community, in which students help one another learn mathematics. The authors describe participation quizzes and explanation quizzes as assessment tools that encourage students to work together, share specific questions on challenging mathematics…

  16. Real-world visual statistics and infants' first-learned object names

    PubMed Central

    Clerkin, Elizabeth M.; Hart, Elizabeth; Rehg, James M.; Yu, Chen

    2017-01-01

    We offer a new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes. Images from head camera video captured by 8 1/2 to 10 1/2 month-old infants at 147 at-home mealtime events were analysed for the objects in view. The images were found to be highly cluttered with many different objects in view. However, the frequency distribution of object categories was extremely right skewed such that a very small set of objects was pervasively present—a fact that may substantially reduce the problem of referential ambiguity. The statistical structure of objects in these infant egocentric scenes differs markedly from that in the training sets used in computational models and in experiments on statistical word-referent learning. Therefore, the results also indicate a need to re-examine current explanations of how infants break into word learning. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872373

  17. Retrieval practice makes procedure from remembering: An automatization account of the testing effect.

    PubMed

    Racsmány, Mihály; Szőllősi, Ágnes; Bencze, Dorottya

    2018-01-01

    The "testing effect" refers to the striking phenomenon that repeated retrieval practice is one of the most effective learning strategies, and certainly more advantageous for long-term learning, than additional restudying of the same information. How retrieval can boost the retention of memories is still without unanimous explanation. In 3 experiments, focusing on the reaction time (RT) of retrieval, we showed that RT of retrieval during retrieval practice followed a power function speed up that typically characterizes automaticity and skill learning. More important, it was found that the measure of goodness of fit to this power function was associated with long-term recall success. Here we suggest that the automatization of retrieval is an explanatory component of the testing effect. As a consequence, retrieval-based learning has the properties characteristic of skill learning: diminishing involvement of attentional processes, faster processing, resistance to interference effects, and lower forgetting rate. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. The colloquial approach: An active learning technique

    NASA Astrophysics Data System (ADS)

    Arce, Pedro

    1994-09-01

    This paper addresses the very important problem of the effectiveness of teaching methodologies in fundamental engineering courses such as transport phenomena. An active learning strategy, termed the colloquial approach, is proposed in order to increase student involvement in the learning process. This methodology is a considerable departure from traditional methods that use solo lecturing. It is based on guided discussions, and it promotes student understanding of new concepts by directing the student to construct new ideas by building upon the current knowledge and by focusing on key cases that capture the essential aspects of new concepts. The colloquial approach motivates the student to participate in discussions, to develop detailed notes, and to design (or construct) his or her own explanation for a given problem. This paper discusses the main features of the colloquial approach within the framework of other current and previous techniques. Problem-solving strategies and the need for new textbooks and for future investigations based on the colloquial approach are also outlined.

  19. Unpacking the Paradox of Chinese Science Learners: Insights from Research into Asian Chinese School Students' Attitudes towards Learning Science, Science Learning Strategies, and Scientific Epistemological Views

    ERIC Educational Resources Information Center

    Cheng, May Hung May; Wan, Zhi Hong

    2016-01-01

    Chinese students' excellent science performance in large-scale international comparisons contradicts the stereotype of the Chinese non-productive classroom learning environment and learners. Most of the existing explanations of this paradox are provided from the perspective of teaching and learning in a general sense, but little work can be found…

  20. A history of gravity: An introduction to the epistemology of Paul Feyerabend

    NASA Astrophysics Data System (ADS)

    Rodrigues, Danilo Miranda

    2015-08-01

    The goal of this work is to show an historical introduction to epistemology of Paul Feyerabend and the importance of his concept of epistemological anarchism for education.Feyerabend defended that different and even contradictory theories must be used in education, this multiplicity of possible explanations for natural phenomena is important to express the real development of science.There are many different explanations for the fall of bodies, since the "natural places" in Aristotle until the Newtonian Gravitation or the General Relativity. The contact with many different explanations has as important contribution for the learning of Astronomy.

  1. Can merely learning about obesity genes affect eating behavior?

    PubMed

    Dar-Nimrod, Ilan; Cheung, Benjamin Y; Ruby, Matthew B; Heine, Steven J

    2014-10-01

    Public discourse on genetic predispositions for obesity has flourished in recent decades. In three studies, we investigated behaviorally-relevant correlates and consequences of a perceived genetic etiology for obesity. In Study 1, beliefs about etiological explanations for obesity were assessed. Stronger endorsement of genetic etiology was predictive of a belief that obese people have no control over their weight. In Study 2, beliefs about weight and its causes were assessed following a manipulation of the perceived underlying cause. Compared with a genetic attribution, a non-genetic physiological attribution led to increased perception of control over one's weight. In Study 3, participants read a fictional media report presenting either a genetic explanation, a psychosocial explanation, or no explanation (control) for obesity. Results indicated that participants who read the genetic explanation ate significantly more on a follow-up task. Taken together, these studies demonstrate potential effects of genetic attributions for obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Quality improvement on chemistry practicum courses through implementation of 5E learning cycle

    NASA Astrophysics Data System (ADS)

    Merdekawati, Krisna

    2017-03-01

    Two of bachelor of chemical education's competences are having practical skills and mastering chemistry material. Practicum courses are organized to support the competency achievement. Based on observation and evaluation, many problems were found in the implementation of practicum courses. Preliminary study indicated that 5E Learning Cycle can be used as an alternative solution in order to improve the quality of chemistry practicum course. The 5E Learning Cycle can provide positive influence on the achievement of the competence, laboratory skills, and students' understanding. The aim of the research was to describe the feasibility of implementation of 5E Learning Cycle on chemistry practicum courses. The research was based on phenomenology method in qualitative approach. The participants of the research were 5 person of chemistry laboratory manager (lecturers at chemistry and chemistry education department). They concluded that the 5E Learning Cycle could be implemented to improve the quality of the chemistry practicum courses. Practicum guides and assistant competences were organized to support the implementation of 5E Learning Cycle. It needed training for assistants to understand and implement in the stages of 5E Learning Cycle. Preparation of practical guidelines referred to the stages of 5E Learning Cycle, started with the introduction of contextual and applicable materials, then followed with work procedures that accommodate the stage of engagement, exploration, explanation, extension, and evaluation

  3. Learning to Observe "and" Infer

    ERIC Educational Resources Information Center

    Hanuscin, Deborah L.; Park Rogers, Meredith A.

    2008-01-01

    Researchers describe the need for students to have multiple opportunities and social interaction to learn about the differences between observation and inference and their role in developing scientific explanations (Harlen 2001; Simpson 2000). Helping children develop their skills of observation and inference in science while emphasizing the…

  4. The Effect of Blended Instruction on Accelerated Learning

    ERIC Educational Resources Information Center

    Patchan, Melissa M.; Schunn, Christian D.; Sieg, Wilfried; McLaughlin, Dawn

    2016-01-01

    While online instructional technologies are becoming more popular in higher education, educators' opinions about online learning tend to be generally negative. Furthermore, many studies have failed to systematically examine the features that distinguish one instructional mode from another, which weakens possible explanations for why online…

  5. Synthesizing animal and human behavior research via neural network learning theory.

    PubMed

    Tryon, W W

    1995-12-01

    Animal and human research have been "divorced" since approximately 1968. Several recent articles have tried to persuade behavior therapists of the merits of animal research. Three reasons are given concerning why disinterest in animal research is so widespread: (1) functional explanations are given for animals, and cognitive explanations are given for humans; (2) serial symbol manipulating models are used to explain human behavior; and (3) human learning was assumed, thereby removing it as something to be explained. Brain-inspired connectionist neural networks, collectively referred to as neural network learning theory (NNLT), are briefly described, and a spectrum of their accomplishments from simple conditioning through speech is outlined. Five benefits that behavior therapists can derive from NNLT are described. They include (a) enhanced professional identity derived from a comprehensive learning theory, (b) improved interdisciplinary collaboration both clinically and scientifically, (c) renewed perceived relevance of animal research, (d) access to plausible proximal causal mechanisms capable of explaining operant conditioning, and (e) an inherently developmental perspective.

  6. An analysis of how electromagnetic induction and Faraday's law are presented in general physics textbooks, focusing on learning difficulties

    NASA Astrophysics Data System (ADS)

    Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel

    2013-07-01

    Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.

  7. A microgenetic study of learning about the molecular theory of matter and chemical reactions

    NASA Astrophysics Data System (ADS)

    Chinn, Clark Allen

    This paper reports the results of an experimental microgenetic study of children learning complex knowledge from text and experiments. The study had two goals. The first was to investigate fine-grained, moment-to-moment changes in knowledge as middle-school students learned about molecules and chemical reactions over thirteen sessions. The second was to investigate the effects of two instructional treatments, one using implicit textbook explanations and one using explicit explanations developed according to a theory of how scientific knowledge is structured. In the study, 61 sixth- and seventh-graders worked one on one with undergraduate instructors in eleven sessions of about 50 to 80 minutes. The instructors guided the students in conducting experiments and thinking out loud about texts. Topics studied included molecules, states of matter, chemical reactions, and heat transfer. A dense array of questions provided a detailed picture of children's moment-to-moment and day-to-day changes in knowledge. Three results chapters address students' preinstructional knowledge, the effects of the experimental treatment at posttest, and five detailed case studies of students' step-by-step knowledge change over eleven sessions. The chapter on preinstructional knowledge discussed three aspects of global knowledge change: conceptual change, coherence, and entrenchment. Notably, this chapter provides systematic evidence that children's knowledge was fragmented and that consistency with general unifying principles did not guarantee a highly coherent body of knowledge. The experimental manipulation revealed a strong advantage for explicit explanations over implicit textbook explanations. Multiple explicit explanations (e.g., highly explicit explanations of three or four chemical reactions) appeared to be necessary for students to master key concepts. Microgenetic analyses of five cases addressed eight empirical issues that should be addressed by any theory of knowledge acquisition: (a) the nature of the overall knowledge change, (b) the progression of intermediate states during knowledge change, (c) initiators of knowledge change, (d) interactions of prior background knowledge and prior domain knowledge during knowledge changes, (e) the fate of old and new knowledge, (f) the relationship between belief and knowledge, (g) changes in meta-awareness, and (h) factors that influenced the course of knowledge change.

  8. Intelligent Physiologic Modeling: An Application of Knowledge Based Systems Technology to Medical Education

    PubMed Central

    Kunstaetter, Robert

    1986-01-01

    This presentation describes the design and implementation of a knowledge based physiologic modeling system (KBPMS) and a preliminary evaluation of its use as a learning resource within the context of an experimental medical curriculum -- the Harvard New Pathway. KBPMS possesses combined numeric and qualitative simulation capabilities and can provide explanations of its knowledge and behaviour. It has been implemented on a microcomputer with a user interface incorporating interactive graphics. The preliminary evaluation of KBPMS is based on anecdotal data which suggests that the system might have pedagogic potential. Much work remains to be done in enhancing and further evaluating KBPMS.

  9. The Role of Specificity, Targeted Learning Activities, and Prior Knowledge for the Effects of Relevance Instructions

    ERIC Educational Resources Information Center

    Roelle, Julian; Lehmkuhl, Nina; Beyer, Martin-Uwe; Berthold, Kirsten

    2015-01-01

    In 2 experiments we examined the role of (a) specificity, (b) the type of targeted learning activities, and (c) learners' prior knowledge for the effects of relevance instructions on learning from instructional explanations. In Experiment 1, we recruited novices regarding the topic of atomic structure (N = 80) and found that "specific"…

  10. The Use of Social Media in E-Learning: A Metasynthesis

    ERIC Educational Resources Information Center

    Mnkandla, Ernest; Minnaar, Ansie

    2017-01-01

    The adoption of social media in e-learning signals the end of distance education as we know it in higher education. However, it appears to have very little impact on the way in which open and distance learning (ODL) institutions are functioning. Earlier research suggests that a significant part of the explanation for the slow uptake of social…

  11. Why Do Chinese Students Out-Perform Those from the West? Do Approaches to Learning Contribute to the Explanation?

    ERIC Educational Resources Information Center

    Kember, David

    2016-01-01

    One of the major current issues in education is the question of why Chinese and East Asian students are outperforming those from Western countries. Research into the approaches to learning of Chinese students revealed the existence of intermediate approaches, combining memorising and understanding, which were distinct from rote learning. At the…

  12. Support for Self-Regulation in Learning Complex Topics from Multimedia Explanations: Do Learners Need Extensive or Minimal Support?

    ERIC Educational Resources Information Center

    Rodicio, Hector Garcia; Sanchez, Emilio; Acuna, Santiago R.

    2013-01-01

    Acquiring complex conceptual knowledge requires learners to self-regulate their learning by planning, monitoring, and adjusting the process but they find it difficult to do so. In one experiment, we examined whether learners need broad systems of support for self-regulation or whether they are also able to learn with more economical support…

  13. Looking in on Music: Challenges and Opportunities for the Scholarship of Teaching and Learning

    ERIC Educational Resources Information Center

    Conkling, Susan Wharton

    2016-01-01

    Whereas most articles in this special issue demonstrate careful and close-up views of Scholarship of Teaching and Learning (SoTL) in a performing arts or humanities discipline, my approach is opposite; I look in on music teaching and learning to interrogate current conceptions of SoTL. I begin with Sloboda's cognitive explanation of music…

  14. Learning about the Quality of Work That Teachers Expect: Students' Perceptions of Exemplar Marking versus Teacher Explanation

    ERIC Educational Resources Information Center

    Hendry, Graham D.; Jukic, Katherine

    2014-01-01

    Assessment is an important element of university curricula for both teachers and students. It provides evidence that students have learned what their teachers expected them to learn. There is good evidence that teachers' use of exemplars in a dedicated marking class held before an assessment task helps students understand what is expected of them…

  15. Image Tracing: An Analysis of Its Effectiveness in Children's Pictorial Discrimination Learning

    ERIC Educational Resources Information Center

    Levin, Joel R.; And Others

    1977-01-01

    A total of 45 fifth grade students were the subjects of an experiment offering support for a component of learning strategy (memory imagery). Various theoretical explanations of the image-tracing phenomenon are considered, including depth of processing, dual coding and frequency. (MS)

  16. Motor Skill Learning in Children.

    ERIC Educational Resources Information Center

    Gabbard, Carl P.

    The purpose of this article is to briefly describe schema theory and indicate its relevance to early childhood development, with specific reference to children's acquisition of motor skills. Schema theory proposes an explanation of how individuals learn and perform a seemingly endless variety of movements. According to Schmidt (1975), goal…

  17. Competing Processes of Sibling Influence: Observational Learning and Sibling Deidentification

    ERIC Educational Resources Information Center

    Whiteman, Shawn D.; McHale, Susan M.; Crouter, Ann C.

