Pomara, Lars Y; LeDee, Olivia E; Martin, Karl J; Zuckerberg, Benjamin
2014-07-01
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back-cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long-term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long-term demographic decline and range contraction for a species of high-conservation concern. Range-wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal-limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management. © 2013 John Wiley & Sons Ltd.
Interregional migration in an extended input-output model.
Madden, M; Trigg, A B
1990-01-01
"This article develops a two-region version of an extended input-output model that disaggregates consumption among employed, unemployed, and inmigrant households, and which explicitly models the influx into a region of migrants to take up a proportion of any jobs created in the regional economy. The model is empirically tested using real data for the Scotland (UK) regions of Strathclyde and Rest-of-Scotland. Sets of interregional economic, demographic, demo-economic, and econo-demographic multipliers are developed and discussed, and the effects of a range of economic and demographic impacts are modeled. The circumstances under which Hawkins-Simon conditions for non-negativity are breached are identified, and the limits of the model discussed." excerpt
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J. Andrew
2010-01-01
We develop a hierarchical capture–recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture–recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture–recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J Andrew
2010-11-01
We develop a hierarchical capture-recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture-recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture-recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
Spatially explicit dynamic N-mixture models
Zhao, Qing; Royle, Andy; Boomer, G. Scott
2017-01-01
Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.
EXTINCTION DEBT OF PROTECTED AREAS IN DEVELOPING LANDSCAPES
To conserve biological diversity, protected-area networks must be based not only upon current species distributions but also the landscape's long-term capacity to support populations. We used spatially-explicit population models requiring detailed habitat and demographic data to ...
NASA Astrophysics Data System (ADS)
Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel
2012-02-01
During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.
Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel
2012-02-01
During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.
A spatially explicit model for estimating risks of pesticide exposure on bird populations
Product Description (FY17 Key Product): Current ecological risk assessment for pesticides under FIFRA relies on risk quotients (RQs), which suffer from significant methodological shortcomings. For example, RQs do not integrate adverse effects arising from multiple demographic pr...
Brown, Jason L; Weber, Jennifer J; Alvarado-Serrano, Diego F; Hickerson, Michael J; Franks, Steven J; Carnaval, Ana C
2016-01-01
Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning. © 2016 Botanical Society of America.
Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J
Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.
Schwartz, Charles C.; Gude, Patricia H.; Landenburger, Lisa; Haroldson, Mark A.; Podruzny, Shannon
2012-01-01
Exurban development is consuming wildlife habitat within the Greater Yellowstone Ecosystem with potential consequences to the long-term conservation of grizzly bears Ursus arctos. We assessed the impacts of alternative future land-use scenarios by linking an existing regression-based simulation model predicting rural development with a spatially explicit model that predicted bear survival. Using demographic criteria that predict population trajectory, we portioned habitats into either source or sink, and projected the loss of source habitat associated with four different build out (new home construction) scenarios through 2020. Under boom growth, we predicted that 12 km2 of source habitat were converted to sink habitat within the Grizzly Bear Recovery Zone (RZ), 189 km2 were converted within the current distribution of grizzly bears outside of the RZ, and 289 km2 were converted in the area outside the RZ identified as suitable grizzly bear habitat. Our findings showed that extremely low densities of residential development created sink habitats. We suggest that tools, such as those outlined in this article, in addition to zoning and subdivision regulation may prove more practical, and the most effective means of retaining large areas of undeveloped land and conserving grizzly bear source habitat will likely require a landscape-scale approach. We recommend a focus on land conservation efforts that retain open space (easements, purchases and trades) coupled with the implementation of ‘bear community programmes’ on an ecosystem wide basis in an effort to minimize human-bear conflicts, minimize management-related bear mortalities associated with preventable conflicts and to safeguard human communities. Our approach has application to other species and areas, and it has illustrated how spatially explicit demographic models can be combined with models predicting land-use change to help focus conservation priorities.
Modelling the effect of urbanization on the transmission of an infectious disease.
Zhang, Ping; Atkinson, Peter M
2008-01-01
This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.
Link, William A; Barker, Richard J
2005-03-01
We present a hierarchical extension of the Cormack-Jolly-Seber (CJS) model for open population capture-recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis-Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.
Link, William A.; Barker, Richard J.
2005-01-01
We present a hierarchical extension of the Cormack–Jolly–Seber (CJS) model for open population capture–recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis–Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.
Nilsen, Erlend B; Strand, Olav
2018-01-01
We developed a model for estimating demographic rates and population abundance based on multiple data sets revealing information about population age- and sex structure. Such models have previously been described in the literature as change-in-ratio models, but we extend the applicability of the models by i) using time series data allowing the full temporal dynamics to be modelled, by ii) casting the model in an explicit hierarchical modelling framework, and by iii) estimating parameters based on Bayesian inference. Based on sensitivity analyses we conclude that the approach developed here is able to obtain estimates of demographic rate with high precision whenever unbiased data of population structure are available. Our simulations revealed that this was true also when data on population abundance are not available or not included in the modelling framework. Nevertheless, when data on population structure are biased due to different observability of different age- and sex categories this will affect estimates of all demographic rates. Estimates of population size is particularly sensitive to such biases, whereas demographic rates can be relatively precisely estimated even with biased observation data as long as the bias is not severe. We then use the models to estimate demographic rates and population abundance for two Norwegian reindeer (Rangifer tarandus) populations where age-sex data were available for all harvested animals, and where population structure surveys were carried out in early summer (after calving) and late fall (after hunting season), and population size is counted in winter. We found that demographic rates were similar regardless whether we include population count data in the modelling, but that the estimated population size is affected by this decision. This suggest that monitoring programs that focus on population age- and sex structure will benefit from collecting additional data that allow estimation of observability for different age- and sex classes. In addition, our sensitivity analysis suggests that focusing monitoring towards changes in demographic rates might be more feasible than monitoring abundance in many situations where data on population age- and sex structure can be collected.
Transfers to the old, government debt and demographic change.
Verbon, H A
1990-01-01
"In this paper we take the view that policy makers...take the relationship between (explicit) intergenerational transfer systems (including public pension schemes) and government deficits into account. It is assumed that policy makers are behaving altruistically towards past and future generations. Given the behavioral model, an analysis is made of the effects of demographic changes (such as the 'baby-boom' of the 1940s and 1950s and the decline of birth rates in the 1970s) on the decisions to be taken with respect to the tax rate of the public pension system and the size of government debt. From the analysis it appears that, with the assumption of altruistic decision-makers, periods of increasing or decreasing debt can occur alternately in periods of demographic change." The geographical focus is on developed countries. excerpt
Social influence, agent heterogeneity and the emergence of the urban informal sector
NASA Astrophysics Data System (ADS)
García-Díaz, César; Moreno-Monroy, Ana I.
2012-02-01
We develop an agent-based computational model in which the urban informal sector acts as a buffer where rural migrants can earn some income while queuing for higher paying modern-sector jobs. In the model, the informal sector emerges as a result of rural-urban migration decisions of heterogeneous agents subject to social influence in the form of neighboring effects of varying strengths. Besides using a multinomial logit choice model that allows for agent idiosyncrasy, explicit agent heterogeneity is introduced in the form of socio-demographic characteristics preferred by modern-sector employers. We find that different combinations of the strength of social influence and the socio-economic composition of the workforce lead to very different urbanization and urban informal sector shares. In particular, moderate levels of social influence and a large proportion of rural inhabitants with preferred socio-demographic characteristics are conducive to a higher urbanization rate and a larger informal sector.
ERIC Educational Resources Information Center
Dimmock, James A.; Hallett, Bree E.; Grove, J. Robert
2009-01-01
Our study assessed implicit and explicit evaluations of overweight individuals among a sample of fitness center employees (N = 70). Participants completed a general demographics questionnaire and an explicit, self-report Antifat Attitudes Test (AFAT). Participants also completed two Implicit Association Tests (IATs) to measure implicit attitudes…
Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.
2016-01-01
1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.
Models of social evolution: can we do better to predict 'who helps whom to achieve what'?
Rodrigues, António M M; Kokko, Hanna
2016-02-05
Models of social evolution and the evolution of helping have been classified in numerous ways. Two categorical differences have, however, escaped attention in the field. Models tend not to justify why they use a particular assumption structure about who helps whom: a large number of authors model peer-to-peer cooperation of essentially identical individuals, probably for reasons of mathematical convenience; others are inspired by particular cooperatively breeding species, and tend to assume unidirectional help where subordinates help a dominant breed more efficiently. Choices regarding what the help achieves (i.e. which life-history trait of the helped individual is improved) are similarly made without much comment: fecundity benefits are much more commonly modelled than survival enhancements, despite evidence that these may interact when the helped individual can perform life-history reallocations (load-lightening and related phenomena). We review our current theoretical understanding of effects revealed when explicitly asking 'who helps whom to achieve what', from models of mutual aid in partnerships to the very few models that explicitly contrast the strength of selection to help enhance another individual's fecundity or survival. As a result of idiosyncratic modelling choices in contemporary literature, including the varying degree to which demographic consequences are made explicit, there is surprisingly little agreement on what types of help are predicted to evolve most easily. We outline promising future directions to fill this gap. © 2016 The Author(s).
Models of social evolution: can we do better to predict ‘who helps whom to achieve what’?
Rodrigues, António M. M.; Kokko, Hanna
2016-01-01
Models of social evolution and the evolution of helping have been classified in numerous ways. Two categorical differences have, however, escaped attention in the field. Models tend not to justify why they use a particular assumption structure about who helps whom: a large number of authors model peer-to-peer cooperation of essentially identical individuals, probably for reasons of mathematical convenience; others are inspired by particular cooperatively breeding species, and tend to assume unidirectional help where subordinates help a dominant breed more efficiently. Choices regarding what the help achieves (i.e. which life-history trait of the helped individual is improved) are similarly made without much comment: fecundity benefits are much more commonly modelled than survival enhancements, despite evidence that these may interact when the helped individual can perform life-history reallocations (load-lightening and related phenomena). We review our current theoretical understanding of effects revealed when explicitly asking ‘who helps whom to achieve what’, from models of mutual aid in partnerships to the very few models that explicitly contrast the strength of selection to help enhance another individual's fecundity or survival. As a result of idiosyncratic modelling choices in contemporary literature, including the varying degree to which demographic consequences are made explicit, there is surprisingly little agreement on what types of help are predicted to evolve most easily. We outline promising future directions to fill this gap. PMID:26729928
Hierarchial mark-recapture models: a framework for inference about demographic processes
Link, W.A.; Barker, R.J.
2004-01-01
The development of sophisticated mark-recapture models over the last four decades has provided fundamental tools for the study of wildlife populations, allowing reliable inference about population sizes and demographic rates based on clearly formulated models for the sampling processes. Mark-recapture models are now routinely described by large numbers of parameters. These large models provide the next challenge to wildlife modelers: the extraction of signal from noise in large collections of parameters. Pattern among parameters can be described by strong, deterministic relations (as in ultrastructural models) but is more flexibly and credibly modeled using weaker, stochastic relations. Trend in survival rates is not likely to be manifest by a sequence of values falling precisely on a given parametric curve; rather, if we could somehow know the true values, we might anticipate a regression relation between parameters and explanatory variables, in which true value equals signal plus noise. Hierarchical models provide a useful framework for inference about collections of related parameters. Instead of regarding parameters as fixed but unknown quantities, we regard them as realizations of stochastic processes governed by hyperparameters. Inference about demographic processes is based on investigation of these hyperparameters. We advocate the Bayesian paradigm as a natural, mathematically and scientifically sound basis for inference about hierarchical models. We describe analysis of capture-recapture data from an open population based on hierarchical extensions of the Cormack-Jolly-Seber model. In addition to recaptures of marked animals, we model first captures of animals and losses on capture, and are thus able to estimate survival probabilities w (i.e., the complement of death or permanent emigration) and per capita growth rates f (i.e., the sum of recruitment and immigration rates). Covariation in these rates, a feature of demographic interest, is explicitly described in the model.
Peterson, James T.; Shea, C.P.
2015-01-01
Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Expert elicitation, uncertainty, and the value of information in controlling invasive species
Johnson, Fred A.; Smith, Brian J.; Bonneau, Mathieu; Martin, Julien; Romagosa, Christina; Mazzotti, Frank J.; Waddle, J. Hardin; Reed, Robert; Eckles, Jennifer Kettevrlin; Vitt, Laurie J.
2017-01-01
We illustrate the utility of expert elicitation, explicit recognition of uncertainty, and the value of information for directing management and research efforts for invasive species, using tegu lizards (Salvator merianae) in southern Florida as a case study. We posited a post-birth pulse, matrix model in which four age classes of tegus are recognized: hatchlings, 1 year-old, 2 year-olds, and 3 + year-olds. This matrix model was parameterized using a 3-point process to elicit estimates of tegu demographic rates in southern Florida from 10 herpetology experts. We fit statistical distributions for each parameter and for each expert, then drew and pooled a large number of replicate samples from these to form a distribution for each demographic parameter. Using these distributions, as well as the observed correlations among elicited values, we generated a large sample of matrix population models to infer how the tegu population would respond to control efforts. We used the concepts of Pareto efficiency and stochastic dominance to conclude that targeting older age classes at relatively high rates appears to have the best chance of minimizing tegu abundance and control costs. We conclude that expert opinion combined with an explicit consideration of uncertainty can be valuable in conducting an initial assessment of what control strategy, effort, and monetary resources are needed to reduce and eventually eliminate the invader. Scientists, in turn, can use the value of information to focus research in a way that not only increases the efficacy of control, but minimizes costs as well.
THE COMPONENTS OF KIN COMPETITION
Van Dyken, J. David
2011-01-01
It is well known that competition among kin alters the rate and often the direction of evolution in subdivided populations. Yet much remains unclear about the ecological and demographic causes of kin competition, or what role life cycle plays in promoting or ameliorating its effects. Using the multilevel Price equation, I derive a general equation for evolution in structured populations under an arbitrary intensity of kin competition. This equation partitions the effects of selection and demography, and recovers numerous previous models as special cases. I quantify the degree of kin competition, α, which explicitly depends on life cycle. I show how life cycle and demographic assumptions can be incorporated into kin selection models via α, revealing life cycles that are more or less permissive of altruism. As an example, I give closed-form results for Hamilton’s rule in a three-stage life cycle. Although results are sensitive to life cycle in general, I identify three demographic conditions that give life cycle invariant results. Under the infinite island model, α is a function of the scale of density regulation and dispersal rate, effectively disentangling these two phenomena. Population viscosity per se does not impede kin selection. PMID:20482610
Earliest evidence for the structure of Homo sapiens populations in Africa
NASA Astrophysics Data System (ADS)
Scerri, Eleanor M. L.; Drake, Nick A.; Jennings, Richard; Groucutt, Huw S.
2014-10-01
Understanding the structure and variation of Homo sapiens populations in Africa is critical for interpreting multiproxy evidence of their subsequent dispersals into Eurasia. However, there is no consensus on early H. sapiens demographic structure, or its effects on intra-African dispersals. Here, we show how a patchwork of ecological corridors and bottlenecks triggered a successive budding of populations across the Sahara. Using a temporally and spatially explicit palaeoenvironmental model, we found that the Sahara was not uniformly ameliorated between ∼130 and 75 thousand years ago (ka), as has been stated. Model integration with multivariate analyses of corresponding stone tools then revealed several spatially defined technological clusters which correlated with distinct palaeobiomes. Similarities between technological clusters were such that they decreased with distance except where connected by palaeohydrological networks. These results indicate that populations at the Eurasian gateway were strongly structured, which has implications for refining the demographic parameters of dispersals out of Africa.
Mining geographic variations of Plasmodium vivax for active surveillance: a case study in China.
Shi, Benyun; Tan, Qi; Zhou, Xiao-Nong; Liu, Jiming
2015-05-27
Geographic variations of an infectious disease characterize the spatial differentiation of disease incidences caused by various impact factors, such as environmental, demographic, and socioeconomic factors. Some factors may directly determine the force of infection of the disease (namely, explicit factors), while many other factors may indirectly affect the number of disease incidences via certain unmeasurable processes (namely, implicit factors). In this study, the impact of heterogeneous factors on geographic variations of Plasmodium vivax incidences is systematically investigate in Tengchong, Yunnan province, China. A space-time model that resembles a P. vivax transmission model and a hidden time-dependent process, is presented by taking into consideration both explicit and implicit factors. Specifically, the transmission model is built upon relevant demographic, environmental, and biophysical factors to describe the local infections of P. vivax. While the hidden time-dependent process is assessed by several socioeconomic factors to account for the imported cases of P. vivax. To quantitatively assess the impact of heterogeneous factors on geographic variations of P. vivax infections, a Markov chain Monte Carlo (MCMC) simulation method is developed to estimate the model parameters by fitting the space-time model to the reported spatial-temporal disease incidences. Since there is no ground-truth information available, the performance of the MCMC method is first evaluated against a synthetic dataset. The results show that the model parameters can be well estimated using the proposed MCMC method. Then, the proposed model is applied to investigate the geographic variations of P. vivax incidences among all 18 towns in Tengchong, Yunnan province, China. Based on the geographic variations, the 18 towns can be further classify into five groups with similar socioeconomic causality for P. vivax incidences. Although this study focuses mainly on the transmission of P. vivax, the proposed space-time model is general and can readily be extended to investigate geographic variations of other diseases. Practically, such a computational model will offer new insights into active surveillance and strategic planning for disease surveillance and control.
Extinction debt from climate change for frogs in the wet tropics
Brook, Barry W.; Hoskin, Conrad J.; Pressey, Robert L.; VanDerWal, Jeremy; Williams, Stephen E.
2016-01-01
The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species–area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays—an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur. PMID:27729484
The components of kin competition.
Van Dyken, J David
2010-10-01
It is well known that competition among kin alters the rate and often the direction of evolution in subdivided populations. Yet much remains unclear about the ecological and demographic causes of kin competition, or what role life cycle plays in promoting or ameliorating its effects. Using the multilevel Price equation, I derive a general equation for evolution in structured populations under an arbitrary intensity of kin competition. This equation partitions the effects of selection and demography, and recovers numerous previous models as special cases. I quantify the degree of kin competition, α, which explicitly depends on life cycle. I show how life cycle and demographic assumptions can be incorporated into kin selection models via α, revealing life cycles that are more or less permissive of altruism. As an example, I give closed-form results for Hamilton's rule in a three-stage life cycle. Although results are sensitive to life cycle in general, I identify three demographic conditions that give life cycle invariant results. Under the infinite island model, α is a function of the scale of density regulation and dispersal rate, effectively disentangling these two phenomena. Population viscosity per se does not impede kin selection. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Kelly, R.; Andrews, T.; Dietze, M.
2015-12-01
Shifts in ecological communities in response to environmental change have implications for biodiversity, ecosystem function, and feedbacks to global climate change. Community composition is fundamentally the product of demography, but demographic processes are simplified or missing altogether in many ecosystem, Earth system, and species distribution models. This limitation arises in part because demographic data are noisy and difficult to synthesize. As a consequence, demographic processes are challenging to formulate in models in the first place, and to verify and constrain with data thereafter. Here, we used a novel analysis of the USFS Forest Inventory Analysis to improve the representation of demography in an ecosystem model. First, we created an Empirical Succession Mapping (ESM) based on ~1 million individual tree observations from the eastern U.S. to identify broad demographic patterns related to forest succession and disturbance. We used results from this analysis to guide reformulation of the Ecosystem Demography model (ED), an existing forest simulator with explicit tree demography. Results from the ESM reveal a coherent, cyclic pattern of change in temperate forest tree size and density over the eastern U.S. The ESM captures key ecological processes including succession, self-thinning, and gap-filling, and quantifies the typical trajectory of these processes as a function of tree size and stand density. Recruitment is most rapid in early-successional stands with low density and mean diameter, but slows as stand density increases; mean diameter increases until thinning promotes recruitment of small-diameter trees. Strikingly, the upper bound of size-density space that emerges in the ESM conforms closely to the self-thinning power law often observed in ecology. The ED model obeys this same overall size-density boundary, but overestimates plot-level growth, mortality, and fecundity rates, leading to unrealistic emergent demographic patterns. In particular, the current ED formulation cannot capture steady state dynamics evident in the ESM. Ongoing efforts are aimed at reformulating ED to more closely approach overall forest dynamics evident in the ESM, and then assimilating inventory data to constrain model parameters and initial conditions.
NASA Astrophysics Data System (ADS)
Stewart, S.; Liu, Y.; Hartmann, H.; Mahmoud, M.; Gupta, H.; Dominguez, F.; Thorsten, W.
2007-12-01
Although there has been much written about the use of scenario analysis for long-term planning, particularly with respect to the decisions facing firms, the extant literature has few examples of scenarios explicitly applied to water resource issues. Fewer still have considered short-fuse events such as floods and failure of water retention and conveyance structures in the context of longer-term scenarios for water resources planning. We report progress on an effort to develop a unified framework for constructing scenarios for water resource management. We place particular emphasis on semi-arid environments and forces external to the traditional water management process such as high-impact weather and climate events or unforeseen changes in government institutions that may drive unanticipated change in environmental systems. Most water resource scenarios are typically based on high, medium and low projections of demographics (gpcd), climate (precipitation, temperature), and perhaps institutional variables (conveyance infrastructure, legal issues). We discuss the relative merits of this with other approaches including: probabalistic scenarios, which explicitly weight the likelihood of different outcomes; anticipatory scenarios, which consider how to achieve or avoid some subjective future state; strategic scenarios, which seeks to identify the inconsistencies between disciplines in the way the environmental models are constructed
Integrating population dynamics into mapping human exposure to seismic hazard
NASA Astrophysics Data System (ADS)
Freire, S.; Aubrecht, C.
2012-11-01
Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.
NASA Astrophysics Data System (ADS)
Daly, Aisling J.; Baetens, Jan M.; De Baets, Bernard
2016-12-01
Biodiversity has a critical impact on ecosystem functionality and stability, and thus the current biodiversity crisis has motivated many studies of the mechanisms that sustain biodiversity, a notable example being non-transitive or cyclic competition. We therefore extend existing microscopic models of communities with cyclic competition by incorporating resource dependence in demographic processes, characteristics of natural systems often oversimplified or overlooked by modellers. The spatially explicit nature of our individual-based model of three interacting species results in the formation of stable spatial structures, which have significant effects on community functioning, in agreement with experimental observations of pattern formation in microbial communities.
Demographic change and income distribution.
Von Weizsacker, R K
1989-03-01
This paper examines the interactions between demographic change and income distribution, especially in the context of government. Starting from a simple, descriptive life-cycle model of individual income, this paper established an explicit link between the age composition of a population and the personal distribution of incomes. Demographic effects on income inequality are derived. Next, 2 income maintenance programs are introduced: a redistributive tax-transfer scheme and a pay-as-you-go financed state pension system. The resulting government budget constraints entail interrelations between fiscal and demographic variables, causing an additional, indirect demographic impact on the distribution. This is shown not only to change, but in some cases even to reverse the distributional incidence of demographic trends. The superimposition of different age structures on populations of otherwise identical characteristics is non-neutral with respect to income distribution: disregarding state interventions, population aging increases income inequality. This result may no longer generally hold if redistribution policies are taken into account. The paper provides an example of how indirect demographic effects may lead to a reversal of sign. In the absence of any government program, a higher ratio of pensioners to active workers raises income inequality. In the presence of a redistributive tax-transfer scheme and pay-as-you-go financed state pension system, a higher dependency ratio decreases income dispersion. The restoration of government budget equilibrium induces unintended distributional effects which put the incidence of demographic shifts in a different light. Varying important aging indicator with realistic forecast bounds leads to inequality fluctuations up to 35%. This illustrates the quantitative scale and hence the political importance of demographically caused inequality distortions.
Bhaskar, Anand; Song, Yun S
2014-01-01
The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the "folded" SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes' rule of signs for polynomials to the Laplace transform of piecewise continuous functions.
Bhaskar, Anand; Song, Yun S.
2016-01-01
The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the “folded” SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes’ rule of signs for polynomials to the Laplace transform of piecewise continuous functions. PMID:28018011
Multispecies modeling for adaptive management of horseshoe crabs and red knots in the Delaware Bay
McGowan, Conor P.; Smith, David; Sweka, John A.; Martin, Julien; Nichols, James D.; Wong, Richard; Lyons, James E.; Niles, Lawrence J.; Kalasz, Kevin; Brust, Jeffrey; Klopfer, Michelle; Spear, Braddock
2011-01-01
Adaptive management requires that predictive models be explicit and transparent to improve decisions by comparing management actions, directing further research and monitoring, and facilitating learning. The rufa subspecies of red knots (Calidris canutus rufa), which has recently exhibited steep population declines, relies on horseshoe crab (Limulus polyphemus) eggs as their primary food source during stopover in Delaware Bay during spring migration. We present a model with two different parameterizations for use in the adaptive management of horseshoe crab harvests in the Delaware Bay that links red knot mass gain, annual survival, and fecundity to horseshoe crab dynamics. The models reflect prevailing hypotheses regarding ecological links between these two species. When reported crab harvest from 1998 to 2008 was applied, projections corresponded to the observed red knot population abundances depending on strengths of the demographic relationship between these species. We compared different simulated horseshoe crab harvest strategies to evaluate whether, given this model, horseshoe crab harvest management can affect red knot conservation and found that restricting harvest can benefit red knot populations. Our model is the first to explicitly and quantitatively link these two species and will be used within an adaptive management framework to manage the Delaware Bay system and learn more about the specific nature of the linkage between the two species.
Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A
2008-06-01
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.
Naujokaitis-Lewis, Ilona; Curtis, Janelle M R
2016-01-01
Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.
Curtis, Janelle M.R.
2016-01-01
Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options. PMID:27547529
Extinction debt from climate change for frogs in the wet tropics.
Fordham, Damien A; Brook, Barry W; Hoskin, Conrad J; Pressey, Robert L; VanDerWal, Jeremy; Williams, Stephen E
2016-10-01
The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species-area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays-an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur. © 2016 The Author(s).
Who perceives what? A demographic analysis of subjective perception in rural Thailand
Meijer-Irons, Jacqueline
2016-01-01
Rural households that rely on natural resources for their livelihoods are expected to face increased vulnerability due to climate variability. A number of empirical papers have assessed the impact of environmental shocks on these households, including demographic research that has investigated the impact of shocks on migration. To date, few studies have explicitly modeled how individual and household characteristics influence a household respondent’s subjective perceptions of environmental or other shocks. My paper uses a unique panel dataset from rural Thailand to predict a respondent’s probability of attributing a reduction in income to an environmental shock based on household composition and income, as well as on community-level effects. Preliminary results suggest that household composition influences respondents’ perceptions of environmental risk, and that policies aimed at vulnerable communities should consider the life courses of the households within a given community. PMID:28058054
Gouhier, Tarik C; Guichard, Frédéric
2007-03-01
In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level disturbance cycles for regional response of mussel populations to onshore productivity and larval transport. Landscape dynamics are generated through spatially explicit rules, and each landscape is connected to its neighbor through unidirectional larval dispersal. The role of landscape disturbance cycles in the regional system behavior is elucidated (1) in demographically open vs. demographically coupled systems, in relation to (2) onshore reproductive output and (3) the temporal scale of landscape disturbance dynamics. By controlling for spatial structure at the landscape and metapopulation levels, we first demonstrate the interaction between landscape and oceanographic connectivity. The temporal scale of disturbance cycles, as controlled by mussel colonization rate, plays a critical role in the regional behavior of the system. Indeed, fast disturbance cycles are responsible for regional synchrony in relation to onshore reproductive output. Slow disturbance cycles, however, lead to increased robustness to changes in productivity and to demographic coupling. These testable predictions indicate that the occurrence and temporal scale of local disturbance-recovery dynamics can drive large-scale variability in demographically open systems, and the response of metapopulations to changes in nearshore productivity.
Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.
2015-01-01
Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.
Mena, Carlos F; Walsh, Stephen J; Frizzelle, Brian G; Xiaozheng, Yao; Malanson, George P
2011-01-01
This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.
Wiens, J. David; Schumaker, Nathan H.; Inman, Richard D.; Esque, Todd C.; Longshore, Kathleen M.; Nussear, Kenneth E
2017-01-01
Spatial demographic models can help guide monitoring and management activities targeting at-risk species, even in cases where baseline data are lacking. Here, we provide an example of how site-specific changes in land use and anthropogenic stressors can be incorporated into a spatial demographic model to investigate effects on population dynamics of Golden Eagles (Aquila chrysaetos). Our study focused on a population of Golden Eagles exposed to risks associated with rapid increases in renewable energy development in southern California, U.S.A. We developed a spatially explicit, individual-based simulation model that integrated empirical data on demography of Golden Eagles with spatial data on the arrangement of nesting habitats, prey resources, and planned renewable energy development sites. Our model permitted simulated eagles of different stage-classes to disperse, establish home ranges, acquire prey resources, prospect for breeding sites, and reproduce. The distribution of nesting habitats, prey resources, and threats within each individual's home range influenced movement, reproduction, and survival. We used our model to explore potential effects of alternative disturbance scenarios, and proposed conservation strategies, on the future distribution and abundance of Golden Eagles in the study region. Results from our simulations suggest that probable increases in mortality associated with renewable energy infrastructure (e.g., collisions with wind turbines and vehicles, electrocution on power poles) could have negative consequences for population trajectories, but that site-specific conservation actions could reduce the magnitude of negative effects. Our study demonstrates the use of a flexible and expandable modeling framework to incorporate spatially dependent processes when determining relative effects of proposed management options to Golden Eagles and their habitats.
Tournebize, Rémi; Manel, Stéphanie; Vigouroux, Yves; Munoz, François; de Kochko, Alexandre
2017-01-01
Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km) and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion. PMID:28820899
Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R
2014-04-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.
Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model.
Hagenlocher, Michael; Castro, Marcia C
2015-01-01
Outbreaks of vector-borne diseases (VBDs) impose a heavy burden on vulnerable populations. Despite recent progress in eradication and control, malaria remains the most prevalent VBD. Integrative approaches that take into account environmental, socioeconomic, demographic, biological, cultural, and political factors contributing to malaria risk and vulnerability are needed to effectively reduce malaria burden. Although the focus on malaria risk has increasingly gained ground, little emphasis has been given to develop quantitative methods for assessing malaria risk including malaria vulnerability in a spatial explicit manner. Building on a conceptual risk and vulnerability framework, we propose a spatial explicit approach for modeling relative levels of malaria risk - as a function of hazard, exposure, and vulnerability - in the United Republic of Tanzania. A logistic regression model was employed to identify a final set of risk factors and their contribution to malaria endemicity based on multidisciplinary geospatial information. We utilized a Geographic Information System for the construction and visualization of a malaria vulnerability index and its integration into a spatially explicit malaria risk map. The spatial pattern of malaria risk was very heterogeneous across the country. Malaria risk was higher in Mainland areas than in Zanzibar, which is a result of differences in both malaria entomological inoculation rate and prevailing vulnerabilities. Areas of high malaria risk were identified in the southeastern part of the country, as well as in two distinct "hotspots" in the northwestern part of the country bordering Lake Victoria, while concentrations of high malaria vulnerability seem to occur in the northwestern, western, and southeastern parts of the mainland. Results were visualized using both 10×10 km(2) grids and subnational administrative units. The presented approach makes an important contribution toward a decision support tool. By decomposing malaria risk into its components, the approach offers evidence on which factors could be targeted for reducing malaria risk and vulnerability to the disease. Ultimately, results offer relevant information for place-based intervention planning and more effective spatial allocation of resources.
A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size.
Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E
2015-01-01
One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.
A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size
Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E.
2015-01-01
One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics. PMID:26381745
Samson, Jason; Berteaux, Dominique; McGill, Brian J; Humphries, Murray M
2012-01-01
Better understanding of the changing relationship between human populations and climate is a global research priority. The 20(th) century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse.
Samson, Jason; Berteaux, Dominique; McGill, Brian J.; Humphries, Murray M.
2012-01-01
Better understanding of the changing relationship between human populations and climate is a global research priority. The 20th century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse. PMID:23115624
Investigating European genetic history through computer simulations.
Currat, Mathias; Silva, Nuno M
2013-01-01
The genetic diversity of Europeans has been shaped by various evolutionary forces including their demographic history. Genetic data can thus be used to draw inferences on the population history of Europe using appropriate statistical methods such as computer simulation, which constitutes a powerful tool to study complex models. Here, we focus on spatially explicit simulation, a method which takes population movements over space and time into account. We present its main principles and then describe a series of studies using this approach that we consider as particularly significant in the context of European prehistory. All simulation studies agree that ancient demographic events played a significant role in the establishment of the European gene pool; but while earlier works support a major genetic input from the Near East during the Neolithic transition, the most recent ones revalue positively the contribution of pre-Neolithic hunter-gatherers and suggest a possible impact of very ancient demographic events. This result of a substantial genetic continuity from pre-Neolithic times to the present challenges some recent studies analyzing ancient DNA. We discuss the possible reasons for this discrepancy and identify future lines of investigation in order to get a better understanding of European evolution.
The co-evolution of social institutions, demography, and large-scale human cooperation.
Powers, Simon T; Lehmann, Laurent
2013-11-01
Human cooperation is typically coordinated by institutions, which determine the outcome structure of the social interactions individuals engage in. Explaining the Neolithic transition from small- to large-scale societies involves understanding how these institutions co-evolve with demography. We study this using a demographically explicit model of institution formation in a patch-structured population. Each patch supports both social and asocial niches. Social individuals create an institution, at a cost to themselves, by negotiating how much of the costly public good provided by cooperators is invested into sanctioning defectors. The remainder of their public good is invested in technology that increases carrying capacity, such as irrigation systems. We show that social individuals can invade a population of asocials, and form institutions that support high levels of cooperation. We then demonstrate conditions where the co-evolution of cooperation, institutions, and demographic carrying capacity creates a transition from small- to large-scale social groups. © 2013 John Wiley & Sons Ltd/CNRS.
Demographic History of European Populations of Arabidopsis thaliana
François, Olivier; Blum, Michael G. B.; Jakobsson, Mattias; Rosenberg, Noah A.
2008-01-01
The model plant species Arabidopsis thaliana is successful at colonizing land that has recently undergone human-mediated disturbance. To investigate the prehistoric spread of A. thaliana, we applied approximate Bayesian computation and explicit spatial modeling to 76 European accessions sequenced at 876 nuclear loci. We find evidence that a major migration wave occurred from east to west, affecting most of the sampled individuals. The longitudinal gradient appears to result from the plant having spread in Europe from the east ∼10,000 years ago, with a rate of westward spread of ∼0.9 km/year. This wave-of-advance model is consistent with a natural colonization from an eastern glacial refugium that overwhelmed ancient western lineages. However, the speed and time frame of the model also suggest that the migration of A. thaliana into Europe may have accompanied the spread of agriculture during the Neolithic transition. PMID:18483550
Age Differences in Explicit and Implicit Age Attitudes Across the Life Span.
Chopik, William J; Giasson, Hannah L
2017-08-01
Biased judgments about others can operate both within and outside of our conscious awareness. However, little attention has been paid to how implicit and explicit attitudes differ across the life span, particularly with respect to age bias. In the current study, we examined age differences in implicit and explicit attitudes towards older individuals. Participants (N = 704,151) ranging from age 15 to 94 completed the Implicit Association Test and explicit self-report measures of bias against older adults. The associations between age bias and several demographic characteristics (e.g., gender, education) were also examined. A preference for younger people was found among participants of all ages; however, implicit and explicit attitudes showed divergent associations with age. Implicit preference for younger people was highest among older adults; explicit preference for younger people was lowest among older adults. Examining age differences in implicit and explicit attitudes sheds light into the development and complexities of aging perceptions in different age groups. The current study's findings are discussed in the context of applications to and implications of reducing prejudice toward older adults. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Massatti, Rob; Knowles, L Lacey
2016-08-01
Deterministic processes may uniquely affect codistributed species' phylogeographic patterns such that discordant genetic variation among taxa is predicted. Yet, explicitly testing expectations of genomic discordance in a statistical framework remains challenging. Here, we construct spatially and temporally dynamic models to investigate the hypothesized effect of microhabitat preferences on the permeability of glaciated regions to gene flow in two closely related montane species. Utilizing environmental niche models from the Last Glacial Maximum and the present to inform demographic models of changes in habitat suitability over time, we evaluate the relative probabilities of two alternative models using approximate Bayesian computation (ABC) in which glaciated regions are either (i) permeable or (ii) a barrier to gene flow. Results based on the fit of the empirical data to data sets simulated using a spatially explicit coalescent under alternative models indicate that genomic data are consistent with predictions about the hypothesized role of microhabitat in generating discordant patterns of genetic variation among the taxa. Specifically, a model in which glaciated areas acted as a barrier was much more probable based on patterns of genomic variation in Carex nova, a wet-adapted species. However, in the dry-adapted Carex chalciolepis, the permeable model was more probable, although the difference in the support of the models was small. This work highlights how statistical inferences can be used to distinguish deterministic processes that are expected to result in discordant genomic patterns among species, including species-specific responses to climate change. © 2016 John Wiley & Sons Ltd.
Demographic trade-offs in a neutral model explain death-rate--abundance-rank relationship.
Lin, Kui; Zhang, Da-Yong; He, Fangliang
2009-01-01
The neutral theory of biodiversity has been criticized for its neglect of species differences. Yet it is much less heeded that S. P. Hubbell's definition of neutrality allows species to differ in their birth and death rates as long as they have an equal per capita fitness. Using the lottery model of competition we find that fitness equalization through birth-death trade-offs can make species coexist longer than expected for demographically identical species, whereas the probability of monodominance for a species under zero-sum neutral dynamics is equal to its initial relative abundance. Furthermore, if newly arising species in a community survive preferentially they are more likely to slip through the quagmire of rareness, thus creating a strong selective bias favoring their community membership. On the other hand, high-mortality species, once having gained a footing in the community, are more likely to become abundant due to their compensatory high birth rates. This unexpected result explains why a positive association between species abundance and per capita death rate can be seen in tropical-forest communities. An explicit incorporation of interspecific trade-offs between birth and death into the neutral theory increases the theory's realism as well as its predictive power.
Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs
Freedman, Adam H.; Schweizer, Rena M.; Ortega-Del Vecchyo, Diego; Han, Eunjung; Davis, Brian W.; Gronau, Ilan; Silva, Pedro M.; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R.; Parker, Heidi G.; Lee, Clarence; Tadigotla, Vasisht; Siepel, Adam; Bustamante, Carlos D.; Harkins, Timothy T.; Nelson, Stanley F.; Marques-Bonet, Tomas; Ostrander, Elaine A.; Wayne, Robert K.; Novembre, John
2016-01-01
Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers. PMID:26943675
Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.
2017-01-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668
Mena, Carlos F.; Walsh, Stephen J.; Frizzelle, Brian G.; Xiaozheng, Yao; Malanson, George P.
2010-01-01
This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways. PMID:24436501
Portik, Daniel M; Leaché, Adam D; Rivera, Danielle; Barej, Michael F; Burger, Marius; Hirschfeld, Mareike; Rödel, Mark-Oliver; Blackburn, David C; Fujita, Matthew K
2017-10-01
The accumulation of biodiversity in tropical forests can occur through multiple allopatric and parapatric models of diversification, including forest refugia, riverine barriers and ecological gradients. Considerable debate surrounds the major diversification process, particularly in the West African Lower Guinea forests, which contain a complex geographic arrangement of topographic features and historical refugia. We used genomic data to investigate alternative mechanisms of diversification in the Gaboon forest frog, Scotobleps gabonicus, by first identifying population structure and then performing demographic model selection and spatially explicit analyses. We found that a majority of population divergences are best explained by allopatric models consistent with the forest refugia hypothesis and involve divergence in isolation with subsequent expansion and gene flow. These population divergences occurred simultaneously and conform to predictions based on climatically stable regions inferred through ecological niche modelling. Although forest refugia played a prominent role in the intraspecific diversification of S. gabonicus, we also find evidence for potential interactions between landscape features and historical refugia, including major rivers and elevational barriers such as the Cameroonian Volcanic Line. We outline the advantages of using genomewide variation in a model-testing framework to distinguish between alternative allopatric hypotheses, and the pitfalls of limited geographic and molecular sampling. Although phylogeographic patterns are often species-specific and related to life-history traits, additional comparative studies incorporating genomic data are necessary for separating shared historical processes from idiosyncratic responses to environmental, climatic and geological influences on diversification. © 2017 John Wiley & Sons Ltd.
The Paradox of Children and Life Satisfaction
ERIC Educational Resources Information Center
Becchetti, Leonardo; Ricca, Elena Giachin; Pelloni, Alessandra
2013-01-01
Empirical analyses of the determinants of life satisfaction routinely include the number of children as one of the socio demographic controls, without explicitly considering that, for a given household income, more children imply a lower level of income per family member. The variable "number of children" then often attracts a negative…
Demographic and Component Allee Effects in Southern Lake Superior Gray Wolves
Stenglein, Jennifer L.; Van Deelen, Timothy R.
2016-01-01
Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980–2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery. PMID:26930665
Demographic and Component Allee Effects in Southern Lake Superior Gray Wolves.
Stenglein, Jennifer L; Van Deelen, Timothy R
2016-01-01
Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980-2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery.
Patrick, Kent; Heywood, Wendy; Pitts, Marian K; Mitchell, Anne
2015-11-01
Background There has been increasing attention on assessing rates of sexting in adolescents and of the potential negative effects of the behaviour. Our aim was to assess rates and correlates of sexting in Australian students in years10, 11 and 12. The current study was part of The Fifth National Survey of Australian Secondary Students and Sexual Health and reports on responses of 2114 students (811 male, 1303 female). Sexting was assessed using six items: sending a sexually explicit written text message; receiving a sexually explicit text message; sending a sexually explicit nude or nearly nude photo or video of themselves; sending a sexually explicit nude or nearly nude photo or video of someone else; receiving a sexually explicit nude or nearly nude photo or video of someone else; and using a social media site for sexual reasons. Approximately half of the students had received (54%, 1139/2097) or sent (43%, 904/2107) a sexually explicit written text message. Sexually explicit images had been received by 42% (880/2098) of students, one in four students had sent a sexually explicit image of themselves (26%, 545/2102) and one in 10 had sent a sexually explicit image of someone else (9%, 180/2095). Finally, 22% (454/2103) of students had used social media for sexual reasons. Sexting was associated with several correlates. Sexting was relatively common in this sample of year 10, 11 and 12 Australian students, particularly among older students, those who are sexually active, and those who use recreational substances.
