NASA Astrophysics Data System (ADS)
Kjeldsen, Tinne Hoff; Lützen, Jesper
2015-07-01
In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.
Analytical drafting curves provide exact equations for plotted data
NASA Technical Reports Server (NTRS)
Stewart, R. B.
1967-01-01
Analytical drafting curves provide explicit mathematical expressions for any numerical data that appears in the form of graphical plots. The curves each have a reference coordinate axis system indicated on the curve as well as the mathematical equation from which the curve was generated.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.
Ethical Concerns: Negotiating Truth and Trust
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys
2009-01-01
Few studies in mathematics education explicitly address ethical issues arising from student interactions. The ethical concerns held by students are expressed in their words, actions, and interactions. The purpose of this article is to explore the ethical nature of copying as it arises in a mathematics classroom. We investigate the basis for…
Using a Framework for Three Levels of Sense Making in a Mathematics Classroom
ERIC Educational Resources Information Center
Moss, Diana L.; Lamberg, Teruni
2016-01-01
This discussion-based lesson is designed to support Year 6 students in their initial understanding of using letters to represent numbers, expressions, and equations in algebra. The three level framework is designed for: (1) making thinking explicit, (2) exploring each other's solutions, and (3) developing new mathematical insights. In each level…
ERIC Educational Resources Information Center
Doabler, Christian T.; Fien, Hank
2013-01-01
This article describes the essential instructional elements necessary for delivering explicit mathematics instruction to students with mathematics difficulties. Mathematics intervention research indicates that explicit instruction is one of the most effective instructional approaches for teaching students with or at risk for math difficulties.…
Mathematical knowledge for teaching: Making the tacit more explicit in mathematics teacher education
NASA Astrophysics Data System (ADS)
Abdullah, Mohd Faizal Nizam Lee; Vimalanandan, Lena
2017-05-01
Teaching practice during school based experiences, afford an opportunity for pre service teachers to put into practice their knowledge for teaching mathematics. Like all knowledge, Mathematical Knowledge for Teaching (MKT) is held in both tacit and explicit form, making it especially difficult to study and map during instruction. This study investigates the tacit and explicit nature of MKT held by pre service teachers in a Malaysian Teacher Education Program and how it impacts the Mathematical Quality of their instruction (MQI). This study of three mathematics pre-service teachers (PSTs), utilised videos of mathematics lessons, reflective debriefs and interviews. The findings suggest that factors such as reflecting, peer-sharing, conferencing with mentors and observing support in making tacit knowledge more explicit during planning and instruction. Implications for preparation of mathematics teachers capable of high Mathematical Quality of Instruction are also discussed.
ERIC Educational Resources Information Center
Doabler, Christian T.; Baker, Scott K.; Kosty, Derek B.; Smolkowski, Keith; Clarke, Ben; Miller, Saralyn J.; Fien, Hank
2015-01-01
Explicit instruction is a systematic instructional approach that facilitates frequent and meaningful instructional interactions between teachers and students around critical academic content. This study examined the relationship between student mathematics outcomes and the rate and quality of explicit instructional interactions that occur during…
Enhancing Core Mathematics Instruction for Students at Risk for Mathematics Disabilities
ERIC Educational Resources Information Center
Doabler, Christian T.; Cary, Mari Strand; Jungjohann, Kathleen; Clarke, Ben; Fien, Hank; Baker, Scott; Smolkowski, Keith; Chard, David
2012-01-01
This paper presents eight practical guidelines that teachers can use to make core instruction more systematic and explicit for students with or at-risk for mathematics disabilities. In the paper, we use the notion of explicit and systematic instruction as a foundation for intensifying core math instruction. Explicit and systematic core instruction…
Sloshing dynamics on rotating helium dewar tank
NASA Technical Reports Server (NTRS)
Hung, R. J.
1993-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.
Numerical studies of the surface tension effect of cryogenic liquid helium
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.
A massive Feynman integral and some reduction relations for Appell functions
NASA Astrophysics Data System (ADS)
Shpot, M. A.
2007-12-01
New explicit expressions are derived for the one-loop two-point Feynman integral with arbitrary external momentum and masses m12 and m22 in D dimensions. The results are given in terms of Appell functions, manifestly symmetric with respect to the masses mi2. Equating our expressions with previously known results in terms of Gauss hypergeometric functions yields reduction relations for the involved Appell functions that are apparently new mathematical results.
Narrative assessment: making mathematics learning visible in early childhood settings
NASA Astrophysics Data System (ADS)
Anthony, Glenda; McLachlan, Claire; Lim Fock Poh, Rachel
2015-09-01
Narratives that capture children's learning as they go about their day-to-day activities are promoted as a powerful assessment tool within early childhood settings. However, in the New Zealand context, there is increasing concern that learning stories—the preferred form of narrative assessment—currently downplay domain knowledge. In this paper, we draw on data from 13 teacher interviews and samples of 18 children's learning stories to examine how mathematics is made visible within learning stories. Despite appreciating that mathematics is embedded in a range of everyday activities within the centres, we found that the nature of a particular activity appeared to influence `how' and `what' the teachers chose to document as mathematics learning. Many of the teachers expressed a preference to document and analyse mathematics learning that occurred within explicit mathematics activities rather than within play that involves mathematics. Our concern is that this restricted documentation of mathematical activity could potentially limit opportunities for mathematics learning both in the centre and home settings.
ERIC Educational Resources Information Center
van Velzen, Joke H.
2016-01-01
Theoretically, it has been argued that a conscious understanding of metacognitive knowledge requires that this knowledge is explicit and systematic. The purpose of this descriptive study was to obtain a better understanding of explicitness and systematicity in knowledge of the mathematical problem-solving process. Eighteen 11th-grade…
Children's Implicit and Explicit Gender Stereotypes about Mathematics and Reading Ability
ERIC Educational Resources Information Center
Nowicki, Elizabeth A.; Lopata, Joel
2017-01-01
Study objectives were to clarify children's gender-based implicit and explicit mathematics and reading stereotypes, and to determine if implicit and explicit measures were related or represented distinct constructs. One hundred and fifty-six boys and girls (mean age 11.3 years) from six elementary schools completed math or reading stereotype…
The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel
NASA Astrophysics Data System (ADS)
Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin
2016-06-01
On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.
Explicit expressions of quantum mechanical rotation operators for spins 1 to 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr
2016-03-25
Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y andmore » z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.« less
ERIC Educational Resources Information Center
Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth
2015-01-01
This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…
Spectral Analysis: From Additive Perspective to Multiplicative Perspective
NASA Astrophysics Data System (ADS)
Wu, Z.
2017-12-01
The early usage of trigonometric functions can be traced back to at least 17th century BC. It was Bhaskara II of the 12th century CE who first proved the mathematical equivalence between the sum of two trigonometric functions of any given angles and the product of two trigonometric functions of related angles, which has been taught these days in middle school classroom. The additive perspective of trigonometric functions led to the development of the Fourier transform that is used to express any functions as the sum of a set of trigonometric functions and opened a new mathematical field called harmonic analysis. Unfortunately, Fourier's sum cannot directly express nonlinear interactions between trigonometric components of different periods, and thereby lacking the capability of quantifying nonlinear interactions in dynamical systems. In this talk, the speaker will introduce the Huang transform and Holo-spectrum which were pioneered by Norden Huang and emphasizes the multiplicative perspective of trigonometric functions in expressing any function. Holo-spectrum is a multi-dimensional spectral expression of a time series that explicitly identifies the interactions among different scales and quantifies nonlinear interactions hidden in a time series. Along with this introduction, the developing concepts of physical, rather than mathematical, analysis of data will be explained. Various enlightening applications of Holo-spectrum analysis in atmospheric and climate studies will also be presented.
Two-point derivative dispersion relations
NASA Astrophysics Data System (ADS)
Ferreira, Erasmo; Sesma, Javier
2013-03-01
A new derivation is given for the representation, under certain conditions, of the integral dispersion relations of scattering theory through local forms. The resulting expressions have been obtained through an independent procedure to construct the real part and consist of new mathematical structures of double infinite summations of derivatives. In this new form the derivatives are calculated at the generic value of the energy E and separately at the reference point E = m that is the lower limit of the integration. This new form may be more interesting in certain circumstances and directly shows the origin of the difficulties in convergence that were present in the old truncated forms called standard-derivative dispersion relations (DDR). For all cases in which the reductions of the double to single sums were obtained in our previous work, leading to explicit demonstration of convergence, these new expressions are seen to be identical to the previous ones. We present, as a glossary, the most simplified explicit results for the DDR's in the cases of imaginary amplitudes of forms (E/m)λ[ln (E/m)]n that cover the cases of practical interest in particle physics phenomenology at high energies. We explicitly study the expressions for the cases with λ negative odd integers, that require identification of cancelation of singularities, and provide the corresponding final results.
Terry, Alan J; Sturrock, Marc; Dale, J Kim; Maroto, Miguel; Chaplain, Mark A J
2011-02-28
In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explicitly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes.
The Tacit-Explicit Dimension of the Learning of Mathematics: An Investigation Report
ERIC Educational Resources Information Center
Frade, Cristina; Borges, Oto
2006-01-01
This paper reports on study that investigated the tacit-explicit dimension of the learning of mathematics. The study was carried out in a secondary school and consisted of an episode analysis related to a class discussion about the difference between plane figures and spatial figures. The data analysis was based on integration between some aspects…
A bivariate rational interpolation with a bi-quadratic denominator
NASA Astrophysics Data System (ADS)
Duan, Qi; Zhang, Huanling; Liu, Aikui; Li, Huaigu
2006-10-01
In this paper a new rational interpolation with a bi-quadratic denominator is developed to create a space surface using only values of the function being interpolated. The interpolation function has a simple and explicit rational mathematical representation. When the knots are equally spaced, the interpolating function can be expressed in matrix form, and this form has a symmetric property. The concept of integral weights coefficients of the interpolation is given, which describes the "weight" of the interpolation points in the local interpolating region.
Intensity formulas for triplet bands
NASA Technical Reports Server (NTRS)
Budo, A.
1982-01-01
Previous work in this area is surveyed and the mathematics involved in determining the quantitative intensity measurements in triplet bands is presented. Explicit expressions for the intensity distribution in the branches of the 3 Sigma-3 Pi and 1 Sigma-3Pi bands valid for all values of the coupling constant Y of the 3 Pi terms are given. The intensity distribution calculated according to the formulas given is compared with measurements of PH, 3 Pi-3 Sigma. Good quantitative agreement is obtained.
Moderating Effects of Mathematics Anxiety on the Effectiveness of Explicit Timing
ERIC Educational Resources Information Center
Grays, Sharnita D.; Rhymer, Katrina N.; Swartzmiller, Melissa D.
2017-01-01
Explicit timing is an empirically validated intervention to increase problem completion rates by exposing individuals to a stopwatch and explicitly telling them of the time limit for the assignment. Though explicit timing has proven to be effective for groups of students, some students may not respond well to explicit timing based on factors such…
The Influence of Symbols and Equations on Understanding Mathematical Equivalence
ERIC Educational Resources Information Center
Powell, Sarah R.
2015-01-01
Students with mathematics difficulty demonstrate lower mathematics performance than typical-performing peers. One contributing factor to lower mathematics performance may be misunderstanding of mathematics symbols. In several studies related to the equal sign (=), students who received explicit instruction on the relational definition (i.e.,…
The Role of Mathematical Fiction in the Learning of Mathematics in Primary School
ERIC Educational Resources Information Center
Padula, Janice
2004-01-01
This article classifies and describes a selection of mathematical fiction. It also provides some practical activities teachers or parents can use to help make the mathematics more explicit and engaging for their children. Not many people, apart from primary teachers, are aware of mathematical fiction or mathematical picture storybooks, although…
Productive Mathematical Noticing: What It Is and Why It Matters
ERIC Educational Resources Information Center
Choy, Ban Heng
2013-01-01
Teacher mathematical noticing is a key component of mathematics teaching expertise and has been a focus of recent professional development efforts. In this paper, I propose and describe explicitly the notion of "productive" mathematical noticing, which surfaces from a case study involving a group of seven mathematics teachers who…
ERIC Educational Resources Information Center
Powell, Sarah R.; Driver, Melissa K.
2015-01-01
Researchers and practitioners indicate students require explicit instruction on mathematics vocabulary terms, yet no study has examined the effects of an embedded vocabulary component within mathematics tutoring for early elementary students. First-grade students with mathematics difficulty (MD; n = 98) were randomly assigned to addition tutoring…
The Emergence of Objects from Mathematical Practices
ERIC Educational Resources Information Center
Font, Vicenc; Godino, Juan D.; Gallardo, Jesus
2013-01-01
The nature of mathematical objects, their various types, the way in which they are formed, and how they participate in mathematical activity are all questions of interest for philosophy and mathematics education. Teaching in schools is usually based, implicitly or explicitly, on a descriptive/realist view of mathematics, an approach which is not…
ERIC Educational Resources Information Center
Buchheister, Kelley; Jackson, Christa; Taylor, Cynthia E.
2014-01-01
Traditionally, teacher education programs have placed little emphasis on preparing mathematics teachers to work with students who struggle in mathematics. Therefore, it is crucial that mathematics teacher educators explicitly prepare prospective teachers to instruct students who struggle with mathematics by providing strategies and practices that…
Two-dimensional dispersion of magnetostatic volume spin waves
NASA Astrophysics Data System (ADS)
Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.
2018-06-01
Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.
Study of the stability of a SEIRS model for computer worm propagation
NASA Astrophysics Data System (ADS)
Hernández Guillén, J. D.; Martín del Rey, A.; Hernández Encinas, L.
2017-08-01
Nowadays, malware is the most important threat to information security. In this sense, several mathematical models to simulate malware spreading have appeared. They are compartmental models where the population of devices is classified into different compartments: susceptible, exposed, infectious, recovered, etc. The main goal of this work is to propose an improved SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) mathematical model to simulate computer worm propagation. It is a continuous model whose dynamic is ruled by means of a system of ordinary differential equations. It considers more realistic parameters related to the propagation; in fact, a modified incidence rate has been used. Moreover, the equilibrium points are computed and their local and global stability analyses are studied. From the explicit expression of the basic reproductive number, efficient control measures are also obtained.
Investigating Teachers' Images of Mathematics
ERIC Educational Resources Information Center
Sterenberg, Gladys
2008-01-01
Research suggests that understanding new images of mathematics is very challenging and can contribute to teacher resistance. An explicit exploration of personal views of mathematics may be necessary for pedagogical change. One possible way for exploring these images is through mathematical metaphors. As metaphors focus on similarities, they can be…
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.
2016-06-01
A key aspect of learning algebra in the middle years of schooling is exploring the functional relationship between two variables: noticing and generalising the relationship, and expressing it mathematically. This article describes research on the professional learning of upper primary school teachers for developing their students' functional thinking through pattern generalisation. This aspect of algebra learning has been explicitly brought to the attention of upper primary teachers in the recently introduced Australian curriculum. Ten practising teachers participated over 1 year in a design-based research project involving a sequence of geometric pattern generalisation lessons with their classes. Initial and final survey responses and teachers' interactions in regular meetings and lessons were analysed from cognitive and situated perspectives on professional learning, using a theoretical model for the different types of knowledge needed for teaching mathematics. The teachers demonstrated an increase in certain aspects of their mathematical knowledge for teaching algebra as well as some residual issues. Implications for the professional learning of practising and pre-service teachers to develop their mathematics knowledge for teaching functional thinking, and challenges with operationalising knowledge categories for field-based research are presented.
Ethical Dimensions of Mathematics Education
ERIC Educational Resources Information Center
Boylan, Mark
2016-01-01
The relationships between mathematics, mathematics education and issues such as social justice and equity have been addressed by the sociopolitical tradition in mathematics education. Others have introduced explicit discussion of ethics, advocating for its centrality. However, this is an area that is still under developed. There is a need for an…
ERIC Educational Resources Information Center
Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William
2017-01-01
Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was…
ERIC Educational Resources Information Center
Bryant, Brian R.; Bryant, Diane Pedrotty; Porterfield, Jennifer; Dennis, Minyi Shih; Falcomata, Terry; Valentine, Courtney; Brewer, Chelsea; Bell, Kathy
2016-01-01
The purpose of this study was to determine the effectiveness of a systematic, explicit, intensive Tier 3 (tertiary) intervention on the mathematics performance of students in second grade with severe mathematics difficulties. A multiple-baseline design across groups of participants showed improved mathematics performance on number and operations…
Desmet, Gert
2013-11-01
The finite length parallel zone (FPZ)-model is proposed as an alternative model for the axial- or eddy-dispersion caused by the occurrence of local velocity biases or flow heterogeneities in porous media such as those used in liquid chromatography columns. The mathematical plate height expression evolving from the model shows that the A- and C-term band broadening effects that can originate from a given velocity bias should be coupled in an exponentially decaying way instead of harmonically as proposed in Giddings' coupling theory. In the low and high velocity limit both models converge, while a 12% difference can be observed in the (practically most relevant) intermediate range of reduced velocities. Explicit expressions for the A- and C-constants appearing in the exponential decay-based plate height expression have been derived for each of the different possible velocity bias levels (single through-pore and particle level, multi-particle level and trans-column level). These expressions allow to directly relate the band broadening originating from these different levels to the local fundamental transport parameters, hence offering the possibility to include a velocity-dependent and, if, needed retention factor-dependent transversal dispersion coefficient. Having developed the mathematics for the general case wherein a difference in retention equilibrium establishes between the two parallel zones, the effect of any possible local variations in packing density and/or retention capacity on the eddy-dispersion can be explicitly accounted for as well. It is furthermore also shown that, whereas the lumped transport parameter model used in the basic variant of the FPZ-model only provides a first approximation of the true decay constant, the model can be extended by introducing a constant correction factor to correctly account for the continuous transversal dispersion transport in the velocity bias zones. Copyright © 2013 Elsevier B.V. All rights reserved.
The Effects of STEM PBL on Students' Mathematical and Scientific Vocabulary Knowledge
ERIC Educational Resources Information Center
Bilgin, Ali; Boedeker, Peter; Capraro, Robert M.; Capraro, Mary M.
2015-01-01
Vocabulary is at the surface level of language usage; thus, students need to develop mathematical and scientific vocabulary to be able to explicitly communicate their mathematical and scientific reasoning with others. The National Council of Teachers of Mathematics (NCTM) and the National Science Teachers Association (NSTA) have both created…
NASA Astrophysics Data System (ADS)
Lee, Carrie W.; Walkowiak, Temple A.; Nietfeld, John L.
2017-03-01
The purpose of this study was to investigate the relationship between prospective teachers' (PTs) instructional practises and their efficacy beliefs in classroom management and mathematics teaching. A sequential, explanatory mixed-methods design was employed. Results from efficacy surveys, implemented with 54 PTs were linked to a sample of teachers' instructional practises during the qualitative phase. In this phase, video-recorded lessons were analysed based on tasks, representations, discourse, and classroom management. Findings indicate that PTs with higher levels of mathematics teaching efficacy taught lessons characterised by tasks of higher cognitive demand, extended student explanations, student-to-student discourse, and explicit connections between representations. Classroom management efficacy seems to bear influence on the utilised grouping structures. These findings support explicit attention to PTs' mathematics teaching and classroom management efficacy throughout teacher preparation and a need for formative feedback to inform development of beliefs about teaching practises.
Why Not Philosophy? Problematizing the Philosophy of Mathematics in a Time of Curriculum Reform
ERIC Educational Resources Information Center
White-Fredette, Kimberly
2010-01-01
This article argues that, as teachers struggle to implement curriculum reform in mathematics, an explicit discussion of philosophy of mathematics is missing from the conversation. Building on the work of Ernest (1988, 1991, 1994, 1998, 1999, 2004), Lerman (1990, 1998, 1999), the National Council of Teachers of Mathematics (1989, 1991, 2000), Davis…
Early numerical foundations of young children's mathematical development.
Chu, Felicia W; vanMarle, Kristy; Geary, David C
2015-04-01
This study focused on the relative contributions of the acuity of the approximate number system (ANS) and knowledge of quantitative symbols to young children's early mathematical learning. At the beginning of preschool, 191 children (Mage=46 months) were administered tasks that assessed ANS acuity and explicit knowledge of the cardinal values represented by number words, and their mathematics achievement was assessed at the end of the school year. Children's executive functions, intelligence, and preliteracy skills and their parents' educational levels were also assessed and served as covariates. Both the ANS and cardinality tasks were significant predictors of end-of-year mathematics achievement with and without control of the covariates. As simultaneous predictors and with control of the covariates, cardinality remained significantly related to mathematics achievement, but ANS acuity did not. Mediation analyses revealed that the relation between ANS acuity and mathematics achievement was fully mediated by cardinality, suggesting that the ANS may facilitate children's explicit understanding of cardinal value and in this way may indirectly influence early mathematical learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Anticipation Guides: Reading for Mathematics Understanding
ERIC Educational Resources Information Center
Adams, Anne E.; Pegg, Jerine; Case, Melissa
2015-01-01
With the acceptance by many states of the Common Core State Standards for Mathematics, new emphasis is being placed on students' ability to engage in mathematical practices such as understanding problems (including word problems), reading and critiquing arguments, and making explicit use of definitions (CCSSI 2010). Engaging students in…
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Karel, S.
1975-01-01
An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given. This mathematical technique is potentially adaptable to the separation problem.
Enhancing Students' Written Mathematical Arguments
ERIC Educational Resources Information Center
Lepak, Jerilynn
2014-01-01
Writing in mathematics is complex. The purpose of this article is to share how one teacher, Ms. Hill, used peer-review activities involving rubrics to explicitly communicate mathematical resources that students could draw from when justifying a claim. She found that helping students understand which type of statements could be used in…
ERIC Educational Resources Information Center
Kokka, Kari
2015-01-01
Social justice mathematics educators explicitly aim to develop students' sociopolitical consciousness in addition to teaching mathematics content (Gutiérrez 2013; Gutstein 2006). Sociopolitical consciousness refers to Paulo Freire's (1970) concept of "conscientização," or learning to perceive social, political, and economic…
Investigating Integer Restrictions in Linear Programming
ERIC Educational Resources Information Center
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
Establishing Mathematics for Teaching within Classroom Interactions in Teacher Education
ERIC Educational Resources Information Center
Ryve, Andreas; Nilsson, Per; Mason, John
2012-01-01
Teacher educators' processes of establishing "mathematics for teaching" in teacher education programs have been recognized as an important area for further research. In this study, we examine how two teacher educators establish and make explicit features of mathematics for teaching within classroom interactions. The study shows how the…
Separation of Variables and Superintegrability; The symmetry of solvable systems
NASA Astrophysics Data System (ADS)
Kalnins, Ernest G.; Kress, Jonathan M.; Miller, Willard, Jr.
2018-06-01
Separation of variables methods for solving partial differential equations are of immense theoretical and practical importance in mathematical physics. They are the most powerful tool known for obtaining explicit solutions of the partial differential equations of mathematical physics. The purpose of this book is to give an up-to-date presentation of the theory of separation of variables and its relation to superintegrability. Collating and presenting it in a unified, updated and a more accessible manner, the results scattered in the literature that the authors have prepared is an invaluable resource for mathematicians and mathematical physicists in particular, as well as science, engineering, geological and biological researchers interested in explicit solutions.
Making things explicit using instructional materials: a case study of a Singapore teacher's practice
NASA Astrophysics Data System (ADS)
Leong, Yew Hoong; Cheng, Lu Pien; Toh, Wei Yeng Karen; Kaur, Berinderjeet; Toh, Tin Lam
2018-04-01
The phrase `make it explicit' is a common advice given to teachers. It is, however, not clear to us what this actually means when translated into classroom practice. Our review found that we are not alone: "explicit" is used in different ways in the education literature. This paper explores, through a case study of a teacher who stated "making things explicit" as an ostensible goal of his instructional practice, how the explicitation is realised in teaching mathematics. In particular, we examine how he used the instructional materials that he crafted to fulfil his goal of explicitation. We were able to uncover three strategies he used: explicit-from, explicit-within, and explicit-to.
NASA Technical Reports Server (NTRS)
Lee, C.
1975-01-01
Adopting the so-called genealogical construction, the eigenstates of collective operators can be expressed corresponding to a specified mode for an N-atom system in terms of those for an (N-1)-atom system. Matrix element of a collective operator of an arbitrary mode is presented which can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME was obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups was then introduced. This gave a simple and systematic way of calculating the RME. Results show explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes and clears up the chief difficulty encounted in the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field.
Pharmacokinetic Steady-States Highlight Interesting Target-Mediated Disposition Properties.
Gabrielsson, Johan; Peletier, Lambertus A
2017-05-01
In this paper, we derive explicit expressions for the concentrations of ligand L, target R and ligand-target complex RL at steady state for the classical model describing target-mediated drug disposition, in the presence of a constant-rate infusion of ligand. We demonstrate that graphing the steady-state values of ligand, target and ligand-target complex, we obtain striking and often singular patterns, which yield a great deal of insight and understanding about the underlying processes. Deriving explicit expressions for the dependence of L, R and RL on the infusion rate, and displaying graphs of the relations between L, R and RL, we give qualitative and quantitive information for the experimentalist about the processes involved. Understanding target turnover is pivotal for optimising these processes when target-mediated drug disposition (TMDD) prevails. By a combination of mathematical analysis and simulations, we also show that the evolution of the three concentration profiles towards their respective steady-states can be quite complex, especially for lower infusion rates. We also show how parameter estimates obtained from iv bolus studies can be used to derive steady-state concentrations of ligand, target and complex. The latter may serve as a template for future experimental designs.
Revisiting the positive DC corona discharge theory: Beyond Peek's and Townsend's law
NASA Astrophysics Data System (ADS)
Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck
2018-06-01
The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is revisited in order to find analytically the influence of gas properties and thermodynamic conditions on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. Phys. 20, 1490-1495 (1987)] of a simplified but self-consistent problem is performed and explicit analytical solutions are derived. The mathematical derivation enables us to express a new positive DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formulation. In dimensional variables, the current voltage law and the corona inception voltage explicitly depend on the electrode size and physical gas properties such as ionization and photoionization parameters. The analytical predictions are successfully confronted with experiments and Peek's and Townsend's laws. An analytical expression of the corona inception voltage φ o n is proposed, which depends on the known values of physical parameters without adjustable parameters. As a proof of consistency, the classical Townsend current-voltage law I = C φ ( φ - φ o n ) is retrieved by linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest in this analytical current model, especially for exploring small corona wires or considering various thermodynamic conditions.
A Framework for Re-Envisioning Mathematics Instruction for English Language Learners
ERIC Educational Resources Information Center
Council of the Great City Schools, 2016
2016-01-01
The overarching purpose of this document is to define a new vision for mathematics instruction that explicitly attends to the needs of English Language Learners (ELLs), addressing the interdependence of language and mathematics. The sections in this report are devoted to (1) making clear that the grade-level college- and career-readiness…
ERIC Educational Resources Information Center
Tariq, V. N.
2008-01-01
This study extends the debate concerning the mathematical skills deficit of bioscience undergraduates towards a deeper understanding of their mathematics learning, since only through the latter can appropriate and effective explicit teaching be implemented. Three hundred and twenty-six first-year bioscience undergraduates, from three pre- and four…
Seeking mathematics success for college students: a randomized field trial of an adapted approach
NASA Astrophysics Data System (ADS)
Gula, Taras; Hoessler, Carolyn; Maciejewski, Wes
2015-11-01
Many students enter the Canadian college system with insufficient mathematical ability and leave the system with little improvement. Those students who enter with poor mathematics ability typically take a developmental mathematics course as their first and possibly only mathematics course. The educational experiences that comprise a developmental mathematics course vary widely and are, too often, ineffective at improving students' ability. This trend is concerning, since low mathematics ability is known to be related to lower rates of success in subsequent courses. To date, little attention has been paid to the selection of an instructional approach to consistently apply across developmental mathematics courses. Prior research suggests that an appropriate instructional method would involve explicit instruction and practising mathematical procedures linked to a mathematical concept. This study reports on a randomized field trial of a developmental mathematics approach at a college in Ontario, Canada. The new approach is an adaptation of the JUMP Math program, an explicit instruction method designed for primary and secondary school curriculae, to the college learning environment. In this study, a subset of courses was assigned to JUMP Math and the remainder was taught in the same style as in the previous years. We found consistent, modest improvement in the JUMP Math sections compared to the non-JUMP sections, after accounting for potential covariates. The findings from this randomized field trial, along with prior research on effective education for developmental mathematics students, suggest that JUMP Math is a promising way to improve college student outcomes.
Explicit Pharmacokinetic Modeling: Tools for Documentation, Verification, and Portability
Quantitative estimates of tissue dosimetry of environmental chemicals due to multiple exposure pathways require the use of complex mathematical models, such as physiologically-based pharmacokinetic (PBPK) models. The process of translating the abstract mathematics of a PBPK mode...
Cultivating Computational Thinking Practices and Mathematical Habits of Mind in Lattice Land
ERIC Educational Resources Information Center
Pei, Christina; Weintrop, David; Wilensky, Uri
2018-01-01
There is a great deal of overlap between the set of practices collected under the term "computational thinking" and the mathematical habits of mind that are the focus of much mathematics instruction. Despite this overlap, the links between these two desirable educational outcomes are rarely made explicit, either in classrooms or in the…
Some Applications of Mathematics for the Biology Classroom
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2013-01-01
Biology and mathematics are inextricably linked. In this article, we show a few of the many areas in which this linkage might be made explicit. By doing so, teachers can deepen students' understanding and appreciation of both subjects. In this article, we explore some of these areas, providing brief explanations of the mathematics and some of the…
ERIC Educational Resources Information Center
Enoch, Sarah Elizabeth
2013-01-01
While professional developers have been encouraging teachers to plan for discourse around problem solving tasks as a way to orchestrate mathematically productive discourse (Stein, Engle, Smith, & Hughes, 2008; Stein, Smith, Henningsen, & Silver, 2009) no research has been conducted explicitly examining the relationship between the plans…
Learning to Model in Engineering
ERIC Educational Resources Information Center
Gainsburg, Julie
2013-01-01
Policymakers and education scholars recommend incorporating mathematical modeling into mathematics education. Limited implementation of modeling instruction in schools, however, has constrained research on how students learn to model, leaving unresolved debates about whether modeling should be reified and explicitly taught as a competence, whether…
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1989-01-01
A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.
Terry, Alan J.; Sturrock, Marc; Dale, J. Kim; Maroto, Miguel; Chaplain, Mark A. J.
2011-01-01
In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explictly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes. PMID:21386903
New explicit global asymptotic stability criteria for higher order difference equations
NASA Astrophysics Data System (ADS)
El-Morshedy, Hassan A.
2007-12-01
New explicit sufficient conditions for the asymptotic stability of the zero solution of higher order difference equations are obtained. These criteria can be applied to autonomous and nonautonomous equations. The celebrated Clark asymptotic stability criterion is improved. Also, applications to models from mathematical biology and macroeconomics are given.
Functionals of Gegenbauer polynomials and D-dimensional hydrogenic momentum expectation values
NASA Astrophysics Data System (ADS)
Van Assche, W.; Yáñez, R. J.; González-Férez, R.; Dehesa, Jesús S.
2000-09-01
The system of Gegenbauer or ultraspherical polynomials {Cnλ(x);n=0,1,…} is a classical family of polynomials orthogonal with respect to the weight function ωλ(x)=(1-x2)λ-1/2 on the support interval [-1,+1]. Integral functionals of Gegenbauer polynomials with integrand f(x)[Cnλ(x)]2ωλ(x), where f(x) is an arbitrary function which does not depend on n or λ, are considered in this paper. First, a general recursion formula for these functionals is obtained. Then, the explicit expression for some specific functionals of this type is found in a closed and compact form; namely, for the functionals with f(x) equal to (1-x)α(1+x)β, log(1-x2), and (1+x)log(1+x), which appear in numerous physico-mathematical problems. Finally, these functionals are used in the explicit evaluation of the momentum expectation values
and are given by means of a terminating 5F4 hypergeometric function with unit argument, which is a considerable improvement with respect to Hey's expression (the only one existing up to now) which requires a double sum.
Torfs, Elena; Balemans, Sophie; Locatelli, Florent; Diehl, Stefan; Bürger, Raimund; Laurent, Julien; François, Pierre; Nopens, Ingmar
2017-03-01
Advanced 1-D models for Secondary Settling Tanks (SSTs) explicitly account for several phenomena that influence the settling process (such as hindered settling and compression settling). For each of these phenomena a valid mathematical expression needs to be selected and its parameters calibrated to obtain a model that can be used for operation and control. This is, however, a challenging task as these phenomena may occur simultaneously. Therefore, the presented work evaluates several available expressions for hindered settling based on long-term batch settling data. Specific attention is paid to the behaviour of these hindered settling functions in the compression region in order to evaluate how the modelling of sludge compression is influenced by the choice of a certain hindered settling function. The analysis shows that the exponential hindered settling forms, which are most commonly used in traditional SST models, not only account for hindered settling but partly lump other phenomena (compression) as well. This makes them unsuitable for advanced 1-D models that explicitly include each phenomenon in a modular way. A power-law function is shown to be more appropriate to describe the hindered settling velocity in advanced 1-D SST models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Segmentation-based wavelet transform for still-image compression
NASA Astrophysics Data System (ADS)
Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.
1996-10-01
In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.
Teaching Inquiry with a Lens toward Curiosity
ERIC Educational Resources Information Center
von Renesse, Christine; Ecke, Volker
2017-01-01
This paper links educational psychology research about curiosity to teacher moves that are effective in an inquiry-based mathematics classroom. Three vignettes will show explicit teacher moves (staging disagreement, intriguing anecdotes, and creating a safe space) for different audiences (math majors, mathematics for liberal arts students, and…
Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis
NASA Astrophysics Data System (ADS)
Dawkins, Bryan A.; Laverty, Sean M.
2016-03-01
Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.
Do Explicit Number Names Accelerate Pre-Kindergarteners' Numeracy and Place Value Acquisition?
ERIC Educational Resources Information Center
Magargee, Suzanne D.; Beauford, Judith E.
2016-01-01
The purpose of this longitudinal study is to investigate whether an early childhood intervention using an explicit and transparent number naming system will have a lasting benefit to English and Spanish speaking children in their mathematics achievement related to number sense by accelerating their acquisition of concepts of numeracy and place…
Exploring Mathematics Problems Prepares Children to Learn from Instruction
ERIC Educational Resources Information Center
DeCaro, Marci S.; Rittle-Johnson, Bethany
2012-01-01
Both exploration and explicit instruction are thought to benefit learning in many ways, but much less is known about how the two can be combined. We tested the hypothesis that engaging in exploratory activities prior to receiving explicit instruction better prepares children to learn from the instruction. Children (159 second- to fourth-grade…
Geometric Series via Probability
ERIC Educational Resources Information Center
Tesman, Barry
2012-01-01
Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…
Math In-Service Training for Adult Educators.