    2007-01-01

    Although commonly cited as explanations for patterns of sibling similarity and difference, observational learning and sibling deidentification processes have rarely been examined directly. Using a person-oriented approach, we identified patterns in adolescents' perceptions of sibling influences and connected these patterns to sibling similarities…

  18. The Role of Self-Assessment in Foundation of Mathematics Learning

    NASA Astrophysics Data System (ADS)

    Masriyah

    2018-01-01

    This research is motivated by the low performance of students who took Foundations of Mathematics course. This study was aimed to describe (1) the learning outcomes of students who learned Mathematics Foundation after learning axiomatic applying self-assessment; (2) the difficulty of students and the alternative solutions; and (3) the response of students toward Foundation of Mathematics learning taught by applying self-assessment. This research was a descriptive research. The subjects were 25 mathematics students who studied Foundation of Mathematics in odd semester of the 2015/2016 academic year. Data collection was done using questionnaires, and testing methods. Based on the results of data analysis, it can be concluded that the learning outcomes of students were categorized as “good.” Student responses were positive; the difficulties lied in the sub material: Classification of Axiom Systems and the requirements, Theorem and how the formation, and finite geometry. The alternatives deal with these difficulties are to give emphasis and explanation as needed on these materials, as well as provide some more exercises to reinforce their understanding.

  19. Toward Harnessing User Feedback For Machine Learning

    DTIC Science & Technology

    2006-10-02

    machine learning systems. If this resource-the users themselves-could somehow work hand-in-hand with machine learning systems, the accuracy of learning systems could be improved and the users? understanding and trust of the system could improve as well. We conducted a think-aloud study to see how willing users were to provide feedback and to understand what kinds of feedback users could give. Users were shown explanations of machine learning predictions and asked to provide feedback to improve the predictions. We found that users

  20. Students' Motivations for Data Handling Choices and Behaviors: Their Explanations of Performance

    PubMed Central

    Keiler, Leslie; Woolnough, Brian

    2003-01-01

    Cries for increased accountability through additional assessment are heard throughout the educational arena. However, as demonstrated in this study, to make a valid assessment of teaching and learning effectiveness, educators must determine not only what students do, but also why they do it, as the latter significantly affects the former. This study describes and analyzes 14- to 16-year-old students' explanations for their choices and performances during science data handling tasks. The study draws heavily on case-study methods for the purpose of seeking an in-depth understanding of classroom processes in an English comprehensive school. During semistructured scheduled and impromptu interviews, students were asked to describe, explain, and justify the work they did with data during their science classes. These student explanations fall within six categories, labeled 1) implementing correct procedures, 2) following instructions, 3) earning marks, 4) doing what is easy, 5) acting automatically, and 6) working within limits. Each category is associated with distinct outcomes for learning and assessment, with some motivations resulting in inflated performances while others mean that learning was underrepresented. These findings illuminate the complexity of student academic choices and behaviors as mediated by an array of motivations, casting doubt on the current understanding of student performance. PMID:12822035

  1. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    PubMed

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.

  2. Depth and breadth: Bridging the gap between scientific inquiry and high-stakes testing with diverse junior high school students

    NASA Astrophysics Data System (ADS)

    Kang, Jee Sun Emily

    This study explored how inquiry-based teaching and learning processes occurred in two teachers' diverse 8th grade Physical Science classrooms in a Program Improvement junior high school within the context of high-stakes standardized testing. Instructors for the courses examined included not only the two 8th grade science teachers, but also graduate fellows from a nearby university. Research was drawn from inquiry-based instruction in science education, the achievement gap, and the high stakes testing movement, as well as situated learning theory to understand how opportunities for inquiry were negotiated within the diverse classroom context. Transcripts of taped class sessions; student work samples; interviews of teachers and students; and scores from the California Standards Test in science were collected and analyzed. Findings indicated that the teachers provided structured inquiry in order to support their students in learning about forces and to prepare them for the standardized test. Teachers also supported students in generating evidence-based explanations, connecting inquiry-based investigations with content on forces, proficiently using science vocabulary, and connecting concepts about forces to their daily lives. Findings from classroom data revealed constraints to student learning: students' limited language proficiency, peer counter culture, and limited time. Supports were evidenced as well: graduate fellows' support during investigations, teachers' guided questioning, standardized test preparation, literacy support, and home-school connections. There was no statistical difference in achievement on the Forces Unit test or science standardized test between classes with graduate fellows and without fellows. There was also no statistical difference in student performance between the two teachers' classrooms, even though their teaching styles were very different. However, there was a strong correlation between students' achievement on the chapter test and their achievement on the Forces portion of the CST. Students' English language proficiency and socioeconomic status were also strongly correlated with their achievement on the standardized test. Notwithstanding the constraints of standardized testing, the teachers had students practice the heart of inquiry -- to connect evidence with explanations and process with content. Engaging in inquiry-based instruction provided a context for students, even English language learners, to demonstrate their knowledge of forces. Students had stronger and more detailed ideas about concepts when they engaged in activities that were tightly connected to the concepts, as well as to their lives and experiences.

  3. Autonomy in Science Education: A Practical Approach in Attitude Shifting Towards Science Learning

    NASA Astrophysics Data System (ADS)

    Jalil, Pasl A.; Abu Sbeih, M. Z.; Boujettif, M.; Barakat, R.

    2009-12-01

    This work describes a 2-year study in teaching school science, based on the stimulation of higher thinking levels in learning science using a highly student-centred and constructivist learning approach. We sought to shift and strengthen students' positive attitudes towards science learning, self-efficacy towards invention, and achievement. Focusing on an important aspect of student's positive attitude towards learning, their preference (like/dislike) towards independent study with minimal or no teacher interference, which leads to increased learning autonomy, was investigated. The main research was conducted on elementary school students; 271 grade level one (G1; 6 years old) to grade level four (G4; 10 years old) participated in this study. As a result of this study, it was found that: (1) 73% of the students preferred minimal or no explanation at all, favoring to be left with the challenge of finding out what to do, compared to 20% of the control group, indicating a positive attitude shift in their learning approaches. (2) The experimental group achieved slightly more (9.5% difference) than the control group in knowledge-comprehension-level based exam; however, the experimental group scored much higher (63% difference) in challenging exams which required higher thinking levels. (3) The same trend was also observed in self-efficacy toward invention, where 82% of the experimental group saw themselves as possible inventors compared to 37% of the control group.

  4. Learning Transfer: The Views of Practitioners in Ireland

    ERIC Educational Resources Information Center

    Donovan, Paul; Darcy, David P.

    2011-01-01

    Considerable expenditure on human resource development (HRD) has not necessarily resulted in a significant impact on organizational performance, and research suggests that the failure to transfer learning may be an important explanation. The search for factors affecting transfer has been extensive, as shown in Grossman and Salas's article in this…

  5. A Sociocultural Perspective of Learning: Developing a New Theoretical Tenet

    ERIC Educational Resources Information Center

    Phan, Huy P.

    2012-01-01

    Explanation pertaining to individuals' cognitive development and learning approaches is a recurring theme in the areas of education and psychology. The work of Okagaki (e.g., Okagaki, 2001; Okagaki & Frensch, 1998), for example, has provided both theoretical and empirical insights into the structuring and situational positioning of individuals…

  6. Teaching and Learning the Purpose of Evidence for Knowledge and Knowing

    ERIC Educational Resources Information Center

    Kirch, Susan A.

    2015-01-01

    Evidence is a cultural tool for engaging in a variety of knowledge production practices including observation, inference making, argumentation, persuasion, and explanation. Identifying and using evidence, as called for in many learning standards, is necessary but not sufficient for understanding the concepts and purposes of evidence. Before…

  7. Exploring Optimal Conditions of Instructional Guidance in an Algebra Tutor

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Anderson, John R.; Berman, Susan R.; Ferris-Glick, Jennifer; Joshi, Ambarish; Nixon, Tristan; Ritter, Steve

    2013-01-01

    In designing learning environments that support student learning, there are many instructional design decisions. These include when and how to provide examples, verbal explanations, feedback, and other scaffolding features. In this paper, the authors investigate instructional guidance as it relates to Cognitive Tutor, an intelligent tutoring…

  8. Language Learning Motivation, Global English and Study Modes: A Comparative Study

    ERIC Educational Resources Information Center

    Lanvers, Ursula

    2017-01-01

    Exploring the popular explanation that the global spread of English may demotivate students with English as their first language to learn other languages, this study investigates relations between student motivation and perception of Global English and tests for differences between traditional "campus" and distance university students…

  9. Visual Persistence and Information Pick-up in Learning Disabled Children.

    ERIC Educational Resources Information Center

    Mazer, Suzanne R.; And Others

    1983-01-01

    Two experiments tested possible explanations for previous research demonstrating lower span of apprehension for learning disabled students. In experiment 1, the length of visual persistence was less for LD subjects, while in experiment 2, the rate of information pick-up was slower for LD subjects. (CL)

  10. How Children Learn Mathematics, Teaching Implications of Piaget's Research.

    ERIC Educational Resources Information Center

    Copeland, Richard W.

    Included are the standard topics presented in the undergraduate and/or graduate course on methods of teaching mathematics in elementary education. Chapter 1 describes the historical development of learning theories, including Piaget's. Chapter 2 contains a biographical sketch of Piaget and an explanation of his theory of cognitive development.…

  11. A Multimodal Analysis of Lexical Explanation Sequences in Webconferencing-Supported Language Teaching

    ERIC Educational Resources Information Center

    Wigham, Ciara R.

    2017-01-01

    Higher education institutions are increasingly interested in offering more flexible teaching and learning delivery methods that are often independent of place. Where foreign language learning is concerned, telecollaboration is gaining ground. This paper focuses on synchronous webconferencing-supported teaching and examines how different semiotic…

  12. Explaining Constrains Causal Learning in Childhood

    ERIC Educational Resources Information Center

    Walker, Caren M.; Lombrozo, Tania; Williams, Joseph J.; Rafferty, Anna N.; Gopnik, Alison

    2017-01-01

    Three experiments investigate how self-generated explanation influences children's causal learning. Five-year-olds (N = 114) observed data consistent with two hypotheses and were prompted to explain or to report each observation. In Study 1, when making novel generalizations, explainers were more likely to favor the hypothesis that accounted for…

  13. Processes Underlying Children's Adjustment in Families Characterized by Physical Aggression.

    ERIC Educational Resources Information Center

    Onyskiw, Judee; Hayduk, Leslie A.

    2001-01-01

    The hypothesis that physical aggression in the family affects children's adjustment through both observational learning/modeling and through its impact on parenting was tested, via LISREL, using data from a sample of Canadian children (N=11,221). Results showed observational learning and disrupted parenting provide reasonable explanations of…

  14. An Exploratory Use of Musical Metaphors to Enhance Student Learning

    ERIC Educational Resources Information Center

    Weinrauch, J. Donald

    2005-01-01

    This article provides the role, scope, instructional experiences, and prospects of employing musical metaphors as a possible teaching tool. Interactive student learning is encouraged by actually playing songs in marketing strategy courses. First, an overview on the explanation and popularity of metaphors in both nonbusiness and business fields…

  15. Getting a Puff: A Social Learning Test of Adolescents Smoking

    ERIC Educational Resources Information Center

    Monroe, Jacquelyn

    2004-01-01

    This article is a description of a study that sought to examine the applicability of Ronald Akers' social learning theory. According to Akers' theory, differential associations with smokers, differential reinforcements for smoking, favorable definitions of smoking and the availability of role models (imitation) offer an explanation as to why…

  16. Support for Learning from Multimedia Explanations. A Comparison of Prompting, Signaling, and Questioning

    ERIC Educational Resources Information Center

    García-Rodicio, Héctor

    2014-01-01

    In one experiment 97 undergraduate students learned about plate tectonics from a multimedia presentation involving narrated animations and support in one of four forms. Support in the prompting condition included hints inducing participants to self-explain critical information. The signaling condition included overviews recapping critical…

  17. Why Mastery Matters.

    ERIC Educational Resources Information Center

    Waddington, Tad S. H.

    It is argued that mastery learning is one explanation for the documented differences in mathematics achievement between Japanese and American students. Given its emphasis on mastery at one stage before moving on to the next stage, and the potential accumulated benefits of this approach over time, mastery learning appears to be very similar to what…

  18. Practical Applications of the Research on Epistemological Beliefs

    ERIC Educational Resources Information Center

    Nist, Sherrie L.; Holschuh, Jodi Patrick

    2005-01-01

    Theories of epistemological beliefs focus on individuals' perceptions about what knowledge is and where knowledge comes from. These beliefs are part of, and may in fact direct, the cognitive processes involved in learning. Research stemming from these theories offers varied explanations as to how beliefs relate to student learning and academic…

  19. Challenges for Collaborative Blended Learning in Undergraduate Students

    ERIC Educational Resources Information Center

    Monteiro, Elisa; Morrison, Keith

    2014-01-01

    This study reports a quasi-experiment in collaborative blended learning (CBL) with undergraduate students who, despite being in a world-leading, enriched digital environment, were new to collaboration and CBL. The mixed-methods research found that only small improvements to students' CBL took place over time, and explanations for this are…

  20. Rodin, Patton, Edison, Wilson, Einstein: Were They Really Learning Disabled?

    ERIC Educational Resources Information Center

    Adelman, Kimberly A.; Adelman, Howard S.

    1987-01-01

    The practice of posthumously diagnosing historical figures is discussed. Emphasis is on the unsatisfactory nature of evidence found for those diagnosed as learning-disabled or dyslexic and the possibility of other explanations for identified problems. Posthumous diagnoses of Auguste Rodin, George Patton, Thomas Edison, Woodrow Wilson, and Albert…

  1. Misconceived causal explanations for emergent processes.

    PubMed

    Chi, Michelene T H; Roscoe, Rod D; Slotta, James D; Roy, Marguerite; Chase, Catherine C

    2012-01-01

    Studies exploring how students learn and understand science processes such as diffusion and natural selection typically find that students provide misconceived explanations of how the patterns of such processes arise (such as why giraffes' necks get longer over generations, or how ink dropped into water appears to "flow"). Instead of explaining the patterns of these processes as emerging from the collective interactions of all the agents (e.g., both the water and the ink molecules), students often explain the pattern as being caused by controlling agents with intentional goals, as well as express a variety of many other misconceived notions. In this article, we provide a hypothesis for what constitutes a misconceived explanation; why misconceived explanations are so prevalent, robust, and resistant to instruction; and offer one approach of how they may be overcome. In particular, we hypothesize that students misunderstand many science processes because they rely on a generalized version of narrative schemas and scripts (referred to here as a Direct-causal Schema) to interpret them. For science processes that are sequential and stage-like, such as cycles of moon, circulation of blood, stages of mitosis, and photosynthesis, a Direct-causal Schema is adequate for correct understanding. However, for science processes that are non-sequential (or emergent), such as diffusion, natural selection, osmosis, and heat flow, using a Direct Schema to understand these processes will lead to robust misconceptions. Instead, a different type of general schema may be required to interpret non-sequential processes, which we refer to as an Emergent-causal Schema. We propose that students lack this Emergent Schema and teaching it to them may help them learn and understand emergent kinds of science processes such as diffusion. Our study found that directly teaching students this Emergent Schema led to increased learning of the process of diffusion. This article presents a fine-grained characterization of each type of Schema, our instructional intervention, the successes we have achieved, and the lessons we have learned. Copyright © 2011 Cognitive Science Society, Inc.