Hooper, Simon; Rosser, B. R. Simon; Horvath, Keith J.; Oakes, J. Michael; Danilenko, Gene
2008-01-01
As part of a study to develop effective Internet-based HIV prevention interventions for Men who use the Internet to seek Sex with Men (MISM), we sought information from the target population on (a) acceptability of sexually explicit media; (b) interest in specific content areas; and (c) identification of credible sources of information. A cross-sectional stratified Internet-based survey design was employed. Between September and November 2005, we recruited 2,716 MISM through Gay.com stratified across race/ethnicity to ensure adequate racial/ethnic diversity. Sixteen Likert-type items assessed acceptability of sexual explicitness, 24 items identified topics for inclusion, and two assessed sources of information. There was near universal acceptability for highly sexually explicit education. Over 75 percent reported high interest in ten sexual health topics. HIV positive MISM and MISM engaged in unprotected anal sex with multiple male partners reported significantly less interest in HIV prevention specific content. Differences across age, race/ethnicity and education were identified. Idiosyncratic searches and gay sites were frequently cited sources of information; however blogs, government, and media sites were not. It is acceptable for web-based HIV prevention for MISM to be highly sexually explicit and to provide detailed content relevant to men's sexual health. Since demographic differences in acceptability and content were minor, it is appropriate for interventions to target across demographics. Interventions to re-engage men engaging in high risk and HIV+ MISM should be considered. Leading health agencies should review whether their web information is retrievable, credible and useful to those most at risk. PMID:18401701
Nemo: an evolutionary and population genetics programming framework.
Guillaume, Frédéric; Rougemont, Jacques
2006-10-15
Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.
Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G
2008-10-23
Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.
Money Walks: Implicit Mobility Behavior and Financial Well-Being.
Singh, Vivek Kumar; Bozkaya, Burcin; Pentland, Alex
2015-01-01
Traditional financial decision systems (e.g. credit) had to rely on explicit individual traits like age, gender, job type, and marital status, while being oblivious to spatio-temporal mobility or the habits of the individual involved. Emerging trends in geo-aware and mobile payment systems, and the resulting "big data," present an opportunity to study human consumption patterns across space and time. Taking inspiration from animal behavior studies that have reported significant interconnections between animal spatio-temporal "foraging" behavior and their life outcomes, we analyzed a corpus of hundreds of thousands of human economic transactions and found that financial outcomes for individuals are intricately linked with their spatio-temporal traits like exploration, engagement, and elasticity. Such features yield models that are 30% to 49% better at predicting future financial difficulties than the comparable demographic models.
Money Walks: Implicit Mobility Behavior and Financial Well-Being
Singh, Vivek Kumar; Bozkaya, Burcin; Pentland, Alex
2015-01-01
Traditional financial decision systems (e.g. credit) had to rely on explicit individual traits like age, gender, job type, and marital status, while being oblivious to spatio-temporal mobility or the habits of the individual involved. Emerging trends in geo-aware and mobile payment systems, and the resulting “big data,” present an opportunity to study human consumption patterns across space and time. Taking inspiration from animal behavior studies that have reported significant interconnections between animal spatio-temporal “foraging” behavior and their life outcomes, we analyzed a corpus of hundreds of thousands of human economic transactions and found that financial outcomes for individuals are intricately linked with their spatio-temporal traits like exploration, engagement, and elasticity. Such features yield models that are 30% to 49% better at predicting future financial difficulties than the comparable demographic models. PMID:26317339
Whiteness and National Identity: Teacher Discourses in Australian Primary Schools
ERIC Educational Resources Information Center
Walton, Jessica; Priest, Naomi; Kowal, Emma; White, Fiona; Fox, Brandi; Paradies, Yin
2018-01-01
The study examines how white teachers talked to children about national identity and cultural diversity by drawing on qualitative research with eight- to 12-year-old students and their teachers from four Australian primary schools with different racial, ethnic and cultural demographics. Despite a range of explicit and implicit approaches that…
The Importance of Minority Teachers: Student Perceptions of Minority versus White Teachers
ERIC Educational Resources Information Center
Cherng, Hua-Yu Sebastian; Halpin, Peter F.
2016-01-01
The demographic divide between teachers and students is of growing public concern. However, few studies have explicitly addressed the common argument that students, and particularly minority students, have more favorable perceptions of minority versus White teachers. Using data from the Measure of Effective Teaching study, we find that students…
Economic consequences of population size, structure and growth.
Lee, R
1983-01-01
There seems to be 4 major approaches to conceptualizing and modeling demographic influences on economic and social welfare. These approaches are combined in various ways to construct richer and more comprehensive models. The basic approaches are: demographic influences on household or family behavior; population growth and reproducible capital; population size and fixed factors; and population and advantages of scale. These 4 models emphasize the supply side effects of population. A few of the ways in which these theories have been combined are sketched. Neoclassical growth models often have been combined with age distributed populations of individuals (or households), assumed to pursue optimal life cycle consumption and saving. In some well known development models, neoclassical growth models for the modern sector are linked by labor markets and migration to fixed factor (land) models of the traditional (agricultural) sector. A whole series of macro simulation models for developed and developing countries was based on single sector neoclassical growth models with age distributed populations. Yet, typically the household level foundations of assumed age distribution effects were not worked out. Simon's (1977) simulation models are in a class by themselves, for they are the only models that attempt to incorporate all the kinds of effects discussed. The economic demography of the individual and family cycle, as it is affected by regimes of fertility, mortality, and nuptiality, taken as given, are considered. The examination touches on many of the purported consequences of aggregate population growth and age composition, since so many of these are based implicitly or explicitly on assertions about micro level behavior. Demographic influences on saving and consumption, on general labor supply and female labor supply, and on problems of youth and old age dependency frequently fall in this category. Finally, attention is focused specifically on macro economic issues in the consequences of population in both developed and developing countries. In general cross national studies have failed to provide rough and stylized depiction of the consequences of rapid population growth, unless the absence of significant results is itself the result.
Estimating survival rates with time series of standing age‐structure data
Udevitz, Mark S.; Gogan, Peter J.
2012-01-01
It has long been recognized that age‐structure data contain useful information for assessing the status and dynamics of wildlife populations. For example, age‐specific survival rates can be estimated with just a single sample from the age distribution of a stable, stationary population. For a population that is not stable, age‐specific survival rates can be estimated using techniques such as inverse methods that combine time series of age‐structure data with other demographic data. However, estimation of survival rates using these methods typically requires numerical optimization, a relatively long time series of data, and smoothing or other constraints to provide useful estimates. We developed general models for possibly unstable populations that combine time series of age‐structure data with other demographic data to provide explicit maximum likelihood estimators of age‐specific survival rates with as few as two years of data. As an example, we applied these methods to estimate survival rates for female bison (Bison bison) in Yellowstone National Park, USA. This approach provides a simple tool for monitoring survival rates based on age‐structure data.
Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models
Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody
2013-01-01
When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232
Lobréaux, Stéphane; Melodelima, Christelle
2015-02-01
We tested the use of Generalized Linear Mixed Models to detect associations between genetic loci and environmental variables, taking into account the population structure of sampled individuals. We used a simulation approach to generate datasets under demographically and selectively explicit models. These datasets were used to analyze and optimize GLMM capacity to detect the association between markers and selective coefficients as environmental data in terms of false and true positive rates. Different sampling strategies were tested, maximizing the number of populations sampled, sites sampled per population, or individuals sampled per site, and the effect of different selective intensities on the efficiency of the method was determined. Finally, we apply these models to an Arabidopsis thaliana SNP dataset from different accessions, looking for loci associated with spring minimal temperature. We identified 25 regions that exhibit unusual correlations with the climatic variable and contain genes with functions related to temperature stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Wilson, Michelle Clare; Scior, Katrina
2015-01-01
Implicit attitude research has expanded rapidly over the last decade and is seen as very promising as it counters biases present in much attitude research such as social desirability. However, most research in the area of intellectual disabilities has focused on explicit attitudes alone. This study examined implicit attitudes to this population and also examined their association with emotional reactions and contact, which have previously been found to have a significant influence on attitudes and stigma. A web based survey consisting of a single target Implicit Association Test, measures of explicit attitudes, social distance, and emotional reactions towards and contact with individuals with intellectual disabilities was completed by 326 adult UK residents. Implicit attitudes were not significantly associated with explicit attitudes, social distance or emotional reactions. Instead there were small to moderate associations between emotional reactions and explicit attitudes and social distance. Implicit attitudes did not vary according to participants’ level of contact with individuals with intellectual disabilities, type of the contact relationship (voluntary versus involuntary), gender or educational attainment. In contrast, these participant characteristics did affect explicit attitudes and social distance. Implicit attitudes towards individuals with intellectual disabilities were somewhat negative and, unlike explicit attitudes and stigma, did not vary according to participant demographics or contact. As they may have a negative impact on the lives of people with intellectual disabilities, implicit attitudes merit increased attention in research and interventions in the intellectual disabilities field. PMID:26366575
Wilson, Michelle Clare; Scior, Katrina
2015-01-01
Implicit attitude research has expanded rapidly over the last decade and is seen as very promising as it counters biases present in much attitude research such as social desirability. However, most research in the area of intellectual disabilities has focused on explicit attitudes alone. This study examined implicit attitudes to this population and also examined their association with emotional reactions and contact, which have previously been found to have a significant influence on attitudes and stigma. A web based survey consisting of a single target Implicit Association Test, measures of explicit attitudes, social distance, and emotional reactions towards and contact with individuals with intellectual disabilities was completed by 326 adult UK residents. Implicit attitudes were not significantly associated with explicit attitudes, social distance or emotional reactions. Instead there were small to moderate associations between emotional reactions and explicit attitudes and social distance. Implicit attitudes did not vary according to participants' level of contact with individuals with intellectual disabilities, type of the contact relationship (voluntary versus involuntary), gender or educational attainment. In contrast, these participant characteristics did affect explicit attitudes and social distance. Implicit attitudes towards individuals with intellectual disabilities were somewhat negative and, unlike explicit attitudes and stigma, did not vary according to participant demographics or contact. As they may have a negative impact on the lives of people with intellectual disabilities, implicit attitudes merit increased attention in research and interventions in the intellectual disabilities field.
A new solution method for wheel/rail rolling contact.
Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei
2016-01-01
To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.
Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S
2018-09-01
Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.
Deciphering the Origin of Dogs: From Fossils to Genomes.
Freedman, Adam H; Wayne, Robert K
2017-02-08
Understanding the timing and geographic context of dog origins is a crucial component for understanding human history, as well as the evolutionary context in which the morphological and behavioral divergence of dogs from wolves occurred. A substantial challenge to understanding domestication is that dogs have experienced a complicated demographic history. An initial severe bottleneck was associated with domestication followed by postdivergence gene flow between dogs and wolves, as well as population expansions, contractions, and replacements. In addition, because the domestication of dogs occurred in the relatively recent past, much of the observed polymorphism may be shared between dogs and wolves, limiting the power to distinguish between alternative models of dog history. Greater insight into the domestication process will require explicit tests of alternative models of domestication through the joint analysis of whole genomes from modern lineages and ancient wolves and dogs from across Eurasia.
Macy, Jonathan T; Chassin, Laurie; Presson, Clark C; Yeung, Ellen
2016-01-01
To test the effect of exposure to the US Food and Drug Administration's proposed graphic images with text warning statements for cigarette packages on implicit and explicit attitudes towards smoking. A two-session web-based study was conducted with 2192 young adults 18-25-years-old. During session one, demographics, smoking behaviour, and baseline implicit and explicit attitudes were assessed. Session two, completed on average 18 days later, contained random assignment to viewing one of three sets of cigarette packages, graphic images with text warnings, text warnings only, or current US Surgeon General's text warnings. Participants then completed post-exposure measures of implicit and explicit attitudes. ANCOVAs tested the effect of condition on the outcomes, controlling for baseline attitudes. Smokers who viewed packages with graphic images plus text warnings demonstrated more negative implicit attitudes compared to smokers in the other conditions (p = .004). For the entire sample, explicit attitudes were more negative for those who viewed graphic images plus text warnings compared to those who viewed current US Surgeon General's text warnings (p = .014), but there was no difference compared to those who viewed text-only warnings. Graphic health warnings on cigarette packages can influence young adult smokers' implicit attitudes towards smoking.
Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J
2014-01-01
Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.
Heinonen, Johannes P. M.; Palmer, Stephen C. F.; Redpath, Steve M.; Travis, Justin M. J.
2014-01-01
Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860
[Integration of demographic variables into development plans in the Sahel].
Wane, H R
1992-07-01
A founding principle of the Program of Action of N'Djamena is the interdependence of population and development and the need for development strategies to take demographic factors into account. The concept of integration of population variables into development has evolved since its introduction in the 1974 World Population Plan of Action from a simple description of population size, growth rates, and distribution to a stress on harmonizing population policies and development policies with macroeconomic variables. The essence of the concept is the consideration given by development policies and programs to the interrelations between population, resources, the environment, and development factors. Population variables and goals should ideally be treated as endogenous variables in development planning, but in practice the extreme complexity of such a systematic approach limits its ability to be made operational. Usually the most crucial problems only are included. Integrated planning is composed of explicit or implicit population policies intended to influence demographic variables and of socioeconomic policies intended to adapt to demographic change. In the Sahel, only Senegal, Burkina Faso, and Mali have formal population policies, but around 1980 several countries of the region began to show interest in influencing demographic variables as they did economic variables. Fundamental principles for developing an integration strategy can be applied regardless or whether the plan is based on projections, analysis of interaction of a demographic variable with factors specific to a sector, or a monosectorial or multisectorial demoeconomic planning model. Demographic data is used more frequently in diagnosing problems than in developing projections or formulating objectives. The level of disaggregation of demographic projections and estimates tends to be low, despite the great potential utility of demographic projections in planning. Demographic projections can be useful in analyses of the extent of changes and the implications of alternative scenarios of development planning. The most frequently used demographic variables in development planning have been spatial distribution of the population and mortality. An examination of past development plans in Mali relating to population and nutrition and population and health reveals several inconsistencies between stated goals and strategies intended to achieve them. The incoherence can be explained in part by the absence of a coherent national population policy, the failure to translate the population policy into programs that take into account reciprocal effects of demographic trends and economic perspectives and their social effects, and the absence of disaggregated population projections. An example from Senegal demonstrates the constraints imposed by structural adjustment programs on the entire planning process.
Modeling Effects of Local Extinctions on Culture Change and Diversity in the Paleolithic
Premo, L. S.; Kuhn, Steven L.
2010-01-01
The persistence of early stone tool technologies has puzzled archaeologists for decades. Cognitively based explanations, which presume either lack of ability to innovate or extreme conformism, do not account for the totality of the empirical patterns. Following recent research, this study explores the effects of demographic factors on rates of culture change and diversification. We investigate whether the appearance of stability in early Paleolithic technologies could result from frequent extinctions of local subpopulations within a persistent metapopulation. A spatially explicit agent-based model was constructed to test the influence of local extinction rate on three general cultural patterns that archaeologists might observe in the material record: total diversity, differentiation among spatially defined groups, and the rate of cumulative change. The model shows that diversity, differentiation, and the rate of cumulative cultural change would be strongly affected by local extinction rates, in some cases mimicking the results of conformist cultural transmission. The results have implications for understanding spatial and temporal patterning in ancient material culture. PMID:21179418
NASA Astrophysics Data System (ADS)
Cao, Lina
Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that population density was one of the most important parameters affecting the SNV dynamics. The results also indicated that habitat disturbance could increase hantavirus transmission likely by increasing the movement and consequently contact rates. However, the model suggested that habitat disturbance had a much stronger effect on prevalence by decreasing population density than by increasing mice movement. Therefore, overall habitat disturbance reduces SNV prevalence.
Analytical Modelling of the Spread of Disease in Confined and Crowded Spaces
NASA Astrophysics Data System (ADS)
Goscé, Lara; Barton, David A. W.; Johansson, Anders
2014-05-01
Since 1927 and until recently, most models describing the spread of disease have been of compartmental type, based on the assumption that populations are homogeneous and well-mixed. Recent models have utilised agent-based models and complex networks to explicitly study heterogeneous interaction patterns, but this leads to an increasing computational complexity. Compartmental models are appealing because of their simplicity, but their parameters, especially the transmission rate, are complex and depend on a number of factors, which makes it hard to predict how a change of a single environmental, demographic, or epidemiological factor will affect the population. Therefore, in this contribution we propose a middle ground, utilising crowd-behaviour research to improve compartmental models in crowded situations. We show how both the rate of infection as well as the walking speed depend on the local crowd density around an infected individual. The combined effect is that the rate of infection at a population scale has an analytically tractable non-linear dependency on crowd density. We model the spread of a hypothetical disease in a corridor and compare our new model with a typical compartmental model, which highlights the regime in which current models may not produce credible results.
Characterizing Implicit Mental Health Associations across Clinical Domains
Werntz, Alexandra J.; Steinman, Shari A.; Glenn, Jeffrey J.; Nock, Matthew K.; Teachman, Bethany A.
2016-01-01
Background and objectives Implicit associations are relatively uncontrollable associations between concepts in memory. The current investigation focuses on implicit associations in four mental health domains (alcohol use, anxiety, depression, and eating disorders) and how these implicit associations: a) relate to explicit associations and b) self-reported clinical symptoms within the same domains, and c) vary based on demographic characteristics (age, gender, race, ethnicity, and education). Methods Participants (volunteers over age 18 to a research website) completed implicit association (Implicit Association Tests), explicit association (self+psychopathology or attitudes toward food, using semantic differential items), and symptom measures at the Project Implicit Mental Health website tied to: alcohol use (N=12,387), anxiety (N=21,304), depression (N=24,126), or eating disorders (N=10,115). Results Within each domain, implicit associations showed small to moderate associations with explicit associations and symptoms, and predicted self-reported symptoms beyond explicit associations. In general, implicit association strength varied little by race and ethnicity, but showed small ties to age, gender, and education. Limitations This research was conducted on a public research and education website, where participants could take more than one of the studies. Conclusions Among a large and diverse sample, implicit associations in the four domains are congruent with explicit associations and self-reported symptoms, and also add to our prediction of self-reported symptoms over and above explicit associations, pointing to the potential future clinical utility and validity of using implicit association measures with diverse populations. PMID:26962979
Characterizing implicit mental health associations across clinical domains.
Werntz, Alexandra J; Steinman, Shari A; Glenn, Jeffrey J; Nock, Matthew K; Teachman, Bethany A
2016-09-01
Implicit associations are relatively uncontrollable associations between concepts in memory. The current investigation focuses on implicit associations in four mental health domains (alcohol use, anxiety, depression, and eating disorders) and how these implicit associations: a) relate to explicit associations and b) self-reported clinical symptoms within the same domains, and c) vary based on demographic characteristics (age, gender, race, ethnicity, and education). Participants (volunteers over age 18 to a research website) completed implicit association (Implicit Association Tests), explicit association (self + psychopathology or attitudes toward food, using semantic differential items), and symptom measures at the Project Implicit Mental Health website tied to: alcohol use (N = 12,387), anxiety (N = 21,304), depression (N = 24,126), or eating disorders (N = 10,115). Within each domain, implicit associations showed small to moderate associations with explicit associations and symptoms, and predicted self-reported symptoms beyond explicit associations. In general, implicit association strength varied little by race and ethnicity, but showed small ties to age, gender, and education. This research was conducted on a public research and education website, where participants could take more than one of the studies. Among a large and diverse sample, implicit associations in the four domains are congruent with explicit associations and self-reported symptoms, and also add to our prediction of self-reported symptoms over and above explicit associations, pointing to the potential future clinical utility and validity of using implicit association measures with diverse populations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inferring genealogical processes from patterns of Bronze-Age and modern DNA variation in Sardinia.
Ghirotto, Silvia; Mona, Stefano; Benazzo, Andrea; Paparazzo, Francesco; Caramelli, David; Barbujani, Guido
2010-04-01
The ancient inhabitants of a region are often regarded as ancestral, and hence genetically related, to the modern dwellers (for instance, in studies of admixture), but so far, this assumption has not been tested empirically using ancient DNA data. We studied mitochondrial DNA (mtDNA) variation in Sardinia, across a time span of 2,500 years, comparing 23 Bronze-Age (nuragic) mtDNA sequences with those of 254 modern individuals from two regions, Ogliastra (a likely genetic isolate) and Gallura, and considering the possible impact of gene flow from mainland Italy. To understand the genealogical relationships between past and present populations, we developed seven explicit demographic models; we tested whether these models can account for the levels and patterns of genetic diversity in the data and which one does it best. Extensive simulation based on a serial coalescent algorithm allowed us to compare the posterior probability of each model and estimate the relevant evolutionary (mutation and migration rates) and demographic (effective population sizes, times since population splits) parameters, by approximate Bayesian computations. We then validated the analyses by investigating how well parameters estimated from the simulated data can reproduce the observed data set. We show that a direct genealogical continuity between Bronze-Age Sardinians and the current people of Ogliastra, but not Gallura, has a much higher probability than any alternative scenarios and that genetic diversity in Gallura evolved largely independently, owing in part to gene flow from the mainland.
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Stroeve, Julienne; Weimerskirch, Henri
2009-02-10
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962-2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from approximately 6,000 to approximately 400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth.
Demographic models and IPCC climate projections predict the decline of an emperor penguin population
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri
2009-01-01
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908
Critical factors in the establishment of allopolyploids.
Fowler, Norma L; Levin, Donald A
2016-07-01
The growth and spread of new polyploid populations have been explained in terms of fitness advantages over their diploid progenitors. However, a fitness advantage is not sufficient to insure the establishment of a polyploid; it must also overcome the obstacles of demographic stochasticity and minority disadvantage. Several studies have addressed the population dynamics of autopolyploids, but the present study is the first to consider allopolyploids, which are affected by more factors than autopolyploids. We constructed a population dynamic model of four types of plants (two parent species, hybrids, allopolyploids) that also included an explicit breeding system. The numbers of plants of each type were the most important factors determining whether the new allopolyploid would become established. More polyploid plants greatly increased the likelihood of polyploid persistence. More plants of the parent species and more hybrids resulted in more polyploids being produced. The model parameters with the most effect on polyploid establishment were potential population size (K), individual plant fecundity, and niche separation (α). The most important breeding system parameters were selfing rates, which mitigated minority disadvantage imposed by pollen limitation. The importance of population sizes, and the parameters that controlled them, in overcoming demographic stochasticity parallels the well-recognized role of propagule pressure in determining the success of invasive species. We modeled the establishment of a new allopolyploid; analogous considerations would affect the establishment of a new autopolyploid. The critical role of population sizes in polyploid establishment should be more widely recognized. © 2016 Botanical Society of America.
Yang, Joyce P; Leu, Janxin; Simoni, Jane M; Chen, Wei Ti; Shiu, Cheng-Shi; Zhao, Hongxin
2015-08-01
China faces a growing HIV epidemic; psychosocial needs of HIV-positive individuals remain largely unaddressed. Research is needed to consider the gap between need for mental healthcare and lack of sufficiently trained professionals, in a culturally acceptable manner. This study assessed explicit and implicit forms of social support and mental health symptoms in 120 HIV-positive Chinese. Explicit social support refers to interactions involving active disclosure and discussion of problems and request for assistance, whereas implicit social support refers to the emotional comfort one obtains from social networks without disclosing problems. We hypothesized and found using multiple linear regression, that after controlling for demographics, only implicit, but not explicit social support positively predicted mental health. Future research is warranted on the effects of utilizing implicit social support to bolster mental health, which has the potential to circumvent the issues of both high stigma and low professional resources in this population.
Rosser, B. R. Simon; Noor, Syed WB; Iantaffi, Alex
2015-01-01
To assess problematic sexually explicit media (SEM) consumption, and to identify clinically meaningful cut-off points, we examined clinical correlates using the new Compulsive Pornography Consumption (CPC) scale among 1165 participating MSM. Building on scale practices in measuring compulsive sexual behavior, two cut-off points were identified. While most (76-80%) MSM do not report compulsive symptoms, about 16-20% report levels of problematic SEM consumption, including 7% with extreme scores consistent with DSM criteria for compulsive disorders. Demographic, sexual, and HIV risk differences were identified between the three groups. Researchers and clinicians are encouraged to consider using the CPC scale for comprehensive assessment of compulsive sexual behavior. PMID:26167109
Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W
2013-10-01
Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.
Explicitly represented polygon wall boundary model for the explicit MPS method
NASA Astrophysics Data System (ADS)
Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori
2015-05-01
This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.
Macy, Jonathan T.; Chassin, Laurie; Presson, Clark C.; Yeung, Ellen
2015-01-01
Objective Test the effect of exposure to the U.S. Food and Drug Administration’s proposed graphic images with text warning statements for cigarette packages on implicit and explicit attitudes toward smoking. Design and methods A two-session web-based study was conducted with 2192 young adults 18–25 years old. During session one, demographics, smoking behavior, and baseline implicit and explicit attitudes were assessed. Session two, completed on average 18 days later, contained random assignment to viewing one of three sets of cigarette packages, graphic images with text warnings, text warnings only, or current U.S Surgeon General’s text warnings. Participants then completed post-exposure measures of implicit and explicit attitudes. ANCOVAs tested the effect of condition on the outcomes, controlling for baseline attitudes. Results Smokers who viewed packages with graphic images plus text warnings demonstrated more negative implicit attitudes compared to smokers in the other conditions (p=.004). For the entire sample, explicit attitudes were more negative for those who viewed graphic images plus text warnings compared to those who viewed current U.S. Surgeon General’s text warnings (p=.014), but there was no difference compared to those who viewed text-only warnings. Conclusion Graphic health warnings on cigarette packages can influence young adult smokers’ implicit attitudes toward smoking. PMID:26442992
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
Jones, B.; O’Neill, B. C.
2016-07-29
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.; O’Neill, B. C.
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
Matthew J. Reilly; Thomas A. Spies
2016-01-01
Tree mortality is an important demographic process and primary driver of forest dynamics, yet there are relatively few plot-based studies that explicitly quantify mortality and compare the relative contribution of endogenous and exogenous disturbances at regional scales. We used repeated observations on 289,390 trees in 3673 1 ha plots on U.S. Forest Service lands in...
Gonzalez-Gadea, Maria Luz; Herrera, Eduar; Parra, Mario; Gomez Mendez, Pedro; Baez, Sandra; Manes, Facundo; Ibanez, Agustin
2014-01-01
Emotion recognition and empathy abilities require the integration of contextual information in real-life scenarios. Previous reports have explored these domains in adolescent offenders (AOs) but have not used tasks that replicate everyday situations. In this study we included ecological measures with different levels of contextual dependence to evaluate emotion recognition and empathy in AOs relative to non-offenders, controlling for the effect of demographic variables. We also explored the influence of fluid intelligence (FI) and executive functions (EFs) in the prediction of relevant deficits in these domains. Our results showed that AOs exhibit deficits in context-sensitive measures of emotion recognition and cognitive empathy. Difficulties in these tasks were neither explained by demographic variables nor predicted by FI or EFs. However, performance on measures that included simpler stimuli or could be solved by explicit knowledge was either only partially affected by demographic variables or preserved in AOs. These findings indicate that AOs show contextual social-cognition impairments which are relatively independent of basic cognitive functioning and demographic variables. PMID:25374529
Proximal Association of Land Management Preferences: Evidence from Family Forest Owners
Aguilar, Francisco X.; Cai, Zhen; Butler, Brett
2017-01-01
Individual behavior is influenced by factors intrinsic to the decision-maker but also associated with other individuals and their ownerships with such relationship intensified by geographic proximity. The land management literature is scarce in the spatially integrated analysis of biophysical and socio-economic data. Localized land management decisions are likely driven by spatially-explicit but often unobserved resource conditions, influenced by an individual’s own characteristics, proximal lands and fellow owners. This study examined stated choices over the management of family-owned forests as an example of a resource that captures strong pecuniary and non-pecuniary values with identifiable decision makers. An autoregressive model controlled for spatially autocorrelated willingness-to-harvest (WTH) responses using a sample of residential and absentee family forest owners from the U.S. State of Missouri. WTH responses were largely explained by affective, cognitive and experience variables including timber production objectives and past harvest experience. Demographic variables, including income and age, were associated with WTH and helped define socially-proximal groups. The group of closest identity was comprised of resident males over 55 years of age with annual income of at least $50,000. Spatially-explicit models showed that indirect impacts, capturing spillover associations, on average accounted for 14% of total marginal impacts among statistically significant explanatory variables. We argue that not all proximal family forest owners are equal and owners-in-absentia have discernible differences in WTH preferences with important implications for public policy and future research. PMID:28060960
Raabe, Joshua K.; Gardner, Beth; Hightower, Joseph E.
2013-01-01
We developed a spatial capture–recapture model to evaluate survival and activity centres (i.e., mean locations) of tagged individuals detected along a linear array. Our spatially explicit version of the Cormack–Jolly–Seber model, analyzed using a Bayesian framework, correlates movement between periods and can incorporate environmental or other covariates. We demonstrate the model using 2010 data for anadromous American shad (Alosa sapidissima) tagged with passive integrated transponders (PIT) at a weir near the mouth of a North Carolina river and passively monitored with an upstream array of PIT antennas. The river channel constrained migrations, resulting in linear, one-dimensional encounter histories that included both weir captures and antenna detections. Individual activity centres in a given time period were a function of the individual’s previous estimated location and the river conditions (i.e., gage height). Model results indicate high within-river spawning mortality (mean weekly survival = 0.80) and more extensive movements during elevated river conditions. This model is applicable for any linear array (e.g., rivers, shorelines, and corridors), opening new opportunities to study demographic parameters, movement or migration, and habitat use.
CDPOP: A spatially explicit cost distance population genetics program
Erin L. Landguth; S. A. Cushman
2010-01-01
Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...
Erin Towler; Victoria A. Saab; Richard S. Sojda; Katherine Dickinson; Cindy L. Bruyere; Karen R. Newlon
2012-01-01
Given the projected threat that climate change poses to biodiversity, the need for proactive response efforts is clear. However, integrating uncertain climate change information into conservation planning is challenging, and more explicit guidance is needed. To this end, this article provides a specific example of how a risk-based approach can be used to incorporate a...
ERIC Educational Resources Information Center
Lin, Jin-Ding; Lee, Tzong-Nan; Loh, Ching-Hui; Yen, Chia-Feng; Hsu, Shang-Wei; Wu, Jia-Ling; Tang, Chi-Chieh; Lin, Lan-Ping; Chu, Cordia M.; Wu, Sheng-Ru
2009-01-01
Little explicit attention has been given to the generic health profile of staff working for people with intellectual disability in institutions. This study aimed to provide a profile of physical and mental health of staff working in disability welfare institutions, and to examine the possible demographic and organizational factors that explain an…
Housing Tenure and Residential Segregation in Metropolitan America
Friedman, Samantha; Tsao, Hui-shien; Chen, Cheng
2013-01-01
Homeownership, a symbol of the American dream, is one of the primary ways through which families accumulate wealth, particularly for blacks and Hispanics. Surprisingly, no study has explicitly documented the segregation of minority owners and renters from whites. Using data from Census 2000, this study aims to fill this gap. Analyses here reveal that the segregation of black renters relative to whites is significantly lower than the segregation of black owners from whites, controlling for relevant socioeconomic and demographic factors, contrary to the notion that homeownership represents an endpoint in the residential assimilation process. The patterns for Hispanics and Asians conform more to expectations under the spatial assimilation model. The findings here suggest that race and ethnicity continue to be as important in shaping residential segregation as socioeconomic status, and raise concerns about the benefits of homeownership, particularly for blacks. PMID:23292639
Rethinking the dispersal of Homo sapiens out of Africa.
Groucutt, Huw S; Petraglia, Michael D; Bailey, Geoff; Scerri, Eleanor M L; Parton, Ash; Clark-Balzan, Laine; Jennings, Richard P; Lewis, Laura; Blinkhorn, James; Drake, Nick A; Breeze, Paul S; Inglis, Robyn H; Devès, Maud H; Meredith-Williams, Matthew; Boivin, Nicole; Thomas, Mark G; Scally, Aylwyn
2015-01-01
Current fossil, genetic, and archeological data indicate that Homo sapiens originated in Africa in the late Middle Pleistocene. By the end of the Late Pleistocene, our species was distributed across every continent except Antarctica, setting the foundations for the subsequent demographic and cultural changes of the Holocene. The intervening processes remain intensely debated and a key theme in hominin evolutionary studies. We review archeological, fossil, environmental, and genetic data to evaluate the current state of knowledge on the dispersal of Homo sapiens out of Africa. The emerging picture of the dispersal process suggests dynamic behavioral variability, complex interactions between populations, and an intricate genetic and cultural legacy. This evolutionary and historical complexity challenges simple narratives and suggests that hybrid models and the testing of explicit hypotheses are required to understand the expansion of Homo sapiens into Eurasia. © 2015 Wiley Periodicals, Inc.
Neutral Community Dynamics and the Evolution of Species Interactions.
Coelho, Marco Túlio P; Rangel, Thiago F
2018-04-01
A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.
Azodi, Christina B.; Sheldon, Sallie P.; Trombulak, Stephen C.; Ardren, William R.
2015-01-01
The origin of sea lamprey (Petromyzon marinus) in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA) and mitochondrial DNA (mtDNA) markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp) and NCII (173 bp) all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events. PMID:26539334
Effects of Explicit Instructions, Metacognition, and Motivation on Creative Performance
ERIC Educational Resources Information Center
Hong, Eunsook; O'Neil, Harold F.; Peng, Yun
2016-01-01
Effects of explicit instructions, metacognition, and intrinsic motivation on creative homework performance were examined in 303 Chinese 10th-grade students. Models that represent hypothesized relations among these constructs and trait covariates were tested using structural equation modelling. Explicit instructions geared to originality were…
Ramírez-Barahona, Santiago; Eguiarte, Luis E
2013-01-01
The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi-disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models. PMID:23531632
2015-08-01
21 Figure 4. Data-based proportion of DDD , DDE and DDT in total DDx in fish and sediment by... DDD dichlorodiphenyldichloroethane DDE dichlorodiphenyldichloroethylene DDT dichlorodiphenyltrichloroethane DoD Department of Defense ERM... DDD ) at the other site. The spatially-explicit model consistently predicts tissue concentrations that closely match both the average and the
Port, Markus; Johnstone, Rufus A
2013-01-01
Recent theory in social evolution has been mainly concerned with competition and cooperation within social groups of animals and their impact on the stability of those groups. Much less attention has been paid to conflicts arising as a result of solitary floaters (outsiders) attempting to join groups of established residents (insiders). We model such conflicts over group-membership using a demographically explicit approach in which the rates of births and deaths in a population determine the availability of group-vacancies and the number of floaters competing over these vacancies. We find that the outcome of within-group competition, reflected in the partitioning of reproduction among group members, exerts surprisingly little influence on the resolution of insider-outsider conflict. The outcome of such conflict is also largely unaffected by differences in resource holding potential between insiders and outsiders. By contrast, whether or not groups form is mainly determined by demographic factors (variation in vital rates such as fecundity and mortality) and the resulting population dynamics. In particular, at high floater densities territory defense becomes too costly, and groups form because insiders give in to the intruder pressure imposed on them by outsiders. We emphasize the importance of insider-outsider conflicts in social evolution theory and highlight avenues for future research. PMID:23762508
What Drives National Differences in Intensive Grandparental Childcare in Europe?
Glaser, Karen; Price, Debora; Ribe, Eloi; Tinker, Anthea
2016-01-01
Objectives. Grandparents play an important role in looking after grandchildren, although intensive grandparental childcare varies considerably across Europe. Few studies have explicitly investigated the extent to which such cross-national variations are associated with national level differences in individual demographic and socio-economic distributions along with contextual-structural and cultural factors (e.g., variations in female labor force participation, childcare provision, and cultural attitudes). Methods. We used multilevel models to examine associations between intensive grandparental childcare and contextual-structural and cultural factors, after controlling for grandparent, parent, and child characteristics using nationally representative data from the Survey of Health, Ageing and Retirement in Europe. Results. Even controlling for cross-national differences in demographic and socio-economic distributions, contextual-structural factors play an important role in explaining grandparental childcare variations in Europe. In particular, higher levels of intensive grandparental childcare are found in countries with low labor force participation among younger and older women, and low formal childcare provision, where mothers in paid work largely rely on grandparental support on an almost daily basis. Discussion. Encouraging older women to remain in paid work is likely to have an impact on grandchild care which in turn may affect mothers’ employment, particularly in Southern European countries where there is little formal childcare. PMID:25783973
Satherley, Nicole; Milojev, Petar; Greaves, Lara M.; Huang, Yanshu; Osborne, Danny; Bulbulia, Joseph; Sibley, Chris G.
2015-01-01
This study examines attrition rates over the first four years of the New Zealand Attitudes and Values Study, a longitudinal national panel sample of New Zealand adults. We report the base rate and covariates for the following four distinct classes of respondents: explicit withdrawals, lost respondents, intermittent respondents and constant respondents. A multinomial logistic regression examined an extensive range of demographic and socio-psychological covariates (among them the Big-Six personality traits) associated with membership in these classes (N = 5,814). Results indicated that men, Māori and Asian peoples were less likely to be constant respondents. Conscientiousness and Honesty-Humility were also positively associated with membership in the constant respondent class. Notably, the effect sizes for the socio-psychological covariates of panel attrition tended to match or exceed those of standard demographic covariates. This investigation broadens the focus of research on panel attrition beyond demographics by including a comprehensive set of socio-psychological covariates. Our findings show that core psychological covariates convey important information about panel attrition, and are practically important to the management of longitudinal panel samples like the New Zealand Attitudes and Values Study. PMID:25793746
Lourenço, André; Álvarez, David; Wang, Ian J; Velo-Antón, Guillermo
2017-03-01
Urbanization is a severe form of habitat fragmentation that can cause many species to be locally extirpated and many others to become trapped and isolated within an urban matrix. The role of drift in reducing genetic diversity and increasing genetic differentiation is well recognized in urban populations. However, explicit incorporation and analysis of the demographic and temporal factors promoting drift in urban environments are poorly studied. Here, we genotyped 15 microsatellites in 320 fire salamanders from the historical city of Oviedo (Est. 8th century) to assess the effects of time since isolation, demographic history (historical effective population size; N e ) and patch size on genetic diversity, population structure and contemporary N e . Our results indicate that urban populations of fire salamanders are highly differentiated, most likely due to the recent N e declines, as calculated in coalescence analyses, concomitant with the urban development of Oviedo. However, urbanization only caused a small loss of genetic diversity. Regression modelling showed that patch size was positively associated with contemporary N e , while we found only moderate support for the effects of demographic history when excluding populations with unresolved history. This highlights the interplay between different factors in determining current genetic diversity and structure. Overall, the results of our study on urban populations of fire salamanders provide some of the very first insights into the mechanisms affecting changes in genetic diversity and population differentiation via drift in urban environments, a crucial subject in a world where increasing urbanization is forecasted. © 2017 John Wiley & Sons Ltd.
Karczmarski, Leszek; Huang, Shiang-Lin; Or, Carmen K M; Gui, Duan; Chan, Stephen C Y; Lin, Wenzhi; Porter, Lindsay; Wong, Wai-Ho; Zheng, Ruiqiang; Ho, Yuen-Wa; Chui, Scott Y S; Tiongson, Angelico Jose C; Mo, Yaqian; Chang, Wei-Lun; Kwok, John H W; Tang, Ricky W K; Lee, Andy T L; Yiu, Sze-Wing; Keith, Mark; Gailey, Glenn; Wu, Yuping
2016-01-01
In coastal waters of the Pearl River Delta (PRD) region, the Indo-Pacific humpback dolphin (Sousa chinensis) is thought to number approximately 2500 individuals. Given these figures, the putative PRD population may appear strong enough to resist demographic stochasticity and environmental pressures. However, living in close proximity to the world's busiest seaport/airport and several densely populated urban centres with major coastal infrastructural developments comes with challenges to the long-term survival of these animals. There are few other small cetacean populations that face the range and intensity of human-induced pressures as those present in the PRD and current protection measures are severely inadequate. Recent mark-recapture analyses of the animals in Hong Kong waters indicate that in the past two decades the population parameters have not been well understood, and spatial analyses show that only a very small proportion of the dolphins' key habitats are given any form of protection. All current marine protected areas within the PRD fail to meet a minimum habitat requirement that could facilitate the population's long-term persistence. Demographic models indicate a continuous decline of 2.5% per annum, a rate at which the population is likely to drop below the demographic threshold within two generations and lose 74% of the current numbers within the lifespan of three generations. In Hong Kong, the case of humpback dolphins represents a particularly explicit example of inadequate management where a complete revision of the fundamental approach to conservation management is urgently needed. © 2016 Elsevier Ltd All rights reserved.
Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models
NASA Technical Reports Server (NTRS)
Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.
1996-01-01
An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.
Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas
2012-01-01
1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.
Forecasting the mortality rates of Malaysian population using Heligman-Pollard model
NASA Astrophysics Data System (ADS)
Ibrahim, Rose Irnawaty; Mohd, Razak; Ngataman, Nuraini; Abrisam, Wan Nur Azifah Wan Mohd
2017-08-01
Actuaries, demographers and other professionals have always been aware of the critical importance of mortality forecasting due to declining trend of mortality and continuous increases in life expectancy. Heligman-Pollard model was introduced in 1980 and has been widely used by researchers in modelling and forecasting future mortality. This paper aims to estimate an eight-parameter model based on Heligman and Pollard's law of mortality. Since the model involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 7.0 (MATLAB 7.0) software will be used in order to estimate the parameters. Statistical Package for the Social Sciences (SPSS) will be applied to forecast all the parameters according to Autoregressive Integrated Moving Average (ARIMA). The empirical data sets of Malaysian population for period of 1981 to 2015 for both genders will be considered, which the period of 1981 to 2010 will be used as "training set" and the period of 2011 to 2015 as "testing set". In order to investigate the accuracy of the estimation, the forecast results will be compared against actual data of mortality rates. The result shows that Heligman-Pollard model fit well for male population at all ages while the model seems to underestimate the mortality rates for female population at the older ages.
Deng, Nanjie; Zhang, Bin W.; Levy, Ronald M.
2015-01-01
The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle. PMID:26236174
Deng, Nanjie; Zhang, Bin W; Levy, Ronald M
2015-06-09
The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.
Slater, Hannah; Michael, Edwin
2013-01-01
There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account for the effects of future climate change on parasitic infection. PMID:23951194
Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor
2010-09-01
The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.
Y chromosomal evidence on the origin of northern Thai people.
Brunelli, Andrea; Kampuansai, Jatupol; Seielstad, Mark; Lomthaisong, Khemika; Kangwanpong, Daoroong; Ghirotto, Silvia; Kutanan, Wibhu
2017-01-01
The Khon Mueang represent the major group of people present in today's northern Thailand. While linguistic and genetic data seem to support a shared ancestry between Khon Mueang and other Tai-Kadai speaking people, the possibility of an admixed origin with contribution from local Mon-Khmer population could not be ruled out. Previous studies conducted on northern Thai people did not provide a definitive answer and, in addition, have largely overlooked the distribution of paternal lineages in the area. In this work we aim to provide a comprehensive analysis of Y paternal lineages in northern Thailand and to explicitly model the origin of the Khon Mueang population. We obtained and analysed new Y chromosomal haplogroup data from more than 500 northern Thai individuals including Khon Mueang, Mon-Khmer and Tai-Kadai. We also explicitly simulated different demographic scenarios, developed to explain the Khon Mueang origin, employing an ABC simulation framework on both mitochondrial and Y microsatellites data. Our results highlighted a similar haplogroup composition of Khon Mueang and Tai-Kadai populations in northern Thailand, with shared high frequencies of haplogroups O-PK4, O-M117 and O-M111. Our ABC simulations also favoured a model in which the ancestors of modern Khon Mueang originated recently after a split from the other Tai-Kadai populations. Our different analyses concluded that the ancestors of Khon Mueang are likely to have originated from the same source of the other Tai-Kadai groups in southern China, with subsequent admixture events involving native Mon-Khmer speakers restricted to some specific populations.