ERIC Educational Resources Information Center
Llorente, Juan Carlos; Porras, Marta; Martinez, Rosa
In a series of mathematics education workshops in which teachers from adult basic education and vocational education worked together to design teaching situations on particular contents in mathematics in order to make explicit and bring into reflection the teaching strategies used by each group. The workshops constituted a common space of…
ERIC Educational Resources Information Center
Guerrero, Shannon; Baumgartel, Drew; Zobott, Maren
2013-01-01
Screencasting, or digital recordings of computer screen outputs, can be used to promote pedagogical transformation in the mathematics classroom by moving explicit, procedural-based instruction to the online environment, thus freeing classroom time for more student-centered investigations, problem solving, communication, and collaboration. This…
ERIC Educational Resources Information Center
Edwards, Ann R.; Beattie, Rachel L.
2016-01-01
This paper focuses on two research-based frameworks that inform the design of instruction and promote student success in accelerated, developmental mathematics pathways. These are Learning Opportunities--productive struggle on challenging and relevant tasks, deliberate practice, and explicit connections, and Productive Persistence--promoting…
Gender Mainstreaming of Adult Mathematics Education: Opportunities and Challenges
ERIC Educational Resources Information Center
Henningsen, Inge
2008-01-01
Mainstreaming as a strategy for equality has been widely adopted by the international community. Mainstreaming of adult mathematics education entails that gender, ethnicity, social class and other difference defining categories are included consciously and explicitly in all activities. A growing body of research explore how pluralism and…
Requirements for the formal representation of pathophysiology mechanisms by clinicians
Helvensteijn, M.; Kokash, N.; Martorelli, I.; Sarwar, D.; Islam, S.; Grenon, P.; Hunter, P.
2016-01-01
Knowledge of multiscale mechanisms in pathophysiology is the bedrock of clinical practice. If quantitative methods, predicting patient-specific behaviour of these pathophysiology mechanisms, are to be brought to bear on clinical decision-making, the Human Physiome community and Clinical community must share a common computational blueprint for pathophysiology mechanisms. A number of obstacles stand in the way of this sharing—not least the technical and operational challenges that must be overcome to ensure that (i) the explicit biological meanings of the Physiome's quantitative methods to represent mechanisms are open to articulation, verification and study by clinicians, and that (ii) clinicians are given the tools and training to explicitly express disease manifestations in direct contribution to modelling. To this end, the Physiome and Clinical communities must co-develop a common computational toolkit, based on this blueprint, to bridge the representation of knowledge of pathophysiology mechanisms (a) that is implicitly depicted in electronic health records and the literature, with (b) that found in mathematical models explicitly describing mechanisms. In particular, this paper makes use of a step-wise description of a specific disease mechanism as a means to elicit the requirements of representing pathophysiological meaning explicitly. The computational blueprint developed from these requirements addresses the Clinical community goals to (i) organize and manage healthcare resources in terms of relevant disease-related knowledge of mechanisms and (ii) train the next generation of physicians in the application of quantitative methods relevant to their research and practice. PMID:27051514
Plate motion and the secular shift of the mean pole
NASA Technical Reports Server (NTRS)
Liu, H.; Carpenter, L.; Agreen, R. W.
1973-01-01
The global plate motion indicates that changes in the products of inertia of the earth due to tectonic plate movement may provide a secular shift of the mean pole. A mathematical procedure for calculating this shift based on the plate theory is presented. Explicit expressions were obtained for the dependence of the secular polar shift on the dimensions and locations of the plate boundaries. Numerical results show that the secular motion of the mean pole is 0.0002 sec/year in the direction of 67 W. Hence, it is deduced that the influence of the plate motion on the secular polar shift may account for 10% of the observed value.
On the regularization of impact without collision: the Painlevé paradox and compliance
NASA Astrophysics Data System (ADS)
Hogan, S. J.; Kristiansen, K. Uldall
2017-06-01
We consider the problem of a rigid body, subject to a unilateral constraint, in the presence of Coulomb friction. We regularize the problem by assuming compliance (with both stiffness and damping) at the point of contact, for a general class of normal reaction forces. Using a rigorous mathematical approach, we recover impact without collision (IWC) in both the inconsistent and the indeterminate Painlevé paradoxes, in the latter case giving an exact formula for conditions that separate IWC and lift-off. We solve the problem for arbitrary values of the compliance damping and give explicit asymptotic expressions in the limiting cases of small and large damping, all for a large class of rigid bodies.
The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1991-01-01
The present study proposes a mathematical model utilizing the internal state variable concept for predicting the upper bounds of the reduced axial and shear stiffnesses in cross-ply laminates with matrix cracks. The displacement components at the matrix crack surfaces are explicitly expressed in terms of the observable axial and shear strains and the undamaged material properties. The reduced axial and shear stiffnesses are predicted for glass/epoxy and graphite/epoxy laminates. Comparison of the model with other theoretical and experimental studies is also presented to confirm direct applicability of the model to angle-ply laminates with matrix cracks subjected to general in-plane loading.
SBML Level 3 package: Groups, Version 1 Release 1
Hucka, Michael; Smith, Lucian P.
2017-01-01
Summary Biological models often contain components that have relationships with each other, or that modelers want to treat as belonging to groups with common characteristics or shared metadata. The SBML Level 3 Version 1 Core specification does not provide an explicit mechanism for expressing such relationships, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Groups package for SBML Level 3 adds the necessary features to SBML to allow grouping of model components to be expressed. Such groups do not affect the mathematical interpretation of a model, but they do provide a way to add information that can be useful for modelers and software tools. The SBML Groups package enables a modeler to include definitions of groups and nested groups, each of which may be annotated to convey why that group was created, and what it represents. PMID:28187406
ERIC Educational Resources Information Center
Smith, Jessi L.; White, Paul H.
2002-01-01
Examined how stereotypes might become activated in testing situations, noting the effects of this activation on task performance. Data collected on college students suggested that explicitly and implicitly activated stereotypes were equally detrimental to student performance. Members of a traditional nonstigmatized group (white men) were affected…
Collective Properties of Neural Systems and Their Relation to Other Physical Models
1988-08-05
been computed explicitly. This has been achieved algorithmically by utilizing methods introduced earlier. It should be emphasized that in addition to...Research Institute for Mathematical Sciences. K’oto Universin. K roto 606. .apan and E. BAROUCH Department of Mathematics and Computer Sciene. Clarkon...Mathematics and Computer Science, Clarkson University, where this work was collaborated. References I. IBabu, S. V. and Barouch E., An exact soIlution for the
Non-Mathematics Students' Reasoning in Calculus Tasks
ERIC Educational Resources Information Center
Jukic Matic, Ljerka
2015-01-01
This paper investigates the reasoning of first year non-mathematics students in non-routine calculus tasks. The students in this study were accustomed to imitative reasoning from their primary and secondary education. In order to move from imitative reasoning toward more creative reasoning, non-routine tasks were implemented as an explicit part of…
Vamos a Jugar Counters! Learning Mathematics through Funds of Knowledge, Play, and the Third Space
ERIC Educational Resources Information Center
Razfar, Aria
2012-01-01
Drawing on Cultural Historical Activity Theory (CHAT), funds of knowledge, and third space, this article presents a model for practitioners and researchers to think about how Latina/o, bilingual children develop explicit mathematics strategies through multilingual and multigenerational interactions. Using data collected through fieldwork in an…
Dragging in a Dynamic Geometry Environment through the Lens of Variation
ERIC Educational Resources Information Center
Leung, Allen
2008-01-01
What makes Dynamic Geometry Environment (DGE) a powerful mathematical knowledge acquisition microworld is its ability to visually make explicit the implicit dynamism of thinking about mathematical geometrical concepts. One of DGE's powers is to equip us with the ability to retain the background of a geometrical configuration while we can…
Parent Guidance of Young Children's Scientific and Mathematical Reasoning in a Science Museum
ERIC Educational Resources Information Center
Vandermaas-Peeler, Maureen; Massey, Katelyn; Kendall, Alyssa
2016-01-01
Despite increased attention to math and science education in the United States, relatively few studies have explored parent guidance of young children's mathematical and scientific reasoning in everyday activities. The present study was designed to investigate the effects of providing explicit guidance instructions on parent guidance and young…
Teaching Proofs and Algorithms in Discrete Mathematics with Online Visual Logic Puzzles
ERIC Educational Resources Information Center
Cigas, John; Hsin, Wen-Jung
2005-01-01
Visual logic puzzles provide a fertile environment for teaching multiple topics in discrete mathematics. Many puzzles can be solved by the repeated application of a small, finite set of strategies. Explicitly reasoning from a strategy to a new puzzle state illustrates theorems, proofs, and logic principles. These provide valuable, concrete…
Teaching Mathematical Induction: An Alternative Approach.
ERIC Educational Resources Information Center
Allen, Lucas G.
2001-01-01
Describes experience using a new approach to teaching induction that was developed by the Mathematical Methods in High School Project. The basic idea behind the new approach is to use induction to prove that two formulas, one in recursive form and the other in a closed or explicit form, will always agree for whole numbers. (KHR)
Teaching Mathematics Vocabulary with an Interactive Signing Math Dictionary
ERIC Educational Resources Information Center
Vesel, Judy; Robillard, Tara
2013-01-01
State frameworks and national standards are explicit about the mathematics content that students must master at each grade level. Although the Individuals with Disabilities Education Act and the No Child Left Behind Act mandate that students who are deaf or hard of hearing and communicate in sign language have access to this content, evidence…
The Effects of Feedback during Exploratory Mathematics Problem Solving: Prior Knowledge Matters
ERIC Educational Resources Information Center
Fyfe, Emily R.; Rittle-Johnson, Bethany; DeCaro, Marci S.
2012-01-01
Providing exploratory activities prior to explicit instruction can facilitate learning. However, the level of guidance provided during the exploration has largely gone unstudied. In this study, we examined the effects of 1 form of guidance, feedback, during exploratory mathematics problem solving for children with varying levels of prior domain…
Making Culturally Responsive Mathematics Teaching Explicit: A Lesson Analysis Tool
ERIC Educational Resources Information Center
Aguirre, Julia M.; Zavala, Maria del Rosario
2013-01-01
In the United States, there is a need for pedagogical tools that help teachers develop essential pedagogical content knowledge and practices to meet the mathematical education needs of a growing culturally and linguistically diverse student population. In this article, we introduce an innovative lesson analysis tool that focuses on integrating…
The Importance of Equal Sign Understanding in the Middle Grades
ERIC Educational Resources Information Center
Knuth, Eric J.; Alibali, Martha W.; Hattikudur, Shanta; McNeil, Nicole M.; Stephens, Ana C.
2008-01-01
The equal sign is perhaps the most prevalent symbol in school mathematics, and developing an understanding of it has typically been considered mathematically straightforward. In fact, after its initial introduction during students' early elementary school education, little, if any instructional time is explicitly spent on the concept in the later…
Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamini, Vittorino
2010-02-15
Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less
Nilsen, Vegard; Wyller, John
2016-01-01
Dose-response models are essential to quantitative microbial risk assessment (QMRA), providing a link between levels of human exposure to pathogens and the probability of negative health outcomes. In drinking water studies, the class of semi-mechanistic models known as single-hit models, such as the exponential and the exact beta-Poisson, has seen widespread use. In this work, an attempt is made to carefully develop the general mathematical single-hit framework while explicitly accounting for variation in (1) host susceptibility and (2) pathogen infectivity. This allows a precise interpretation of the so-called single-hit probability and precise identification of a set of statistical independence assumptions that are sufficient to arrive at single-hit models. Further analysis of the model framework is facilitated by formulating the single-hit models compactly using probability generating and moment generating functions. Among the more practically relevant conclusions drawn are: (1) for any dose distribution, variation in host susceptibility always reduces the single-hit risk compared to a constant host susceptibility (assuming equal mean susceptibilities), (2) the model-consistent representation of complete host immunity is formally demonstrated to be a simple scaling of the response, (3) the model-consistent expression for the total risk from repeated exposures deviates (gives lower risk) from the conventional expression used in applications, and (4) a model-consistent expression for the mean per-exposure dose that produces the correct total risk from repeated exposures is developed. © 2016 Society for Risk Analysis.
ERIC Educational Resources Information Center
Jorgensen, Robyn
2016-01-01
Drawing on studies of successful remote schools in one region of Australia, it was found that two key strategies were common in the approaches at these schools. First, to make the strategies and expectations being adopted explicit to all those involved in the learning enterprise, and second, that consistency in approaches was crucial. Bourdieu's…
ERIC Educational Resources Information Center
Piper, Lisa; Marchand-Martella, Nancy; Martella, Ronald
2010-01-01
The purpose of this action research was to determine the level of improvement of middle school students who were low performers in a mathematics class (N = 8) and who received "explicit instruction" with "double dosing" compared to their peer group who received normal instruction (N = 49). Results showed that at-risk…
Selection of fire spread model for Russian fire behavior prediction system
Alexandra V. Volokitina; Kevin C. Ryan; Tatiana M. Sofronova; Mark A. Sofronov
2010-01-01
Mathematical modeling of fire behavior prediction is only possible if the models are supplied with an information database that provides spatially explicit input parameters for modeled area. Mathematical models can be of three kinds: 1) physical; 2) empirical; and 3) quasi-empirical (Sullivan, 2009). Physical models (Grishin, 1992) are of academic interest only because...
Task Design for Ways of Working: Making Distinctions in Teaching and Learning Mathematics
ERIC Educational Resources Information Center
Coles, Alf; Brown, Laurinda
2016-01-01
A problem identified in the literature around task design is the persistence of a gap between teacher intention and student activity. We show how principles designed around the making of distinctions and having an explicit language of mathematical thinking can eliminate the "gap" by guiding teacher planning, teacher actions in the…
Investigating the Potential of the Flipped Classroom Model in K-12 Mathematics Teaching and Learning
ERIC Educational Resources Information Center
Katsa, Maria; Sergis, Stylianos; Sampson, Demetrios G.
2016-01-01
The Flipped Classroom model (FCM) is a promising blended educational innovation aiming to improve the teaching and learning practice in various subject domains and educational levels. However, despite this encouraging evidence, research on the explicit benefits of the FCM on K-12 Mathematics education is still scarce and, in some cases, even…
Handling Errors as They Arise in Whole-Class Interactions
ERIC Educational Resources Information Center
Ingram, Jenni; Pitt, Andrea; Baldry, Fay
2015-01-01
There has been a long history of research into errors and their role in the teaching and learning of mathematics. This research has led to a change to pedagogical recommendations from avoiding errors to explicitly using them in lessons. In this study, 22 mathematics lessons were video-recorded and transcribed. A conversation analytic (CA) approach…
ERIC Educational Resources Information Center
Depaepe, Fien; De Corte, Erik; Verschaffel, Lieven
2012-01-01
The article deals with the way in which authority was established and interpreted by teachers and students in two Flemish sixth-grade mathematics classrooms. Problem-solving lessons during a seven-month observation period were analysed regarding three aspects of teacher-student interactions that explicitly or implicitly reflect who bears…
Proof and Reasoning in Secondary School Algebra Textbooks
ERIC Educational Resources Information Center
Dituri, Philip
2013-01-01
The purpose of this study was to determine the extent to which the modeling of deductive reasoning and proof-type thinking occurs in a mathematics course in which students are not explicitly preparing to write formal mathematical proofs. Algebra was chosen because it is the course that typically directly precedes a student's first formal…
Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael
2018-01-01
Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (= negative math priming effect ).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.
Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael
2018-01-01
Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task. PMID:29755376
NASA Technical Reports Server (NTRS)
Madnia, C. K.; Frankel, S. H.; Givi, P.
1992-01-01
Closed form analytical expressions are obtained for predicting the limited rate of reactant conversion in a binary reaction of the type F + rO yields (1 + r) Product in unpremixed homogeneous turbulence. These relations are obtained by means of a single point Probability Density Function (PDF) method based on the Amplitude Mapping Closure. It is demonstrated that with this model, the maximum rate of the reactants' decay can be conveniently expressed in terms of definite integrals of the Parabolic Cylinder Functions. For the cases with complete initial segregation, it is shown that the results agree very closely with those predicted by employing a Beta density of the first kind for an appropriately defined Shvab-Zeldovich scalar variable. With this assumption, the final results can also be expressed in terms of closed form analytical expressions which are based on the Incomplete Beta Functions. With both models, the dependence of the results on the stoichiometric coefficient and the equivalence ratio can be expressed in an explicit manner. For a stoichiometric mixture, the analytical results simplify significantly. In the mapping closure, these results are expressed in terms of simple trigonometric functions. For the Beta density model, they are in the form of Gamma Functions. In all the cases considered, the results are shown to agree well with data generated by Direct Numerical Simulations (DNS). Due to the simplicity of these expressions and because of nice mathematical features of the Parabolic Cylinder and the Incomplete Beta Functions, these models are recommended for estimating the limiting rate of reactant conversion in homogeneous reacting flows. These results also provide useful insights in assessing the extent of validity of turbulence closures in the modeling of unpremixed reacting flows. Some discussions are provided on the extension of the model for treating more complicated reacting systems including realistic kinetics schemes and multi-scalar mixing with finite rate chemical reactions in more complex configurations.
On investigating wall shear stress in two-dimensional plane turbulent wall jets
NASA Astrophysics Data System (ADS)
Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan
2012-11-01
Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.
An Explicit Algorithm for the Simulation of Fluid Flow through Porous Media
NASA Astrophysics Data System (ADS)
Trapeznikova, Marina; Churbanova, Natalia; Lyupa, Anastasiya
2018-02-01
The work deals with the development of an original mathematical model of porous medium flow constructed by analogy with the quasigasdynamic system of equations and allowing implementation via explicit numerical methods. The model is generalized to the case of multiphase multicomponent fluid and takes into account possible heat sources. The proposed approach is verified by a number of test predictions.
A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems
NASA Astrophysics Data System (ADS)
Singh, A.
2009-12-01
A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.
Case study of a successful learner's epistemological framings of quantum mechanics
NASA Astrophysics Data System (ADS)
Dini, Vesal; Hammer, David
2017-06-01
Research on student epistemologies in introductory courses has highlighted the importance of understanding physics as "a refinement of everyday thinking" [A. Einstein, J. Franklin Inst. 221, 349 (1936), 10.1016/S0016-0032(36)91047-5]. That view is difficult to sustain in quantum mechanics, for students as for physicists. How might students manage the transition? In this article, we present a case study of a graduate student's approaches and reflections on learning over two semesters of quantum mechanics, based on a series of nine interviews. We recount his explicit grappling with the shift in epistemology from classical to quantum, and we argue that his success in learning largely involved his framing mathematics as expressing physical meaning. At the same time, we show he was not entirely stable in these framings, shifting away from them in particular during his study of scattering. The case speaks to literature on students' epistemologies, with respect to the roles of everyday thinking and mathematics. We discuss what this case suggests for further research, with possible implications for instruction.
ERIC Educational Resources Information Center
Turner, Julianne C.; Meyer, Debra K.; Midgley, Carol; Patrick, Helen
2003-01-01
Examined the relation between the nature of teacher discourse and sixth-grade students' reports of affect and behavior in mathematics classrooms students perceived as emphasizing both mastery and performance goals. Found that students in the classroom in which there was constant and explicit support for autonomy and intrinsic motivation, positive…
ERIC Educational Resources Information Center
Shaffer, David Williamson
2005-01-01
This paper examines how middle school students developed understanding of transformational geometry through design activities in Escher's World, a computationally rich design experiment explicitly modeled on an architectural design studio. Escher's World was based on the theory of pedagogical praxis (Shaffer, 2004a), which suggests that preserving…
ERIC Educational Resources Information Center
Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin
2016-01-01
Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…
Making Graphical Inferences: A Hierarchical Framework
2004-08-01
from graphs is considered one of the more complex skills graph readers should possess. According to the National Council of Teachers of Mathematics ...understanding graphical perception. Human Computer Interaction, 8, 353-388. NCTM : Standards for Mathematics . (2003, 2003). Pinker, S. (1990). A theory... NCTM ) the simplest type of question involves the extraction or comparison of a few explicitly represented data points (read-offs) ( NCTM : Standards
Causal tapestries for psychology and physics.
Sulis, William H
2012-04-01
Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.
Seo, Dong-Kyun
2007-11-14
We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.
Recurrence Quantification of Fractal Structures
Webber, Charles L.
2012-01-01
By definition, fractal structures possess recurrent patterns. At different levels repeating patterns can be visualized at higher magnifications. The purpose of this chapter is threefold. First, general characteristics of dynamical systems are addressed from a theoretical mathematical perspective. Second, qualitative and quantitative recurrence analyses are reviewed in brief, but the reader is directed to other sources for explicit details. Third, example mathematical systems that generate strange attractors are explicitly defined, giving the reader the ability to reproduce the rich dynamics of continuous chaotic flows or discrete chaotic iterations. The challenge is then posited for the reader to study for themselves the recurrent structuring of these different dynamics. With a firm appreciation of the power of recurrence analysis, the reader will be prepared to turn their sights on real-world systems (physiological, psychological, mechanical, etc.). PMID:23060808
ERIC Educational Resources Information Center
Soares, Maria Tereza Carneiro; Moro, Maria Lucia Faria; Spinillo, Alina Galvao
2012-01-01
This study examines the relationship between the grasp of consciousness of the reasoning process in Grades 5 and 8 pupils from a public and a private school, and their performance in mathematical problems of Cartesian product. Forty-two participants aged from 10 to 16 solved four problems in writing and explained their solution procedures by…
ERIC Educational Resources Information Center
Preston, Angela Irene
2016-01-01
Over the last two decades, students in Singapore consistently scored above students from other nations on the Trends in International Mathematics and Science Study (TIMSS; Provasnik et al., 2012). In contrast, students in the United States have not performed as well on international and national mathematics assessments and students with…
Is a description deeper than the quantum one possible?
NASA Astrophysics Data System (ADS)
Ghirardi, GianCarlo; Romano, Raffaele
2014-12-01
Recently, it has been argued that quantum mechanics is a complete theory, and that different quantum states do necessarily correspond to different elements of reality, under the assumptions that quantum mechanics is correct and that measurement settings can be freely chosen. In this work, we prove that this result is a consequence of an unnecessarily strong mathematical expression of the free choice assumption, which embodies more conditions than explicitly stated. The issues of the completeness of quantum mechanics, and of the interpretation of the state vector, are by no means resolved. Taking this perspective, we describe how the recently introduced class of crypto-nonlocal hidden variables theories can be used to characterize the maximal possible departure from quantum mechanics, when the system consists of a pair of qubits.
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Maries, Alexandru; Singh, Chandralekha
2013-01-01
We investigate introductory physics students' difficulties in translating between mathematical and graphical representations and the effect of scaffolding on students' performance. We gave a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution (a conducting sphere concentric with a conducting spherical shell) to 95 calculus-based introductory physics students. We asked students to write a mathematical expression for the electric field in various regions and asked them to graph the electric field. We knew from previous experience that students have great difficulty in graphing the electric field. Therefore, we implemented two scaffolding interventions to help them. Students who received the scaffolding support were either (1) asked to plot the electric field in each region first (before having to plot it as a function of distance from the center of the sphere) or (2) asked to plot the electric field in each region after explicitly evaluating the electric field at the beginning, mid and end points of each region. The comparison group was only asked to plot the electric field at the end of the problem. We found that students benefited the most from intervention (1) and that intervention (2), although intended to aid students, had an adverse effect. Also, recorded interviews were conducted with a few students in order to understand how students were impacted by the aforementioned interventions.
NASA Astrophysics Data System (ADS)
Patahuddin, Sitti Maesuri; Puteri, Indira; Lowrie, Tom; Logan, Tracy; Rika, Baiq
2018-04-01
This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms of words and actions, the analysis focused on identifying the types of mathematical engagement promoted through the intended lesson and performed by students during the lesson. Using modified Watson's analytical tool (2007), students' engagement was captured from what the participants' did or said mathematically. We found that teachers' enacted practices had an influence on student mathematical engagement. The teacher who demonstrated content in explicit ways tended to limit the richness of the engagement; whereas the teacher who presented activities in an open-ended manner fostered engagement.
ERIC Educational Resources Information Center
Khan, Steven; Francis, Krista; Davis, Brent
2015-01-01
As we witness a push toward studying spatial reasoning as a principal component of mathematical competency and instruction in the twenty first century, we argue that enactivism, with its strong and explicit foci on the coupling of organism and environment, action as cognition, and sensory motor coordination provides an inclusive, expansive, apt,…
Mathematical models used in segmentation and fractal methods of 2-D ultrasound images
NASA Astrophysics Data System (ADS)
Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin
2012-11-01
Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.
Aerodynamic coefficients in generalized unsteady thin airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1980-01-01
Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).
Modeling biochemical transformation processes and information processing with Narrator.
Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-03-27
Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from http://www.narrator-tool.org.
Modeling biochemical transformation processes and information processing with Narrator
Mandel, Johannes J; Fuß, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-01-01
Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from . PMID:17389034
Tailoring High Order Time Discretizations for Use with Spatial Discretizations of Hyperbolic PDEs
2015-05-19
Duration of Grant Sigal Gottlieb, Professor of Mathematics, UMass Dartmouth. Daniel Higgs , Graduate Student, UMass Dartmouth. Zachary Grant, Undergraduate...Grant, and D. Higgs , “Optimal Explicit Strong Stability Preserving Runge– Kutta Methods with High Linear Order and optimal Nonlinear Order.” Accepted...for publica- tion in Mathematics of Computation. Available on Arxiv at http://arxiv.org/abs/1403. 6519 4. C. Bresten, S. Gottlieb, Z. Grant, D. Higgs
Formulae as Scientific Stories
ERIC Educational Resources Information Center
Horsewell, Ian
2017-01-01
In science lessons many students struggle to apply the principles of rearranging formulae, even after coverage in maths. A structured approach is suggested that focuses on describing a narrative linking cause and effect before explicit mathematical terms are introduced.
Explicit analytical expression for the condition number of polynomials in power form
NASA Astrophysics Data System (ADS)
Rack, Heinz-Joachim
2017-07-01
In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.
Temperature extrapolation of multicomponent grand canonical free energy landscapes
NASA Astrophysics Data System (ADS)
Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.
2017-08-01
We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions to the classical partition function were neglected for simplicity [N. A. Mahynski et al., J. Chem. Phys. 146, 074101 (2017)]. Here, we generalize the derivation to admit these contributions in order to explicitly illustrate the differences that result. Specifically, we show how factoring out kinetic energy effects a priori, in order to consider only the configurational partition function, leads to simpler mathematical expressions that tend to produce more accurate extrapolations than when these effects are included. We demonstrate this by comparing and contrasting these two approaches for the simple cases of an ideal gas and a non-ideal, square-well fluid.
NASA Astrophysics Data System (ADS)
Takahashi, Tatsuji; Gunji, Yukio-Pegio
2008-10-01
We pursue anticipation in second person or normative anticipation. As the first step, we make the three concepts second person, internal measurement and asynchroneity clearer by introducing the velocity of logic νl and the velocity of communication νc, in the context of social communication. After proving anticipatory nature of rule-following or language use in general via Kripke's "rule-following paradox," we present a mathematical model expressing the internality essential to second person, taking advantage of equivalences and differences in the formal language theory. As a consequence, we show some advantages of negatively considered concepts and arguments by concretizing them into an elementary and explicit formal model. The time development of the model shows a self-organizing property which never results if we adopt a third person stance.
Explicit solutions of a gravity-induced film flow along a convectively heated vertical wall.
Raees, Ammarah; Xu, Hang
2013-01-01
The gravity-driven film flow has been analyzed along a vertical wall subjected to a convective boundary condition. The Boussinesq approximation is applied to simplify the buoyancy term, and similarity transformations are used on the mathematical model of the problem under consideration, to obtain a set of coupled ordinary differential equations. Then the reduced equations are solved explicitly by using homotopy analysis method (HAM). The resulting solutions are investigated for heat transfer effects on velocity and temperature profiles.
NASA Astrophysics Data System (ADS)
James, Wendy Michelle
Science and engineering instructors often observe that students have difficulty using or applying prerequisite mathematics knowledge in their courses. This qualitative project uses a case-study method to investigate the instruction in a trigonometry course and a physics course based on a different methodology and set of assumptions about student learning and the nature of mathematics than traditionally used when investigating students' difficulty using or applying prerequisite mathematics knowledge. Transfer theory examined within a positivist or post-positivist paradigm is often used to investigate students' issue applying their knowledge; in contrast, this qualitative case-study is positioned using constructionism as an epistemology to understand and describe mathematical practices concerning vectors in a trigonometry and a physics course. Instructor interviews, observations of course lectures, and textbooks served as the qualitative data for in-depth study and comparison, and Saussure's (1959) concept of signifier and signified provided a lens for examining the data during analysis. Multiple recursions of within-case comparisons and across-case comparison were analyzed for differences in what the instructors and textbooks explicitly stated and later performed as their practices. While the trigonometry and physics instruction differed slightly, the two main differences occurred in the nature and use of vectors in the physics course. First, the "what" that is signified in notation and diagrams differs between contextualized and context-free situations, and second, physics instruction taught vectors very similar to trigonometry instruction when teaching the mathematics for doing physics, but once instruction focused on physics, the manner in which vector notation and diagrams are used differed from what is explicitly stated during mathematics instruction.
NASA Astrophysics Data System (ADS)
Lake, Warren; Wallin, Margie; Woolcott, Geoff; Boyd, Wendy; Foster, Alan; Markopoulos, Christos; Boyd, William
2017-02-01
Student mathematics performance and the need for work-ready graduates to be mathematics-competent is a core issue for many universities. While both student and teacher are responsible for learning outcomes, there is a need to explicitly acknowledge the weak mathematics foundation of many university students. A systematic literature review was undertaken of identified innovations and/or interventions that may lead to improvement in student outcomes for university mathematics-based units of study. The review revealed the importance of understanding the foundations of student performance in higher education mathematics learning, especially in first year. Pre-university mathematics skills were identified as significant in student retention and mathematics success at university, and a specific focus on student pre-university mathematics skill level was found to be more effective in providing help, rather than simply focusing on a particular at-risk group. Diagnostics tools were found to be important in identifying (1) student background and (2) appropriate intervention. The studies highlighted the importance of appropriate and validated interventions in mathematics teaching and learning, and the need to improve the learning model for mathematics-based subjects, communication and technology innovations.
Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A; Smith, David L
2015-08-01
Since the original Ross-Macdonald formulations of vector-borne disease transmission, there has been a broad proliferation of mathematical models of vector-borne disease, but many of these models retain most to all of the simplifying assumptions of the original formulations. Recently, there has been a new expansion of mathematical frameworks that contain explicit representations of the vector life cycle including aquatic stages, multiple vector species, host heterogeneity in biting rate, realistic vector feeding behavior, and spatial heterogeneity. In particular, there are now multiple frameworks for spatially explicit dynamics with movements of vector, host, or both. These frameworks are flexible and powerful, but require additional data to take advantage of these features. For a given question posed, utilizing a range of models with varying complexity and assumptions can provide a deeper understanding of the answers derived from models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, Ph., E-mail: philippe.roche@univ-montp2.fr
We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q}). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.
Dricu, Mihai; Frühholz, Sascha
2016-12-01
We conducted a series of activation likelihood estimation (ALE) meta-analyses to determine the commonalities and distinctions between separate levels of emotion perception, namely incidental perception, passive perception, and explicit evaluation of emotional expressions. Pooling together more than 180 neuroimaging experiments using facial, vocal or body expressions, our results are threefold. First, explicitly evaluating the emotions of others recruits brain regions associated with the sensory processing of expressions, such as the inferior occipital gyrus, middle fusiform gyrus and the superior temporal gyrus, and brain regions involved in low-level and high-level mindreading, namely the posterior superior temporal sulcus, the inferior frontal cortex and dorsomedial frontal cortex. Second, we show that only the sensory regions were also consistently active during the passive perception of emotional expressions. Third, we show that the brain regions involved in mindreading were active during the explicit evaluation of both facial and vocal expressions. We discuss these results in light of the existing literature and conclude by proposing a cognitive model for perceiving and evaluating the emotions of others. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematical programming for the efficient allocation of health care resources.
Stinnett, A A; Paltiel, A D
1996-10-01
Previous discussions of methods for the efficient allocation of health care resources subject to a budget constraint have relied on unnecessarily restrictive assumptions. This paper makes use of established optimization techniques to demonstrate that a general mathematical programming framework can accommodate much more complex information regarding returns to scale, partial and complete indivisibility and program interdependence. Methods are also presented for incorporating ethical constraints into the resource allocation process, including explicit identification of the cost of equity.
NASA Astrophysics Data System (ADS)
Doungmo Goufo, Emile Franc
2016-08-01
After having the issues of singularity and locality addressed recently in mathematical modelling, another question regarding the description of natural phenomena was raised: How influent is the second parameter β of the two-parameter Mittag-Leffler function E α , β ( z ) , z ∈ ℂ ? To answer this question, we generalize the newly introduced one-parameter derivative with non-singular and non-local kernel [A. Atangana and I. Koca, Chaos, Solitons Fractals 89, 447 (2016); A. Atangana and D. Bealeanu (e-print)] by developing a similar two-parameter derivative with non-singular and non-local kernel based on Eα,β(z). We exploit the Agarwal/Erdelyi higher transcendental functions together with their Laplace transforms to explicitly establish the Laplace transform's expressions of the two-parameter derivatives, necessary for solving related fractional differential equations. Explicit expression of the associated two-parameter fractional integral is also established. Concrete applications are done on atmospheric convection process by using Lorenz non-linear simple system. Existence result for the model is provided and a numerical scheme established. As expected, solutions exhibit chaotic behaviors for α less than 0.55, and this chaos is not interrupted by the impact of β. Rather, this second parameter seems to indirectly squeeze and rotate the solutions, giving an impression of twisting. The whole graphics seem to have completely changed its orientation to a particular direction. This is a great observation that clearly shows the substantial impact of the second parameter of Eα,β(z), certainly opening new doors to modeling with two-parameter derivatives.
Doungmo Goufo, Emile Franc
2016-08-01
After having the issues of singularity and locality addressed recently in mathematical modelling, another question regarding the description of natural phenomena was raised: How influent is the second parameter β of the two-parameter Mittag-Leffler function Eα,β(z), z∈ℂ? To answer this question, we generalize the newly introduced one-parameter derivative with non-singular and non-local kernel [A. Atangana and I. Koca, Chaos, Solitons Fractals 89, 447 (2016); A. Atangana and D. Bealeanu (e-print)] by developing a similar two-parameter derivative with non-singular and non-local kernel based on Eα , β(z). We exploit the Agarwal/Erdelyi higher transcendental functions together with their Laplace transforms to explicitly establish the Laplace transform's expressions of the two-parameter derivatives, necessary for solving related fractional differential equations. Explicit expression of the associated two-parameter fractional integral is also established. Concrete applications are done on atmospheric convection process by using Lorenz non-linear simple system. Existence result for the model is provided and a numerical scheme established. As expected, solutions exhibit chaotic behaviors for α less than 0.55, and this chaos is not interrupted by the impact of β. Rather, this second parameter seems to indirectly squeeze and rotate the solutions, giving an impression of twisting. The whole graphics seem to have completely changed its orientation to a particular direction. This is a great observation that clearly shows the substantial impact of the second parameter of Eα , β(z), certainly opening new doors to modeling with two-parameter derivatives.