  2. Rational learning and information sampling: on the "naivety" assumption in sampling explanations of judgment biases.

    PubMed

    Le Mens, Gaël; Denrell, Jerker

    2011-04-01

    Recent research has argued that several well-known judgment biases may be due to biases in the available information sample rather than to biased information processing. Most of these sample-based explanations assume that decision makers are "naive": They are not aware of the biases in the available information sample and do not correct for them. Here, we show that this "naivety" assumption is not necessary. Systematically biased judgments can emerge even when decision makers process available information perfectly and are also aware of how the information sample has been generated. Specifically, we develop a rational analysis of Denrell's (2005) experience sampling model, and we prove that when information search is interested rather than disinterested, even rational information sampling and processing can give rise to systematic patterns of errors in judgments. Our results illustrate that a tendency to favor alternatives for which outcome information is more accessible can be consistent with rational behavior. The model offers a rational explanation for behaviors that had previously been attributed to cognitive and motivational biases, such as the in-group bias or the tendency to prefer popular alternatives. 2011 APA, all rights reserved

  3. Watching diagnoses develop: Eye movements reveal symptom processing during diagnostic reasoning.

    PubMed

    Scholz, Agnes; Krems, Josef F; Jahn, Georg

    2017-10-01

    Finding a probable explanation for observed symptoms is a highly complex task that draws on information retrieval from memory. Recent research suggests that observed symptoms are interpreted in a way that maximizes coherence for a single likely explanation. This becomes particularly clear if symptom sequences support more than one explanation. However, there are no existing process data available that allow coherence maximization to be traced in ambiguous diagnostic situations, where critical information has to be retrieved from memory. In this experiment, we applied memory indexing, an eye-tracking method that affords rich time-course information concerning memory-based cognitive processing during higher order thinking, to reveal symptom processing and the preferred interpretation of symptom sequences. Participants first learned information about causes and symptoms presented in spatial frames. Gaze allocation to emptied spatial frames during symptom processing and during the diagnostic response reflected the subjective status of hypotheses held in memory and the preferred interpretation of ambiguous symptoms. Memory indexing traced how the diagnostic decision developed and revealed instances of hypothesis change and biases in symptom processing. Memory indexing thus provided direct online evidence for coherence maximization in processing ambiguous information.

  4. Influence of Out-of-School Experiences and Learning Styles on Interest in Biology, Chemistry and Physics among Higher Secondary Boys and Girls in Kerala

    ERIC Educational Resources Information Center

    Gafoor, K. Abdul

    2017-01-01

    Adopting an experiential learning explanation for varying student interest in the three sciences, out-of-school experience questionnaire, scale of interest in science and Kolb's learning style inventory were administered on 775 higher secondary students in Kerala. Despite their similar achievement levels, boys had higher interest in physics, and…

  5. Adaptive Prompts for Learning Evolution with Worked Examples--Highlighting the Students between the "Novices" and the "Experts" in a Classroom

    ERIC Educational Resources Information Center

    Neubrand, Charlotte; Borzikowsky, Christoph; Harms, Ute

    2016-01-01

    Evolutionary theory constitutes the overarching concept in biology. There is hardly any other concept that is more complex, and causes more difficulties in learning and teaching. One instructional approach in optimizing the learning of complex topics is to use worked examples combined with self-explanation prompts that fit to the prior knowledge…

  6. Exploring How Different Features of Animations of Sodium Chloride Dissolution Affect Students' Explanations

    NASA Astrophysics Data System (ADS)

    Kelly, Resa M.; Jones, Loretta L.

    2007-10-01

    Animations of molecular structure and dynamics are often used to help students understand the abstract ideas of chemistry. This qualitative study investigated how the features of two different styles of molecular-level animation affected students' explanations of how sodium chloride dissolves in water. In small group sessions 18 college-level general chemistry students dissolved table salt in water, after which they individually viewed two animations of salt dissolution. Before and after viewing each animation the participants provided pictorial, written, and oral explanations of the process at the macroscopic and molecular levels. The students then discussed the animations as a group. An analysis of the data showed that students incorporated some of the microscopic structural and functional features from the animations into their explanations. However, oral explanations revealed that in many cases, participants who drew or wrote correct explanations did not comprehend their meanings. Students' drawings may have reflected only what they had seen, rather than a cohesive understanding. Students' explanations given after viewing the animations improved, but some prior misconceptions were retained and in some cases, new misconceptions appeared. Students reported that they found the animations useful in learning; however, they sometimes missed essential features when they watched the animation alone.

  7. Moral empiricism and the bias for act-based rules.

    PubMed

    Ayars, Alisabeth; Nichols, Shaun

    2017-10-01

    Previous studies on rule learning show a bias in favor of act-based rules, which prohibit intentionally producing an outcome but not merely allowing the outcome. Nichols, Kumar, Lopez, Ayars, and Chan (2016) found that exposure to a single sample violation in which an agent intentionally causes the outcome was sufficient for participants to infer that the rule was act-based. One explanation is that people have an innate bias to think rules are act-based. We suggest an alternative empiricist account: since most rules that people learn are act-based, people form an overhypothesis (Goodman, 1955) that rules are typically act-based. We report three studies that indicate that people can use information about violations to form overhypotheses about rules. In study 1, participants learned either three "consequence-based" rules that prohibited allowing an outcome or three "act-based" rules that prohibiting producing the outcome; in a subsequent learning task, we found that participants who had learned three consequence-based rules were more likely to think that the new rule prohibited allowing an outcome. In study 2, we presented participants with either 1 consequence-based rule or 3 consequence-based rules, and we found that those exposed to 3 such rules were more likely to think that a new rule was also consequence based. Thus, in both studies, it seems that learning 3 consequence-based rules generates an overhypothesis to expect new rules to be consequence-based. In a final study, we used a more subtle manipulation. We exposed participants to examples act-based or accident-based (strict liability) laws and then had them learn a novel rule. We found that participants who were exposed to the accident-based laws were more likely to think a new rule was accident-based. The fact that participants' bias for act-based rules can be shaped by evidence from other rules supports the idea that the bias for act-based rules might be acquired as an overhypothesis from the preponderance of act-based rules. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An architecture for rule based system explanation

    NASA Technical Reports Server (NTRS)

    Fennel, T. R.; Johannes, James D.

    1990-01-01

    A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.

  9. Heterogeneity in perceptual category learning by high functioning children with autism spectrum disorder

    PubMed Central

    Mercado, Eduardo; Church, Barbara A.; Coutinho, Mariana V. C.; Dovgopoly, Alexander; Lopata, Christopher J.; Toomey, Jennifer A.; Thomeer, Marcus L.

    2015-01-01

    Previous research suggests that high functioning (HF) children with autism spectrum disorder (ASD) sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally based theories account for atypical perceptual category learning shown by HF children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets. PMID:26157368

  10. Criterion learning in rule-based categorization: Simulation of neural mechanism and new data

    PubMed Central

    Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd

    2015-01-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349

  11. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    PubMed

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Probabilistic Learning by Rodent Grid Cells

    PubMed Central

    Cheung, Allen

    2016-01-01

    Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723

  13. Cosmic Concepts: A Video Series for Scaffolded Learning

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Summers, Frank; Maple, John

    2016-01-01

    Scaffolding is widely considered to be an essential element of effective teaching and is used to help bridge knowledge gaps for learners. Scaffolding is especially important for distance-learning programs and computer-based learning environments. Preliminary studies are showing that when students learn about complex topics within computer-based learning environments without scaffolding, they fail to gain a conceptual understanding of the topic. As a result, researchers have begun to emphasize the importance of scaffolding for web-based as well as in-person instruction.To support scaffolded teaching practices and techniques, while addressing the needs of life-long learners, we have created the Cosmic Concepts video series. The series consists of short, one-topic videos that address scientific concepts with a special emphasis on those that traditionally cause confusion or are layered with misconceptions. Each video focuses on one idea at a time and provides a clear explanation of phenomena that is succinct enough for on-demand reference usage by all types of learners. Likewise, the videos can be used by educators to scaffold the scientific concepts behind astronomical images, or can be sequenced together to create well-structured pathways for presenting deeper and more layered ideas. This approach is critical for communicating information about astronomical discoveries that are often dense with unfamiliar concepts, complex ideas, and highly technical details. Additionally, learning tools in video formats support multi-sensory presentation approaches that can make astronomy more accessible to a variety of learners.

  14. Integrating STEM education through Project-Based Inquiry Learning (PIL) in topic space among year one pupils

    NASA Astrophysics Data System (ADS)

    Ng, Chee Hoe; Adnan, M.

    2018-01-01

    This research aims to investigate the effect of integrating STEM education through Project-based Inquiry Learning (PIL) and the users of the STEM modules which consists of five projects on topic Space in Year One Mathematics Syllabus in Kurikulum Standard Sekolah Rendah (KSSR) of Malaysia. STEM education in primary school focuses on the introduces and awareness of students about the importance of STEM education. The projects in STEM modules are covering the different ethnic cultures in Malaysia. The modules are designed using the four phases in PIL. Concepts and the explanation of STEM education on each project are emphasized and provided in the modules so the teachers able to carry out the projects by using the modules. By using the modules in primary Mathematics, the students and teachers will be more understanding on how to integrate the Mathematics’ concepts in STEM education.

  15. Slower reacquisition after partial extinction in human contingency learning.

    PubMed

    Morís, Joaquín; Barberia, Itxaso; Vadillo, Miguel A; Andrades, Ainhoa; López, Francisco J

    2017-01-01

    Extinction is a very relevant learning phenomenon from a theoretical and applied point of view. One of its most relevant features is that relapse phenomena often take place once the extinction training has been completed. Accordingly, as extinction-based therapies constitute the most widespread empirically validated treatment of anxiety disorders, one of their most important limitations is this potential relapse. We provide the first demonstration of relapse reduction in human contingency learning using mild aversive stimuli. This effect was found after partial extinction (i.e., reinforced trials were occasionally experienced during extinction, Experiment 1) and progressive extinction treatments (Experiment 3), and it was not only because of differences in uncertainty levels between the partial and a standard extinction group (Experiment 2). The theoretical explanation of these results, the potential uses of this strategy in applied situations, and its current limitations are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Organizational learning capability and organizational citizenship behaviour in the health sector: examining the role of happiness at work from a gender perspective.

    PubMed

    Salas-Vallina, Andrés; Alegre, Joaquin; Fernández, Rafael

    2017-04-01

    Both researchers and managers are interested in finding the factors that raise organizational citizenship behaviour (OCB), particularly in the health sector. In this complex context, characterized by a high workload, it becomes essential that physicians voluntarily contribute beyond their official job description. Our research aims to evidence the working conditions that promote OCB, considering the role of organizational learning capability through happiness at work. Our research was based on a sample of 167 allergists at Spanish public hospitals, and by means of structural equation models, interesting results were found. We offer to hospital managers both a tool and an explanation for the fostering of OCB. Physicians that progress through learning, under positive attitudes at work, may indeed behave more civically, going beyond their job description. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Cultural border crossing: The interaction between fundamental Christian beliefs and scientific explanations

    NASA Astrophysics Data System (ADS)

    Elimbi, Celestine Nakeli

    The purpose of this study is to investigate the interaction between people's fundamental Christian beliefs and scientific explanations. When people with fundamental Christian beliefs encounter scientific explanations, such explanations may interact with their deeply rooted beliefs in a way that is likely to produce tensions. It is expedient to understand the classroom/professional experiences of such individuals and how they manage these tensions. I will apply Jegede's collateral learning theory as a lens to look at how individuals manage the tensions between their religious and scientific worldviews. Gaining insight into people's experiences in the classroom/work place and how they manage these tensions will potentially inform classroom instruction and ways by which we can help students with fundamental Christian beliefs maintain their pursuit of science related careers by easing the nature of the borders they cross. Sources of data will include participant reported perspectives of how they manage the tensions and observations of real-time resolution of potentially conflicting explanations from their religious and scientific worldviews.

  18. Explaining prompts children to privilege inductively rich properties.

    PubMed

    Walker, Caren M; Lombrozo, Tania; Legare, Cristine H; Gopnik, Alison

    2014-11-01

    Four experiments with preschool-aged children test the hypothesis that engaging in explanation promotes inductive reasoning on the basis of shared causal properties as opposed to salient (but superficial) perceptual properties. In Experiments 1a and 1b, 3- to 5-year-old children prompted to explain during a causal learning task were more likely to override a tendency to generalize according to perceptual similarity and instead extend an internal feature to an object that shared a causal property. Experiment 2 replicated this effect of explanation in a case of label extension (i.e., categorization). Experiment 3 demonstrated that explanation improves memory for clusters of causally relevant (non-perceptual) features, but impairs memory for superficial (perceptual) features, providing evidence that effects of explanation are selective in scope and apply to memory as well as inference. In sum, our data support the proposal that engaging in explanation influences children's reasoning by privileging inductively rich, causal properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Generalization in visual recognition by the honeybee (Apis mellifera): a review and explanation.

    PubMed

    Horridge, Adrian

    2009-06-01

    During a century of studies on honeybee vision, generalization was the word for the acceptance of an unfamiliar pattern in the place of the training pattern, or the ability to learn a common factor in a group of related patterns. The ideas that bees generalize one pattern for another, detect similarity and differences, or form categories, were derived from the use of the same terms in the human cognitive sciences. Recent work now reveals a mechanistic explanation for bees. Small groups of ommatidia converge upon feature detectors that respond selectively to certain parameters that are in the pattern: modulation in the receptors, edge orientations, or to areas of black or colour. Within each local region of the eye the responses of each type of feature detector are summed to form a cue. The cues are therefore not in the pattern, but are local totals in the bee. Each cue has a quality, a quantity and a position on the eye, like a neuron response. This summation of edge detector responses destroys the local pattern based on edge orientation but preserves a coarse, sparse and simplified version of the panorama. In order of preference, the cues are: local receptor modulation, positions of well-separated black areas, a small black spot, colour and positions of the centres of each cue, radial edges, the averaged edge orientation and tangential edges. A pattern is always accepted by a trained bee that detects the expected cues in the expected places and no unexpected cues. The actual patterns are irrelevant. Therefore we have an explanation of generalization that is based on experimental testing of trained bees, not by analogy with other animals. Historically, generalization appeared when the training patterns were regularly interchanged to make the bees examine them. This strategy forced the bees to ignore parameters outside the training pattern, so that learning was restricted to one local eye region. This in turn limited the memory to one cue of each type, so that recognition was ambiguous because the cues were insufficient to distinguish all patterns. On the other hand, bees trained on very large targets, or by landing on the pattern, learned cues in several eye regions, and were able to recognize the coarse configural layout.