Applying metapopulation theory to conservation of migratory birds
Esler, Daniel N.
2000-01-01
Metapopulation theory has proven useful for understanding the population structure and dynamics of many species of conservation concern. The metapopulation concept has been applied almost exclusively to nonmigratory species, however, for which subpopulation demographic independence—a requirement for a classically defined metapopulation - is explicitly related to geographic distribution and dispersal probabilities. Defining the degree of demographic independence among subpopulations of migratory animals, and thus the applicability of metapopulation theory as a conceptual framework for understanding population dynamics, is much more difficult. Unlike nonmigratory species, subpopulations of migratory animals cannot be defined as synonymous with geographic areas. Groups of migratory birds that are geographically separate at one part of the annual cycle may occur together at others, but co-occurrence in time and space does not preclude the demographic independence of subpopulations. I suggest that metapopulation theory can be applied to migratory species but that understanding the degree of subpopulation independence may require information about both spatial distribution throughout the annual cycle and behavioral mechanisms that may lead to subpopulation demographic independence. The key for applying metapopulation theory to migratory animals lies in identifying demographically independent subpopulations, even as they move during the annual cycle and potentially co-occur with other subpopulations. Using examples of migratory bird species, I demonstrate that spatial and temporal modes of subpopulation independence can interact with behavioral mechanisms to create demographically independent subpopulations, including cases in which subpopulations are not spatially distinct in some parts of the annual cycle.
Demographic mechanisms of inbreeding adjustment through extra-pair reproduction.
Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter
2015-07-01
One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females' EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring within populations might allow females to adjust mean f of offspring through random extra-pair reproduction without necessarily requiring explicit kin discrimination, implying that adjustment of offspring f might be an inevitable consequence of extra-pair reproduction. New theoretical and empirical studies are required to explore the general magnitude of such effects and quantify the degree to which they could facilitate or constrain long-term evolution of extra-pair reproduction. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
The Limits of Natural Selection in a Nonequilibrium World.
Brandvain, Yaniv; Wright, Stephen I
2016-04-01
Evolutionary theory predicts that factors such as a small population size or low recombination rate can limit the action of natural selection. The emerging field of comparative population genomics offers an opportunity to evaluate these hypotheses. However, classical theoretical predictions assume that populations are at demographic equilibrium. This assumption is likely to be violated in the very populations researchers use to evaluate selection's limits: populations that have experienced a recent shift in population size and/or effective recombination rates. Here we highlight theory and data analyses concerning limitations on the action of natural selection in nonequilibrial populations and argue that substantial care is needed to appropriately test whether species and populations show meaningful differences in selection efficacy. A move toward model-based inferences that explicitly incorporate nonequilibrium dynamics provides a promising approach to more accurately contrast selection efficacy across populations and interpret its significance. Copyright © 2016 Elsevier Ltd. All rights reserved.
The evolution of human phenotypic plasticity: age and nutritional status at maturity.
Gage, Timothy B
2003-08-01
Several evolutionary optimal models of human plasticity in age and nutritional status at reproductive maturation are proposed and their dynamics examined. These models differ from previously published models because fertility is not assumed to be a function of body size or nutritional status. Further, the models are based on explicitly human demographic patterns, that is, model human life-tables, model human fertility tables, and, a nutrient flow-based model of maternal nutritional status. Infant survival (instead of fertility as in previous models) is assumed to be a function of maternal nutritional status. Two basic models are examined. In the first the cost of reproduction is assumed to be a constant proportion of total nutrient flow. In the second the cost of reproduction is constant for each birth. The constant proportion model predicts a negative slope of age and nutritional status at maturation. The constant cost per birth model predicts a positive slope of age and nutritional status at maturation. Either model can account for the secular decline in menarche observed over the last several centuries in Europe. A search of the growth literature failed to find definitive empirical documentation of human phenotypic plasticity in age and nutritional status at maturation. Most research strategies confound genetics with phenotypic plasticity. The one study that reports secular trends suggests a marginally insignificant, but positive slope. This view tends to support the constant cost per birth model.
Argasinski, K; Broom, M
2013-10-01
In the standard approach to evolutionary games and replicator dynamics, differences in fitness can be interpreted as an excess from the mean Malthusian growth rate in the population. In the underlying reasoning, related to an analysis of "costs" and "benefits", there is a silent assumption that fitness can be described in some type of units. However, in most cases these units of measure are not explicitly specified. Then the question arises: are these theories testable? How can we measure "benefit" or "cost"? A natural language, useful for describing and justifying comparisons of strategic "cost" versus "benefits", is the terminology of demography, because the basic events that shape the outcome of natural selection are births and deaths. In this paper, we present the consequences of an explicit analysis of births and deaths in an evolutionary game theoretic framework. We will investigate different types of mortality pressures, their combinations and the possibility of trade-offs between mortality and fertility. We will show that within this new approach it is possible to model how strictly ecological factors such as density dependence and additive background fitness, which seem neutral in classical theory, can affect the outcomes of the game. We consider the example of the Hawk-Dove game, and show that when reformulated in terms of our new approach new details and new biological predictions are produced.
Combining demographic and genetic factors to assess population vulnerability in stream species
Erin L, Landguth; Muhlfeld, Clint C.; Jones, Leslie W.; Waples, Robin S.; Whited, Diane; Lowe, Winsor H.; Lucotch, John; Neville, Helen; Luikart, Gordon
2014-01-01
Accelerating climate change and other cumulative stressors create an urgent need to understand the influence of environmental variation and landscape features on the connectivity and vulnerability of freshwater species. Here, we introduce a novel modeling framework for aquatic systems that integrates spatially explicit, individual-based, demographic and genetic (demogenetic) assessments with environmental variables. To show its potential utility, we simulated a hypothetical network of 19 migratory riverine populations (e.g., salmonids) using a riverscape connectivity and demogenetic model (CDFISH). We assessed how stream resistance to movement (a function of water temperature, fluvial distance, and physical barriers) might influence demogenetic connectivity, and hence, population vulnerability. We present demographic metrics (abundance, immigration, and change in abundance) and genetic metrics (diversity, differentiation, and change in differentiation), and combine them into a single vulnerability index for identifying populations at risk of extirpation. We considered four realistic scenarios that illustrate the relative sensitivity of these metrics for early detection of reduced connectivity: (1) maximum resistance due to high water temperatures throughout the network, (2) minimum resistance due to low water temperatures throughout the network, (3) increased resistance at a tributary junction caused by a partial barrier, and (4) complete isolation of a tributary, leaving resident individuals only. We then applied this demogenetic framework using empirical data for a bull trout (Salvelinus confluentus) metapopulation in the upper Flathead River system, Canada and USA, to assess how current and predicted future stream warming may influence population vulnerability. Results suggest that warmer water temperatures and associated barriers to movement (e.g., low flows, dewatering) are predicted to fragment suitable habitat for migratory salmonids, resulting in the loss of genetic diversity and reduced numbers in certain vulnerable populations. This demogenetic simulation framework, which is illustrated in a web-based interactive mapping prototype, should be useful for evaluating population vulnerability in a wide variety of dendritic and fragmented riverscapes, helping to guide conservation and management efforts for freshwater species.
van Tuijl, Lonneke A; de Jong, Peter J; Sportel, B Esther; de Hullu, Eva; Nauta, Maaike H
2014-03-01
A negative self-view is a prominent factor in most cognitive vulnerability models of depression and anxiety. Recently, there has been increased attention to differentiate between the implicit (automatic) and the explicit (reflective) processing of self-related evaluations. This longitudinal study aimed to test the association between implicit and explicit self-esteem and symptoms of adolescent depression and social anxiety disorder. Two complementary models were tested: the vulnerability model and the scarring effect model. Participants were 1641 first and second year pupils of secondary schools in the Netherlands. The Rosenberg Self-Esteem Scale, self-esteem Implicit Association Test and Revised Child Anxiety and Depression Scale were completed to measure explicit self-esteem, implicit self-esteem and symptoms of social anxiety disorder (SAD) and major depressive disorder (MDD), respectively, at baseline and two-year follow-up. Explicit self-esteem at baseline was associated with symptoms of MDD and SAD at follow-up. Symptomatology at baseline was not associated with explicit self-esteem at follow-up. Implicit self-esteem was not associated with symptoms of MDD or SAD in either direction. We relied on self-report measures of MDD and SAD symptomatology. Also, findings are based on a non-clinical sample. Our findings support the vulnerability model, and not the scarring effect model. The implications of these findings suggest support of an explicit self-esteem intervention to prevent increases in MDD and SAD symptomatology in non-clinical adolescents. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh
2009-05-01
Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, bothmore » COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.« less
Evaluating the new soil erosion map of Hungary
NASA Astrophysics Data System (ADS)
Waltner, István; Centeri, Csaba; Takács, Katalin; Pirkó, Béla; Koós, Sándor; László, Péter; Pásztor, László
2017-04-01
With growing concerns on the effects of climate change and land use practices on our soil resources, soil erosion by water is becoming a significant issue internationally. Since the 1964 publication of the first soil erosion map of Hungary, there have been several attempts to provide a countrywide assessment of erosion susceptibility. However, there has been no up-to-date map produced in the last decade. In 2016, a new, 1:100 000 scale soil erosion map was published, based on available soil, elevation, land use and meteorological data for the extremely wet year of 2010. The map utilized combined outputs for two spatially explicit methods: the widely used empirical Universal Soil Loss Equation (USLE) and the process-based Pan-European Soil Erosion Risk Assessment (PESERA) models. The present study aims to provide a detailed analysis of the model results. In lieu of available national monitoring data, information from other sources were used. The Soil Degradation Subsystem (TDR) of the National Environmental Information System (OKIR) is a digital database based on a soil survey and farm dairy data collected from representative farms in Hungary. During the survey all kind of degradation forms - including soil erosion - were considered. Agricultural and demographic data was obtained from the Hungarian Central Statistical Office (KSH). Data from an interview-based survey was also used in an attempt to assess public awareness of soil erosion risks. Point-based evaluation of the model results was complemented with cross-regional assessment of soil erosion estimates. This, combined with available demographic information provides us with an opportunity to address soil erosion on a community level, with the identification of regions with the highest risk of being affected by soil erosion.
Converse, Sarah J.; Royle, J. Andrew; Urbanek, Richard P.
2012-01-01
Inbreeding depression is frequently a concern of managers interested in restoring endangered species. Decisions to reduce the potential for inbreeding depression by balancing genotypic contributions to reintroduced populations may exact a cost on long-term demographic performance of the population if those decisions result in reduced numbers of animals released and/or restriction of particularly successful genotypes (i.e., heritable traits of particular family lines). As part of an effort to restore a migratory flock of Whooping Cranes (Grus americana) to eastern North America using the offspring of captive breeders, we obtained a unique dataset which includes post-release mark-recapture data, as well as the pedigree of each released individual. We developed a Bayesian formulation of a multi-state model to analyze radio-telemetry, band-resight, and dead recovery data on reintroduced individuals, in order to track survival and breeding state transitions. We used studbook-based individual covariates to examine the comparative evidence for and degree of effects of inbreeding, genotype, and genotype quality on post-release survival of reintroduced individuals. We demonstrate implementation of the Bayesian multi-state model, which allows for the integration of imperfect detection, multiple data types, random effects, and individual- and time-dependent covariates. Our results provide only weak evidence for an effect of the quality of an individual's genotype in captivity on post-release survival as well as for an effect of inbreeding on post-release survival. We plan to integrate our results into a decision-analytic modeling framework that can explicitly examine tradeoffs between the effects of inbreeding and the effects of genotype and demographic stochasticity on population establishment.
Explicit filtering in large eddy simulation using a discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Brazell, Matthew J.
The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.
Embedded-explicit emergent literacy intervention I: Background and description of approach.
Justice, Laura M; Kaderavek, Joan N
2004-07-01
This article, the first of a two-part series, provides background information and a general description of an emergent literacy intervention model for at-risk preschoolers and kindergartners. The embedded-explicit intervention model emphasizes the dual importance of providing young children with socially embedded opportunities for meaningful, naturalistic literacy experiences throughout the day, in addition to regular structured therapeutic interactions that explicitly target critical emergent literacy goals. The role of the speech-language pathologist (SLP) in the embedded-explicit model encompasses both indirect and direct service delivery: The SLP consults and collaborates with teachers and parents to ensure the highest quality and quantity of socially embedded literacy-focused experiences and serves as a direct provider of explicit interventions using structured curricula and/or lesson plans. The goal of this integrated model is to provide comprehensive emergent literacy interventions across a spectrum of early literacy skills to ensure the successful transition of at-risk children from prereaders to readers.
Neal D. Niemuth; Michael E. Estey; Charles R. Loesch
2005-01-01
Conservation planning for birds is increasingly focused on landscapes. However, little spatially explicit information is available to guide landscape-level conservation planning for many species of birds. We used georeferenced 1995 Breeding Bird Survey (BBS) data in conjunction with land-cover information to develop a spatially explicit habitat model predicting the...
Explicit robust schemes for implementation of general principal value-based constitutive models
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Tan, H. Q.; Zhang, Y.
1993-01-01
The issue of developing effective and robust schemes to implement general hyperelastic constitutive models is addressed. To this end, special purpose functions are used to symbolically derive, evaluate, and automatically generate the associated FORTRAN code for the explicit forms of the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid for the entire deformation range. The analytical form of these explicit expressions is given here for the case in which the strain-energy potential is taken as a nonseparable polynomial function of the principle stretches.
Uncertainty in spatially explicit animal dispersal models
Mooij, Wolf M.; DeAngelis, Donald L.
2003-01-01
Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.
Leitner, Jordan B; Hehman, Eric; Ayduk, Ozlem; Mendoza-Denton, Rodolfo
2016-10-20
Research suggests that, among Whites, racial bias predicts negative ingroup health outcomes. However, little is known about whether racial bias predicts ingroup health outcomes among minority populations. The aim of the current research was to understand whether racial bias predicts negative ingroup health outcomes for Blacks. We compiled racial bias responses from 250,665 Blacks and 1,391,632 Whites to generate county-level estimates of Blacks' and Whites' implicit and explicit biases towards each other. We then examined the degree to which these biases predicted ingroup death rate from circulatory-related diseases. In counties where Blacks harbored more implicit bias towards Whites, Blacks died at a higher rate. Additionally, consistent with previous research, in counties where Whites harbored more explicit bias towards Blacks, Whites died at a higher rate. These links between racial bias and ingroup death rate were independent of county-level socio-demographic characteristics, and racial biases from the outgroup in the same county. Findings indicate that racial bias is related to negative ingroup health outcomes for both Blacks and Whites, though this relationship is driven by implicit bias for Blacks, and explicit bias for Whites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effective Reading and Writing Instruction: A Focus on Modeling
ERIC Educational Resources Information Center
Regan, Kelley; Berkeley, Sheri
2012-01-01
When providing effective reading and writing instruction, teachers need to provide explicit modeling. Modeling is particularly important when teaching students to use cognitive learning strategies. Examples of how teachers can provide specific, explicit, and flexible instructional modeling is presented in the context of two evidence-based…
Macroparasite dynamics of migratory host populations.
Peacock, Stephanie J; Bouhours, Juliette; Lewis, Mark A; Molnár, Péter K
2018-03-01
Spatial variability in host density is a key factor affecting disease dynamics of wildlife, and yet there are few spatially explicit models of host-macroparasite dynamics. This limits our understanding of parasitism in migratory hosts, whose densities change considerably in both space and time. In this paper, we develop a model for host-macroparasite dynamics that considers the directional movement of host populations and their associated parasites. We include spatiotemporal changes in the mean and variance in parasite burden per host, as well as parasite-mediated host mortality and parasite-mediated migratory ability. Reduced migratory ability with increasing parasitism results in heavily infested hosts halting their migration, and higher parasite burdens in stationary hosts than in moving hosts. Simulations reveal the potential for positive feedbacks between parasite-reduced migratory ability and increasing parasite burdens at infection hotspots, such as stopover sites, that may lead to parasite-induced migratory stalling. This framework could help understand how global change might influence wildlife disease via changes to migratory patterns and parasite demographic rates. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shukla, Nagesh; Wickramasuriya, Rohan; Miller, Andrew; Perez, Pascal
2015-05-01
This paper proposes an integrated modelling process to assess the population accessibility to radiotherapy treatment services in future based on future cancer incidence and road network-based accessibility. Previous research efforts assessed travel distance/time barriers affecting access to cancer treatment services, as well as epidemiological studies that showed that cancer incidence rates vary with population demography. It is established that travel distances to treatment centres and demographic profiles of the accessible regions greatly influence the demand for cancer radiotherapy (RT) services. However, an integrated service planning approach that combines spatially-explicit cancer incidence projections, and the RT services accessibility based on patient road network have never been attempted. This research work presents this novel methodology for the accessibility assessment of RT services and demonstrates its viability by modelling New South Wales (NSW) cancer incidence rates for different age-sex groups based on observed cancer incidence trends; estimating the road network-based access to current NSW treatment centres; and, projecting the demand for RT services in New South Wales, Australia from year 2011 to 2026.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali
2016-12-01
An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.
From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction
NASA Astrophysics Data System (ADS)
de Tilière, Béatrice
2013-04-01
Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version {{G}} of this graph (Fisher in J Math Phys 7:1776-1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain {{G}_1}. Our main result consists in explicitly constructing CRSFs of {{G}_1} counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon's critical weight function (Kenyon in Invent Math 150(2):409-439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.
An explicit microphysics thunderstorm model.
R. Solomon; C.M. Medaglia; C. Adamo; S. Dietrick; A. Mugnai; U. Biader Ceipidor
2005-01-01
The authors present a brief description of a 1.5-dimensional thunderstorm model with a lightning parameterization that utilizes an explicit microphysical scheme to model lightning-producing clouds. The main intent of this work is to describe the basic microphysical and electrical properties of the model, with a small illustrative section to show how the model may be...
Berry, Tanya R; Jones, Kelvin E; Courneya, Kerry S; McGannon, Kerry R; Norris, Colleen M; Rodgers, Wendy M; Spence, John C
2018-01-18
The purpose of this research was to examine the relationships of self-reported physical activity to involvement with messages that discuss the prevention of heart disease and breast cancer through physical activity, the explicit believability of the messages, and agreement (or disagreement) with specific statements about the messages or disease beliefs in general. A within subjects' design was used. Participants (N = 96) read either a breast cancer or heart disease message first, then completed a corresponding task that measured agreement or disagreement and confidence in the agreement or disagreement that 1) physical activity 'reduces risk/does not reduce risk' of breast cancer or heart disease, 2) that breast cancer or heart disease is a 'real/not real risk for me', 3) that women who get breast cancer or heart disease are 'like/not like me', and 4) that women who get breast cancer or heart disease are 'to blame/not to blame'. This task was followed by a questionnaire measuring message involvement and explicit believability. They then read the other disease messages and completed the corresponding agreement and confidence task and questionnaire measures. Lastly, participants completed a questionnaire measuring physical activity related attitudes and intentions, and demographics. There was no difference in message involvement or explicit believability of breast cancer compared to heart disease messages. Active participants had a higher confidence in their agreement that physical activity is preventive of heart disease compared to breast cancer. Multinomial regression models showed that, in addition to physical activity related attitudes and intentions, agreement that physical activity was preventive of heart disease and that women with heart disease are 'like me' were predictors of being more active compared to inactive. In the breast cancer model only attitudes and intentions predicted physical activity group. Active women likely internalized messages about heart disease prevention through physical activity, making the prevention messages more readily available within memory, and active women may therefore process such information differently. The study of how health-related beliefs are created and are related to perceptions of prevention messages is a rich area of study that may contribute to more effective health promotion.
An optimization framework for workplace charging strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yongxi; Zhou, Yan
2015-03-01
The workplace charging (WPC) has been recently recognized as the most important secondary charging point next to residential charging for plug-in electric vehicles (PEVs). The current WPC practice is spontaneous and grants every PEV a designated charger, which may not be practical or economic when there are a large number of PEVs present at workplace. This study is the first research undertaken that develops an optimization framework for WPC strategies to satisfy all charging demand while explicitly addressing different eligible levels of charging technology and employees’ demographic distributions. The optimization model is to minimize the lifetime cost of equipment, installations,more » and operations, and is formulated as an integer program. We demonstrate the applicability of the model using numerical examples based on national average data. The results indicate that the proposed optimization model can reduce the total cost of running a WPC system by up to 70% compared to the current practice. The WPC strategies are sensitive to the time windows and installation costs, and dominated by the PEV population size. The WPC has also been identified as an alternative sustainable transportation program to the public transit subsidy programs for both economic and environmental advantages.« less
Background / Question / Methods Planning for the recovery of threatened species is increasingly informed by spatially-explicit population models. However, using simulation model results to guide land management decisions can be difficult due to the volume and complexity of model...
CONSTRUCTING, PERTURBATION ANALYSIIS AND TESTING OF A MULTI-HABITAT PERIODIC MATRIX POPULATION MODEL
We present a matrix model that explicitly incorporates spatial habitat structure and seasonality and discuss preliminary results from a landscape level experimental test. Ecological risk to populations is often modeled without explicit treatment of spatially or temporally distri...
Green-Ampt approximations: A comprehensive analysis
NASA Astrophysics Data System (ADS)
Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.
2016-04-01
Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.
Thelen, Brian; French, Nancy H F; Koziol, Benjamin W; Billmire, Michael; Owen, Robert Chris; Johnson, Jeffrey; Ginsberg, Michele; Loboda, Tatiana; Wu, Shiliang
2013-11-05
A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data.
ERIC Educational Resources Information Center
Dang, Trang Thi Doan; Nguyen, Huong Thu
2013-01-01
Two approaches to grammar instruction are often discussed in the ESL literature: direct explicit grammar instruction (DEGI) (deduction) and indirect explicit grammar instruction (IEGI) (induction). This study aims to explore the effects of indirect explicit grammar instruction on EFL learners' mastery of English tenses. Ninety-four…
We used a spatially explicit population model of wolves (Canis lupus) to propose a framework for defining rangewide recovery priorities and finer-scale strategies for regional reintroductions. The model predicts that Yellowstone and central Idaho, where wolves have recently been ...
What Drives National Differences in Intensive Grandparental Childcare in Europe?
Di Gessa, Giorgio; Glaser, Karen; Price, Debora; Ribe, Eloi; Tinker, Anthea
2016-01-01
Grandparents play an important role in looking after grandchildren, although intensive grandparental childcare varies considerably across Europe. Few studies have explicitly investigated the extent to which such cross-national variations are associated with national level differences in individual demographic and socio-economic distributions along with contextual-structural and cultural factors (e.g., variations in female labor force participation, childcare provision, and cultural attitudes). We used multilevel models to examine associations between intensive grandparental childcare and contextual-structural and cultural factors, after controlling for grandparent, parent, and child characteristics using nationally representative data from the Survey of Health, Ageing and Retirement in Europe. Even controlling for cross-national differences in demographic and socio-economic distributions, contextual-structural factors play an important role in explaining grandparental childcare variations in Europe. In particular, higher levels of intensive grandparental childcare are found in countries with low labor force participation among younger and older women, and low formal childcare provision, where mothers in paid work largely rely on grandparental support on an almost daily basis. Encouraging older women to remain in paid work is likely to have an impact on grandchild care which in turn may affect mothers' employment, particularly in Southern European countries where there is little formal childcare. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America.
The influence of interspecific interactions on species range expansion rates
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe
2014-01-01
Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
The influence of interspecific interactions on species range expansion rates.
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe
2014-12-01
Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
The influence of interspecific interactions on species range expansion rates
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe
2014-01-01
Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species. PMID:25722537
Semantic processes leading to true and false memory formation in schizophrenia.
Paz-Alonso, Pedro M; Ghetti, Simona; Ramsay, Ian; Solomon, Marjorie; Yoon, Jong; Carter, Cameron S; Ragland, J Daniel
2013-07-01
Encoding semantic relationships between items on word lists (semantic processing) enhances true memories, but also increases memory distortions. Episodic memory impairments in schizophrenia (SZ) are strongly driven by failures to process semantic relations, but the exact nature of these relational semantic processing deficits is not well understood. Here, we used a false memory paradigm to investigate the impact of implicit and explicit semantic processing manipulations on episodic memory in SZ. Thirty SZ and 30 demographically matched healthy controls (HC) studied Deese/Roediger-McDermott (DRM) lists of semantically associated words. Half of the lists had strong implicit semantic associations and the remainder had low strength associations. Similarly, half of the lists were presented under "standard" instructions and the other half under explicit "relational processing" instructions. After study, participants performed recall and old/new recognition tests composed of targets, critical lures, and unrelated lures. HC exhibited higher true memories and better discriminability between true and false memory compared to SZ. High, versus low, associative strength increased false memory rates in both groups. However, explicit "relational processing" instructions positively improved true memory rates only in HC. Finally, true and false memory rates were associated with severity of disorganized and negative symptoms in SZ. These results suggest that reduced processing of semantic relationships during encoding in SZ may stem from an inability to implement explicit relational processing strategies rather than a fundamental deficit in the implicit activation and retrieval of word meanings from patients' semantic lexicon. Copyright © 2013 Elsevier B.V. All rights reserved.
Fertility targets and policy options in Asia.
Bulatao, R A
1984-11-01
The 3rd Asian and Pacific Population Conference in Colombo in 1982 recommended that countries review and modify existing demographic targets and goals for reducing birth and death rates in order to attain low levels as early as possible and to attain replacement level by the year 2000. The demographic goals of selected Asian countries (Bangladesh, Indonesia, Korea, Thailand, India, Pakistan, and the Philippines are assessed and compared to World Bank population projections. It also discusses the underlying rationale for setting fertility targets, and considers what government actions could make them more achievable. 6 stages for controlling population are distinguished: 1) collection and publication of reliable demographic data; 2) enunciation of an official policy to reduce population growth; 3) development of appropriate institutions to integrate demographic projections into economic plans; 4) promotion of family planning; 5) provision of incentives and disincentives, including elimination of all implicit and explicit subsidies for child bearing; and 6) restitution of birth quotas requiring permission for each child born. Principles to maintain and accelerate fertility declines to meet demographic targets include creating appropriate and equitable development policies, increasing the standard of family planning programs, confronting organizational problems, providing easier and more equal access to contraceptive methods, exploring innovative approaches to encourage smaller families and making a firm political commitment to population control. Rapid fertility decline will also require financial commitment. Willingness to spend the necessary amounts, and the capacity to spend them as well, will determine whether the countries of Asia enter the next century in control of their population.
NASA Astrophysics Data System (ADS)
Rinaldo, A.; Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.
2010-12-01
A recently proposed model for cholera epidemics is examined. The model accounts for local communities of susceptibles and infectives in a spatially explicit arrangement of nodes linked by networks having different topologies. The vehicle of infection (Vibrio cholerae) is transported through the network links which are thought of as hydrological connections among susceptible communities. The mathematical tools used are borrowed from general schemes of reactive transport on river networks acting as the environmental matrix for the circulation and mixing of water-borne pathogens. The results of a large-scale application to the Kwa Zulu (Natal) epidemics of 2001-2002 will be discussed. Useful theoretical results derived in the spatially-explicit context will also be reviewed (like e.g. the exact derivation of the speed of propagation for traveling fronts of epidemics on regular lattices endowed with uniform population density). Network effects will be discussed. The analysis of the limit case of uniformly distributed population density proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. To that extent, it is shown that the ratio between spreading and disease outbreak timescales proves the crucial parameter. The relevance of our results lies in the major differences potentially arising between the predictions of spatially explicit models and traditional compartmental models of the SIR-like type. Our results suggest that in many cases of real-life epidemiological interest timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of compartmental models. Finally, a view on further developments includes: hydrologically improved aquatic reservoir models for pathogens; human mobility patterns affecting disease propagation; double-peak emergence and seasonality in the spatially explicit epidemic context.
Environmental decision-making and the influences of various stressors, such as landscape and climate changes on water quantity and quality, requires the application of environmental modeling. Spatially explicit environmental and watershed-scale models using GIS as a base framewor...
HexSim - A general purpose framework for spatially-explicit, individual-based modeling
HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications. This talk will focus on a subset of those ap...
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-01-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-08-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
LaHue, Nathaniel P; Baños, Joaquín Vicente; Acevedo, Pelayo; Gortázar, Christian; Martínez-López, Beatriz
2016-06-01
Eurasian wild boar (Sus scrofa) and red deer (Cervus elaphus) are the most important wildlife reservoirs for animal tuberculosis (TB) caused by the Mycobacterium tuberculosis complex (MTC), in Mediterranean Spain. These species are considered to play an important role in the transmission and persistence of MTC in cattle in some regions; however the factors contributing to the risk of transmission at the wildlife-livestock interface and the areas at highest risk for such transmission are largely unknown. This study sought to identify geographic areas where wildlife-livestock interactions are most likely to occur and to characterize the environmental and management factors at this interface contributing to persistence, incidence, and occurrence of TB on cattle farms, in one of the provinces with higher TB prevalence in Spain, Ciudad Real. We used spatially explicit, ecological niche models to evaluate the importance of factors such as wildlife demographics and hunting management, land use, climatic, and environmental variables as well as TB status in wildlife for TB breakdown (model 1), persistence (model 2) and new infection (model 3) on cattle farms and to generate high resolution maps of predicted TB occurrence to guide risk-based interventions. Models revealed that land use, particularly open area and woodland, high wild boar TB prevalence, and close proximity to fenced hunting estates were the most important factors associated with TB infection on cattle farms. This is the first time that local TB prevalence in wild boar for individual hunting estates has been significantly associated with TB occurrence on cattle farms at a local scale. Prediction maps identified two areas with high likelihood of TB occurrence in the southwest and northwest of the province where wildlife-livestock interactions and TB occurrence are highly likely and where TB preventative and mitigation strategies (e.g. targeted vaccination, increased biosecurity, etc.) should be prioritized. Methods and results of this study were aimed to inform the implementation of risk-based interventions to better prevent and control TB at the wildlife-livestock interface, a necessary step for the successful eradication of TB in cattle in Spain. Copyright © 2016 Elsevier B.V. All rights reserved.
On explicit algebraic stress models for complex turbulent flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Speziale, C. G.
1992-01-01
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.
Explicit least squares system parameter identification for exact differential input/output models
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1993-01-01
The equation error for a class of systems modeled by input/output differential operator equations has the potential to be integrated exactly, given the input/output data on a finite time interval, thereby opening up the possibility of using an explicit least squares estimation technique for system parameter identification. The paper delineates the class of models for which this is possible and shows how the explicit least squares cost function can be obtained in a way that obviates dealing with unknown initial and boundary conditions. The approach is illustrated by two examples: a second order chemical kinetics model and a third order system of Lorenz equations.
Xu Chen; Berry, Damon; Stephens, Gaye
2015-01-01
Computerised identity management is in general encountered as a low-level mechanism that enables users in a particular system or region to securely access resources. In the Electronic Health Record (EHR), the identifying information of both the healthcare professionals who access the EHR and the patients whose EHR is accessed, are subject to change. Demographics services have been developed to manage federated patient and healthcare professional identities and to support challenging healthcare-specific use cases in the presence of diverse and sometimes conflicting demographic identities. Demographics services are not the only use for identities in healthcare. Nevertheless, contemporary EHR specifications limit the types of entities that can be the actor or subject of a record to health professionals and patients, thus limiting the use of two level models in other healthcare information systems. Demographics are ubiquitous in healthcare, so for a general identity model to be usable, it should be capable of managing demographic information. In this paper, we introduce a generalised identity reference model (GIRM) based on key characteristics of five surveyed demographic models. We evaluate the GIRM by using it to express the EN13606 demographics model in an extensible way at the metadata level and show how two-level modelling can support the exchange of instances of demographic identities. This use of the GIRM to express demographics information shows its application for standards-compliant two-level modelling alongside heterogeneous demographics models. We advocate this approach to facilitate the interoperability of identities between two-level model-based EHR systems and show the validity and the extensibility of using GIRM for the expression of other health-related identities.
Flexible explicit but rigid implicit learning in a visuomotor adaptation task
Bond, Krista M.
2015-01-01
There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks. PMID:25855690
Quarto, Tiziana; Paparella, Isabella; De Tullio, Davide; Viscanti, Giovanna; Fazio, Leonardo; Taurisano, Paolo; Romano, Raffaella; Rampino, Antonio; Masellis, Rita; Popolizio, Teresa; Selvaggi, Pierluigi; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe
2017-09-16
The brain functional mechanisms translating genetic risk into emotional symptoms in schizophrenia (SCZ) may include abnormal functional integration between areas key for emotion processing, such as the amygdala and the lateral prefrontal cortex (LPFC). Indeed, investigation of these mechanisms is also complicated by emotion processing comprising different subcomponents and by disease-associated state variables. Here, our aim was to investigate the relationship between risk for SCZ and effective connectivity between the amygdala and the LPFC during different subcomponents of emotion processing. Thus, we first characterized with dynamic causal modeling (DCM) physiological patterns of LPFC-amygdala effective connectivity in healthy controls (HC) during implicit and explicit emotion processing. Then, we compared DCM patterns in a subsample of HC, in patients with SCZ and in healthy siblings of patients (SIB), matched for demographics. Finally, we investigated in HC association of LPFC-amygdala effective connectivity with a genome-wide supported variant increasing genetic risk for SCZ and possibly relevant to emotion processing (DRD2 rs2514218). In HC, we found that a "bottom-up" amygdala-to-LPFC pattern during implicit processing and a "top-down" LPFC-to-amygdala pattern during explicit processing were the most likely directional models of effective connectivity. Differently, implicit emotion processing in SIB, SCZ, and HC homozygous for the SCZ risk rs2514218 C allele was associated with decreased probability for the "bottom-up" as well as with increased probability for the "top-down" model. These findings suggest that task-specific anomaly in the directional flow of information or disconnection between the amygdala and the LPFC is a good candidate endophenotype of SCZ. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Baker, Nathan A.; McCammon, J. Andrew
2008-01-01
The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217
NASA Astrophysics Data System (ADS)
Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew
2007-10-01
The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Kavetski, Dmitri
2010-10-01
A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.
Temporal framing and the hidden-zero effect: rate-dependent outcomes on delay discounting.
Naudé, Gideon P; Kaplan, Brent A; Reed, Derek D; Henley, Amy J; DiGennaro Reed, Florence D
2018-05-01
Recent research suggests that presenting time intervals as units (e.g., days) or as specific dates, can modulate the degree to which humans discount delayed outcomes. Another framing effect involves explicitly stating that choosing a smaller-sooner reward is mutually exclusive to receiving a larger-later reward, thus presenting choices as an extended sequence. In Experiment 1, participants (N = 201) recruited from Amazon Mechanical Turk completed the Monetary Choice Questionnaire in a 2 (delay framing) by 2 (zero framing) design. Regression suggested a main effect of delay, but not zero, framing after accounting for other demographic variables and manipulations. We observed a rate-dependent effect for the date-framing group, such that those with initially steep discounting exhibited greater sensitivity to the manipulation than those with initially shallow discounting. Subsequent analyses suggest these effects cannot be explained by regression to the mean. Experiment 2 addressed the possibility that the null effect of zero framing was due to within-subject exposure to the hidden- and explicit-zero conditions. A new Amazon Mechanical Turk sample completed the Monetary Choice Questionnaire in either hidden- or explicit-zero formats. Analyses revealed a main effect of reward magnitude, but not zero framing, suggesting potential limitations to the generality of the hidden-zero effect. © 2018 Society for the Experimental Analysis of Behavior.
Warren, Jocelyn T; Harvey, S Marie; Agnew, Christopher R
2012-01-01
HIV prevention strategies among couples include condom use, mutual monogamy, and HIV testing. Research suggests that condom use is more likely with new or casual partners, and tends to decline as relationships become steady over time. Little is known, however, about explicit mutual monogamy agreements and HIV testing within heterosexual couples. This study used data from 434 young heterosexual couples at increased risk of HIV and sexually transmitted infections (STIs) to assess (a) couple concordance on perceptions of a monogamy agreement, sustained monogamy, and HIV testing; and (b) the associations of relationship and demographic factors with monogamy agreement, sustained monogamy, and HIV testing. Results indicated only slight to fair agreement within couples on measures of monogamy agreement and sustained monogamy. Overall, 227 couples (52%) concurred that they had an explicit agreement to be monogamous; of those, 162 (71%) had sustained the agreement. Couples with greater health protective communication and commitment were more likely to have a monogamy agreement. Couples of Latino and Hispanic ethnicity and those with children were less likely to have a monogamy agreement. Only commitment was related to sustained monogamy. Having children, greater health protective communication, and perceived vulnerability to HIV and STIs were associated with HIV testing within the couple.
Empirical methods for modeling landscape change, ecosystem services, and biodiversity
David Lewis; Ralph Alig
2009-01-01
The purpose of this paper is to synthesize recent economics research aimed at integrating discrete-choice econometric models of land-use change with spatially-explicit landscape simulations and quantitative ecology. This research explicitly models changes in the spatial pattern of landscapes in two steps: 1) econometric estimation of parcel-scale transition...
SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)
This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...
A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Curved Flows
NASA Technical Reports Server (NTRS)
Girimaji, Sharath
1996-01-01
A Galilean invariant weak-equilbrium hypothesis that is sensitive to streamline curvature is proposed. The hypothesis leads to an algebraic Reynolds stress model for curved flows that is fully explicit and self-consistent. The model is tested in curved homogeneous shear flow: the agreement is excellent with Reynolds stress closure model and adequate with available experimental data.
A functional-dynamic reflection on participatory processes in modeling projects.
Seidl, Roman
2015-12-01
The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.
Behavioral mechanisms in HIV epidemiology and prevention: past, present, and future roles.
Bingenheimer, Jeffrey B; Geronimus, Arline T
2009-09-01
In the 1980s, behavioral variations across geographically and socially defined populations were the central focus of AIDS research, and behavior change was seen as the primary means of controlling HIV epidemics. Today, biological mechanisms--especially other sexually transmitted infections, antiretroviral therapy, and male circumcision--predominate in HIV epidemiology and prevention. We describe several reasons for this shift in emphasis. Although the shift is understandable, we argue for a sustained focus on behavioral mechanisms in HIV research in order to realize the theoretical promise of interventions targeting the biological aspects of HIV risk. We also provide evidence to suggest that large reductions in HIV prevalence may be accomplished by small changes in behavior. Moreover, we contend that behavioral mechanisms will find their proper place in HIV epidemiology and prevention only when investigators adopt a conceptual model that treats prevalence as a determinant as well as an outcome of behavior and that explicitly recognizes the dynamic interdependence between behavior and other epidemiological and demographic parameters.
Strömgren, M; Holm, E; Dahlström, Ö; Ekberg, J; Eriksson, H; Spreco, A; Timpka, T
2017-09-01
This study aims to develop a typology of generic meeting places based on social contact and mixing of relevance for infectious disease transmission. Data were collected by means of a contact diary survey conducted on a representative sample of the Swedish population. The typology is derived from a cluster analysis accounting for four dimensions associated with transmission risk: visit propensity and its characteristics in terms of duration, number of other persons present and likelihood of physical contact. In the analysis, we also study demographic, socio-economic and geographical differences in the propensity of visiting meeting places. The typology identifies the family venue, the fixed activity site, the family vehicle, the trading plaza and the social network hub as generic meeting places. The meeting place typology represents a spatially explicit account of social contact and mixing relevant to infectious disease modelling, where the social context of the outbreak can be highlighted in light of the actual infectious disease.
High Performance Programming Using Explicit Shared Memory Model on Cray T3D1
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Saini, Subhash; Grassi, Charles
1994-01-01
The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.
NASA Astrophysics Data System (ADS)
He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif
2018-02-01
The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.
In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.
The nonlim
approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit
and explicit
approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also provide a key set of posterior fungal parameters that can be further investigated and evaluated in future ECM studies.
The importance of explicitly mapping instructional analogies in science education
NASA Astrophysics Data System (ADS)
Asay, Loretta Johnson
Analogies are ubiquitous during instruction in science classrooms, yet research about the effectiveness of using analogies has produced mixed results. An aspect seldom studied is a model of instruction when using analogies. The few existing models for instruction with analogies have not often been examined quantitatively. The Teaching With Analogies (TWA) model (Glynn, 1991) is one of the models frequently cited in the variety of research about analogies. The TWA model outlines steps for instruction, including the step of explicitly mapping the features of the source to the target. An experimental study was conducted to examine the effects of explicitly mapping the features of the source and target in an analogy during computer-based instruction about electrical circuits. Explicit mapping was compared to no mapping and to a control with no analogy. Participants were ninth- and tenth-grade biology students who were each randomly assigned to one of three conditions (no analogy module, analogy module, or explicitly mapped analogy module) for computer-based instruction. Subjects took a pre-test before the instruction, which was used to assign them to a level of previous knowledge about electrical circuits for analysis of any differential effects. After the instruction modules, students took a post-test about electrical circuits. Two weeks later, they took a delayed post-test. No advantage was found for explicitly mapping the analogy. Learning patterns were the same, regardless of the type of instruction. Those who knew the least about electrical circuits, based on the pre-test, made the most gains. After the two-week delay, this group maintained the largest amount of their gain. Implications exist for science education classrooms, as analogy use should be based on research about effective practices. Further studies are suggested to foster the building of research-based models for classroom instruction with analogies.
Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore
Mikle, Nathaniel; Graves, Tabitha A.; Kovach, Ryan P.; Kendall, Katherine C.; Macleod, Amy C.
2016-01-01
Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral.
Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore
Kovach, Ryan; Kendall, Katherine C.; Macleod, Amy C.
2016-01-01
Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral. PMID:27655768
Combining Model-driven and Schema-based Program Synthesis
NASA Technical Reports Server (NTRS)
Denney, Ewen; Whittle, John
2004-01-01
We describe ongoing work which aims to extend the schema-based program synthesis paradigm with explicit models. In this context, schemas can be considered as model-to-model transformations. The combination of schemas with explicit models offers a number of advantages, namely, that building synthesis systems becomes much easier since the models can be used in verification and in adaptation of the synthesis systems. We illustrate our approach using an example from signal processing.
Jeff Jenness; J. Judson Wynne
2005-01-01
In the field of spatially explicit modeling, well-developed accuracy assessment methodologies are often poorly applied. Deriving model accuracy metrics have been possible for decades, but these calculations were made by hand or with the use of a spreadsheet application. Accuracy assessments may be useful for: (1) ascertaining the quality of a model; (2) improving model...
Linking body mass and group dynamics in an obligate cooperative breeder.
Ozgul, Arpat; Bateman, Andrew W; English, Sinead; Coulson, Tim; Clutton-Brock, Tim H
2014-11-01
Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Moderators of the Relationship between Implicit and Explicit Evaluation
Nosek, Brian A.