NASA Astrophysics Data System (ADS)
Demina, Maria V.; Kudryashov, Nikolay A.
2011-03-01
Meromorphic solutions of autonomous nonlinear ordinary differential equations are studied. An algorithm for constructing meromorphic solutions in explicit form is presented. General expressions for meromorphic solutions (including rational, periodic, elliptic) are found for a wide class of autonomous nonlinear ordinary differential equations.
The effect of phase change materials on the frontal polymerization of a triacrylate
NASA Astrophysics Data System (ADS)
Viner, Veronika G.; Pojman, John A.; Golovaty, Dmitry
2010-06-01
The production of smoke and fumes is a major obstacle to the practical use of thermal frontal polymerization. The front temperature and the amount of smoking can be reduced by adding inert fillers, such as clay and silica, to the reactive mixture. Here we investigate the possibility of incorporating inert materials that melt (so-called phase change materials) to the mixture. By performing both experiments and mathematical modeling, we demonstrate that, in addition to the standard parameters of frontal polymerization, the front temperature and velocity depend on the melting point and heat of fusion of the phase change material. We use the method of matched asymptotic expansions to develop an explicit expression for the velocity of the reaction front. The expression demonstrates that the behavior of the front is determined by the difference between the reaction temperature and the melting temperature, with the front being slower and cooler if melting occurs farther ahead of the reaction front. The theoretical trends are hard to confirm directly because different characteristics of the phase change material cannot be varied separately.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2016-02-09
Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
Concurrent processing simulation of the space station
NASA Technical Reports Server (NTRS)
Gluck, R.; Hale, A. L.; Sunkel, John W.
1989-01-01
The development of a new capability for the time-domain simulation of multibody dynamic systems and its application to the study of a large angle rotational maneuvers of the Space Station is described. The effort was divided into three sequential tasks, which required significant advancements of the state-of-the art to accomplish. These were: (1) the development of an explicit mathematical model via symbol manipulation of a flexible, multibody dynamic system; (2) the development of a methodology for balancing the computational load of an explicit mathematical model for concurrent processing; and (3) the implementation and successful simulation of the above on a prototype Custom Architectured Parallel Processing System (CAPPS) containing eight processors. The throughput rate achieved by the CAPPS operating at only 70 percent efficiency, was 3.9 times greater than that obtained sequentially by the IBM 3090 supercomputer simulating the same problem. More significantly, analysis of the results leads to the conclusion that the relative cost effectiveness of concurrent vs. sequential digital computation will grow substantially as the computational load is increased. This is a welcomed development in an era when very complex and cumbersome mathematical models of large space vehicles must be used as substitutes for full scale testing which has become impractical.
SPREADING SPEEDS AND TRAVELING WAVES FOR NON-COOPERATIVE INTEGRO-DIFFERENCE SYSTEMS
Wang, Haiyan; Castillo-Chavez, Carlos
2014-01-01
The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooperative systems, has focused on the study of the existence of traveling wave solutions and the characterization of their spreading speed. Here, we characterize the minimum propagation (spreading) speed, via the convergence of initial data to wave solutions, for a large class of non cooperative nonlinear systems of integro-difference equations. The spreading speed turns out to be the slowest speed from a family of non-constant traveling wave solutions. The applicability of these theoretical results is illustrated through the explicit study of an integro-difference system with local population dynamics governed by Hassell and Comins’ non-cooperative competition model (1976). The corresponding integro-difference nonlinear systems that results from the redistribution of individuals via a dispersal kernel is shown to satisfy conditions that guarantee the existence of minimum speeds and traveling waves. This paper is dedicated to Avner Friedman as we celebrate his immense contributions to the fields of partial differential equations, integral equations, mathematical biology, industrial mathematics and applied mathematics in general. His leadership in the mathematical sciences and his mentorship of students and friends over several decades has made a huge difference in the personal and professional lives of many, including both of us. PMID:24899868
How Do Kindergarteners Express Their Mathematics Understanding?
ERIC Educational Resources Information Center
Johns, Kyoko
2015-01-01
This article describes how kindergarten students represent their understanding of mathematical knowledge. The study examines the students' use of oral expressions, drawings, written language, and gestures when communicating mathematically with their classmates and teacher.
Exact Maximum-Entropy Estimation with Feynman Diagrams
NASA Astrophysics Data System (ADS)
Netser Zernik, Amitai; Schlank, Tomer M.; Tessler, Ran J.
2018-02-01
A longstanding open problem in statistics is finding an explicit expression for the probability measure which maximizes entropy with respect to given constraints. In this paper a solution to this problem is found, using perturbative Feynman calculus. The explicit expression is given as a sum over weighted trees.
Reference Production: Production-Internal and Addressee-Oriented Processes
ERIC Educational Resources Information Center
Arnold, Jennifer
2008-01-01
This paper reviews research on the production of referential expressions, examining the choice between explicit and attenuated lexical forms (e.g., pronouns vs. names), and between acoustically prominent and attenuated pronunciations. Both choices can be explained in terms of addressee-design, in that explicit expressions tend to be used in…
Boltzmann-type control of opinion consensus through leaders
Albi, G.; Pareschi, L.; Zanella, M.
2014-01-01
The study of formations and dynamics of opinions leading to the so-called opinion consensus is one of the most important areas in mathematical modelling of social sciences. Following the Boltzmann-type control approach recently introduced by the first two authors, we consider a group of opinion leaders who modify their strategy accordingly to an objective functional with the aim of achieving opinion consensus. The main feature of the Boltzmann-type control is that, owing to an instantaneous binary control formulation, it permits the minimization of the cost functional to be embedded into the microscopic leaders’ interactions of the corresponding Boltzmann equation. The related Fokker–Planck asymptotic limits are also derived, which allow one to give explicit expressions of stationary solutions. The results demonstrate the validity of the Boltzmann-type control approach and the capability of the leaders’ control to strategically lead the followers’ opinion. PMID:25288820
The renormalization group and the implicit function theorem for amplitude equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkinis, Eleftherios
2008-07-15
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen et al., Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation formore » both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases.« less
Neutral signature Walker-CSI metrics
NASA Astrophysics Data System (ADS)
Coley, A.; Musoke, N.
2015-03-01
We will construct explicit examples of four-dimensional neutral signature Einstein Walker spaces for which all of the polynomial scalar curvature invariants are constant. We show that these Einstein Walker spaces are Kundt. We then investigate the mathematical properties of the spaces, including holonomy and universality.
Teaching Multiplication with Regrouping to Students with Learning Disabilities
ERIC Educational Resources Information Center
Flores, Margaret M.; Hinton, Vanessa M.; Schweck, Kelly B.
2014-01-01
The Common Core Standards require demonstration of conceptual knowledge of numbers, operations, and relations between mathematical concepts. Supplemental instruction should explicitly guide students with specific learning disabilities (SLD) in these skills. In this article, we illustrate implementation of the concrete-representational-abstract…
A review on symmetries for certain Aedes aegypti models
NASA Astrophysics Data System (ADS)
Freire, Igor Leite; Torrisi, Mariano
2015-04-01
We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.
A DYNAMIC MODEL OF AN ESTUARINE INVASION BY A NON-NATIVE SEAGRASS
Mathematical and simulation models provide an excellent tool for examining and predicting biological invasions in time and space; however, traditional models do not incorporate dynamic rates of population growth, which limits their realism. We developed a spatially explicit simul...
The Internet and the First Amendment: School and Sexually Explicit Expression.
ERIC Educational Resources Information Center
Cate, Fred H.
Rather than focus on "who" makes the determination about students' access to sexually explicit expression, this volume examines the legal issues affecting "whether" to permit that access and "how much" access to allow. In sum, this book is intended to facilitate meaningful discussion about the regulation of minors'…
Caring teaching practices in multiethnic mathematics classrooms: attending to health and well-being
NASA Astrophysics Data System (ADS)
Averill, Robin
2012-06-01
Factors that contribute to strong teacher-student relationships are vital to understand because of the influence these relationships have on achievement and motivation, particularly for minority group students. This article draws from a substantial quantity of empirical data, grounded in a wide theoretical and cultural base, regarding aspects of caring teacher practice to discuss mathematics teacher behaviours in relation to an existing model of health and well-being that encompasses cognitive, social, spiritual, and physical dimensions. Drawing from 100 Year 10 mathematics lesson observations involving six teachers and their classes across three urban schools, evidence emerged that for many indigenous (Māori), New Zealand Pacific, and New Zealand European students, caring teacher behaviours important for student engagement and achievement both include, and range beyond, traditional teaching practices. Examples include capitalising on student reactions and shared endeavours within the context of mathematics learning, expecting mathematical progress, showing respect for students and for their mathematics learning, being explicit about practice and expectations, incorporating one-to-one interactions, making opportunities within mathematics learning for sharing personal identities, and incorporating movement. This research illustrates how mathematics educators can attend to the specific and holistic mathematical learning needs of their students, including those often marginalised.
An epistemic framing analysis of upper level physics students' use of mathematics
NASA Astrophysics Data System (ADS)
Bing, Thomas Joseph
Mathematics is central to a professional physicist's work and, by extension, to a physics student's studies. It provides a language for abstraction, definition, computation, and connection to physical reality. This power of mathematics in physics is also the source of many of the difficulties it presents students. Simply put, many different activities could all be described as "using math in physics". Expertise entails a complicated coordination of these various activities. This work examines the many different kinds of thinking that are all facets of the use of mathematics in physics. It uses an epistemological lens, one that looks at the type of explanation a student presently sees as appropriate, to analyze the mathematical thinking of upper level physics undergraduates. Sometimes a student will turn to a detailed calculation to produce or justify an answer. Other times a physical argument is explicitly connected to the mathematics at hand. Still other times quoting a definition is seen as sufficient, and so on. Local coherencies evolve in students' thought around these various types of mathematical justifications. We use the cognitive process of framing to model students' navigation of these various facets of math use in physics. We first demonstrate several common framings observed in our students' mathematical thought and give several examples of each. Armed with this analysis tool, we then give several examples of how this framing analysis can be used to address a research question. We consider what effects, if any, a powerful symbolic calculator has on students' thinking. We also consider how to characterize growing expertise among physics students. Framing offers a lens for analysis that is a natural fit for these sample research questions. To active physics education researchers, the framing analysis presented in this dissertation can provide a useful tool for addressing other research questions. To physics teachers, we present this analysis so that it may make them more explicitly aware of the various types of reasoning, and the dynamics among them, that students employ in our physics classes. This awareness will help us better hear students' arguments and respond appropriately.
More than a feeling: Pervasive influences of memory without awareness of retrieval
Voss, Joel L.; Lucas, Heather D.; Paller, Ken A.
2015-01-01
The subjective experiences of recollection and familiarity have featured prominently in the search for neurocognitive mechanisms of memory. However, these two explicit expressions of memory, which involve conscious awareness of memory retrieval, are distinct from an entire category of implicit expressions of memory that do not entail such awareness. This review summarizes recent evidence showing that neurocognitive processing related to implicit memory can powerfully influence the behavioral and neural measures typically associated with explicit memory. Although there are striking distinctions between the neurocognitive processing responsible for implicit versus explicit memory, tests designed to measure only explicit memory nonetheless often capture implicit memory processing as well. In particular, the evidence described here suggests that investigations of familiarity memory are prone to the accidental capture of implicit memory processing. These findings have considerable implications for neurocognitive accounts of memory, as they suggest that many neural and behavioral measures often accepted as signals of explicit memory instead reflect the distinct operation of implicit memory mechanisms that are only sometimes related to explicit memory expressions. Proper identification of the explicit and implicit mechanisms for memory is vital to understanding the normal operation of memory, in addition to the disrupted memory capabilities associated with many neurological disorders and mental illnesses. We suggest that future progress requires utilizing neural, behavioral, and subjective evidence to dissociate implicit and explicit memory processing so as to better understand their distinct mechanisms as well as their potential relationships. When searching for the neurocognitive mechanisms of memory, it is important to keep in mind that memory involves more than a feeling. PMID:24171735
Idealized models of the joint probability distribution of wind speeds
NASA Astrophysics Data System (ADS)
Monahan, Adam H.
2018-05-01
The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.
Symmetry Properties of Potentiometric Titration Curves.
ERIC Educational Resources Information Center
Macca, Carlo; Bombi, G. Giorgio
1983-01-01
Demonstrates how the symmetry properties of titration curves can be efficiently and rigorously treated by means of a simple method, assisted by the use of logarithmic diagrams. Discusses the symmetry properties of several typical titration curves, comparing the graphical approach and an explicit mathematical treatment. (Author/JM)
50 CFR 600.315 - National Standard 2-Scientific Information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... from surveys or sampling programs, and models that are mathematical representations of reality... static and ideally entails developing and following a research plan with the following elements: Clear... predictions, or testing hypotheses; study design with an explicit and standardized method of collecting data...
Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A
2006-11-01
A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali
2016-12-01
An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.
Using Visualization to Generalize on Quadratic Patterning Tasks
ERIC Educational Resources Information Center
Kirwan, J. Vince
2017-01-01
Patterning tasks engage students in a core aspect of algebraic thinking-generalization (Kaput 2008). The National Council of Teachers of Mathematics (NCTM) Algebra Standard states that students in grades 9-12 should "generalize patterns using explicitly defined and recursively defined functions" (NCTM 2000, p. 296). Although educators…
Mathematical Tools for Image Reconstruction
1991-07-01
l.Diffuse tomography 2.Concentrating a signal in the physical and spectral domains. 3.New explicit solutions for the Kadomtsev - Petviashvili equation 4...the case of the Schroedinger equation it was possible to "beat Heisenberg" with piecewise linear potentials. Finally let me say that the paper Some
Making Implicit Multivariable Calculus Representations Explicit: A Clinical Study
ERIC Educational Resources Information Center
McGee, Daniel; Moore-Russo, Deborah; Martinez-Planell, Rafael
2015-01-01
Reviewing numerous textbooks, we found that in both differential and integral calculus textbooks the authors commonly assume that: (i) students can generalize associations between representations in two dimensions to associations between representations of the same mathematical concept in three dimensions on their own; and (ii) explicit…
A Comparison of Group-Oriented Contingencies for Addition Fluency
ERIC Educational Resources Information Center
Gross, Thomas J.; Duhon, Gary J.; Shutte, Greg; Rowland, Julie E.
2016-01-01
Math fact fluency is critical for understanding complex mathematics. Explicit timing interventions have shown promise for improving math fluency, and they may benefit from being paired with group-oriented contingencies. Further, investigations of independent and dependent group-oriented contingencies would help to identify their relative…
Number Sense on the Number Line
ERIC Educational Resources Information Center
Woods, Dawn Marie; Ketterlin Geller, Leanne; Basaraba, Deni
2018-01-01
A strong foundation in early number concepts is critical for students' future success in mathematics. Research suggests that visual representations, like a number line, support students' development of number sense by helping them create a mental representation of the order and magnitude of numbers. In addition, explicitly sequencing instruction…
Transport theory and fluid dynamics
NASA Astrophysics Data System (ADS)
Greenberg, W.; Zweifel, P. F.
We report progress in various areas of applied mathematics relevant to transport theory under the subjects: abstract transport theory, explicit transport models and computation, and fluid dynamics. We present a brief review of progress during the past year and personnel supported, and we indicate the direction of our future research.
Handbook for Spoken Mathematics: (Larry's Speakeasy).
ERIC Educational Resources Information Center
Chang, Lawrence A.; And Others
This handbook is directed toward those who have to deal with spoken mathematics, yet have insufficient background to know the correct verbal expression for the written symbolic one. It compiles consistent and well-defined ways of uttering mathematical expressions so listeners will receive clear, unambiguous, and well-pronounced representations.…
Implicit and explicit processing of emotional facial expressions in Parkinson's disease.
Wagenbreth, Caroline; Wattenberg, Lena; Heinze, Hans-Jochen; Zaehle, Tino
2016-04-15
Besides motor problems, Parkinson's disease (PD) is associated with detrimental emotional and cognitive functioning. Deficient explicit emotional processing has been observed, whilst patients also show impaired Theory of Mind (ToM) abilities. However, it is unclear whether this PD patients' ToM deficit is based on an inability to infer otherś emotional states or whether it is due to explicit emotional processing deficits. We investigated implicit and explicit emotional processing in PD with an affective priming paradigm in which we used pictures of human eyes for emotional primes and a lexical decision task (LDT) with emotional connoted words for target stimuli. Sixteen PD patients and sixteen matched healthy controls performed a LTD combined with an emotional priming paradigm providing emotional information through the facial eye region to assess implicit emotional processing. Second, participants explicitly evaluated the emotional status of eyes and words used in the implicit task. Compared to controls implicit emotional processing abilities were generally preserved in PD with, however, considerable alterations for happiness and disgust processing. Furthermore, we observed a general impairment of patients for explicit evaluation of emotional stimuli, which was augmented for the rating of facial expressions. This is the first study reporting results for affective priming with facial eye expressions in PD patients. Our findings indicate largely preserved implicit emotional processing, with a specific altered processing of disgust and happiness. Explicit emotional processing was considerably impaired for semantic and especially for facial stimulus material. Poor ToM abilities in PD patients might be based on deficient explicit emotional processing, with preserved ability to implicitly infer other people's feelings. Copyright © 2016 Elsevier B.V. All rights reserved.
Pertl, Marie-Theres; Zamarian, Laura; Delazer, Margarete
2017-08-01
In this study, we assessed to what extent reasoning improves performance in decision making under risk in a laboratory gambling task (Game of Dice Task-Double, GDT-D). We also investigated to what degree individuals with above average mathematical competence decide better than those with average mathematical competence. Eighty-five participants performed the GDT-D and several numerical tasks. Forty-two individuals were asked to calculate the probabilities and the outcomes associated with the different options of the GDT-D before performing it. The other 43 individuals performed the GDT-D at the beginning of the test session. Both reasoning and mathematical competence had a positive effect on decision making. Different measures of mathematical competence correlated with advantageous performance in decision making. Results suggest that decision making under explicit risk conditions improves when individuals are encouraged to reflect about the contingencies of a decision situation. Interventions based on numerical reasoning may also be useful for patients with difficulties in decision making.
A Characterization of Dynamic Reasoning: Reasoning with Time as Parameter
ERIC Educational Resources Information Center
Keene, Karen Allen
2007-01-01
Students incorporate and use the implicit and explicit parameter time to support their mathematical reasoning and deepen their understandings as they participate in a differential equations class during instruction on solutions to systems of differential equations. Therefore, dynamic reasoning is defined as developing and using conceptualizations…
2008-09-01
under high amplitude acoustic excitation, and which explicitly accounts for mass flux across the bubble wall. The thermometric conductivity Xg of the...where Kgo is the thermal conductivity at the reference temperature Tg0. Introducing the reference thermometric conductivity for a gas with reference
ERIC Educational Resources Information Center
Strickland, Tricia K.; Maccini, Paula
2010-01-01
To improve student success in mathematics, the use of research-based interventions is necessary to help secondary students with learning disabilities (LD) access the algebra curriculum. The authors provide an overview of the following research-based approaches: explicit instruction, graduated instructional sequence, technology, and graphic…
Utility of computer simulations in landscape genetics
Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale
2010-01-01
Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...
Semiotic Mediation within an AT Frame
ERIC Educational Resources Information Center
Maracci, Mirko; Mariotti, Maria Alessandra
2013-01-01
This article is meant to present a specific elaboration of the notion of mediation in relation to the use of artefacts to enhance mathematics teaching and learning: the elaboration offered by the Theory of Semiotic Mediation. In particular, it provides an explicit model--consistent with the activity-actions-operations framework--of the actions…
Explicit Instructional Interactions: Exploring the Black Box of a Tier 2 Mathematics Intervention
ERIC Educational Resources Information Center
Doabler, Christian T.; Clarke, Ben; Stoolmiller, Mike; Kosty, Derek B.; Fien, Hank; Smolkowski, Keith; Baker, Scott K.
2017-01-01
A critical aspect of intervention research is investigating the active ingredients that underlie intensive interventions and their theories of change. This study explored the rate of instructional interactions within treatment groups to determine whether they offered explanatory power of an empirically validated Tier 2 kindergarten mathematics…
ERIC Educational Resources Information Center
Leach, Debra
2016-01-01
Students with learning disabilities often struggle with math fact fluency and require specialized interventions to recall basic facts. Deficits in math fact fluency can result in later difficulties when learning higher-level mathematical computation, concepts, and problem solving. The response-to-intervention (RTI) and…
Advanced Mathematical Study and the Development of Conditional Reasoning Skills
Attridge, Nina; Inglis, Matthew
2013-01-01
Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general ‘thinking skills’. Today, this argument, known as the ‘Theory of Formal Discipline’ is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought. PMID:23869241
Mathematical Metaphors: Problem Reformulation and Analysis Strategies
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
This paper addresses the critical need for the development of intelligent or assisting software tools for the scientist who is working in the initial problem formulation and mathematical model representation stage of research. In particular, examples of that representation in fluid dynamics and instability theory are discussed. The creation of a mathematical model that is ready for application of certain solution strategies requires extensive symbolic manipulation of the original mathematical model. These manipulations can be as simple as term reordering or as complicated as discovery of various symmetry groups embodied in the equations, whereby Backlund-type transformations create new determining equations and integrability conditions or create differential Grobner bases that are then solved in place of the original nonlinear PDEs. Several examples are presented of the kinds of problem formulations and transforms that can be frequently encountered in model representation for fluids problems. The capability of intelligently automating these types of transforms, available prior to actual mathematical solution, is advocated. Physical meaning and assumption-understanding can then be propagated through the mathematical transformations, allowing for explicit strategy development.
Role Playing Based on Multicultural for Understanding Fraction in Primary School
NASA Astrophysics Data System (ADS)
Aryanto, S.; Budiarti, T.; Rahmatullah, R.; Utami, S. R.; Jupri, A.
2017-09-01
Multicultural serve as a reference in the development of innovative mathematical learning materials and is expected to be a solution in improving the ability of students in understanding the fraction matter based on social and mathematical approach, so this study aims to determine the improvement of students’ understanding in fraction matter through role playing by integrating multicultural concepts as development learning content. Classroom Action Research conducted on 34 students in elementary school class proves that students’ understanding in fraction matter shows improvement in cycle II as much as 67% of students are able to apply the concept or formula exactly when compared with the result of cycles I of 33%. This research is expected to be the reference of teachers in developing innovative mathematical learning, let alone explicitly, this concept not only emphasizes the cognitive abilities of students, but implicitly can develop their social skills in mathematical perspective.
A Conversion Tool for Mathematical Expressions in Web XML Files.
ERIC Educational Resources Information Center
Ohtake, Nobuyuki; Kanahori, Toshihiro
2003-01-01
This article discusses the conversion of mathematical equations into Extensible Markup Language (XML) on the World Wide Web for individuals with visual impairments. A program is described that converts the presentation markup style to the content markup style in MathML to allow browsers to render mathematical expressions without other programs.…
Online handwritten mathematical expression recognition
NASA Astrophysics Data System (ADS)
Büyükbayrak, Hakan; Yanikoglu, Berrin; Erçil, Aytül
2007-01-01
We describe a system for recognizing online, handwritten mathematical expressions. The system is designed with a user-interface for writing scientific articles, supporting the recognition of basic mathematical expressions as well as integrals, summations, matrices etc. A feed-forward neural network recognizes symbols which are assumed to be single-stroke and a recursive algorithm parses the expression by combining neural network output and the structure of the expression. Preliminary results show that writer-dependent recognition rates are very high (99.8%) while writer-independent symbol recognition rates are lower (75%). The interface associated with the proposed system integrates the built-in recognition capabilities of the Microsoft's Tablet PC API for recognizing textual input and supports conversion of hand-drawn figures into PNG format. This enables the user to enter text, mathematics and draw figures in a single interface. After recognition, all output is combined into one LATEX code and compiled into a PDF file.
Mathematics interventions for children and adolescents with Down syndrome: a research synthesis.
Lemons, C J; Powell, S R; King, S A; Davidson, K A
2015-08-01
Many children and adolescents with Down syndrome fail to achieve proficiency in mathematics. Researchers have suggested that tailoring interventions based on the behavioural phenotype may enhance efficacy. The research questions that guided this review were (1) what types of mathematics interventions have been empirically evaluated with children and adolescents with Down syndrome?; (2) do the studies demonstrate sufficient methodological rigor?; (3) is there evidence of efficacy for the evaluated mathematics interventions?; and (4) to what extent have researchers considered aspects of the behavioural phenotype in selecting, designing and/or implementing mathematics interventions for children and adolescents with Down syndrome? Nine studies published between 1989 and 2012 were identified for inclusion. Interventions predominantly focused on early mathematics skills and reported positive outcomes. However, no study met criteria for methodological rigor. Further, no authors explicitly considered the behavioural phenotype. Additional research using rigorous experimental designs is needed to evaluate the efficacy of mathematics interventions for children and adolescents with Down syndrome. Suggestions for considering the behavioural phenotype in future research are provided. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann
2015-01-01
Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.
Sanchez, Daniel J.; Gobel, Eric W.; Reber, Paul J.
2015-01-01
Memory-impaired patients express intact implicit perceptual–motor sequence learning, but it has been difficult to obtain a similarly clear dissociation in healthy participants. When explicit memory is intact, participants acquire some explicit knowledge and performance improvements from implicit learning may be subtle. Therefore, it is difficult to determine whether performance exceeds what could be expected on the basis of the concomitant explicit knowledge. Using a challenging new sequence-learning task, robust implicit learning was found in healthy participants with virtually no associated explicit knowledge. Participants trained on a repeating sequence that was selected randomly from a set of five. On a performance test of all five sequences, performance was best on the trained sequence, and two-thirds of the participants exhibited individually reliable improvement (by chi-square analysis). Participants could not reliably indicate which sequence had been trained by either recognition or recall. Only by expressing their knowledge via performance were participants able to indicate which sequence they had learned. PMID:21169570
Implicit motives, explicit traits, and task and contextual performance at work.
Lang, Jonas W B; Zettler, Ingo; Ewen, Christian; Hülsheger, Ute R
2012-11-01
Personality psychologists have long argued that explicit traits (as measured by questionnaires) channel the expression of implicit motives (as measured by coding imaginative verbal behavior) such that both interact in the prediction of relevant life outcome variables. In the present research, we apply these ideas in the context of industrial and organizational psychology and propose that 2 explicit traits work as channels for the expression of 3 core implicit motives in task and contextual job performance (extraversion for implicit affiliation and implicit power; explicit achievement for implicit achievement). As a test of these theoretical ideas, we report a study in which employees (N = 241) filled out a questionnaire booklet and worked on an improved modern implicit motive measure, the operant motive test. Their supervisors rated their task and contextual performance. Results support 4 of the 6 theoretical predictions and show that interactions between implicit motives and explicit traits increase the explained criterion variance in both task and contextual performance. (c) 2012 APA, all rights reserved.
Contributions of Executive Function and Spatial Skills to Preschool Mathematics Achievement
Verdine, Brian N.; Irwin, Casey M.; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn
2014-01-01
Early mathematics achievement is highly predictive of later mathematics performance. Here we investigate the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N = 44) of varying socio-economic status (SES) levels were assessed at age three on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (the PPVT-4). The same children were tested at age four on the Beery Test of Visual-Motor Integration (VMI), as well as measures of EF, and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links between spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand if EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower-SES children who are already falling behind in these skill areas by ages 3 and 4. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics. PMID:24874186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, L.; Tskhakaya, D. D.; Jelic, N.
2011-05-15
A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile {Phi}(x) near the sheath edge x{sub s} in the limit {epsilon}{identical_to}{lambda}{sub D}/l=0 (where {lambda}{sub D} is the Debye length and l is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation ({epsilon}=0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys.more » D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since ''the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity''[Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and ''water-bag'' ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to ''practical infinity.'' While within limits of ''very low'' and ''relatively high'' ion source temperatures, the potential is proportional to the space coordinate powered by rational numbers {alpha}=1/2 and {alpha}=2/3, with medium ion source temperatures. We found {alpha} between these values being a non-rational number strongly dependent on the ion source temperature. The range of the non-rational power-law turns out to be a very narrow one, at the expense of the extension of {alpha}=2/3 region towards unexpectedly low ion source temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnucka-Blandzi, Ewa
The study is devoted to stability of simply supported beam under axial compression. The beam is subjected to an axial load located at any point along the axis of the beam. The buckling problem has been desribed and solved mathematically. Critical loads have been calculated. In the particular case, the Euler’s buckling load is obtained. Explicit solutions are given. The values of critical loads are collected in tables and shown in figure. The relation between the point of the load application and the critical load is presented.
The relative importance of two different mathematical abilities to mathematical achievement.
Nunes, Terezinha; Bryant, Peter; Barros, Rossana; Sylva, Kathy
2012-03-01
Two distinct abilities, mathematical reasoning and arithmetic skill, might make separate and specific contributions to mathematical achievement. However, there is little evidence to inform theory and educational practice on this matter. The aims of this study were (1) to assess whether mathematical reasoning and arithmetic make independent contributions to the longitudinal prediction of mathematical achievement over 5 years and (2) to test the specificity of this prediction. Data from Avon Longitudinal Study of Parents and Children (ALSPAC) were available on 2,579 participants for analyses of KS2 achievement and on 1,680 for the analyses of KS3 achievement. Hierarchical regression analyses were used to assess the independence and specificity of the contribution of mathematical reasoning and arithmetic skill to the prediction of achievement in KS2 and KS3 mathematics, science, and English. Age, intelligence, and working memory (WM) were controls in these analyses. Mathematical reasoning and arithmetic did make independent contributions to the prediction of mathematical achievement; mathematical reasoning was by far the stronger predictor of the two. These predictions were specific in so far as these measures were more strongly related to mathematics than to science or English. Intelligence and WM were non-specific predictors; intelligence contributed more to the prediction of science than of maths, and WM predicted maths and English equally well. There is clear justification for making a distinction between mathematical reasoning and arithmetic skills. The implication is that schools must plan explicitly to improve mathematical reasoning as well as arithmetic skills. ©2011 The British Psychological Society.
Middle-School Mathematics Teachers' Beliefs in NCTM's Vision
ERIC Educational Resources Information Center
Perrin, John Robert
2012-01-01
This study examined the extent to which seventh- and eighth-grade mathematics teachers are aware of National Council of Teachers of Mathematics (NCTM) standards documents, Curriculum and Evaluation Standards for School Mathematics and Principles and Standards for School Mathematics and agree with NCTM's vision of school mathematics as expressed in…
Thermodynamics of urban population flows.
Hernando, A; Plastino, A
2012-12-01
Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.
ERIC Educational Resources Information Center
Wilkerson-Jerde, Michelle Hoda
2014-01-01
There are increasing calls to prepare K-12 students to use computational tools and principles when exploring scientific or mathematical phenomena. The purpose of this paper is to explore whether and how constructionist computer-supported collaborative environments can explicitly engage students in this practice. The Categorizer is a…
Is Learning in Developmental Math Associated with Community College Outcomes?
ERIC Educational Resources Information Center
Quarles, Christopher L.; Davis, Mickey
2017-01-01
Objective: Remedial mathematics courses are widely considered a barrier to student success in community college, and there has been a significant amount of work recently to reform them. Yet, there is little research that explicitly examines whether increasing learning in remedial classes improves grades or completion rates. This study examines the…
ERIC Educational Resources Information Center
Doabler, Christian T.; Nelson-Walker, Nancy; Kosty, Derek; Baker, Scott K.; Smolkowski, Keith; Fien, Hank
2013-01-01
In this study, the authors conceptualize teaching episodes such as an integrated set of observable student-teacher interactions. Instructional interactions that take place between teachers and students around critical academic content are a defining characteristic of classroom instruction and a component carefully defined in many education…
Using Refutational Text in Mathematics Education
ERIC Educational Resources Information Center
Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim
2017-01-01
Refutational text is one of the many instructional techniques that have been proposed to be used in education as a way to achieve effective learning. The aim of refutational text is to transform misconceptions into conceptions that are in line with current scientific concepts. This is done by explicitly stating a misconception, refuting it, and…
High-Quality Music Teacher Professional Development: A Review of the Literature
ERIC Educational Resources Information Center
Bautista, Alfredo; Yau, Xenia; Wong, Joanne
2017-01-01
Most published journal articles describing professional development (PD) initiatives for K-12 music teachers have not explicitly alluded to the "features of high-quality PD", a solid theoretical framework arisen in content areas with more tradition in PD research (e.g. mathematics and science education). The goal of this review was to…
Beginnings of Place Value: How Preschoolers Write Three-Digit Numbers
ERIC Educational Resources Information Center
Byrge, Lisa; Smith, Linda B.; Mix, Kelly
2014-01-01
Place value notation is essential to mathematics learning. This study examined young children's (4- to 6-year-olds, N = 172) understanding of place value prior to explicit schooling by asking them write spoken numbers (e.g., "six hundred and forty-two"). Children's attempts often consisted of "expansions" in which the proper…
A Case Study in Using Explicit Instruction to Teach Young Children Counting Skills
ERIC Educational Resources Information Center
Hinton, Vanessa; Stroizer, Shaunita; Flores, Margaret
2015-01-01
Number sense is one's ability to understand what numbers mean, perform mental mathematics, and look at the world and make comparisons. Researchers show instruction that teaches children how to classify numbers, put numbers in sequence, conserve numbers effectively, and count builds their number sense skills. Targeted instruction that teaches…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.
2015-01-01
This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem-solving and metacognitive…
ERIC Educational Resources Information Center
Rinke, Carol R.; Gladstone-Brown, Wendy; Kinlaw, C. Ryan; Cappiello, Jean
2016-01-01
Although science, technology, engineering, and mathematics (STEM) education sits at the center of a national conversation, comparatively little attention has been given to growing need for STEM teacher preparation, particularly at the elementary level. This study analyzes the outcomes of a novel, preservice STEM teacher education model. Building…
ERIC Educational Resources Information Center
Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany
2014-01-01
Background: The sequencing of learning materials greatly influences the knowledge that learners construct. Recently, learning theorists have focused on the sequencing of instruction in relation to solving related problems. The general consensus suggests explicit instruction should be provided; however, when to provide instruction remains unclear.…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.
2015-01-01
This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem solving and metacognitive…
Attitudinal effects of degrading themes and sexual explicitness in video materials.