  20. Learning, climate and the evolution of cultural capacity.

    PubMed

    Whitehead, Hal

    2007-03-21

    Patterns of environmental variation influence the utility, and thus evolution, of different learning strategies. I use stochastic, individual-based evolutionary models to assess the relative advantages of 15 different learning strategies (genetic determination, individual learning, vertical social learning, horizontal/oblique social learning, and contingent combinations of these) when competing in variable environments described by 1/f noise. When environmental variation has little effect on fitness, then genetic determinism persists. When environmental variation is large and equal over all time-scales ("white noise") then individual learning is adaptive. Social learning is advantageous in "red noise" environments when variation over long time-scales is large. Climatic variability increases with time-scale, so that short-lived organisms should be able to rely largely on genetic determination. Thermal climates usually are insufficiently red for social learning to be advantageous for species whose fitness is very determined by temperature. In contrast, population trajectories of many species, especially large mammals and aquatic carnivores, are sufficiently red to promote social learning in their predators. The ocean environment is generally redder than that on land. Thus, while individual learning should be adaptive for many longer-lived organisms, social learning will often be found in those dependent on the populations of other species, especially if they are marine. This provides a potential explanation for the evolution of a prevalence of social learning, and culture, in humans and cetaceans.

  1. Hands-On Practical Chemistry for All: Why and How?

    NASA Astrophysics Data System (ADS)

    Bradley, John D.; Durbach, S.; Bell, B.; Mungarulire, J.; Kimel, H.

    1998-11-01

    Practical work in chemistry is invariably described as essential in chemical education, and a variety of aims is claimed for it. Yet in schools around the world it is frequently absent from the real curriculum. Although some of the explanations advanced for this conundrum are little more than excuses, there is truth in the cost explanation. In this article we report on our development of a system based on microscale chemistry kits for individual students. These reusable kits comprise a number of components specially designed around a Comboplate made of optically clear plastic. The kits are supplied in individual zip-lock bags with a variety of configurations to suit different grades and curricula. Chemicals are supplied as solids and prepared solutions in quantities suitable for a whole class for one year, and student worksheets are available. The total system is cost-effective, safe, environmentally friendly, and versatile. The system has been very well received in both wealthy and poor contexts and countries by both teachers and students. It is so convenient and user-friendly it appeals to teachers. For students, pride of ownership is tapped by the individual kits. Their portability facilitates fieldwork and also distance learning. The system, developed through academic-industrial cooperation, may well achieve a global revolution in chemistry teaching and learning.

  2. Real-world visual statistics and infants' first-learned object names.

    PubMed

    Clerkin, Elizabeth M; Hart, Elizabeth; Rehg, James M; Yu, Chen; Smith, Linda B

    2017-01-05

    We offer a new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes. Images from head camera video captured by 8 1/2 to 10 1/2 month-old infants at 147 at-home mealtime events were analysed for the objects in view. The images were found to be highly cluttered with many different objects in view. However, the frequency distribution of object categories was extremely right skewed such that a very small set of objects was pervasively present-a fact that may substantially reduce the problem of referential ambiguity. The statistical structure of objects in these infant egocentric scenes differs markedly from that in the training sets used in computational models and in experiments on statistical word-referent learning. Therefore, the results also indicate a need to re-examine current explanations of how infants break into word learning.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  3. Guided Instruction Improves Elementary Student Learning and Self-Efficacy in Science

    ERIC Educational Resources Information Center

    Hushman, Carolyn J.; Marley, Scott C.

    2015-01-01

    The authors investigated whether the amount of instructional guidance affects science learning and self-efficacy. Sixty 9- and 10-year-old children were randomly assigned to one of the following three instructional conditions: (a) guided instruction consisting of examples and student-generated explanations, (b) direct instruction consisting of a…

  4. Students' Resistance to Change in Learning Strategies Courses

    ERIC Educational Resources Information Center

    Dembo, Myron H.; Seli, Helena Praks

    2004-01-01

    Research findings indicate that many students fail to benefit from academic support services and courses. The paper discusses reasons why some students resist changing their academic behaviors and links the reasons to learning and motivation variables. The explanations for failure to change include: (1) students believe they can't change; (2)…

  5. A Foucaultian Critique of Learning Disability Discourses: Personal Narratives and Science

    ERIC Educational Resources Information Center

    Mazher, Waseem

    2012-01-01

    In this article, I present a critical discourse analysis (CDA) of two discourses in learning disabilities (LD)--the academic research literature on emotions of students labeled as LD and retrospective autobiographies from adults labeled as LD writing about their emotions as students. Drawing mainly on Foucaultian explanations of power, I…

  6. On Qualitative Differences in Learning: III--Study Skill and Learning

    ERIC Educational Resources Information Center

    Svensson, L.

    1977-01-01

    The intention in this research was to collect instances of study skill in different situations, and to relate study activity to levels of understanding and academic performance. Also reanalyzes data described by Marton and Saljo (1976a) which led to the concepts of deep-level processing and surface processing as explanations of qualitative…

  7. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    ERIC Educational Resources Information Center

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  8. Deconstructing Learning in Science--Young Children's Responses to a Classroom Sequence on Evaporation.

    ERIC Educational Resources Information Center

    Tytler, Russell; Peterson, Suzanne

    2001-01-01

    Tracks five-year-old children's ideas by a range of means during and subsequent to a classroom sequence on evaporation. Explores the relationship between social and individual perspectives on learning, and questions some assumptions underlying conceptual change research. Analyzes the children's explanations of various evaporation phenomena over…

  9. Classroom Composition and Racial Differences in Opportunities to Learn

    ERIC Educational Resources Information Center

    Minor, Elizabeth Covay

    2015-01-01

    Black and White advanced math students leave high school with disparate math skills. One possible explanation is that minority students are exposed to different learning opportunities, even when they are taking classes with the same title. Using a convenience sample of the Mathematics Survey of the Enacted Curriculum (SEC), this study found that…

  10. Socialization and Adolescent Self-Esteem: Symbolic Interaction and Social Learning Explanations.

    ERIC Educational Resources Information Center

    Openshaw, D. Kim; And Others

    1983-01-01

    Investigated the effects of social learning and symbolic interaction on adolescent self-esteem. Adolescents (N=368) and their parents completed measures of self-esteem, parental behavior and parental power. Results suggested adolescent self-esteem is more a function of social interaction and the reflected appraisals of others than a modeling of…

  11. Managing Student Learning: Schools as Multipliers of Intangible Resources

    ERIC Educational Resources Information Center

    Paletta, Angelo

    2011-01-01

    The conceptual categories that underlie the business analysis of intellectual capital are relevant to providing an explanation of school performance. By gathering data on student learning, this research provides empirical evidence for the use of school results as an accurate indicator of the effectiveness of the management of public education.…

  12. Why Traditional Expository Teaching-Learning Approaches May Founder? An Experimental Examination of Neural Networks in Biology Learning

    ERIC Educational Resources Information Center

    Lee, Jun-Ki; Kwon, Yong-Ju

    2011-01-01

    Using functional magnetic resonance imaging (fMRI), this study investigates and discusses neurological explanations for, and the educational implications of, the neural network activations involved in hypothesis-generating and hypothesis-understanding for biology education. Two sets of task paradigms about biological phenomena were designed:…

  13. Transforming Principles into Practice: Using Cognitive Active Learning Strategies in the High School Classroom

    ERIC Educational Resources Information Center

    Swiderski, Suzanne M.

    2011-01-01

    High school teachers who engage students through active learning in their classrooms can more fully understand this instructional practice by examining the theories and strategies underlying the cognitive perspective of educational psychology, which addresses the development of knowledge in the individual mind. Two theoretical explanations,…

  14. Retrieval Practice Makes Procedure from Remembering: An Automatization Account of the Testing Effect

    ERIC Educational Resources Information Center

    Racsmány, Mihály; Szollosi, Ágnes; Bencze, Dorottya

    2018-01-01

    The "testing effect" refers to the striking phenomenon that repeated retrieval practice is one of the most effective learning strategies, and certainly more advantageous for long-term learning, than additional restudying of the same information. How retrieval can boost the retention of memories is still without unanimous explanation. In…

  15. Cognitive Type Theory & Learning Style, A Teacher's Guide.

    ERIC Educational Resources Information Center

    Mamchur, Carolyn

    This guide provides a practical explanation of cognitive type theory and learning style that will help teachers meet students' needs and discover their own strengths as teachers and colleagues. The introduction provides an overview of the book from the perspective of a high school classroom teacher. Part One introduces the theory of psychological…

  16. Facilitative Effects of Forgetting from Short-Term Memory on Growth of Long-Term Memory in Retardates

    ERIC Educational Resources Information Center

    Sperber, Richard D.

    1976-01-01

    Competing explanations of the beneficial effect of spacing in retardate discrimination learning were tested. Results are inconsistent with consolidation and rehearsal theories but support the prediction of the Geber, Greenfield, and House spacing model that forgetting from short-term memory facilities retardate learning. (Author/SB)

  17. Analysis of Peer Learning Behaviors Using Multiple Representations in Virtual Reality and Their Impacts on Geometry Problem Solving

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Hu, Shih-Shin

    2013-01-01

    Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…

  18. Intentions and Actions in Molecular Self-Assembly: Perspectives on Students' Language Use

    ERIC Educational Resources Information Center

    Höst, Gunnar E.; Anward, Jan

    2017-01-01

    Learning to talk science is an important aspect of learning to do science. Given that scientists' language frequently includes intentions and purposes in explanations of unobservable objects and events, teachers must interpret whether learners' use of such language reflects a scientific understanding or inaccurate anthropomorphism and teleology.…

  19. Chaos, Complexity, and Earning Community: What Do They Mean for Education?

    ERIC Educational Resources Information Center

    Pouravood, Roland C.

    1997-01-01

    Ponders possible explanations for the connections among chaos, complexity, and a learning community. Challenges the Newtonian world model, suggests that the world operates in a complex, nonlinear, unpredictable pattern, and calls for a new science to understand this complexity. A true learning community values individual autonomy, risk taking,…

  20. The Relation between Children's Conceptual Functioning with Color and Color Term Acquisition

    ERIC Educational Resources Information Center

    Kowalski, Kurt; Zimiles, Herbert

    2006-01-01

    Young children experience considerable difficulty in learning their first few color terms. One explanation for this difficulty is that initially they lack a conceptual representation of color sufficiently abstract to support word meaning. This hypothesis, that prior to learning color terms children do not represent color as an abstraction, was…

  1. Your Personal Learning Network: Professional Development on Demand

    ERIC Educational Resources Information Center

    Bauer, William I.

    2010-01-01

    Web 2.0 tools and resources can enhance our efficiency and effectiveness as music educators, supporting personal learning networks for ongoing professional growth and development. This article includes (a) an explanation of Really Simple Syndication (RSS) and the use of an RSS reader/aggregator; (b) a discussion of blogs, podcasts, wikis,…

  2. Some Technical Implications of Distributed Cognition on the Design on Interactive Learning Environments.

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre

    1996-01-01

    Maintains that diagnosis, explanation, and tutoring, the functions of an interactive learning environment, are collaborative processes. Examines how human-computer interaction can be improved using a distributed cognition framework. Discusses situational and distributed knowledge theories and provides a model on how they can be used to redesign…

  3. A teaching proposal on electrostatics based on the history of science through the reading of historical texts and argumentative discussions

    NASA Astrophysics Data System (ADS)

    Castells, Marina; Konstantinidou, Aikaterini; Cerveró, Josep M.

    2016-05-01

    Researches on electrostatics' conceptions found that students have ideas and conceptions that disagree with the scientific models and that might explain students' learning difficulties. To favour the change of student's ideas and conceptions, a teaching sequence that relies on a historical study of electrostatics is proposed. It begins with an exploration of electrostatics phenomena that students would do with everyday materials. About these phenomena they must draw their own explanations that will be shared and discussed in the class. The teacher will collect and summarize the ideas and explanations which are nearer the history of science. A brief history of electrostatics is introduced then, and some texts from scientists are used in an activity role-play-debate type in which the "supporters of a single fluid" and "supporters of two fluids" have to present arguments for their model and/or against the other model to explain the phenomena observed in the exploration phase. In the following, students will read texts related to science applications, the main aim of this activity is to relate electrostatics phenomena with current electricity. The first text explains how Franklin understood the nature of the lightning and the lightning rod and the second is a chapter of a roman about one historical episode situated in the Barcelona of the XVIII Century. Students will use the historical models of one and of two fluids to explain these two phenomena, and will compare them with the scientific explanation of the "accepted" science of nowadays introduced by the teacher. With this type of teaching proposal, conceptual aspect of electrostatics will be learnt, but also the students will learn about the nature and history of science and culture, as well as about the practice of argumentation.

  4. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    NASA Astrophysics Data System (ADS)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  5. Bridging In-school and Out-of-school Learning: Formal, Non-Formal, and Informal Education

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2007-04-01

    The present paper thoroughly examines how one can effectively bridge in-school and out-of-school learning. The first part discusses the difficulty in defining out-of-school learning. It proposes to distinguish three types of learning: formal, informal, and non-formal. The second part raises the question of whether out-of-school learning should be dealt with in the in-school system, in view of the fact that we experience informal learning anyway as well as considering the disadvantages and difficulties teachers are confronted with when planning and carrying out scientific fieldtrips. The voices of the teachers, the students, and the non-formal institution staff are heard to provide insights into the problem. The third part discusses the cognitive and affective aspects of non-formal learning. The fourth part presents some models explaining scientific fieldtrip learning and based on those models, suggests a novel explanation. The fifth part offers some recommendations of how to bridge in and out-of-school learning. The paper closes with some practical ideas as to how one can bring the theory described in the paper into practice. It is hoped that this paper will provide educators with an insight so that they will be able to fully exploit the great potential that scientific field trips may offer.

  6. Constructing conceptual knowledge and promoting "number sense" from computer-managed practice in rounding whole numbers

    NASA Astrophysics Data System (ADS)

    Hativa, Nira

    1993-12-01

    This study sought to identify how high achievers learn and understand new concepts in arithmetic from computer-based practice which provides full solutions to examples but without verbal explanations. Four high-achieving second graders were observed in their natural school settings throughout all their computer-based practice sessions which involved the concept of rounding whole numbers, a concept which was totally new to them. Immediate post-session interviews inquired into students' strategies for solutions, errors, and their understanding of the underlying mathematical rules. The article describes the process through which the students construct their knowledge of the rounding concepts and the errors and misconceptions encountered in this process. The article identifies the cognitive abilities that promote student self-learning of the rounding concepts, their number concepts and "number sense." Differences in the ability to generalise, "mathematical memory," mindfulness of work and use of cognitive strategies are shown to account for the differences in patterns of, and gains in, learning and in maintaining knowledge among the students involved. Implications for the teaching of estimation concepts and of promoting students' "number sense," as well as for classroom use of computer-based practice are discussed.

  7. Cognitive Characteristics of Children with Genetic Syndromes

    PubMed Central

    Simon, Tony J.