2005-01-01
Automatic and controlled modes of evaluation sometimes provide conflicting reports of the quality of social objects. This paper presents evidence for four moderators of the relationship between automatic (implicit) and controlled (explicit) evaluations. Implicit and explicit preferences were measured for a variety of object pairs using a large sample. The average correlation was r = .36, and 52 of the 57 object pairs showed a significant positive correlation. Results of multilevel modeling analyses suggested that: (a) implicit and explicit preferences are related, (b) the relationship varies as a function of the objects assessed, and (c) at least four variables moderate the relationship – self-presentation, evaluative strength, dimensionality, and distinctiveness. The variables moderated implicit-explicit correspondence across individuals and accounted for much of the observed variation across content domains. The resulting model of the relationship between automatic and controlled evaluative processes is grounded in personal experience with the targets of evaluation. PMID:16316292
Implicit and Explicit Racial Attitudes Changed During Black Lives Matter.
Sawyer, Jeremy; Gampa, Anup
2018-07-01
Lab-based interventions have been ineffective in changing individuals' implicit racial attitudes for more than brief durations, and exposure to high-status Black exemplars like Obama has proven ineffective in shifting societal-level racial attitudes. Antiracist social movements, however, offer a potential societal-level alternative for reducing racial bias. Racial attitudes were examined before and during Black Lives Matter (BLM) and its high points of struggle with 1,369,204 participants from 2009 to 2016. After controlling for changes in participant demographics, overall implicit attitudes were less pro-White during BLM than pre-BLM, became increasingly less pro-White across BLM, and were less pro-White during most periods of high BLM struggle. Considering changes in implicit attitudes by participant race, Whites became less implicitly pro-White during BLM, whereas Blacks showed little change. Regarding explicit attitudes, Whites became less pro-White and Blacks became less pro-Black during BLM, each moving toward an egalitarian "no preference" position.
Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu
2005-01-01
Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...
Modeling urbanization patterns at a global scale with generative adversarial networks
NASA Astrophysics Data System (ADS)
Albert, A. T.; Strano, E.; Gonzalez, M.
2017-12-01
Current demographic projections show that, in the next 30 years, global population growth will mostly take place in developing countries. Coupled with a decrease in density, such population growth could potentially double the land occupied by settlements by 2050. The lack of reliable and globally consistent socio-demographic data, coupled with the limited predictive performance underlying traditional urban spatial explicit models, call for developing better predictive methods, calibrated using a globally-consistent dataset. Thus, richer models of the spatial interplay between the urban built-up land, population distribution and energy use are central to the discussion around the expansion and development of cities, and their impact on the environment in the context of a changing climate. In this talk we discuss methods for, and present an analysis of, urban form, defined as the spatial distribution of macroeconomic quantities that characterize a city, using modern machine learning methods and best-available remote-sensing data for the world's largest 25,000 cities. We first show that these cities may be described by a small set of patterns in radial building density, nighttime luminosity, and population density, which highlight, to first order, differences in development and land use across the world. We observe significant, spatially-dependent variance around these typical patterns, which would be difficult to model using traditional statistical methods. We take a first step in addressing this challenge by developing CityGAN, a conditional generative adversarial network model for simulating realistic urban forms. To guide learning and measure the quality of the simulated synthetic cities, we develop a specialized loss function for GAN optimization that incorporates standard spatial statistics used by urban analysis experts. Our framework is a stark departure from both the standard physics-based approaches in the literature (that view urban forms as fractals with a scale-free behavior), and the traditional statistical learning approaches (whereby values of individual pixels are modeled as functions of locally-defined, hand-engineered features). This is a first-of-its-kind analysis of urban forms using data at a planetary scale.
Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice.
Cunningham, William A; Nezlek, John B; Banaji, Mahzarin R
2004-10-01
Two studies investigated relationships among individual differences in implicit and explicit prejudice, right-wing ideology, and rigidity in thinking. The first study examined these relationships focusing on White Americans' prejudice toward Black Americans. The second study provided the first test of implicit ethnocentrism and its relationship to explicit ethnocentrism by studying the relationship between attitudes toward five social groups. Factor analyses found support for both implicit and explicit ethnocentrism. In both studies, mean explicit attitudes toward out groups were positive, whereas implicit attitudes were negative, suggesting that implicit and explicit prejudices are distinct; however, in both studies, implicit and explicit attitudes were related (r = .37, .47). Latent variable modeling indicates a simple structure within this ethnocentric system, with variables organized in order of specificity. These results lead to the conclusion that (a) implicit ethnocentrism exists and (b) it is related to and distinct from explicit ethnocentrism.
ERIC Educational Resources Information Center
Glock, Sabine; Beverborg, Arnoud Oude Groote; Müller, Barbara C. N.
2016-01-01
Obese children experience disadvantages in school and discrimination from their teachers. Teachers' implicit and explicit attitudes have been identified as contributing to these disadvantages. Drawing on dual process models, we investigated the nature of pre-service teachers' implicit and explicit attitudes, their motivation to respond without…
Stull, Laura G; McConnell, Haley; McGrew, John; Salyers, Michelle P
2017-01-01
While explicit negative stereotypes of mental illness are well established as barriers to recovery, implicit attitudes also may negatively impact outcomes. The current study is unique in its focus on both explicit and implicit stigma as predictors of recovery attitudes of mental health practitioners. Assertive Community Treatment practitioners (n = 154) from 55 teams completed online measures of stigma, recovery attitudes, and an Implicit Association Test (IAT). Three of four explicit stigma variables (perceptions of blameworthiness, helplessness, and dangerousness) and all three implicit stigma variables were associated with lower recovery attitudes. In a multivariate, hierarchical model, however, implicit stigma did not explain additional variance in recovery attitudes. In the overall model, perceptions of dangerousness and implicitly associating mental illness with "bad" were significant individual predictors of lower recovery attitudes. The current study demonstrates a need for interventions to lower explicit stigma, particularly perceptions of dangerousness, to increase mental health providers' expectations for recovery. The extent to which implicit and explicit stigma differentially predict outcomes, including recovery attitudes, needs further research.
Oberhauser, Karen; Wiederholt, Ruscena; Diffendorfer, James E.; Semmens, Darius J.; Ries, Leslie; Thogmartin, Wayne E.; Lopez-Hoffman, Laura; Semmens, Brice
2017-01-01
1. The monarch has undergone considerable population declines over the past decade, and the governments of Mexico, Canada, and the United States have agreed to work together to conserve the species.2. Given limited resources, understanding where to focus conservation action is key for widespread species like monarchs. To support planning for continental-scale monarch habitat restoration, we address the question of where restoration efforts are likely to have the largest impacts on monarch butterfly (Danaus plexippus Linn.) population growth rates.3. We present a spatially explicit demographic model simulating the multi-generational annual cycle of the eastern monarch population, and use the model to examine management scenarios, some of which focus on particular regions of North America.4. Improving the monarch habitat in the north central or southern parts of the monarch range yields a slightly greater increase in the population growth rate than restoration in other regions. However, combining restoration efforts across multiple regions yields population growth rates above 1 with smaller simulated improvements in habitat per region than single-region strategies.5. Synthesis and applications: These findings suggest that conservation investment in projects across the full monarch range will be more effective than focusing on one or a few regions, and will require international cooperation across many land use categories.
Norman, Janette A.; Christidis, Les
2016-01-01
Bioclimatic models are widely used to investigate the impacts of climate change on species distributions. Range shifts are expected to occur as species track their current climate niche yet the potential for exploitation of new ecological opportunities that may arise as ecosystems and communities remodel is rarely considered. Here we show that grasswrens of the Amytornis textilis-modestus complex responded to new ecological opportunities in Australia’s arid biome through shifts in habitat preference following the development of chenopod shrublands during the late Plio-Pleistocene. We find evidence of spatially explicit responses to climatically driven landscape changes including changes in niche width and patterns of population growth. Conservation of structural and functional aspects of the ancestral niche appear to have facilitated recent habitat shifts, while demographic responses to late Pleistocene climate change provide evidence for the greater resilience of populations inhabiting the recently evolved chenopod shrubland communities. Similar responses could occur under future climate change in species exposed to novel ecological conditions, or those already occupying spatially heterogeneous landscapes. Mechanistic models that consider structural and functional aspects of the niche along with regional hydro-dynamics may be better predictors of future climate responses in Australia’s arid biome than bioclimatic models alone. PMID:26787111
Zhu, Dan; Ciais, Philippe; Chang, Jinfeng; Krinner, Gerhard; Peng, Shushi; Viovy, Nicolas; Peñuelas, Josep; Zimov, Sergey
2018-04-01
Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO 2 concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models. However, most of the current global dynamic vegetation models (DGVMs) lack explicit representation of large herbivores. Here we incorporated a grazing module in a DGVM based on physiological and demographic equations for wild large grazers, taking into account feedbacks of large grazers on vegetation. The model was applied globally for present-day and the Last Glacial Maximum (LGM). The present-day results of potential grazer biomass, combined with an empirical land-use map, infer a reduction in wild grazer biomass by 79-93% owing to anthropogenic land replacement of natural grasslands. For the LGM, we find that the larger mean body size of mammalian herbivores than today is the crucial clue to explain the productivity paradox, due to a more efficient exploitation of grass production by grazers with a large body size.
Galaiduk, Ronen; Radford, Ben T; Harvey, Euan S
2018-06-21
Many fishes undergo ontogenetic habitat shifts to meet their energy and resource needs as they grow. Habitat resource partitioning and patterns of habitat connectivity between conspecific fishes at different life-history stages is a significant knowledge gap. Species distribution models were used to examine patterns in the relative abundance, individual biomass estimates and environmental niche associations of different life stages of three iconic West Australian fishes. Continuous predictive maps describing the spatial distribution of abundance and individual biomass of the study species were created as well predictive hotspot maps that identify possible areas for aggregation of individuals of similar life stages of multiple species (i.e. spawning grounds, fisheries refugia or nursery areas). The models and maps indicate that processes driving the abundance patterns could be different from the body size associated demographic processes throughout an individual's life cycle. Incorporating life-history in the spatially explicit management plans can ensure that critical habitat of the vulnerable stages (e.g. juvenile fish, spawning stock) is included within proposed protected areas and can enhance connectivity between various functional areas (e.g. nursery areas and adult populations) which, in turn, can improve the abundance of targeted species as well as other fish species relying on healthy ecosystem functioning.
From Experiment to Theory: What Can We Learn from Growth Curves?
Kareva, Irina; Karev, Georgy
2018-01-01
Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic-exponential, exponential-linear, exponential-linear-saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.
An Integrated Framework for Process-Driven Model Construction in Disease Ecology and Animal Health
Mancy, Rebecca; Brock, Patrick M.; Kao, Rowland R.
2017-01-01
Process models that focus on explicitly representing biological mechanisms are increasingly important in disease ecology and animal health research. However, the large number of process modelling approaches makes it difficult to decide which is most appropriate for a given disease system and research question. Here, we discuss different motivations for using process models and present an integrated conceptual analysis that can be used to guide the construction of infectious disease process models and comparisons between them. Our presentation complements existing work by clarifying the major differences between modelling approaches and their relationship with the biological characteristics of the epidemiological system. We first discuss distinct motivations for using process models in epidemiological research, identifying the key steps in model design and use associated with each. We then present a conceptual framework for guiding model construction and comparison, organised according to key aspects of epidemiological systems. Specifically, we discuss the number and type of disease states, whether to focus on individual hosts (e.g., cows) or groups of hosts (e.g., herds or farms), how space or host connectivity affect disease transmission, whether demographic and epidemiological processes are periodic or can occur at any time, and the extent to which stochasticity is important. We use foot-and-mouth disease and bovine tuberculosis in cattle to illustrate our discussion and support explanations of cases in which different models are used to address similar problems. The framework should help those constructing models to structure their approach to modelling decisions and facilitate comparisons between models in the literature. PMID:29021983
An Integrated Framework for Process-Driven Model Construction in Disease Ecology and Animal Health.
Mancy, Rebecca; Brock, Patrick M; Kao, Rowland R
2017-01-01
Process models that focus on explicitly representing biological mechanisms are increasingly important in disease ecology and animal health research. However, the large number of process modelling approaches makes it difficult to decide which is most appropriate for a given disease system and research question. Here, we discuss different motivations for using process models and present an integrated conceptual analysis that can be used to guide the construction of infectious disease process models and comparisons between them. Our presentation complements existing work by clarifying the major differences between modelling approaches and their relationship with the biological characteristics of the epidemiological system. We first discuss distinct motivations for using process models in epidemiological research, identifying the key steps in model design and use associated with each. We then present a conceptual framework for guiding model construction and comparison, organised according to key aspects of epidemiological systems. Specifically, we discuss the number and type of disease states, whether to focus on individual hosts (e.g., cows) or groups of hosts (e.g., herds or farms), how space or host connectivity affect disease transmission, whether demographic and epidemiological processes are periodic or can occur at any time, and the extent to which stochasticity is important. We use foot-and-mouth disease and bovine tuberculosis in cattle to illustrate our discussion and support explanations of cases in which different models are used to address similar problems. The framework should help those constructing models to structure their approach to modelling decisions and facilitate comparisons between models in the literature.
Sexting, substance use, and sexual risk behavior in young adults
Benotsch, Eric G.; Snipes, Daniel J.; Martin, Aaron M.; Bull, Sheana S.
2012-01-01
Purpose Cell phone use has become more widespread over the past decade. Young adults are frequently early adopters of new technologies, including cell phones. Most prior research examining sexting, the act of sending sexually explicit or suggestive images via text message, has focused on the legal or social consequences of this behavior. The current study focused on the public health implications of sexting by examining associations between sexting, substance use, and sexual risk behavior in youth. Methods Young adults (N=763) completed online questionnaires assessing demographics, cell phone use (e.g., texting, sexting), substance use, and sexual risk behaviors. Results Sexting was reported by a substantial minority of participants (44%). Compared to their non-sexting counterparts, participants who engaged in sexting were more likely to report recent substance use and high-risk sexual behaviors, including unprotected sex and sex with multiple partners. Of those who engaged in sexting, a considerable percentage (31.8%) reported having sex with a new partner for the first time after sexting with that person. In multivariate analyses, sexting was associated with high-risk sexual behavior after accounting for demographic factors, total texting behaviors, and substance use. Conclusions Results suggest that sexting is robustly associated with high-risk sexual behavior. Many individuals exchange explicit or provocative photos with long-term sexual partners, but at least some participants in this study were incurring new sexual risks subsequent to sexting. Additional research is needed to understand the contexts in which sexting occurs, motivations for sexting, and relationship of sexting to risk behavior. PMID:23299017
Sexting, substance use, and sexual risk behavior in young adults.
Benotsch, Eric G; Snipes, Daniel J; Martin, Aaron M; Bull, Sheana S
2013-03-01
Cell phone use has become more widespread over the past decade. Young adults are frequently early adopters of new technologies, including cell phones. Most previous research examining sexting, the act of sending sexually explicit or suggestive images via text message, has focused on the legal or social consequences of this behavior. The current study focused on the public health implications of sexting by examining associations between sexting, substance use, and sexual risk behavior in youth. Young adults (N = 763) completed online questionnaires assessing demographics, cell phone use (e.g., texting, sexting), substance use, and sexual risk behaviors. Sexting was reported by a substantial minority of participants (44%). Compared with their nonsexting counterparts, participants who engaged in sexting were more likely to report recent substance use and high-risk sexual behaviors, including unprotected sex and sex with multiple partners. Of those who engaged in sexting, a considerable percentage (31.8%) reported having sex with a new partner for the first time after sexting with that person. In multivariate analyses, sexting was associated with high-risk sexual behavior, after accounting for demographic factors, total texting behaviors, and substance use. Results suggest that sexting is robustly associated with high-risk sexual behavior. Many individuals exchange explicit or provocative photos with long-term sexual partners, but at least some participants in this study were incurring new sexual risks after sexting. Additional research is needed to understand the contexts in which sexting occurs, motivations for sexting, and relationship of sexting to risk behavior. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Almansa, Josué; Vermunt, Jeroen K; Forero, Carlos G; Vilagut, Gemma; De Graaf, Ron; De Girolamo, Giovanni; Alonso, Jordi
2011-06-01
Epidemiological studies on mental health and mental comorbidity are usually based on prevalences and correlations between disorders, or some other form of bivariate clustering of disorders. In this paper, we propose a Factor Mixture Model (FMM) methodology based on conceptual models aiming to measure and summarize distinctive disorder information in the internalizing and externalizing dimensions. This methodology includes explicit modelling of subpopulations with and without 12 month disorders ("ill" and "healthy") by means of latent classes, as well as assessment of model invariance and estimation of dimensional scores. We applied this methodology with an internalizing/externalizing two-factor model, to a representative sample gathered in the European Study of the Epidemiology of Mental Disorders (ESEMeD) study -- which includes 8796 individuals from six countries, and used the CIDI 3.0 instrument for disorder assessment. Results revealed that southern European countries have significantly higher mental health levels concerning internalizing/externalizing disorders than central countries; males suffered more externalizing disorders than women did, and conversely, internalizing disorders were more frequent in women. Differences in mental-health level between socio-demographic groups were due to different proportions of healthy and ill individuals and, noticeably, to the ameliorating influence of marital status on severity. An advantage of latent model-based scores is that the inclusion of additional mental-health dimensional information -- other than diagnostic data -- allows for greater precision within a target range of scores. Copyright © 2011 John Wiley & Sons, Ltd.
Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis
NASA Astrophysics Data System (ADS)
Dawkins, Bryan A.; Laverty, Sean M.
2016-03-01
Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.
RELATIONSHIP OF STD-RELATED SHAME AND STIGMA TO FEMALE ADOLESCENTS’ CONDOM-PROTECTED INTERCOURSE
Sales, Jessica M.; DiClemente, Ralph J.; Rose, Eve S.; Wingood, Gina M.; Klein, Jonathan D.; Woods, Elizabeth R.
2007-01-01
Purpose Shame and stigma associated with sexually transmitted diseases (STDs) are barriers to adolescents seeking prompt and appropriate diagnosis and treatment. However, little is known about how these constructs are related to STD-protective behaviors, such as condom-protected intercourse. Thus, we prospectively examined the relationship between shame and stigma and condom-use in adolescent females. Methods 192 African American females age 17.4 ± 1.7 years (range 15-21) were recruited for the study from local teen oriented health clinics. At baseline, participants completed demographic and psychosocial measures (including STD-related shame and stigma), and chart or laboratory confirmed history of STDs was obtained. At six months follow-up, rate of condom-protected intercourse in past 14 days prior to follow-up was assessed. Participants’ baseline shame and stigma scores, prior history of STDs, and select demographic and theoretically important psychosocial variables were entered into a hierarchical linear regression model to predict condom-protected intercourse in the 14 days prior to the 6 month follow-up assessment. Results After controlling for variables identified in bivariate correlations, STD-related shame was significantly predictive of condom-protected intercourse in the 14 days prior to follow-up, with higher shame predicting higher rates of condom-protected intercourse. Conclusions Future prevention efforts attempting to reduce adolescents’ risks for STDs and HIV may benefit from addressing STD-related shame and stigma in addition to explicitly linking health-promoting behavior changes (condom use) to a decreased likelihood of future infection with STDs. PMID:17531767
A Unified Framework for Monetary Theory and Policy Analysis.
ERIC Educational Resources Information Center
Lagos, Ricardo; Wright, Randall
2005-01-01
Search-theoretic models of monetary exchange are based on explicit descriptions of the frictions that make money essential. However, tractable versions of these models typically make strong assumptions that render them ill suited for monetary policy analysis. We propose a new framework, based on explicit micro foundations, within which macro…
A Naturalistic Inquiry into Praxis When Education Instructors Use Explicit Metacognitive Modeling
ERIC Educational Resources Information Center
Shannon, Nancy Gayle
2014-01-01
This naturalistic inquiry brought together six education instructors in one small teacher preparation program to explore what happens to educational instructors' praxis when the education instructors use explicit metacognitive modeling to reveal their thinking behind their pedagogical decision-making. The participants, while teaching an…
Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach
Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy
2013-01-01
Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.
Can a continuum solvent model reproduce the free energy landscape of a -hairpin folding in water?
NASA Astrophysics Data System (ADS)
Zhou, Ruhong; Berne, Bruce J.
2002-10-01
The folding free energy landscape of the C-terminal -hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the -hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native -strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this -hairpin. Furthermore, the -hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.
Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?
Zhou, Ruhong; Berne, Bruce J.
2002-01-01
The folding free energy landscape of the C-terminal β-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the β-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native β-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this β-hairpin. Furthermore, the β-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and ≈80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields. PMID:12242327
Zhou, Ruhong; Berne, Bruce J
2002-10-01
The folding free energy landscape of the C-terminal beta-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the beta-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native beta-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this beta-hairpin. Furthermore, the beta-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and approximately equal 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.
2013-01-01
Background A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Methods Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. Results The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. Conclusions The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data. PMID:24192051
Modeling individual animal histories with multistate capture–recapture models
Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.
2009-01-01
Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide range of important issues in ecology. In this paper, we draw together information on the state of the art in multistate mark–recapture methods, explaining the models and illustrating their use. We provide a modeling philosophy and a series of general principles on how to conduct analyses. We cover key issues and features, and we anticipate the ways in which we expect the models to develop in the years ahead.
ERIC Educational Resources Information Center
Schneider, Darryl W.; Logan, Gordon D.
2005-01-01
Switch costs in task switching are commonly attributed to an executive control process of task-set reconfiguration, particularly in studies involving the explicit task-cuing procedure. The authors propose an alternative account of explicitly cued performance that is based on 2 mechanisms: priming of cue encoding from residual activation of cues in…
The Things You Do: Internal Models of Others’ Expected Behaviour Guide Action Observation
Schenke, Kimberley C.; Wyer, Natalie A.; Bach, Patric
2016-01-01
Predictions allow humans to manage uncertainties within social interactions. Here, we investigate how explicit and implicit person models–how different people behave in different situations–shape these predictions. In a novel action identification task, participants judged whether actors interacted with or withdrew from objects. In two experiments, we manipulated, unbeknownst to participants, the two actors action likelihoods across situations, such that one actor typically interacted with one object and withdrew from the other, while the other actor showed the opposite behaviour. In Experiment 2, participants additionally received explicit information about the two individuals that either matched or mismatched their actual behaviours. The data revealed direct but dissociable effects of both kinds of person information on action identification. Implicit action likelihoods affected response times, speeding up the identification of typical relative to atypical actions, irrespective of the explicit knowledge about the individual’s behaviour. Explicit person knowledge, in contrast, affected error rates, causing participants to respond according to expectations instead of observed behaviour, even when they were aware that the explicit information might not be valid. Together, the data show that internal models of others’ behaviour are routinely re-activated during action observation. They provide first evidence of a person-specific social anticipation system, which predicts forthcoming actions from both explicit information and an individuals’ prior behaviour in a situation. These data link action observation to recent models of predictive coding in the non-social domain where similar dissociations between implicit effects on stimulus identification and explicit behavioural wagers have been reported. PMID:27434265
Ramirez, Jason J.; Dennhardt, Ashley A.; Baldwin, Scott A.; Murphy, James G.; Lindgren, Kristen P.
2016-01-01
Behavioral economic demand curve indices of alcohol consumption reflect decisions to consume alcohol at varying costs. Although these indices predict alcohol-related problems beyond established predictors, little is known about the determinants of elevated demand. Two cognitive constructs that may underlie alcohol demand are alcohol-approach inclinations and drinking identity. The aim of this study was to evaluate implicit and explicit measures of these constructs as predictors of alcohol demand curve indices. College student drinkers (N = 223, 59% female) completed implicit and explicit measures of drinking identity and alcohol-approach inclinations at three timepoints separated by three-month intervals, and completed the Alcohol Purchase Task to assess demand at Time 3. Given no change in our alcohol-approach inclinations and drinking identity measures over time, random intercept-only models were used to predict two demand indices: Amplitude, which represents maximum hypothetical alcohol consumption and expenditures, and Persistence, which represents sensitivity to increasing prices. When modeled separately, implicit and explicit measures of drinking identity and alcohol-approach inclinations positively predicted demand indices. When implicit and explicit measures were included in the same model, both measures of drinking identity predicted Amplitude, but only explicit drinking identity predicted Persistence. In contrast, explicit measures of alcohol-approach inclinations, but not implicit measures, predicted both demand indices. Therefore, there was more support for explicit, versus implicit, measures as unique predictors of alcohol demand. Overall, drinking identity and alcohol-approach inclinations both exhibit positive associations with alcohol demand and represent potentially modifiable cognitive constructs that may underlie elevated demand in college student drinkers. PMID:27379444
Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.
Malehi, Amal Saki
2014-01-01
The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.
A Three-Stage Model of Housing Search,
1980-05-01
Hanushek and Quigley, 1978) that recognize housing search as a transaction cost but rarely - .. examine search behavior; and descriptive studies of search...explicit mobility models that have recently appeared in the liter- ature (Speare et al., 1975; Hanushek and Quigley, 1978; Brummell, 1979). Although...1978; Hanushek and Quigley, 1978; Cronin, 1978). By explicitly assigning dollar values, the economic models attempt to obtain an objective measure of
DoD Product Line Practice Workshop Report
1998-05-01
capability. The essential enterprise management practices include ensuring sound business goals providing an appropriate funding model performing...business. This way requires vision and explicit support at the organizational level. There must be an explicit funding model to support the development...the same group seems to work best in smaller organizations. A funding model for core asset development also needs to be developed because the core
Underage Use of Social Network Sites: It's About Friends.
Barbovschi, Monica; Macháčková, Hana; Ólafsson, Kjartan
2015-06-01
European self-regulation to ensure children's safety on social networking sites (SNS) stipulates that children should be old enough to use their services. However, a growing number of children are not. Drawing on data from the Net Children Go Mobile (NCGM) project (2012-2014), this study focuses on children aged 9-12 years, among whom 42% have a profile on Facebook, many with the explicit permission of their parents, despite the explicit policy allowing only children aged 13 years and older. Yet, such parental influence is not the only factor contributing to an underage child having a profile. Hierarchical logistic regressions were conducted in which the odds of having a profile on Facebook among children aged 9-12 years (N=1,723) were predicted. After controlling for demographic variables, Facebook use was connected to daily use of the Internet from home (bedroom and other places), looking for new friends online, and online disinhibition (e.g., being able to talk about different things on the Internet than when speaking to people face-to-face). In terms of parental mediation, restrictions lower the probabilities of an underage child having a SNS profile, while active parental mediation increases the odds. In addition to parental mediation, peer mediation increases the chances of underage Facebook use, indicating that children play a significant role in influencing each other in adoption of new technologies and applications. Finally, digital skills related to communication have a significant effect, suggesting an integrated adoption of communicative practices online. Daily use of mobile devices had no effect in the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieder, William R.; Allison, Steven D.; Davidson, Eric A.
Microbes influence soil organic matter (SOM) decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) may make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here, we review the diversity, advantages, and pitfalls of simulating soilmore » biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models we suggest: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.« less
An online database for informing ecological network models: http://kelpforest.ucsc.edu.
Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H; Tinker, Martin T; Black, August; Caselle, Jennifer E; Hoban, Michael; Malone, Dan; Iles, Alison
2014-01-01
Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).
An Online Database for Informing Ecological Network Models: http://kelpforest.ucsc.edu
Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H.; Tinker, Martin T.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison
2014-01-01
Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui). PMID:25343723
Nowakowski, Lindsey; Barfield, Wanda D; Kroelinger, Charlan D; Lauver, Cassie B; Lawler, Michele H; White, Vanessa A; Ramos, Lauren Raskin
2012-01-01
The goal of this study was to examine state measurements and improvements in risk-appropriate care for very low birth weight (VLBW) infants. The authors reviewed state perinatal regionalization models and levels of care to compare varying definitions between states and assess mechanisms of measurement and areas for improvement. Seven states that presented at a 2009 Association of Maternal & Child Health Programs Perinatal Regionalization Meeting were included in the assessment. Information was gathered from meeting presentations, presenters, state representatives, and state websites. Comparison of state levels of care and forms of regulation were outlined. Review of state models revealed variability in the models themselves, as well as the various mechanisms for measuring and improving risk-appropriate care. Regulation of regionalization programs, data surveillance, review of adverse events, and consideration of geography and demographics were identified as mechanisms facilitating better measurement of risk-appropriate care. Antenatal or neonatal transfer arrangements, telemedicine networks, acquisition of funding, provision of financial incentives, and patient education comprised state actions for improving risk-appropriate care. The void of explicit and updated national standards led to the current variations in definitions and models among states. State regionalization models and measures of risk-appropriate care varied greatly. These variations arose from inconsistent definitions and models of perinatal regionalization. Guidelines should be collaboratively developed by healthcare providers and public health officials for consistent and suitable measures of perinatal risk-appropriate care.
The Built Environment and Active Travel: Evidence from Nanjing, China.
Feng, Jianxi
2016-03-08
An established relationship exists between the built environment and active travel. Nevertheless, the literature examining the impacts of different components of the built environment is limited. In addition, most existing studies are based on data from cities in the U.S. and Western Europe. The situation in Chinese cities remains largely unknown. Based on data from Nanjing, China, this study explicitly examines the influences of two components of the built environment--the neighborhood form and street form--on residents' active travel. Binary logistic regression analyses examined the effects of the neighborhood form and street form on subsistence, maintenance and discretionary travel, respectively. For each travel purpose, three models are explored: a model with only socio-demographics, a model with variables of the neighborhood form and a complete model with all variables. The model fit indicator, Nagelkerke's ρ², increased by 0.024 when neighborhood form variables are included and increased by 0.070 when street form variables are taken into account. A similar situation can be found in the models of maintenance activities and discretionary activities. Regarding specific variables, very limited significant impacts of the neighborhood form variables are observed, while almost all of the characteristics of the street form show significant influences on active transport. In Nanjing, street form factors have a more profound influence on active travel than neighborhood form factors. The focal point of the land use regulations and policy of local governments should shift from the neighborhood form to the street form to maximize the effects of policy interventions.
An online database for informing ecological network models: http://kelpforest.ucsc.edu
Beas-Luna, Rodrigo; Tinker, M. Tim; Novak, Mark; Carr, Mark H.; Black, August; Caselle, Jennifer E.; Hoban, Michael; Malone, Dan; Iles, Alison C.
2014-01-01
Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).
Self-Love or Other-Love? Explicit Other-Preference but Implicit Self-Preference
Gebauer, Jochen E.; Göritz, Anja S.; Hofmann, Wilhelm; Sedikides, Constantine
2012-01-01
Do humans prefer the self even over their favorite other person? This question has pervaded philosophy and social-behavioral sciences. Psychology’s distinction between explicit and implicit preferences calls for a two-tiered solution. Our evolutionarily-based Dissociative Self-Preference Model offers two hypotheses. Other-preferences prevail at an explicit level, because they convey caring for others, which strengthens interpersonal bonds–a major evolutionary advantage. Self-preferences, however, prevail at an implicit level, because they facilitate self-serving automatic behavior, which favors the self in life-or-die situations–also a major evolutionary advantage. We examined the data of 1,519 participants, who completed an explicit measure and one of five implicit measures of preferences for self versus favorite other. The results were consistent with the Dissociative Self-Preference Model. Explicitly, participants preferred their favorite other over the self. Implicitly, however, they preferred the self over their favorite other (be it their child, romantic partner, or best friend). Results are discussed in relation to evolutionary theorizing on self-deception. PMID:22848605
ERIC Educational Resources Information Center
Petty, Richard E.; Brinol, Pablo
2006-01-01
Comments on the article by B. Gawronski and G. V. Bodenhausen (see record 2006-10465-003). A metacognitive model (MCM) is presented to describe how automatic (implicit) and deliberative (explicit) measures of attitudes respond to change attempts. The model assumes that contemporary implicit measures tap quick evaluative associations, whereas…
We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quant...
We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...
Marissen, Marlies A E; Brouwer, Marlies E; Hiemstra, Annemarie M F; Deen, Mathijs L; Franken, Ingmar H A
2016-08-30
The mask model of narcissism states that the narcissistic traits of patients with NPD are the result of a compensatory reaction to underlying ego fragility. This model assumes that high explicit self-esteem masks low implicit self-esteem. However, research on narcissism has predominantly focused on non-clinical participants and data derived from patients diagnosed with Narcissistic Personality Disorder (NPD) remain scarce. Therefore, the goal of the present study was to test the mask model hypothesis of narcissism among patients with NPD. Male patients with NPD were compared to patients with other PD's and healthy participants on implicit and explicit self-esteem. NPD patients did not differ in levels of explicit and implicit self-esteem compared to both the psychiatric and the healthy control group. Overall, the current study found no evidence in support of the mask model of narcissism among a clinical group. This implicates that it might not be relevant for clinicians to focus treatment of NPD on an underlying negative self-esteem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Stoel, Gerhard L.; van Drie, Jannet P.; van Boxtel, Carla A. M.
2017-01-01
This article reports an experimental study on the effects of explicit teaching on 11th grade students' ability to reason causally in history. Underpinned by the model of domain learning, explicit teaching is conceptualized as multidimensional, focusing on strategies and second-order concepts to generate and verbalize causal explanations and…
Keatley, David; Clarke, David D; Hagger, Martin S
2012-01-01
The literature on health-related behaviours and motivation is replete with research involving explicit processes and their relations with intentions and behaviour. Recently, interest has been focused on the impact of implicit processes and measures on health-related behaviours. Dual-systems models have been proposed to provide a framework for understanding the effects of explicit or deliberative and implicit or impulsive processes on health behaviours. Informed by a dual-systems approach and self-determination theory, the aim of this study was to test the effects of implicit and explicit motivation on three health-related behaviours in a sample of undergraduate students (N = 162). Implicit motives were hypothesised to predict behaviour independent of intentions while explicit motives would be mediated by intentions. Regression analyses indicated that implicit motivation predicted physical activity behaviour only. Across all behaviours, intention mediated the effects of explicit motivational variables from self-determination theory. This study provides limited support for dual-systems models and the role of implicit motivation in the prediction of health-related behaviour. Suggestions for future research into the role of implicit processes in motivation are outlined.
NASA Astrophysics Data System (ADS)
Yulia, M.; Suhandy, D.
2018-03-01
NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.
NASA Astrophysics Data System (ADS)
Wilde, M. V.; Sergeeva, N. V.
2018-05-01
An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.
Mapping fires and American Red Cross aid using demographic indicators of vulnerability.
Lue, Evan; Wilson, John P
2017-04-01
Social vulnerability indicators can assist with informing disaster relief preparation. Certain demographic segments of a population may suffer disproportionately during disaster events, and a geographical understanding of them can help to determine where to place strategically logistical assets and to target disaster-awareness outreach endeavours. Records of house fire events and American Red Cross aid provision over a five-year period were mapped for the County of Los Angeles, California, United States, to examine the congruence between actual events and expectations of risk based on vulnerability theory. The geographical context provided by the data was compared with spatially-explicit indicators of vulnerability, such as age, race, and wealth. Fire events were found to occur more frequently in more vulnerable areas, and Red Cross aid was found to have an even stronger relationship to those places. The findings suggest that these indicators speak beyond vulnerability and relate to patterns of fire risk. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.
Age effects on explicit and implicit memory
Ward, Emma V.; Berry, Christopher J.; Shanks, David R.
2013-01-01
It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favors the single-system view. Implications for the memory systems debate are discussed. PMID:24065942
High-Order/Low-Order methods for ocean modeling
Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; ...
2015-06-01
In this study, we examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We show how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Tan, H. Q.; Zhang, Y.
1993-01-01
The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models is addressed. To this end, special purpose functions (running under MACSYMA) are developed for the symbolic derivation, evaluation, and automatic FORTRAN code generation of explicit expressions for the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid over the entire deformation range, since the singularities resulting from repeated principal-stretch values have been theoretically removed. The required computational algorithms are outlined, and the resulting FORTRAN computer code is presented.
DeLong, John P; Burger, Oskar; Hamilton, Marcus J
2010-10-05
Influential demographic projections suggest that the global human population will stabilize at about 9-10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections.
Fujiwara, Esther; Tomlinson, Sara E; Purdon, Scot E; Gill, M John; Power, Christopher
2015-01-01
Human immunodeficiency virus (HIV) can affect the frontal-striatal brain regions, which are known to subserve decision-making functions. Previous studies have reported impaired decision making among HIV+ individuals using the Iowa Gambling Task, a task that assesses decision making under ambiguity. Previous study populations often had significant comorbidities such as past or present substance use disorders and/or hepatitis C virus coinfection, complicating conclusions about the unique contributions of HIV-infection to decision making. Decision making under explicit risk has very rarely been examined in HIV+ individuals and was tested here using the Game of Dice Task (GDT). We examined decision making under explicit risk in the GDT in 20 HIV+ individuals without substance use disorder or HCV coinfection, including a demographically matched healthy control group (n = 20). Groups were characterized on a standard neuropsychological test battery. For the HIV+ group, several disease-related parameters (viral load, current and nadir CD4 T-cell count) were included. Analyses focused on the GDT and spanned between-group (t-tests; analysis of covariance, ANCOVA) as well as within-group comparisons (Pearson/Spearman correlations). HIV+ individuals were impaired in the GDT, compared to healthy controls (p = .02). Their decision-making impairments were characterized by less advantageous choices and more random choice strategies, especially towards the end of the task. Deficits in the GDT in the HIV+ group were related to executive dysfunctions, slowed processing/motor speed, and current immune system status (CD4+ T-cell levels, ps < .05). Decision making under explicit risk in the GDT can occur in HIV-infected individuals without comorbidities. The correlational patterns may point to underlying fronto-subcortical dysfunctions in HIV+ individuals. The GDT provides a useful measure to assess risky decision making in this population and should be tested in larger studies.
Class of self-limiting growth models in the presence of nonlinear diffusion
NASA Astrophysics Data System (ADS)
Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar
2002-06-01
The source term in a reaction-diffusion system, in general, does not involve explicit time dependence. A class of self-limiting growth models dealing with animal and tumor growth and bacterial population in a culture, on the other hand, are described by kinetics with explicit functions of time. We analyze a reaction-diffusion system to study the propagation of spatial front for these models.
Choi, J.; Seong, J.C.; Kim, B.; Usery, E.L.
2008-01-01
A feature relies on three dimensions (space, theme, and time) for its representation. Even though spatiotemporal models have been proposed, they have principally focused on the spatial changes of a feature. In this paper, a feature-based temporal model is proposed to represent the changes of both space and theme independently. The proposed model modifies the ISO's temporal schema and adds new explicit temporal relationship structure that stores temporal topological relationship with the ISO's temporal primitives of a feature in order to keep track feature history. The explicit temporal relationship can enhance query performance on feature history by removing topological comparison during query process. Further, a prototype system has been developed to test a proposed feature-based temporal model by querying land parcel history in Athens, Georgia. The result of temporal query on individual feature history shows the efficiency of the explicit temporal relationship structure. ?? Springer Science+Business Media, LLC 2007.
Latitude delineates patterns of biogeography in terrestrial Streptomyces.
Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H
2016-12-01
The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
lo, C. Owen
2014-01-01
Using a realist grounded theory method, this study resulted in a theoretical model and 4 propositions. As displayed in the LINK model, the labeling practice is situated in and endorsed by a social context that carries explicit theory about and educational policies regarding the labels. Taking a developmental perspective, the labeling practice…
Assessment of the GECKO-A Modeling Tool and Simplified 3D Model Parameterizations for SOA Formation
NASA Astrophysics Data System (ADS)
Aumont, B.; Hodzic, A.; La, S.; Camredon, M.; Lannuque, V.; Lee-Taylor, J. M.; Madronich, S.
2014-12-01
Explicit chemical mechanisms aim to embody the current knowledge of the transformations occurring in the atmosphere during the oxidation of organic matter. These explicit mechanisms are therefore useful tools to explore the fate of organic matter during its tropospheric oxidation and examine how these chemical processes shape the composition and properties of the gaseous and the condensed phases. Furthermore, explicit mechanisms provide powerful benchmarks to design and assess simplified parameterizations to be included 3D model. Nevertheless, the explicit mechanism describing the oxidation of hydrocarbons with backbones larger than few carbon atoms involves millions of secondary organic compounds, far exceeding the size of chemical mechanisms that can be written manually. Data processing tools can however be designed to overcome these difficulties and automatically generate consistent and comprehensive chemical mechanisms on a systematic basis. The Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) has been developed for the automatic writing of explicit chemical schemes of organic species and their partitioning between the gas and condensed phases. GECKO-A can be viewed as an expert system that mimics the steps by which chemists might develop chemical schemes. GECKO-A generates chemical schemes according to a prescribed protocol assigning reaction pathways and kinetics data on the basis of experimental data and structure-activity relationships. In its current version, GECKO-A can generate the full atmospheric oxidation scheme for most linear, branched and cyclic precursors, including alkanes and alkenes up to C25. Assessments of the GECKO-A modeling tool based on chamber SOA observations will be presented. GECKO-A was recently used to design a parameterization for SOA formation based on a Volatility Basis Set (VBS) approach. First results will be presented.
The mixed impact of medical school on medical students' implicit and explicit weight bias.
Phelan, Sean M; Puhl, Rebecca M; Burke, Sara E; Hardeman, Rachel; Dovidio, John F; Nelson, David B; Przedworski, Julia; Burgess, Diana J; Perry, Sylvia; Yeazel, Mark W; van Ryn, Michelle
2015-10-01
Health care trainees demonstrate implicit (automatic, unconscious) and explicit (conscious) bias against people from stigmatised and marginalised social groups, which can negatively influence communication and decision making. Medical schools are well positioned to intervene and reduce bias in new physicians. This study was designed to assess medical school factors that influence change in implicit and explicit bias against individuals from one stigmatised group: people with obesity. This was a prospective cohort study of medical students enrolled at 49 US medical schools randomly selected from all US medical schools within the strata of public and private schools and region. Participants were 1795 medical students surveyed at the beginning of their first year and end of their fourth year. Web-based surveys included measures of weight bias, and medical school experiences and climate. Bias change was compared with changes in bias in the general public over the same period. Linear mixed models were used to assess the impact of curriculum, contact with people with obesity, and faculty role modelling on weight bias change. Increased implicit and explicit biases were associated with less positive contact with patients with obesity and more exposure to faculty role modelling of discriminatory behaviour or negative comments about patients with obesity. Increased implicit bias was associated with training in how to deal with difficult patients. On average, implicit weight bias decreased and explicit bias increased during medical school, over a period of time in which implicit weight bias in the general public increased and explicit bias remained stable. Medical schools may reduce students' weight biases by increasing positive contact between students and patients with obesity, eliminating unprofessional role modelling by faculty members and residents, and altering curricula focused on treating difficult patients. © 2015 John Wiley & Sons Ltd.
DEMOGRAPHIC UNCERTAINTY IN ECOLOGICAL RISK ASSESSMENTS. (R825347)
We built a Ricker's model incorporating demographic stochasticity to simulate the effects of demographic uncertainty on responses of gray-tailed vole (Microtus canicaudus) populations to pesticide applications. We constructed models with mark-recapture data collected from populat...