Golde, J A; Strassberg, D S; Turner, C M; Lowe, K
2000-07-01
This study examined the independent and interactive effects of sexual explicitness and degrading themes toward women on mens' attitudes following exposure to video presentations of male-female interactions. Subjects were 83 male college students who viewed video vignettes under one of four stimulus conditions: (a) sexually explicit/degrading, (b) sexually explicit/nondegrading, (c) nonexplicit/degrading, and (d) nonexplicit/nondegrading. Results revealed that men exposed to degrading material, regardless of explicitness, were significantly more likely to express attitudes supportive of rape, while explicitness had no significant main or interactive effect on these attitudes. Further, the interaction of explicitness with degradation was found to impact scores on a measure of sexual callousness. Theoretical and clinical implications of these findings are discussed.
Shariff, Azim F; Tracy, Jessica L; Markusoff, Jeffrey L
2012-09-01
How do we decide who merits social status? According to functionalist theories of emotion, the nonverbal expressions of pride and shame play a key role, functioning as automatically perceived status signals. In this view, observers automatically make status inferences about expressers on the basis of these expressions, even when contradictory contextual information about the expressers' status is available. In four studies, the authors tested whether implicit and explicit status perceptions are influenced by pride and shame expressions even when these expressions' status-related messages are contradicted by contextual information. Results indicate that emotion expressions powerfully influence implicit and explicit status inferences, at times neutralizing or even overriding situational knowledge. These findings demonstrate the irrepressible communicative power of emotion displays and indicate that status judgments can be informed as much (and often more) by automatic responses to nonverbal expressions of emotion as by rational, contextually bound knowledge.
ERIC Educational Resources Information Center
Hines, Claudia L.; Brown, Nina W.; Myran, Steve
2016-01-01
Ninety-three (n = 93) students in grades 9-12 who failed the Virginia Standards of Learning mathematics test were placed into experimental and control groups. Pre and posttest measures for general and mathematics anxiety, and physical symptoms of stress were administered. The Expressive Writing intervention was used with both groups where the…
NASA Technical Reports Server (NTRS)
Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.
1987-01-01
The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
NASA Technical Reports Server (NTRS)
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
Reconstructions of the dark-energy equation of state and the inflationary potential
NASA Astrophysics Data System (ADS)
Barrow, John D.; Paliathanasis, Andronikos
2018-07-01
We use a mathematical approach based on the constraints systems in order to reconstruct the equation of state and the inflationary potential for the inflaton field from the observed spectral indices for the density perturbations ns and the tensor to scalar ratio r. From the astronomical data, we can observe that the measured values of these two indices lie on a two-dimensional surface. We express these indices in terms of the Hubble slow-roll parameters and we assume that ns-1=h( r) . For the function h( r) , we consider three cases, where h( r) is constant, linear and quadratic, respectively. From this, we derive second-order equations whose solutions provide us with the explicit forms for the expansion scale-factor, the scalar-field potential, and the effective equation of state for the scalar field. Finally, we show that for there exist mappings which transform one cosmological solution to another and allow new solutions to be generated from existing ones.
Low-order modelling of a drop on a highly-hydrophobic substrate: statics and dynamics
NASA Astrophysics Data System (ADS)
Wray, Alexander W.; Matar, Omar K.; Davis, Stephen H.
2017-11-01
We analyse the behaviour of droplets resting on highly-hydrophobic substrates. This problem is of practical interest due to its appearance in many physical contexts involving the spreading, wetting, and dewetting of fluids on solid substrates. In mathematical terms, it exhibits an interesting challenge as the interface is multi-valued as a function of the natural Cartesian co-ordinates, presenting a stumbling block to typical low-order modelling techniques. Nonetheless, we show that in the static case, the interfacial shape is governed by the Young-Laplace equation, which may be solved explicitly in terms of elliptic functions. We present simple low-order expressions that faithfully reproduce the shapes. We then consider the dynamic case, showing that the predictions of our low-order model compare favourably with those obtained from direct numerical simulations. We also examine the characteristic flow regimes of interest. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Are there laws of genome evolution?
Koonin, Eugene V
2011-08-01
Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.
ERIC Educational Resources Information Center
Becker, Nicole; Towns, Marcy
2012-01-01
Undergraduate physical chemistry courses require students to be proficient in calculus in order to develop an understanding of thermodynamics concepts. Here we present the findings of a study that examines student understanding of mathematical expressions, including partial derivative expressions, in two undergraduate physical chemistry courses.…
NASA Technical Reports Server (NTRS)
Crouch, P. E.; Grossman, Robert
1992-01-01
This note is concerned with the explicit symbolic computation of expressions involving differential operators and their actions on functions. The derivation of specialized numerical algorithms, the explicit symbolic computation of integrals of motion, and the explicit computation of normal forms for nonlinear systems all require such computations. More precisely, if R = k(x(sub 1),...,x(sub N)), where k = R or C, F denotes a differential operator with coefficients from R, and g member of R, we describe data structures and algorithms for efficiently computing g. The basic idea is to impose a multiplicative structure on the vector space with basis the set of finite rooted trees and whose nodes are labeled with the coefficients of the differential operators. Cancellations of two trees with r + 1 nodes translates into cancellation of O(N(exp r)) expressions involving the coefficient functions and their derivatives.
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
Goldstone, Robert L; Landy, David H; Son, Ji Y
2010-04-01
Although the field of perceptual learning has mostly been concerned with low- to middle-level changes to perceptual systems due to experience, we consider high-level perceptual changes that accompany learning in science and mathematics. In science, we explore the transfer of a scientific principle (competitive specialization) across superficially dissimilar pedagogical simulations. We argue that transfer occurs when students develop perceptual interpretations of an initial simulation and simply continue to use the same interpretational bias when interacting with a second simulation. In arithmetic and algebraic reasoning, we find that proficiency in mathematics involves executing spatially explicit transformations to notational elements. People learn to attend mathematical operations in the order in which they should be executed, and the extent to which students employ their perceptual attention in this manner is positively correlated with their mathematical experience. For both science and mathematics, relatively sophisticated performance is achieved not by ignoring perceptual features in favor of deep conceptual features, but rather by adapting perceptual processing so as to conform with and support formally sanctioned responses. These "rigged-up perceptual systems" offer a promising approach to educational reform. Copyright © 2009 Cognitive Science Society, Inc.
Contributions of executive function and spatial skills to preschool mathematics achievement.
Verdine, Brian N; Irwin, Casey M; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn
2014-10-01
Early mathematics achievement is highly predictive of later mathematics performance. Here we investigated the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N=44) of varying socioeconomic status (SES) levels were assessed at 3 years of age on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (Peabody Picture Vocabulary Test, PPVT). The same children were tested at 4 years of age on the Beery Test of Visual-Motor Integration (VMI) as well as on measures of EF and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links among spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand whether EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower SES children who are already falling behind in these skill areas by 3 and 4 years of age. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics. Copyright © 2014 Elsevier Inc. All rights reserved.
Bryant, Brian R; Bryant, Diane Pedrotty; Porterfield, Jennifer; Dennis, Minyi Shih; Falcomata, Terry; Valentine, Courtney; Brewer, Chelsea; Bell, Kathy
2016-01-01
The purpose of this study was to determine the effectiveness of a systematic, explicit, intensive Tier 3 (tertiary) intervention on the mathematics performance of students in second grade with severe mathematics difficulties. A multiple-baseline design across groups of participants showed improved mathematics performance on number and operations concepts and procedures, which are the foundation for later mathematics success. In the previous year, 12 participants had experienced two doses (first and second semesters) of a Tier 2 intervention. In second grade, the participants continued to demonstrate low performance, falling below the 10th percentile on a researcher-designed universal screener and below the 16th percentile on a distal measure, thus qualifying for the intensive intervention. A project interventionist, who met with the students 5 days a week for 10 weeks (9 weeks for one group), conducted the intensive intervention. The intervention employed more intensive instructional design features than the previous Tier 2 secondary instruction, and also included weekly games to reinforce concepts and skills from the lessons. Spring results showed significantly improved mathematics performance (scoring at or above the 25th percentile) for most of the students, thus making them eligible to exit the Tier 3 intervention. © Hammill Institute on Disabilities 2014.
ERIC Educational Resources Information Center
Lee, Kyeonghwa; Sriraman, Bharath
2013-01-01
Eastern philosophies of education such as Confucianism and Taosim advocate the use of silence in the teacher-pupil tradition of pedagogy. We investigate contemporary classrooms in Korea, and study whether teachers in Korea today incorporate this method implicitly or explicitly in their classrooms. Empirical data in the form of video-taped…
ERIC Educational Resources Information Center
Sasanguie, Delphine; Gobel, Silke M.; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-01-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted…
Opening up the Profession: Inclusive Messages for Pre-Service Teachers from a Pedagogy Textbook
ERIC Educational Resources Information Center
Brass, Amber
2016-01-01
Textbooks are a ubiquitous part of classrooms in all levels of education. Whilst textbooks used in tertiary content subjects have been examined in several studies, research focused on textbooks used in mathematics pedagogy subjects is scarce. Using a discourse analytic framework, this paper presents data about the implicit and explicit messages…
Allocation model for firefighting resources ... a progress report
Frederick W. Bratten
1970-01-01
A study is underway at the Pacific Southwest Forest and Range Experiment Station to develop computer techniques for planning suppression efforts in large wildfires. A mathematical model for allocation of firefighting resources in a going fire has been developed. Explicit definitions are given for strategic and tactical planning functions. How the model might be used is...
ERIC Educational Resources Information Center
Mellone, Maria
2011-01-01
Assumptions about the construction and the transmission of knowledge and about the nature of mathematics always underlie any teaching practice, even if often unconsciously. I examine the conjecture that theoretical tools suitably chosen can help the teacher to make such assumptions explicit and to support the teacher's reflection on his/her…
Cross-cultural evidence that the nonverbal expression of pride is an automatic status signal.
Tracy, Jessica L; Shariff, Azim F; Zhao, Wanying; Henrich, Joseph
2013-02-01
To test whether the pride expression is an implicit, reliably developing signal of high social status in humans, the authors conducted a series of experiments that measured implicit and explicit cognitive associations between pride displays and high-status concepts in two culturally disparate populations--North American undergraduates and Fijian villagers living in a traditional, small-scale society. In both groups, pride displays produced strong implicit associations with high status, despite Fijian social norms discouraging overt displays of pride. Also in both groups, implicit and explicit associations between emotion expressions and status were dissociated; despite the cross-cultural implicit association between pride displays and high status, happy displays were, cross-culturally, the more powerful status indicator at an explicit level, and among Fijians, happy and pride displays were equally strongly implicitly associated with status. Finally, a cultural difference emerged: Fijians viewed happy displays as more deserving of high status than did North Americans, both implicitly and explicitly. Together, these findings suggest that the display and recognition of pride may be part of a suite of adaptations for negotiating status relationships, but that the high-status message of pride is largely communicated through implicit cognitive processes. 2013 APA, all rights reserved
A phase space model of Fourier ptychographic microscopy
Horstmeyer, Roarke; Yang, Changhuei
2014-01-01
A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995
An examination of stereotype threat effects on girls' mathematics performance.
Ganley, Colleen M; Mingle, Leigh A; Ryan, Allison M; Ryan, Katherine; Vasilyeva, Marina; Perry, Michelle
2013-10-01
Stereotype threat has been proposed as 1 potential explanation for the gender difference in standardized mathematics test performance among high-performing students. At present, it is not entirely clear how susceptibility to stereotype threat develops, as empirical evidence for stereotype threat effects across the school years is inconsistent. In a series of 3 studies, with a total sample of 931 students, we investigated stereotype threat effects during childhood and adolescence. Three activation methods were used, ranging from implicit to explicit. Across studies, we found no evidence that the mathematics performance of school-age girls was impacted by stereotype threat. In 2 of the studies, there were gender differences on the mathematics assessment regardless of whether stereotype threat was activated. Potential reasons for these findings are discussed, including the possibility that stereotype threat effects only occur in very specific circumstances or that they are in fact occurring all the time. We also address the possibility that the literature regarding stereotype threat in children is subject to publication bias.
Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
NASA Astrophysics Data System (ADS)
Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.
2014-12-01
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.
Finite-element approach to Brownian dynamics of polymers.
Cyron, Christian J; Wall, Wolfgang A
2009-12-01
In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Such simulation tools have been applied to a large variety of problems and accelerated the scientific progress significantly. However, the currently most frequently used explicit bead models exhibit severe limitations, especially with respect to time step size, the necessity of artificial constraints and the lack of a sound mathematical foundation. Here we present a framework for simulations of Brownian polymer dynamics based on the finite-element method. This approach allows simulating a wide range of physical phenomena at a highly attractive computational cost on the basis of a far-developed mathematical background.
Explicit robust schemes for implementation of general principal value-based constitutive models
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Tan, H. Q.; Zhang, Y.
1993-01-01
The issue of developing effective and robust schemes to implement general hyperelastic constitutive models is addressed. To this end, special purpose functions are used to symbolically derive, evaluate, and automatically generate the associated FORTRAN code for the explicit forms of the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid for the entire deformation range. The analytical form of these explicit expressions is given here for the case in which the strain-energy potential is taken as a nonseparable polynomial function of the principle stretches.
NASA Astrophysics Data System (ADS)
Rinaldo, A.; Gatto, M.; Mari, L.; Casagrandi, R.; Righetto, L.; Bertuzzo, E.; Rodriguez-Iturbe, I.
2012-12-01
Metacommunity and individual-based theoretical models are studied in the context of the spreading of infections of water-borne diseases along the ecological corridors defined by river basins and networks of human mobility. The overarching claim is that mathematical models can indeed provide predictive insight into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. To support the claim, we examine the ex-post reliability of published predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. For each modeled epidemic trajectory, it is assessed how well predictions reproduced the observed spatial and temporal features of the outbreak to date. The impact of different approaches is considered to the modeling of the spatial spread of V. cholera, the mechanics of cholera transmission and in accounting for the dynamics of susceptible and infected individuals within different local human communities. A generalized model for Haitian epidemic cholera and the related uncertainty is thus constructed and applied to the year-long dataset of reported cases now available. Specific emphasis will be dedicated to models of human mobility, a fundamental infection mechanism. Lessons learned and open issues are discussed and placed in perspective, supporting the conclusion that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control. Although explicit spatial modeling is made routinely possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here, we show that the requirement that all the local reproduction numbers R0 be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix G0 explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number Λ0 (the dominant eigenvalue of G0) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of G0. Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of G0 provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections.
Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.
Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J
2009-03-01
Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].
Technical Report for Contract N00039-82-C-0235, 15 November 1981-30 September 1983
1983-09-30
Management of Data, Ann Arbor, Rich., June 1982. -. 2 ’’.’ , . .. ’,, .* ,° • ,"%,.° % °%" ° %- " "%" . . ." " -.. . . ,.%. Interactive Mathematical ...developed and implemented a hierachical representation for mathematical expres- sioms that includes display position, expression dimensions, font...etc) in internal forms are accepted and converted to box frames which can be displayed. 2. Strophe’s representation of mathematical expressions is
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-01
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-14
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Ali-Khan, Sarah E; Black, Lee; Palmour, Nicole; Hallett, Michael T; Avard, Denise
2015-01-01
There have been multiple calls for explicit integration of ethical, legal, and social issues (ELSI) in health technology assessment (HTA) and addressing ELSI has been highlighted as key in optimizing benefits in the Omics/Personalized Medicine field. This study examines HTAs of an early clinical example of Personalized Medicine (gene expression profile tests [GEP] for breast cancer prognosis) aiming to: (i) identify ELSI; (ii) assess whether ELSIs are implicitly or explicitly addressed; and (iii) report methodology used for ELSI integration. A systematic search for HTAs (January 2004 to September 2012), followed by descriptive and qualitative content analysis. Seventeen HTAs for GEP were retrieved. Only three (18%) explicitly presented ELSI, and only one reported methodology. However, all of the HTAs included implicit ELSI. Eight themes of implicit and explicit ELSI were identified. "Classical" ELSI including privacy, informed consent, and concerns about limited patient/clinician genetic literacy were always presented explicitly. Some ELSI, including the need to understand how individual patients' risk tolerances affect clinical decision-making after reception of GEP results, were presented both explicitly and implicitly in HTAs. Others, such as concern about evidentiary deficiencies for clinical utility of GEP tests, occurred only implicitly. Despite a wide variety of important ELSI raised, these were rarely explicitly addressed in HTAs. Explicit treatment would increase their accessibility to decision-makers, and may augment HTA efficiency maximizing their utility. This is particularly important where complex Personalized Medicine applications are rapidly expanding choices for patients, clinicians and healthcare systems.
Designing Mathematical Learning Environments for Teachers
ERIC Educational Resources Information Center
Madden, Sandra R.
2010-01-01
Technology use in mathematics often involves either exploratory or expressive modeling. When using exploratory models, students use technology to investigate a premade expert model of some phenomena. When creating expressive models, students have greater flexibility for constructing their own model for investigation using objects and mechanisms…
ERIC Educational Resources Information Center
Tasova, Halil Ibrahim; Delice, Ali
2012-01-01
Mathematical modelling involves mathematical constructions chosen to represent some real world situations and the relationships among them; it is the process of expressing a real world situation mathematically. Visualisation can play a significant role in the development of thinking or understanding mathematical concepts, and also makes abstract…
Christoforou, Paraskevi S; Ashforth, Blake E
2015-01-01
We argue that the strength with which the organization communicates expectations regarding the appropriate emotional expression toward customers (i.e., explicitness of display rules) has an inverted U-shaped relationship with service delivery behaviors, customer satisfaction, and sales performance. Further, we argue that service organizations need a particular blend of explicitness of display rules and role discretion for the purpose of optimizing sales performance. As hypothesized, findings from 2 samples of salespeople suggest that either high or low explicitness of display rules impedes service delivery behaviors and sales performance, which peaks at moderate explicitness of display rules and high role discretion. The findings also suggest that the explicitness of display rules has a positive relationship with customer satisfaction. (c) 2015 APA, all rights reserved.
L1-Based Approximations of PDEs and Applications
2012-09-05
the analysis of the Navier-Stokes equations. The early versions of artificial vis- cosities being overly dissipative, the interest for these technique ...Guermond, and B. Popov. Stability analysis of explicit en- tropy viscosity methods for non-linear scalar conservation equations. Math. Comp., 2012... methods for solv- ing mathematical models of nonlinear phenomena such as nonlinear conservation laws, surface/image/data reconstruction problems
ERIC Educational Resources Information Center
Güçler, Beste
2016-01-01
Despite the existence of extensive literature on functions, fewer studies used sociocultural views to explore the development of student learning about the concept. This study uses a discursive lens to examine whether an instructional approach that specifically attends to particular metalevel rules in the mathematical discourse on functions…
Three Concepts or One? Students' Understanding of Basic Limit Concepts
ERIC Educational Resources Information Center
Fernández-Plaza, José Antonio; Simpson, Adrian
2016-01-01
In many mathematics curricula, the notion of limit is introduced three times: the limit of a sequence, the limit of a function at a point and the limit of a function at infinity. Despite the use of very similar symbols, few connections between these notions are made explicitly and few papers in the large literature on student understanding of…
Numerical simulation of phase transition problems with explicit interface tracking
Hu, Yijing; Shi, Qiangqiang; de Almeida, Valmor F.; ...
2015-12-19
Phase change is ubiquitous in nature and industrial processes. Started from the Stefan problem, it is a topic with a long history in applied mathematics and sciences and continues to generate outstanding mathematical problems. For instance, the explicit tracking of the Gibbs dividing surface between phases is still a grand challenge. Our work has been motivated by such challenge and here we report on progress made in solving the governing equations of continuum transport in the presence of a moving interface by the front tracking method. The most pressing issue is the accounting of topological changes suffered by the interfacemore » between phases wherein break up and/or merge takes place. The underlying physics of topological changes require the incorporation of space-time subscales not at reach at the moment. Therefore we use heuristic geometrical arguments to reconnect phases in space. This heuristic approach provides new insight in various applications and it is extensible to include subscale physics and chemistry in the future. We demonstrate the method on applications such as simulating freezing, melting, dissolution, and precipitation. The later examples also include the coupling of the phase transition solution with the Navier-Stokes equations for the effect of flow convection.« less
Early Mathematics Fluency with CCSSM
ERIC Educational Resources Information Center
Matney, Gabriel T.
2014-01-01
To develop second-grade students' confidence and ease, this author presents examples of learning tasks (Number of the Day, Word Problem Solving, and Modeling New Mathematical Ideas) that align with Common Core State Standards for Mathematics and that build mathematical fluency to promote students' creative expression of mathematical…
ERIC Educational Resources Information Center
Frankel, Lois; Brownstein, Beth; Soiffer, Neil
2017-01-01
This report describes the pilot conducted in the final phase of a project, Expanding Audio Access to Mathematics Expressions by Students With Visual Impairments via MathML, to provide easy-to-use tools for authoring and rendering secondary-school algebra-level math expressions in synthesized speech that is useful for students with blindness or low…
Donati, Maria Anna; Panno, Angelo; Chiesi, Francesca; Primi, Caterina
2014-01-01
This study tested the mediating role of probabilistic reasoning ability in the relationship between fluid intelligence and advantageous decision making among adolescents in explicit situations of risk--that is, in contexts in which information on the choice options (gains, losses, and probabilities) were explicitly presented at the beginning of the task. Participants were 282 adolescents attending high school (77% males, mean age = 17.3 years). We first measured fluid intelligence and probabilistic reasoning ability. Then, to measure decision making under explicit conditions of risk, participants performed the Game of Dice Task, in which they have to decide among different alternatives that are explicitly linked to a specific amount of gain or loss and have obvious winning probabilities that are stable over time. Analyses showed a significant positive indirect effect of fluid intelligence on advantageous decision making through probabilistic reasoning ability that acted as a mediator. Specifically, fluid intelligence may enhance ability to reason in probabilistic terms, which in turn increases the likelihood of advantageous choices when adolescents are confronted with an explicit decisional context. Findings show that in experimental paradigm settings, adolescents are able to make advantageous decisions using cognitive abilities when faced with decisions under explicit risky conditions. This study suggests that interventions designed to promote probabilistic reasoning, for example by incrementing the mathematical prerequisites necessary to reason in probabilistic terms, may have a positive effect on adolescents' decision-making abilities.
On non-autonomous dynamical systems
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2015-04-01
In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.
Early Foundations for Mathematics Learning and Their Relations to Learning Disabilities.
Geary, David C
2013-02-01
Children's quantitative competencies upon entry into school can have lifelong consequences. Children who start behind generally stay behind, and mathematical skills at school completion influence employment prospects and wages in adulthood. I review the current debate over whether early quantitative learning is supported by (a) an inherent system for representing approximate magnitudes, (b) an attentional-control system that enables explicit processing of quantitative symbols, such as Arabic numerals, or (c) the logical problem-solving abilities that facilitate learning of the relations among numerals. Studies of children with mathematical learning disabilities and difficulties have suggested that each of these competencies may be involved, but to different degrees and at different points in the learning process. Clarifying how and when these competencies facilitate early quantitative learning and developing interventions to address their impact on children have the potential to yield substantial benefits for individuals and for society.
Towards predictive models of the human gut microbiome
2014-01-01
The intestinal microbiota is an ecosystem susceptible to external perturbations such as dietary changes and antibiotic therapies. Mathematical models of microbial communities could be of great value in the rational design of microbiota-tailoring diets and therapies. Here, we discuss how advances in another field, engineering of microbial communities for wastewater treatment bioreactors, could inspire development of mechanistic mathematical models of the gut microbiota. We review the current state-of-the-art in bioreactor modeling and current efforts in modeling the intestinal microbiota. Mathematical modeling could benefit greatly from the deluge of data emerging from metagenomic studies, but data-driven approaches such as network inference that aim to predict microbiome dynamics without explicit mechanistic knowledge seem better suited to model these data. Finally, we discuss how the integration of microbiome shotgun sequencing and metabolic modeling approaches such as flux balance analysis may fulfill the promise of a mechanistic model of the intestinal microbiota. PMID:24727124
Mother and Child Emotions during Mathematics Homework
ERIC Educational Resources Information Center
Else-Quest, Nicole M.; Hyde, Janet S.; Hejmadi, Ahalya
2008-01-01
Mathematics is often thought of as a purely intellectual and unemotional activity. Recently, researchers have begun to question the validity of this approach, arguing that emotions and cognition are intertwined. The emotions expressed during mathematics work may be linked to mathematics achievement. We used behavioral measures to identify the…
Automatic Semantic Generation and Arabic Translation of Mathematical Expressions on the Web
ERIC Educational Resources Information Center
Doush, Iyad Abu; Al-Bdarneh, Sondos
2013-01-01
Automatic processing of mathematical information on the web imposes some difficulties. This paper presents a novel technique for automatic generation of mathematical equations semantic and Arabic translation on the web. The proposed system facilitates unambiguous representation of mathematical equations by correlating equations to their known…
Expressed wishes and incidence of euthanasia in advanced lung cancer patients.
Pardon, Koen; Deschepper, Reginald; Vander Stichele, Robert; Bernheim, Jan L; Mortier, Freddy; Schallier, Denis; Germonpré, Paul; Galdermans, Daniella; Van Kerckhoven, Willem; Deliens, Luc
2012-10-01
This study explores expressed wishes and requests for euthanasia (i.e. administration of lethal drugs at the explicit request of the patient), and incidence of end-of-life decisions with possible life-shortening effects (ELDs) in advanced lung cancer patients in Flanders, Belgium. We performed a prospective, longitudinal, observational study of a consecutive sample of advanced lung cancer patients and selected those who died within 18 months of diagnosis. Immediately after death, the pulmonologist/oncologist and general practitioner (GP) of the patient filled in a questionnaire. Information was available for 105 out of 115 deaths. According to the specialist or GP, one in five patients had expressed a wish for euthanasia; and three in four of these had made an explicit and repeated request. One in two of these received euthanasia. Of the patients who had expressed a wish for euthanasia but had not made an explicit and repeated request, none received euthanasia. Patients with a palliative treatment goal at inclusion were more likely to receive euthanasia. Death was preceded by an ELD in 62.9% of patients. To conclude, advanced lung cancer patients who expressed a euthanasia wish were often determined. Euthanasia was performed significantly more among patients whose treatment goal after diagnosis was exclusively palliative.
Staircase Methods of Sensitivity Testing,
1946-03-21
Mathematical Preliminaries ............. 32 b. Outline of the Investigation ..... .......... 35 8. The Possible Adjustments ...... ............... .. 36 9...bh Ar’Lied MathematIcs Pa-nel. ZCC, uU, -. for one decermntation !f tie per centtage point and the average nmber ee exp-li.-n. required far one such...accuracy per explosion. 32. II. TECOI4ICPJJ 7. Introduction. a. Some Mathematical Preliminaries. Expressed mathematically , the problem of sensitivity
Analytical and phenomenological studies of rotating turbulence
NASA Technical Reports Server (NTRS)
Mahalov, Alex; Zhou, YE
1995-01-01
A framework, which combines mathematical analysis, closure theory, and phenomenological treatment, is developed to study the spectral transfer process and reduction of dimensionality in turbulent flows that are subject to rotation. First, we outline a mathematical procedure that is particularly appropriate for problems with two disparate time scales. The approach which is based on the Green's method leads to the Poincare velocity variables and the Poincare transformation when applied to rotating turbulence. The effects of the rotation are now reflected in the modifications to the convolution of a nonlinear term. The Poincare transformed equations are used to obtain a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit when the non-dimensional parameter mu is identical to Omega(t) approaches infinity (Omega is the rotation rate and t is the time). The 'split' of the energy transfer in both direct and inverse directions is established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM) closure to the Poincare transformed Euler/Navier-Stokes equations. This closure leads to expressions for the spectral energy transfer. In particular, an unique triple velocity decorrelation time is derived with an explicit dependence on the rotation rate. This provides an important input for applying the phenomenological treatment of Zhou. In order to characterize the relative strength of rotation, another non-dimensional number, a spectral Rossby number, which is defined as the ratio of rotation and turbulence time scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are deduced.
ERIC Educational Resources Information Center
Cangelosi, Richard; Madrid, Silvia; Cooper, Sandra; Olson, Jo; Hartter, Beverly
2013-01-01
The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential…
University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Sun, Shiyue; Carretié, Luis; Zhang, Lei; Dong, Yi; Zhu, Chunyan; Luo, Yuejia; Wang, Kai
2014-01-01
Background Although ample evidence suggests that emotion and response inhibition are interrelated at the behavioral and neural levels, neural substrates of response inhibition to negative facial information remain unclear. Thus we used event-related potential (ERP) methods to explore the effects of explicit and implicit facial expression processing in response inhibition. Methods We used implicit (gender categorization) and explicit emotional Go/Nogo tasks (emotion categorization) in which neutral and sad faces were presented. Electrophysiological markers at the scalp and the voxel level were analyzed during the two tasks. Results We detected a task, emotion and trial type interaction effect in the Nogo-P3 stage. Larger Nogo-P3 amplitudes during sad conditions versus neutral conditions were detected with explicit tasks. However, the amplitude differences between the two conditions were not significant for implicit tasks. Source analyses on P3 component revealed that right inferior frontal junction (rIFJ) was involved during this stage. The current source density (CSD) of rIFJ was higher with sad conditions compared to neutral conditions for explicit tasks, rather than for implicit tasks. Conclusions The findings indicated that response inhibition was modulated by sad facial information at the action inhibition stage when facial expressions were processed explicitly rather than implicitly. The rIFJ may be a key brain region in emotion regulation. PMID:25330212
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Not on the Face Alone: Perception of Contextualized Face Expressions in Huntington's Disease
ERIC Educational Resources Information Center
Aviezer, Hillel; Bentin, Shlomo; Hassin, Ran R.; Meschino, Wendy S.; Kennedy, Jeanne; Grewal, Sonya; Esmail, Sherali; Cohen, Sharon; Moscovitch, Morris
2009-01-01
Numerous studies have demonstrated that Huntington's disease mutation-carriers have deficient explicit recognition of isolated facial expressions. There are no studies, however, which have investigated the recognition of facial expressions embedded within an emotional body and scene context. Real life facial expressions are typically embedded in…
Some rules for polydimensional squeezing
NASA Technical Reports Server (NTRS)
Manko, Vladimir I.
1994-01-01
The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.
ERIC Educational Resources Information Center
Scott, Paul
2009-01-01
In applied mathematics particularly, one is interested in modeling real life situations; that is why, one tries to express some actual phenomenon mathematically, and then uses mathematics to determine future outcomes. It may be that one actually wishes to change the future outcome. Mathematics will not do this, but at least it tells one what to…
ERIC Educational Resources Information Center
Tristanti, Lia Budi; Sutawidjaja, Akbar; As'ari, Abdur Rahman; Muskar, Makbul
2016-01-01
This study discusses the construction of deductive warrant derived from inductive warrant in mathematical argumentations expressed by pre-service teacher. In completing a mathematics task, a problem solver needs argumentation to determine, reveal, and support a reasonable solution. A mathematical argumentation can be analyzed by Toulmin scheme…
ERIC Educational Resources Information Center
Dündar, Sefa
2015-01-01
Using multiple representations of a problem can reveal the relationship between complex concepts by expressing the same mathematical condition differently and can contribute to the meaningful learning of mathematical concepts. The purpose of this study is to assess the performances of mathematics teacher-candidates on trigonometry problems…
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
NASA Astrophysics Data System (ADS)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
ERIC Educational Resources Information Center
Raychaudhuri, Debasree
2008-01-01
In this note we develop a framework that makes explicit the inherent dynamic structure of certain mathematical definitions by means of the four facets of context-entity-process-object. These facets and their interrelations are then used to capture and interpret specific aspects of student constructions of the concept of solution to first order…
Static Wormholes in Vacuum and Gravity in Diverse Dimensions
NASA Astrophysics Data System (ADS)
Susskind, Leonard
If the observable universe really is a hologram, then of what sort? Is it rich enough to keep track of an eternally inflating multiverse? What physical and mathematical principles underlie it? Is the hologram a lower dimensional quantum field theory, and if so, how many dimensions are explicit, and how many "emerge?" Does the Holographic description provide clues for defining a probability measure on the Landscape?
Individual differences in non-verbal number acuity correlate with maths achievement.
Halberda, Justin; Mazzocco, Michèle M M; Feigenson, Lisa
2008-10-02
Human mathematical competence emerges from two representational systems. Competence in some domains of mathematics, such as calculus, relies on symbolic representations that are unique to humans who have undergone explicit teaching. More basic numerical intuitions are supported by an evolutionarily ancient approximate number system that is shared by adults, infants and non-human animals-these groups can all represent the approximate number of items in visual or auditory arrays without verbally counting, and use this capacity to guide everyday behaviour such as foraging. Despite the widespread nature of the approximate number system both across species and across development, it is not known whether some individuals have a more precise non-verbal 'number sense' than others. Furthermore, the extent to which this system interfaces with the formal, symbolic maths abilities that humans acquire by explicit instruction remains unknown. Here we show that there are large individual differences in the non-verbal approximation abilities of 14-year-old children, and that these individual differences in the present correlate with children's past scores on standardized maths achievement tests, extending all the way back to kindergarten. Moreover, this correlation remains significant when controlling for individual differences in other cognitive and performance factors. Our results show that individual differences in achievement in school mathematics are related to individual differences in the acuity of an evolutionarily ancient, unlearned approximate number sense. Further research will determine whether early differences in number sense acuity affect later maths learning, whether maths education enhances number sense acuity, and the extent to which tertiary factors can affect both.
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Sasanguie, Delphine; Göbel, Silke M; Moll, Kristina; Smets, Karolien; Reynvoet, Bert
2013-03-01
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well childrencompared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities. Copyright © 2012 Elsevier Inc. All rights reserved.
Integration science and distributed networks
NASA Astrophysics Data System (ADS)
Landauer, Christopher; Bellman, Kirstie L.
2002-07-01
Our work on integration of data and knowledge sources is based in a common theoretical treatment of 'Integration Science', which leads to systematic processes for combining formal logical and mathematical systems, computational and physical systems, and human systems and organizations. The theory is based on the processing of explicit meta-knowledge about the roles played by the different knowledge sources and the methods of analysis and semantic implications of the different data values, together with information about the context in which and the purpose for which they are being combined. The research treatment is primarily mathematical, and though this kind of integration mathematics is still under development, there are some applicable common threads that have emerged already. Instead of describing the current state of the mathematical investigations, since they are not yet crystallized enough for formalisms, we describe our applications of the approach in several different areas, including our focus area of 'Constructed Complex Systems', which are complex heterogeneous systems managed or mediated by computing systems. In this context, it is important to remember that all systems are embedded, all systems are autonomous, and that all systems are distributed networks.
A mathematical solution for the parameters of three interfering resonances
NASA Astrophysics Data System (ADS)
Han, X.; Shen, C. P.