    2008-01-01

    The cognitive profile of several different populations of children, each with a distinct neurogenetic disorder that has been described as fitting the pattern of a “nonverbal learning disorder”, is examined. In particular, this paper presents the view that a cognitive endophenotype, specified in terms of specific cognitive processes involving the spatial, temporal and attentional domains, can be used to generate an explanation of the neurocognitive foundation of the common impairments found in these disorders. Methods for evaluating cognitive impairments are first compared and contrasted and the concept of “nonverbal learning disorders” is described. The paper then examines data from experimental tests of spatiotemporal and executive cognitive function acquired from children with one of several disorders to determine whether such a cognitive endophenotype holds promise for moving from descriptions of to explanations for the impairments observed and whether prescriptions for therapeutic interventions might flow from such an account. Synopsis This paper presents the cognitive profile observed in children with one of several common genetic syndromes associated with “nonverbal learning disorders”. It introduces the concept of a cognitive endophenotype in order to help explain the similar pattern of impairments across the syndromes. It explores the explanation of diverse impairments in higher-order visual, spatial, temporal, numerical and executive cognitive competencies deriving from origins in more basic attentional and spatial cognitive dysfunctions. The importance of a developmental approach to understanding dysfunction is stressed. PMID:17562581

  8. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    NASA Astrophysics Data System (ADS)

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-08-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.

  9. DNA Dispose, but Subjects Decide. Learning and the Extended Synthesis.

    PubMed

    Lindholm, Markus

    Adaptation by means of natural selection depends on the ability of populations to maintain variation in heritable traits. According to the Modern Synthesis this variation is sustained by mutations and genetic drift. Epigenetics, evodevo, niche construction and cultural factors have more recently been shown to contribute to heritable variation, however, leading an increasing number of biologists to call for an extended view of speciation and evolution. An additional common feature across the animal kingdom is learning, defined as the ability to change behavior according to novel experiences or skills. Learning constitutes an additional source for phenotypic variation, and change in behavior may induce long lasting shifts in fitness, and hence favor evolutionary novelties. Based on published studies, I demonstrate how learning about food, mate choice and habitats has contributed substantially to speciation in the canonical story of Darwin's finches on the Galapagos Islands. Learning cannot be reduced to genetics, because it demands decisions, which requires a subject. Evolutionary novelties may hence emerge both from shifts in allelic frequencies and from shifts in learned, subject driven behavior. The existence of two principally different sources of variation also prevents the Modern Synthesis from self-referring explanations.

  10. Learning effects of thematic peer-review: a qualitative analysis of reflective journals on spiritual care.

    PubMed

    van Leeuwen, René; Tiesinga, Lucas J; Jochemsen, Henk; Post, Doeke

    2009-05-01

    This study describes the learning effects of thematic peer-review discussion groups (Hendriksen, 2000. Begeleid intervisie model, Collegiale advisering en probleemoplossing, Nelissen, Baarn.) on developing nursing students' competence in providing spiritual care. It also discusses the factors that might influence the learning process. The method of peer-review is a form of reflective learning based on the theory of experiential learning (Kolb, 1984. Experiential learning, Experience as the source of learning development. Englewoods Cliffs, New Jersey, Prentice Hill). It was part of an educational programme on spiritual care in nursing for third-year undergraduate nursing students from two nursing schools in the Netherlands. Reflective journals (n=203) kept by students throughout the peer-review process were analysed qualitatively The analysis shows that students reflect on spirituality in the context of personal experiences in nursing practice. In addition, they discuss the nursing process and organizational aspects of spiritual care. The results show that the first two phases in the experiential learning cycle appear prominently; these are 'inclusion of actual experience' and 'reflecting on this experience'. The phases of 'abstraction of experience' and 'experimenting with new behaviour' are less evident. We will discuss possible explanations for these findings according to factors related to education, the students and the tutors and make recommendations for follow-up research.

  11. Spacing Repetitions Over Long Timescales: A Review and a Reconsolidation Explanation

    PubMed Central

    Smith, Christopher D.; Scarf, Damian

    2017-01-01

    Recent accounts of the spacing effect have proposed molecular explanations that explain spacing over short, but not long timescales. In the first half of this paper, we review research on the spacing effect that has employed spaces of 24 h or more across skill-related tasks, language-related tasks and generalization for adults and children. Throughout this review, we distinguish between learning and retention by defining learning (or acquisition) as performance at the end of training and retention as performance after a delay period. Using this distinction, we find age- and task-related differences in the manifestation of the spacing effect over long timescales. In the second half of this paper, we discuss a reconsolidation account of the spacing effect. In particular, we review the evidence that suggests the spacing of repetitions influences the subsequent consolidation and reconsolidation processes; we explain how a reconsolidation account may explain the findings for learning; the inverted-U curve for retention; and compare the reconsolidation account with previous consolidation accounts of the spacing effect. PMID:28676769

  12. On the Diagnosis of Learning Disabilities in Gifted Students: Reply to Assouline et al. (2010)

    ERIC Educational Resources Information Center

    Lovett, Benjamin J.

    2011-01-01

    Gifted students often fail to achieve at a superior level in one or more academic areas. In this reply to an article by Assouline, Nicpon, and Whiteman, the author reviews various explanations for this phenomenon, including motivation/interest, learning opportunities, and error in measuring students' ability-achievement discrepancies. The author…

  13. Students' Learning Strategies with Multiple Representations: Explanations of the Human Breathing Mechanism

    ERIC Educational Resources Information Center

    Won, Mihye; Yoon, Heojeong; Treagust, David F.

    2014-01-01

    The purpose of this study was to understand how students utilized multiple representations to learn and explain science concepts, in this case the human breathing mechanism. The study was conducted with Grade 11 students in a human biology class. Semistructured interviews and a two-tier diagnostic test were administered to evaluate students'…

  14. Integrating E-Learning into the Direct-Instruction Model to Enhance the Effectiveness of Critical-Thinking Instruction

    ERIC Educational Resources Information Center

    Yeh, Yu-Chu

    2009-01-01

    The "Direct-instruction Model" favors the use of teacher explanations and modeling combined with student practice and feedback to teach thinking skills. Using this paradigm, this study incorporates e-learning during an 18-week experimental instruction period that includes 48 preservice teachers. The instructional design in this study emphasizes…

  15. Learning and Teaching Critical Thinking: From a Peircean Perspective

    ERIC Educational Resources Information Center

    Wells, Kelley

    2009-01-01

    The article will argue that Charles Sanders Peirce's concepts of the "Dynamics of Belief and Doubt", the "Fixation of Belief" as well as "habits of belief" taken together comprise a theory of learning. The "dynamics of belief and doubt" are Peirce's explanation for the process of changing from one belief to another. Teaching, then, would be an…

  16. Socialization and Self-Esteem: A Test of Symbolic Interaction and Social Learning Explanations.

    ERIC Educational Resources Information Center

    Openshaw, D. Kim; Thomas, Darwin L.

    Two questions were examined in this study: (1) Do symbolic interaction and social learning processes independently contribute to adolescents' self-esteem? and (2) If they do, what is the relative magnitude of their contribution? Data for the investigation were gathered through self-report questionnaires. Fourteen to 18-year-old adolescents, and…

  17. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    ERIC Educational Resources Information Center

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  18. Social Information Processing, Security of Attachment, and Emotion Regulation in Children with Learning Disabilities

    ERIC Educational Resources Information Center

    Bauminger, Nirit; Kimhi-Kind, Ilanit

    2008-01-01

    This study examined the contribution of attachment security and emotion regulation (ER) to the explanation of social information processing (SIP) in middle childhood boys with learning disabilities (LD) and without LD matched on age and grade level. Children analyzed four social vignettes using Dodge's SIP model and completed the Kerns security…

  19. How Motivation is Learned: A Neurological Explanation. Preconvention Institute 7; Brain Functions in Reading and Reading Disability.

    ERIC Educational Resources Information Center

    Wilson, John A. R.

    If motivation to read fails to develop, reading failure is the outcome. All of us have very delicately balanced neural systems for integrating incoming sensory inputs, evaluating their significance in the light of past experience, and storing the learning for future use. Autistic and hyperkinetic children apparently have unbalanced neurological…

  20. Do Focused Self-Explanation Prompts Overcome Seductive Details? A Multimedia Study

    ERIC Educational Resources Information Center

    Wang, Zhe; Adesope, Olusola

    2017-01-01

    Research on the seductive details effect on reading expository texts in multimedia learning environments has grown over the past few decades. However, less is known when seductive details are encountered in learning through worked-examples to solve problems. Thus, it is necessary to examine the seductive details effect when solving problems in a…

  1. Rainbow-Like Spectra with a CD: An Active-Learning Exercise

    ERIC Educational Resources Information Center

    Planinsic, G.

    2008-01-01

    Rainbow-like spectra, produced by reflexive diffraction of white light on a CD, offer a spectacular visual effect as well as an excellent classroom opportunity for students to learn how physics works. In this paper we show that building a coherent qualitative explanation can be a challenging task that requires students to combine gained knowledge…

  2. Implicit Learning of Non-Linguistic and Linguistic Regularities in Children with Dyslexia

    ERIC Educational Resources Information Center

    Nigro, Luciana; Jiménez-Fernández, Gracia; Simpson, Ian C.; Defior, Sylvia

    2016-01-01

    One of the hallmarks of dyslexia is the failure to automatise written patterns despite repeated exposure to print. Although many explanations have been proposed to explain this problem, researchers have recently begun to explore the possibility that an underlying implicit learning deficit may play a role in dyslexia. This hypothesis has been…

  3. Repeated E-Book Reading and Its Contribution to Learning New Words among Kindergartners

    ERIC Educational Resources Information Center

    Korat, Ofra; Kozlov-Peretz, Olla; Segal-Drori, Ora

    2017-01-01

    The contribution of repeated e-book reading with and without word explanation support and its effect on receptive and expressive word learning among preschoolers was examined. Seventy-eight kindergartners were randomly divided into an experimental and a control group. The experimental group received two individual reading sessions of an e-book…

  4. Giving what one should: explanations for the knowledge-behavior gap for altruistic giving.

    PubMed

    Blake, Peter R

    2018-04-01

    Several studies have shown that children struggle to give what they believe that they should: the so-called knowledge-behavior gap. Over a dozen recent Dictator Game studies find that, although young children believe that they should give half of a set of resources to a peer, they typically give less and often keep all of the resources for themselves. This article reviews recent evidence for five potential explanations for the gap and how children close it with age: self-regulation, social distance, theory of mind, moral knowledge and social learning. I conclude that self-regulation, social distance, and social learning show the most promising evidence for understanding the mechanisms that can close the gap. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Seeing Science through Symmetry

    NASA Astrophysics Data System (ADS)

    Gould, L. I.

    Seeing Through Symmetry is a course that introduces non-science majors to the pervasive influence of symmetry in science. The concept of symmetry is usedboth as a link between subjects (such as physics, biology, mathematics, music, poetry, and art) and as a method within a subject. This is done through the development and use of interactive multimedia learning environments to stimulate learning. Computer-based labs enable the student to further explore the concept by being gently led from the arts to science. This talk is an update that includes some of the latest changes to the course. Explanations are given on methodology and how a variety of interactive multimedia tools contribute to both the lecture and lab portion of the course (created in 1991 and taught almost every semester since then, including one in Sweden).

  6. Learning Petri net models of non-linear gene interactions.

    PubMed

    Mayo, Michael

    2005-10-01

    Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.

  7. Constructing Scientific Explanations: a System of Analysis for Students' Explanations

    NASA Astrophysics Data System (ADS)

    de Andrade, Vanessa; Freire, Sofia; Baptista, Mónica

    2017-08-01

    This article describes a system of analysis aimed at characterizing students' scientific explanations. Science education literature and reform documents have been highlighting the importance of scientific explanations for students' conceptual understanding and for their understanding of the nature of scientific knowledge. Nevertheless, and despite general agreement regarding the potential of having students construct their own explanations, a consensual notion of scientific explanation has still not been reached. As a result, within science education literature, there are several frameworks defining scientific explanations, with different foci as well as different notions of what accounts as a good explanation. Considering this, and based on a more ample project, we developed a system of analysis to characterize students' explanations. It was conceptualized and developed based on theories and models of scientific explanations, science education literature, and from examples of students' explanations collected by an open-ended questionnaire. With this paper, it is our goal to present the system of analysis, illustrating it with specific examples of students' collected explanations. In addition, we expect to point out its adequacy and utility for analyzing and characterizing students' scientific explanations as well as for tracing their progression.

  8. Teaching science as argument: Prospective elementary teachers' knowledge

    NASA Astrophysics Data System (ADS)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry processes. (4) Scaffolded protocols positively influenced participants' attention to having students construct evidence-based explanations during science planning and teaching. (5) Teachers' beliefs about children's science capabilities influence their attention to and adoption of practices associated with teaching science as argument. Findings are discussed in terms of their implications for teacher education, such as the use of coherent conceptual frameworks to guide coursework and field experiences and the development of video-based cases that represent "images of the possible" associated with challenging reform-oriented teaching practices.

  9. Supporting Beginning Teacher Planning and Enactment of Investigation-based Science Discussions: The Design and Use of Tools within Practice-based Teacher Education

    NASA Astrophysics Data System (ADS)

    Kademian, Sylvie M.

    Current reform efforts prioritize science instruction that provides opportunities for students to engage in productive talk about scientific phenomena. Given the challenges teachers face enacting instruction that integrates science practices and science content, beginning teachers need support to develop the knowledge and teaching practices required to teach reform-oriented science lessons. Practice-based teacher education shows potential for supporting beginning teachers while they are learning to teach in this way. However, little is known about how beginning elementary teachers draw upon the types of support and tools associated with practice-based teacher education to learn to successfully enact this type of instruction. This dissertation addresses this gap by investigating how a practice-based science methods course using a suite of teacher educator-provided tools can support beginning teachers' planning and enactment of investigation-based science lessons. Using qualitative case study methodologies, this study drew on video-records, lesson plans, class assignments, and surveys from one cohort of 22 pre-service teachers (called interns in this study) enrolled in a year-long elementary education master of the arts and teaching certification program. Six focal interns were also interviewed at multiple time-points during the methods course. Similarities existed across the types of tools and teaching practices interns used most frequently to plan and enact investigation-based discussions. For the focal interns, use of four synergistic teaching practices throughout the lesson enactments (including consideration of students' initial ideas; use of open-ended questions to elicit, extend, and challenge ideas; connecting across students' ideas and the disciplinary core ideas; and use of a representation to organize and highlight students' ideas) appeared to lead to increased opportunities for students to share their ideas and engage in data analysis, argumentation and explanation construction. Student opportunities to engage in practices that prioritize scientific discourse also occurred when interns were using dialogic voice and the tools designed to foster development of teacher knowledge for facilitating investigation-based science discussions. However, several intern characteristics likely moderated or mediated intern use of tools, dialogic voice, and productive teaching practices to capitalize on student contributions. These characteristics included intern knowledge of the science content and practices and initial beliefs about science teaching. Missed opportunities to use a combination of several teaching practices and tools designed to foster the development of knowledge for science teaching resulted in fewer opportunities for students to engage in data analysis, argumentation based on evidence, and construction of scientific explanations. These findings highlight the potential of teacher-educator provided tools for supporting beginning teachers in learning to facilitate investigation-based discussions that capitalize on student contributions. These findings also help the field conceptualize how beginning teachers use tools and teaching practices to plan and enact investigation-based science lessons, and how intern characteristics relate to tool use and planned and enacted lessons. By analyzing the investigation-based science lessons holistically, this study begins to unpack the complexities of facilitating investigation-based discussions including the interplay between intern characteristics and tool use, and the ways intern engagement in synergistic teaching practices provide opportunities for students to engage in data analysis, explanation construction, and argumentation. This study also describes methodological implications for this type of whole-lesson analysis and comments on the need for further research investigating beginning teachers' use of tools over time. Finally, I propose the need for iterative design of scaffolds to further support beginning teacher facilitation of investigation-based science lessons.