Explicit and implicit learning: The case of computer programming
NASA Astrophysics Data System (ADS)
Mancy, Rebecca
The central question of this thesis concerns the role of explicit and implicit learning in the acquisition of a complex skill, namely computer programming. This issue is explored with reference to information processing models of memory drawn from cognitive science. These models indicate that conscious information processing occurs in working memory where information is stored and manipulated online, but that this mode of processing shows serious limitations in terms of capacity or resources. Some information processing models also indicate information processing in the absence of conscious awareness through automation and implicit learning. It was hypothesised that students would demonstrate implicit and explicit knowledge and that both would contribute to their performance in programming. This hypothesis was investigated via two empirical studies. The first concentrated on temporary storage and online processing in working memory and the second on implicit and explicit knowledge. Storage and processing were tested using two tools: temporary storage capacity was measured using a digit span test; processing was investigated with a disembedding test. The results were used to calculate correlation coefficients with performance on programming examinations. Individual differences in temporary storage had only a small role in predicting programming performance and this factor was not a major determinant of success. Individual differences in disembedding were more strongly related to programming achievement. The second study used interviews to investigate the use of implicit and explicit knowledge. Data were analysed according to a grounded theory paradigm. The results indicated that students possessed implicit and explicit knowledge, but that the balance between the two varied between students and that the most successful students did not necessarily possess greater explicit knowledge. The ways in which students described their knowledge led to the development of a framework which extends beyond the implicit-explicit dichotomy to four descriptive categories of knowledge along this dimension. Overall, the results demonstrated that explicit and implicit knowledge both contribute to the acquisition ofprogramming skills. Suggestions are made for further research, and the results are discussed in the context of their implications for education.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)
2001-01-01
Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.
Evaluation of habitat suitability models for forest passerines using demographic data
Chadwick D. Rittenhouse; Frank R., III Thompson; William D. Dijak; Joshua J. Millspaugh; Richard L. Clawson
2010-01-01
Habitat suitability is often used as a surrogate for demographic responses (i.e., abundance, survival, fecundity, or population viability) in the application of habitat suitability index (HSI) models. Whether habitat suitability actually relates to demographics, however, has rarely been evaluated. We validated HSI models of breeding habitat suitability for wood thrush...
Testing the cognitive catalyst model of rumination with explicit and implicit cognitive content.
Sova, Christopher C; Roberts, John E
2018-06-01
The cognitive catalyst model posits that rumination and negative cognitive content, such as negative schema, interact to predict depressive affect. Past research has found support for this model using explicit measures of negative cognitive content such as self-report measures of trait self-esteem and dysfunctional attitudes. The present study tested whether these findings would extend to implicit measures of negative cognitive content such as implicit self-esteem, and whether effects would depend on initial mood state and history of depression. Sixty-one undergraduate students selected on the basis of depression history (27 previously depressed; 34 never depressed) completed explicit and implicit measures of negative cognitive content prior to random assignment to a rumination induction followed by a distraction induction or vice versa. Dysphoric affect was measured both before and after these inductions. Analyses revealed that explicit measures, but not implicit measures, interacted with rumination to predict change in dysphoric affect, and these interactions were further moderated by baseline levels of dysphoria. Limitations include the small nonclinical sample and use of a self-report measure of depression history. These findings suggest that rumination amplifies the association between explicit negative cognitive content and depressive affect primarily among people who are already experiencing sad mood. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of explicit dimension instruction on speech category learning
Chandrasekaran, Bharath; Yi, Han-Gyol; Smayda, Kirsten E.; Maddox, W. Todd
2015-01-01
Learning non-native speech categories is often considered a challenging task in adulthood. This difficulty is driven by cross-language differences in weighting critical auditory dimensions that differentiate speech categories. For example, previous studies have shown that differentiating Mandarin tonal categories requires attending to dimensions related to pitch height and direction. Relative to native speakers of Mandarin, the pitch direction dimension is under-weighted by native English speakers. In the current study, we examined the effect of explicit instructions (dimension instruction) on native English speakers' Mandarin tone category learning within the framework of a dual-learning systems (DLS) model. This model predicts that successful speech category learning is initially mediated by an explicit, reflective learning system that frequently utilizes unidimensional rules, with an eventual switch to a more implicit, reflexive learning system that utilizes multidimensional rules. Participants were explicitly instructed to focus and/or ignore the pitch height dimension, the pitch direction dimension, or were given no explicit prime. Our results show that instruction instructing participants to focus on pitch direction, and instruction diverting attention away from pitch height resulted in enhanced tone categorization. Computational modeling of participant responses suggested that instruction related to pitch direction led to faster and more frequent use of multidimensional reflexive strategies, and enhanced perceptual selectivity along the previously underweighted pitch direction dimension. PMID:26542400
The explicit and implicit dance in psychoanalytic change.
Fosshage, James L
2004-02-01
How the implicit/non-declarative and explicit/declarative cognitive domains interact is centrally important in the consideration of effecting change within the psychoanalytic arena. Stern et al. (1998) declare that long-lasting change occurs in the domain of implicit relational knowledge. In the view of this author, the implicit and explicit domains are intricately intertwined in an interactive dance within a psychoanalytic process. The author views that a spirit of inquiry (Lichtenberg, Lachmann & Fosshage 2002) serves as the foundation of the psychoanalytic process. Analyst and patient strive to explore, understand and communicate and, thereby, create a 'spirit' of interaction that contributes, through gradual incremental learning, to new implicit relational knowledge. This spirit, as part of the implicit relational interaction, is a cornerstone of the analytic relationship. The 'inquiry' more directly brings explicit/declarative processing to the foreground in the joint attempt to explore and understand. The spirit of inquiry in the psychoanalytic arena highlights both the autobiographical scenarios of the explicit memory system and the mental models of the implicit memory system as each contributes to a sense of self, other, and self with other. This process facilitates the extrication and suspension of the old models, so that new models based on current relational experience can be gradually integrated into both memory systems for lasting change.
Soliciting scientific information and beliefs in predictive modeling and adaptive management
NASA Astrophysics Data System (ADS)
Glynn, P. D.; Voinov, A. A.; Shapiro, C. D.
2015-12-01
Post-normal science requires public engagement and adaptive corrections in addressing issues with high complexity and uncertainty. An adaptive management framework is presented for the improved management of natural resources and environments through a public participation process. The framework solicits the gathering and transformation and/or modeling of scientific information but also explicitly solicits the expression of participant beliefs. Beliefs and information are compared, explicitly discussed for alignments or misalignments, and ultimately melded back together as a "knowledge" basis for making decisions. An effort is made to recognize the human or participant biases that may affect the information base and the potential decisions. In a separate step, an attempt is made to recognize and predict the potential "winners" and "losers" (perceived or real) of any decision or action. These "winners" and "losers" include present human communities with different spatial, demographic or socio-economic characteristics as well as more dispersed or more diffusely characterized regional or global communities. "Winners" and "losers" may also include future human communities as well as communities of other biotic species. As in any adaptive management framework, assessment of predictions, iterative follow-through and adaptation of policies or actions is essential, and commonly very difficult or impossible to achieve. Recognizing beforehand the limits of adaptive management is essential. More generally, knowledge of the behavioral and economic sciences and of ethics and sociology will be key to a successful implementation of this adaptive management framework. Knowledge of biogeophysical processes will also be essential, but by definition of the issues being addressed, will always be incomplete and highly uncertain. The human dimensions of the issues addressed and the participatory processes used carry their own complexities and uncertainties. Some ideas and principles are provided that may help guide and implement the proposed adaptive management framework and its public and stakeholder engagement processes. Examples and characteristics of issues that could be beneficially addressed through the proposed framework will also be presented.
Integrating remote sensing and spatially explicit epidemiological modeling
NASA Astrophysics Data System (ADS)
Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea
2015-04-01
Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.
Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madronich, Sasha
2015-12-09
The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.
Including resonances in the multiperipheral model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsky, S.S.; Snider, D.R.; Thomas, G.H.
1973-10-01
A simple generalization of the multiperipheral model (MPM) and the Mueller--Regge Model (MRM) is given which has improved phenomenological capabilities by explicitly incorporating resonance phenomena, and still is simple enough to be an important theoretical laboratory. The model is discussed both with and without charge. In addition, the one channel, two channel, three channel and N channel cases are explicitly treated. Particular attention is paid to the constraints of charge conservation and positivity in the MRM. The recently proven equivalence between the MRM and MPM is extended to this model, and is used extensively. (auth)
Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic
NASA Technical Reports Server (NTRS)
Gutierrez-Lemini, Danton; Ehle, Curt
2003-01-01
An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting
Modeling and predicting community responses to events using cultural demographics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Hicklen, Michael L.
2007-04-01
This paper describes a novel capability for modeling and predicting community responses to events (specifically military operations) related to demographics. Demographics in the form of words and/or numbers are used. As an example, State of Alabama annual demographic data for retail sales, auto registration, wholesale trade, shopping goods, and population were used; from which we determined a ranked estimate of the sensitivity of the demographic parameters on the cultural group response. Our algorithm and results are summarized in this paper.
Bondy, Andrew S.
1982-01-01
Twelve preschool children participated in a study of the effects of explicit training on the imitation of modeled behavior. The responses trained involved a marble-dropping pattern that differed from the modeled pattern. Training consisted of physical prompts and verbal praise during a single session. No prompts or praise were used during test periods. After operant levels of the experimental responses were measured, training either preceded or was interposed within a series of exposures to modeled behavior that differed from the trained behavior. Children who were initially exposed to a modeling session immediately imitated, whereas those children who were initially trained immediately performed the appropriate response. Children initially trained on one pattern generally continued to exhibit that pattern even after many modeling sessions. Children who first viewed the modeled response and then were exposed to explicit training of a different response reversed their response pattern from the trained response to the modeled response within a few sessions. The results suggest that under certain conditions explicit training will exert greater control over responding than immediate modeling stimuli. PMID:16812260
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Uncertainties in SOA Formation from the Photooxidation of α-pinene
NASA Astrophysics Data System (ADS)
McVay, R.; Zhang, X.; Aumont, B.; Valorso, R.; Camredon, M.; La, S.; Seinfeld, J.
2015-12-01
Explicit chemical models such as GECKO-A (the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) enable detailed modeling of gas-phase photooxidation and secondary organic aerosol (SOA) formation. Comparison between these explicit models and chamber experiments can provide insight into processes that are missing or unknown in these models. GECKO-A is used to model seven SOA formation experiments from α-pinene photooxidation conducted at varying seed particle concentrations with varying oxidation rates. We investigate various physical and chemical processes to evaluate the extent of agreement between the experiments and the model predictions. We examine the effect of vapor wall loss on SOA formation and how the importance of this effect changes at different oxidation rates. Proposed gas-phase autoxidation mechanisms are shown to significantly affect SOA predictions. The potential effects of particle-phase dimerization and condensed-phase photolysis are investigated. We demonstrate the extent to which SOA predictions in the α-pinene photooxidation system depend on uncertainties in the chemical mechanism.
Testing the Use of Implicit Solvent in the Molecular Dynamics Modelling of DNA Flexibility
NASA Astrophysics Data System (ADS)
Mitchell, J.; Harris, S.
DNA flexibility controls packaging, looping and in some cases sequence specific protein binding. Molecular dynamics simulations carried out with a computationally efficient implicit solvent model are potentially a powerful tool for studying larger DNA molecules than can be currently simulated when water and counterions are represented explicitly. In this work we compare DNA flexibility at the base pair step level modelled using an implicit solvent model to that previously determined from explicit solvent simulations and database analysis. Although much of the sequence dependent behaviour is preserved in implicit solvent, the DNA is considerably more flexible when the approximate model is used. In addition we test the ability of the implicit solvent to model stress induced DNA disruptions by simulating a series of DNA minicircle topoisomers which vary in size and superhelical density. When compared with previously run explicit solvent simulations, we find that while the levels of DNA denaturation are similar using both computational methodologies, the specific structural form of the disruptions is different.
Spatially explicit modelling of cholera epidemics
NASA Astrophysics Data System (ADS)
Finger, F.; Bertuzzo, E.; Mari, L.; Knox, A. C.; Gatto, M.; Rinaldo, A.
2013-12-01
Epidemiological models can provide crucial understanding about the dynamics of infectious diseases. Possible applications range from real-time forecasting and allocation of health care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. We apply a spatially explicit model to the cholera epidemic that struck Haiti in October 2010 and is still ongoing. The dynamics of susceptibles as well as symptomatic and asymptomatic infectives are modelled at the scale of local human communities. Dissemination of Vibrio cholerae through hydrological transport and human mobility along the road network is explicitly taken into account, as well as the effect of rainfall as a driver of increasing disease incidence. The model is calibrated using a dataset of reported cholera cases. We further model the long term impact of several types of interventions on the disease dynamics by varying parameters appropriately. Key epidemiological mechanisms and parameters which affect the efficiency of treatments such as antibiotics are identified. Our results lead to conclusions about the influence of different intervention strategies on the overall epidemiological dynamics.
Wagoner, Jason A.; Baker, Nathan A.
2006-01-01
Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675
Benjamin A. Crabb; James A. Powell; Barbara J. Bentz
2012-01-01
Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...
Emergence of a coherent and cohesive swarm based on mutual anticipation
Murakami, Hisashi; Niizato, Takayuki; Gunji, Yukio-Pegio
2017-01-01
Collective behavior emerging out of self-organization is one of the most striking properties of an animal group. Typically, it is hypothesized that each individual in an animal group tends to align its direction of motion with those of its neighbors. Most previous models for collective behavior assume an explicit alignment rule, by which an agent matches its velocity with that of neighbors in a certain neighborhood, to reproduce a collective order pattern by simple interactions. Recent empirical studies, however, suggest that there is no evidence for explicit matching of velocity, and that collective polarization arises from interactions other than those that follow the explicit alignment rule. We here propose a new lattice-based computational model that does not incorporate the explicit alignment rule but is based instead on mutual anticipation and asynchronous updating. Moreover, we show that this model can realize densely collective motion with high polarity. Furthermore, we focus on the behavior of a pair of individuals, and find that the turning response is drastically changed depending on the distance between two individuals rather than the relative heading, and is consistent with the empirical observations. Therefore, the present results suggest that our approach provides an alternative model for collective behavior. PMID:28406173
Flory-type theories of polymer chains under different external stimuli
NASA Astrophysics Data System (ADS)
Budkov, Yu A.; Kiselev, M. G.
2018-01-01
In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.
Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models
NASA Astrophysics Data System (ADS)
Gardner, D. J.; Guerra, J. E.; Hamon, F. P.; Reynolds, D. R.; Ullrich, P. A.; Woodward, C. S.
2016-12-01
The Accelerated Climate Modeling for Energy (ACME) project is developing a non-hydrostatic atmospheric dynamical core for high-resolution coupled climate simulations on Department of Energy leadership class supercomputers. An important factor in computational efficiency is avoiding the overly restrictive time step size limitations of fully explicit time integration methods due to the stiffest modes present in the model (acoustic waves). In this work we compare the accuracy and performance of different Implicit-Explicit (IMEX) splittings of the non-hydrostatic equations and various Additive Runge-Kutta (ARK) time integration methods. Results utilizing the Tempest non-hydrostatic atmospheric model and the ARKode package show that the choice of IMEX splitting and ARK scheme has a significant impact on the maximum stable time step size as well as solution quality. Horizontally Explicit Vertically Implicit (HEVI) approaches paired with certain ARK methods lead to greatly improved runtimes. With effective preconditioning IMEX splittings that incorporate some implicit horizontal dynamics can be competitive with HEVI results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-699187
Barnes, Marcia A.; Raghubar, Kimberly P.; Faulkner, Heather; Denton, Carolyn A.
2014-01-01
Readers construct mental models of situations described by text to comprehend what they read, updating these situation models based on explicitly described and inferred information about causal, temporal, and spatial relations. Fluent adult readers update their situation models while reading narrative text based in part on spatial location information that is consistent with the perspective of the protagonist. The current study investigates whether children update spatial situation models in a similar way, whether there are age-related changes in children's formation of spatial situation models during reading, and whether measures of the ability to construct and update spatial situation models are predictive of reading comprehension. Typically-developing children from ages 9 through 16 years (n=81) were familiarized with a physical model of a marketplace. Then the model was covered, and children read stories that described the movement of a protagonist through the marketplace and were administered items requiring memory for both explicitly stated and inferred information about the character's movements. Accuracy of responses and response times were evaluated. Results indicated that: (a) location and object information during reading appeared to be activated and updated not simply from explicit text-based information but from a mental model of the real world situation described by the text; (b) this pattern showed no age-related differences; and (c) the ability to update the situation model of the text based on inferred information, but not explicitly stated information, was uniquely predictive of reading comprehension after accounting for word decoding. PMID:24315376
NASA Astrophysics Data System (ADS)
Miller, Mary Ellen; Elliot, William E.; MacDonald, Lee H.
2013-04-01
Once the danger posed by an active wildfire has passed, land managers must rapidly assess the threat from post-fire runoff and erosion due to the loss of surface cover and fire-induced changes in soil properties. Increased runoff and sediment delivery are of great concern to both the pubic and resource managers. Post-fire assessments and proposals to mitigate these threats are typically undertaken by interdisciplinary Burned Area Emergency Response (BAER) teams. These teams are under very tight deadlines, so they often begin their analysis while the fire is still burning and typically must complete their plans within a couple of weeks. Many modeling tools and datasets have been developed over the years to assist BAER teams, but process-based, spatially explicit models are currently under-utilized relative to simpler, lumped models because they are more difficult to set up and require the preparation of spatially-explicit data layers such as digital elevation models, soils, and land cover. The difficulty of acquiring and utilizing these data layers in spatially-explicit models increases with increasing fire size. Spatially-explicit post-fire erosion modeling was attempted for a small watershed in the 1270 km2 Rock House fire in Texas, but the erosion modeling work could not be completed in time. The biggest limitation was the time required to extract the spatially explicit soils data needed to run the preferred post-fire erosion model (GeoWEPP with Disturbed WEPP parameters). The solution is to have the spatial soil, land cover, and DEM data layers prepared ahead of time, and to have a clear methodology for the BAER teams to incorporate these layers in spatially-explicit modeling interfaces like GeoWEPP. After a fire occurs the data layers can quickly be clipped to the fire perimeter. The soil and land cover parameters can then be adjusted according to the burn severity map, which is one of the first products generated for the BAER teams. Under a previous project for the U.S. Environmental Protection Agency this preparatory work was done for much of Colorado, and in June 2012 the High Park wildfire in north central Colorado burned over 340 km2. The data layers for the entire burn area were quickly assembled and the spatially explicit runoff and erosion modeling was completed in less than three days. The resulting predictions were then used by the BAER team to quantify downstream risks and delineate priority areas for different post-fire treatments. These two contrasting case studies demonstrate the feasibility and the value of preparing datasets and modeling tools ahead of time. In recognition of this, the U.S. National Aeronautic and Space Administration has agreed to fund a pilot project to demonstrate the utility of acquiring and preparing the necessary data layers for fire-prone wildlands across the western U.S. A similar modeling and data acquisition approach could be followed
Haeffel, Gerald J; Abramson, Lyn Y; Brazy, Paige C; Shah, James Y; Teachman, Bethany A; Nosek, Brian A
2007-06-01
Two studies were conducted to test a dual-process theory of cognitive vulnerability to depression. According to this theory, implicit and explicit cognitive processes have differential effects on depressive reactions to stressful life events. Implicit processes are hypothesized to be critical in determining an individual's immediate affective reaction to stress whereas explicit cognitions are thought to be more involved in long-term depressive reactions. Consistent with hypotheses, the results of study 1 (cross-sectional; N=237) showed that implicit, but not explicit, cognitions predicted immediate affective reactions to a lab stressor. Study 2 (longitudinal; N=251) also supported the dual-process model of cognitive vulnerability to depression. Results showed that both the implicit and explicit measures interacted with life stress to predict prospective changes in depressive symptoms, respectively. However, when both implicit and explicit predictors were entered into a regression equation simultaneously, only the explicit measure interacted with stress to remain a unique predictor of depressive symptoms over the five-week prospective interval.
Rogge, Jana; Kittel, Bernhard
2016-01-01
The principle of distributing health care according to medical need is being challenged by increasing costs. As a result, many countries have initiated a debate on the introduction of explicit priority regulations based on medical, economic and person-based criteria, or have already established such regulations. Previous research on individual attitudes towards setting health care priorities based on medical and economic criteria has revealed consistent results, whereas studies on the use of person-based criteria have generated controversial findings. This paper examines citizens' attitudes towards three person-based priority criteria, patients' smoking habits, age and being the parent of a young child. Using data from the ISSP Health Module (2011) in 28 countries, logistic regression analysis demonstrates that self-interest as well as socio-demographic predictors significantly influence respondents' attitudes towards the use of person-based criteria for health care prioritization. This study contributes to resolving the controversial findings on person-based criteria by using a larger country sample and by controlling for country-level differences with fixed effects models.
NASA Technical Reports Server (NTRS)
Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.
2006-01-01
Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.
Group-based differences in anti-aging bias among medical students.
Ruiz, Jorge G; Andrade, Allen D; Anam, Ramanakumar; Taldone, Sabrina; Karanam, Chandana; Hogue, Christie; Mintzer, Michael J
2015-01-01
Medical students (MS) may develop ageist attitudes early in their training that may predict their future avoidance of caring for the elderly. This study sought to determine MS' patterns of explicit and implicit anti-aging bias, intent to practice with older people and using the quad model, the role of gender, race, and motivation-based differences. One hundred and three MS completed an online survey that included explicit and implicit measures. Explicit measures revealed a moderately positive perception of older people. Female medical students and those high in internal motivation showed lower anti-aging bias, and both were more likely to intend to practice with older people. Although the implicit measure revealed more negativity toward the elderly than the explicit measures, there were no group differences. However, using the quad model the authors identified gender, race, and motivation-based differences in controlled and automatic processes involved in anti-aging bias.
COST VS. QUALITY IN DEMOGRAPHIC MODELLING: WHEN IS A VITAL RATE GOOD ENOUGH?
This presentation will focus on the assessment of quality for demographic parameters to be used in population-level risk assessment. Current population models can handle genetic, demographic, and environmental stochasticity, density dependence, and multiple stressors. However, cu...
van de Kerk, Madelon; de Kroon, Hans; Conde, Dalia A.; Jongejans, Eelke
2013-01-01
Of the 285 species of Carnivora 71 are threatened, while many of these species fulfill important ecological roles in their ecosystems as top or meso-predators. Population transition matrices make it possible to study how age-specific survival and fecundity affect population growth, extinction risks, and responses to management strategies. Here we review 38 matrix models from 35 studies on 27 Carnivora taxa, covering 11% of the threatened Carnivora species. We show that the elasticity patterns (i.e. distribution over fecundity, juvenile survival and adult survival) in Carnivora cover the same range in triangular elasticity plots as those of other mammal species, despite the specific place of Carnivora in the food chain. Furthermore, reproductive loop elasticity analysis shows that the studied species spread out evenly over a slow-fast continuum, but also quantifies the large variation in the duration of important life cycles and their contributions to population growth rate. These general elasticity patterns among species, and their correlation with simple life history characteristics like body mass, age of first reproduction and life span, enables the extrapolation of population dynamical properties to unstudied species. With several examples we discuss how this slow-fast continuum, and related patterns of variation in reproductive loop elasticity, can be used in the formulation of tentative management plans for threatened species that cannot wait for the results of thorough demographic studies. We argue, however, that such management programs should explicitly include a plan for learning about the key demographic rates and how these are affected by environmental drivers and threats. PMID:23950922
McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin
2017-01-01
ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.
NASA Astrophysics Data System (ADS)
Towler, Erin; Saab, Victoria A.; Sojda, Richard S.; Dickinson, Katherine; Bruyère, Cindy L.; Newlon, Karen R.
2012-12-01
Given the projected threat that climate change poses to biodiversity, the need for proactive response efforts is clear. However, integrating uncertain climate change information into conservation planning is challenging, and more explicit guidance is needed. To this end, this article provides a specific example of how a risk-based approach can be used to incorporate a species' response to climate into conservation decisions. This is shown by taking advantage of species' response (i.e., impact) models that have been developed for a well-studied bird species of conservation concern. Specifically, we examine the current and potential impact of climate on nest survival of the Lewis's Woodpecker ( Melanerpes lewis) in two different habitats. To address climate uncertainty, climate scenarios are developed by manipulating historical weather observations to create ensembles (i.e., multiple sequences of daily weather) that reflect historical variability and potential climate change. These ensembles allow for a probabilistic evaluation of the risk posed to Lewis's Woodpecker nest survival and are used in two demographic analyses. First, the relative value of each habitat is compared in terms of nest survival, and second, the likelihood of exceeding a critical population threshold is examined. By embedding the analyses in a risk framework, we show how management choices can be made to be commensurate with a defined level of acceptable risk. The results can be used to inform habitat prioritization and are discussed in the context of an economic framework for evaluating trade-offs between management alternatives.
Towler, Erin; Saab, Victoria A.; Sojda, Richard S.; Dickinson, Katherine; Bruyere, Cindy L.; Newlon, Karen R.
2012-01-01
Given the projected threat that climate change poses to biodiversity, the need for proactive response efforts is clear. However, integrating uncertain climate change information into conservation planning is challenging, and more explicit guidance is needed. To this end, this article provides a specific example of how a risk-based approach can be used to incorporate a species' response to climate into conservation decisions. This is shown by taking advantage of species' response (i.e., impact) models that have been developed for a well-studied bird species of conservation concern. Specifically, we examine the current and potential impact of climate on nest survival of the Lewis's Woodpecker (Melanerpes lewis) in two different habitats. To address climate uncertainty, climate scenarios are developed by manipulating historical weather observations to create ensembles (i.e., multiple sequences of daily weather) that reflect historical variability and potential climate change. These ensembles allow for a probabilistic evaluation of the risk posed to Lewis's Woodpecker nest survival and are used in two demographic analyses. First, the relative value of each habitat is compared in terms of nest survival, and second, the likelihood of exceeding a critical population threshold is examined. By embedding the analyses in a risk framework, we show how management choices can be made to be commensurate with a defined level of acceptable risk. The results can be used to inform habitat prioritization and are discussed in the context of an economic framework for evaluating trade-offs between management alternatives.
Mark A. Rumble; Lakhdar Benkobi; R. Scott Gamo
2007-01-01
We tested predictions of the spatially explicit ArcHSI habitat model for elk. The distribution of elk relative to proximity of forage and cover differed from that predicted. Elk used areas near primary roads similar to that predicted by the model, but elk were farther from secondary roads. Elk used areas categorized as good (> 0.7), fair (> 0.42 to 0.7), and poor...
Pulsar distances and the galactic distribution of free electrons
NASA Technical Reports Server (NTRS)
Taylor, J. H.; Cordes, J. M.
1993-01-01
The present quantitative model for Galactic free electron distribution abandons the assumption of axisymmetry and explicitly incorporates spiral arms; their shapes and locations are derived from existing radio and optical observations of H II regions. The Gum Nebula's dispersion-measure contributions are also explicitly modeled. Adjustable quantities are calibrated by reference to three different types of data. The new model is estimated to furnish distance estimates to known pulsars that are accurate to about 25 percent.
Whitman, Karyl L; Starfield, Anthony M; Quadling, Henley; Packer, Craig
2007-06-01
Tanzania is a premier destination for trophy hunting of African lions (Panthera leo) and is home to the most extensive long-term study of unhunted lions. Thus, it provides a unique opportunity to apply data from a long-term field study to a conservation dilemma: How can a trophy-hunted species whose reproductive success is closely tied to social stability be harvested sustainably? We used an individually based, spatially explicit, stochastic model, parameterized with nearly 40 years of behavioral and demographic data on lions in the Serengeti, to examine the separate effects of trophy selection and environmental disturbance on the viability of a simulated lion population in response to annual harvesting. Female population size was sensitive to the harvesting of young males (> or = 3 years), whereas hunting represented a relatively trivial threat to population viability when the harvest was restricted to mature males (> or = 6 years). Overall model performance was robust to environmental disturbance and to errors in age assessment based on nose coloration as an index used to age potential trophies. Introducing an environmental disturbance did not eliminate the capacity to maintain a viable breeding population when harvesting only older males, and initially depleted populations recovered within 15-25 years after the disturbance to levels comparable to hunted populations that did not experience a catastrophic event. These results are consistent with empirical observations of lion resilience to environmental stochasticity.
Continuum Fatigue Damage Modeling for Use in Life Extending Control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1994-01-01
This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
LES with and without explicit filtering: comparison and assessment of various models
NASA Astrophysics Data System (ADS)
Winckelmans, Gregoire S.; Jeanmart, Herve; Wray, Alan A.; Carati, Daniele
2000-11-01
The proper mathematical formalism for large eddy simulation (LES) of turbulent flows assumes that a regular ``explicit" filter (i.e., a filter with a well-defined second moment, such as the gaussian, the top hat, etc.) is applied to the equations of fluid motion. This filter is then responsible for a ``filtered-scale" stress. Because of the discretization of the filtered equations, using the LES grid, there is also a ``subgrid-scale" stress. The global effective stress is found to be the discretization of a filtered-scale stress plus a subgrid-scale stress. The former can be partially reconstructed from an exact, infinite, series, the first term of which is the ``tensor-diffusivity" model of Leonard and is found, in practice, to be sufficient for modeling. Alternatively, sufficient reconstruction can also be achieved using the ``scale-similarity" model of Bardina. The latter corresponds to loss of information: it cannot be reconstructed; its effect (essentially dissipation) must be modeled using ad hoc modeling strategies (such as the dynamic version of the ``effective viscosity" model of Smagorinsky). Practitionners also often assume LES without explicit filtering: the effective stress is then only a subgrid-scale stress. We here compare the performance of various LES models for both approaches (with and without explicit filtering), and for cases without solid boundaries: (1) decay of isotropic turbulence; (2) decay of aircraft wake vortices in a turbulent atmosphere. One main conclusion is that better subgrid-scale models are still needed, the effective viscosity models being too active at the large scales.
On the performance of explicit and implicit algorithms for transient thermal analysis
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.
1980-09-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.
NASA Astrophysics Data System (ADS)
McGuire, A. D.
2014-12-01
We conducted an assessment of changes in permafrost area and carbon storage simulated by process-based models between 1960 and 2300. The models participating in this comparison were those that had joined the model integration team of the Vulnerability of Permafrost Carbon Research Coordination Network (see http://www.biology.ufl.edu/permafrostcarbon/). Each of the models in this comparison conducted simulations over the permafrost land region in the Northern Hemisphere driven by CCSM4-simulated climate for RCP 4.5 and 8.5 scenarios. Among the models, the area of permafrost (defined as the area for which active layer thickness was less than 3 m) ranged between 13.2 and 20.0 million km2. Between 1960 and 2300, models indicated the loss of permafrost area between 5.1 to 6.0 million km2 for RCP 4.5 and between 7.1 and 15.2 million km2 for RCP 8.5. Among the models, the density of soil carbon storage in 1960 ranged between 13 and 42 thousand g C m-2; models that explicitly represented carbon with depth had estimates greater than 27 thousand g C m-2. For the RCP 4.5 scenario, changes in soil carbon between 1960 and 2300 ranged between losses of 32 Pg C to gains of 58 Pg C, in which models that explicitly represent soil carbon with depth simulated losses or lower gains of soil carbon in comparison with those that did not. For the RCP 8.5 scenario, changes in soil carbon between 1960 and 2300 ranged between losses of 642 Pg C to gains of 66 Pg C, in which those models that represent soil carbon explicitly with depth all simulated losses, while those that do not all simulated gains. These results indicate that there are substantial differences in responses of carbon dynamics between model that do and do not explicitly represent soil carbon with depth in the permafrost region. We present analyses of the implications of the differences for atmospheric carbon dynamics at multiple temporal scales between 1960 and 2300.
A multi-model framework for simulating wildlife population response to land-use and climate change
McRae, B.H.; Schumaker, N.H.; McKane, R.B.; Busing, R.T.; Solomon, A.M.; Burdick, C.A.
2008-01-01
Reliable assessments of how human activities will affect wildlife populations are essential for making scientifically defensible resource management decisions. A principle challenge of predicting effects of proposed management, development, or conservation actions is the need to incorporate multiple biotic and abiotic factors, including land-use and climate change, that interact to affect wildlife habitat and populations through time. Here we demonstrate how models of land-use, climate change, and other dynamic factors can be integrated into a coherent framework for predicting wildlife population trends. Our framework starts with land-use and climate change models developed for a region of interest. Vegetation changes through time under alternative future scenarios are predicted using an individual-based plant community model. These predictions are combined with spatially explicit animal habitat models to map changes in the distribution and quality of wildlife habitat expected under the various scenarios. Animal population responses to habitat changes and other factors are then projected using a flexible, individual-based animal population model. As an example application, we simulated animal population trends under three future land-use scenarios and four climate change scenarios in the Cascade Range of western Oregon. We chose two birds with contrasting habitat preferences for our simulations: winter wrens (Troglodytes troglodytes), which are most abundant in mature conifer forests, and song sparrows (Melospiza melodia), which prefer more open, shrubby habitats. We used climate and land-use predictions from previously published studies, as well as previously published predictions of vegetation responses using FORCLIM, an individual-based forest dynamics simulator. Vegetation predictions were integrated with other factors in PATCH, a spatially explicit, individual-based animal population simulator. Through incorporating effects of landscape history and limited dispersal, our framework predicted population changes that typically exceeded those expected based on changes in mean habitat suitability alone. Although land-use had greater impacts on habitat quality than did climate change in our simulations, we found that small changes in vital rates resulting from climate change or other stressors can have large consequences for population trajectories. The ability to integrate bottom-up demographic processes like these with top-down constraints imposed by climate and land-use in a dynamic modeling environment is a key advantage of our approach. The resulting framework should allow researchers to synthesize existing empirical evidence, and to explore complex interactions that are difficult or impossible to capture through piecemeal modeling approaches. ?? 2008 Elsevier B.V.
Shukla, Nagesh; Wickramasuriya, Rohan; Miller, Andrew; Perez, Pascal
2015-11-01
This paper proposes an integrated modelling approach for location planning of radiotherapy treatment services based on cancer incidence and road network-based accessibility. Previous research efforts have established travel distance/time barriers as a key factor affecting access to cancer treatment services, as well as epidemiological studies have shown that cancer incidence rates vary with population demography. Our study is built on the evidence that the travel distances to treatment centres and demographic profiles of the accessible regions greatly influence the uptake of cancer radiotherapy (RT) services. An integrated service planning approach that combines spatially-explicit cancer incidence projections, and the placement of new RT services based on road network based accessibility measures have never been attempted. This research presents a novel approach for the location planning of RT services, and demonstrates its viability by modelling cancer incidence rates for different age-sex groups in New South Wales, Australia based on observed cancer incidence trends; and estimations of the road network-based access to current NSW treatment centres. Using three indices (General Efficiency, Service Availability and Equity), we show how the best location for a new RT centre may be chosen when there are multiple competing locations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sturge-Apple, Melissa L.; Rogge, Ronald D.; Skibo, Michael A.; Peltz, Jack S.; Suor, Jennifer H.
2015-01-01
Extending dual process frameworks of cognition to a novel domain, the present study examined how mothers' explicit and implicit attitudes about her child may operate in models of parenting. To assess implicit attitudes, two separate studies were conducted using the same child-focused Go/No-go Association Task (GNAT-Child). In Study 1, model…
Calabi-Yau structures on categories of matrix factorizations
NASA Astrophysics Data System (ADS)
Shklyarov, Dmytro
2017-09-01
Using tools of complex geometry, we construct explicit proper Calabi-Yau structures, that is, non-degenerate cyclic cocycles on differential graded categories of matrix factorizations of regular functions with isolated critical points. The formulas involve the Kapustin-Li trace and its higher corrections. From the physics perspective, our result yields explicit 'off-shell' models for categories of topological D-branes in B-twisted Landau-Ginzburg models.
ERIC Educational Resources Information Center
Jensen, Eva
2014-01-01
If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and…
An Explicit Algorithm for the Simulation of Fluid Flow through Porous Media
NASA Astrophysics Data System (ADS)
Trapeznikova, Marina; Churbanova, Natalia; Lyupa, Anastasiya
2018-02-01
The work deals with the development of an original mathematical model of porous medium flow constructed by analogy with the quasigasdynamic system of equations and allowing implementation via explicit numerical methods. The model is generalized to the case of multiphase multicomponent fluid and takes into account possible heat sources. The proposed approach is verified by a number of test predictions.
Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino
2005-01-01
The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...
Combining Distributed and Shared Memory Models: Approach and Evolution of the Global Arrays Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieplocha, Jarek; Harrison, Robert J.; Kumar, Mukul
2002-07-29
Both shared memory and distributed memory models have advantages and shortcomings. Shared memory model is much easier to use but it ignores data locality/placement. Given the hierarchical nature of the memory subsystems in the modern computers this characteristic might have a negative impact on performance and scalability. Various techniques, such as code restructuring to increase data reuse and introducing blocking in data accesses, can address the problem and yield performance competitive with message passing[Singh], however at the cost of compromising the ease of use feature. Distributed memory models such as message passing or one-sided communication offer performance and scalability butmore » they compromise the ease-of-use. In this context, the message-passing model is sometimes referred to as?assembly programming for the scientific computing?. The Global Arrays toolkit[GA1, GA2] attempts to offer the best features of both models. It implements a shared-memory programming model in which data locality is managed explicitly by the programmer. This management is achieved by explicit calls to functions that transfer data between a global address space (a distributed array) and local storage. In this respect, the GA model has similarities to the distributed shared-memory models that provide an explicit acquire/release protocol. However, the GA model acknowledges that remote data is slower to access than local data and allows data locality to be explicitly specified and hence managed. The GA model exposes to the programmer the hierarchical memory of modern high-performance computer systems, and by recognizing the communication overhead for remote data transfer, it promotes data reuse and locality of reference. This paper describes the characteristics of the Global Arrays programming model, capabilities of the toolkit, and discusses its evolution.« less
Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models
NASA Astrophysics Data System (ADS)
Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea
2014-05-01
Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.
Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display
NASA Astrophysics Data System (ADS)
Long, David L.
Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE's 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers.
The Built Environment and Active Travel: Evidence from Nanjing, China
Feng, Jianxi
2016-01-01
Background: An established relationship exists between the built environment and active travel. Nevertheless, the literature examining the impacts of different components of the built environment is limited. In addition, most existing studies are based on data from cities in the U.S. and Western Europe. The situation in Chinese cities remains largely unknown. Based on data from Nanjing, China, this study explicitly examines the influences of two components of the built environment—the neighborhood form and street form—on residents’ active travel. Methods: Binary logistic regression analyses examined the effects of the neighborhood form and street form on subsistence, maintenance and discretionary travel, respectively. For each travel purpose, three models are explored: a model with only socio-demographics, a model with variables of the neighborhood form and a complete model with all variables. Results: The model fit indicator, Nagelkerke’s ρ2, increased by 0.024 when neighborhood form variables are included and increased by 0.070 when street form variables are taken into account. A similar situation can be found in the models of maintenance activities and discretionary activities. Regarding specific variables, very limited significant impacts of the neighborhood form variables are observed, while almost all of the characteristics of the street form show significant influences on active transport. Conclusions: In Nanjing, street form factors have a more profound influence on active travel than neighborhood form factors. The focal point of the land use regulations and policy of local governments should shift from the neighborhood form to the street form to maximize the effects of policy interventions. PMID:27005645
Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.
2015-01-01
Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.
NASA Astrophysics Data System (ADS)
Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.
2010-10-01
Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.
Explicit Instruction Elements in Core Reading Programs
ERIC Educational Resources Information Center
Child, Angela R.
2012-01-01
Classroom teachers are provided instructional recommendations for teaching reading from their adopted core reading programs (CRPs). Explicit instruction elements or what is also called instructional moves, including direct explanation, modeling, guided practice, independent practice, discussion, feedback, and monitoring, were examined within CRP…
Steele, Vaughn R.; Staley, Cameron; Sabatinelli, Dean
2015-01-01
Risky sexual behaviors typically occur when a person is sexually motivated by potent, sexual reward cues. Yet, individual differences in sensitivity to sexual cues have not been examined with respect to sexual risk behaviors. A greater responsiveness to sexual cues might provide greater motivation for a person to act sexually; a lower responsiveness to sexual cues might lead a person to seek more intense, novel, possibly risky, sexual acts. In this study, event-related potentials were recorded in 64 men and women while they viewed a series of emotional, including explicit sexual, photographs. The motivational salience of the sexual cues was varied by including more and less explicit sexual images. Indeed, the more explicit sexual stimuli resulted in enhanced late positive potentials (LPP) relative to the less explicit sexual images. Participants with fewer sexual intercourse partners in the last year had reduced LPP amplitude to the less explicit sexual images than the more explicit sexual images, whereas participants with more partners responded similarly to the more and less explicit sexual images. This pattern of results is consistent with a greater responsivity model. Those who engage in more sexual behaviors consistent with risk are also more responsive to less explicit sexual cues. PMID:24526189
Weck, Florian; Höfling, Volkmar
2015-01-01
Two adaptations of the Implicit Association Task were used to assess implicit anxiety (IAT-Anxiety) and implicit health attitudes (IAT-Hypochondriasis) in patients with hypochondriasis (n = 58) and anxiety patients (n = 71). Explicit anxieties and health attitudes were assessed using questionnaires. The analysis of several multitrait-multimethod models indicated that the low correlation between explicit and implicit measures of health attitudes is due to the substantial methodological differences between the IAT and the self-report questionnaire. Patients with hypochondriasis displayed significantly more dysfunctional explicit and implicit health attitudes than anxiety patients, but no differences were found regarding explicit and implicit anxieties. The study demonstrates the specificity of explicit and implicit dysfunctional health attitudes among patients with hypochondriasis.
Young, Andrew G.; Broadhurst, Linda M.; Thrall, Peter H.
2012-01-01
Background and Aims Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions. Methods A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence. Key Results Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15–25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest increases in population persistence. Conclusions Interactions between pollen limitation and loss of S alleles have the potential to significantly reduce the viability of populations of a few hundred plants. Population decline may occur more rapidly than expected when pollination probabilities drop below 25 % and S alleles are fewer than 20 due to non-additive interactions. These are likely to be common conditions experienced by plants in small populations in fragmented landscapes and are also those under which differences in response between gameptophytic and sporophtyic systems are observed. PMID:22184620
Young, Andrew G; Broadhurst, Linda M; Thrall, Peter H
2012-02-01
Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions. A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence. Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15-25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest increases in population persistence. Interactions between pollen limitation and loss of S alleles have the potential to significantly reduce the viability of populations of a few hundred plants. Population decline may occur more rapidly than expected when pollination probabilities drop below 25 % and S alleles are fewer than 20 due to non-additive interactions. These are likely to be common conditions experienced by plants in small populations in fragmented landscapes and are also those under which differences in response between gameptophytic and sporophtyic systems are observed.
Free energy landscape of protein folding in water: explicit vs. implicit solvent.
Zhou, Ruhong
2003-11-01
The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt-bridge between D47 and K50. Detailed results on free energy contour maps, lowest free energy structures, distribution of native contacts, alpha-helical content during the folding process, NOE comparison with NMR, and temperature dependences are reported and discussed for all five models. Copyright 2003 Wiley-Liss, Inc.