2018-04-01
The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)
NASA Technical Reports Server (NTRS)
Denney, Ewen W.; Fischer, Bernd
2009-01-01
Model-based development and automated code generation are increasingly used for production code in safety-critical applications, but since code generators are typically not qualified, the generated code must still be fully tested, reviewed, and certified. This is particularly arduous for mathematical and control engineering software which requires reviewers to trace subtle details of textbook formulas and algorithms to the code, and to match requirements (e.g., physical units or coordinate frames) not represented explicitly in models or code. Both tasks are complicated by the often opaque nature of auto-generated code. We address these problems by developing a verification-driven approach to traceability and documentation. We apply the AUTOCERT verification system to identify and then verify mathematical concepts in the code, based on a mathematical domain theory, and then use these verified traceability links between concepts, code, and verification conditions to construct a natural language report that provides a high-level structured argument explaining why and how the code uses the assumptions and complies with the requirements. We have applied our approach to generate review documents for several sub-systems of NASA s Project Constellation.
24 CFR 51.103 - Criteria and standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
... decibels to sound levels in the night from 10 p.m. to 7 a.m. Mathematical expressions for average sound..., as indicated in § 51.106(a)(3). Methods for assessing the contribution of loud impulsive sounds to day-night average sound level at a site and mathematical expressions for determining whether a sound...
Researching Race in Mathematics Education
ERIC Educational Resources Information Center
Martin, Danny Bernard
2009-01-01
Background: Within mathematics education research, policy, and practice, race remains undertheorized in relation to mathematics learning and participation. Although race is characterized in the sociological and critical theory literatures as socially and politically constructed with structural expressions, most studies of differential outcomes in…
Missing Dimensions of Mathematics Instruction.
ERIC Educational Resources Information Center
Meyer, Walter
1995-01-01
Emphasizes how to express the breadth of mathematics itself. Addresses other missing dimensions which make mathematics attractive to a larger number of students by making it appear less isolated and more tied to thoughts and experiences that students find familiar and congenial. (ASK)
A formulation of the foundations of genetics and evolution.
Bahr, Brian Edward
2016-05-01
This paper proposes a formulation of theories of the foundations of genetics and evolution that can be used to mathematically simulate phenotype expression, reproduction, mutation, and natural selection. It will be shown that Mendelian inheritance can be mathematically simulated with expressions involving matrices and that these expressions can also simulate phenomena that are modifications to Mendel's basic principles, like alleles that give rise to quantitative effects and traits that are the expression of multiple alleles and/or multiple genetic loci. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic modes of quasispherical vesicles: exact analytical solutions.
Guedda, M; Abaidi, M; Benlahsen, M; Misbah, C
2012-11-01
In this paper we introduce a simple mathematical analysis to reexamine vesicle dynamics in the quasispherical limit (small deformation) under a shear flow. In this context, a recent paper [Misbah, Phys. Rev. Lett. 96, 028104 (2006)] revealed a dynamic referred to as the vacillating-breathing (VB) mode where the vesicle main axis oscillates about the flow direction and the shape undergoes a breathinglike motion, as well as the tank-treading and tumbling (TB) regimes. Our goal here is to identify these three modes by obtaining explicit analytical expressions of the vesicle inclination angle and the shape deformation. In particular, the VB regime is put in evidence and the transition dynamics is discussed. Not surprisingly, our finding confirms the Keller-Skalak solutions (for rigid particles) and shows that the VB and TB modes coexist, and whether one prevails over the other depends on the initial conditions. An interesting additional element in the discussion is the prediction of the TB and VB modes as functions of a control parameter Γ, which can be identified as a TB-VB parameter.
The evolutionary language game: an orthogonal approach.
Lenaerts, Tom; Jansen, Bart; Tuyls, Karl; De Vylder, Bart
2005-08-21
Evolutionary game dynamics have been proposed as a mathematical framework for the cultural evolution of language and more specifically the evolution of vocabulary. This article discusses a model that is mutually exclusive in its underlying principals with some previously suggested models. The model describes how individuals in a population culturally acquire a vocabulary by actively participating in the acquisition process instead of passively observing and communicate through peer-to-peer interactions instead of vertical parent-offspring relations. Concretely, a notion of social/cultural learning called the naming game is first abstracted using learning theory. This abstraction defines the required cultural transmission mechanism for an evolutionary process. Second, the derived transmission system is expressed in terms of the well-known selection-mutation model defined in the context of evolutionary dynamics. In this way, the analogy between social learning and evolution at the level of meaning-word associations is made explicit. Although only horizontal and oblique transmission structures will be considered, extensions to vertical structures over different genetic generations can easily be incorporated. We provide a number of simplified experiments to clarify our reasoning.
Loving and Hating Mathematics: Challenging the Myths of Mathematical Life
ERIC Educational Resources Information Center
Hersh, Reuben; John-Steiner, Vera
2010-01-01
Mathematics is often thought of as the coldest expression of pure reason. But few subjects provoke hotter emotions--and inspire more love and hatred--than mathematics. And although math is frequently idealized as floating above the messiness of human life, its story is nothing if not human; often, it is all too human. "Loving and Hating…
Error propagation in eigenimage filtering.
Soltanian-Zadeh, H; Windham, J P; Jenkins, J M
1990-01-01
Mathematical derivation of error (noise) propagation in eigenimage filtering is presented. Based on the mathematical expressions, a method for decreasing the propagated noise given a sequence of images is suggested. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the final composite image are compared to the SNRs and CNRs of the images in the sequence. The consistency of the assumptions and accuracy of the mathematical expressions are investigated using sequences of simulated and real magnetic resonance (MR) images of an agarose phantom and a human brain.
NASA Astrophysics Data System (ADS)
Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio
2017-07-01
The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.
Ryals, Anthony J.; Wang, Jane X.; Polnaszek, Kelly L.; Voss, Joel L.
2015-01-01
Although hippocampus unequivocally supports explicit/ declarative memory, fewer findings have demonstrated its role in implicit expressions of memory. We tested for hippocampal contributions to an implicit expression of configural/relational memory for complex scenes using eye-movement tracking during functional magnetic resonance imaging (fMRI) scanning. Participants studied scenes and were later tested using scenes that resembled study scenes in their overall feature configuration but comprised different elements. These configurally similar scenes were used to limit explicit memory, and were intermixed with new scenes that did not resemble studied scenes. Scene configuration memory was expressed through eye movements reflecting exploration overlap (EO), which is the viewing of the same scene locations at both study and test. EO reliably discriminated similar study-test scene pairs from study-new scene pairs, was reliably greater for similarity-based recognition hits than for misses, and correlated with hippocampal fMRI activity. In contrast, subjects could not reliably discriminate similar from new scenes by overt judgments, although ratings of familiarity were slightly higher for similar than new scenes. Hippocampal fMRI correlates of this weak explicit memory were distinct from EO-related activity. These findings collectively suggest that EO was an implicit expression of scene configuration memory associated with hippocampal activity. Visual exploration can therefore reflect implicit hippocampal-related memory processing that can be observed in eye-movement behavior during naturalistic scene viewing. PMID:25620526
NASA Astrophysics Data System (ADS)
Lanir, Assaf; Levi, Adam; Ori, Amos; Sela, Orr
2018-01-01
We derive explicit expressions for the two-point function of a massless scalar field in the interior region of a Reissner-Nordstrom black hole, in both the Unruh and the Hartle-Hawking quantum states. The two-point function is expressed in terms of the standard l m ω modes of the scalar field (those associated with a spherical harmonic Yl m and a temporal mode e-i ω t), which can be conveniently obtained by solving an ordinary differential equation, the radial equation. These explicit expressions are the internal analogs of the well-known results in the external region (originally derived by Christensen and Fulling), in which the two-point function outside the black hole is written in terms of the external l m ω modes of the field. They allow the computation of ⟨Φ2⟩ren and the renormalized stress-energy tensor inside the black hole, after the radial equation has been solved (usually numerically). In the second part of the paper, we provide an explicit expression for the trace of the renormalized stress-energy tensor of a minimally coupled massless scalar field (which is nonconformal), relating it to the d'Alembertian of ⟨Φ2⟩ren . This expression proves itself useful in various calculations of the renormalized stress-energy tensor.
Measuring Explicit Word Learning of Preschool Children: A Development Study.
Kelley, Elizabeth Spencer
2017-08-15
The purpose of this article is to present preliminary results related to the development of a new measure of explicit word learning. The measure incorporated elements of explicit vocabulary instruction and dynamic assessment and was designed to be sensitive to differences in word learning skill and to be feasible for use in clinical settings. The explicit word learning measure included brief teaching trials and repeated fine-grained measurement of semantic knowledge and production of 3 novel words (2 verbs and 1 adjective). Preschool children (N = 23) completed the measure of explicit word learning; standardized, norm-referenced measures of expressive and receptive vocabulary; and an incidental word learning task. The measure of explicit word learning provided meaningful information about word learning. Performance on the explicit measure was related to existing vocabulary knowledge and incidental word learning. Findings from this development study indicate that further examination of the measure of explicit word learning is warranted. The measure may have the potential to identify children who are poor word learners. https://doi.org/10.23641/asha.5170738.
Mathematical difficulties as decoupling of expectation and developmental trajectories
McLean, Janet F.; Rusconi, Elena
2014-01-01
Recent years have seen an increase in research articles and reviews exploring mathematical difficulties (MD). Many of these articles have set out to explain the etiology of the problems, the possibility of different subtypes, and potential brain regions that underlie many of the observable behaviors. These articles are very valuable in a research field, which many have noted, falls behind that of reading and language disabilities. Here will provide a perspective on the current understanding of MD from a different angle, by outlining the school curriculum of England and the US and connecting these to the skills needed at different stages of mathematical understanding. We will extend this to explore the cognitive skills which most likely underpin these different stages and whose impairment may thus lead to mathematics difficulties at all stages of mathematics development. To conclude we will briefly explore interventions that are currently available, indicating whether these can be used to aid the different children at different stages of their mathematical development and what their current limitations may be. The principal aim of this review is to establish an explicit connection between the academic discourse, with its research base and concepts, and the developmental trajectory of abstract mathematical skills that is expected (and somewhat dictated) in formal education. This will possibly help to highlight and make sense of the gap between the complexity of the MD range in real life and the state of its academic science. PMID:24567712
ERIC Educational Resources Information Center
Poletti, Michele
2016-01-01
The fifth edition of the "Diagnostic and Statistical Manual of Mental Disorders" grouped specific learning disabilities in the single diagnostic category of specific learning disorder (SLD), with specifiers for impairments in reading, written expression, and mathematics. This study aimed at investigating the intellectual profile,…
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
The effect of mathematical games on on-task behaviours in the primary classroom
NASA Astrophysics Data System (ADS)
Bragg, Leicha A.
2012-12-01
A challenge for primary classroom teachers is to maintain students' engagement with learning tasks while catering for their diverse needs, capabilities and interests. Multiple pedagogical approaches are employed to promote on-task behaviours in the mathematics classroom. There is a general assumption by educators that games ignite children's on-task behaviours, but there is little systemically researched empirical data to support this claim. This paper compares students' on-task behaviours during non-digital game-playing lessons compared with non-game-playing lessons. Six randomly selected grade 5 and 6 students (9-12 year olds) were observed during ten mathematics lessons. A total of 2,100 observations were recorded via an observational schedule and analysed by comparing the percentage of exhibited behaviours. The study found the children spent 93 % of the class-time exhibiting on-task engagement during the game-playing lessons compared with 72 % during the non-game-playing lessons. The game-playing lessons also promoted greater incidents of student talk related to the mathematical task (34 %) compared with the non-game-playing lessons (11 %). These results support the argument that games serve to increase students' time-on-task in mathematics lessons. Therefore, it is contended that use of games explicitly addressing the mathematical content being taught in a classroom is one way to increase engagement and, in turn, potential for learning.
Oscillations and stability of numerical solutions of the heat conduction equation
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Levi, E. V.
1976-01-01
The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.
Branch Input Resistance and Steady Attenuation for Input to One Branch of a Dendritic Neuron Model
Rall, Wilfrid; Rinzel, John
1973-01-01
Mathematical solutions and numerical illustrations are presented for the steady-state distribution of membrane potential in an extensively branched neuron model, when steady electric current is injected into only one dendritic branch. Explicit expressions are obtained for input resistance at the branch input site and for voltage attenuation from the input site to the soma; expressions for AC steady-state input impedance and attenuation are also presented. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. Numerical examples illustrate how branch input resistance and steady attenuation depend upon the following: the number of dendritic trees, the orders of dendritic branching, the electrotonic length of the dendritic trees, the location of the dendritic input site, and the input resistance at the soma. The application to cat spinal motoneurons, and to other neuron types, is discussed. The effect of a large dendritic input resistance upon the amount of local membrane depolarization at the synaptic site, and upon the amount of depolarization reaching the soma, is illustrated and discussed; simple proportionality with input resistance does not hold, in general. Also, branch input resistance is shown to exceed the input resistance at the soma by an amount that is always less than the sum of core resistances along the path from the input site to the soma. PMID:4715583
Exploring grade 3 teachers' resistance to `take up' progressive mathematics teaching roles
NASA Astrophysics Data System (ADS)
Westaway, Lise; Graven, Mellony
2018-03-01
This article addresses the question: Why teachers of mathematics have yet to `take up' progressive roles? Drawing on the philosophy of critical realism and its methodological equivalent, social realism, we analyse interview and observation data of four grade 3 teachers, with the view to identifying the mechanisms conditioning the expression of teachers' identities. In so doing, we show how post-apartheid changes in systemic roles of teachers create contradictory tensions for teachers as these bring their own mathematical learning and teaching experiences into contradiction with the new post-apartheid roles they are mandated to enact. We examine how this contradiction, together with beliefs about mathematics, pedagogy and learners, is expressed in the teaching of grade 3 mathematics. We maintain that the complementarity between teachers' beliefs and old systemic roles provides an explanation for why teachers of grade 3 mathematics have yet to `take-up' progressive roles. The implications point to the need for teacher development that creates enablers that lead to changes in classroom practices that align with policy-designated, progressive roles in teaching mathematics.
Searching for simplicity in the analysis of neurons and behavior
Stephens, Greg J.; Osborne, Leslie C.; Bialek, William
2011-01-01
What fascinates us about animal behavior is its richness and complexity, but understanding behavior and its neural basis requires a simpler description. Traditionally, simplification has been imposed by training animals to engage in a limited set of behaviors, by hand scoring behaviors into discrete classes, or by limiting the sensory experience of the organism. An alternative is to ask whether we can search through the dynamics of natural behaviors to find explicit evidence that these behaviors are simpler than they might have been. We review two mathematical approaches to simplification, dimensionality reduction and the maximum entropy method, and we draw on examples from different levels of biological organization, from the crawling behavior of Caenorhabditis elegans to the control of smooth pursuit eye movements in primates, and from the coding of natural scenes by networks of neurons in the retina to the rules of English spelling. In each case, we argue that the explicit search for simplicity uncovers new and unexpected features of the biological system and that the evidence for simplification gives us a language with which to phrase new questions for the next generation of experiments. The fact that similar mathematical structures succeed in taming the complexity of very different biological systems hints that there is something more general to be discovered. PMID:21383186
2018-01-01
We review key mathematical models of the South African human immunodeficiency virus (HIV) epidemic from the early 1990s onwards. In our descriptions, we sometimes differentiate between the concepts of a model world and its mathematical or computational implementation. The model world is the conceptual realm in which we explicitly declare the rules – usually some simplification of ‘real world’ processes as we understand them. Computing details of informative scenarios in these model worlds is a task requiring specialist knowledge, but all other aspects of the modelling process, from describing the model world to identifying the scenarios and interpreting model outputs, should be understandable to anyone with an interest in the epidemic. PMID:29568647
Dual methods and approximation concepts in structural synthesis
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.
The number of reduced alignments between two DNA sequences
2014-01-01
Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679
Exact models for isotropic matter
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
Integrating mean and variance heterogeneities to identify differentially expressed genes.
Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen
2016-12-06
In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment-wide significant MVDE genes. Our results indicate tremendous potential gain of integrating informative variance heterogeneity after adjusting for global confounders and background data structure. The proposed informative integration test better summarizes the impacts of condition change on expression distributions of susceptible genes than do the existent competitors. Therefore, particular attention should be paid to explicitly exploit the variance heterogeneity induced by condition change in functional genomics analysis.
Explicit asymmetric bounds for robust stability of continuous and discrete-time systems
NASA Technical Reports Server (NTRS)
Gao, Zhiqiang; Antsaklis, Panos J.
1993-01-01
The problem of robust stability in linear systems with parametric uncertainties is considered. Explicit stability bounds on uncertain parameters are derived and expressed in terms of linear inequalities for continuous systems, and inequalities with quadratic terms for discrete-times systems. Cases where system parameters are nonlinear functions of an uncertainty are also examined.
ERIC Educational Resources Information Center
Gheisari, Nouzar; Yousofi, Nouroldin
2016-01-01
The effectiveness of different teaching methods of collocational expressions in ESL/EFL contexts of education has been a point of debate for more than two decades, with some believing in explicit and the others in implicit instruction of collocations. In this regard, the present study aimed at finding about which kind of instruction is more…
The Great Mathematician Project
ERIC Educational Resources Information Center
Goldberg, Sabrina R.
2013-01-01
The Great Mathematician Project (GMP) introduces both mathematically sophisticated and struggling students to the history of mathematics. The rationale for the GMP is twofold: first, mathematics is a uniquely people-centered discipline that is used to make sense of the world; and second, students often express curiosity about the history of…
Structural analysis of online handwritten mathematical symbols based on support vector machines
NASA Astrophysics Data System (ADS)
Simistira, Foteini; Papavassiliou, Vassilis; Katsouros, Vassilis; Carayannis, George
2013-01-01
Mathematical expression recognition is still a very challenging task for the research community mainly because of the two-dimensional (2d) structure of mathematical expressions (MEs). In this paper, we present a novel approach for the structural analysis between two on-line handwritten mathematical symbols of a ME, based on spatial features of the symbols. We introduce six features to represent the spatial affinity of the symbols and compare two multi-class classification methods that employ support vector machines (SVMs): one based on the "one-against-one" technique and one based on the "one-against-all", in identifying the relation between a pair of symbols (i.e. subscript, numerator, etc). A dataset containing 1906 spatial relations derived from the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2012 training dataset is constructed to evaluate the classifiers and compare them with the rule-based classifier of the ILSP-1 system participated in the contest. The experimental results give an overall mean error rate of 2.61% for the "one-against-one" SVM approach, 6.57% for the "one-against-all" SVM technique and 12.31% error rate for the ILSP-1 classifier.
NASA Astrophysics Data System (ADS)
Dragan, Laurentiu; Watt, Stephen M.
Computer algebra in scientific computation squarely faces the dilemma of natural mathematical expression versus efficiency. While higher-order programming constructs and parametric polymorphism provide a natural and expressive language for mathematical abstractions, they can come at a considerable cost. We investigate how deeply nested type constructions may be optimized to achieve performance similar to that of hand-tuned code written in lower-level languages.
Explicitly represented polygon wall boundary model for the explicit MPS method
NASA Astrophysics Data System (ADS)
Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori
2015-05-01
This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.
War of Ontology Worlds: Mathematics, Computer Code, or Esperanto?
Rzhetsky, Andrey; Evans, James A.
2011-01-01
The use of structured knowledge representations—ontologies and terminologies—has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies. PMID:21980276
Optimization of inclusive fitness.
Grafen, Alan
2006-02-07
The first fully explicit argument is given that broadly supports a widespread belief among whole-organism biologists that natural selection tends to lead to organisms acting as if maximizing their inclusive fitness. The use of optimization programs permits a clear statement of what this belief should be understood to mean, in contradistinction to the common mathematical presumption that it should be formalized as some kind of Lyapunov or even potential function. The argument reveals new details and uncovers latent assumptions. A very general genetic architecture is allowed, and there is arbitrary uncertainty. However, frequency dependence of fitnesses is not permitted. The logic of inclusive fitness immediately draws together various kinds of intra-genomic conflict, and the concept of 'p-family' is introduced. Inclusive fitness is thus incorporated into the formal Darwinism project, which aims to link the mathematics of motion (difference and differential equations) used to describe gene frequency trajectories with the mathematics of optimization used to describe purpose and design. Important questions remain to be answered in the fundamental theory of inclusive fitness.
Zoonotic Transmission of Waterborne Disease: A Mathematical Model.
Waters, Edward K; Hamilton, Andrew J; Sidhu, Harvinder S; Sidhu, Leesa A; Dunbar, Michelle
2016-01-01
Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.
War of ontology worlds: mathematics, computer code, or Esperanto?
Rzhetsky, Andrey; Evans, James A
2011-09-01
The use of structured knowledge representations-ontologies and terminologies-has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies.
MONTO: A Machine-Readable Ontology for Teaching Word Problems in Mathematics
ERIC Educational Resources Information Center
Lalingkar, Aparna; Ramnathan, Chandrashekar; Ramani, Srinivasan
2015-01-01
The Indian National Curriculum Framework has as one of its objectives the development of mathematical thinking and problem solving ability. However, recent studies conducted in Indian metros have expressed concern about students' mathematics learning. Except in some private coaching academies, regular classroom teaching does not include problem…
ERIC Educational Resources Information Center
Carr, M.; Fidalgo, C.; Bigotte de Almeida, M. E.; Branco, J. R.; Santos, V.; Murphy, E.; Ní Fhloinn, E.
2015-01-01
Concern has been expressed throughout Europe about the significant deficiencies in the basic mathematical skills of many engineering undergraduates. Mathematics diagnostic tests in the UK, Ireland and Portugal have shown these shortcomings, which provide a challenge to those striving to introduce more innovative educational practices into…
Maths Games: A Universal Design Approach to Mathematical Reasoning
ERIC Educational Resources Information Center
Buchheister, Kelley; Jackson, Christa; Taylor, Cynthia E.
2017-01-01
Providing students with an opportunity to explore mathematical content through games allows teachers to include tasks that: (1) present alternative representations of the content; (2) welcome various expressions of mathematical reasoning; and (3) incorporate variations that empower all students to engage in the problem solving process. Games not…
Mathematical Abilities in Elementary School Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Titeca, Daisy; Roeyers, Herbert; Loeys, Tom; Ceulemans, Annelies; Desoete, Annemie
2015-01-01
Although clinical practitioners often express concerns about the mathematical functioning of children with autism spectrum disorder (ASD), the field of mathematics remains a relatively unexplored topic in individuals with ASD. Moreover, research findings are fragmentary and hold inconclusive results. The present study aimed to examine whether…
Emotion and Disaffection with School Mathematics
ERIC Educational Resources Information Center
Lewis, Gareth
2013-01-01
This paper reports some initial findings from research designed to understand more deeply the motivational and emotional landscape of disaffection with school mathematics. A context is described in which there has been significant concern expressed about a number of aspects of mathematics education, but where affect is seen as salient to these…
Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei
2016-01-01
Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the unconscious perception of peak facial expressions.
Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei
2016-01-01
Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the unconscious perception of peak facial expressions. PMID:27630604
Two-level schemes for the advection equation
NASA Astrophysics Data System (ADS)
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo
2013-01-01
Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982
Effect of composition gradient on magnetothermal instability modified by shear and rotation
NASA Astrophysics Data System (ADS)
Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar
2018-02-01
We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.
Linear Chord Diagrams with Long Chords
NASA Astrophysics Data System (ADS)
Sullivan, Everett
A linear chord diagram of size n is a partition of the first 2n integers into sets of size two. These diagrams appear in many different contexts in combinatorics and other areas of mathematics, particularly knot theory. We explore various constraints that produce diagrams which have no short chords. A number of patterns appear from the results of these constraints which we can prove using techniques ranging from explicit bijections to non-commutative algebra.
Higher Order Thinking in the Australian Army Suite of Logistic Officer Courses
2006-12-15
normal curriculum. They can target subject-specific learning such as science, mathematics, geography ; or they can be infused across the curriculum by...some form of didactic , explicit, or direct instruction. On the other hand, if the focus is on procedural knowledge, it is likely that modeling and...socialization and the teaching method of cooperative learning. Learning the process of critical thinking might be best facilitated by a combination of didactic
Chassin, Laurie; Presson, Clark C.
2013-01-01
Introduction: This study examined the association between implicit and explicit attitudes toward smoking and support for tobacco control policies. Methods: Participants were from an ongoing longitudinal study of the natural history of smoking who also completed a web-based assessment of implicit attitudes toward smoking (N = 1,337). Multiple regression was used to test the association between covariates (sex, age, educational attainment, parent status, and smoking status), implicit attitude toward smoking, and explicit attitude toward smoking and support for tobacco control policies. The moderating effect of the covariates on the relation between attitudes and support for policies was also tested. Results: Females, those with higher educational attainment, parents, and nonsmokers expressed more support for tobacco control policy measures. For nonsmokers, only explicit attitude was significantly associated with support for policies. For smokers, both explicit and implicit attitudes were significantly associated with support. The effect of explicit attitude was stronger for those with lower educational attainment. Conclusions: Both explicit and implicit smoking attitudes are important for building support for tobacco control policies, particularly among smokers. More research is needed on how to influence explicit and implicit attitudes to inform policy advocacy campaigns. PMID:22581941
Macy, Jonathan T; Chassin, Laurie; Presson, Clark C
2013-01-01
This study examined the association between implicit and explicit attitudes toward smoking and support for tobacco control policies. Participants were from an ongoing longitudinal study of the natural history of smoking who also completed a web-based assessment of implicit attitudes toward smoking (N = 1,337). Multiple regression was used to test the association between covariates (sex, age, educational attainment, parent status, and smoking status), implicit attitude toward smoking, and explicit attitude toward smoking and support for tobacco control policies. The moderating effect of the covariates on the relation between attitudes and support for policies was also tested. Females, those with higher educational attainment, parents, and nonsmokers expressed more support for tobacco control policy measures. For nonsmokers, only explicit attitude was significantly associated with support for policies. For smokers, both explicit and implicit attitudes were significantly associated with support. The effect of explicit attitude was stronger for those with lower educational attainment. Both explicit and implicit smoking attitudes are important for building support for tobacco control policies, particularly among smokers. More research is needed on how to influence explicit and implicit attitudes to inform policy advocacy campaigns.
NASA Astrophysics Data System (ADS)
Rinaldo, A.; Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.
2010-12-01
A recently proposed model for cholera epidemics is examined. The model accounts for local communities of susceptibles and infectives in a spatially explicit arrangement of nodes linked by networks having different topologies. The vehicle of infection (Vibrio cholerae) is transported through the network links which are thought of as hydrological connections among susceptible communities. The mathematical tools used are borrowed from general schemes of reactive transport on river networks acting as the environmental matrix for the circulation and mixing of water-borne pathogens. The results of a large-scale application to the Kwa Zulu (Natal) epidemics of 2001-2002 will be discussed. Useful theoretical results derived in the spatially-explicit context will also be reviewed (like e.g. the exact derivation of the speed of propagation for traveling fronts of epidemics on regular lattices endowed with uniform population density). Network effects will be discussed. The analysis of the limit case of uniformly distributed population density proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. To that extent, it is shown that the ratio between spreading and disease outbreak timescales proves the crucial parameter. The relevance of our results lies in the major differences potentially arising between the predictions of spatially explicit models and traditional compartmental models of the SIR-like type. Our results suggest that in many cases of real-life epidemiological interest timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of compartmental models. Finally, a view on further developments includes: hydrologically improved aquatic reservoir models for pathogens; human mobility patterns affecting disease propagation; double-peak emergence and seasonality in the spatially explicit epidemic context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, D.V.; Sawicki, M.
Using the Weinberg-Soper formalism we construct the front-form ([ital j],0)[direct sum](0,[ital j]) spinors. Explicit expressions for the generalized Melosh transformations up to spin two are obtained. The formalism, without explicitly invoking any wave equations, reproduces the spin-1/2 front-form results of Melosh, Lepage and Brodsky, and Dziembowski.
Emotion regulation and mania risk: Differential responses to implicit and explicit cues to regulate.
Ajaya, Yatrika; Peckham, Andrew D; Johnson, Sheri L
2016-03-01
People prone to mania use emotion regulation (ER) strategies well when explicitly coached to do so in laboratory settings, but they find these strategies ineffective in daily life. We hypothesized that, compared with control participants, mania-prone people would show ER deficits when they received implicit, but not explicit, cues to use ER. Undergraduates (N = 66) completed the Hypomanic Personality Scale (HPS) and were randomly assigned to one of three experimental conditions: automatic ER (scrambled sentence primes), deliberate ER (verbal instructions), or control (no priming or instructions to use ER). Then, participants played a videogame designed to evoke anger. Emotion responses were measured with a multi-modal assessment of self-reported affect, psychophysiology, and facial expressions. Respiratory sinus arrhythmia (RSA) was used to index ER. The videogame effectively elicited subjective anger, angry facial expressions, and heart rate increases when keys malfunctioned. As hypothesized, persons who were more mania prone showed greater RSA increases in the deliberate ER condition than in the automatic or control conditions. One potential limitation is the use of an analog sample. Findings suggest that those at risk for mania require more explicit instruction to engage ER effectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Ahmed, H. M.
2004-08-01
A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.
RF multicoupler design techniques to minimize problems of corona, multipaction, and stability
NASA Technical Reports Server (NTRS)
Hurley, H. S.; Kozakoff, D. J.
1971-01-01
A mathematical expression was derived describing multipacting and corona effects in a coaxial cavity. Both mechanical and electrical design techniques were investigated to minimize the susceptibility of coaxial cavity to corona and multipacting-type breakdown. To assist in the design of a multicoupler free from corona and multipactor breakdown, a flow chart obtained from the derived mathematical expression is included.
Learning to Express Gratitude in Mandarin Chinese through Web-Based Instruction
ERIC Educational Resources Information Center
Yang, Li
2016-01-01
This study explored the effectiveness of a self-access website as a tool to teach expressions of gratitude to learners of Mandarin Chinese. The web-based instruction included explicit instruction on how to express gratitude appropriately in Mandarin and various consciousness-raising exercises/activities. Two groups of learners who differed in…
Moments from Cumulants and Vice Versa
ERIC Educational Resources Information Center
Withers, Christopher S.; Nadarajah, Saralees
2009-01-01
Moments and cumulants are expressed in terms of each other using Bell polynomials. Inbuilt routines for the latter make these expressions amenable to use by algebraic manipulation programs. One of the four formulas given is an explicit version of Kendall's use of Faa di Bruno's chain rule to express cumulants in terms of moments.
Effects of task demands on the early neural processing of fearful and happy facial expressions
Itier, Roxane J.; Neath-Tavares, Karly N.
2017-01-01
Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200–350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150–350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. PMID:28315309
Precipitate shape fitting and reconstruction by means of 3D Zernike functions
NASA Astrophysics Data System (ADS)
Callahan, P. G.; De Graef, M.
2012-01-01
3D Zernike functions are defined and used for the reconstruction of precipitate shapes. These functions are orthogonal over the unit ball and allow for an arbitrary shape, scaled to fit inside an embedding sphere, to be decomposed into 3D harmonics. Explicit expressions are given for the general Zernike moments, correcting typographical errors in the literature. Explicit expressions of the Zernike moments for the ellipsoid and the cube are given. The 3D Zernike functions and moments are applied to the reconstruction of γ' precipitate shapes in two Ni-based superalloys, one with nearly cuboidal precipitate shapes, and one with more complex dendritic shapes.
Hew, Khe Foon; Tan, Cheng Yong
2016-01-01
The present study examined the predictors of information technology (IT) integration in secondary school mathematics lessons. The predictors pertained to IT resource availability in schools, school contextual/institutional variables, accountability pressure faced by schools, subject culture in mathematics, and mathematics teachers’ pedagogical beliefs and practices. Data from 32,256 secondary school students from 2,519 schools in 16 developed economies who participated in the Program for International Student Assessment (PISA) 2012 were analyzed using hierarchical linear modeling (HLM). Results showed that after controlling for student-level (gender, prior academic achievement and socioeconomic status) and school-level (class size, number of mathematics teachers) variables, students in schools with more computers per student, with more IT resources, with higher levels of IT curricular expectations, with an explicit policy on the use of IT in mathematics, whose teachers believed in student-centered teaching-learning, and whose teachers provided more problem-solving activities in class reported higher levels of IT integration. On the other hand, students who studied in schools with more positive teacher-related school learning climate, and with more academically demanding parents reported lower levels of IT integration. Student-related school learning climate, principal leadership behaviors, schools’ public posting of achievement data, tracking of school’s achievement data by administrative authorities, and pedagogical and curricular differentiation in mathematics lessons were not related to levels of IT integration. Put together, the predictors explained a total of 15.90% of the school-level variance in levels of IT integration. In particular, school IT resource availability, and mathematics teachers’ pedagogical beliefs and practices stood out as the most important determinants of IT integration in mathematics lessons. PMID:27997593
Hew, Khe Foon; Tan, Cheng Yong
2016-01-01
The present study examined the predictors of information technology (IT) integration in secondary school mathematics lessons. The predictors pertained to IT resource availability in schools, school contextual/institutional variables, accountability pressure faced by schools, subject culture in mathematics, and mathematics teachers' pedagogical beliefs and practices. Data from 32,256 secondary school students from 2,519 schools in 16 developed economies who participated in the Program for International Student Assessment (PISA) 2012 were analyzed using hierarchical linear modeling (HLM). Results showed that after controlling for student-level (gender, prior academic achievement and socioeconomic status) and school-level (class size, number of mathematics teachers) variables, students in schools with more computers per student, with more IT resources, with higher levels of IT curricular expectations, with an explicit policy on the use of IT in mathematics, whose teachers believed in student-centered teaching-learning, and whose teachers provided more problem-solving activities in class reported higher levels of IT integration. On the other hand, students who studied in schools with more positive teacher-related school learning climate, and with more academically demanding parents reported lower levels of IT integration. Student-related school learning climate, principal leadership behaviors, schools' public posting of achievement data, tracking of school's achievement data by administrative authorities, and pedagogical and curricular differentiation in mathematics lessons were not related to levels of IT integration. Put together, the predictors explained a total of 15.90% of the school-level variance in levels of IT integration. In particular, school IT resource availability, and mathematics teachers' pedagogical beliefs and practices stood out as the most important determinants of IT integration in mathematics lessons.
Science Education - Deja Vu Revised.
ERIC Educational Resources Information Center
Walsh, John
1982-01-01
Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)
Note-Taking in a Mathematics Classroom
ERIC Educational Resources Information Center
Hoong, Leong Yew; Guan, Tay Eng; Seng, Quek Khiok; Fwe, Yap Sook; Luen, Tong Cherng; Toh, Wei Yeng Karen; Chia, Alexander; Teck, Ong Yao
2014-01-01
The authors are a team of teachers and teacher educators who are deeply interested in helping mathematically-challenged students improve in their learning of mathematics. In Singapore, depending on their performance at the end of a nationwide Year 6 examination, students are channelled into three ability streams for Years 7 to 10: Express (60%),…
A Snowflake Project: Calculating, Analyzing, and Optimizing with the Koch Snowflake.
ERIC Educational Resources Information Center
Bolte, Linda A.