  10. Systematic Asymmetries in Perception and Production of L2 Inflections in Mandarin L2 Learners of English: The Effects of Phonotactics, Salience, and Processing Pressure on Inflectional Variability

    ERIC Educational Resources Information Center

    Bonner, Timothy E.

    2013-01-01

    The study of language production by adults who are learning a second language (L2) has received a good deal of attention especially when it comes to omission of inflectional morphemes within L2 utterances. Several explanations have been proposed for these inflectional errors. One explanation is that the L2 learner simply does not have the L2…

  11. Who Resembles Whom? Mimetic and Coincidental Look-Alikes among Tropical Reef Fishes

    PubMed Central

    Robertson, D. Ross

    2013-01-01

    Studies of mimicry among tropical reef-fishes usually give little or no consideration to alternative explanations for behavioral associations between unrelated, look-alike species that benefit the supposed mimic. I propose and assess such an alternative explanation. With mimicry the mimic resembles its model, evolved to do so in response to selection by the mimicry target, and gains evolved benefits from that resemblance. In the alternative, the social-trap hypothesis, a coincidental resemblance of the model to the “mimic” inadvertently attracts the latter to it, and reinforcement of this social trapping by learned benefits leads to the “mimic” regularly associating with the model. I examine three well known cases of supposed aggressive mimicry among reef-fishes in relation to nine predictions from these hypotheses, and assess which hypothesis offers a better explanation for each. One case, involving precise and complex morphological and behavioral resemblance, is strongly consistent with mimicry, one is inconclusive, and one is more consistent with a social-trap based on coincidental, imprecise resemblance. Few cases of supposed interspecific mimicry among tropical reef fishes have been examined in depth, and many such associations may involve social traps arising from generalized, coincidental resemblance. Mimicry may be much less common among these fishes than is generally thought. PMID:23372795

  12. Preferred strategies for workforce development: feedback from aged care workers.

    PubMed

    Choy, Sarojni; Henderson, Amanda

    2016-11-01

    Objective The aim of the present study was to investigate how aged care workers prefer to learn and be supported in continuing education and training activities. Methods Fifty-one workers in aged care facilities from metropolitan and rural settings across two states of Australia participated in a survey and interviews. Survey responses were analysed for frequencies and interview data provided explanations to the survey findings. Results The three most common ways workers were currently learning and prefer to continue to learn are: (1) everyday learning through work individually; (2) everyday learning through work individually assisted by other workers; and (3) everyday learning plus group training courses at work from the employer. The three most common types of provisions that supported workers in their learning were: (1) working and sharing with another person on the job; (2) direct teaching in a group (e.g. a trainer in a classroom at work); and (3) direct teaching by a workplace expert. Conclusions A wholly practice-based continuing education and training model is best suited for aged care workers. Two variations of this model could be considered: (1) a wholly practice-based model for individual learning; and (2) a wholly practice-based model with guidance from coworkers or other experts. Although the model is preferred by workers and convenient for employers, it needs to be well resourced. What is known about the topic? Learning needs for aged care workers are increasing significantly because of an aging population that demands more care workers. Workforce development is largely 'episodic', based on organisational requirements rather than systematic life-long learning. This study is part of a larger 3-year Australian research to investigate models of continuing education training. What does this paper add? Based on an analysis of survey and interview data from 51 workers, the present study suggests effective models of workforce development for aged care workers. What are the implications for practitioners? The effectiveness of the suggested models necessitates a culture where aged care workers' advancement in the workplace is valued and supported. Those responsible for the development of these workers need to be adequately prepared for mentoring and coaching in the workplace.

  13. The Effect of Scaffolding Strategies for Inscriptions and Argumentation in a Science Cyberlearning Environment

    NASA Astrophysics Data System (ADS)

    Kern, Cindy L.; Crippen, Kent J.

    2017-02-01

    Scientific inscriptions—graphs, diagrams, and data—and argumentation are integral to learning and communicating science and are common elements in cyberlearning environments—those involving the use of networked learning technologies. However, previous research has indicated that learners struggle to use inscriptions and when they engage in argumentation, the learning of science content becomes secondary to the learning of argumentation skills. The purpose of this study was to evaluate two scaffolding strategies for these elements in a secondary school context: (1) self- explanation prompts paired with a scientific inscription and (2) faded worked examples for the evaluation and development of scientific arguments. Participants consisted of ninth and tenth grade students (age 13-16 years; N = 245) enrolled in state-mandated biology courses taught by four different teachers. A three-factor mixed model analysis of variance with two between factors (self-explanation prompts and faded worked examples) and one within factor (pre-, post-, delayed posttest) was used to evaluate the effects on the acquisition and retention of domain-specific content knowledge. Results indicated that neither strategy influenced the acquisition and retention of science content in a positive (i.e., learning) or negative (i.e., expertise reversal effect) way. Thus, general prompts were as effective as either of the scaffolding conditions. These unanticipated results suggest that additional research is warranted for learning scaffolds with pre-college populations where the gains were established with college-aged participants.

  14. The analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference

    NASA Astrophysics Data System (ADS)

    Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi

    2017-08-01

    The aim of this study was to describe the analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference. The purpose of this study is to describe the analysis of mathematics teacher's learning on limit algebraic functions in terms of the differences of teaching experience. Learning analysis focused on Pedagogical Content Knowledge (PCK) of teachers in mathematics on limit algebraic functions related to the knowledge of pedagogy. PCK of teachers on limit algebraic function is a type of specialized knowledge for teachers on how to teach limit algebraic function that can be understood by students. Subjects are two high school mathematics teacher who has difference of teaching experience they are one Novice Teacher (NP) and one Experienced Teacher (ET). Data are collected through observation of learning in the class, videos of learning, and then analyzed using qualitative analysis. Teacher's knowledge of Pedagogic defined as a knowledge and understanding of teacher about planning and organizing of learning, and application of learning strategy. The research results showed that the Knowledge of Pedagogy on subject NT in mathematics learning on the material of limit function algebra showed that the subject NT tended to describe procedurally, without explaining the reasons why such steps were used, asking questions which tended to be monotonous not be guiding and digging deeper, and less varied in the use of learning strategies while subject ET gave limited guidance and opportunities to the students to find their own answers, exploit the potential of students to answer questions, provide an opportunity for students to interact and work in groups, and subject ET tended to combine conceptual and procedural explanation.

  15. Understanding Randomness and its Impact on Student Learning: Lessons Learned from Building the Biology Concept Inventory (BCI)

    PubMed Central

    Garvin-Doxas, Kathy

    2008-01-01

    While researching student assumptions for the development of the Biology Concept Inventory (BCI; http://bioliteracy.net), we found that a wide class of student difficulties in molecular and evolutionary biology appears to be based on deep-seated, and often unaddressed, misconceptions about random processes. Data were based on more than 500 open-ended (primarily) college student responses, submitted online and analyzed through our Ed's Tools system, together with 28 thematic and think-aloud interviews with students, and the responses of students in introductory and advanced courses to questions on the BCI. Students believe that random processes are inefficient, whereas biological systems are very efficient. They are therefore quick to propose their own rational explanations for various processes, from diffusion to evolution. These rational explanations almost always make recourse to a driver, e.g., natural selection in evolution or concentration gradients in molecular biology, with the process taking place only when the driver is present, and ceasing when the driver is absent. For example, most students believe that diffusion only takes place when there is a concentration gradient, and that the mutational processes that change organisms occur only in response to natural selection pressures. An understanding that random processes take place all the time and can give rise to complex and often counterintuitive behaviors is almost totally absent. Even students who have had advanced or college physics, and can discuss diffusion correctly in that context, cannot make the transfer to biological processes, and passing through multiple conventional biology courses appears to have little effect on their underlying beliefs. PMID:18519614

  16. Conversations Around Practice: Mediating Opportunities to Learn about Teaching Science

    NASA Astrophysics Data System (ADS)

    Ricketts, Amy Rene

    This study contributes to the knowledge base regarding the ways in which school-based, ongoing, professional learning communities mediate teacher learning. Specifically, it investigates an organic learning group as they met in various contexts over a full school year, engaging in conversations around their teaching practices that focused on supporting students' explanations of scientific phenomena. The group consisted of ten middle school science teachers from three schools in the same public school district, their district science coordinator and a professor of science education. Drawing on traditions of ethnography and discourse analysis, this case study: 1) characterizes each episode of the group's conversations around practice in terms of its potential for generating transformative learning opportunities, 2) identifies which spontaneous and designed features of those conversations accounted for differences in the generative nature of the talk, and 3) explains how those features mediated the generative nature of the talk. In this group, the differences between more- and less- generative talk could be attributed to five features: the context of the conversation; the tools participants used to represent their practice; the stance with which they represented and took up one another's practices in the talk; the resources they drew on (in terms of expertise); the conversational routines in which they engaged. These five features interacted in complex, patterned ways to mediate the generative nature of the group's talk.

  17. Comics in Modern Physics: Learning Blackbody Radiation through Quasi-History of Physics

    ERIC Educational Resources Information Center

    Ozdemir, Ertugrul

    2017-01-01

    The purpose of this study is to create a short comic story about historical emergence of Planck's explanation of blackbody radiation and to investigate what students learn from it and what they think about the usage of comics in modern physics course. The participants are a small group of undergraduate students studying at department of science…

  18. Understanding the Developmental Dynamics of Subject Omission: The Role of Processing Limitations in Learning

    ERIC Educational Resources Information Center

    Freudenthal, Daniel; Pine, Julian M.; Gobet, Fernand

    2007-01-01

    P. Bloom's (1990) data on subject omission are often taken as strong support for the view that child language can be explained in terms of full competence coupled with processing limitations in production. This paper examines whether processing limitations in learning may provide a more parsimonious explanation of the data without the need to…

  19. Children Learning to Explain Daily Celestial Motion: Understanding Astronomy across Moving Frames of Reference

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Wasko, Kyle D.; Slagle, Cynthia

    2011-01-01

    This study investigated elementary students' explanations for the daily patterns of apparent motion of the Sun, Moon, and stars. Third-grade students were chosen for this study because this age level is at the lower end of when many US standards documents suggest students should learn to use the Earth's rotation to explain daily celestial motion.…

  20. From Seeing Adverbs to Seeing Verbal Morphology: Language Experience and Adult Acquisition of L2 Tense

    ERIC Educational Resources Information Center

    Sagarra, Nuria; Ellis, Nick C.

    2013-01-01

    Adult learners have persistent difficulty processing second language (L2) inflectional morphology. We investigate associative learning explanations that involve the blocking of later experienced cues by earlier learned ones in the first language (L1; i.e., transfer) and the L2 (i.e., proficiency). Sagarra (2008) and Ellis and Sagarra (2010b) found…

  1. Agency in the Darkness: 'Fear of the Unknown', Learning Disability and Teacher Education for Inclusion

    ERIC Educational Resources Information Center

    Robinson, Deborah; Goodey, Chris

    2018-01-01

    This paper proposes inclusion phobia as a sharper and more operative definition of the 'fear of the unknown' often cited as an explanation for resistance to inclusive education. Using 'severe and profound learning disability' as the paradigm case, we situate the phobia surrounding this label in its social and historical context. Our hypothesis is…

  2. A Model of Self-Explanation Strategies of Instructional Text and Examples in the Acquisition of Programming Skills.

    ERIC Educational Resources Information Center

    Recker, Margaret M.; Pirolli, Peter

    Students learning to program recursive LISP functions in a typical school-like lesson on recursion were observed. The typical lesson contains text and examples and involves solving a series of programming problems. The focus of this study is on students' learning strategies in new domains. In this light, a Soar computational model of…

  3. "Enough Is Enough, I Don't Want Any Audience": Exploring Medical Students' Explanations of Consent-Related Behaviours

    ERIC Educational Resources Information Center

    Knight, L. V.; Rees, C. E.

    2008-01-01

    Medical students are often faced with an ethical dilemma within the clinical setting--to learn from as many patients as possible but to learn only with consenting patients. Although studies have examined patients' and students' views about informed consent, none have examined how medical students talk about consent-related behaviours in…

  4. Formative Assessment Probes: Is It Melting? Formative Assessment for Teacher Learning

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    Formative assessment probes are effective tools for uncovering students' ideas about the various concepts they encounter when learning science. They are used to build a bridge from where the student is in his or her thinking to where he or she needs to be in order to construct and understand the scientific explanation for observed phenomena.…

  5. Simulations as a Source of Learning: Using "StarPower" to Teach Ethical Leadership and Management

    ERIC Educational Resources Information Center

    Allen, Scott J.

    2008-01-01

    This research examines the use simulation, "StarPower," as an instrument to teach students about ethics in management and leadership. The paper begins with an overview of sources of learning in leadership and management development and later focuses specifically on the use of simulations. This is followed by a brief explanation of the…

  6. Learning Processes in Chemistry: Drawing upon Cognitive Resources to Learn about the Particulate Structure of Matter

    ERIC Educational Resources Information Center

    Taber, Keith S.; Garcia-Franco, Alejandra

    2010-01-01

    This article explores 11- to 16-year-old students' explanations for phenomena commonly studied in school chemistry from an inclusive cognitive resources or knowledge-in-pieces perspective that considers that student utterances may reflect the activation of knowledge elements at a range of levels of explicitness. We report 5 themes in student…

  7. US-UK Collaboration on Fossil Energy Advanced Materials: Task 1—Steam Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey

    This presentation goes over the following from the US-UK collaboration on Fossil Energy Advanced Materials: Task 1, Steam Oxidation: US-led or co-led deliverables, Phase II products (US), 2011-present, Phase III products, Phase III Plan, an explanation of sCO 2 compared with sH 2O, an explanation of Ni-base Alloys, an explanation of 300 Series (18Cr-8Ni)/E-Brite, an explanation of the typical Microchannel HX Fabrication process, and an explanation of diffusion bonded Ni-base superalloys.

  8. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  9. Strategy selection as rational metareasoning.