Leeuw, F
1991-09-01
This work discusses methodological aspects of the articulation and evaluation of behavioral theories underlying demographic policies. Such theories, called "policy theories" among other terms, may be defined as a group of hypotheses explicitly translated into predictions about behavior that underlie policy measures and that concern the relations between the measure and the objective to be attained. Interest in policy theories has been reflected in the writings of such demographers as D. Bogue, J. Blake, and T. Burch, and of researchers from other social science disciplines. 2 examples of policy theories from the Netherlands are presented to illustrate the discussion, 1 describing family planning communication programs that were intended to reduce the number of unwanted and unplanned pregnancies, and the other describing measures to increase availability of child care services in order to facilitate labor force participation of women and ultimately to increase the birth rate. Both theories are found to be comprised of 2 main parallel theories and several related hypotheses. Because political authorities do not usually make explicit the hypotheses that support political measures, their hypotheses must be articulated and reconstituted through attention to debates, written communications, interviews, and other means. The reconstitution must be done as objectively as possible, which implies the need to follow some methodologic rules. Examples are cited of principles advanced by researchers in management science, market research, and political science. 7 methodological rules or steps are then suggested for articulating policy theories: 1) identify statements relative to the political problem, such as excessive or inadequate fertility rates; 2) use the sources to identify reasons for undertaking concrete policy measures; 3) describe the role of the official in the political process; 4) inventory all declarations concerning the relationship between the objective and the means of attaining it; 5) make explicit the links and sequences left implicit in these declarations; 6) identify the normative declarations relative to the policy problem under study, and 7) try to classify all the inventoried declarations into "if-then" or "more-more" statements in a system of hypotheses where each hypothesis can be deduced from another hypothesis. Evaluation of policy theories is necessary and can be conducted according to epistemological criteria as well as criteria relating to implementation and strategy.
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-02-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Demographic Faultlines: A Meta-Analysis of the Literature
ERIC Educational Resources Information Center
Thatcher, Sherry M. B.; Patel, Pankaj C.
2011-01-01
We propose and test a theoretical model focusing on antecedents and consequences of demographic faultlines. We also posit contingencies that affect overall team dynamics in the context of demographic faultlines, such as the study setting and performance measurement. Using meta-analysis structural equation modeling with a final data set consisting…
NASA Astrophysics Data System (ADS)
Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.
2018-05-01
The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.
NASA Astrophysics Data System (ADS)
Watanabe, Yukihisa S.; Kim, Jae Gil; Fukunishi, Yoshifumi; Nakamura, Haruki
2004-12-01
In order to investigate whether the implicit solvent (GB/SA) model could reproduce the free energy landscapes of peptides, the potential of mean forces (PMFs) of eight tripeptides was examined and compared with the PMFs of the explicit water model. The force-biased multicanonical molecular dynamics method was used for the enhanced conformational sampling. Consequently, the GB/SA model reproduced almost all the global and local minima in the PMFs observed with the explicit water model. However, the GB/SA model overestimated frequencies of the structures that are stabilized by intra-peptide hydrogen bonds.
Functional status predicts acute care readmission in the traumatic spinal cord injury population.
Huang, Donna; Slocum, Chloe; Silver, Julie K; Morgan, James W; Goldstein, Richard; Zafonte, Ross; Schneider, Jeffrey C
2018-03-29
Context/objective Acute care readmission has been identified as an important marker of healthcare quality. Most previous models assessing risk prediction of readmission incorporate variables for medical comorbidity. We hypothesized that functional status is a more robust predictor of readmission in the spinal cord injury population than medical comorbidities. Design Retrospective cross-sectional analysis. Setting Inpatient rehabilitation facilities, Uniform Data System for Medical Rehabilitation data from 2002 to 2012 Participants traumatic spinal cord injury patients. Outcome measures A logistic regression model for predicting acute care readmission based on demographic variables and functional status (Functional Model) was compared with models incorporating demographics, functional status, and medical comorbidities (Functional-Plus) or models including demographics and medical comorbidities (Demographic-Comorbidity). The primary outcomes were 3- and 30-day readmission, and the primary measure of model performance was the c-statistic. Results There were a total of 68,395 patients with 1,469 (2.15%) readmitted at 3 days and 7,081 (10.35%) readmitted at 30 days. The c-statistics for the Functional Model were 0.703 and 0.654 for 3 and 30 days. The Functional Model outperformed Demographic-Comorbidity models at 3 days (c-statistic difference: 0.066-0.096) and outperformed two of the three Demographic-Comorbidity models at 30 days (c-statistic difference: 0.029-0.056). The Functional-Plus models exhibited negligible improvements (0.002-0.010) in model performance compared to the Functional models. Conclusion Readmissions are used as a marker of hospital performance. Function-based readmission models in the spinal cord injury population outperform models incorporating medical comorbidities. Readmission risk models for this population would benefit from the inclusion of functional status.
A neurocomputational theory of how explicit learning bootstraps early procedural learning.
Paul, Erick J; Ashby, F Gregory
2013-01-01
It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative) system depending largely on the prefrontal cortex, and a procedural (non-declarative) system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system's control of motor responses through basal ganglia-mediated loops.
John M. Johnston; Mahion C. Barber; Kurt Wolfe; Mike Galvin; Mike Cyterski; Rajbir Parmar; Luis Suarez
2016-01-01
We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, ...
Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing
2006-09-01
tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time- accurate parallel explicit solver...Incompressible fluid flow in a moving/deforming container including accurate modeling of the free-surface, turbulence, and viscous effects ...paper, a single computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of
Shih, Shirley L; Zafonte, Ross; Bates, David W; Gerrard, Paul; Goldstein, Richard; Mix, Jacqueline; Niewczyk, Paulette; Greysen, S Ryan; Kazis, Lewis; Ryan, Colleen M; Schneider, Jeffrey C
2016-10-01
Functional status is associated with patient outcomes, but is rarely included in hospital readmission risk models. The objective of this study was to determine whether functional status is a better predictor of 30-day acute care readmission than traditionally investigated variables including demographics and comorbidities. Retrospective database analysis between 2002 and 2011. 1158 US inpatient rehabilitation facilities. 4,199,002 inpatient rehabilitation facility admissions comprising patients from 16 impairment groups within the Uniform Data System for Medical Rehabilitation database. Logistic regression models predicting 30-day readmission were developed based on age, gender, comorbidities (Elixhauser comorbidity index, Deyo-Charlson comorbidity index, and Medicare comorbidity tier system), and functional status [Functional Independence Measure (FIM)]. We hypothesized that (1) function-based models would outperform demographic- and comorbidity-based models and (2) the addition of demographic and comorbidity data would not significantly enhance function-based models. For each impairment group, Function Only Models were compared against Demographic-Comorbidity Models and Function Plus Models (Function-Demographic-Comorbidity Models). The primary outcome was 30-day readmission, and the primary measure of model performance was the c-statistic. All-cause 30-day readmission rate from inpatient rehabilitation facilities to acute care hospitals was 9.87%. C-statistics for the Function Only Models were 0.64 to 0.70. For all 16 impairment groups, the Function Only Model demonstrated better c-statistics than the Demographic-Comorbidity Models (c-statistic difference: 0.03-0.12). The best-performing Function Plus Models exhibited negligible improvements in model performance compared to Function Only Models, with c-statistic improvements of only 0.01 to 0.05. Readmissions are currently used as a marker of hospital performance, with recent financial penalties to hospitals for excessive readmissions. Function-based readmission models outperform models based only on demographics and comorbidities. Readmission risk models would benefit from the inclusion of functional status as a primary predictor. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André
2009-04-01
SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.
Forecasting extinction risk with nonstationary matrix models.
Gotelli, Nicholas J; Ellison, Aaron M
2006-02-01
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Howard, Carl Q.; Hansen, Colin H.; Köpke, Uwe G.
2018-03-01
In this paper, numerically modelled vibration response of a rolling element bearing with a localised outer raceway line spall is presented. The results were obtained from a finite element (FE) model of the defective bearing solved using an explicit dynamics FE software package, LS-DYNA. Time domain vibration signals of the bearing obtained directly from the FE modelling were processed further to estimate time-frequency and frequency domain results, such as spectrogram and power spectrum, using standard signal processing techniques pertinent to the vibration-based monitoring of rolling element bearings. A logical approach to analyses of the numerically modelled results was developed with an aim to presenting the analytical validation of the modelled results. While the time and frequency domain analyses of the results show that the FE model generates accurate bearing kinematics and defect frequencies, the time-frequency analysis highlights the simulation of distinct low- and high-frequency characteristic vibration signals associated with the unloading and reloading of the rolling elements as they move in and out of the defect, respectively. Favourable agreement of the numerical and analytical results demonstrates the validation of the results from the explicit FE modelling of the bearing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn
2015-03-28
The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much lessmore » computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.« less
Predictive Validity of Explicit and Implicit Threat Overestimation in Contamination Fear
Green, Jennifer S.; Teachman, Bethany A.
2012-01-01
We examined the predictive validity of explicit and implicit measures of threat overestimation in relation to contamination-fear outcomes using structural equation modeling. Undergraduate students high in contamination fear (N = 56) completed explicit measures of contamination threat likelihood and severity, as well as looming vulnerability cognitions, in addition to an implicit measure of danger associations with potential contaminants. Participants also completed measures of contamination-fear symptoms, as well as subjective distress and avoidance during a behavioral avoidance task, and state looming vulnerability cognitions during an exposure task. The latent explicit (but not implicit) threat overestimation variable was a significant and unique predictor of contamination fear symptoms and self-reported affective and cognitive facets of contamination fear. On the contrary, the implicit (but not explicit) latent measure predicted behavioral avoidance (at the level of a trend). Results are discussed in terms of differential predictive validity of implicit versus explicit markers of threat processing and multiple fear response systems. PMID:24073390
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning.
McDougle, Samuel D; Bond, Krista M; Taylor, Jordan A
2015-07-01
A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. Copyright © 2015 the authors 0270-6474/15/359568-12$15.00/0.
Keatley, David; Clarke, David D; Hagger, Martin S
2013-09-01
Research into the effects of individuals'autonomous motivation on behaviour has traditionally adopted explicit measures and self-reported outcome assessment. Recently, there has been increased interest in the effects of implicit motivational processes underlying behaviour from a self-determination theory (SDT) perspective. The aim of the present research was to provide support for the predictive validity of an implicit measure of autonomous motivation on behavioural persistence on two objectively measurable tasks. SDT and a dual-systems model were adopted as frameworks to explain the unique effects offered by explicit and implicit autonomous motivational constructs on behavioural persistence. In both studies, implicit autonomous motivation significantly predicted unique variance in time spent on each task. Several explicit measures of autonomous motivation also significantly predicted persistence. Results provide support for the proposed model and the inclusion of implicit measures in research on motivated behaviour. In addition, implicit measures of autonomous motivation appear to be better suited to explaining variance in behaviours that are more spontaneous or unplanned. Future implications for research examining implicit motivation from dual-systems models and SDT approaches are outlined. © 2012 The British Psychological Society.
Modeling Active Aging and Explicit Memory: An Empirical Study.
Ponce de León, Laura Ponce; Lévy, Jean Pierre; Fernández, Tomás; Ballesteros, Soledad
2015-08-01
The rapid growth of the population of older adults and their concomitant psychological status and health needs have captured the attention of researchers and health professionals. To help fill the void of literature available to social workers interested in mental health promotion and aging, the authors provide a model for active aging that uses psychosocial variables. Structural equation modeling was used to examine the relationships among the latent variables of the state of explicit memory, the perception of social resources, depression, and the perception of quality of life in a sample of 184 older adults. The results suggest that explicit memory is not a direct indicator of the perception of quality of life, but it could be considered an indirect indicator as it is positively correlated with perception of social resources and negatively correlated with depression. These last two variables influenced the perception of quality of life directly, the former positively and the latter negatively. The main outcome suggests that the perception of social support improves explicit memory and quality of life and reduces depression in active older adults. The findings also suggest that gerontological professionals should design memory training programs, improve available social resources, and offer environments with opportunities to exercise memory.
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning
Bond, Krista M.; Taylor, Jordan A.
2015-01-01
A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. PMID:26134640
Independence polynomial and matching polynomial of the Koch network
NASA Astrophysics Data System (ADS)
Liao, Yunhua; Xie, Xiaoliang
2015-11-01
The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.
Sources, Sinks, and Model Accuracy
Spatial demographic models are a necessary tool for understanding how to manage landscapes sustainably for animal populations. These models, therefore, must offer precise and testable predications about animal population dynamics and how animal demographic parameters respond to ...
[The theory of the demographic transition as a reference for demo-economic models].
Genne, M
1981-01-01
The aim of the theory of demographic transition (TTD) is to better understand the behavior and interrelationship of economic and demographic variables. There are 2 types of demo-economic models: 1) the malthusian models, which consider demographic variables as pure exogenous variables, and 2) the neoclassical models, which consider demographic variables as strictly endogenous. If TTD can explore the behavior of exogenous and endogenous demographic variables, it cannot demonstrate neither the relation nor the order of causality among the various demographic and economic variables, but it is simply the theoretical framework of a complex social and economic phenomenon which started in Europe in the 19th Century, and which today can be extended to developing countries. There are 4 stages in the TTD; the 1st stage is characterized by high levels of fecundity and mortality; the 2nd stage is characterized by high fecundity levels and declining mortality levels; the 3rd stage is characterized by declining fecundity levels and low mortality levels; the 4th stage is characterized by low fertility and mortality levels. The impact of economic variables over mortality and birth rates is evident for mortality rates, which decline earlier and at a greater speed than birth rates. According to reliable mathematical predictions, around the year 1987 mortality rates in developing countries will have reached the low level of European countries, and growth rate will be only 1.5%. If the validity of demo-economic models has not yet been established, TTD has clearly shown that social and economic development is the factor which influences demographic expansion.
Assessment of an Explicit Algebraic Reynolds Stress Model
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2005-01-01
This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions for two select configurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation data, experimental data, or empirical models for several different geometries with compressible, separated, and high Reynolds number flows. In general, the turbulence model matched data or followed experimental trends well, and for the selected configurations, the computational results of ISAAC closely matched those of PAB3D using the same turbulence model.
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking.
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults' belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking.
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Dowell, Earl H.
2001-01-01
Discrete time aeroelastic models with explicitly retained aerodynamic modes have been generated employing a time marching vortex lattice aerodynamic model. This paper presents analytical results from eigenanalysis of these models. The potential of these models to calculate the behavior of modes that represent damped system motion (noncritical modes) in addition to the simple harmonic modes is explored. A typical section with only structural freedom in pitch is examined. The eigenvalues are examined and compared to experimental data. Issues regarding the convergence of the solution with regard to refining the aerodynamic discretization are investigated. Eigenvector behavior is examined; the eigenvector associated with a particular eigenvalue can be viewed as the set of modal participation factors for that particular mode. For the present formulation of the equations of motion, the vorticity for each aerodynamic element appears explicitly as an element of each eigenvector in addition to the structural dynamic generalized coordinates. Thus, modal participation of the aerodynamic degrees of freedom can be assessed in M addition to participation of structural degrees of freedom.
Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization.
Mazack, Michael J M; Gao, Jiali
2014-05-28
The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.
Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain
2011-02-17
blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi- material fluid –structure interaction problem. The 3-D head...formulation is implemented to model the air-blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi-material fluid ...Biomechanics Study of Influencing Parameters for brain under Impact ............................... 12 5.1 The Impact of Cerebrospinal Fluid
Traveling waves in a spring-block chain sliding down a slope
NASA Astrophysics Data System (ADS)
Morales, J. E.; James, G.; Tonnelier, A.
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
Robert A. Riggs; Robert E. Keane; Norm Cimon; Rachel Cook; Lisa Holsinger; John Cook; Timothy DelCurto; L.Scott Baggett; Donald Justice; David Powell; Martin Vavra; Bridgett Naylor
2015-01-01
Landscape fire succession models (LFSMs) predict spatially-explicit interactions between vegetation succession and disturbance, but these models have yet to fully integrate ungulate herbivory as a driver of their processes. We modified a complex LFSM, FireBGCv2, to include a multi-species herbivory module, GrazeBGC. The system is novel in that it explicitly...
Traveling waves in a spring-block chain sliding down a slope.
Morales, J E; James, G; Tonnelier, A
2017-07-01
Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit. The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
NASA Astrophysics Data System (ADS)
Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.
2018-04-01
An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.
Heavy-light mesons in chiral AdS/QCD
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Zahed, Ismail
2017-06-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.; Zelnikov, A.
2001-06-15
We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.
Test-Case Generation using an Explicit State Model Checker Final Report
NASA Technical Reports Server (NTRS)
Heimdahl, Mats P. E.; Gao, Jimin
2003-01-01
In the project 'Test-Case Generation using an Explicit State Model Checker' we have extended an existing tools infrastructure for formal modeling to export Java code so that we can use the NASA Ames tool Java Pathfinder (JPF) for test case generation. We have completed a translator from our source language RSML(exp -e) to Java and conducted initial studies of how JPF can be used as a testing tool. In this final report, we provide a detailed description of the translation approach as implemented in our tools.
Tremblay, Marlène; Crim, Stacy M; Cole, Dana J; Hoekstra, Robert M; Henao, Olga L; Döpfer, Dörte
2017-10-01
The Foodborne Diseases Active Surveillance Network (FoodNet) is currently using a negative binomial (NB) regression model to estimate temporal changes in the incidence of Campylobacter infection. FoodNet active surveillance in 483 counties collected data on 40,212 Campylobacter cases between years 2004 and 2011. We explored models that disaggregated these data to allow us to account for demographic, geographic, and seasonal factors when examining changes in incidence of Campylobacter infection. We hypothesized that modeling structural zeros and including demographic variables would increase the fit of FoodNet's Campylobacter incidence regression models. Five different models were compared: NB without demographic covariates, NB with demographic covariates, hurdle NB with covariates in the count component only, hurdle NB with covariates in both zero and count components, and zero-inflated NB with covariates in the count component only. Of the models evaluated, the nonzero-augmented NB model with demographic variables provided the best fit. Results suggest that even though zero inflation was not present at this level, individualizing the level of aggregation and using different model structures and predictors per site might be required to correctly distinguish between structural and observational zeros and account for risk factors that vary geographically.
2014-01-01
Background As professional spiritual care (chaplaincy) is introduced to new cultures worldwide, it bears examining which elements of screening and care are universal and, for those elements showing cultural difference, to study them in each culture. No quantitative spiritual care patient study had previously been done in Israel. Our objectives were twofold: 1) to examine who wants spiritual care in Israel, including demographic and clinical variables, and to compare against other results worldwide to further develop universal screening protocols 2) to see what patients want from spiritual care specifically in the Israeli setting. Methods Self-administered patient questionnaire examining spirituality/religiosity, interest in spiritual care (subdivided by type of care), and key demographic, social, and clinical data. The study setting was an Israeli oncology center at which spiritual care had been recently introduced. Results Data from 364 oncology patient questionnaires found 41% interest in spiritual care, as compared to 35%-54% in American studies. Having previously been visited by a spiritual caregiver predicted patient interest in further spiritual care (AOR 2.4, 95% CI 1.2-4.6), suggesting that the new service is being well-received. Multivariate stepwise logistic regression analysis identified additional predictors of openness to receiving spiritual care: self-describing as somewhat/very spiritual vs. not spiritual (adjusted odds ratio [AOR] 3.9 and 6.3, 95% CI 1.8-8.6 and 2.6-15.1) or traditional/religious vs. secular (AOR 2.2 and 2.1, 95% CI 1.3-3.6 and 1.1-4.0); and receiving one visit a week or less from family and friends (AOR 5.6, 95% CI 2.1-15.1). These findings are in line with previous American studies, suggesting universality across cultures that could be utilized in screening. Differences in demographic data and medical condition were not significant predictors of patient interest, suggesting a cultural difference, where age and education were predictors in the American context. Levels of interest in explicitly religious or spiritual support such as prayer or addressing religious/spiritual questions were much lower than in other cultures. Conclusions Results illustrate the demand for and satisfaction with the new Israeli service. The cross-cultural comparison found both culture-dependent and possibly universal predictors of patient interest, and found lower interest in Israel for explicitly religious/spiritual types of support. PMID:24708816
[Population policies in Latin America: 10 years' experience].
1983-12-01
The 1974 World Population Plan of Action (WPPA) recommended that the developing countries reduce their rate of population growth to 2.0% by 1985. The population of Latin America, which reached 357 million in 1980, grew at a rate of 2.41% in 1975-80; the rate for 1980-85 is estimated at 2.32%. Birth rates decreased in all countries; the overall rate is close to the WPPA target of 3%, although many countries exceed this rate. The fertility rate decreased in all countries except Argentina; the relative declines varied from 15% (Mexico) to less than 3% (Bolivia, Haiti). Global fertility rates ranged from 6 to less than 3 children. The WPPA goal of a life expectancy of 62 years in 1985 has been reached. Bolivia is the only country with an infant mortality exceeding the WPPA level of 120/1000 live births. Migration trends include a rise in urbanization (from 49.6% in 1960 to 63% in 1980), an increase (from 11 to 26) in the number of cities with more than 1 million inhabitants, and the movement of unskilled workers in search of jobs. Countries having explicit population policies comprise 2 groups: 1) those seeking to decrease their rate of population growth, and 2), those who want to increase their population. The former, which comprise 38% of the region's inhabitants, are trying to reduce fertility by promoting family planning through both public and private efforts. The 2nd group (Argentina, Bolivia, Chile), seek to increase fertility by hindering access to contraceptives and providing incentives for childbearing. Most Latin American countries, however, lack an explicit population policy; they provide family planning as part of their health services, but have not adopted specific demographic goals. Only a few countries are attempting to bring about a better distribution of their population. A review of the Latin American experience during the past decade leads to the following proposals: the integration of demographic policies within socioeconomic development plans, the development of regional plans of action within the WPPA, the adoption of population targets, the creation of national institutions to deal with population policy and implementation, the strengthening of training in population, the development of demographic information and research activities, and the integration of the WPPA with other plans of action.
Phelan, Sean M; Dovidio, John F; Puhl, Rebecca M; Burgess, Diana J; Nelson, David B; Yeazel, Mark W; Hardeman, Rachel; Perry, Sylvia; van Ryn, Michelle
2014-04-01
To examine the magnitude of explicit and implicit weight biases compared to biases against other groups; and identify student factors predicting bias in a large national sample of medical students. A web-based survey was completed by 4,732 1st year medical students from 49 medical schools as part of a longitudinal study of medical education. The survey included a validated measure of implicit weight bias, the implicit association test, and 2 measures of explicit bias: a feeling thermometer and the anti-fat attitudes test. A majority of students exhibited implicit (74%) and explicit (67%) weight bias. Implicit weight bias scores were comparable to reported bias against racial minorities. Explicit attitudes were more negative toward obese people than toward racial minorities, gays, lesbians, and poor people. In multivariate regression models, implicit and explicit weight bias was predicted by lower BMI, male sex, and non-Black race. Either implicit or explicit bias was also predicted by age, SES, country of birth, and specialty choice. Implicit and explicit weight bias is common among 1st year medical students, and varies across student factors. Future research should assess implications of biases and test interventions to reduce their impact. Copyright © 2013 The Obesity Society.
NASA Astrophysics Data System (ADS)
Kyker-Snowman, E.; Wieder, W. R.; Grandy, S.
2017-12-01
Microbial-explicit models of soil carbon (C) and nitrogen (N) cycling have improved upon simulations of C and N stocks and flows at site-to-global scales relative to traditional first-order linear models. However, the response of microbial-explicit soil models to global change factors depends upon which parameters and processes in a model are altered by those factors. We used the MIcrobial-MIneral Carbon Stabilization Model with coupled N cycling (MIMICS-CN) to compare modeled responses to changes in temperature and plant inputs at two previously-modeled sites (Harvard Forest and Kellogg Biological Station). We spun the model up to equilibrium, applied each perturbation, and evaluated 15 years of post-perturbation C and N pools and fluxes. To model the effect of increasing temperatures, we independently examined the impact of decreasing microbial C use efficiency (CUE), increasing the rate of microbial turnover, and increasing Michaelis-Menten kinetic rates of litter decomposition, plus several combinations of the three. For plant inputs, we ran simulations with stepwise increases in metabolic litter, structural litter, whole litter (structural and metabolic), or labile soil C. The cumulative change in soil C or N varied in both sign and magnitude across simulations. For example, increasing kinetic rates of litter decomposition resulted in net releases of both C and N from soil pools, while decreasing CUE produced short-term increases in respiration but long-term accumulation of C in litter pools and shifts in soil C:N as microbial demand for C increased and biomass declined. Given that soil N cycling constrains the response of plant productivity to global change and that soils generate a large amount of uncertainty in current earth system models, microbial-explicit models are a critical opportunity to advance the modeled representation of soils. However, microbial-explicit models must be improved by experiments to isolate the physiological and stoichiometric parameters of soil microbes that shift under global change.
Modelling explicit fracture of nuclear fuel pellets using peridynamics
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2015-12-01
Three dimensional models of explicit cracking of nuclear fuel pellets for a variety of power ratings have been explored with peridynamics, a non-local, mesh free, fracture mechanics method. These models were implemented in the explicitly integrated molecular dynamics code LAMMPS, which was modified to include thermal strains in solid bodies. The models of fuel fracture, during initial power transients, are shown to correlate with the mean number of cracks observed on the inner and outer edges of the pellet, by experimental post irradiation examination of fuel, for power ratings of 10 and 15 W g-1 UO2. The models of the pellet show the ability to predict expected features such as the mid-height pellet crack, the correct number of radial cracks and initiation and coalescence of radial cracks. This work presents a modelling alternative to empirical fracture data found in many fuel performance codes and requires just one parameter of fracture strain. Weibull distributions of crack numbers were fitted to both numerical and experimental data using maximum likelihood estimation so that statistical comparison could be made. The findings show P-values of less than 0.5% suggesting an excellent agreement between model and experimental distributions.
Aerosol-cloud interactions in a multi-scale modeling framework
NASA Astrophysics Data System (ADS)
Lin, G.; Ghan, S. J.
2017-12-01
Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the two simulations due to the difference in the cloud droplet lifetime. Next, we will explore how the ECEP treatment affects the anthropogenic aerosol forcing, particularly the aerosol indirect forcing, by comparing present-day and pre-industrial simulations.
NASA Astrophysics Data System (ADS)
Tulet, Pierre; Crassier, Vincent; Cousin, Frederic; Suhre, Karsten; Rosset, Robert
2005-09-01
Classical aerosol schemes use either a sectional (bin) or lognormal approach. Both approaches have particular capabilities and interests: the sectional approach is able to describe every kind of distribution, whereas the lognormal one makes assumption of the distribution form with a fewer number of explicit variables. For this last reason we developed a three-moment lognormal aerosol scheme named ORILAM to be coupled in three-dimensional mesoscale or CTM models. This paper presents the concept and hypothesis of a range of aerosol processes such as nucleation, coagulation, condensation, sedimentation, and dry deposition. One particular interest of ORILAM is to keep explicit the aerosol composition and distribution (mass of each constituent, mean radius, and standard deviation of the distribution are explicit) using the prediction of three-moment (m0, m3, and m6). The new model was evaluated by comparing simulations to measurements from the Escompte campaign and to a previously published aerosol model. The numerical cost of the lognormal mode is lower than two bins of the sectional one.
Jiao, Y.; Lapointe, N.W.R.; Angermeier, P.L.; Murphy, B.R.
2009-01-01
Models of species' demographic features are commonly used to understand population dynamics and inform management tactics. Hierarchical demographic models are ideal for the assessment of non-indigenous species because our knowledge of non-indigenous populations is usually limited, data on demographic traits often come from a species' native range, these traits vary among populations, and traits are likely to vary considerably over time as species adapt to new environments. Hierarchical models readily incorporate this spatiotemporal variation in species' demographic traits by representing demographic parameters as multi-level hierarchies. As is done for traditional non-hierarchical matrix models, sensitivity and elasticity analyses are used to evaluate the contributions of different life stages and parameters to estimates of population growth rate. We applied a hierarchical model to northern snakehead (Channa argus), a fish currently invading the eastern United States. We used a Monte Carlo approach to simulate uncertainties in the sensitivity and elasticity analyses and to project future population persistence under selected management tactics. We gathered key biological information on northern snakehead natural mortality, maturity and recruitment in its native Asian environment. We compared the model performance with and without hierarchy of parameters. Our results suggest that ignoring the hierarchy of parameters in demographic models may result in poor estimates of population size and growth and may lead to erroneous management advice. In our case, the hierarchy used multi-level distributions to simulate the heterogeneity of demographic parameters across different locations or situations. The probability that the northern snakehead population will increase and harm the native fauna is considerable. Our elasticity and prognostic analyses showed that intensive control efforts immediately prior to spawning and/or juvenile-dispersal periods would be more effective (and probably require less effort) than year-round control efforts. Our study demonstrates the importance of considering the hierarchy of parameters in estimating population growth rate and evaluating different management strategies for non-indigenous invasive species. ?? 2009 Elsevier B.V.
Moving forward socio-economically focused models of deforestation.
Dezécache, Camille; Salles, Jean-Michel; Vieilledent, Ghislain; Hérault, Bruno
2017-09-01
Whilst high-resolution spatial variables contribute to a good fit of spatially explicit deforestation models, socio-economic processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of deforestation limits the relevancy of these models for decision-making and may be the cause of their failure to accurately predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking into account multiple drivers of deforestation in tropical forested areas, where the intensity of deforestation is explicitly predicted based on socio-economic variables. By coupling a model of deforestation location based on spatial environmental variables with several sub-models of deforestation intensity based on socio-economic variables, we were able to create a map of predicted deforestation over the period 2001-2014 in French Guiana. This map was compared to a reference map for accuracy assessment, not only at the pixel scale but also over cells ranging from 1 to approximately 600 sq. km. Highly significant relationships were explicitly established between deforestation intensity and several socio-economic variables: population growth, the amount of agricultural subsidies, gold and wood production. Such a precise characterization of socio-economic processes allows to avoid overestimation biases in high deforestation areas, suggesting a better integration of socio-economic processes in the models. Whilst considering deforestation as a purely geographical process contributes to the creation of conservative models unable to effectively assess changes in the socio-economic and political contexts influencing deforestation trends, this explicit characterization of the socio-economic dimension of deforestation is critical for the creation of deforestation scenarios in REDD+ projects. © 2017 John Wiley & Sons Ltd.
Role of demographic stochasticity in a speciation model with sexual reproduction
NASA Astrophysics Data System (ADS)
Lafuerza, Luis F.; McKane, Alan J.
2016-03-01
Recent theoretical studies have shown that demographic stochasticity can greatly increase the tendency of asexually reproducing phenotypically diverse organisms to spontaneously evolve into localized clusters, suggesting a simple mechanism for sympatric speciation. Here we study the role of demographic stochasticity in a model of competing organisms subject to assortative mating. We find that in models with sexual reproduction, noise can also lead to the formation of phenotypic clusters in parameter ranges where deterministic models would lead to a homogeneous distribution. In some cases, noise can have a sizable effect, rendering the deterministic modeling insufficient to understand the phenotypic distribution.
Horn, Johannes; Damm, Oliver; Greiner, Wolfgang; Hengel, Hartmut; Kretzschmar, Mirjam E; Siedler, Anette; Ultsch, Bernhard; Weidemann, Felix; Wichmann, Ole; Karch, André; Mikolajczyk, Rafael T
2018-01-09
Epidemiological studies suggest that reduced exposure to varicella might lead to an increased risk for herpes zoster (HZ). Reduction of exposure to varicella is a consequence of varicella vaccination but also of demographic changes. We analyzed how the combination of vaccination programs and demographic dynamics will affect the epidemiology of varicella and HZ in Germany over the next 50 years. We used a deterministic dynamic compartmental model to assess the impact of different varicella and HZ vaccination strategies on varicella and HZ epidemiology in three demographic scenarios, namely the projected population for Germany, the projected population additionally accounting for increased immigration as observed in 2015/2016, and a stationary population. Projected demographic changes alone result in an increase of annual HZ cases by 18.3% and a decrease of varicella cases by 45.7% between 1990 and 2060. Independently of the demographic scenario, varicella vaccination reduces the cumulative number of varicella cases until 2060 by approximately 70%, but also increases HZ cases by 10%. Unlike the currently licensed live attenuated HZ vaccine, the new subunit vaccine candidate might completely counteract this effect. Relative vaccine effects were consistent across all demographic scenarios. Demographic dynamics will be a major determinant of HZ epidemiology in the next 50 years. While stationary population models are appropriate for assessing vaccination impact, models incorporating realistic population structures allow a direct comparison to surveillance data and can thus provide additional input for immunization decision-making and resource planning.
A MULTIPLE GRID APPROACH FOR OPEN CHANNEL FLOWS WITH STRONG SHOCKS. (R825200)
Explicit finite difference schemes are being widely used for modeling open channel flows accompanied with shocks. A characteristic feature of explicit schemes is the small time step, which is limited by the CFL stability condition. To overcome this limitation,...
New explicit global asymptotic stability criteria for higher order difference equations
NASA Astrophysics Data System (ADS)
El-Morshedy, Hassan A.
2007-12-01
New explicit sufficient conditions for the asymptotic stability of the zero solution of higher order difference equations are obtained. These criteria can be applied to autonomous and nonautonomous equations. The celebrated Clark asymptotic stability criterion is improved. Also, applications to models from mathematical biology and macroeconomics are given.
Explicit Processing Demands Reveal Language Modality-Specific Organization of Working Memory
ERIC Educational Resources Information Center
Rudner, Mary; Ronnberg, Jerker
2008-01-01
The working memory model for Ease of Language Understanding (ELU) predicts that processing differences between language modalities emerge when cognitive demands are explicit. This prediction was tested in three working memory experiments with participants who were Deaf Signers (DS), Hearing Signers (HS), or Hearing Nonsigners (HN). Easily nameable…
ERIC Educational Resources Information Center
Mellard, Daryl; Scanlon, David
2006-01-01
A strategic instruction model introduced into adult basic education classrooms yields insight into the feasibility of using direct and explicit instruction with adults with learning disabilities or other cognitive barriers to learning. Ecobehavioral assessment was used to describe and compare instructor-learner interaction patterns during learning…
Through the Immune Looking Glass: A Model for Brain Memory Strategies
Sánchez-Ramón, Silvia; Faure, Florence
2016-01-01
The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust’s madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model’s approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective. PMID:26869886
Constant pH Molecular Dynamics of Proteins in Explicit Solvent with Proton Tautomerism
Goh, Garrett B.; Hulbert, Benjamin S.; Zhou, Huiqing; Brooks, Charles L.
2015-01-01
pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules – proteins and nucleic acids is now possible. PMID:24375620
On the application of multilevel modeling in environmental and ecological studies
Qian, Song S.; Cuffney, Thomas F.; Alameddine, Ibrahim; McMahon, Gerard; Reckhow, Kenneth H.
2010-01-01
This paper illustrates the advantages of a multilevel/hierarchical approach for predictive modeling, including flexibility of model formulation, explicitly accounting for hierarchical structure in the data, and the ability to predict the outcome of new cases. As a generalization of the classical approach, the multilevel modeling approach explicitly models the hierarchical structure in the data by considering both the within- and between-group variances leading to a partial pooling of data across all levels in the hierarchy. The modeling framework provides means for incorporating variables at different spatiotemporal scales. The examples used in this paper illustrate the iterative process of model fitting and evaluation, a process that can lead to improved understanding of the system being studied.
Modeling Relationships Between Flight Crew Demographics and Perceptions of Interval Management
NASA Technical Reports Server (NTRS)
Remy, Benjamin; Wilson, Sara R.
2016-01-01
The Interval Management Alternative Clearances (IMAC) human-in-the-loop simulation experiment was conducted to assess interval management system performance and participants' acceptability and workload while performing three interval management clearance types. Twenty-four subject pilots and eight subject controllers flew ten high-density arrival scenarios into Denver International Airport during two weeks of data collection. This analysis examined the possible relationships between subject pilot demographics on reported perceptions of interval management in IMAC. Multiple linear regression models were created with a new software tool to predict subject pilot questionnaire item responses from demographic information. General patterns were noted across models that may indicate flight crew demographics influence perceptions of interval management.
Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.
Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E
2017-07-01
We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.
NASA Astrophysics Data System (ADS)
Zhang, Junhua; Lohmann, Ulrike
2003-08-01
The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.
Phelan, Sean M; Burke, Sara E; Hardeman, Rachel R; White, Richard O; Przedworski, Julia; Dovidio, John F; Perry, Sylvia P; Plankey, Michael; A Cunningham, Brooke; Finstad, Deborah; W Yeazel, Mark; van Ryn, Michelle
2017-11-01
Implicit and explicit bias among providers can influence the quality of healthcare. Efforts to address sexual orientation bias in new physicians are hampered by a lack of knowledge of school factors that influence bias among students. To determine whether medical school curriculum, role modeling, diversity climate, and contact with sexual minorities predict bias among graduating students against gay and lesbian people. Prospective cohort study. A sample of 4732 first-year medical students was recruited from a stratified random sample of 49 US medical schools in the fall of 2010 (81% response; 55% of eligible), of which 94.5% (4473) identified as heterosexual. Seventy-eight percent of baseline respondents (3492) completed a follow-up survey in their final semester (spring 2014). Medical school predictors included formal curriculum, role modeling, diversity climate, and contact with sexual minorities. Outcomes were year 4 implicit and explicit bias against gay men and lesbian women, adjusted for bias at year 1. In multivariate models, lower explicit bias against gay men and lesbian women was associated with more favorable contact with LGBT faculty, residents, students, and patients, and perceived skill and preparedness for providing care to LGBT patients. Greater explicit bias against lesbian women was associated with discrimination reported by sexual minority students (b = 1.43 [0.16, 2.71]; p = 0.03). Lower implicit sexual orientation bias was associated with more frequent contact with LGBT faculty, residents, students, and patients (b = -0.04 [-0.07, -0.01); p = 0.008). Greater implicit bias was associated with more faculty role modeling of discriminatory behavior (b = 0.34 [0.11, 0.57); p = 0.004). Medical schools may reduce bias against sexual minority patients by reducing negative role modeling, improving the diversity climate, and improving student preparedness to care for this population.
NASA Astrophysics Data System (ADS)
Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei
2009-10-01
In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.
Lustig, Audrey; Worner, Susan P; Pitt, Joel P W; Doscher, Crile; Stouffer, Daniel B; Senay, Senait D
2017-10-01
Natural and human-induced events are continuously altering the structure of our landscapes and as a result impacting the spatial relationships between individual landscape elements and the species living in the area. Yet, only recently has the influence of the surrounding landscape on invasive species spread started to be considered. The scientific community increasingly recognizes the need for broader modeling framework that focuses on cross-study comparisons at different spatiotemporal scales. Using two illustrative examples, we introduce a general modeling framework that allows for a systematic investigation of the effect of habitat change on invasive species establishment and spread. The essential parts of the framework are (i) a mechanistic spatially explicit model (a modular dispersal framework-MDIG) that allows population dynamics and dispersal to be modeled in a geographical information system (GIS), (ii) a landscape generator that allows replicated landscape patterns with partially controllable spatial properties to be generated, and (iii) landscape metrics that depict the essential aspects of landscape with which dispersal and demographic processes interact. The modeling framework provides functionality for a wide variety of applications ranging from predictions of the spatiotemporal spread of real species and comparison of potential management strategies, to theoretical investigation of the effect of habitat change on population dynamics. Such a framework allows to quantify how small-grain landscape characteristics, such as habitat size and habitat connectivity, interact with life-history traits to determine the dynamics of invasive species spread in fragmented landscape. As such, it will give deeper insights into species traits and landscape features that lead to establishment and spread success and may be key to preventing new incursions and the development of efficient monitoring, surveillance, control or eradication programs.
Using demography and movement behavior to predict range expansion of the southern sea otter.
Tinker, M.T.; Doak, D.F.; Estes, J.A.
2008-01-01
In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989–2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.
Bravo, J H
1991-04-01
This article provides a very simplified analysis of the impact of changes in unemployment, retirement age, and fertility on economic dependency and per capita income in Latin America. The macroeconomic consequences of variations in age structure have received a little recent attention among Latin American researchers and policymakers, partly because of the lack of simple but rigorous analytical models to orient research. This analysis is simplified in that it focuses on changes in age distribution but does not explicitly consider effects of changes in population size, even though in reality the 2 types of changes are interrelated. The analysis has also been simplified by not taking into account any type of causal interaction between the demographic and economic variables analyzed; only the most elementary accounting relations between them are utilized. The 1st section defines the concept of economic dependency, specifies the effects of changes in its demographic and economic components, and establishes a simple link between the dependency ratio and per capita income. These and other derivations in the following sections permit evaluation of the impact of changes in employment, retirement age, and fertility on the dependency ratio and per capita income. The work concludes with a synthesis and general discussion, including a theoretical consideration of the effects of interactions among components. Only the most important equations are presented in the main text, but all variables, equations, and relations are defined and derived in the appendix. 6 countries were studied to illustrate the relationships in the context of the demographic diversity of Latin America. Argentina and Cuba represented countries in an advanced stage of the demographic transition, Chile and Mexico represented an intermediate phase, and Bolivia and Peru represented countries at the beginning of the transition. Results of decomposition of changes in dependency and income due to each of the factors showed substantial variation between countries in regard to changes in unemployment and fertility, but much less variation in regard to changes in retirement age. A 50% decline in unemployment would have comparatively moderate effects and would increase per capita income by 1-6.5%. Shortterm impacts of fertility decline would be greater, and would vary between 1-8.5%, while an increase of 2 years in the retirement age would produce more uniform increments fluctuating between 6-8%. The analysis indicates that few Latin American countries have reached the stage where small fertility reductions would be detrimental to their dependency burden or per capita income. Some countries with slow growth like Argentina are gradually approaching the stage when efforts of demographic aging will be more important.
Zsoldos, Isabella; Cousin, Emilie; Klein-Koerkamp, Yanica; Pichat, Cédric; Hot, Pascal
2016-11-01
Age-related differences in neural correlates underlying implicit and explicit emotion processing are unclear. Within the framework of the Frontoamygdalar Age-related Differences in Emotion model (St Jacques et al., 2009), our objectives were to examine the behavioral and neural modifications that occur with age for both processes. During explicit and implicit processing of fearful faces, we expected to observe less amygdala activity in older adults (OA) than in younger adults (YA), associated with poorer recognition performance in the explicit task, and more frontal activity during implicit processing, suggesting compensation. At a behavioral level, explicit recognition of fearful faces was impaired in OA compared with YA. We did not observe any cerebral differences between OA and YA during the implicit task, whereas in the explicit task, OA recruited more frontal, parietal, temporal, occipital, and cingulate areas. Our findings suggest that automatic processing of emotion may be preserved during aging, whereas deliberate processing is impaired. Additional neural recruitment in OA did not appear to compensate for their behavioral deficits. Copyright © 2016 Elsevier B.V. All rights reserved.
An explicit mixed numerical method for mesoscale model
NASA Technical Reports Server (NTRS)
Hsu, H.-M.
1981-01-01
A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.
Initialization and assimilation of cloud and rainwater in a regional model
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
The initialization and assimilation of cloud and rainwater quantities in a mesoscale regional model was examined. Forecasts of explicit cloud and rainwater are made using conservation equations. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. These physical processes, some of which are parameterized, represent source and sink in terms in the conservation equations. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed.
NASA Technical Reports Server (NTRS)
Kim, Jonnathan H.