2002-01-01
Presents a project that addresses several components of the Algebra and Communication Standards for Grades 9-12 presented in Principles and Standards for School Mathematics (NCTM, 2000). Describes doing mathematical modeling and using the language of mathematics to express a recursive relationship in the perimeter and area of the Koch snowflake.…
ERIC Educational Resources Information Center
Bachman, Rachel Marie
2013-01-01
This study investigated the effectiveness of two remedial mathematics courses that aimed to (a) present topics conceptually, (b) construct adequate schemata, and (c) introduce students to the culture of mathematics. The topics covered during the two courses were word problems, equivalence, variables and expressions, equations and inequalities, and…
Promoting the Understanding of Mathematics in Physics at Secondary Level
ERIC Educational Resources Information Center
Thompson, Alaric
2016-01-01
This article explores some of the common mathematical difficulties that 11- to 16-year-old students experience with respect to their learning of physics. The definition of "understanding" expressed in the article is in the sense of transferability of mathematical skills from topic to topic within physics as well as between the separate…
Fifty Years of A-Level Mathematics: Have Standards Changed?
ERIC Educational Resources Information Center
Jones, Ian; Wheadon, Chris; Humphries, Sara; Inglis, Matthew
2016-01-01
Advanced-level (A-level) mathematics is a high-profile qualification taken by many school leavers in England, Wales, Northern Ireland and around the world as preparation for university study. Concern has been expressed in these countries that standards in A-level mathematics have declined over time, and that school leavers enter university or the…
Representations of the Extended Poincare Superalgebras in Four Dimensions
NASA Astrophysics Data System (ADS)
Griffis, John D.
Eugene Wigner used the Poincare group to induce representations from the fundamental internal space-time symmetries of (special) relativistic quantum particles. Wigner's students spent considerable amount of time translating passages of this paper into more detailed and accessible papers and books. In 1975, R. Haag et al. investigated the possible extensions of the symmetries of relativistic quantum particles. They showed that the only consistent (super)symmetric extensions to the standard model of physics are obtained by using super charges to generate the odd part of a Lie superalgebra whose even part is generated by the Poincare group; this theory has become known as supersymmetry. In this paper, R. Haag et al. used a notation called supermultiplets to give the dimension of a representation and its multiplicity; this notation is described mathematically in chapter 5 of this thesis. By 1980 S. Ferrara et al. began classifying the representations of these algebras for dimensions greater than four, and in 1986 Strathdee published considerable work listing some representations for the Poincare superalgebra in any finite dimension. This work has been continued to date. We found the work of S. Ferrara et al. to be essential to our understanding extended supersymmetries. However, this paper was written using imprecise language meant for physicists, so it was far from trivial to understand the mathematical interpretation of this work. In this thesis, we provide a "translation" of the previous results (along with some other literature on the Extended Poincare Superalgebras) into a rigorous mathematical setting, which makes the subject more accessible to a larger audience. Having a mathematical model allows us to give explicit results and detailed proofs. Further, this model allows us to see beyond just the physical interpretation and it allows investigation by a purely mathematically adept audience. Our work was motivated by a paper written in 2012 by M. Chaichian et al, which classified all of the unitary, irreducible representations of the extended Poincare superalgebra in three dimensions. We consider only the four dimensional case, which is of interest to physicists working on quantum supergravity models without cosmological constant, and we provide explicit branching rules for the invariant subgroups corresponding to the most physically relevant symmetries of the irreducible representations of the Extended Poincare Superalgebra in four dimensions. However, it is possible to further generalize this work into any finite dimension. Such work would classify all possible finitely extended supersymmetric models.
Method for exploiting bias in factor analysis using constrained alternating least squares algorithms
Keenan, Michael R.
2008-12-30
Bias plays an important role in factor analysis and is often implicitly made use of, for example, to constrain solutions to factors that conform to physical reality. However, when components are collinear, a large range of solutions may exist that satisfy the basic constraints and fit the data equally well. In such cases, the introduction of mathematical bias through the application of constraints may select solutions that are less than optimal. The biased alternating least squares algorithm of the present invention can offset mathematical bias introduced by constraints in the standard alternating least squares analysis to achieve factor solutions that are most consistent with physical reality. In addition, these methods can be used to explicitly exploit bias to provide alternative views and provide additional insights into spectral data sets.
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
NASA Astrophysics Data System (ADS)
Jia, Chen
2017-09-01
Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.
Joyce, Duncan; Parnell, William J; Assier, Raphaël C; Abrahams, I David
2017-05-01
In Parnell & Abrahams (2008 Proc. R. Soc. A 464 , 1461-1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme.
Joyce, Duncan
2017-01-01
In Parnell & Abrahams (2008 Proc. R. Soc. A 464, 1461–1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme. PMID:28588412
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Tan, H. Q.; Zhang, Y.
1993-01-01
The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models is addressed. To this end, special purpose functions (running under MACSYMA) are developed for the symbolic derivation, evaluation, and automatic FORTRAN code generation of explicit expressions for the corresponding stress function and material tangent stiffness tensors. These explicit forms are valid over the entire deformation range, since the singularities resulting from repeated principal-stretch values have been theoretically removed. The required computational algorithms are outlined, and the resulting FORTRAN computer code is presented.
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
Something to sink your teeth into: The presence of teeth augments ERPs to mouth expressions.
daSilva, Elizabeth B; Crager, Kirsten; Geisler, Danika; Newbern, Powell; Orem, Benjamin; Puce, Aina
2016-02-15
If the whites of the sclera can impact neural processing of eye expressions (Hardee, Thompson, & Puce, 2008; Whalen et al., 1998), do seen teeth affect neural responses to mouth expressions? Twenty participants (10 females; ages 22-31) viewed avatar mouth images depicting grimaces, smiles and open mouth expressions that were presented with and without teeth. A continuous 256 channel electroencephalogram (EEG) was recorded while subjects completed two tasks: an implicit task evaluating stimulus color and an explicit task evaluating mouth expression valence. Event related potential (ERP) peak amplitudes and latencies and area under the curve (AUC) were measured in individual subject averaged ERPs. Statistical testing revealed a main effect of the presence of Teeth for P100, N170, and vertex positive potential (VPP) amplitudes and for slow positive wave (SPW) AUC. Task by teeth interactions occurred for P250 amplitude, underscoring how explicit task demands can influence neural processing. Arousal ratings co-varied with teeth presence, suggesting that low-level visual features such as teeth may drive the saliency of emotional expressions, and lie at the core of differences in neural processing to different emotional expressions. Copyright © 2015 Elsevier Inc. All rights reserved.
A Primary Care Workload Production Model for Estimating Relative Value Unit Output
2011-03-01
for Medicare and Medicaid Services, Office of the Actuary , National Health Statistics Group; and U.S. Department of Commerce, Bureau of Economic...The systematic variation in a relationship can be represented by a mathematical expression, whereas stochastic variation cannot. Further, stochastic...expressed mathematically as an equation, whereby a response variable Y is fitted to a function of “regressor variables and parameters” (SAS©, 2010). A
Mathematical formula recognition using graph grammar
NASA Astrophysics Data System (ADS)
Lavirotte, Stephane; Pottier, Loic
1998-04-01
This paper describes current results of Ofr, a system for extracting and understanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use knowledge in scientific books which are not available in electronic form. We currently also study use of this system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing solutions for mathematical recognition have problems to analyze 2D expressions like vectors and matrices. This is because they often try to use extended classical grammar to analyze formulas, relatively to baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to recognize 2D mathematical notations. Graph grammar provide a powerful formalism to describe structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between rules of grammar and construction of graph.
Complex eigenvalue analysis of rotating structures
NASA Technical Reports Server (NTRS)
Patel, J. S.; Seltzer, S. M.
1972-01-01
A FORTRAN subroutine to NASTRAN which constructs coriolis and centripetal acceleration matrices, and a centrifugal load vector due to spin about a selected point or about the mass center of the structure is discussed. The rigid translational degrees of freedom can be removed by using a transformation matrix T and its explicitly given inverse. These matrices are generated in the subroutine and their explicit expressions are given.
ERIC Educational Resources Information Center
Cena, Johanna; Baker, Doris Luft; Kame'enui, Edward J.; Baker, Scott K.; Park, Yonghan; Smolkowski, Keith
2013-01-01
This study examined the impact of a 15-min daily explicit vocabulary intervention in Spanish on expressive and receptive vocabulary knowledge and oral reading fluency in Spanish, and on language proficiency in English. Fifty Spanish-speaking English learners who received 90 min of Spanish reading instruction in an early transition model were…
ERIC Educational Resources Information Center
Klapwijk, Eduard T.; Aghajani, Moji; Lelieveld, Gert-Jan; van Lang, Natasja D. J.; Popma, Arne; van der Wee, Nic J. A.; Colins, Olivier F.; Vermeiren, Robert R. J. M.
2017-01-01
Little is known about how emotions expressed by others influence social decisions and associated brain responses in autism spectrum disorders (ASD). We investigated the neural mechanisms underlying fairness decisions in response to explicitly expressed emotions of others in boys with ASD and typically developing (TD) boys. Participants with ASD…
White and Black American Children’s Implicit Intergroup Bias
Newheiser, Anna-Kaisa; Olson, Kristina R.
2011-01-01
Despite a decline in explicit prejudice, adults and children from majority groups (e.g., White Americans) often express bias implicitly, as assessed by the Implicit Association Test. In contrast, minority-group (e.g., Black American) adults on average show no bias on the IAT. In the present research, representing the first empirical investigation of whether Black children’s IAT responses parallel those of Black adults, we examined implicit bias in 7–11-year-old White and Black American children. Replicating previous findings with adults, whereas White children showed a robust ingroup bias, Black children showed no bias. Additionally, we investigated the role of valuing status in the development of implicit bias. For Black children, explicit preference for high status predicted implicit outgroup bias: Black children who explicitly expressed high preference for rich (vs. poor) people showed an implicit preference for Whites comparable in magnitude to White children’s ingroup bias. Implications for research on intergroup bias are discussed. PMID:22184478
ERIC Educational Resources Information Center
Siivonen, Päivi
2013-01-01
The article focuses on the social differences of educability constructed in Finnish general upper secondary school adult graduates' narratives on mathematics. Social class, gender, and age intertwine in the narratives that express the adult students' worries about their ability and competence to study and learn mathematics. Social differences of…
Exploring international gender differences in mathematics self-concept
Goldman, Amy D.; Penner, Andrew M.
2013-01-01
This study provides an international perspective on mathematics by examnnng mathematics self-concept, achievement, and the desire to enter a career involving mathematics among eighth graders in 49 countries. Using data from the Trends in International Mathematics and Science Study, this study shows that self-concept in mathematics is more closely related to the desire to enter a career using mathematics than achievement is. Further, while gender differences in mathematics self-concept are smaller in more egalitarian countries, both girls and boys have lower mathematics self-concepts and less interest in mathematics careers in these countries. These findings reveal a policy paradox: policies aimed at training the next generation of STEM professionals often highlight the need to close the gender gap, but countries with smaller gender gaps have fewer boys and girls interested in mathematics-intensive careers. We conclude by highlighting the importance of disentangling instrumental and expressive aspects of gender inequality in STEM fields. PMID:27840545
Time course of implicit processing and explicit processing of emotional faces and emotional words.
Frühholz, Sascha; Jellinghaus, Anne; Herrmann, Manfred
2011-05-01
Facial expressions are important emotional stimuli during social interactions. Symbolic emotional cues, such as affective words, also convey information regarding emotions that is relevant for social communication. Various studies have demonstrated fast decoding of emotions from words, as was shown for faces, whereas others report a rather delayed decoding of information about emotions from words. Here, we introduced an implicit (color naming) and explicit task (emotion judgment) with facial expressions and words, both containing information about emotions, to directly compare the time course of emotion processing using event-related potentials (ERP). The data show that only negative faces affected task performance, resulting in increased error rates compared to neutral faces. Presentation of emotional faces resulted in a modulation of the N170, the EPN and the LPP components and these modulations were found during both the explicit and implicit tasks. Emotional words only affected the EPN during the explicit task, but a task-independent effect on the LPP was revealed. Finally, emotional faces modulated source activity in the extrastriate cortex underlying the generation of the N170, EPN and LPP components. Emotional words led to a modulation of source activity corresponding to the EPN and LPP, but they also affected the N170 source on the right hemisphere. These data show that facial expressions affect earlier stages of emotion processing compared to emotional words, but the emotional value of words may have been detected at early stages of emotional processing in the visual cortex, as was indicated by the extrastriate source activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Verbs and attention to relational roles in English and Tamil*
SETHURAMAN, NITYA; SMITH, LINDA B.
2013-01-01
English-learning children have been shown to reliably use cues from argument structure in learning verbs. However, languages pair overtly expressed arguments with verbs to varying extents, raising the question of whether children learning all languages expect the same, universal mapping between arguments and relational roles. Three experiments examined this question by asking how strongly early-learned verbs by themselves, without their corresponding explicitly expressed arguments, point to ‘conceptual arguments’ – the relational roles in a scene. Children aged two to four years and adult speakers of two languages that differ structurally in terms of whether the arguments of a verb are explicitly expressed more (English) or less (Tamil) frequently were compared in their mapping of verbs, presented without any overtly expressed arguments, to a range of scenes. The results suggest different developmental trajectories for language learners, as well as different patterns of adult interpretation, and offer new ways of thinking about the nature of verbs cross-linguistically. PMID:22289295
Grin and bear it: the influence of manipulated facial expression on the stress response.
Kraft, Tara L; Pressman, Sarah D
2012-01-01
In the study reported here, we investigated whether covertly manipulating positive facial expressions would influence cardiovascular and affective responses to stress. Participants (N = 170) naive to the purpose of the study completed two different stressful tasks while holding chopsticks in their mouths in a manner that produced a Duchenne smile, a standard smile, or a neutral expression. Awareness was manipulated by explicitly asking half of all participants in the smiling groups to smile (and giving the other half no instructions related to smiling). Findings revealed that all smiling participants, regardless of whether they were aware of smiling, had lower heart rates during stress recovery than the neutral group did, with a slight advantage for those with Duchenne smiles. Participants in the smiling groups who were not explicitly asked to smile reported less of a decrease in positive affect during a stressful task than did the neutral group. These findings show that there are both physiological and psychological benefits from maintaining positive facial expressions during stress.
Wesseling, Patricia B. C.; Christmann, Corinna A.; Lachmann, Thomas
2017-01-01
Effects of shared book reading on expressive vocabulary and grapheme awareness without letter instruction in German kindergarteners (longitudinal; N = 69, 3;0–4;8 years) were investigated. Expressive vocabulary was measured by using a standardized test; grapheme awareness was measured by asking children to identify one grapheme per trial presented amongst non-letter distractors. Two methods of shared book reading were investigated, literacy enrichment (additional books) and teacher training in shared book reading strategies, both without explicit letter instruction. Whereas positive effects of shared book reading on expressive vocabulary were evident in numerous previous studies, the impact of shared book reading on grapheme awareness has not yet been investigated. Both methods resulted in positive effects on children’s expressive vocabulary and grapheme awareness over a period of 6 months. Thus, early shared book reading may not only be considered to be a tool for promoting the development of expressive vocabulary, but also for implicit acquisition of grapheme awareness. The latter is considered an important precondition required for the explicit learning of grapheme–phoneme conversion rules (letter knowledge). PMID:28377732
Wesseling, Patricia B C; Christmann, Corinna A; Lachmann, Thomas
2017-01-01
Effects of shared book reading on expressive vocabulary and grapheme awareness without letter instruction in German kindergarteners (longitudinal; N = 69, 3;0-4;8 years) were investigated. Expressive vocabulary was measured by using a standardized test; grapheme awareness was measured by asking children to identify one grapheme per trial presented amongst non-letter distractors. Two methods of shared book reading were investigated, literacy enrichment (additional books) and teacher training in shared book reading strategies, both without explicit letter instruction. Whereas positive effects of shared book reading on expressive vocabulary were evident in numerous previous studies, the impact of shared book reading on grapheme awareness has not yet been investigated. Both methods resulted in positive effects on children's expressive vocabulary and grapheme awareness over a period of 6 months. Thus, early shared book reading may not only be considered to be a tool for promoting the development of expressive vocabulary, but also for implicit acquisition of grapheme awareness. The latter is considered an important precondition required for the explicit learning of grapheme-phoneme conversion rules (letter knowledge).
Methods for Quantum Circuit Design and Simulation
2010-03-01
cannot be deter- mined given the one output. Reversible gates, expressed mathematically, are unitary matrices. 16 3.3.1 PAULI Gates/Matrices Three...common single-qubit gates are expressed mathematically as Pauli matrices, which are 2x2 matrices. A 2x2 quantum gate can be applied to a single quantum...bit (a 2x1 column vector). The Pauli matrices are expressed as follows: X = 0 1 1 0 Y = 0 −i i 0 Z = 1 0 0 −1 (3.10) where i
NASA Astrophysics Data System (ADS)
Toledo-Suárez, Carlos D.
It is proposed a way of increasing the cardinality of an alphabet used to write rules in a learning classifier system that extends the idea of relational schemata. Theoretical justifications regarding the possible reduction in the amount of rules for the solution of problems such extended alphabets (st-alphabets) imply are shown. It is shown that when expressed as bipolar neural networks, the matching process of rules over st-alphabets strongly resembles a gene expression mechanism applied to a system over {0,1,#}. In spite of the apparent drawbacks the explicit use of such relational alphabets would imply, their successful implementation in an information gain based classifier system (IGCS) is presented.
Simple analytical relations for ship bow waves
NASA Astrophysics Data System (ADS)
Noblesse, Francis; Delhommeau, G.?Rard; Guilbaud, Michel; Hendrix, Dane; Yang, Chi
Simple analytical relations for the bow wave generated by a ship in steady motion are given. Specifically, simple expressions that define the height of a ship bow wave, the distance between the ship stem and the crest of the bow wave, the rise of water at the stem, and the bow wave profile, explicitly and without calculations, in terms of the ship speed, draught, and waterline entrance angle, are given. Another result is a simple criterion that predicts, also directly and without calculations, when a ship in steady motion cannot generate a steady bow wave. This unsteady-flow criterion predicts that a ship with a sufficiently fine waterline, specifically with waterline entrance angle 2, may generate a steady bow wave at any speed. However, a ship with a fuller waterline (25E) can only generate a steady bow wave if the ship speed is higher than a critical speed, defined in terms of αE by a simple relation. No alternative criterion for predicting when a ship in steady motion does not generate a steady bow wave appears to exist. A simple expression for the height of an unsteady ship bow wave is also given. In spite of their remarkable simplicity, the relations for ship bow waves obtained in the study (using only rudimentary physical and mathematical considerations) are consistent with experimental measurements for a number of hull forms having non-bulbous wedge-shaped bows with small flare angle, and with the authors' measurements and observations for a rectangular flat plate towed at a yaw angle.
Can hydro-economic river basin models simulate water shadow prices under asymmetric access?
Kuhn, A; Britz, W
2012-01-01
Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit 'aggregate optimization' problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous 'independent optimization' decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.
Fuzzy logic based robotic controller
NASA Technical Reports Server (NTRS)
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, M.R.; Cerda, J.
1998-06-01
A mathematical representation of a heat-exchanger network structure that explicitly accounts for the relative location of heat-transfer units, splitters, and mixers is presented. It is the basis of a mixed-integer linear programming sequential approach to the synthesis of heat-exchanger networks that allows the designer to specify beforehand some desired topology features as further design targets. Such structural information stands for additional problem data to be considered in the problem formulation, thus enhancing the involvement of the design engineer in the synthesis task. The topology constraints are expressed in terms of (1) the equipment items (heat exchangers, splitters, and mixers) thatmore » could be incorporated into the network, (2) the feasible neighbors for every potential unit, and (3) the heat matches, if any, with which a heat exchanger can be accomplished in parallel over any process stream. Moreover, the number and types of splitters being arranged over either a particular stream or the whole network can also be restrained. The new approach has been successfully applied to the solution of five example problems at each of which a wide variety of structural design restrictions were specified.« less
A study of the displacement of a Wankel rotary engine
NASA Astrophysics Data System (ADS)
Beard, J. E.; Pennock, G. R.
1993-03-01
The volumetric displacement of a Wankel rotary engine is a function of the trochoid ratio and the pin size ratio, assuming the engine has a unit depth and the number of lobes is specified. The mathematical expression which defines the displacement contains a function which can be evaluated directly and a normal elliptic integral of the second type which does not have an explicit solution. This paper focuses on the contribution of the elliptic integral to the total displacement of the engine. The influence of the elliptic integral is shown to account for as much as 20 percent of the total displacement, depending on the trochoid ratio and the pin size ratio. Two numerical integration techniques are compared in the paper, namely, the trapezoidal rule and Simpson's 1/3 rule. The bounds on the error, associated with each numerical method, are analyzed. The results indicate that the numerical method has a minimal effect on the accuracy of the calculated displacement for a practical number of integration steps. The paper also evaluates the influence of manufacturing tolerances on the calculated displacement and the actual displacement. Finally. a numerical example of the common three-lobed Wankel rotary engine is included for illustrative purposes.
Fault-tolerant conversion between adjacent Reed-Muller quantum codes based on gauge fixing
NASA Astrophysics Data System (ADS)
Quan, Dong-Xiao; Zhu, Li-Li; Pei, Chang-Xing; Sanders, Barry C.
2018-03-01
We design forward and backward fault-tolerant conversion circuits, which convert between the Steane code and the 15-qubit Reed-Muller quantum code so as to provide a universal transversal gate set. In our method, only seven out of a total 14 code stabilizers need to be measured, and we further enhance the circuit by simplifying some stabilizers; thus, we need only to measure eight weight-4 stabilizers for one round of forward conversion and seven weight-4 stabilizers for one round of backward conversion. For conversion, we treat random single-qubit errors and their influence on syndromes of gauge operators, and our novel single-step process enables more efficient fault-tolerant conversion between these two codes. We make our method quite general by showing how to convert between any two adjacent Reed-Muller quantum codes \\overline{\\textsf{RM}}(1,m) and \\overline{\\textsf{RM}}≤ft(1,m+1\\right) , for which we need only measure stabilizers whose number scales linearly with m rather than exponentially with m obtained in previous work. We provide the explicit mathematical expression for the necessary stabilizers and the concomitant resources required.
Directly Measuring the Degree of Quantum Coherence using Interference Fringes
NASA Astrophysics Data System (ADS)
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-01
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
Directly Measuring the Degree of Quantum Coherence using Interference Fringes.
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-13
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
Zsoldos, Isabella; Cousin, Emilie; Klein-Koerkamp, Yanica; Pichat, Cédric; Hot, Pascal
2016-11-01
Age-related differences in neural correlates underlying implicit and explicit emotion processing are unclear. Within the framework of the Frontoamygdalar Age-related Differences in Emotion model (St Jacques et al., 2009), our objectives were to examine the behavioral and neural modifications that occur with age for both processes. During explicit and implicit processing of fearful faces, we expected to observe less amygdala activity in older adults (OA) than in younger adults (YA), associated with poorer recognition performance in the explicit task, and more frontal activity during implicit processing, suggesting compensation. At a behavioral level, explicit recognition of fearful faces was impaired in OA compared with YA. We did not observe any cerebral differences between OA and YA during the implicit task, whereas in the explicit task, OA recruited more frontal, parietal, temporal, occipital, and cingulate areas. Our findings suggest that automatic processing of emotion may be preserved during aging, whereas deliberate processing is impaired. Additional neural recruitment in OA did not appear to compensate for their behavioral deficits. Copyright © 2016 Elsevier B.V. All rights reserved.
Goličnik, Marko
2011-06-01
Many pharmacodynamic processes can be described by the nonlinear saturation kinetics that are most frequently based on the hyperbolic Michaelis-Menten equation. Thus, various time-dependent solutions for drugs obeying such kinetics can be expressed in terms of the Lambert W(x)-omega function. However, unfortunately, computer programs that can perform the calculations for W(x) are not widely available. To avoid this problem, the replacement of the integrated Michaelis-Menten equation with an empiric integrated 1--exp alternative model equation was proposed recently by Keller et al. (Ther Drug Monit. 2009;31:783-785), although, as shown here, it was not necessary. Simulated concentrations of model drugs obeying Michaelis-Menten elimination kinetics were generated by two approaches: 1) calculation of time-course data based on an approximation equation W2*(x) performed using Microsoft Excel; and 2) calculation of reference time-course data based on an exact W(x) function built in to the Wolfram Mathematica. I show here that the W2*(x) function approximates the actual W(x) accurately. W2*(x) is expressed in terms of elementary mathematical functions and, consequently, it can be easily implemented using any of the widely available software. Hence, with the example of a hypothetical drug, I demonstrate here that an equation based on this approximation is far better, because it is nearly equivalent to the original solution, whereas the same characteristics cannot be fully confirmed for the 1--exp model equation. The W2*(x) equation proposed here might have an important role as a useful shortcut in optional software to estimate kinetic parameters from experimental data for drugs, and it might represent an easy and universal analytical tool for simulating and designing dosing regimens.
NASA Astrophysics Data System (ADS)
Ligomenides, Panos A.
2009-05-01
The power of mathematics is discussed as a way of expressing reasoning, aesthetics and insight in symbolic non-verbal communication. The human culture of discovering mathematical ways of thinking in the enterprise of exploring the understanding of the nature and the evolution of our world through hypotheses, theories and experimental affirmation of the scientific notion of algorithmic and non-algorithmic [`]computation', is examined and commended upon.
ERIC Educational Resources Information Center
Titus, Freddie
2010-01-01
Fifty percent of college-bound students graduate from high school underprepared for mathematics at the post-secondary level. As a result, thirty-five percent of college students take developmental mathematics courses. What is even more shocking is the high failure rate (ranging from 35 to 42 percent) of students enrolled in developmental…
Effects of task demands on the early neural processing of fearful and happy facial expressions.
Itier, Roxane J; Neath-Tavares, Karly N
2017-05-15
Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.
Greenwood, J. Arthur; Landwehr, J. Maciunas; Matalas, N.C.; Wallis, J.R.
1979-01-01
Distributions whose inverse forms are explicitly defined, such as Tukey's lambda, may present problems in deriving their parameters by more conventional means. Probability weighted moments are introduced and shown to be potentially useful in expressing the parameters of these distributions.
Computational plasticity algorithm for particle dynamics simulations
NASA Astrophysics Data System (ADS)
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2018-01-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup
2017-06-01
This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.
A solution to the surface intersection problem. [Boolean functions in geometric modeling
NASA Technical Reports Server (NTRS)
Timer, H. G.
1977-01-01
An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.
NASA Astrophysics Data System (ADS)
López Pouso, Rodrigo; Márquez Albés, Ignacio
2018-04-01
Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.
Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.
Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E
2017-07-01
We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.
Song, Yun S; Steinrücken, Matthias
2012-03-01
The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.
Song, Yun S.; Steinrücken, Matthias
2012-01-01
The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899
Mutaf Yıldız, Belde; Sasanguie, Delphine; De Smedt, Bert; Reynvoet, Bert
2018-01-01
Home numeracy has been shown to play an important role in children's mathematical performance. However, findings are inconsistent as to which home numeracy activities are related to which mathematical skills. The present study disentangled between various mathematical abilities that were previously masked by the use of composite scores of mathematical achievement. Our aim was to shed light on the specific associations between home numeracy and various mathematical abilities. The relationships between kindergartners' home numeracy activities, their basic number processing and calculation skills were investigated. Participants were 128 kindergartners ( M age = 5.43 years, SD = 0.29, range: 4.88-6.02 years) and their parents. The children completed non-symbolic and symbolic comparison tasks, non-symbolic and symbolic number line estimation tasks, mapping tasks (enumeration and connecting), and two calculation tasks. Their parents completed a home numeracy questionnaire. Results indicated small but significant associations between formal home numeracy activities that involved more explicit teaching efforts (i.e., identifying numerals, counting) and children's enumeration skills. There was no correlation between formal home numeracy activities and non-symbolic number processing. Informal home numeracy activities that involved more implicit teaching attempts , such as "playing games" and "using numbers in daily life," were (weakly) correlated with calculation and symbolic number line estimation, respectively. The present findings suggest that disentangling between various basic number processing and calculation skills in children might unravel specific relations with both formal and informal home numeracy activities. This might explain earlier reported contradictory findings on the association between home numeracy and mathematical abilities.
Mutaf Yıldız, Belde; Sasanguie, Delphine; De Smedt, Bert; Reynvoet, Bert
2018-01-01
Home numeracy has been shown to play an important role in children’s mathematical performance. However, findings are inconsistent as to which home numeracy activities are related to which mathematical skills. The present study disentangled between various mathematical abilities that were previously masked by the use of composite scores of mathematical achievement. Our aim was to shed light on the specific associations between home numeracy and various mathematical abilities. The relationships between kindergartners’ home numeracy activities, their basic number processing and calculation skills were investigated. Participants were 128 kindergartners (Mage = 5.43 years, SD = 0.29, range: 4.88–6.02 years) and their parents. The children completed non-symbolic and symbolic comparison tasks, non-symbolic and symbolic number line estimation tasks, mapping tasks (enumeration and connecting), and two calculation tasks. Their parents completed a home numeracy questionnaire. Results indicated small but significant associations between formal home numeracy activities that involved more explicit teaching efforts (i.e., identifying numerals, counting) and children’s enumeration skills. There was no correlation between formal home numeracy activities and non-symbolic number processing. Informal home numeracy activities that involved more implicit teaching attempts, such as “playing games” and “using numbers in daily life,” were (weakly) correlated with calculation and symbolic number line estimation, respectively. The present findings suggest that disentangling between various basic number processing and calculation skills in children might unravel specific relations with both formal and informal home numeracy activities. This might explain earlier reported contradictory findings on the association between home numeracy and mathematical abilities. PMID:29623055
Twelve years before the quantum no-cloning theorem
NASA Astrophysics Data System (ADS)
Ortigoso, Juan
2018-03-01
The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.
A new design approach to MMI-based (de)multiplexers
NASA Astrophysics Data System (ADS)
Yueyu, Xiao; Sailing, He
2004-09-01
A novel design method of the wavelength (de)multiplexer is presented. The output spectral response of a (de)multiplexer is designed from the view of FIR filters. Avoiding laborious mathematic analysis, the (de)multiplexer is analyzed and designed in this explicit and simple method. A four channel (de)multiplexer based on multimode interference (MMI) is designed as an example. The result obtained agrees with that of the commonly used method, and is verified by a finite difference beam propagation method (FDBPM) simulation.
Informations in Models of Evolutionary Dynamics
NASA Astrophysics Data System (ADS)
Rivoire, Olivier
2016-03-01
Biological organisms adapt to changes by processing informations from different sources, most notably from their ancestors and from their environment. We review an approach to quantify these informations by analyzing mathematical models of evolutionary dynamics and show how explicit results are obtained for a solvable subclass of these models. In several limits, the results coincide with those obtained in studies of information processing for communication, gambling or thermodynamics. In the most general case, however, information processing by biological populations shows unique features that motivate the analysis of specific models.
Heart Fibrillation and Parallel Supercomputers
NASA Technical Reports Server (NTRS)
Kogan, B. Y.; Karplus, W. J.; Chudin, E. E.
1997-01-01
The Luo and Rudy 3 cardiac cell mathematical model is implemented on the parallel supercomputer CRAY - T3D. The splitting algorithm combined with variable time step and an explicit method of integration provide reasonable solution times and almost perfect scaling for rectilinear wave propagation. The computer simulation makes it possible to observe new phenomena: the break-up of spiral waves caused by intracellular calcium and dynamics and the non-uniformity of the calcium distribution in space during the onset of the spiral wave.
Global conservation model for a mushy region over a moving substrate
NASA Astrophysics Data System (ADS)
Kyselica, J.; Šimkanin, J.
2018-03-01
We study solidification over a cool substrate moving with a relative velocity with respect to the rest of the fluid. A mathematical model based on global conservation of solute is presented. The explicit solutions of the governing equations are found and analysed via the asymptotic methods. The assessment of how the boundary-layer flow influences the physical characteristics of the mushy region is given, together with the discussion of a possible connection with the solidification at the inner core boundary.
NASA Astrophysics Data System (ADS)
Zharinov, V. V.
2013-02-01
We propose a formal construction generalizing the classic de Rham complex to a wide class of models in mathematical physics and analysis. The presentation is divided into a sequence of definitions and elementary, easily verified statements; proofs are therefore given only in the key case. Linear operations are everywhere performed over a fixed number field {F} = {R},{C}. All linear spaces, algebras, and modules, although not stipulated explicitly, are by definition or by construction endowed with natural locally convex topologies, and their morphisms are continuous.
NASA Astrophysics Data System (ADS)
Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew
2013-06-01
Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.
Maras, Katie; Gamble, Tim; Brosnan, Mark
2017-10-01
Previous research suggests impaired metacognitive monitoring and mathematics under-achievement in autism spectrum disorder. Within educational settings, metacognitive monitoring is supported through the provision of feedback (e.g. with goal reminders and by explicitly correcting errors). Given the strength of the relationship between metacognition, learning and educational attainment, this research tested new computer-based metacognitive support (the 'Maths Challenge') for mathematics learners with autism spectrum disorder within the context of their classroom. The Maths Challenge required learners to engage in metacognitive monitoring before and after answering each question (e.g. intentions and judgements of accuracy) and negotiate with the system the level of difficulty. Forty secondary school children with autism spectrum disorder and 95 typically developing learners completed the Maths Challenge in either a Feedback condition, with metacognitive monitoring support regarding the accuracy of their answers, goal reminders and strategy support, or with No Feedback. Contrary to previous findings, learners with autism showed an undiminished ability to detect errors. They did, however, demonstrate reduced cohesion between their pre- and post-test intentions. Crucially, support from the Feedback condition significantly improved task performance for both groups. Findings highlight important implications for educational interventions regarding the provision of metacognitive support for learners with autism to ameliorate under-performance in mathematics within the classroom.
New method for calculating a mathematical expression for streamflow recession
Rutledge, Albert T.
1991-01-01
An empirical method has been devised to calculate the master recession curve, which is a mathematical expression for streamflow recession during times of negligible direct runoff. The method is based on the assumption that the storage-delay factor, which is the time per log cycle of streamflow recession, varies linearly with the logarithm of streamflow. The resulting master recession curve can be nonlinear. The method can be executed by a computer program that reads a data file of daily mean streamflow, then allows the user to select several near-linear segments of streamflow recession. The storage-delay factor for each segment is one of the coefficients of the equation that results from linear least-squares regression. Using results for each recession segment, a mathematical expression of the storage-delay factor as a function of the log of streamflow is determined by linear least-squares regression. The master recession curve, which is a second-order polynomial expression for time as a function of log of streamflow, is then derived using the coefficients of this function.