    PubMed

    Lieder, Falk; Griffiths, Thomas L

    2017-11-01

    Many contemporary accounts of human reasoning assume that the mind is equipped with multiple heuristics that could be deployed to perform a given task. This raises the question of how the mind determines when to use which heuristic. To answer this question, we developed a rational model of strategy selection, based on the theory of rational metareasoning developed in the artificial intelligence literature. According to our model people learn to efficiently choose the strategy with the best cost-benefit tradeoff by learning a predictive model of each strategy's performance. We found that our model can provide a unifying explanation for classic findings from domains ranging from decision-making to arithmetic by capturing the variability of people's strategy choices, their dependence on task and context, and their development over time. Systematic model comparisons supported our theory, and 4 new experiments confirmed its distinctive predictions. Our findings suggest that people gradually learn to make increasingly more rational use of fallible heuristics. This perspective reconciles the 2 poles of the debate about human rationality by integrating heuristics and biases with learning and rationality. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. A Study of the Use of Ontologies for Building Computer-Aided Control Engineering Self-Learning Educational Software

    NASA Astrophysics Data System (ADS)

    García, Isaías; Benavides, Carmen; Alaiz, Héctor; Alonso, Angel

    2013-08-01

    This paper describes research on the use of knowledge models (ontologies) for building computer-aided educational software in the field of control engineering. Ontologies are able to represent in the computer a very rich conceptual model of a given domain. This model can be used later for a number of purposes in different software applications. In this study, domain ontology about the field of lead-lag compensator design has been built and used for automatic exercise generation, graphical user interface population and interaction with the user at any level of detail, including explanations about why things occur. An application called Onto-CELE (ontology-based control engineering learning environment) uses the ontology for implementing a learning environment that can be used for self and lifelong learning purposes. The experience has shown that the use of knowledge models as the basis for educational software applications is capable of showing students the whole complexity of the analysis and design processes at any level of detail. A practical experience with postgraduate students has shown the mentioned benefits and possibilities of the approach.

  11. Why Chunking Should be Considered as an Explanation for Developmental Change before Short-Term Memory Capacity and Processing Speed

    PubMed Central

    Jones, Gary

    2012-01-01

    The chunking hypothesis suggests that during the repeated exposure of stimulus material, information is organized into increasingly larger chunks. Many researchers have not considered the full power of the chunking hypothesis as both a learning mechanism and as an explanation of human behavior. Indeed, in developmental psychology there is relatively little mention of chunking and yet it can be the underlying cause of some of the mechanisms of development that have been proposed. This paper illustrates the chunking hypothesis in the domain of non-word repetition, a task that is a strong predictor of a child’s language learning. A computer simulation of non-word repetition that instantiates the chunking mechanism shows that: (1) chunking causes task behavior to improve over time, consistent with children’s performance; and (2) chunking causes perceived changes in areas such as short-term memory capacity and processing speed that are often cited as mechanisms of child development. Researchers should be cautious when considering explanations of developmental data, since chunking may be able to explain differences in performance without the need for additional mechanisms of development. PMID:22715331

  12. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    NASA Astrophysics Data System (ADS)

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-02-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate students in response to two different evolution instruments (the EGALT-F and EGALT-P) that contained prompts that differed in various surface features (such as species and traits). We tested human-SIDE scoring correspondence under a series of different training and testing conditions, using Kappa inter-rater agreement values of greater than 0.80 as a performance benchmark. In addition, we examined the effects of response length on scoring success; that is, whether SIDE scoring models functioned with comparable success on short and long responses. We found that SIDE performance was most effective when scoring models were built and tested at the individual item level and that performance degraded when suites of items or entire instruments were used to build and test scoring models. Overall, SIDE was found to be a powerful and cost-effective tool for assessing student knowledge and performance in a complex science domain.

  13. Improve Student Understanding Ability Through Gamification in Instructional Media Based Explicit Instruction

    NASA Astrophysics Data System (ADS)

    Firdausi, N.; Prabawa, H. W.; Sutarno, H.

    2017-02-01

    In an effort to maximize a student’s academic growth, one of the tools available to educators is the explicit instruction. Explicit instruction is marked by a series of support or scaffold, where the students will be guided through the learning process with a clear statement of purpose and a reason for learning new skills, a clear explanation and demonstration of learning targets, supported and practiced with independent feedback until mastery has been achieved. The technology development trend of todays, requires an adjustment in the development of learning object that supports the achievement of explicit instruction targets. This is where the gamification position is. In the role as a pedagogical strategy, the use of gamification preformance study class is still relatively new. Gamification not only use the game elements and game design techniques in non-game contexts, but also to empower and engage learners with the ability of motivation on learning approach and maintains a relaxed atmosphere. With using Reseach and Development methods, this paper presents the integration of technology (which in this case using the concept of gamification) in explicit instruction settings and the impact on the improvement of students’ understanding.

  14. Payoff-based learning explains the decline in cooperation in public goods games.

    PubMed

    Burton-Chellew, Maxwell N; Nax, Heinrich H; West, Stuart A

    2015-02-22

    Economic games such as the public goods game are increasingly being used to measure social behaviours in humans and non-human primates. The results of such games have been used to argue that people are pro-social, and that humans are uniquely altruistic, willingly sacrificing their own welfare in order to benefit others. However, an alternative explanation for the empirical observations is that individuals are mistaken, but learn, during the game, how to improve their personal payoff. We test between these competing hypotheses, by comparing the explanatory power of different behavioural rules, in public goods games, where individuals are given different amounts of information. We find: (i) that individual behaviour is best explained by a learning rule that is trying to maximize personal income; (ii) that conditional cooperation disappears when the consequences of cooperation are made clearer; and (iii) that social preferences, if they exist, are more anti-social than pro-social. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Using maintenance rehearsal to explore recognition memory.

    PubMed

    Humphreys, Michael S; Maguire, Angela M; McFarlane, Kimberley A; Burt, Jennifer S; Bolland, Scott W; Murray, Krista L; Dunn, Ryan

    2010-01-01

    We examined associative and item recognition using the maintenance rehearsal paradigm. Our intent was to control for mnemonic strategies; to produce a low, graded level of learning; and to provide evidence of the role of attention in long-term memory. An advantage for low-frequency words emerged in both associative and item recognition at very low levels of learning. This early emergence casts doubt on explanations based on the traditional concept of recollection. A comparison of false alarms supports a role for item information or the joint use of cues but not familiarity in producing associative false alarms. We may also have found a way to measure the amount of attention being paid to a to-be-learned item or pair, independently of memory performance on the attended item. This result may be an important step in determining whether coherent theories about the role of attention in long- and short-term memory can be created. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  16. Medical student changes in self-regulated learning during the transition to the clinical environment.

    PubMed

    Cho, Kenneth K; Marjadi, Brahm; Langendyk, Vicki; Hu, Wendy

    2017-03-21

    Self-regulated learning (SRL), which is learners' ability to proactively select and use different strategies to reach learning goals, is associated with academic and clinical success and life-long learning. SRL does not develop automatically in the clinical environment and its development during the preclinical to clinical learning transition has not been quantitatively studied. Our study aims to fill this gap by measuring SRL in medical students during the transitional period and examining its contributing factors. Medical students were invited to complete a questionnaire at the commencement of their first clinical year (T0), and 10 weeks later (T1). The questionnaire included the Motivated Strategies for Learning Questionnaire (MSLQ) and asked about previous clinical experience. Information about the student's background, demographic characteristics and first clinical rotation were also gathered. Of 118 students invited to participate, complete paired responses were obtained from 72 medical students (response rate 61%). At T1, extrinsic goal orientation increased and was associated with gender (males were more likely to increase extrinsic goal orientation) and type of first attachment (critical care and community based attachments, compared to hospital ward based attachments). Metacognitive self-regulation decreased at T1 and was negatively associated with previous clinical experience. Measurable changes in self-regulated learning occur during the transition from preclinical learning to clinical immersion, particularly in the domains of extrinsic goal orientation and metacognitive self-regulation. Self-determination theory offers possible explanations for this finding which have practical implications and point the way to future research. In addition, interventions to promote metacognition before the clinical immersion may assist in preserving SRL during the transition and thus promote life-long learning skills in preparation for real-world practice.

  17. Characterizing High School Students' Written Explanations in Biology Laboratories

    NASA Astrophysics Data System (ADS)

    Peker, Deniz; Wallace, Carolyn S.

    2011-03-01

    The purpose of this qualitative interpretive research study was to examine high school students' written scientific explanations during biology laboratory investigations. Specifically, we characterized the types of epistemologies and forms of reasoning involved in students' scientific explanations and students' perceptions of scientific explanations. Sixteen students from a rural high school in the Southeastern United States were the participants of this research study. The data consisted of students' laboratory reports and individual interviews. The results indicated that students' explanations were primarily based on first-hand knowledge gained in the science laboratories and mostly representing procedural recounts. Most students did not give explanations based on a theory or a principle and did not use deductive reasoning in their explanations. The students had difficulties explaining phenomena that involved intricate cause-effect relationships. Students perceived scientific explanation as the final step of a scientific inquiry and as an account of what happened in the inquiry process, and held a constructivist-empiricist view of scientific explanations. Our results imply the need for more explicit guidance to help students construct better scientific explanations and explicit teaching of the explanatory genre with particular focus on theoretical and causal explanations.

  18. How to develop a low cost, in-house distance learning center for continuing medical education. Part II.

    PubMed

    Lanza, Vincenzo

    2002-12-01

    The first part of this paper discussed the advantages and communication tools needed to create a Distance Learning Center for continuing medical education by using an Intranet or the Internet. This part continues with an explanation of the hardware, software (largely free) and human resources needed for videoconferencing as well as the costs. Suitable even for small hospitals Distance Learning Centers can be of higher quality than traditional methods of continuing medical education.

  19. Working Memory in Students with Mathematical Difficulties

    NASA Astrophysics Data System (ADS)

    Nur, I. R. D.; Herman, T.; Ningsih, S.

    2018-04-01

    Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.

  20. The hippocampus and exploration: dynamically evolving behavior and neural representations

    PubMed Central

    Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul

    2012-01-01

    We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196

  1. Problem-based learning: Using students' questions to drive knowledge construction

    NASA Astrophysics Data System (ADS)

    Chin, Christine; Chia, Li-Gek

    2004-09-01

    This study employed problem-based learning for project work in a year 9 biology class. The purpose of the study was to investigate (a) students' inspirations for their self-generated problems and questions, (b) the kinds of questions that students asked individually and collaboratively, and (c) how students' questions guided them in knowledge construction. Data sources included observation and field notes, students' written documents, audiotapes and videotapes of students working in groups, and student interviews. Sources of inspiration for students' problems and questions included cultural beliefs and folklore; wonderment about information propagated by advertisements and the media; curiosity arising from personal encounters, family members' concerns, or observations of others; and issues arising from previous lessons in the school curriculum. Questions asked individually pertained to validation of common beliefs and misconceptions, basic information, explanations, and imagined scenarios. The findings regarding questions asked collaboratively are presented as two assertions. Assertion 1 maintained that students' course of learning were driven by their questions. Assertion 2 was that the ability to ask the right'' questions and the extent to which these could be answered, were important in sustaining students' interest in the project. Implications of the findings for instructional practice are discussed.

  2. Secondary Students' Thinking about Familiar Phenomena: Learners' Explanations from a Curriculum Context Where "Particles" Is a Key Idea for Organising Teaching and Learning

    ERIC Educational Resources Information Center

    Garcia Franco, Alejandra; Taber, Keith S.

    2009-01-01

    Particle models of matter are widely recognised as being of fundamental importance in many branches of modern science, and particle ideas are commonly introduced and developed in the secondary school curriculum. However, research undertaken in a range of national contexts has identified significant learning difficulties in this topic, and suggests…

  3. Learner differences and learning outcomes in an introductory biochemistry class: attitude toward images, visual cognitive skills, and learning approach.

    PubMed

    Milner, Rachel E

    2014-01-01

    The practice of using images in teaching is widespread, and in science education images are used so extensively that some have argued they are now the "main vehicle of communication" (C. Ferreira, A. Arroio Problems Educ. 21st Century 2009, 16, 48-53). Although this phenomenon is especially notable in the field of biochemistry, we know little about the role and importance of images in communicating concepts to students in the classroom. This study reports the development of a scale to assess students' attitude toward biochemical images, particularly their willingness and ability to use the images to support their learning. In addition, because it is argued that images are central in the communication of biochemical concepts, we investigated three "learner differences" which might impact learning outcomes in this kind of classroom environment: attitude toward images, visual cognitive skills, and learning approach. Overall, the students reported a positive attitude toward the images, the majority agreeing that they liked images and considered them useful. However, the participants also reported that verbal explanations were more important than images in helping them to understand the concepts. In keeping with this we found that there was no relationship between learning outcomes and the students' self-reported attitude toward images or visual cognitive skills. In contrast, learning outcomes were significantly correlated with the students' self-reported approach to learning. These findings suggest that images are not necessarily the main vehicle of communication in a biochemistry classroom and that verbal explanations and encouragement of a deep learning approach are important considerations in improving our pedagogical approach. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  4. When does social learning become cultural learning?

    PubMed

    Heyes, Cecilia

    2017-03-01

    Developmental research on selective social learning, or 'social learning strategies', is currently a rich source of information about when children copy behaviour, and who they prefer to copy. It also has the potential to tell us when and how human social learning becomes cultural learning; i.e. mediated by psychological mechanisms that are specialized, genetically or culturally, to promote cultural inheritance. However, this review article argues that, to realize its potential, research on the development of selective social learning needs more clearly to distinguish functional from mechanistic explanation; to achieve integration with research on attention and learning in adult humans and 'dumb' animals; and to recognize that psychological mechanisms can be specialized, not only by genetic evolution, but also by associative learning and cultural evolution. © 2015 John Wiley & Sons Ltd.

  5. ICADx: interpretable computer aided diagnosis of breast masses

    NASA Astrophysics Data System (ADS)

    Kim, Seong Tae; Lee, Hakmin; Kim, Hak Gu; Ro, Yong Man

    2018-02-01

    In this study, a novel computer aided diagnosis (CADx) framework is devised to investigate interpretability for classifying breast masses. Recently, a deep learning technology has been successfully applied to medical image analysis including CADx. Existing deep learning based CADx approaches, however, have a limitation in explaining the diagnostic decision. In real clinical practice, clinical decisions could be made with reasonable explanation. So current deep learning approaches in CADx are limited in real world deployment. In this paper, we investigate interpretability in CADx with the proposed interpretable CADx (ICADx) framework. The proposed framework is devised with a generative adversarial network, which consists of interpretable diagnosis network and synthetic lesion generative network to learn the relationship between malignancy and a standardized description (BI-RADS). The lesion generative network and the interpretable diagnosis network compete in an adversarial learning so that the two networks are improved. The effectiveness of the proposed method was validated on public mammogram database. Experimental results showed that the proposed ICADx framework could provide the interpretability of mass as well as mass classification. It was mainly attributed to the fact that the proposed method was effectively trained to find the relationship between malignancy and interpretations via the adversarial learning. These results imply that the proposed ICADx framework could be a promising approach to develop the CADx system.