1995-01-01
Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).
Cohen, Elisangela M L; Machado, Karina S; Cohen, Marcelo; de Souza, Osmar Norberto
2011-12-22
Protein/receptor explicit flexibility has recently become an important feature of molecular docking simulations. Taking the flexibility into account brings the docking simulation closer to the receptors' real behaviour in its natural environment. Several approaches have been developed to address this problem. Among them, modelling the full flexibility as an ensemble of snapshots derived from a molecular dynamics simulation (MD) of the receptor has proved very promising. Despite its potential, however, only a few studies have employed this method to probe its effect in molecular docking simulations. We hereby use ensembles of snapshots obtained from three different MD simulations of the InhA enzyme from M. tuberculosis (Mtb), the wild-type (InhA_wt), InhA_I16T, and InhA_I21V mutants to model their explicit flexibility, and to systematically explore their effect in docking simulations with three different InhA inhibitors, namely, ethionamide (ETH), triclosan (TCL), and pentacyano(isoniazid)ferrate(II) (PIF). The use of fully-flexible receptor (FFR) models of InhA_wt, InhA_I16T, and InhA_I21V mutants in docking simulation with the inhibitors ETH, TCL, and PIF revealed significant differences in the way they interact as compared to the rigid, InhA crystal structure (PDB ID: 1ENY). In the latter, only up to five receptor residues interact with the three different ligands. Conversely, in the FFR models this number grows up to an astonishing 80 different residues. The comparison between the rigid crystal structure and the FFR models showed that the inclusion of explicit flexibility, despite the limitations of the FFR models employed in this study, accounts in a substantial manner to the induced fit expected when a protein/receptor and ligand approach each other to interact in the most favourable manner. Protein/receptor explicit flexibility, or FFR models, represented as an ensemble of MD simulation snapshots, can lead to a more realistic representation of the induced fit effect expected in the encounter and proper docking of receptors to ligands. The FFR models of InhA explicitly characterizes the overall movements of the amino acid residues in helices, strands, loops, and turns, allowing the ligand to properly accommodate itself in the receptor's binding site. Utilization of the intrinsic flexibility of Mtb's InhA enzyme and its mutants in virtual screening via molecular docking simulation may provide a novel platform to guide the rational or dynamical-structure-based drug design of novel inhibitors for Mtb's InhA. We have produced a short video sequence of each ligand (ETH, TCL and PIF) docked to the FFR models of InhA_wt. These videos are available at http://www.inf.pucrs.br/~osmarns/LABIO/Videos_Cohen_et_al_19_07_2011.htm.
Toward an Optimal Pedagogy for Teamwork.
Earnest, Mark A; Williams, Jason; Aagaard, Eva M
2017-10-01
Teamwork and collaboration are increasingly listed as core competencies for undergraduate health professions education. Despite the clear mandate for teamwork training, the optimal method for providing that training is much less certain. In this Perspective, the authors propose a three-level classification of pedagogical approaches to teamwork training based on the presence of two key learning factors: interdependent work and explicit training in teamwork. In this classification framework, level 1-minimal team learning-is where learners work in small groups but neither of the key learning factors is present. Level 2-implicit team learning-engages learners in interdependent learning activities but does not include an explicit focus on teamwork. Level 3-explicit team learning-creates environments where teams work interdependently toward common goals and are given explicit instruction and practice in teamwork. The authors provide examples that demonstrate each level. They then propose that the third level of team learning, explicit team learning, represents a best practice approach in teaching teamwork, highlighting their experience with an explicit team learning course at the University of Colorado Anschutz Medical Campus. Finally, they discuss several challenges to implementing explicit team-learning-based curricula: the lack of a common teamwork model on which to anchor such a curriculum; the question of whether the knowledge, skills, and attitudes acquired during training would be transferable to the authentic clinical environment; and effectively evaluating the impact of explicit team learning.
Spatially explicit shallow landslide susceptibility mapping over large areas
Dino Bellugi; William E. Dietrich; Jonathan Stock; Jim McKean; Brian Kazian; Paul Hargrove
2011-01-01
Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so...
Evaluating spatially explicit burn probabilities for strategic fire management planning
C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney
2008-01-01
Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...
Beyond the Sponge Model: Encouraging Students' Questioning Skills in Abnormal Psychology.
ERIC Educational Resources Information Center
Keeley, Stuart M.; Ali, Rahan; Gebing, Tracy
1998-01-01
Argues that educators should provide students with explicit training in asking critical questions. Describes a training strategy taught in abnormal psychology courses at Bowling Green State University (Ohio). Based on a pre- and post-test, results support the promise of using explicit questioning training in promoting the evaluative aspects of…
A Conceptual Model for the Design and Delivery of Explicit Thinking Skills Instruction
ERIC Educational Resources Information Center
Kassem, Cherrie L.
2005-01-01
Developing student thinking skills is an important goal for most educators. However, due to time constraints and weighty content standards, thinking skills instruction is often embedded in subject matter, implicit and incidental. For best results, thinking skills instruction requires a systematic design and explicit teaching strategies. The…
Fully implicit Particle-in-cell algorithms for multiscale plasma simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis
The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PICmore » only, reduced dimensionality). The approach is free of numerical instabilities: ω peΔt >> 1, and Δx >> λ D. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing N FE, leading to an optimal algorithm.« less
Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists.
Poisot, Timothée; Bever, James D; Thrall, Peter H; Hochberg, Michael E
2014-10-01
Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life-history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.
Ozgul, Arpat; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Van Vuren, Dirk H
2009-04-01
Despite recent advances in biodemography and metapopulation ecology, we still have limited understanding of how local demographic parameters influence short- and long-term metapopulation dynamics. We used long-term data from 17 local populations, along with the recently developed methods of matrix metapopulation modeling and transient sensitivity analysis, to investigate the influence of local demography on long-term (asymptotic) versus short-term (transient) dynamics of a yellow-bellied marmot metapopulation in Colorado. Both long- and short-term dynamics depended primarily on a few colony sites and were highly sensitive to changes in demography at these sites, particularly in survival of reproductive adult females. Interestingly, the relative importance of sites differed between long- and short-term dynamics; the spatial structure and local population sizes, while insignificant for asymptotic dynamics, were influential on transient dynamics. However, considering the spatial structure was uninformative about the relative influence of local demography on metapopulation dynamics. The vital rates that were the most influential on local dynamics were also the most influential on both long- and short-term metapopulation dynamics. Our results show that an explicit consideration of local demography is essential for a complete understanding of the dynamics and persistence of spatially structured populations.
Mental Health Problems in Adolescence and the Interpretation of Unambiguous Threat
Henry, Julie D.; Moses, Ernestina; Castellini, Julieta; Scott, James
2015-01-01
Aberrant threat perception has been linked to paranoia, anxiety and other mental health problems, and is widely considered to be a core, transdiagnostic feature of psychopathology. However, to date there has been only limited investigation of whether mental health problems are associated with a biased interpretation of stimuli that have explicit (as opposed to ambiguous) connotations of threat. In the present study, 41 adolescents diagnosed with a mental illness and 45 demographically matched controls were asked to provide danger ratings of stimuli normatively rated as being either low or high in potential threat. All participants were also asked to complete background measures of cognitive function, mental health and wellbeing. The results indicated that the two groups did not differ in their capacity to discriminate between low and high threat stimuli, nor did they differ in the absolute level of threat that they attributed to these stimuli. However, for the control group, the overall level of threat perceived in facial stimuli was correlated with two important indices of mental health (depression and anxiety). No associations emerged in the clinical group. These data are discussed in relation to their potential implications for the role of aberrant threat perception in transdiagnostic models of mental health. PMID:26039081
Changes in water consumption linked to heavy news media coverage of extreme climatic events
Quesnel, Kimberly J.; Ajami, Newsha K.
2017-01-01
Public awareness of water- and drought-related issues is an important yet relatively unexplored component of water use behavior. To examine this relationship, we first quantified news media coverage of drought in California from 2005 to 2015, a period with two distinct droughts; the later drought received unprecedentedly high media coverage, whereas the earlier drought did not, as the United States was experiencing an economic downturn coinciding with a historic presidential election. Comparing this coverage to Google search frequency confirmed that public attention followed news media trends. We then modeled single-family residential water consumption in 20 service areas in the San Francisco Bay Area during the same period using geospatially explicit data and including news media coverage as a covariate. Model outputs revealed the factors affecting water use for populations of varying demographics. Importantly, the models estimated that an increase of 100 drought-related articles in a bimonthly period was associated with an 11 to 18% reduction in water use. Then, we evaluated high-resolution water consumption data from smart meters, known as advanced metering infrastructure, in one of the previously modeled service areas to evaluate breakpoints in water use trends. Results demonstrated that whereas nonresidential commercial irrigation customers responded to changes in climate, single-family residential customers decreased water use at the fastest rate following heavy drought-related news media coverage. These results highlight the need for water resource planners and decision makers to further consider the importance of effective, internally and externally driven, public awareness and education in water demand behavior and management. PMID:29075664
Changes in water consumption linked to heavy news media coverage of extreme climatic events.
Quesnel, Kimberly J; Ajami, Newsha K
2017-10-01
Public awareness of water- and drought-related issues is an important yet relatively unexplored component of water use behavior. To examine this relationship, we first quantified news media coverage of drought in California from 2005 to 2015, a period with two distinct droughts; the later drought received unprecedentedly high media coverage, whereas the earlier drought did not, as the United States was experiencing an economic downturn coinciding with a historic presidential election. Comparing this coverage to Google search frequency confirmed that public attention followed news media trends. We then modeled single-family residential water consumption in 20 service areas in the San Francisco Bay Area during the same period using geospatially explicit data and including news media coverage as a covariate. Model outputs revealed the factors affecting water use for populations of varying demographics. Importantly, the models estimated that an increase of 100 drought-related articles in a bimonthly period was associated with an 11 to 18% reduction in water use. Then, we evaluated high-resolution water consumption data from smart meters, known as advanced metering infrastructure, in one of the previously modeled service areas to evaluate breakpoints in water use trends. Results demonstrated that whereas nonresidential commercial irrigation customers responded to changes in climate, single-family residential customers decreased water use at the fastest rate following heavy drought-related news media coverage. These results highlight the need for water resource planners and decision makers to further consider the importance of effective, internally and externally driven, public awareness and education in water demand behavior and management.
Russell, Robin E.; Thogmartin, Wayne E.; Erickson, Richard A.; Szymanski, Jennifer A.; Tinsley, Karl
2015-01-01
White-nose syndrome (WNS) was first detected in North American bats in New York in 2006. Since that time WNS has spread throughout the northeastern United States, southeastern Canada, and southwest across Pennsylvania and as far west as Missouri. Suspect WNS cases have been identified in Minnesota and Iowa, and the causative agent of WNS (Pseudogymnoascus destructans) has recently been detected in Mississippi. The impact of WNS is devastating for little brown bats (Myotis lucifugus), causing up to 100% mortality in some overwintering populations, and previous research has forecast the extirpation of the species due to the disease. Recent evidence indicates that remnant populations may persist in areas where WNS is endemic. We developed a spatially explicit model of little brown bat population dynamics to investigate the potential for populations to recover under alternative scenarios. We used these models to investigate how starting population sizes, potential changes in the number of bats overwintering successfully in hibernacula, and potential changes in demographic rates of the population post WNS may influence the ability of the bats to recover to former levels of abundance. We found that populations of the little brown bat and other species that are highly susceptible to WNS are unlikely to return to pre-WNS levels in the near future under any of the scenarios we examined.
Modelling homogeneous regions of social vulnerability to malaria in Rwanda.
Bizimana, Jean Pierre; Kienberger, Stefan; Hagenlocher, Michael; Twarabamenye, Emmanuel
2016-03-31
Despite the decline in malaria incidence due to intense interventions, potentials for malaria transmission persist in Rwanda. To eradicate malaria in Rwanda, strategies need to expand beyond approaches that focus solely on malaria epidemiology and also consider the socioeconomic, demographic and biological/disease-related factors that determine the vulnerability of potentially exposed populations. This paper analyses current levels of social vulnerability to malaria in Rwanda by integrating a set of weighted vulnerability indicators. The paper uses regionalisation techniques as a spatially explicit approach for delineating homogeneous regions of social vulnerability to malaria. This overcomes the limitations of administrative boundaries for modelling the trans-boundary social vulnerability to malaria. The utilised approach revealed high levels of social vulnerability to malaria in the highland areas of Rwanda, as well as in remote areas where populations are more susceptible. Susceptibility may be due to the populations' lacking the capacity to anticipate mosquito bites, or lacking resilience to cope with or recover from malaria infection. By highlighting the most influential indicators of social vulnerability to malaria, the applied approach indicates which vulnerability domains need to be addressed, and where appropriate interventions are most required. Interventions to improve the socioeconomic development in highly vulnerable areas could prove highly effective, and provide sustainable outcomes against malaria in Rwanda. This would ultimately increase the resilience of the population and their capacity to better anticipate, cope with, and recover from possible infection.
Prehistoric land use and Neolithisation in Europe in the context of regional climate events
NASA Astrophysics Data System (ADS)
Lemmen, C.; Wirtz, K. W.; Gronenborn, D.
2009-04-01
We present a simple, adaptation-driven, spatially explicit model of pre-Bronze age socio-technological change, called the Global Land Use and Technological Evolution Simulator (GLUES). The socio-technological realm is described by three characteristic traits: available technology, subsistence style ratio, and economic diversity. Human population and culture develop in the context of global paleoclimate and regional paleoclimate events. Global paleoclimate is derived from CLIMBER-2 Earth System Model anomalies superimposed on the IIASA temperature and precipitation database. Regional a forcing is provided by abrupt climate deteriorations from a compilation of 138 long-term high-resolution climate proxy time series from mostly terrestrial and near-shore archives. The GLUES simulator provides for a novel way to explore the interplay between climate, climate change, and cultural evolution both on the Holocene timescale as well as for short-term extreme event periods. We sucessfully simulate the migration of people and the diffusion of Neolithic technology from the Near East into Europe in the period 12000-4000 a BP. We find good agreement with recent archeological compilations of Western Eurasian Neolithic sites. No causal relationship between climate events and cultural evolution could be identified, but the speed of cultural development is found to be modulated by the frequency of climate events. From the demographic evolution and regional ressource consumption, we estimate regional land use change and prehistoric greenhouse gas emissions.
Socioeconomic Forecasting : [Technical Summary
DOT National Transportation Integrated Search
2012-01-01
Because the traffic forecasts produced by the Indiana : Statewide Travel Demand Model (ISTDM) are driven by : the demographic and socioeconomic inputs to the model, : particular attention must be given to obtaining the most : accurate demographic and...
Qin, Zhao; Buehler, Markus J
2011-01-01
Intermediate filaments, in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, and play an important role in mechanotransduction as well as in providing mechanical stability to cells at large stretch. The molecular structures, mechanical and dynamical properties of the intermediate filament basic building blocks, the dimer and the tetramer, however, have remained elusive due to persistent experimental challenges owing to the large size and fibrillar geometry of this protein. We have recently reported an atomistic-level model of the human vimentin dimer and tetramer, obtained through a bottom-up approach based on structural optimization via molecular simulation based on an implicit solvent model (Qin et al. in PLoS ONE 2009 4(10):e7294, 9). Here we present extensive simulations and structural analyses of the model based on ultra large-scale atomistic-level simulations in an explicit solvent model, with system sizes exceeding 500,000 atoms and simulations carried out at 20 ns time-scales. We report a detailed comparison of the structural and dynamical behavior of this large biomolecular model with implicit and explicit solvent models. Our simulations confirm the stability of the molecular model and provide insight into the dynamical properties of the dimer and tetramer. Specifically, our simulations reveal a heterogeneous distribution of the bending stiffness along the molecular axis with the formation of rather soft and highly flexible hinge-like regions defined by non-alpha-helical linker domains. We report a comparison of Ramachandran maps and the solvent accessible surface area between implicit and explicit solvent models, and compute the persistence length of the dimer and tetramer structure of vimentin intermediate filaments for various subdomains of the protein. Our simulations provide detailed insight into the dynamical properties of the vimentin dimer and tetramer intermediate filament building blocks, which may guide the development of novel coarse-grained models of intermediate filaments, and could also help in understanding assembly mechanisms.
Rapid Response Tools and Datasets for Post-fire Hydrological Modeling
NASA Astrophysics Data System (ADS)
Miller, Mary Ellen; MacDonald, Lee H.; Billmire, Michael; Elliot, William J.; Robichaud, Pete R.
2016-04-01
Rapid response is critical following natural disasters. Flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies after moderate and high severity wildfires. The problem is that mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fires, runoff, and erosion risks also are highly heterogeneous in space, so there is an urgent need for a rapid, spatially-explicit assessment. Past post-fire modeling efforts have usually relied on lumped, conceptual models because of the lack of readily available, spatially-explicit data layers on the key controls of topography, vegetation type, climate, and soil characteristics. The purpose of this project is to develop a set of spatially-explicit data layers for use in process-based models such as WEPP, and to make these data layers freely available. The resulting interactive online modeling database (http://geodjango.mtri.org/geowepp/) is now operational and publically available for 17 western states in the USA. After a fire, users only need to upload a soil burn severity map, and this is combined with the pre-existing data layers to generate the model inputs needed for spatially explicit models such as GeoWEPP (Renschler, 2003). The development of this online database has allowed us to predict post-fire erosion and various remediation scenarios in just 1-7 days for six fires ranging in size from 4-540 km2. These initial successes have stimulated efforts to further improve the spatial extent and amount of data, and add functionality to support the USGS debris flow model, batch processing for Disturbed WEPP (Elliot et al., 2004) and ERMiT (Robichaud et al., 2007), and to support erosion modeling for other land uses, such as agriculture or mining. The design and techniques used to create the database and the modeling interface are readily repeatable for any area or country that has the necessary topography, climate, soil, and land cover datasets.
Random close packing in protein cores
NASA Astrophysics Data System (ADS)
Ohern, Corey
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ~ 0 . 75 , a value that is similar to close packing equal-sized spheres. A limitation of these analyses was the use of `extended atom' models, rather than the more physically accurate `explicit hydrogen' model. The validity of using the explicit hydrogen model is proved by its ability to predict the side chain dihedral angle distributions observed in proteins. We employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high resolution protein structures. We find that these protein cores have ϕ ~ 0 . 55 , which is comparable to random close-packing of non-spherical particles. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations and design of new functional proteins. We gratefully acknowledge the support of the Raymond and Beverly Sackler Institute for Biological, Physical, and Engineering Sciences, National Library of Medicine training grant T15LM00705628 (J.C.G.), and National Science Foundation DMR-1307712 (L.R.).
Ward, Darren F.; Anderson, Dean P.; Barron, Mandy C.
2016-01-01
Effective detection plays an important role in the surveillance and management of invasive species. Invasive ants are very difficult to eradicate and are prone to imperfect detection because of their small size and cryptic nature. Here we demonstrate the use of spatially explicit surveillance models to estimate the probability that Argentine ants (Linepithema humile) have been eradicated from an offshore island site, given their absence across four surveys and three surveillance methods, conducted since ant control was applied. The probability of eradication increased sharply as each survey was conducted. Using all surveys and surveillance methods combined, the overall median probability of eradication of Argentine ants was 0.96. There was a high level of confidence in this result, with a high Credible Interval Value of 0.87. Our results demonstrate the value of spatially explicit surveillance models for the likelihood of eradication of Argentine ants. We argue that such models are vital to give confidence in eradication programs, especially from highly valued conservation areas such as offshore islands. PMID:27721491
Kitchen, James L.; Allaby, Robin G.
2013-01-01
Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults’ belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking. PMID:27853440
A Single-System Model Predicts Recognition Memory and Repetition Priming in Amnesia
Kessels, Roy P.C.; Wester, Arie J.; Shanks, David R.
2014-01-01
We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. PMID:25122896
Molecular modelling of protein-protein/protein-solvent interactions
NASA Astrophysics Data System (ADS)
Luchko, Tyler
The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule destabilization. No conformational change was observed but a nucleotide dependent 'softening' of the interaction was found instead, suggesting that an entropic force in a microtubule configuration could be the mechanism of microtubule collapse. Finally, to overcome much of the computational costs associated with explicit soIvent calculations, a new combination of molecular dynamics with the 3D-reference interaction site model (3D-RISM) of solvation was integrated into the Amber molecular dynamics package. Our implementation of 3D-RISM shows excellent agreement with explicit solvent free energy calculations. Several optimisation techniques, including a new multiple time step method, provide a nearly 100 fold performance increase, giving similar computational performance to explicit solvent.
Gender in Science and Engineering Faculties: Demographic Inertia Revisited.
Thomas, Nicole R; Poole, Daniel J; Herbers, Joan M
2015-01-01
The under-representation of women on faculties of science and engineering is ascribed in part to demographic inertia, which is the lag between retirement of current faculty and future hires. The assumption of demographic inertia implies that, given enough time, gender parity will be achieved. We examine that assumption via a semi-Markov model to predict the future faculty, with simulations that predict the convergence demographic state. Our model shows that existing practices that produce gender gaps in recruitment, retention, and career progression preclude eventual gender parity. Further, we examine sensitivity of the convergence state to current gender gaps to show that all sources of disparity across the entire faculty career must be erased to produce parity: we cannot blame demographic inertia.
Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary
Nowacki, Daniel J.; Beudin, Alexis; Ganju, Neil K.
2017-01-01
Submerged aquatic vegetation is generally thought to attenuate waves, but this interaction remains poorly characterized in shallow-water field settings with locally generated wind waves. Better quantification of wave–vegetation interaction can provide insight to morphodynamic changes in a variety of environments and also is relevant to the planning of nature-based coastal protection measures. Toward that end, an instrumented transect was deployed across a Zostera marina (common eelgrass) meadow in Chincoteague Bay, Maryland/Virginia, U.S.A., to characterize wind-wave transformation within the vegetated region. Field observations revealed wave-height reduction, wave-period transformation, and wave-energy dissipation with distance into the meadow, and the data informed and calibrated a spectral wave model of the study area. The field observations and model results agreed well when local wind forcing and vegetation-induced drag were included in the model, either explicitly as rigid vegetation elements or implicitly as large bed-roughness values. Mean modeled parameters were similar for both the explicit and implicit approaches, but the spectral performance of the explicit approach was poor compared to the implicit approach. The explicit approach over-predicted low-frequency energy within the meadow because the vegetation scheme determines dissipation using mean wavenumber and frequency, in contrast to the bed-friction formulations, which dissipate energy in a variable fashion across frequency bands. Regardless of the vegetation scheme used, vegetation was the most important component of wave dissipation within much of the study area. These results help to quantify the influence of submerged aquatic vegetation on wave dynamics in future model parameterizations, field efforts, and coastal-protection measures.
Explicit processing demands reveal language modality-specific organization of working memory.
Rudner, Mary; Rönnberg, Jerker
2008-01-01
The working memory model for Ease of Language Understanding (ELU) predicts that processing differences between language modalities emerge when cognitive demands are explicit. This prediction was tested in three working memory experiments with participants who were Deaf Signers (DS), Hearing Signers (HS), or Hearing Nonsigners (HN). Easily nameable pictures were used as stimuli to avoid confounds relating to sensory modality. Performance was largely similar for DS, HS, and HN, suggesting that previously identified intermodal differences may be due to differences in retention of sensory information. When explicit processing demands were high, differences emerged between DS and HN, suggesting that although working memory storage in both groups is sensitive to temporal organization, retrieval is not sensitive to temporal organization in DS. A general effect of semantic similarity was also found. These findings are discussed in relation to the ELU model.
Classification of NLO operators for composite Higgs models
NASA Astrophysics Data System (ADS)
Alanne, Tommi; Bizot, Nicolas; Cacciapaglia, Giacomo; Sannino, Francesco
2018-04-01
We provide a general classification of template operators, up to next-to-leading order, that appear in chiral perturbation theories based on the two flavor patterns of spontaneous symmetry breaking SU (NF)/Sp (NF) and SU (NF)/SO (NF). All possible explicit-breaking sources parametrized by spurions transforming in the fundamental and in the two-index representations of the flavor symmetry are included. While our general framework can be applied to any model of strong dynamics, we specialize to composite-Higgs models, where the main explicit breaking sources are a current mass, the gauging of flavor symmetries, and the Yukawa couplings (for the top). For the top, we consider both bilinear couplings and linear ones à la partial compositeness. Our templates provide a basis for lattice calculations in specific models. As a special example, we consider the SU (4 )/Sp (4 )≅SO (6 )/SO (5 ) pattern which corresponds to the minimal fundamental composite-Higgs model. We further revisit issues related to the misalignment of the vacuum. In particular, we shed light on the physical properties of the singlet η , showing that it cannot develop a vacuum expectation value without explicit C P violation in the underlying theory.
Random close packing in protein cores
NASA Astrophysics Data System (ADS)
Gaines, Jennifer C.; Smith, W. Wendell; Regan, Lynne; O'Hern, Corey S.
2016-03-01
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈0.75 , a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈0.56 , which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.
A Geographically Explicit Genetic Model of Worldwide Human-Settlement History
Liu, Hua; Prugnolle, Franck; Manica, Andrea; Balloux, François
2006-01-01
Currently available genetic and archaeological evidence is generally interpreted as supportive of a recent single origin of modern humans in East Africa. However, this is where the near consensus on human settlement history ends, and considerable uncertainty clouds any more detailed aspect of human colonization history. Here, we present a dynamic genetic model of human settlement history coupled with explicit geographical distances from East Africa, the likely origin of modern humans. We search for the best-supported parameter space by fitting our analytical prediction to genetic data that are based on 52 human populations analyzed at 783 autosomal microsatellite markers. This framework allows us to jointly estimate the key parameters of the expansion of modern humans. Our best estimates suggest an initial expansion of modern humans ∼56,000 years ago from a small founding population of ∼1,000 effective individuals. Our model further points to high growth rates in newly colonized habitats. The general fit of the model with the data is excellent. This suggests that coupling analytical genetic models with explicit demography and geography provides a powerful tool for making inferences on human-settlement history. PMID:16826514
Random close packing in protein cores.
Gaines, Jennifer C; Smith, W Wendell; Regan, Lynne; O'Hern, Corey S
2016-03-01
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈ 0.75, a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈ 0.56, which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.
Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L
2014-07-01
pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.
Arregui, Sergio; Marinova, Dessislava; Sanz, Joaquín
2018-01-01
In the case of tuberculosis (TB), the capabilities of epidemic models to produce quantitatively robust forecasts are limited by multiple hindrances. Among these, understanding the complex relationship between disease epidemiology and populations’ age structure has been highlighted as one of the most relevant. TB dynamics depends on age in multiple ways, some of which are traditionally simplified in the literature. That is the case of the heterogeneities in contact intensity among different age strata that are common to all airborne diseases, but still typically neglected in the TB case. Furthermore, while demographic structures of many countries are rapidly aging, demographic dynamics are pervasively ignored when modeling TB spreading. In this work, we present a TB transmission model that incorporates country-specific demographic prospects and empirical contact data around a data-driven description of TB dynamics. Using our model, we find that the inclusion of demographic dynamics is followed by an increase in the burden levels predicted for the next decades in the areas of the world that are most hit by the disease today. Similarly, we show that considering realistic patterns of contacts among individuals in different age strata reshapes the transmission patterns reproduced by the models, a result with potential implications for the design of age-focused epidemiological interventions. PMID:29563223
Alternative modeling methods for plasma-based Rf ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com
Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less
Alternative modeling methods for plasma-based Rf ion sources.
Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C
2016-02-01
Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.
Joint Inference of Population Assignment and Demographic History
Choi, Sang Chul; Hey, Jody
2011-01-01
A new approach to assigning individuals to populations using genetic data is described. Most existing methods work by maximizing Hardy–Weinberg and linkage equilibrium within populations, neither of which will apply for many demographic histories. By including a demographic model, within a likelihood framework based on coalescent theory, we can jointly study demographic history and population assignment. Genealogies and population assignments are sampled from a posterior distribution using a general isolation-with-migration model for multiple populations. A measure of partition distance between assignments facilitates not only the summary of a posterior sample of assignments, but also the estimation of the posterior density for the demographic history. It is shown that joint estimates of assignment and demographic history are possible, including estimation of population phylogeny for samples from three populations. The new method is compared to results of a widely used assignment method, using simulated and published empirical data sets. PMID:21775468
Explicit criteria for prioritization of cataract surgery
Ma Quintana, José; Escobar, Antonio; Bilbao, Amaia
2006-01-01
Background Consensus techniques have been used previously to create explicit criteria to prioritize cataract extraction; however, the appropriateness of the intervention was not included explicitly in previous studies. We developed a prioritization tool for cataract extraction according to the RAND method. Methods Criteria were developed using a modified Delphi panel judgment process. A panel of 11 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the effect of all variables on the final panel score using general linear and logistic regression models. Priority scoring systems were developed by means of optimal scaling and general linear models. The explicit criteria developed were summarized by means of regression tree analysis. Results Eight variables were considered to create the indications. Of the 310 indications that the panel evaluated, 22.6% were considered high priority, 52.3% intermediate priority, and 25.2% low priority. Agreement was reached for 31.9% of the indications and disagreement for 0.3%. Logistic regression and general linear models showed that the preoperative visual acuity of the cataractous eye, visual function, and anticipated visual acuity postoperatively were the most influential variables. Alternative and simple scoring systems were obtained by optimal scaling and general linear models where the previous variables were also the most important. The decision tree also shows the importance of the previous variables and the appropriateness of the intervention. Conclusion Our results showed acceptable validity as an evaluation and management tool for prioritizing cataract extraction. It also provides easy algorithms for use in clinical practice. PMID:16512893
Individual heterogeneity in life histories and eco-evolutionary dynamics
Vindenes, Yngvild; Langangen, Øystein
2015-01-01
Individual heterogeneity in life history shapes eco-evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population-level processes. Recent developments have provided important steps towards their application to study eco-evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long-term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco-evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco-evolutionary dynamics. PMID:25807980
NASA Astrophysics Data System (ADS)
Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.
2015-12-01
Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.
Assessment of the GECKO-A modeling tool using chamber observations for C12 alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; La, S.; Ouzebidour, F.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J. M.; Hodzic, A.; Madronich, S.; Yee, L. D.; Loza, C. L.; Craven, J. S.; Zhang, X.; Seinfeld, J.
2013-12-01
Secondary Organic Aerosol (SOA) production and ageing is the result of atmospheric oxidation processes leading to the progressive formation of organic species with higher oxidation state and lower volatility. Explicit chemical mechanisms reflect our understanding of these multigenerational oxidation steps. Major uncertainties remain concerning the processes leading to SOA formation and the development, assessment and improvement of such explicit schemes is therefore a key issue. The development of explicit mechanism to describe the oxidation of long chain hydrocarbons is however a challenge. Indeed, explicit oxidation schemes involve a large number of reactions and secondary organic species, far exceeding the size of chemical schemes that can be written manually. The chemical mechanism generator GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is a computer program designed to overcome this difficulty. GECKO-A generates gas phase oxidation schemes according to a prescribed protocol assigning reaction pathways and kinetics data on the basis of experimental data and structure-activity relationships. In this study, we examine the ability of the generated schemes to explain SOA formation observed in the Caltech Environmental Chambers from various C12 alkane isomers and under high NOx and low NOx conditions. First results show that the model overestimates both the SOA yields and the O/C ratios. Various sensitivity tests are performed to explore processes that might be responsible for these disagreements.
Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession
Hong S. He; David J. Mladenoff
1999-01-01
Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...
The discrepancy between implicit and explicit attitudes in predicting disinhibited eating.
Goldstein, Stephanie P; Forman, Evan M; Meiran, Nachshon; Herbert, James D; Juarascio, Adrienne S; Butryn, Meghan L
2014-01-01
Disinhibited eating (i.e., the tendency to overeat, despite intentions not to do so, in the presence of palatable foods or other cues such as emotional stress) is strongly linked with obesity and appears to be associated with both implicit (automatic) and explicit (deliberative) food attitudes. Prior research suggests that a large discrepancy between implicit and explicit food attitudes may contribute to greater levels of disinhibited eating; however this theory has not been directly tested. The current study examined whether the discrepancy between implicit and explicit attitudes towards chocolate could predict both lab-based and self-reported disinhibited eating of chocolate. Results revealed that, whereas neither implicit nor explicit attitudes alone predicted disinhibited eating, absolute attitude discrepancy positively predicted chocolate consumption. Impulsivity moderated this effect, such that discrepancy was less predictive of disinhibited eating for those who exhibited lower levels of impulsivity. The results align with the meta-cognitive model to indicate that attitude discrepancy may be involved in overeating. © 2013.
König, Laura M.; Giese, Helge; Schupp, Harald T.; Renner, Britta
2016-01-01
Studies show that implicit and explicit attitudes influence food choice. However, precursors of food choice often are investigated using tasks offering a very limited number of options despite the comparably complex environment surrounding real life food choice. In the present study, we investigated how the assortment impacts the relationship between implicit and explicit attitudes and food choice (confectionery and fruit), assuming that a more complex choice architecture is more taxing on cognitive resources. Specifically, a binary and a multiple option choice task based on the same stimulus set (fake food items) were presented to ninety-seven participants. Path modeling revealed that both explicit and implicit attitudes were associated with relative food choice (confectionery vs. fruit) in both tasks. In the binary option choice task, both explicit and implicit attitudes were significant precursors of food choice, with explicit attitudes having a greater impact. Conversely, in the multiple option choice task, the additive impact of explicit and implicit attitudes was qualified by an interaction indicating that, even if explicit and implicit attitudes toward confectionery were inconsistent, more confectionery was chosen than fruit if either was positive. This compensatory ‘one is sufficient’-effect indicates that the structure of the choice environment modulates the relationship between attitudes and choice. The study highlights that environmental constraints, such as the number of choice options, are an important boundary condition that need to be included when investigating the relationship between psychological precursors and behavior. PMID:27621719
König, Laura M; Giese, Helge; Schupp, Harald T; Renner, Britta
2016-01-01
Studies show that implicit and explicit attitudes influence food choice. However, precursors of food choice often are investigated using tasks offering a very limited number of options despite the comparably complex environment surrounding real life food choice. In the present study, we investigated how the assortment impacts the relationship between implicit and explicit attitudes and food choice (confectionery and fruit), assuming that a more complex choice architecture is more taxing on cognitive resources. Specifically, a binary and a multiple option choice task based on the same stimulus set (fake food items) were presented to ninety-seven participants. Path modeling revealed that both explicit and implicit attitudes were associated with relative food choice (confectionery vs. fruit) in both tasks. In the binary option choice task, both explicit and implicit attitudes were significant precursors of food choice, with explicit attitudes having a greater impact. Conversely, in the multiple option choice task, the additive impact of explicit and implicit attitudes was qualified by an interaction indicating that, even if explicit and implicit attitudes toward confectionery were inconsistent, more confectionery was chosen than fruit if either was positive. This compensatory 'one is sufficient'-effect indicates that the structure of the choice environment modulates the relationship between attitudes and choice. The study highlights that environmental constraints, such as the number of choice options, are an important boundary condition that need to be included when investigating the relationship between psychological precursors and behavior.
An economic theory of cigarette addiction.
Suranovic, S M; Goldfarb, R S; Leonard, T C
1999-01-01
In this paper we present a model in which individuals act in their own best interest, to explain many behaviors associated with cigarette addiction. There are two key features of the model. First, there is an explicit representation of the withdrawal effects experienced when smokers attempt to quit smoking. Second, there is explicit recognition that the negative effects of smoking generally appear late in an individual's life. Among the things we use the model to explain are: (1) how individuals can become trapped in their decision to smoke; (2) the conditions under which cold-turkey quitting and gradual quitting may occur; and (3) a reason for the existence of quit-smoking treatments.
Decision support systems in health economics.
Quaglini, S; Dazzi, L; Stefanelli, M; Barosi, G; Marchetti, M
1999-08-01
This article describes a system addressed to different health care professionals for building, using, and sharing decision support systems for resource allocation. The system deals with selected areas, namely the choice of diagnostic tests, the therapy planning, and the instrumentation purchase. Decision support is based on decision-analytic models, incorporating an explicit knowledge representation of both the medical domain knowledge and the economic evaluation theory. Application models are built on top of meta-models, that are used as guidelines for making explicit both the cost and effectiveness components. This approach improves the transparency and soundness of the collaborative decision-making process and facilitates the result interpretation.
Activity-Centered Domain Characterization for Problem-Driven Scientific Visualization
Marai, G. Elisabeta
2018-01-01
Although visualization design models exist in the literature in the form of higher-level methodological frameworks, these models do not present a clear methodological prescription for the domain characterization step. This work presents a framework and end-to-end model for requirements engineering in problem-driven visualization application design. The framework and model are based on the activity-centered design paradigm, which is an enhancement of human-centered design. The proposed activity-centered approach focuses on user tasks and activities, and allows an explicit link between the requirements engineering process with the abstraction stage—and its evaluation—of existing, higher-level visualization design models. In a departure from existing visualization design models, the resulting model: assigns value to a visualization based on user activities; ranks user tasks before the user data; partitions requirements in activity-related capabilities and nonfunctional characteristics and constraints; and explicitly incorporates the user workflows into the requirements process. A further merit of this model is its explicit integration of functional specifications, a concept this work adapts from the software engineering literature, into the visualization design nested model. A quantitative evaluation using two sets of interdisciplinary projects supports the merits of the activity-centered model. The result is a practical roadmap to the domain characterization step of visualization design for problem-driven data visualization. Following this domain characterization model can help remove a number of pitfalls that have been identified multiple times in the visualization design literature. PMID:28866550
Population demographics, survival, and reporduction: Alaska sea otter research
Monson, Daniel H.; Bodkin, James L.; Doak, D.F.; Estes, James A.; Tinker, M.T.; Siniff, D.B.; Maldini, Daniela; Calkins, Donald; Atkinson, Shannon; Meehan, Rosa
2004-01-01
The fundamental force behind population change is the balance between age-specific survival and reproductive rates. Thus, understanding population demographics is crucial when trying to interpret trends in population change over time. For many species, demographic rates change as the population’s status (i.e., relative to prey resources) varies. Indices of body condition indicative of individual energy reserves can be a useful gauge of population status. Integrated studies designed to measure (1) population trends; (2) current population status; and (3) demographic rates will provide the most complete picture of the factors driving observed population changes. In particular, estimates of age specific survival and reproduction in conjunction with measures of population change can be integrated into population matrix models useful in explaining observed trends. We focus here on the methods used to measure demographic rates in sea otters, and note the importance of comparable methods between studies. Next, we review the current knowledge of the influence of population status on demographic parameters. We end with examples of the power of matrix modeling as a tool to integrate various types of demographic information for detecting otherwise hard to detect changes in demographic parameters.
Trend estimation in populations with imperfect detection
Kery, Marc; Dorazio, Robert M.; Soldaat, Leo; Van Strien, Arco; Zuiderwijk, Annie; Royle, J. Andrew
2009-01-01
1. Trends of animal populations are of great interest in ecology but cannot be directly observed owing to imperfect detection. Binomial mixture models use replicated counts to estimate abundance, corrected for detection, in demographically closed populations. Here, we extend these models to open populations and illustrate them using sand lizard Lacerta agilis counts from the national Dutch reptile monitoring scheme. 2. Our model requires replicated counts from multiple sites in each of several periods, within which population closure is assumed. Counts are described by a hierarchical generalized linear model, where the state model deals with spatio-temporal patterns in true abundance and the observation model with imperfect counts, given that true state. We used WinBUGS to fit the model to lizard counts from 208 transects with 1–10 (mean 3) replicate surveys during each spring 1994–2005. 3. Our state model for abundance contained two independent log-linear Poisson regressions on year for coastal and inland sites, and random site effects to account for unexplained heterogeneity. The observation model for detection of an individual lizard contained effects of region, survey date, temperature, observer experience and random survey effects. 4. Lizard populations increased in both regions but more steeply on the coast. Detectability increased over the first few years of the study, was greater on the coast and for the most experienced observers, and highest around 1 June. Interestingly, the population increase inland was not detectable when the observed counts were analysed without account of detectability. The proportional increase between 1994 and 2005 in total lizard abundance across all sites was estimated at 86% (95% CRI 35–151). 5. Synthesis and applications. Open-population binomial mixture models are attractive for studying true population dynamics while explicitly accounting for the observation process, i.e. imperfect detection. We emphasize the important conceptual benefit provided by temporal replicate observations in terms of the interpretability of animal counts.
Coupling Cellular Automata Land Use Change with Distributed Hydrologic Models
NASA Astrophysics Data System (ADS)
Shu, L.; Duffy, C.
2017-12-01
There has been extensive research on LUC modeling with broad applications to simulating urban growth and changing demographic patterns across multiple scales. The importance of land conversion is a critical issue in watershed scale studies and is generally not treated in most watershed modeling approaches. In this study we apply spatially explicit hydrologic and landuse change models and the Conestoga Watershed in Lancaster County, Pennsylvania. The Penn State Integrated Hydrologic Model (PIHM) partitions the water balance in space and time over the urban catchment, the coupled Cellular Automata Land Use Change model (CALUC) dynamically simulates the evolution of land use classes based on physical measures associated with population change and land use demand factors. The CALUC model is based on iteratively applying discrete rules to each individual spatial cell. The essence the CA modeling involves calculation of the Transition Potential (TP) for conversion of a grid cell from one land use class to another. This potential includes five factors: random perturbation, suitability, accessibility, neighborhood effect, inertia effects and zonal factors. In spite of simplicity, this CALUC model has been shown to be very effective for simulating LUC leading to the emergence of complex spatial patterns. The components of TP are derived from present land use data for landuse reanalysis and for realistic future land use scenarios. For the CALUC we use early-settlement (circa 1790) initial land class values and final or present-day (2010) land classes to calibrate the model. CALUC- PIHM dynamically simulates the hydrologic response of conversion from pre-settlement to present landuse. The simulations highlight the capability and value of dynamic coupling of catchment hydrology with land use change over long time periods. Analysis of the simulation uses various metrics such as the distributed water balance, flow duration curves, etc. to show how deforestation, urbanization and agricultural land development interact for the period 1790- present.
Miller, Justin B; Axelrod, Bradley N; Schutte, Christian
2012-01-01
The recent release of the Wechsler Memory Scale Fourth Edition contains many improvements from a theoretical and administration perspective, including demographic corrections using the Advanced Clinical Solutions. Although the administration time has been reduced from previous versions, a shortened version may be desirable in certain situations given practical time limitations in clinical practice. The current study evaluated two- and three-subtest estimations of demographically corrected Immediate and Delayed Memory index scores using both simple arithmetic prorating and regression models. All estimated values were significantly associated with observed index scores. Use of Lin's Concordance Correlation Coefficient as a measure of agreement showed a high degree of precision and virtually zero bias in the models, although the regression models showed a stronger association than prorated models. Regression-based models proved to be more accurate than prorated estimates with less dispersion around observed values, particularly when using three subtest regression models. Overall, the present research shows strong support for estimating demographically corrected index scores on the WMS-IV in clinical practice with an adequate performance using arithmetically prorated models and a stronger performance using regression models to predict index scores.