Wang, A Ting; Lee, Susan S; Sigman, Marian; Dapretto, Mirella
2007-06-01
Understanding a speaker's communicative intent in everyday interactions is likely to draw on cues such as facial expression and tone of voice. Prior research has shown that individuals with autism spectrum disorders (ASD) show reduced activity in brain regions that respond selectively to the face and voice. However, there is also evidence that activity in key regions can be increased if task demands allow for explicit processing of emotion. To examine the neural circuitry underlying impairments in interpreting communicative intentions in ASD using irony comprehension as a test case, and to determine whether explicit instructions to attend to facial expression and tone of voice will elicit more normative patterns of brain activity. Eighteen boys with ASD (aged 7-17 years, full-scale IQ >70) and 18 typically developing (TD) boys underwent functional magnetic resonance imaging at the Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles. Blood oxygenation level-dependent brain activity during the presentation of short scenarios involving irony. Behavioral performance (accuracy and response time) was also recorded. Reduced activity in the medial prefrontal cortex and right superior temporal gyrus was observed in children with ASD relative to TD children during the perception of potentially ironic vs control scenarios. Importantly, a significant group x condition interaction in the medial prefrontal cortex showed that activity was modulated by explicit instructions to attend to facial expression and tone of voice only in the ASD group. Finally, medial prefrontal cortex activity was inversely related to symptom severity in children with ASD such that children with greater social impairment showed less activity in this region. Explicit instructions to attend to facial expression and tone of voice can elicit increased activity in the medial prefrontal cortex, part of a network important for understanding the intentions of others, in children with ASD. These findings suggest a strategy for future intervention research.
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2014-05-01
Model Integration System (MIST) is open-source environmental modelling programming language that directly incorporates data parallelism. The language is designed to enable straightforward programming structures, such as nested loops and conditional statements to be directly translated into sequences of whole-array (or more generally whole data-structure) operations. MIST thus enables the programmer to use well-understood constructs, directly relating to the mathematical structure of the model, without having to explicitly vectorize code or worry about details of parallelization. A range of common modelling operations are supported by dedicated language structures operating on cell neighbourhoods rather than individual cells (e.g.: the 3x3 local neighbourhood needed to implement an averaging image filter can be simply accessed from within a simple loop traversing all image pixels). This facility hides details of inter-process communication behind more mathematically relevant descriptions of model dynamics. The MIST automatic vectorization/parallelization process serves both to distribute work among available nodes and separately to control storage requirements for intermediate expressions - enabling operations on very large domains for which memory availability may be an issue. MIST is designed to facilitate efficient interpreter based implementations. A prototype open source interpreter is available, coded in standard FORTRAN 95, with tools to rapidly integrate existing FORTRAN 77 or 95 code libraries. The language is formally specified and thus not limited to FORTRAN implementation or to an interpreter-based approach. A MIST to FORTRAN compiler is under development and volunteers are sought to create an ANSI-C implementation. Parallel processing is currently implemented using OpenMP. However, parallelization code is fully modularised and could be replaced with implementations using other libraries. GPU implementation is potentially possible.
ERIC Educational Resources Information Center
Hashimoto, Anne Yue
A preliminary study of the syntactic characteristics of the imperative construction in modern Chinese is presented. The term "imperative" is used to refer to the type of syntactic construction which is marked by an implicit or explicit second person subject, and which expresses a direct command. Indirect or implied commands expressed by a…
ERIC Educational Resources Information Center
Diaz, Jennifer DeNet
2014-01-01
This study begins with the assumption that the equal sign (=) in elementary school mathematics is not merely a symbol of mathematical logic. Rather, as the equal sign (=) appears in the school math curriculum, it orders children's thinking about equality by assigning identities to things of the world--as expressions of equivalences and…
ERIC Educational Resources Information Center
Kjeldsen, Tinne Hoff; Lützen, Jesper
2015-01-01
In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another…
House, J Daniel
2009-04-01
Recent mathematics assessment findings indicate that Native American students tend to score below students of the ethnic majority. Findings suggest that students' beliefs about mathematics are significantly related to achievement outcomes. This study examined relations between self-beliefs and mathematics achievement for a national sample of 130 Grade 8 Native American students from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States sample of (M age = 14.2 yr., SD = 0.5). Multiple regression indicated several significant relations of mathematics beliefs with achievement and accounted for 26.7% of the variance in test scores. Students who earned high test scores tended to hold more positive beliefs about their ability to learn mathematics quickly, while students who earned low scores expressed negative beliefs about their ability to learn new mathematics topics.
Mathematics is always invisible, Professor Dowling
NASA Astrophysics Data System (ADS)
Cable, John
2015-09-01
This article provides a critical evaluation of a technique of analysis, the Social Activity Method, recently offered by Dowling (2013) as a `gift' to mathematics education. The method is found to be inadequate, firstly, because it employs a dichotomy (between `expression' and `content') instead of a finer analysis (into symbols, concepts and setting or phenomena), and, secondly, because the distinction between `public' and `esoteric' mathematics, although interesting, is allowed to obscure the structure of the mathematics itself. There is also criticism of what Dowling calls the `myth of participation', which denies the intimate links between mathematics and the rest of the universe that lie at the heart of mathematical pedagogy. Behind all this lies Dowling's `essentially linguistic' conception of mathematics, which is criticised on the dual ground that it ignores the chastening experience of formalism in mathematical philosophy and that linguistics itself has taken a wrong turn and ignores lessons that might be learnt from mathematics education.
Introducing Seismic Tomography with Computational Modeling
NASA Astrophysics Data System (ADS)
Neves, R.; Neves, M. L.; Teodoro, V.
2011-12-01
Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.
NASA Astrophysics Data System (ADS)
Zharinov, I. O.; Zharinov, O. O.
2017-12-01
The problem of the research is concerned with quantitative analysis of influence of technological variation of the screen color profile parameters on chromaticity coordinates of the displayed image. Some mathematical expressions which approximate the two-dimensional distribution of chromaticity coordinates of an image, which is displayed on the screen with a three-component color formation principle were proposed. Proposed mathematical expressions show the way to development of correction techniques to improve reproducibility of the colorimetric features of displays.
NASA Astrophysics Data System (ADS)
Medjkoune, Sofiane; Mouchère, Harold; Petitrenaud, Simon; Viard-Gaudin, Christian
2013-01-01
The work reported in this paper concerns the problem of mathematical expressions recognition. This task is known to be a very hard one. We propose to alleviate the difficulties by taking into account two complementary modalities. The modalities referred to are handwriting and audio ones. To combine the signals coming from both modalities, various fusion methods are explored. Performances evaluated on the HAMEX dataset show a significant improvement compared to a single modality (handwriting) based system.
Parental modelling of mathematical affect: self-efficacy and emotional arousal
NASA Astrophysics Data System (ADS)
Bartley, Sarah R.; Ingram, Naomi
2017-12-01
This study explored the relationship between parents' mathematics self-efficacy and emotional arousal to mathematics and their 12- and 13-year-old children's mathematics self-efficacy and emotional arousal to mathematics. Parental modelling of affective relationships during homework was a focus. Eighty-four parent and child pairings from seven schools in New Zealand were examined using embedded design methodology. No significant correlations were found when the parents' mathematics self-efficacy and emotional arousal to mathematics were compared with the children's mathematics self-efficacy and emotional arousal to mathematics. However, the parents' level of emotional arousal to mathematics was found to have affected their willingness to assist with mathematics homework. For those parents who assisted, a significant positive correlation was found between their mathematics self-efficacy and their children's emotional arousal to mathematics. Parents who did assist were generally reported as being calm, and used techniques associated with positive engagement. Fathers were calmer and more likely to express readiness to assist with mathematics homework than mothers. A further significant positive correlation was found between fathers' emotional arousal to mathematics and children's mathematics self-efficacy. Implications from the study suggest directions for future research.
Mathematics and engineering in real life through mathematical competitions
NASA Astrophysics Data System (ADS)
More, M.
2018-02-01
We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.
Palermo, Romina; O’Connor, Kirsty B.; Davis, Joshua M.; Irons, Jessica; McKone, Elinor
2013-01-01
Although good tests are available for diagnosing clinical impairments in face expression processing, there is a lack of strong tests for assessing “individual differences” – that is, differences in ability between individuals within the typical, nonclinical, range. Here, we develop two new tests, one for expression perception (an odd-man-out matching task in which participants select which one of three faces displays a different expression) and one additionally requiring explicit identification of the emotion (a labelling task in which participants select one of six verbal labels). We demonstrate validity (careful check of individual items, large inversion effects, independence from nonverbal IQ, convergent validity with a previous labelling task), reliability (Cronbach’s alphas of.77 and.76 respectively), and wide individual differences across the typical population. We then demonstrate the usefulness of the tests by addressing theoretical questions regarding the structure of face processing, specifically the extent to which the following processes are common or distinct: (a) perceptual matching and explicit labelling of expression (modest correlation between matching and labelling supported partial independence); (b) judgement of expressions from faces and voices (results argued labelling tasks tap into a multi-modal system, while matching tasks tap distinct perceptual processes); and (c) expression and identity processing (results argued for a common first step of perceptual processing for expression and identity). PMID:23840821
Palermo, Romina; O'Connor, Kirsty B; Davis, Joshua M; Irons, Jessica; McKone, Elinor
2013-01-01
Although good tests are available for diagnosing clinical impairments in face expression processing, there is a lack of strong tests for assessing "individual differences"--that is, differences in ability between individuals within the typical, nonclinical, range. Here, we develop two new tests, one for expression perception (an odd-man-out matching task in which participants select which one of three faces displays a different expression) and one additionally requiring explicit identification of the emotion (a labelling task in which participants select one of six verbal labels). We demonstrate validity (careful check of individual items, large inversion effects, independence from nonverbal IQ, convergent validity with a previous labelling task), reliability (Cronbach's alphas of.77 and.76 respectively), and wide individual differences across the typical population. We then demonstrate the usefulness of the tests by addressing theoretical questions regarding the structure of face processing, specifically the extent to which the following processes are common or distinct: (a) perceptual matching and explicit labelling of expression (modest correlation between matching and labelling supported partial independence); (b) judgement of expressions from faces and voices (results argued labelling tasks tap into a multi-modal system, while matching tasks tap distinct perceptual processes); and (c) expression and identity processing (results argued for a common first step of perceptual processing for expression and identity).
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
NASA Astrophysics Data System (ADS)
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Generalization across Domains: The Relating-Forming-Extending Generalization Framework
ERIC Educational Resources Information Center
Ellis, Amy; Tillema, Erik; Lockwood, Elise; Moore, Kevin
2017-01-01
Generalization is a critical aspect of doing mathematics, with policy makers recommending that it be a central component of mathematics instruction at all levels. This recommendation poses serious challenges, however, given researchers consistently identifying students' difficulties in creating and expressing normative mathematical…
The mathematical research for the Kuramoto model of the describing neuronal synchrony in the brain
NASA Astrophysics Data System (ADS)
Lin, Chang; Lin, Mai-mai
2009-08-01
The Kuramoto model of the describing neuronal synchrony is mathematically investigated in the brain. A general analytical solutions (the most sententious description) for the Kuramoto model, incorporating the inclusion of a Ki,j (t) term to represent time-varying coupling strengths, have been obtained by using the precise mathematical approach. We derive an exact analytical expression, opening out the connotative and latent linear relation, for the mathematical character of the phase configurations in the Kuramoto model of the describing neuronal synchrony in the brain.
Oxytocin enhances pupil dilation and sensitivity to ‘hidden’ emotional expressions
Wessberg, Johan; Ellingsen, Dan-Mikael; Chelnokova, Olga; Olausson, Håkan; Laeng, Bruno
2013-01-01
Sensing others’ emotions through subtle facial expressions is a highly important social skill. We investigated the effects of intranasal oxytocin treatment on the evaluation of explicit and ‘hidden’ emotional expressions and related the results to individual differences in sensitivity to others’ subtle expressions of anger and happiness. Forty healthy volunteers participated in this double-blind, placebo-controlled crossover study, which shows that a single dose of intranasal oxytocin (40 IU) enhanced or ‘sharpened’ evaluative processing of others’ positive and negative facial expression for both explicit and hidden emotional information. Our results point to mechanisms that could underpin oxytocin’s prosocial effects in humans. Importantly, individual differences in baseline emotional sensitivity predicted oxytocin’s effects on the ability to sense differences between faces with hidden emotional information. Participants with low emotional sensitivity showed greater oxytocin-induced improvement. These participants also showed larger task-related pupil dilation, suggesting that they also allocated the most attentional resources to the task. Overall, oxytocin treatment enhanced stimulus-induced pupil dilation, consistent with oxytocin enhancement of attention towards socially relevant stimuli. Since pupil dilation can be associated with increased attractiveness and approach behaviour, this effect could also represent a mechanism by which oxytocin increases human affiliation. PMID:22648957
Oxytocin enhances pupil dilation and sensitivity to 'hidden' emotional expressions.
Leknes, Siri; Wessberg, Johan; Ellingsen, Dan-Mikael; Chelnokova, Olga; Olausson, Håkan; Laeng, Bruno
2013-10-01
Sensing others' emotions through subtle facial expressions is a highly important social skill. We investigated the effects of intranasal oxytocin treatment on the evaluation of explicit and 'hidden' emotional expressions and related the results to individual differences in sensitivity to others' subtle expressions of anger and happiness. Forty healthy volunteers participated in this double-blind, placebo-controlled crossover study, which shows that a single dose of intranasal oxytocin (40 IU) enhanced or 'sharpened' evaluative processing of others' positive and negative facial expression for both explicit and hidden emotional information. Our results point to mechanisms that could underpin oxytocin's prosocial effects in humans. Importantly, individual differences in baseline emotional sensitivity predicted oxytocin's effects on the ability to sense differences between faces with hidden emotional information. Participants with low emotional sensitivity showed greater oxytocin-induced improvement. These participants also showed larger task-related pupil dilation, suggesting that they also allocated the most attentional resources to the task. Overall, oxytocin treatment enhanced stimulus-induced pupil dilation, consistent with oxytocin enhancement of attention towards socially relevant stimuli. Since pupil dilation can be associated with increased attractiveness and approach behaviour, this effect could also represent a mechanism by which oxytocin increases human affiliation.
Linear dimension reduction and Bayes classification
NASA Technical Reports Server (NTRS)
Decell, H. P., Jr.; Odell, P. L.; Coberly, W. A.
1978-01-01
An explicit expression for a compression matrix T of smallest possible left dimension K consistent with preserving the n variate normal Bayes assignment of X to a given one of a finite number of populations and the K variate Bayes assignment of TX to that population was developed. The Bayes population assignment of X and TX were shown to be equivalent for a compression matrix T explicitly calculated as a function of the means and covariances of the given populations.
The Written Expression Abilities of Adolescents with Attention-Deficit/Hyperactivity Disorder
Molitor, Stephen J.; Langberg, Joshua M.; Evans, Steve W.
2016-01-01
Students with Attention-Deficit/Hyperactivity Disorder (ADHD) often experience deficits in academic achievement. Written expression abilities in this population have not been extensively studied but existing prevalence estimates suggest that rates of comorbid writing underachievement may be substantially higher than rates of comorbid reading and mathematics underachievement. The current study examined written expression abilities in a school-based sample of 326 middle school age students with ADHD. The prevalence of written expression impairment, the associations between written expression and academic outcomes, and specific patterns of written expression were investigated. Students with ADHD in this sample experienced written expression impairment (17.2% – 22.4%) at a similar rate to reading impairment (17.0% – 24.3%) and at a slightly lower rate than mathematics impairment (24.7% – 36.3%). Students’ written expression abilities were significantly associated with school grades and parent ratings of academic functioning, above and beyond the influence of intelligence. Analyses of patterns suggest that students with ADHD exhibit greater deficits in written expression tasks requiring organization and attention to detail, especially in the context of a complex task. PMID:26802631
Does Islam play a role in anti-immigrant sentiment? An experimental approach.
Creighton, Mathew J; Jamal, Amaney
2015-09-01
Are Muslim immigrants subjected to targeted opposition (i.e., Islamophobia) on their pathway to US citizenship? Using a list experiment and a representative sample of the US population, we compare explicit and implicit opposition to Muslim and Christian immigrants. We find that Muslim immigrants, relative to Christian immigrants, experience greater explicit resistance. However, when social desirability bias is taken into account via the list experiment, we find that opposition to Christian and Muslim immigrants is the same. The explanation is that respondents conceal a significant amount of opposition to Christian immigrants. Muslim immigrants, on the other hand, are afforded no such protection. We find that religiosity or denomination do not play a significant role in determining implicit or explicit opposition. We conclude that Islamophobia, which is only explicitly expressed, is best understood as reflective of social desirability bias from which Muslim immigrants do not benefit. Copyright © 2015 Elsevier Inc. All rights reserved.
Young Adults' Implicit and Explicit Attitudes towards the Sexuality of Older Adults.
Thompson, Ashley E; O'Sullivan, Lucia F; Byers, E Sandra; Shaughnessy, Krystelle
2014-09-01
Sexual interest and capacity can extend far into later life and result in many positive health outcomes. Yet there is little support for sexual expression in later life, particularly among young adults. This study assessed and compared young adults' explicit and implicit attitudes towards older adult sexuality. A sample of 120 participants (18-24 years; 58% female) completed a self-report (explicit) measure and a series of Implicit Association Tests capturing attitudes towards sexuality among older adults. Despite reporting positive explicit attitudes, young people revealed an implicit bias against the sexual lives of older adults. In particular, young adults demonstrated implicit biases favouring general, as compared to sexual, activities and young adults as compared to older adults. Moreover, the bias favouring general activities was amplified with regard to older adults as compared to younger adults. Our findings challenge the validity of research relying on self-reports of attitudes about older adult sexuality.
What is rate? Does context or representation matter?
NASA Astrophysics Data System (ADS)
Herbert, Sandra; Pierce, Robyn
2011-12-01
Rate is an important, but difficult, mathematical concept. Despite more than 20 years of research, especially with calculus students, difficulties are reported with this concept. This paper reports the results from analysis of data from 20 Australian Grade 10 students. Interviews targeted students' conceptions of rate, focussing on the influence of representation and context on their expression of their understanding of rate. This analysis shows that different representations of functions provide varying levels of rate-related information for individual students. Understandings of rate in one representation or context are not necessarily transferred to another representation or context. Rate is an important, but commonly misunderstood, mathematical concept with many everyday applications (Swedosh, Dowsey, Caruso, Flynn, & Tynan, 2007). It is a complicated concept comprising many interwoven ideas such as the ratio of two numeric, measurable quantities but in a context where both quantities are changing. In mathematics classes, this is commonly expressed as change in the dependent variable resulting from a unit change in the independent variable, and variously described as constant or variable rate; average or instantaneous rate. In addition, rate may be seen as a purely abstract mathematical notion or embedded in the understanding of real-world applications. This paper explores the research question: Are students' expressions of their conceptions of rate affected by either context or mathematical representation? This question was part of a larger study (Herbert, 2010) conducted with Grade 10 students from the Australian state of Victoria.
Reactions to Humorous Sexual Stimuli as a Function of Sexual Activeness and Satisfaction.
ERIC Educational Resources Information Center
Prerost, Frank J.
1984-01-01
Assessed male (N=60) and female (N=60) responses to pictorial humorous sexual material in relationship to degree of sexual expression and personal satisfaction with sexual behavior. Results showed persons with active and satisfying sexual expression enjoyed sexually explicit cartoons and showed less preference for aggressive themes. (LLL)
Cross-Cultural Evidence that the Nonverbal Expression of Pride Is an Automatic Status Signal
ERIC Educational Resources Information Center
Tracy, Jessica L.; Shariff, Azim F.; Zhao, Wanying; Henrich, Joseph
2013-01-01
To test whether the pride expression is an implicit, reliably developing signal of high social status in humans, the authors conducted a series of experiments that measured implicit and explicit cognitive associations between pride displays and high-status concepts in two culturally disparate populations--North American undergraduates and Fijian…
Stable time filtering of strongly unstable spatially extended systems
Grote, Marcus J.; Majda, Andrew J.
2006-01-01
Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant–Friedrichs–Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection–diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system. PMID:16682626
Stable time filtering of strongly unstable spatially extended systems.
Grote, Marcus J; Majda, Andrew J
2006-05-16
Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant-Friedrichs-Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection-diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system.
A Generic Software Safety Document Generator
NASA Technical Reports Server (NTRS)
Denney, Ewen; Venkatesan, Ram Prasad
2004-01-01
Formal certification is based on the idea that a mathematical proof of some property of a piece of software can be regarded as a certificate of correctness which, in principle, can be subjected to external scrutiny. In practice, however, proofs themselves are unlikely to be of much interest to engineers. Nevertheless, it is possible to use the information obtained from a mathematical analysis of software to produce a detailed textual justification of correctness. In this paper, we describe an approach to generating textual explanations from automatically generated proofs of program safety, where the proofs are of compliance with an explicit safety policy that can be varied. Key to this is tracing proof obligations back to the program, and we describe a tool which implements this to certify code auto-generated by AutoBayes and AutoFilter, program synthesis systems under development at the NASA Ames Research Center. Our approach is a step towards combining formal certification with traditional certification methods.
Imbedded-Fracture Formulation of THMC Processes in Fractured Media
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.; Sung, R.
2016-12-01
Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
The etiology of motion sickness is now usually explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behavior.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1980-01-01
The etiology of motion sickness is explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviors.
Palaniyandi, P; Rangarajan, Govindan
2017-08-21
We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.
A three-dimensional, time-dependent model of Mobile Bay
NASA Technical Reports Server (NTRS)
Pitts, F. H.; Farmer, R. C.
1976-01-01
A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.
Black-box Brain Experiments, Causal Mathematical Logic, and the Thermodynamics of Intelligence
NASA Astrophysics Data System (ADS)
Pissanetzky, Sergio; Lanzalaco, Felix
2013-12-01
Awareness of the possible existence of a yet-unknown principle of Physics that explains cognition and intelligence does exist in several projects of emulation, simulation, and replication of the human brain currently under way. Brain simulation projects define their success partly in terms of the emergence of non-explicitly programmed biophysical signals such as self-oscillation and spreading cortical waves. We propose that a recently discovered theory of Physics known as Causal Mathematical Logic (CML) that links intelligence with causality and entropy and explains intelligent behavior from first principles, is the missing link. We further propose the theory as a roadway to understanding more complex biophysical signals, and to explain the set of intelligence principles. The new theory applies to information considered as an entity by itself. The theory proposes that any device that processes information and exhibits intelligence must satisfy certain theoretical conditions irrespective of the substrate where it is being processed. The substrate can be the human brain, a part of it, a worm's brain, a motor protein that self-locomotes in response to its environment, a computer. Here, we propose to extend the causal theory to systems in Neuroscience, because of its ability to model complex systems without heuristic approximations, and to predict emerging signals of intelligence directly from the models. The theory predicts the existence of a large number of observables (or "signals"), all of which emerge and can be directly and mathematically calculated from non-explicitly programmed detailed causal models. This approach is aiming for a universal and predictive language for Neuroscience and AGI based on causality and entropy, detailed enough to describe the finest structures and signals of the brain, yet general enough to accommodate the versatility and wholeness of intelligence. Experiments are focused on a black-box as one of the devices described above of which both the input and the output are precisely known, but not the internal implementation. The same input is separately supplied to a causal virtual machine, and the calculated output is compared with the measured output. The virtual machine, described in a previous paper, is a computer implementation of CML, fixed for all experiments and unrelated to the device in the black box. If the two outputs are equivalent, then the experiment has quantitatively succeeded and conclusions can be drawn regarding details of the internal implementation of the device. Several small black-box experiments were successfully performed and demonstrated the emergence of non-explicitly programmed cognitive function in each case
Wingenbach, Tanja S. H.; Brosnan, Mark; Pfaltz, Monique C.; Plichta, Michael M.; Ashwin, Chris
2018-01-01
According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed. PMID:29928240
Wingenbach, Tanja S H; Brosnan, Mark; Pfaltz, Monique C; Plichta, Michael M; Ashwin, Chris
2018-01-01
According to embodied cognition accounts, viewing others' facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others' facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others' faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions' order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.
An Out-of-Math Experience: Einstein, Relativity, and the Developmental Mathematics Student.
ERIC Educational Resources Information Center
Fiore, Greg
2000-01-01
Discusses Einstein's special relativity theory and some of the developmental mathematics involved. Presents motivational classroom materials used in discussing relative-motion problems, evaluating a radical expression, graphing with asymptotes, interpreting a graph, studying variation, and solving literal and radical equations. (KHR)
Variables in Elementary Mathematics Education
ERIC Educational Resources Information Center
Brizuela, Bárbara M.
2016-01-01
In this article, I analyze episodes from two third-grade classrooms drawn from a larger classroom teaching experiment to explore how these students began to incorporate nonnumerical symbols in their mathematical expressions when asked to represent indeterminate quantities. The article addresses two research questions: What understandings did these…
Impact of Childhood Maltreatment on the Recognition of Facial Expressions of Emotions.
Ardizzi, Martina; Martini, Francesca; Umiltà, Maria Alessandra; Evangelista, Valentina; Ravera, Roberto; Gallese, Vittorio
2015-01-01
The development of the explicit recognition of facial expressions of emotions can be affected by childhood maltreatment experiences. A previous study demonstrated the existence of an explicit recognition bias for angry facial expressions among a population of adolescent Sierra Leonean street-boys exposed to high levels of maltreatment. In the present study, the recognition bias for angry facial expressions was investigated in a younger population of street-children and age-matched controls. Participants performed a forced-choice facial expressions recognition task. Recognition bias was measured as participants' tendency to over-attribute anger label to other negative facial expressions. Participants' heart rate was assessed and related to their behavioral performance, as index of their stress-related physiological responses. Results demonstrated the presence of a recognition bias for angry facial expressions among street-children, also pinpointing a similar, although significantly less pronounced, tendency among controls. Participants' performance was controlled for age, cognitive and educational levels and for naming skills. None of these variables influenced the recognition bias for angry facial expressions. Differently, a significant effect of heart rate on participants' tendency to use anger label was evidenced. Taken together, these results suggest that childhood exposure to maltreatment experiences amplifies children's "pre-existing bias" for anger labeling in forced-choice emotion recognition task. Moreover, they strengthen the thesis according to which the recognition bias for angry facial expressions is a manifestation of a functional adaptive mechanism that tunes victim's perceptive and attentive focus on salient environmental social stimuli.
Impact of Childhood Maltreatment on the Recognition of Facial Expressions of Emotions
Ardizzi, Martina; Martini, Francesca; Umiltà, Maria Alessandra; Evangelista, Valentina; Ravera, Roberto; Gallese, Vittorio
2015-01-01
The development of the explicit recognition of facial expressions of emotions can be affected by childhood maltreatment experiences. A previous study demonstrated the existence of an explicit recognition bias for angry facial expressions among a population of adolescent Sierra Leonean street-boys exposed to high levels of maltreatment. In the present study, the recognition bias for angry facial expressions was investigated in a younger population of street-children and age-matched controls. Participants performed a forced-choice facial expressions recognition task. Recognition bias was measured as participants’ tendency to over-attribute anger label to other negative facial expressions. Participants’ heart rate was assessed and related to their behavioral performance, as index of their stress-related physiological responses. Results demonstrated the presence of a recognition bias for angry facial expressions among street-children, also pinpointing a similar, although significantly less pronounced, tendency among controls. Participants’ performance was controlled for age, cognitive and educational levels and for naming skills. None of these variables influenced the recognition bias for angry facial expressions. Differently, a significant effect of heart rate on participants’ tendency to use anger label was evidenced. Taken together, these results suggest that childhood exposure to maltreatment experiences amplifies children’s “pre-existing bias” for anger labeling in forced-choice emotion recognition task. Moreover, they strengthen the thesis according to which the recognition bias for angry facial expressions is a manifestation of a functional adaptive mechanism that tunes victim’s perceptive and attentive focus on salient environmental social stimuli. PMID:26509890
Kliemann, Dorit; Rosenblau, Gabriela; Bölte, Sven; Heekeren, Hauke R.; Dziobek, Isabel
2013-01-01
Recognizing others' emotional states is crucial for effective social interaction. While most facial emotion recognition tasks use explicit prompts that trigger consciously controlled processing, emotional faces are almost exclusively processed implicitly in real life. Recent attempts in social cognition suggest a dual process perspective, whereby explicit and implicit processes largely operate independently. However, due to differences in methodology the direct comparison of implicit and explicit social cognition has remained a challenge. Here, we introduce a new tool to comparably measure implicit and explicit processing aspects comprising basic and complex emotions in facial expressions. We developed two video-based tasks with similar answer formats to assess performance in respective facial emotion recognition processes: Face Puzzle, implicit and explicit. To assess the tasks' sensitivity to atypical social cognition and to infer interrelationship patterns between explicit and implicit processes in typical and atypical development, we included healthy adults (NT, n = 24) and adults with autism spectrum disorder (ASD, n = 24). Item analyses yielded good reliability of the new tasks. Group-specific results indicated sensitivity to subtle social impairments in high-functioning ASD. Correlation analyses with established implicit and explicit socio-cognitive measures were further in favor of the tasks' external validity. Between group comparisons provide first hints of differential relations between implicit and explicit aspects of facial emotion recognition processes in healthy compared to ASD participants. In addition, an increased magnitude of between group differences in the implicit task was found for a speed-accuracy composite measure. The new Face Puzzle tool thus provides two new tasks to separately assess explicit and implicit social functioning, for instance, to measure subtle impairments as well as potential improvements due to social cognitive interventions. PMID:23805122
Isaacson, M D; Srinivasan, S; Lloyd, L L
2010-01-01
MathSpeak is a set of rules for non speaking of mathematical expressions. These rules have been incorporated into a computerised module that translates printed mathematics into the non-ambiguous MathSpeak form for synthetic speech rendering. Differences between individual utterances produced with the translator module are difficult to discern because of insufficient pausing between utterances; hence, the purpose of this study was to develop an algorithm for improving the synthetic speech rendering of MathSpeak. To improve synthetic speech renderings, an algorithm for inserting pauses was developed based upon recordings of middle and high school math teachers speaking mathematic expressions. Efficacy testing of this algorithm was conducted with college students without disabilities and high school/college students with visual impairments. Parameters measured included reception accuracy, short-term memory retention, MathSpeak processing capacity and various rankings concerning the quality of synthetic speech renderings. All parameters measured showed statistically significant improvements when the algorithm was used. The algorithm improves the quality and information processing capacity of synthetic speech renderings of MathSpeak. This increases the capacity of individuals with print disabilities to perform mathematical activities and to successfully fulfill science, technology, engineering and mathematics academic and career objectives.
A Cognitive Analysis of Students’ Mathematical Communication Ability on Geometry
NASA Astrophysics Data System (ADS)
Sari, D. S.; Kusnandi, K.; Suhendra, S.
2017-09-01
This study aims to analyze the difficulties of mathematical communication ability of students in one of secondary school on “three-dimensional space” topic. This research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and the sample was thirty students that was chosen by purposive sampling technique. Data of mathematical communication were collected through essay test. Furthermore, the data were analyzed with a descriptive way. The results of this study indicate that the percentage of achievement of student mathematical communication indicators as follows 1) Stating a situation, ideas, and mathematic correlation into images, graphics, or algebraic expressions is 35%; 2) Stating daily experience into a mathematic language / symbol, or a mathematic model is 35%; and 3) Associating images or diagrams into mathematical ideas is 53.3%. Based on the percentage of achievement on each indicator, it can be concluded that the level of achievement of students’ mathematical communication ability is still low. It can be caused the students were not used to convey or write their mathematical ideas systematically. Therefore students’ mathematical communication ability need to be improved.
An Objectivist Critique of Relativism in Mathematics Education
NASA Astrophysics Data System (ADS)
Rowlands, Stuart; Graham, Ted; Berry, John
Many constructivists tag as `absolutist' references to mathematics as an abstract body of knowledge, and stake-out the moral high-ground with the argument that mathematics is not only utilised oppressively but that mathematics is, in-itself, oppressive. With much reference to Ernest's (1991) Philosophy of Mathematics Education this tag has been justified on the grounds that if mathematics is a social-cultural creation that is mutable and fallible then it must be social acceptance that confers the objectivity of mathematics. This paper argues that mathematics, albeit a social-cultural creation that is mutable and fallible, is a body of knowledge the objectivity of which is independent of origin or social acceptance. Recently, Ernest (1998) has attempted to express social constructivism as a philosophy of mathematics and has included the category of logical necessity in his elaboration of the objectivity of mathematics. We argue that this inclusion of logical necessity not only represents a U-turn, but that the way in which Ernest has included this category is an attempt to maintain his earlier position that it is social acceptance that confers the objectivity of mathematics.
NASA Astrophysics Data System (ADS)
Kowiyah; Mulyawati, I.
2018-01-01
Mathematic representation is one of the basic mathematic skills that allows students to communicate their mathematic ideas through visual realities such as pictures, tables, mathematic expressions and mathematic equities. The present research aims at: 1) analysing students’ mathematic representation ability in solving mathematic problems and 2) examining the difference of students’ mathematic ability based on their gender. A total of sixty primary school students participated in this study comprising of thirty males and thirty females. Data required in this study were collected through mathematic representation tests, interviews and test evaluation rubric. Findings of this study showed that students’ mathematic representation of visual realities (image and tables) was reported higher at 62.3% than at in the form of description (or statement) at 8.6%. From gender perspective, male students performed better than the females at action planning stage. The percentage of males was reported at 68% (the highest), 33% (medium) and 21.3% (the lowest) while the females were at 36% (the highest), 37.7% (medium) and 32.6% (the lowest).
NASA Astrophysics Data System (ADS)
Esayan, G. L.; Krivoshlykov, S. G.
1989-08-01
A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).
Torus Knot Polynomials and Susy Wilson Loops
NASA Astrophysics Data System (ADS)
Giasemidis, Georgios; Tierz, Miguel
2014-12-01
We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987), a basic hypergeometric representation of the HOMFLY polynomial of ( n, m) torus knots, and present a number of equivalent expressions, all related by Heine's transformations. Using this result, the symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang-Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang-Mills theory, which is known to give averages of Wilson loops in = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones-Rosso representation in terms of q-harmonic oscillators.
Insights into Fourier Synthesis and Analysis: Part 2--A Simplified Mathematics.
ERIC Educational Resources Information Center
Moore, Guy S. M.
1988-01-01
Introduced is an analysis of a waveform into its Fourier components. Topics included are simplified analysis of a square waveform, a triangular waveform, half-wave rectified alternating current (AC), and impulses. Provides the mathematical expression and simplified analysis diagram of each waveform. (YP)
Instructional Gaming: Using Technology to Support Early Mathematical Proficiency
ERIC Educational Resources Information Center
Nelson-Walker, Nancy J.; Doabler, Christian T.; Fien, Hank; Gause, Marshall; Baker, Scott K.; Clarke, Ben
2013-01-01
Widespread concern has been expressed about the persistent low mathematics achievement of students in the US, particularly for students from low-income and minority backgrounds and students with disabilities. Instructional gaming technology, when designed and fictionalized well, has the potential to improve the motivation and mathematics…
ERIC Educational Resources Information Center
Dahmus, Maurice E.