  6. Individual differences in the benefits of feedback for learning.

    PubMed

    Kelley, Christopher M; McLaughlin, Anne Collins

    2012-02-01

    Research on learning from feedback has produced ambiguous guidelines for feedback design--some have advocated minimal feedback, whereas others have recommended more extensive feedback that highly supported performance. The objective of the current study was to investigate how individual differences in cognitive resources may predict feedback requirements and resolve previous conflicted findings. Cognitive resources were controlled for by comparing samples from populations with known differences, older and younger adults.To control for task demands, a simple rule-based learning task was created in which participants learned to identify fake Windows pop-ups. Pop-ups were divided into two categories--those that required fluid ability to identify and those that could be identified using crystallized intelligence. In general, results showed participants given higher feedback learned more. However, when analyzed by type of task demand, younger adults performed comparably with both levels of feedback for both cues whereas older adults benefited from increased feedbackfor fluid ability cues but from decreased feedback for crystallized ability cues. One explanation for the current findings is feedback requirements are connected to the cognitive abilities of the learner-those with higher abilities for the type of demands imposed by the task are likely to benefit from reduced feedback. We suggest the following considerations for feedback design: Incorporate learner characteristics and task demands when designing learning support via feedback.

  7. Defining and Developing "Critical Thinking" Through Devising and Testing Multiple Explanations of the Same Phenomenon

    NASA Astrophysics Data System (ADS)

    Etkina, Eugenia; Planinšič, Gorazd

    2015-10-01

    Most physics teachers would agree that one of the main reasons for her/his students to take physics is to learn to think critically. However, for years we have been assessing our students mostly on the knowledge of physics content (conceptually and quantitatively). Only recently have science educators started moving systematically towards achieving and assessing this critical thinking goal. In this paper we seek to show how guiding students to devise and test multiple explanations of observed phenomena can be used to improve their critical thinking.

  8. Adventure Learning: Theory and Implementation of Hybrid Learning

    NASA Astrophysics Data System (ADS)

    Doering, A.

    2008-12-01

    Adventure Learning (AL), a hybrid distance education approach, provides students and teachers with the opportunity to learn about authentic curricular content areas while interacting with adventurers, students, and content experts at various locations throughout the world within an online learning environment (Doering, 2006). An AL curriculum and online environment provides collaborative community spaces where traditional hierarchical classroom roles are blurred and learning is transformed. AL has most recently become popular in K-12 classrooms nationally and internationally with millions of students participating online. However, in the literature, the term "adventure learning" many times gets confused with phrases such as "virtual fieldtrip" and activities where someone "exploring" is posting photos and text. This type of "adventure learning" is not "Adventure Learning" (AL), but merely a slideshow of their activities. The learning environment may not have any curricular and/or social goals, and if it does, the environment design many times does not support these objectives. AL, on the other hand, is designed so that both teachers and students understand that their online and curriculum activities are in synch and supportive of the curricular goals. In AL environments, there are no disparate activities as the design considers the educational, social, and technological affordances (Kirschner, Strijbos, Kreijns, & Beers, 2004); in other words, the artifacts of the learning environment encourage and support the instructional goals, social interactions, collaborative efforts, and ultimately learning. AL is grounded in two major theoretical approaches to learning - experiential and inquiry-based learning. As Kolb (1984) noted, in experiential learning, a learner creates meaning from direct experiences and reflections. Such is the goal of AL within the classroom. Additionally, AL affords learners a real-time authentic online learning experience concurrently as they study the AL curriculum. AL is also grounded in an inquiry- based approach to learning where learners are pursuing answers to questions they have posed rather than focusing on memorizing and regurgitating isolated, irrelevant facts. Both the curriculum and the online classroom are developed to foster students' abilities to inquire via "identifying and posing questions, designing and conducting investigations, analyzing data and evidence, using models and explanations, and communicating findings" (Keys and Bryan, 2001, p 121). The union of experiential and inquiry-based learning is the foundation of AL, guiding and supporting authentic learning endeavors. Based on these theoretical foundations, the design of the adventure learning experiences follows seven interdependent principles that further operationalize AL: researched curriculum grounded in inquiry; collaboration and interaction opportunities between students, experts, peers, and content; utilization of the Internet for curriculum and learning environment delivery; enhancement of curriculum with media and text from the field delivered in a timely manner; synched learning opportunities with the AL curriculum; pedagogical guidelines of the curriculum and the online learning environment; and adventure-based education. (Doering, 2006).

  9. Designing Science Learning in the First Years of Schooling. An intervention study with sequenced learning material on the topic of `floating and sinking'

    NASA Astrophysics Data System (ADS)

    Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca

    2014-07-01

    Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.

  10. Construction of the Questionnaire on Foreign Language Learning Strategies in Specific Croatian Context.

    PubMed

    Božinović, Nikolina; Sindik, Joško

    2017-03-01

    Learning strategies are special thoughts or behaviours that individuals use to understand, learn or retain new information, according to the point of view of O’Malley & Chamot. The other view, promoted by Oxford, believes learning strategies are specific actions taken by the learner to make learning easier, faster, more enjoyable, and more transferrable to new situations of language learning and use. The use of appropriate strategies ensures greater success in language learning. The aim of the research was to establish metric characteristics of the Questionnaire on learning strategies created by the author, in line with the template of the original SILL questionnaire (Strategy Inventory for Language Learning). The research was conducted at the Rochester Institute of Technology Croatia on a sample of 201 participants who learned German, Spanish, French and Italian as a foreign language. The results have shown that one-component latent dimensions which describe the space of foreign language learning strategies according to Oxford’s classification, have metric characteristics which are low, but still satisfactory (reliability and validity). All dimensions of learning strategies appeared not to be adequately defined. Therefore, we excluded compensation strategies and merged social and affective strategies into social-affective strategies into the unique dimension. Overall, this version of Oxford’s original questionnaire, based on Oxford’s theoretical construct, applied on Croatian students, clearly shows that current version of the questionnaire has poor metric characteristics. One of the explanations of the results obtained could be positioned in multicultural context and intercultural dialogue. Namely, particular social, political and economic context in Croatia could shape even foreign language learning strategies.

  11. Teaching and learning of medical biochemistry according to clinical realities: A case study.

    PubMed

    Jabaut, Joshua M; Dudum, Ramzi; Margulies, Samantha L; Mehta, Akshita; Han, Zhiyong

    2016-01-01

    To foster medical students to become physicians who will be lifelong independent learners and critical thinkers with healthy skepticism and provide high-quality patient care guided by the best evidence, teaching of evidence-based medicine (EBM) has become an important component of medical education. Currently, the teaching and learning of biochemistry in medical schools incorporates its medical relevance and applications. However, to our knowledge there have been no reports on integrating EBM with teaching and learning medical biochemistry. Here, we present a case study to illustrate the significance of this approach. This case study was based on a biochemistry/nutrition question in a popular board review book about whether a homeless alcoholic man is at risk of developing a deficiency of vitamin E. The possible answers and explanation provided in the book raised a question about the correct answer, which provided us with an opportunity to adapt the philosophy and certain basic EBM principles to find evidence for the clinical applicability of a commonly taught biochemistry topic. The outcome of this case study not only taught us how to conduct an EBM exercise to answer a specific patient question, but also provided us with an opportunity for in-depth teaching and learning of the medical relevance of a specific biochemistry topic based on the best clinical evidence obtained from a systematic research of medical literature. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. Evidence for an Explanation Advantage in Naive Biological Reasoning

    ERIC Educational Resources Information Center

    Legare, Cristine H.; Wellman, Henry M.; Gelman, Susan A.

    2009-01-01

    The present studies compare young children's explanations and predictions for the biological phenomenon of contamination. In Study 1, 36 preschoolers and 24 adults heard vignettes concerning contamination, and were asked either to make a prediction or to provide an explanation. Even 3-year-olds readily supplied contamination-based explanations,…

  13. Intervention strength does not differentially affect memory reconsolidation of strong memories.

    PubMed

    van Schie, Kevin; van Veen, Suzanne C; Hendriks, Yanniek R; van den Hout, Marcel A; Engelhard, Iris M

    2017-10-01

    Recently, it has become clear that retrieval (i.e., reactivation) of consolidated memories may return these memories into a labile state before they are restored into long-term memory ('reconsolidation'). Using behavioral manipulations, reactivated memories can be disrupted via the mechanism of novel learning. In the present study, we investigated whether changing a strong memory during reconsolidation depends on the strength of novel learning. To test this, participants (N=144) in six groups acquired a relatively strong memory on Day 1 by viewing and recalling a series of pictures three times. On Day 8, these pictures were reactivated in three groups, and they were not reactivated in the other three groups. Then, participants viewed and recalled new pictures once (weak new learning) or three times (strong new learning), or they did not learn any new pictures. On Day 9, participants performed a recognition test in which their memory for Day 1 pictures was assessed. Two main results are noted. First, the groups that reactivated pictures from Day 1 and received weak or strong new learning did not differ in memory performance. Second, these two groups consistently performed similar to groups that controlled for new learning without reactivation. Because these results contradict what was expected based on the reconsolidation hypothesis, we discuss possible explanations and implications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Examining the effect of self-explanation on cognitive integration of basic and clinical sciences in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2017-12-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of self-explanation during learning has the potential to promote and support the development of integrated knowledge by encouraging novices to elaborate on the causal relationship between clinical features and basic science mechanisms. To explore the effect of this strategy, we compared diagnostic efficacy of teaching students (n = 71) the clinical features of four musculoskeletal pathologies using either (1) integrated causal basic science descriptions (BaSci group); (2) integrated causal basic science descriptions combined with self-explanation prompts (SE group); (3) basic science mechanisms segregated from the clinical features (SG group). All participants completed a diagnostic accuracy test immediately after learning and 1-week later. The results showed that the BaSci group performed significantly better compared to the SE (p = 0.019) and SG groups (p = 0.004); however, no difference was observed between the SE and SG groups (p = 0.91). We hypothesize that the structure of the self-explanation task may not have supported the development of a holistic conceptual understanding of each disease. These findings suggest that integration strategies need to be carefully structured and applied in ways that support the holistic story created by integrated basic science instruction in order to foster conceptual coherence and to capitalize on the benefits of cognition integration.

  15. Retrieval practice after multiple context changes, but not long retention intervals, reduces the impact of a final context change on instrumental behavior.

    PubMed

    Trask, Sydney; Bouton, Mark E

    2018-06-01

    Recent evidence from this laboratory suggests that a context switch after operant learning consistently results in a decrement in responding. One way to reduce this decrement is to train the response in multiple contexts. One interpretation of this result, rooted in stimulus sampling theory, is that conditioning of a greater number of common stimulus elements arising from more contexts causes better generalization to new contexts. An alternative explanation is that each change of context causes more effortful retrieval, and practice involving effortful retrieval results in learning that is better able to transfer to new situations. The current experiments were designed to differentiate between these two explanations for the first time in an animal learning and memory task. Experiment 1 demonstrated that the detrimental impact of a context change on an instrumental nose-poking response can be reduced by training the response in multiple contexts. Experiment 2 then found that a training procedure which inserted extended retention intervals between successive training sessions did not reduce the detrimental impact of a final context change. This occurred even though the inserted retention intervals had a detrimental impact on responding (and, thus, presumably retrieval) similar to the effect that context switches had in Experiment 1. Together, the results suggest that effortful retrieval practice may not be sufficient to reduce the negative impact of a context change on instrumental behavior. A common elements explanation which supposes that physical and temporal contextual cues do not overlap may account for the findings more readily.

  16. Young children's impressionable use of teleology: the influence of question wording and questioned topic on teleological explanations for natural phenomena

    NASA Astrophysics Data System (ADS)

    Halls, Jonathan Grant; Ainsworth, Shaaron Elizabeth; Oliver, Mary Collette

    2018-05-01

    There is a significant body of research on children's preconceptions concerning scientific concepts and the impact this has upon their science education. One active issue concerns the extent to which young children's explanations for the existence of natural kinds rely on a teleological rationale: for example, rain is for watering the grass, or tigers' stripes are for camouflage. It has been argued that this teleological tendency hampers children's ability to learn about causality in the natural world. This paper investigates two factors (question wording and topic) which it is argued have led to a misestimation of children's teleological tendencies within the area natural phenomena: i.e. those that are time-constrained, natural events or process such as snow, clouds or night. Sixty-six (5-8 years old) children took part in a repeated-measures experiment, answering both open and leading questions across 10 topics of natural phenomena. The findings indicate that children's teleological reasoning may have been overestimated as open-question forms significantly reduced their tendency to answer teleologically. Moreover, the concept of teleology is more nuanced than often suggested. Consequently, young children may be more able to learn about causal explanations for the existence of natural phenomena than the literature implies.

  17. A Captive Audience?

    ERIC Educational Resources Information Center

    Russell, Sheila

    1984-01-01

    A study of the attitudes of boys and girls in the sixth form to their learning experiences with mathematics is described. Explanation as to why relatively few girls choose to study mathematics at 'A' level was attempted. Quotations from interviewed students are included. (MNS)

  18. Learning science as a potential new source of understanding and improvement for continuing education and continuing professional development.

    PubMed

    Van Hoof, Thomas J; Doyle, Terrence J

    2018-01-15

    Learning science is an emerging interdisciplinary field that offers educators key insights about what happens in the brain when learning occurs. In addition to explanations about the learning process, which includes memory and involves different parts of the brain, learning science offers effective strategies to inform the planning and implementation of activities and programs in continuing education and continuing professional development. This article provides a brief description of learning, including the three key steps of encoding, consolidation and retrieval. The article also introduces four major learning-science strategies, known as distributed learning, retrieval practice, interleaving, and elaboration, which share the importance of considerable practice. Finally, the article describes how learning science aligns with the general findings from the most recent synthesis of systematic reviews about the effectiveness of continuing medical education.

  19. Harry Potter and the sorcerer's scope: latent scope biases in explanatory reasoning.

    PubMed

    Khemlani, Sangeet S; Sussman, Abigail B; Oppenheimer, Daniel M

    2011-04-01

    What makes a good explanation? We examine the function of latent scope, i.e., the number of unobserved phenomena that an explanation can account for. We show that individuals prefer narrow latent scope explanations-those that account for fewer unobserved effects-to broader explanations. In Experiments 1a-d, participants found narrow latent scope explanations to be both more satisfying and more likely. In Experiment 2 we directly manipulated base rate information and again found a preference for narrow latent scope explanations. Participants in Experiment 3 evaluated more natural explanations of unexpected observations, and again displayed a bias for narrow latent scope explanations. We conclude by considering what this novel bias tells us about how humans evaluate explanations and engage in causal reasoning.

  20. Assessing Cognitive Learning of Analytical Problem Solving

    NASA Astrophysics Data System (ADS)

    Billionniere, Elodie V.

    Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.

Top