Anisimowicz, Yvonne; O'Sullivan, Lucia F
2017-04-01
The Internet and mobile computing have been highly influential in shaping the modern technological era and subsequently the production of and access to online sexually explicit materials (SEM). Fandom-the realm of fans sharing a common interest-has also adapted to the Internet, which has changed how fans access and distribute fanworks (i.e., material created by fans such as stories and art), many of which contain SEM. The current study examined gender differences in the use and creation of online SEM by surveying 468 men and 347 women (ages 18 or older; mean age = 33.8 years) residing in North America. Participants completed anonymous measures assessing demographic information, experiences using and creating online SEM, and measures of related sexual attitudes. Use of online SEM was widely reported by participants, with men (87.8 %) indicating more use than with women (67.4 %). As expected, few participants reported creating online SEM (3.6 % of men, 4.9 % of women). Men and women reported similar levels of preferred sexual explicitness in the online SEM that they used. There were no significant gender differences in the use of fanworks reported by men (14.3 %) and women (14.7 %) or in the creation of fanworks (1.5 % of men, 3.2 % of women). Fandom-related online SEM use was predicted only by more permissive sexual attitudes (one of eight predictors). Although there were many similarities between men's and women's use of online SEM, some gender differences were found in their motives for online SEM use. Findings are discussed in terms of the context in which men and women experience online SEM.
EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing developmen...
Eilmes, Andrzej; Kubisiak, Piotr
2010-01-21
Relative complexation energies for the lithium cation in acetonitrile and diethyl ether have been studied. Quantum-chemical calculations explicitly describing the solvation of Li(+) have been performed based on structures obtained from molecular dynamics simulations. The effect of an increasing number of solvent molecules beyond the first solvation shell has been found to consist in reduction of the differences in complexation energies for different coordination numbers. Explicit-solvation data have served as a benchmark to the results of polarizable continuum model (PCM) calculations. It has been demonstrated that the PCM approach can yield relative complexation energies comparable to the predictions based on molecular-level solvation, but at significantly lower computational cost. The best agreement between the explicit-solvation and the PCM results has been obtained when the van der Waals surface was adopted to build the molecular cavity.
Sierra/Solid Mechanics 4.48 User's Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less
NASA Technical Reports Server (NTRS)
Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.
1987-01-01
The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.
ERIC Educational Resources Information Center
Steffens, Melanie C.; Jelenec, Petra; Noack, Peter
2010-01-01
Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…
ERIC Educational Resources Information Center
Doornwaard, Suzan M.; Bickham, David S.; Rich, Michael; ter Bogt, Tom F. M.; van den Eijnden, Regina J. J. M.
2015-01-01
Although research has repeatedly demonstrated that adolescents' use of sexually explicit Internet material (SEIM) is related to their endorsement of permissive sexual attitudes and their experience with sexual behavior, it is not clear how linkages between these constructs unfold over time. This study combined 2 types of longitudinal modeling,…
ERIC Educational Resources Information Center
Smith, Mike U.; Scharmann, Lawrence
2008-01-01
This investigation delineates a multi-year action research agenda designed to develop an instructional model for teaching the nature of science (NOS) to preservice science teachers. Our past research strongly supports the use of explicit reflective instructional methods, which includes Thomas Kuhn's notion of learning by ostention and treating…
Explicit ions/implicit water generalized Born model for nucleic acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
Ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model, and utilizes a non-standard approach to defining the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes – disconnected dielectric boundary around the solute-ion or ion-ion pairs. Fully analytical description of all energymore » components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force (PMF) for Na+-Cl− ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of DNA duplex; these differences in the counterion binding patters were shown earlier to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with homopolymeric poly(dA·dT) DNA duplex with modified (de-methylated) and native Thymine bases are used to explore the physics behind CoHex-Thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-Thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range, and may be important to consider in the context of methylation effects on DNA condensation.« less
Explicit ions/implicit water generalized Born model for nucleic acids
NASA Astrophysics Data System (ADS)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
2018-05-01
The ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure, and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model and utilizes a non-standard approach to define the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes—disconnected dielectric boundary around the solute-ion or ion-ion pairs. A fully analytical description of all energy components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force for Na+-Cl- ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of the RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of the DNA duplex; these differences in the counterion binding patters were earlier shown to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with the homopolymeric poly(dA.dT) DNA duplex with modified (de-methylated) and native thymine bases are used to explore the physics behind CoHex-thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range and may be important to consider in the context of methylation effects on DNA condensation.
Impact of negation salience and cognitive resources on negation during attitude formation.
Boucher, Kathryn L; Rydell, Robert J
2012-10-01
Because of the increased cognitive resources required to process negations, past research has shown that explicit attitude measures are more sensitive to negations than implicit attitude measures. The current work demonstrated that the differential impact of negations on implicit and explicit attitude measures was moderated by (a) the extent to which the negation was made salient and (b) the amount of cognitive resources available during attitude formation. When negations were less visually salient, explicit but not implicit attitude measures reflected the intended valence of the negations. When negations were more visually salient, both explicit and implicit attitude measures reflected the intended valence of the negations, but only when perceivers had ample cognitive resources during encoding. Competing models of negation processing, schema-plus-tag and fusion, were examined to determine how negation salience impacts the processing of negations.
de Jong, P J; Sportel, B E; de Hullu, E; Nauta, M H
2012-03-01
Social anxiety and depression often co-occur. As low self-esteem has been identified as a risk factor for both types of symptoms, it may help to explain their co-morbidity. Current dual process models of psychopathology differentiate between explicit and implicit self-esteem. Explicit self-esteem would reflect deliberate self-evaluative processes whereas implicit self-esteem would reflect simple associations in memory. Previous research suggests that low explicit self-esteem is involved in both social anxiety and depression whereas low implicit self-esteem is only involved in social anxiety. We tested whether the association between symptoms of social phobia and depression can indeed be explained by low explicit self-esteem, whereas low implicit self-esteem is only involved in social anxiety. Adolescents during the first stage of secondary education (n=1806) completed the Revised Child Anxiety and Depression Scale (RCADS) to measure symptoms of social anxiety and depression, the Rosenberg Self-Esteem Scale (RSES) to index explicit self-esteem and the Implicit Association Test (IAT) to measure implicit self-esteem. There was a strong association between symptoms of depression and social anxiety that could be largely explained by participants' explicit self-esteem. Only for girls did implicit self-esteem and the interaction between implicit and explicit self-esteem show small cumulative predictive validity for social anxiety, indicating that the association between low implicit self-esteem and social anxiety was most evident for girls with relatively low explicit self-esteem. Implicit self-esteem showed no significant predictive validity for depressive symptoms. The findings support the view that both shared and differential self-evaluative processes are involved in depression and social anxiety.
Neill, Erica; Rossell, Susan Lee
2013-02-28
Semantic memory deficits in schizophrenia (SZ) are profound, yet there is no research comparing implicit and explicit semantic processing in the same participant sample. In the current study, both implicit and explicit priming are investigated using direct (LION-TIGER) and indirect (LION-STRIPES; where tiger is not displayed) stimuli comparing SZ to healthy controls. Based on a substantive review (Rossell and Stefanovic, 2007) and meta-analysis (Pomarol-Clotet et al., 2008), it was predicted that SZ would be associated with increased indirect priming implicitly. Further, it was predicted that SZ would be associated with abnormal indirect priming explicitly, replicating earlier work (Assaf et al., 2006). No specific hypotheses were made for implicit direct priming due to the heterogeneity of the literature. It was hypothesised that explicit direct priming would be intact based on the structured nature of this task. The pattern of results suggests (1) intact reaction time (RT) and error performance implicitly in the face of abnormal direct priming and (2) impaired RT and error performance explicitly. This pattern confirms general findings regarding implicit/explicit memory impairments in SZ whilst highlighting the unique pattern of performance specific to semantic priming. Finally, priming performance is discussed in relation to thought disorder and length of illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Replication and robustness in developmental research.
Duncan, Greg J; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J
2014-11-01
Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key results are robust across estimation methods, data sets, and demographic subgroups. This article makes the case for prioritizing both explicit replications and, especially, within-study robustness checks in developmental psychology. It provides evidence on variation in effect sizes in developmental studies and documents strikingly different replication and robustness-checking practices in a sample of journals in developmental psychology and a sister behavioral science-applied economics. Our goal is not to show that any one behavioral science has a monopoly on best practices, but rather to show how journals from a related discipline address vital concerns of replication and generalizability shared by all social and behavioral sciences. We provide recommendations for promoting graduate training in replication and robustness-checking methods and for editorial policies that encourage these practices. Although some of our recommendations may shift the form and substance of developmental research articles, we argue that they would generate considerable scientific benefits for the field. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Sohl, Terry L.; Sayler, Kristi L.; Bouchard, Michelle; Reker, Ryan R.; Friesz, Aaron M.; Bennett, Stacie L.; Sleeter, Benjamin M.; Sleeter, Rachel R.; Wilson, Tamara; Soulard, Christopher E.; Knuppe, Michelle; Van Hofwegen, Travis
2014-01-01
Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on 5 Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the Forecasting Scenarios of Land-use Change (FORE-SCE) model. Four spatially explicit datasets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of 10 anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting have relatively lower mean stand ages compared to those with less 15 forest cutting. Stand ages differ substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, 20 biodiversity, climate and weather variability, hydrologic change, and other ecological processes.
GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems.
Sadowski, Krzysztof L; Thierens, Dirk; Bosman, Peter A N
2018-01-01
Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.
Advancing the Explicit Representation of Lake Processes in WRF-Hydro
NASA Astrophysics Data System (ADS)
Yates, D. N.; Read, L.; Barlage, M. J.; Gochis, D.
2017-12-01
Realistic simulation of physical processes in lakes is essential for closing the water and energy budgets in a coupled land-surface and hydrologic model, such as the Weather Research and Forecasting (WRF) model's WRF-Hydro framework. A current version of WRF-Hydro, the National Water Model (NWM), includes 1,506 waterbodies derived from the National Hydrography Database, each of which is modeled using a level-pool routing scheme. This presentation discusses the integration of WRF's one-dimensional lake model into WRF-Hydro, which is used to estimate waterbody fluxes and thus explicitly represent latent and sensible heat and the mass balance occurring over the lakes. Results of these developments are presented through a case study from Lake Winnebago, Wisconsin. Scalability and computational benchmarks to expand to the continental-scale NWM are discussed.
Xia, Bisheng; Qian, Xin; Yao, Hong
2017-11-01
Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.
Improved Subcell Model for the Prediction of Braided Composite Response
NASA Technical Reports Server (NTRS)
Cater, Christopher R.; Xinran, Xiao; Goldberg, Robert K.; Kohlman, Lee W.
2013-01-01
In this work, the modeling of triaxially braided composites was explored through a semi-analytical discretization. Four unique subcells, each approximated by a "mosaic" stacking of unidirectional composite plies, were modeled through the use of layered-shell elements within the explicit finite element code LS-DYNA. Two subcell discretizations were investigated: a model explicitly capturing pure matrix regions, and a novel model which absorbed pure matrix pockets into neighboring tow plies. The in-plane stiffness properties of both models, computed using bottom-up micromechanics, correlated well to experimental data. The absorbed matrix model, however, was found to best capture out-of- plane flexural properties by comparing numerical simulations of the out-of-plane displacements from single-ply tension tests to experimental full field data. This strong correlation of out-of-plane characteristics supports the current modeling approach as a viable candidate for future work involving impact simulations.
A tale of twin Higgs: natural twin two Higgs doublet models
Yu, Jiang-Hao
2016-12-28
In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit Z 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous Z 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and Z 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit Z 2 breaking, radiative Z 2 breaking, tadpole-induced Z 2 breaking, and quartic-induced Z 2more » breaking. Finally, we investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.« less
Rain scavenging of solid rocket exhaust clouds
NASA Technical Reports Server (NTRS)
Dingle, A. N.
1978-01-01
An explicit model for cloud microphysics was developed for application to the problem of co-condensation/vaporization of HCl and H2O in the presence of Al2O3 particulate nuclei. Validity of the explicit model relative to the implicit model, which has been customarily applied to atmospheric cloud studies, was demonstrated by parallel computations of H2O condensation upon (NH4)2 SO4 nuclei. A mesoscale predictive model designed to account for the impact of wet processes on atmospheric dynamics is also under development. Input data specifying the equilibrium state of HC1 and H2O vapors in contact with aqueous HC1 solutions were found to be limited, particularly in respect to temperature range.
Forecasting Tunisian type 2 diabetes prevalence to 2027: validation of a simple model.
Saidi, Olfa; O'Flaherty, Martin; Mansour, Nadia Ben; Aissi, Wafa; Lassoued, Olfa; Capewell, Simon; Critchley, Julia A; Malouche, Dhafer; Romdhane, Habiba Ben
2015-02-07
Most projections of type 2 diabetes (T2D) prevalence are simply based on demographic change (i.e. ageing). We developed a model to predict future trends in T2D prevalence in Tunisia, explicitly taking into account trends in major risk factors (obesity and smoking). This could improve assessment of policy options for prevention and health service planning. The IMPACT T2D model uses a Markov approach to integrate population, obesity and smoking trends to estimate future T2D prevalence. We developed a model for the Tunisian population from 1997 to 2027, and validated the model outputs by comparing with a subsequent T2D prevalence survey conducted in 2005. The model estimated that the prevalence of T2D among Tunisians aged over 25 years was 12.0% in 1997 (95% confidence intervals 9.6%-14.4%), increasing to 15.1% (12.5%-17.4%) in 2005. Between 1997 and 2005, observed prevalence in men increased from 13.5% to 16.1% and in women from 12.9% to 14.1%. The model forecast for a dramatic rise in prevalence by 2027 (26.6% overall, 28.6% in men and 24.7% in women). However, if obesity prevalence declined by 20% in the 10 years from 2013, and if smoking decreased by 20% over 10 years from 2009, a 3.3% reduction in T2D prevalence could be achieved in 2027 (2.5% in men and 4.1% in women). This innovative model provides a reasonably close estimate of T2D prevalence for Tunisia over the 1997-2027 period. Diabetes burden is now a significant public health challenge. Our model predicts that this burden will increase significantly in the next two decades. Tackling obesity, smoking and other T2D risk factors thus needs urgent action. Tunisian decision makers have therefore defined two strategies: obesity reduction and tobacco control. Responses will be evaluated in future population surveys.
NASA Astrophysics Data System (ADS)
Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.
2014-08-01
Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Habitat fragmentation resulting in overgrazing by herbivores.
Kondoh, Michio
2003-12-21
Habitat fragmentation sometimes results in outbreaks of herbivorous insect and causes an enormous loss of primary production. It is hypothesized that the driving force behind such herbivore outbreaks is disruption of natural enemy attack that releases herbivores from top-down control. To test this hypothesis I studied how trophic community structure changes along a gradient of habitat fragmentation level using spatially implicit and explicit models of a tri-trophic (plant, herbivore and natural enemy) food chain. While in spatially implicit model number of trophic levels gradually decreases with increasing fragmentation, in spatially explicit model a relatively low level of habitat fragmentation leads to overgrazing by herbivore to result in extinction of the plant population followed by a total system collapse. This provides a theoretical support to the hypothesis that habitat fragmentation can lead to overgrazing by herbivores and suggests a central role of spatial structure in the influence of habitat fragmentation on trophic communities. Further, the spatially explicit model shows (i) that the total system collapse by the overgrazing can occur only if herbivore colonization rate is high; (ii) that with increasing natural enemy colonization rate, the fragmentation level that leads to the system collapse becomes higher, and the frequency of the collapse is lowered.
NASA Astrophysics Data System (ADS)
Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.
2017-05-01
We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.
NASA Astrophysics Data System (ADS)
Binder, Claudia; Garcia-Santos, Glenda; Andreoli, Romano; Diaz, Jaime; Feola, Giuseppe; Wittensoeldner, Moritz; Yang, Jing
2016-04-01
This study presents an integrative and spatially explicit modeling approach for analyzing human and environmental exposure from pesticide application of smallholders in the potato producing Andean region in Colombia. The modeling approach fulfills the following criteria: (i) it includes environmental and human compartments; (ii) it contains a behavioral decision-making model for estimating the effect of policies on pesticide flows to humans and the environment; (iii) it is spatially explicit; and (iv) it is modular and easily expandable to include additional modules, crops or technologies. The model was calibrated and validated for the Vereda La Hoya and was used to explore the effect of different policy measures in the region. The model has moderate data requirements and can be adapted relatively easy to other regions in developing countries with similar conditions.
Learning to Model in Engineering
ERIC Educational Resources Information Center
Gainsburg, Julie
2013-01-01
Policymakers and education scholars recommend incorporating mathematical modeling into mathematics education. Limited implementation of modeling instruction in schools, however, has constrained research on how students learn to model, leaving unresolved debates about whether modeling should be reified and explicitly taught as a competence, whether…
Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...
2018-04-17
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less
Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
NASA Astrophysics Data System (ADS)
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.
2018-04-01
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.
Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less
Meyniel, Florent; Safra, Lou; Pessiglione, Mathias
2014-01-01
A pervasive case of cost-benefit problem is how to allocate effort over time, i.e. deciding when to work and when to rest. An economic decision perspective would suggest that duration of effort is determined beforehand, depending on expected costs and benefits. However, the literature on exercise performance emphasizes that decisions are made on the fly, depending on physiological variables. Here, we propose and validate a general model of effort allocation that integrates these two views. In this model, a single variable, termed cost evidence, accumulates during effort and dissipates during rest, triggering effort cessation and resumption when reaching bounds. We assumed that such a basic mechanism could explain implicit adaptation, whereas the latent parameters (slopes and bounds) could be amenable to explicit anticipation. A series of behavioral experiments manipulating effort duration and difficulty was conducted in a total of 121 healthy humans to dissociate implicit-reactive from explicit-predictive computations. Results show 1) that effort and rest durations are adapted on the fly to variations in cost-evidence level, 2) that the cost-evidence fluctuations driving the behavior do not match explicit ratings of exhaustion, and 3) that actual difficulty impacts effort duration whereas expected difficulty impacts rest duration. Taken together, our findings suggest that cost evidence is implicitly monitored online, with an accumulation rate proportional to actual task difficulty. In contrast, cost-evidence bounds and dissipation rate might be adjusted in anticipation, depending on explicit task difficulty. PMID:24743711
NASA Astrophysics Data System (ADS)
Aumont, B.; Camredon, M.; Isaacman-VanWertz, G. A.; Karam, C.; Valorso, R.; Madronich, S.; Kroll, J. H.
2016-12-01
Gas phase oxidation of VOC is a gradual process leading to the formation of multifunctional organic compounds, i.e., typically species with higher oxidation state, high water solubility and low volatility. These species contribute to the formation of secondary organic aerosols (SOA) viamultiphase processes involving a myriad of organic species that evolve through thousands of reactions and gas/particle mass exchanges. Explicit chemical mechanisms reflect the understanding of these multigenerational oxidation steps. These mechanisms rely directly on elementary reactions to describe the chemical evolution and track the identity of organic carbon through various phases down to ultimate oxidation products. The development, assessment and improvement of such explicit schemes is a key issue, as major uncertainties remain on the chemical pathways involved during atmospheric oxidation of organic matter. An array of mass spectrometric techniques (CIMS, PTRMS, AMS) was recently used to track the composition of organic species during α-pinene oxidation in the MIT environmental chamber, providing an experimental database to evaluate and improve explicit mechanisms. In this study, the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to generate fully explicit oxidation schemes for α-pinene multiphase oxidation simulating the MIT experiment. The ability of the GECKO-A chemical scheme to explain the organic molecular composition in the gas and the condensed phases is explored. First results of this model/observation comparison at the molecular level will be presented.
Understanding the influence of external perturbation on aziridinium ion formation
NASA Astrophysics Data System (ADS)
Sinha, Sourab; Bhattacharyya, Pradip Kr
2018-01-01
A density functional theory study is performed to understand the effect of discrete water molecules during Az+ ion formation in nitrogen mustards. A comparative study in gas phase, and implicit and explicit solvation models of three drug molecules (mustine, chlorambucil and melphalan) is reported. Noteworthy changes in the structure and C-N stretching frequencies of the transition states have been observed in the presence of explicit water molecules. Presence of explicit water molecules reduces the positive charge around the tricyclic Az+ ring, and hence stabilising it. Both activation energy and rate constants are seen to be significantly affected in the presence of discrete water molecules.
Seeking inclusion in an exclusive process: discourses of medical school student selection.
Razack, Saleem; Hodges, Brian; Steinert, Yvonne; Maguire, Mary
2015-01-01
Calls to increase medical class representativeness to better reflect the diversity of society represent a growing international trend. There is an inherent tension between these calls and competitive student selection processes driven by academic achievement. How is this tension manifested? Our three-phase interdisciplinary research programme focused on the discourses of excellence, equity and diversity in the medical school selection process, as conveyed by key stakeholders: (i) institutions and regulatory bodies (the websites of 17 medical schools and 15 policy documents from national regulatory bodies); (ii) admissions committee members (ACMs) (according to semi-structured interviews [n = 9]), and (iii) successful applicants (according to semi-structured interviews [n = 14]). The work is theoretically situated within the works of Foucault, Bourdieu and Bakhtin. The conceptual framework is supplemented by critical hermeneutics and the performance theories of Goffman. Academic excellence discourses consistently predominate over discourses calling for greater representativeness in medical classes. Policy addressing demographic representativeness in medicine may unwittingly contribute to the reproduction of historical patterns of exclusion of under-represented groups. In ACM selection practices, another discursive tension is exposed as the inherent privilege in the process is marked, challenging the ideal of medicine as a meritocracy. Applicants' representations of self in the 'performance' of interviewing demonstrate implicit recognition of the power inherent in the act of selection and are manifested in the use of explicit strategies to 'fit in'. How can this critical discourse analysis inform improved inclusiveness in student selection? Policymakers addressing diversity and equity issues in medical school admissions should explicitly recognise the power dynamics at play between the profession and marginalised groups. For greater inclusion and to avoid one authoritative definition of excellence, we suggest a transformative model of faculty development aimed at promoting multiple kinds of excellence. Through this multi-pronged approach, we call for the profession to courageously confront the cherished notion of the medical meritocracy in order to avoid unwanted aspects of elitism. © 2014 John Wiley & Sons Ltd.
Chen, Qian; Ding, Mingjun; Yang, Xuchao; Hu, Kejia; Qi, Jiaguo
2018-05-25
The increase in the frequency and intensity of extreme heat events, which are potentially associated with climate change in the near future, highlights the importance of heat health risk assessment, a significant reference for heat-related death reduction and intervention. However, a spatiotemporal mismatch exists between gridded heat hazard and human exposure in risk assessment, which hinders the identification of high-risk areas at finer scales. A human settlement index integrated by nighttime light images, enhanced vegetation index, and digital elevation model data was utilized to assess the human exposure at high spatial resolution. Heat hazard and vulnerability index were generated by land surface temperature and demographic and socioeconomic census data, respectively. Spatially explicit assessment of heat health risk and its driving factors was conducted in the Yangtze River Delta (YRD), east China at 250 m pixel level. High-risk areas were mainly distributed in the urbanized areas of YRD, which were mostly driven by high human exposure and heat hazard index. In some less-urbanized cities and suburban and rural areas of mega-cities, the heat health risks are in second priority. The risks in some less-developed areas were high despite the low human exposure index because of high heat hazard and vulnerability index. This study illustrated a methodology for identifying high-risk areas by combining freely available multi-source data. Highly urbanized areas were considered hotspots of high heat health risks, which were largely driven by the increasing urban heat island effects and population density in urban areas. Repercussions of overheating were weakened due to the low social vulnerability in some central areas benefitting from the low proportion of sensitive population or the high level of socioeconomic development. By contrast, high social vulnerability intensifies heat health risks in some less-urbanized cities and suburban areas of mega-cities.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
NASA Astrophysics Data System (ADS)
Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.
2017-12-01
We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.
Developing and testing a global-scale regression model to quantify mean annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.
2017-01-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.
Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises
Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa
2008-01-01
Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.
Analysis of explicit model predictive control for path-following control
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080
Analysis of explicit model predictive control for path-following control.
Lee, Junho; Chang, Hyuk-Jun
2018-01-01
In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.
An assessment of the demographic and clinical correlates of the dimensions of alcohol use behaviour.
Smith, Gillian W; Shevlin, Mark; Murphy, Jamie; Houston, James E
2010-01-01
To identify population-based clinical and demographic correlates of alcohol use dimensions. Using data from a population-based sample of Great Britain (n = 7849), structural equation modelling (SEM) was used to identify associations between demographic and clinical variables and two competing dimensional models of the Alcohol Use Disorders Identification Test (AUDIT). A two-factor SEM fit best. In this model, Factor 1, alcohol consumption, was associated with male sex, younger age, lower educational attainment, generalized anxiety disorder (GAD) and suicide attempts. Factor 2, alcohol-related problems, was associated with the demographic variables (to a lesser extent) and to a wider range of clinical variables, including depressive episode, GAD, mixed anxiety and depressive disorder, obsessive compulsive disorder, phobia, suicidal thoughts and suicide attempts. The one-factor SEM was associated with demographic and all assessed clinical correlates; however, this model did not fit the data well. Two main conclusions justify the two-factor approach to alcohol use classification. First, the model fit was considerably superior and, second, the dimensions of alcohol consumption and alcohol-related problems vary considerably in their associations with measures of demographic and clinical risk. A one-factor representation of alcohol use, for instance, would fail to recognize that measures of affective/anxiety disorders are more consistently related to alcohol-related problems than to alcohol consumption. It is suggested therefore that to fully understand the complexity of alcohol use behaviour and its associated risk, future research should acknowledge the basic underlying dimensional structure of the construct.
Are adverse effects incorporated in economic models? An initial review of current practice.
Craig, D; McDaid, C; Fonseca, T; Stock, C; Duffy, S; Woolacott, N
2009-12-01
To identify methodological research on the incorporation of adverse effects in economic models and to review current practice. Major electronic databases (Cochrane Methodology Register, Health Economic Evaluations Database, NHS Economic Evaluation Database, EconLit, EMBASE, Health Management Information Consortium, IDEAS, MEDLINE and Science Citation Index) were searched from inception to September 2007. Health technology assessment (HTA) reports commissioned by the National Institute for Health Research (NIHR) HTA programme and published between 2004 and 2007 were also reviewed. The reviews of methodological research on the inclusion of adverse effects in decision models and of current practice were carried out according to standard methods. Data were summarised in a narrative synthesis. Of the 719 potentially relevant references in the methodological research review, five met the inclusion criteria; however, they contained little information of direct relevance to the incorporation of adverse effects in models. Of the 194 HTA monographs published from 2004 to 2007, 80 were reviewed, covering a range of research and therapeutic areas. In total, 85% of the reports included adverse effects in the clinical effectiveness review and 54% of the decision models included adverse effects in the model; 49% included adverse effects in the clinical review and model. The link between adverse effects in the clinical review and model was generally weak; only 3/80 (< 4%) used the results of a meta-analysis from the systematic review of clinical effectiveness and none used only data from the review without further manipulation. Of the models including adverse effects, 67% used a clinical adverse effects parameter, 79% used a cost of adverse effects parameter, 86% used one of these and 60% used both. Most models (83%) used utilities, but only two (2.5%) used solely utilities to incorporate adverse effects and were explicit that the utility captured relevant adverse effects; 53% of those models that included utilities derived them from patients on treatment and could therefore be interpreted as capturing adverse effects. In total, 30% of the models that included adverse effects used withdrawals related to drug toxicity and therefore might be interpreted as using withdrawals to capture adverse effects, but this was explicitly stated in only three reports. Of the 37 models that did not include adverse effects, 18 provided justification for this omission, most commonly lack of data; 19 appeared to make no explicit consideration of adverse effects in the model. There is an implicit assumption within modelling guidance that adverse effects are very important but there is a lack of clarity regarding how they should be dealt with and considered in modelling. In many cases a lack of clear reporting in the HTAs made it extremely difficult to ascertain what had actually been carried out in consideration of adverse effects. The main recommendation is for much clearer and explicit reporting of adverse effects, or their exclusion, in decision models and for explicit recognition in future guidelines that 'all relevant outcomes' should include some consideration of adverse events.
Demographic Modelling in Weed Biocontrol
USDA-ARS?s Scientific Manuscript database
Demographic matrix modeling of plant populations can be a powerful tool to identify key life stage transitions that contribute the most to population growth of an invasive plant and hence should be targeted for disruption. Therefore, this approach has the potential to guide the pre-release selection...
Ecotoxicology and spatial modeling in population dynamics: an illustration with brown trout.
Chaumot, Arnaud; Charles, Sandrine; Flammarion, Patrick; Auger, Pierre
2003-05-01
We developed a multiregion matrix population model to explore how the demography of a hypothetical brown trout population living in a river network varies in response to different spatial scenarios of cadmium contamination. Age structure, spatial distribution, and demographic and migration processes are taken into account in the model. Chronic or acute cadmium concentrations affect the demographic parameters at the scale of the river range. The outputs of the model constitute population-level end points (the asymptotic population growth rate, the stable age structure, and the asymptotic spatial distribution) that allow comparing the different spatial scenarios of contamination regarding the demographic response at the scale of the whole river network. An analysis of the sensitivity of these end points to lower order parameters enables us to link the local effects of cadmium to the global demographic behavior of the brown trout population. Such a link is of broad interest in the point of view of ecotoxicological management.
Mattson, David J.; Ruther, Elizabeth J.
2012-01-01
Management of pumas in the American West is typified by conflict among stakeholders plausibly rooted in life experiences and worldviews. We used a mail questionnaire to assess demographics, nature-views, puma-related life experiences and behaviors, and support for puma-related policies among residents of northern Arizona. Data from the questionnaire (n = 693 respondents) were used to model behaviors and support for policies. Compared to models based on nature-views and life experiences, those based on demographics had virtually no support from the data. The Utilitarian/Dominionistic nature-view had the strongest effect of any variable in six of seven models, and was associated with firearms and opposition to policies that would limit killing pumas. The Humanistic/Moralistic nature-view was positively associated with non-lethal behaviors and policies in five models. Gender had the strongest effect of any demographic variable. Compared to demographics alone, our results suggest that worldviews provide a more meaningful explanation of reported human behaviors and behavioral intentions regarding pumas.
Collevatti, Rosane G; Rodrigues, Eduardo E; Vitorino, Luciana C; Lima-Ribeiro, Matheus S; Chaves, Lázaro J; Telles, Mariana P C
2018-04-20
Spatial distribution of species genetic diversity is often driven by geographical distance (isolation by distance) or environmental conditions (isolation by environment), especially under climate change scenarios such as Quaternary glaciations. Here, we used coalescent analyses coupled with ecological niche modelling (ENM), spatially explicit quantile regression analyses and the multiple matrix regression with randomization (MMRR) approach to unravel the patterns of genetic differentiation in the widely distributed Neotropical savanna tree, Hancornia speciosa (Apocynaceae). Due to its high morphological differentiation, the species was originally classified into six botanical varieties by Monachino, and has recently been recognized as only two varieties by Flora do Brasil 2020. Thus, H. speciosa is a good biological model for learning about evolution of phenotypic plasticity under genetic and ecological effects, and predicting their responses to changing environmental conditions. We sampled 28 populations (777 individuals) of Monachino's four varieties of H. speciosa and used seven microsatellite loci to genotype them. Bayesian clustering showed five distinct genetic groups (K = 5) with high admixture among Monachino's varieties, mainly among populations in the central area of the species geographical range. Genetic differentiation among Monachino's varieties was lower than the genetic differentiation among populations within varieties, with higher within-population inbreeding. A high historical connectivity among populations of the central Cerrado shown by coalescent analyses may explain the high admixture among varieties. In addition, areas of higher climatic suitability also presented higher genetic diversity in such a way that the wide historical refugium across central Brazil might have promoted the long-term connectivity among populations. Yet, FST was significantly related to geographic distances, but not to environmental distances, and coalescent analyses and ENM predicted a demographical scenario of quasi-stability through time. Our findings show that demographical history and isolation by distance, but not isolation by environment, drove genetic differentiation of populations. Finally, the genetic clusters do not support the two recently recognized botanical varieties of H. speciosa, but partially support Monachino's classification at least for the four sampled varieties, similar to morphological variation.
NASA Astrophysics Data System (ADS)
Song, Chi; Zhang, Xuejun; Zhang, Xin; Hu, Haifei; Zeng, Xuefeng
2017-06-01
A rigid conformal (RC) lap can smooth mid-spatial-frequency (MSF) errors, which are naturally smaller than the tool size, while still removing large-scale errors in a short time. However, the RC-lap smoothing efficiency performance is poorer than expected, and existing smoothing models cannot explicitly specify the methods to improve this efficiency. We presented an explicit time-dependent smoothing evaluation model that contained specific smoothing parameters directly derived from the parametric smoothing model and the Preston equation. Based on the time-dependent model, we proposed a strategy to improve the RC-lap smoothing efficiency, which incorporated the theoretical model, tool optimization, and efficiency limit determination. Two sets of smoothing experiments were performed to demonstrate the smoothing efficiency achieved using the time-dependent smoothing model. A high, theory-like tool influence function and a limiting tool speed of 300 RPM were o
Simple liquid models with corrected dielectric constants
Fennell, Christopher J.; Li, Libo; Dill, Ken A.
2012-01-01
Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577
NASA Astrophysics Data System (ADS)
Falugi, P.; Olaru, S.; Dumur, D.
2010-08-01
This article proposes an explicit robust predictive control solution based on linear matrix inequalities (LMIs). The considered predictive control strategy uses different local descriptions of the system dynamics and uncertainties and thus allows the handling of less conservative input constraints. The computed control law guarantees constraint satisfaction and asymptotic stability. The technique is effective for a class of nonlinear systems embedded into polytopic models. A detailed discussion of the procedures which adapt the partition of the state space is presented. For the practical implementation the construction of suitable (explicit) descriptions of the control law are described upon concrete algorithms.
Efficient Translation of LTL Formulae into Buchi Automata
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Lerda, Flavio
2001-01-01
Model checking is a fully automated technique for checking that a system satisfies a set of required properties. With explicit-state model checkers, properties are typically defined in linear-time temporal logic (LTL), and are translated into B chi automata in order to be checked. This report presents how we have combined and improved existing techniques to obtain an efficient LTL to B chi automata translator. In particular, we optimize the core of existing tableau-based approaches to generate significantly smaller automata. Our approach has been implemented and is being released as part of the Java PathFinder software (JPF), an explicit state model checker under development at the NASA Ames Research Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jiang-Hao
In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit Z 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous Z 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and Z 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit Z 2 breaking, radiative Z 2 breaking, tadpole-induced Z 2 breaking, and quartic-induced Z 2more » breaking. Finally, we investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.« less
Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis
NASA Technical Reports Server (NTRS)
Arima, Eugenio Y.; Simmons, Cynthia S.; Walker, Robert T.; Cochrane, Mark A.
2007-01-01
This article implements a spatially explicit model to estimate the probability of forest and agricultural fires in the Brazilian Amazon. We innovate by using variables that reflect farmgate prices of beef and soy, and also provide a conceptual model of managed and unmanaged fires in order to simulate the impact of road paving, cattle exports, and conservation area designation on the occurrence of fire. Our analysis shows that fire is positively correlated with the price of beef and soy, and that the creation of new conservation units may offset the negative environmental impacts caused by the increasing number of fire events associated with early stages of frontier development.
Federal Workforce Quality: Measurement and Improvement
1992-08-01
explicit standards of production and service quality . Assessment Tools 4 OPM should institutionalize its data collection program of longitudinal research...include data about quirements, should set explicit standards of various aspects of the model. That is, the production and service quality . effort...are the immediate consumers service quality are possible. of the products and services delivered, and still others in the larger society who have no
ERIC Educational Resources Information Center
Kumar, Revathy; Karabenick, Stuart A.; Burgoon, Jacob N.
2015-01-01
The theory of planned behavior and the dual process attitude-to-behavior MODE model framed an examination of how White teachers' (N = 241) implicit and explicit attitudes toward White versus non-White students were related to their classroom instructional practices in 2 school districts with a high percentage of Arab American and Chaldean American…
ERIC Educational Resources Information Center
Cena, Johanna; Baker, Doris Luft; Kame'enui, Edward J.; Baker, Scott K.; Park, Yonghan; Smolkowski, Keith
2013-01-01
This study examined the impact of a 15-min daily explicit vocabulary intervention in Spanish on expressive and receptive vocabulary knowledge and oral reading fluency in Spanish, and on language proficiency in English. Fifty Spanish-speaking English learners who received 90 min of Spanish reading instruction in an early transition model were…
NASA Technical Reports Server (NTRS)
Gilbertsen, Noreen D.; Belytschko, Ted
1990-01-01
The implementation of a nonlinear explicit program on a vectorized, concurrent computer with shared memory is described and studied. The conflict between vectorization and concurrency is described and some guidelines are given for optimal block sizes. Several example problems are summarized to illustrate the types of speed-ups which can be achieved by reprogramming as compared to compiler optimization.
Ható, Zoltán; Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezsö
2017-07-21
In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.
O'Brien, Susan H; Cook, Aonghais S C P; Robinson, Robert A
2017-10-01
Assessing the potential impact of additional mortality from anthropogenic causes on animal populations requires detailed demographic information. However, these data are frequently lacking, making simple algorithms, which require little data, appealing. Because of their simplicity, these algorithms often rely on implicit assumptions, some of which may be quite restrictive. Potential Biological Removal (PBR) is a simple harvest model that estimates the number of additional mortalities that a population can theoretically sustain without causing population extinction. However, PBR relies on a number of implicit assumptions, particularly around density dependence and population trajectory that limit its applicability in many situations. Among several uses, it has been widely employed in Europe in Environmental Impact Assessments (EIA), to examine the acceptability of potential effects of offshore wind farms on marine bird populations. As a case study, we use PBR to estimate the number of additional mortalities that a population with characteristics typical of a seabird population can theoretically sustain. We incorporated this level of additional mortality within Leslie matrix models to test assumptions within the PBR algorithm about density dependence and current population trajectory. Our analyses suggest that the PBR algorithm identifies levels of mortality which cause population declines for most population trajectories and forms of population regulation. Consequently, we recommend that practitioners do not use PBR in an EIA context for offshore wind energy developments. Rather than using simple algorithms that rely on potentially invalid implicit assumptions, we recommend use of Leslie matrix models for assessing the impact of additional mortality on a population, enabling the user to explicitly define assumptions and test their importance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Updates to the Demographic and Spatial Allocation Models to ...
EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing development scenarios up to 2100. This newest version includes updated population and land use data sets and addresses limitations identified in ICLUS v1 in both the migration and spatial allocation models. The companion user guide (Final Report) describes the development of ICLUS v2 and the updates that were made to the original data sets and the demographic and spatial allocation models. The GIS tool enables users to run SERGoM with the population projections developed for the ICLUS project and allows users to modify the spatial allocation housing density across the landscape.
Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.
van den Driessche, P; Yakubu, Abdul-Aziz
2018-04-12
We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, [Formula: see text]. When [Formula: see text] and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when [Formula: see text], we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever [Formula: see text].
Reder, Lynne M.; Park, Heekyeong; Kieffaber, Paul D.
2009-01-01
There is a popular hypothesis that performance on implicit and explicit memory tasks reflects 2 distinct memory systems. Explicit memory is said to store those experiences that can be consciously recollected, and implicit memory is said to store experiences and affect subsequent behavior but to be unavailable to conscious awareness. Although this division based on awareness is a useful taxonomy for memory tasks, the authors review the evidence that the unconscious character of implicit memory does not necessitate that it be treated as a separate system of human memory. They also argue that some implicit and explicit memory tasks share the same memory representations and that the important distinction is whether the task (implicit or explicit) requires the formation of a new association. The authors review and critique dissociations from the behavioral, amnesia, and neuroimaging literatures that have been advanced in support of separate explicit and implicit memory systems by highlighting contradictory evidence and by illustrating how the data can be accounted for using a simple computational memory model that assumes the same memory representation for those disparate tasks. PMID:19210052
Neutral dynamics with environmental noise: Age-size statistics and species lifetimes
NASA Astrophysics Data System (ADS)
Kessler, David; Suweis, Samir; Formentin, Marco; Shnerb, Nadav M.
2015-08-01
Neutral dynamics, where taxa are assumed to be demographically equivalent and their abundance is governed solely by the stochasticity of the underlying birth-death process, has proved itself as an important minimal model that accounts for many empirical datasets in genetics and ecology. However, the restriction of the model to demographic [O (√{N }) ] noise yields relatively slow dynamics that appears to be in conflict with both short-term and long-term characteristics of the observed systems. Here we analyze two of these problems—age-size relationships and species extinction time—in the framework of a neutral theory with both demographic and environmental stochasticity. It turns out that environmentally induced variations of the demographic rates control the long-term dynamics and modify dramatically the predictions of the neutral theory with demographic noise only, yielding much better agreement with empirical data. We consider two prototypes of "zero mean" environmental noise, one which is balanced with regard to the arithmetic abundance, another balanced in the logarithmic (fitness) space, study their species lifetime statistics, and discuss their relevance to realistic models of community dynamics.
Navascués, Miguel; Hardy, Olivier J; Burgarella, Concetta
2009-03-01
This work extends the methods of demographic inference based on the distribution of pairwise genetic differences between individuals (mismatch distribution) to the case of linked microsatellite data. Population genetics theory describes the distribution of mutations among a sample of genes under different demographic scenarios. However, the actual number of mutations can rarely be deduced from DNA polymorphisms. The inclusion of mutation models in theoretical predictions can improve the performance of statistical methods. We have developed a maximum-pseudolikelihood estimator for the parameters that characterize a demographic expansion for a series of linked loci evolving under a stepwise mutation model. Those loci would correspond to DNA polymorphisms of linked microsatellites (such as those found on the Y chromosome or the chloroplast genome). The proposed method was evaluated with simulated data sets and with a data set of chloroplast microsatellites that showed signal for demographic expansion in a previous study. The results show that inclusion of a mutational model in the analysis improves the estimates of the age of expansion in the case of older expansions.
A model comparison approach shows stronger support for economic models of fertility decline
Shenk, Mary K.; Towner, Mary C.; Kress, Howard C.; Alam, Nurul
2013-01-01
The demographic transition is an ongoing global phenomenon in which high fertility and mortality rates are replaced by low fertility and mortality. Despite intense interest in the causes of the transition, especially with respect to decreasing fertility rates, the underlying mechanisms motivating it are still subject to much debate. The literature is crowded with competing theories, including causal models that emphasize (i) mortality and extrinsic risk, (ii) the economic costs and benefits of investing in self and children, and (iii) the cultural transmission of low-fertility social norms. Distinguishing between models, however, requires more comprehensive, better-controlled studies than have been published to date. We use detailed demographic data from recent fieldwork to determine which models produce the most robust explanation of the rapid, recent demographic transition in rural Bangladesh. To rigorously compare models, we use an evidence-based statistical approach using model selection techniques derived from likelihood theory. This approach allows us to quantify the relative evidence the data give to alternative models, even when model predictions are not mutually exclusive. Results indicate that fertility, measured as either total fertility or surviving children, is best explained by models emphasizing economic factors and related motivations for parental investment. Our results also suggest important synergies between models, implicating multiple causal pathways in the rapidity and degree of recent demographic transitions. PMID:23630293