1970-01-01
Presents a technique for teaching the lower ninety percent in mathematics. Concentrates on converting English statements, both expressed and implied, into one or many mathematical statements. Emphasis on translating in a direct, piecemeal, pure, and complete manner (DPPC). This method differs from others in that it is concrete rather than…
Assessment of Student Memo Assignments in Management Science
ERIC Educational Resources Information Center
Williams, Julie Ann Stuart; Stanny, Claudia J.; Reid, Randall C.; Hill, Christopher J.; Rosa, Katie Martin
2015-01-01
Frequently in Management Science courses, instructors focus primarily on teaching students the mathematics of linear programming models. However, the ability to discuss mathematical expressions in business terms is an important professional skill. The authors present an analysis of student abilities to discuss management science concepts through…
On the coefficients of integrated expansions of Bessel polynomials
NASA Astrophysics Data System (ADS)
Doha, E. H.; Ahmed, H. M.
2006-03-01
A new formula expressing explicitly the integrals of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another new explicit formula relating the Bessel coefficients of an expansion for infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is also established. An application of these formulae for solving ordinary differential equations with varying coefficients is discussed.
Test-and-treat approach to HIV/AIDS: a primer for mathematical modeling.
Nah, Kyeongah; Nishiura, Hiroshi; Tsuchiya, Naho; Sun, Xiaodan; Asai, Yusuke; Imamura, Akifumi
2017-09-05
The public benefit of test-and-treat has induced a need to justify goodness for the public, and mathematical modeling studies have played a key role in designing and evaluating the test-and-treat strategy for controlling HIV/AIDS. Here we briefly and comprehensively review the essence of contemporary understanding of the test-and-treat policy through mathematical modeling approaches and identify key pitfalls that have been identified to date. While the decrease in HIV incidence is achieved with certain coverages of diagnosis, care and continued treatment, HIV prevalence is not necessarily decreased and sometimes the test-and-treat is accompanied by increased long-term cost of antiretroviral therapy (ART). To confront with the complexity of assessment on this policy, the elimination threshold or the effective reproduction number has been proposed for its use in determining the overall success to anticipate the eventual elimination. Since the publication of original model in 2009, key issues of test-and-treat modeling studies have been identified, including theoretical problems surrounding the sexual partnership network, heterogeneities in the transmission dynamics, and realistic issues of achieving and maintaining high treatment coverage in the most hard-to-reach populations. To explicitly design country-specific control policy, quantitative modeling approaches to each single setting with differing epidemiological context would require multi-disciplinary collaborations among clinicians, public health practitioners, laboratory technologists, epidemiologists and mathematical modelers.
On the tidal-energy tensor for two homogeneous coaxial ellipsoids
NASA Astrophysics Data System (ADS)
Caimmi, R.; Secco, L.
2001-10-01
The tidal-energy tensor for two homogeneous and coaxial ellipsoids, one lying completely within the other, is investigated in connection with the tidal action exerted by the outer ellipsoid on the inner one. Making reference to the explicit expression found in a previous paper of ours, it is shown that the generic component of the tidal-energy tensor, (i) may be expressed as the product of the corresponding component of the self-energy tensor related to the inner ellipsoid, by the density ratio, and the shape factor ratio, and (ii) equals the one due to any homogeneous, outer ellipsoid, for which the product of the density and a specified shape factor remains unchanged; in particular, the outer ellipsoid may be similar and similarly placed with respect to the inner one. In addition, an explicit expression for the Clausius-virial tensor is derived. Analogous results for the corresponding scalar quantities are also given. Further attention is paid to the particular case of spheroids.
High-order tail in Schwarzschild spacetime
NASA Astrophysics Data System (ADS)
Casals, Marc; Ottewill, Adrian
2015-12-01
We present an analysis of the behavior at late times of linear field perturbations of a Schwarzschild black hole spacetime. In particular, we give explicit analytic expressions for the field perturbations (for a specific ℓ-multipole) of general spin up to the first four orders at late times. These expressions are valid at arbitrary radius and include, apart from the well-known power-law tail decay at leading order (˜t-2 ℓ-3), a new logarithmic behavior at third leading order (˜t-2 ℓ-5ln t ). We obtain these late-time results by developing an analytical formalism initially formulated by Mano, Suzuki and Takasugi (MST) [Prog. Theor. Phys. 95, 1079 (1996); 96, 549 (1996)] formalism and by expanding the various MST Fourier-mode quantities for small frequency. While we give explicit expansions up to the first four leading orders (for small frequency for the Fourier modes, for late time for the field perturbation), we give a prescription for obtaining expressions to arbitrary order within a "perturbative regime."
Diéguez-Risco, Teresa; Aguado, Luis; Albert, Jacobo; Hinojosa, José Antonio
2015-12-01
The influence of explicit evaluative processes on the contextual integration of facial expressions of emotion was studied in a procedure that required the participants to judge the congruency of happy and angry faces with preceding sentences describing emotion-inducing situations. Judgments were faster on congruent trials in the case of happy faces and on incongruent trials in the case of angry faces. At the electrophysiological level, a congruency effect was observed in the face-sensitive N170 component that showed larger amplitudes on incongruent trials. An interactive effect of congruency and emotion appeared on the LPP (late positive potential), with larger amplitudes in response to happy faces that followed anger-inducing situations. These results show that the deliberate intention to judge the contextual congruency of facial expressions influences not only processes involved in affective evaluation such as those indexed by the LPP but also earlier processing stages that are involved in face perception. Copyright © 2015. Published by Elsevier B.V.
FRAP Analysis: Accounting for Bleaching during Image Capture
Wu, Jun; Shekhar, Nandini; Lele, Pushkar P.; Lele, Tanmay P.
2012-01-01
The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis. PMID:22912750
NASA Astrophysics Data System (ADS)
Vigier, Jean-Pierre
1991-02-01
Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
2009-01-01
is usually implemented as an implicit correction to an explicit predictor substep [43]. In our case, this leads to the following algorithm : (i...ref., 50m ç C 10-6 10-5 10-4 0.01 0.1 1 s 0.01 0.1 1 m10 100 1000 Fig. 6.7. Self -convergence experiment for the density current test as in [51], Figure...by SIAM. Unauthorized reproduction of this article is prohibited. SIAM J. SCI. COMPUT. c © 2009 Society for Industrial and Applied Mathematics Vol
On the optimization of endoreversible processes
NASA Astrophysics Data System (ADS)
Pescetti, D.
2014-03-01
This paper is intended for undergraduates and specialists in thermodynamics and related areas. We consider and discuss the optimization of endoreversible thermodynamic processes under the condition of maximum work production. Explicit thermodynamic analyses of the solutions are carried out for the Novikov and Agrawal processes. It is shown that the efficiencies at maximum work production and maximum power output are not necessarily equal. They are for the Novikov process but not for the Agrawal process. The role of the constraints is put into evidence. The physical aspects are enhanced by the simplicity of the involved mathematics.
Bayesian linkage and segregation analysis: factoring the problem.
Matthysse, S
2000-01-01
Complex segregation analysis and linkage methods are mathematical techniques for the genetic dissection of complex diseases. They are used to delineate complex modes of familial transmission and to localize putative disease susceptibility loci to specific chromosomal locations. The computational problem of Bayesian linkage and segregation analysis is one of integration in high-dimensional spaces. In this paper, three available techniques for Bayesian linkage and segregation analysis are discussed: Markov Chain Monte Carlo (MCMC), importance sampling, and exact calculation. The contribution of each to the overall integration will be explicitly discussed.
Majorana fermions and orthogonal complex structures
NASA Astrophysics Data System (ADS)
Calderón-García, J. S.; Reyes-Lega, A. F.
2018-05-01
Ground states of quadratic Hamiltonians for fermionic systems can be characterized in terms of orthogonal complex structures. The standard way in which such Hamiltonians are diagonalized makes use of a certain “doubling” of the Hilbert space. In this work, we show that this redundancy in the Hilbert space can be completely lifted if the relevant orthogonal structure is taken into account. Such an approach allows for a treatment of Majorana fermions which is both physically and mathematically transparent. Furthermore, an explicit connection between orthogonal complex structures and the topological ℤ2-invariant is given.
The synthesis paradigm in genetics.
Rice, William R
2014-02-01
Experimental genetics with model organisms and mathematically explicit genetic theory are generally considered to be the major paradigms by which progress in genetics is achieved. Here I argue that this view is incomplete and that pivotal advances in genetics--and other fields of biology--are also made by synthesizing disparate threads of extant information rather than generating new information from experiments or formal theory. Because of the explosive expansion of information in numerous "-omics" data banks, and the fragmentation of genetics into numerous subdisciplines, the importance of the synthesis paradigm will likely expand with time.
On a comparison of two schemes in sequential data assimilation
NASA Astrophysics Data System (ADS)
Grishina, Anastasiia A.; Penenko, Alexey V.
2017-11-01
This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.
NASA Astrophysics Data System (ADS)
Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.
2017-12-01
We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.
ERIC Educational Resources Information Center
Ryan, Pat
Epideictic rhetoric, expression of praise or blame, animates much communication, from gossip to sermons, from commercial ads to love letters. Even when writing for purposes other than to judge, writers often frame their talk with implicit or explicit expressions of praise for individuals or groups or ideas considered "good." Epideictic…
ERIC Educational Resources Information Center
Lynch, Erin M.
2016-01-01
Faith-based programs for adult learners have environmental factors that differentiate them from non-faith based programs, but explicit empirical studies evaluating the impact of the psychosocial factors have been lacking in the literature. This study comparatively examines the achievement level of expressive communication skills as measured…
Historical mathematics in the French eighteenth century.
Richards, Joan L
2006-12-01
At least since the seventeenth century, the strange combination of epistemological certainty and ontological power that characterizes mathematics has made it a major focus of philosophical, social, and cultural negotiation. In the eighteenth century, all of these factors were at play as mathematical thinkers struggled to assimilate and extend the analysis they had inherited from the seventeenth century. A combination of educational convictions and historical assumptions supported a humanistic mathematics essentially defined by its flexibility and breadth. This mathematics was an expression of l'esprit humain, which was unfolding in a progressive historical narrative. The French Revolution dramatically altered the historical and educational landscapes that had supported this eighteenth-century approach, and within thirty years Augustin Louis Cauchy had radically reconceptualized and restructured mathematics to be rigorous rather than narrative.
Some new results on the central overlap problem in astrometry
NASA Astrophysics Data System (ADS)
Rapaport, M.
1998-07-01
The central overlap problem in astrometry has been revisited in the recent last years by Eichhorn (1988) who explicitly inverted the matrix of a constrained least squares problem. In this paper, the general explicit solution of the unconstrained central overlap problem is given. We also give the explicit solution for an other set of constraints; this result is a confirmation of a conjecture expressed by Eichhorn (1988). We also consider the use of iterative methods to solve the central overlap problem. A surprising result is obtained when the classical Gauss Seidel method is used; the iterations converge immediately to the general solution of the equations; we explain this property writing the central overlap problem in a new set of variables.
Undergraduate Mathematics Students' Understanding of the Concept of Function
ERIC Educational Resources Information Center
Bardini, Caroline; Pierce, Robyn; Vincent, Jill; King, Deborah
2014-01-01
Concern has been expressed that many commencing undergraduate mathematics students have mastered skills without conceptual understanding. A pilot study carried out at a leading Australian university indicates that a significant number of students, with high tertiary entrance ranks, have very limited understanding of the concept of function,…
Confidence and Competence with Mathematical Procedures
ERIC Educational Resources Information Center
Foster, Colin
2016-01-01
Confidence assessment (CA), in which students state alongside each of their answers a confidence level expressing how certain they are, has been employed successfully within higher education. However, it has not been widely explored with school pupils. This study examined how school mathematics pupils (N?=?345) in five different secondary schools…
ERIC Educational Resources Information Center
Grosser-Clarkson, Dana L.
2015-01-01
The Common Core State Standards for Mathematics expect students to build on their knowledge of the number system, expressions and equations, and functions throughout school mathematics. For example, students learn that they can add something to both sides of an equation and that doing so will not affect the equivalency; however, squaring both…
A note on misunderstandings of Piron's axioms for quantum mechanics
NASA Astrophysics Data System (ADS)
Foulis, D. J.; Randall, C. H.
1984-01-01
Piron's axioms for a realistically interpreted quantum mechanics are analyzed in detail within the context of a formal mathematical structure expressed in the conventional set-theoretic idiom of mathematics. As a result, some of the serious misconceptions that have encouraged recent criticisms of Piron's axioms are exposed.
Physics Teaching: Mathematics as an Epistemological Tool
ERIC Educational Resources Information Center
Kneubil, Fabiana B.; Robilotta, Manoel R.
2015-01-01
We study the interconnection between Physics and Mathematics in concrete instances, departing from the usual expression for the Coulomb electric field, produced by a point-like charge. It is scrutinized by means of six epistemology-intensive questions and radical answers are proposed, intended to widen one's understanding of the subject. Our…
Mathematical model of a smoldering log.
Fernando de Souza Costa; David Sandberg
2004-01-01
A mathematical model is developed describing the natural smoldering of logs. It is considered the steady one dimensional propagation of infinitesimally thin fronts of drying, pyrolysis, and char oxidation in a horizontal semi-infinite log. Expressions for the burn rates, distribution profiles of temperature, and positions of the drying, pyrolysis, and smoldering fronts...
Developing Students' Mathematical Skills Involving Order of Operations
ERIC Educational Resources Information Center
Ali Rahman, Ernna Sukinnah; Shahrill, Masitah; Abbas, Nor Arifahwati; Tan, Abby
2017-01-01
This small-scale action research study examines the students' ability in using their mathematical skills when performing order of operations in numerical expressions. In this study, the "hierarchy-of-operators triangle" by Ameis (2011) was introduced as an alternative BODMAS approach to help students in gaining a better understanding…
Höglander, Jessica; Eklund, Jakob Håkansson; Eide, Hilde; Holmström, Inger K; Sundler, Annelie J
2017-12-01
This study aims to explore nurse assistants' and Registered Nurses' responses to older persons' expressions of emotional needs during home care visits. Communication is a central aspect of care. Older persons might express different emotions and needs during home care visits and such expressions can be challenging to respond to. Little is known about communication in home care or nursing staff responses to older persons' expressed emotional needs. Descriptive, cross-sectional design on nursing staff responses to older persons' negative emotions in home care. Collected data consisted of audio recordings of home care visits between older persons and nursing staff. Data were collected between August 2014-November 2015. The nursing staff responses to older persons' negative emotions in the communication were analysed with the Verona Coding Definitions of Emotional Sequences (VR-CoDES). The nursing staff most often give non-explicit responses, providing space for further disclosure of older persons' expressed negative emotions. Such responses were more frequent if the nursing staff had elicited the older persons' expressions of a negative emotion than if such expressions were elicited by the older persons themselves. Most frequent types of responses were backchannel, active invitation or information advice. The nursing staff responses were mainly non-explicit responses providing space for older persons to tell more about their experiences. Such responses can be discussed in terms of person-centred communication and is important for the comfort of emotional concerns. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kllogjeri, Pellumb
In present age we are witnesses and practioners of computer-based education which is highly speed progressing. The computer-based education allows educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. The computer-based education is done possible by special electronic tools among which the most important are the mathematical programmes. There are many mathematical programmes, but one which is being embraced and used by a daily increasing number of users throughout the world is GeoGebra. The recently published software GeoGebra by Markus Hohenwater (2004) explicitly links geometry and algebra. GeoGebra affords a bidirectional combination of geometry and algebra that differs from earlier software forms. The bidirectional combination means that, for instance, by typing in an equation in the algebra window, the graph of the equation will be shown in the dynamic and graphic window. This programme is so much preferred because of its three main features: the double representation of the mathematical object(geometric and algebraic), there are not strong requirements as to the age and the knowledge in using it(the students of the elementary school can use it as well) and, it is offered free of charge(simply by downloading it). In this paper we are concentrating in the double representation of the mathematical object and its advantages in explaining and forming mathematical concepts and performing operations, in the global opportunities for using GeoGebra and the benefits of using it by cooperating and sharing experiences.
Geyer, Thomas; Baumgartner, Florian; Müller, Hermann J.; Pollmann, Stefan
2012-01-01
Using visual search, functional magnetic resonance imaging (fMRI) and patient studies have demonstrated that medial temporal lobe (MTL) structures differentiate repeated from novel displays—even when observers are unaware of display repetitions. This suggests a role for MTL in both explicit and, importantly, implicit learning of repeated sensory information (Greene et al., 2007). However, recent behavioral studies suggest, by examining visual search and recognition performance concurrently, that observers have explicit knowledge of at least some of the repeated displays (Geyer et al., 2010). The aim of the present fMRI study was thus to contribute new evidence regarding the contribution of MTL structures to explicit vs. implicit learning in visual search. It was found that MTL activation was increased for explicit and, respectively, decreased for implicit relative to baseline displays. These activation differences were most pronounced in left anterior parahippocampal cortex (aPHC), especially when observers were highly trained on the repeated displays. The data are taken to suggest that explicit and implicit memory processes are linked within MTL structures, but expressed via functionally separable mechanisms (repetition-enhancement vs. -suppression). They further show that repetition effects in visual search would have to be investigated at the display level. PMID:23060776
Chimpanzees and the mathematics of battle.
Wilson, Michael L; Britton, Nicholas F; Franks, Nigel R
2002-06-07
Recent experiments have demonstrated the importance of numerical assessment in animal contests. Nevertheless, few attempts have been made to model explicitly the relationship between the relative number of combatants on each side and the costs and benefits of entering a contest. One framework that may be especially suitable for making such explicit predictions is Lanchester's theory of combat, which has proved useful for understanding combat strategies in humans and several species of ants. We show, with data from a recent series of playback experiments, that a model derived from Lanchester's 'square law' predicts willingness to enter intergroup contests in wild chimpanzees (Pan troglodytes). Furthermore, the model predicts that, in contests with multiple individuals on each side, chimpanzees in this population should be willing to enter a contest only if they outnumber the opposing side by a factor of 1.5. We evaluate these results for intergroup encounters in chimpanzees and also discuss potential applications of Lanchester's square and linear laws for understanding combat strategies in other species.
Structural kinetic modeling of metabolic networks.
Steuer, Ralf; Gross, Thilo; Selbig, Joachim; Blasius, Bernd
2006-08-08
To develop and investigate detailed mathematical models of metabolic processes is one of the primary challenges in systems biology. However, despite considerable advance in the topological analysis of metabolic networks, kinetic modeling is still often severely hampered by inadequate knowledge of the enzyme-kinetic rate laws and their associated parameter values. Here we propose a method that aims to give a quantitative account of the dynamical capabilities of a metabolic system, without requiring any explicit information about the functional form of the rate equations. Our approach is based on constructing a local linear model at each point in parameter space, such that each element of the model is either directly experimentally accessible or amenable to a straightforward biochemical interpretation. This ensemble of local linear models, encompassing all possible explicit kinetic models, then allows for a statistical exploration of the comprehensive parameter space. The method is exemplified on two paradigmatic metabolic systems: the glycolytic pathway of yeast and a realistic-scale representation of the photosynthetic Calvin cycle.
A General Reversible Hereditary Constitutive Model. Part 1; Theoretical Developments
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Arnold, S. M.
1997-01-01
Using an internal-variable formalism as a starting point, we describe the viscoelastic extension of a previously-developed viscoplasticity formulation of the complete potential structure type. It is mainly motivated by experimental evidence for the presence of rate/time effects in the so-called quasilinear, reversible, material response range. Several possible generalizations are described, in the general format of hereditary-integral representations for non-equilibrium, stress-type, state variables, both for isotropic as well as anisotropic materials. In particular, thorough discussions are given on the important issues of thermodynamic admissibility requirements for such general descriptions, resulting in a set of explicit mathematical constraints on the associated kernel (relaxation and creep compliance) functions. In addition, a number of explicit, integrated forms are derived, under stress and strain control to facilitate the parametric and qualitative response characteristic studies reported here, as well as to help identify critical factors in the actual experimental characterizations from test data that will be reported in Part II.
Chimpanzees and the mathematics of battle.
Wilson, Michael L; Britton, Nicholas F; Franks, Nigel R
2002-01-01
Recent experiments have demonstrated the importance of numerical assessment in animal contests. Nevertheless, few attempts have been made to model explicitly the relationship between the relative number of combatants on each side and the costs and benefits of entering a contest. One framework that may be especially suitable for making such explicit predictions is Lanchester's theory of combat, which has proved useful for understanding combat strategies in humans and several species of ants. We show, with data from a recent series of playback experiments, that a model derived from Lanchester's 'square law' predicts willingness to enter intergroup contests in wild chimpanzees (Pan troglodytes). Furthermore, the model predicts that, in contests with multiple individuals on each side, chimpanzees in this population should be willing to enter a contest only if they outnumber the opposing side by a factor of 1.5. We evaluate these results for intergroup encounters in chimpanzees and also discuss potential applications of Lanchester's square and linear laws for understanding combat strategies in other species. PMID:12061952
From H = log s(n) to conceptual framework: a short history of information.
Collins, Alan
2007-02-01
"Information" has become a widely used term in psychology, especially within cognitive psychology. However, despite its status as a technical term, the word now rarely receives explicit definition. By contrast, when information entered the vocabulary of psychologists in the late 1940s, it had an explicit mathematical definition largely derived from developments in information theory. This article examines how information entered psychology, how its meaning changed, and how it remained a technical term in the vocabulary of psychologists in the second part of the 20th century. "Information" became a term that was required to speak to ever more diverse theoretical concerns and its earliest definitions in psychology could not sustain such uses. As a consequence, "information" became a term whose technical uses became increasingly difficult to differentiate from its everyday meanings. I argue that this has not necessarily made "information" a worthless term but one whose lack of specificity may now be unsettling to some psychologists.
Explicit resolutions for the complex of several Fueter operators
NASA Astrophysics Data System (ADS)
Bureš, Jarolim; Damiano, Alberto; Sabadini, Irene
2007-02-01
An analogue of the Dolbeault complex is introduced for regular functions of several quaternionic variables and studied by means of two different methods. The first one comes from algebraic analysis (for a thorough treatment see the book [F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004]), while the other one relies on the symmetry of the equations and the methods of representation theory (see [F. Colombo, V. Souček, D.C. Struppa, Invariant resolutions for several Fueter operators, J. Geom. Phys. 56 (2006) 1175-1191; R.J. Baston, Quaternionic Complexes, J. Geom. Phys. 8 (1992) 29-52]). The comparison of the two results allows one to describe the operators appearing in the complex in an explicit form. This description leads to a duality theorem which is the generalization of the classical Martineau-Harvey theorem and which is related to hyperfunctions of several quaternionic variables.
Zernike-like systems in polygons and polygonal facets.
Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez
2015-07-20
Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit disk. In [Opt. Lett.32, 74 (2007)10.1364/OL.32.000074OPLEDP0146-9592] we introduced a new Zernike basis for elliptic and annular optical apertures based on an appropriate diffeomorphism between the unit disk and the ellipse and the annulus. Here, we present a generalization of this Zernike basis for a variety of important optical apertures, paying special attention to polygons and the polygonal facets present in segmented mirror telescopes. On the contrary to ad hoc solutions, most of them based on the Gram-Smith orthonormalization method, here we consider a piecewise diffeomorphism that transforms the unit disk into the polygon under consideration. We use this mapping to define a Zernike-like orthonormal system over the polygon. We also consider ensembles of polygonal facets that are essential in the design of segmented mirror telescopes. This generalization, based on in-plane warping of the basis functions, provides a unique solution, and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both the general form and the explicit expressions for a typical example of telescope optical aperture are provided.
Analytic derivation of bacterial growth laws from a simple model of intracellular chemical dynamics.
Pandey, Parth Pratim; Jain, Sanjay
2016-09-01
Experiments have found that the growth rate and certain other macroscopic properties of bacterial cells in steady-state cultures depend upon the medium in a surprisingly simple manner; these dependencies are referred to as 'growth laws'. Here we construct a dynamical model of interacting intracellular populations to understand some of the growth laws. The model has only three population variables: an amino acid pool, a pool of enzymes that transport an external nutrient and produce the amino acids, and ribosomes that catalyze their own and the enzymes' production from the amino acids. We assume that the cell allocates its resources between the enzyme sector and the ribosomal sector to maximize its growth rate. We show that the empirical growth laws follow from this assumption and derive analytic expressions for the phenomenological parameters in terms of the more basic model parameters. Interestingly, the maximization of the growth rate of the cell as a whole implies that the cell allocates resources to the enzyme and ribosomal sectors in inverse proportion to their respective 'efficiencies'. The work introduces a mathematical scheme in which the cellular growth rate can be explicitly determined and shows that two large parameters, the number of amino acid residues per enzyme and per ribosome, are useful for making approximations.
NASA Technical Reports Server (NTRS)
Tal-Ezer, Hillel
1987-01-01
During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
A moment-convergence method for stochastic analysis of biochemical reaction networks.
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfour, Mohammed; Yoon, Wang Jung; Yoon-Geun
Defining and understanding hydrocarbon expressions in seismic expression is main concern of geoscientists in oil and gas exploration and production. Over the last decades several mathematical approaches have been developed in this regard. Most of approaches have addressed information in amplitude of seismic data. Recently, more attention has been drawn towards frequency related information in order to extract frequency behaviors of hydrocarbons bearing sediments. Spectrally decomposing seismic data into individual frequencies found to be an excellent tool for investigating geological formations and their pore fluids. To accomplish this, several mathematical approaches have been invoked. Continuous wavelet transform and Short Timemore » Window Fourier transform are widely used techniques for this purpose. This paper gives an overview of some widely used mathematical technique in hydrocarbon reservoir detection and mapping. This is followed by an application on real data from Boonsville field.« less
LES with and without explicit filtering: comparison and assessment of various models
NASA Astrophysics Data System (ADS)
Winckelmans, Gregoire S.; Jeanmart, Herve; Wray, Alan A.; Carati, Daniele
2000-11-01
The proper mathematical formalism for large eddy simulation (LES) of turbulent flows assumes that a regular ``explicit" filter (i.e., a filter with a well-defined second moment, such as the gaussian, the top hat, etc.) is applied to the equations of fluid motion. This filter is then responsible for a ``filtered-scale" stress. Because of the discretization of the filtered equations, using the LES grid, there is also a ``subgrid-scale" stress. The global effective stress is found to be the discretization of a filtered-scale stress plus a subgrid-scale stress. The former can be partially reconstructed from an exact, infinite, series, the first term of which is the ``tensor-diffusivity" model of Leonard and is found, in practice, to be sufficient for modeling. Alternatively, sufficient reconstruction can also be achieved using the ``scale-similarity" model of Bardina. The latter corresponds to loss of information: it cannot be reconstructed; its effect (essentially dissipation) must be modeled using ad hoc modeling strategies (such as the dynamic version of the ``effective viscosity" model of Smagorinsky). Practitionners also often assume LES without explicit filtering: the effective stress is then only a subgrid-scale stress. We here compare the performance of various LES models for both approaches (with and without explicit filtering), and for cases without solid boundaries: (1) decay of isotropic turbulence; (2) decay of aircraft wake vortices in a turbulent atmosphere. One main conclusion is that better subgrid-scale models are still needed, the effective viscosity models being too active at the large scales.
Schwinger terms from external field problems
NASA Astrophysics Data System (ADS)
Ekstrand, Christian
1999-01-01
The current algebra for second quantized chiral fermions in an external eld contains Schwinger terms. These are studied in two di erent ways. Both are non-perturbative and valid for arbitrary odd dimension of the physical space, although explicit expressions are only given for lower dimensions. The thesis is an introductory text to the four appended research papers. In the rst two papers, Schwinger terms are studied by realizing gauge transformations as linear operators acting on sections of the bundle of Fock spaces parametrized byvector potentials. Bosons and fermions are mixed in a Z2-graded fashion. Charged particles are considered in the rst paper and neutral particles in the second. In the the third and the fourth paper, Schwinger terms are identi ed with cocycles obtained from the family index theorem for a manifold with boundary. A generating form for the covariant anomaly and Schwinger term is obtained in the third paper. The rst three papers consider Yang-Mills while the fourth (in cooperation with Jouko Mickelsson) also includes gravitation. Key words: Schwinger terms, external anomaly, Z2-grading, index theory. eld problems, higher dimensions, chiral iii iv Preface This thesis will be about Schwinger terms. It is terms that appear in equal time commutators of currents in quantum eld theory. As a mathematical physicist I nd it hard to write a thesis about this subject. Both the physical and mathematical aspects should preferably be covered. Ihavedecided to focus on some of the mathematical tools that the Schwinger term and the closely related chiral anomaly have in common. This is part of what I have learned during the years 1994{1999 as a graduate student attheRoyal Institute of Technology. The following conventions and assumptions will be made throughout the thesis: All manifolds are assumed to be second countable and Hausdor . They are assumed to be paracompact whenever a partition of unity argument is needed. In nite-dimensional manifolds are also considered unless stated otherwise. The physical space (-time) M is real while all other manifolds and (mathematical) elds are assumed to be complex if nothing is said about them. All manifolds, bre bundles and sections are assumed to be smooth unless explicitly stated otherwise. The restriction operator to local neighbourhoods will be suppressed when convenient. The content of the thesis will now be described brie y. Chapter 1 contains a short introduction to anomalies. Basic ideas behind index theorems and determinant bundles are reviewed in 2. Mathematical ideas which are not very well-known are used there, and the text can therefore be considered as quite `heavy'. The reader who is satis ed with a short discussion about the (family) index theorem should therefore not read this chapter but rather consult section 2inPaper IV or some of the various physics articles that reviews the matter, for instance [1{5]. The cohomological meaning of transgression, and related homomorphisms, is covered by chapter 3. This chapter is independent of the previous one and is not absolutely necessary for the rest of the thesis. Then, in chapter 4, the mathematical structure of a gauge theory is developed. This part is independent of the previous chapters. It is further explained how the family index theorem can be applied. Using these results, the chiral anomaly and the Schwinger term are calculated in chapter 5. Finally, inchapter 6, the Schwinger term is de ned and discussed. It is done by viewing it as an obstruction in the lift of the action of the gauge group from the space of gauge connections to the Fock bundle. This chapter is independent of the previous ones. The thesis contains four appended research papers, henceforth referred to as Papers I{IV. Complementary material to Papers I and II can be found in chapter 6. Chapter 2{5 serves as background material for Papers III and IV. v List of Papers I Christian Ekstrand, Z2-Graded Cocycles in Higher Dimensions, Lett. Math. Phys. 43, 359 (1998) II Christian Ekstrand, Neutral Particles and Schwinger Terms, Submitted for publication (hep-th/9903148) III Christian Ekstrand, A Simple Algebraic Derivation of the Covariant Anomaly and Schwinger Term, Submitted for publication (hep-th/9903147) IV Christian Ekstrand and Jouko Mickelsson, Gravitational Anomalies, Gerbes and Hamiltonian Quantization, Submitted for publication (hep-th/9904189)
Ricciardelli, Paola; Lugli, Luisa; Pellicano, Antonello; Iani, Cristina; Nicoletti, Roberto
2016-01-01
In three experiments, we tested whether the amount of attentional resources needed to process a face displaying neutral/angry/fearful facial expressions with direct or averted gaze depends on task instructions, and face presentation. To this end, we used a Rapid Serial Visual Presentation paradigm in which participants in Experiment 1 were first explicitly asked to discriminate whether the expression of a target face (T1) with direct or averted gaze was angry or neutral, and then to judge the orientation of a landscape (T2). Experiment 2 was identical to Experiment 1 except that participants had to discriminate the gender of the face of T1 and fearful faces were also presented randomly inter-mixed within each block of trials. Experiment 3 differed from Experiment 2 only because angry and fearful faces were never presented within the same block. The findings indicated that the presence of the attentional blink (AB) for face stimuli depends on specific combinations of gaze direction and emotional facial expressions and crucially revealed that the contextual factors (e.g., explicit instruction to process the facial expression and the presence of other emotional faces) can modify and even reverse the AB, suggesting a flexible and more contextualized deployment of attentional resources in face processing. PMID:26898473
Note on use of slope diffraction coefficients for aperture antennas on finite ground planes
NASA Technical Reports Server (NTRS)
Cockrell, C. R.; Beck, F. B.
1995-01-01
The use of slope diffraction coefficients along with regular diffraction coefficients for calculating the radiation patterns of aperture antennas in a finite ground plane is investigated. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The expressions for the incident magnetic field in terms of the magnetic current in the aperture are given. The slope of the incident magnetic field is calculated and closed form expressions are presented.
Neutron interference in the Earth's gravitational field
NASA Astrophysics Data System (ADS)
Galiautdinov, Andrei; Ryder, Lewis H.
2017-06-01
This work relates to the famous experiments, performed in 1975 and 1979 by Werner et al., measuring neutron interference and neutron Sagnac effects in the earth's gravitational field. Employing the method of Stodolsky in its weak field approximation, explicit expressions are derived for the two phase shifts, which turn out to be in agreement with the experiments and with the previously obtained expressions derived from semi-classical arguments: these expressions are simply modified by relativistic correction factors.
Conscious and unconscious processing of facial expressions: evidence from two split-brain patients.
Prete, Giulia; D'Ascenzo, Stefania; Laeng, Bruno; Fabri, Mara; Foschi, Nicoletta; Tommasi, Luca
2015-03-01
We investigated how the brain's hemispheres process explicit and implicit facial expressions in two 'split-brain' patients (one with a complete and one with a partial anterior resection). Photographs of faces expressing positive, negative or neutral emotions were shown either centrally or bilaterally. The task consisted in judging the friendliness of each person in the photographs. Half of the photograph stimuli were 'hybrid faces', that is an amalgamation of filtered images which contained emotional information only in the low range of spatial frequency, blended to a neutral expression of the same individual in the rest of the spatial frequencies. The other half of the images contained unfiltered faces. With the hybrid faces the patients and a matched control group were more influenced in their social judgements by the emotional expression of the face shown in the left visual field (LVF). When the expressions were shown explicitly, that is without filtering, the control group and the partially callosotomized patient based their judgement on the face shown in the LVF, whereas the complete split-brain patient based his ratings mainly on the face presented in the right visual field. We conclude that the processing of implicit emotions does not require the integrity of callosal fibres and can take place within subcortical routes lateralized in the right hemisphere. © 2013 The British Psychological Society.
Mjaaland, Trond A; Finset, Arnstein; Jensen, Bård Fossli; Gulbrandsen, Pål
2011-09-01
Patients express their negative emotions in medical consultations either implicitly as cue to an underlying unpleasant emotion or explicitly as a clear, unambiguous concern. The health provider's response to such cues and concerns is important for the outcome of consultations. Yet, physicians often neglect patient's negative emotions. Most studies of this subject are from primary health care. We aimed to describe how physicians in a hospital respond to negative emotions in an outpatient setting. Ninety six consultations were videotaped in a general teaching hospital. The Verona Coding Definitions of Emotional Sequences was used to identify patients' expression of negative emotions in terms of cue and concern and to code physicians' subsequent responses. Cohen's kappa was used as interrater reliability measure. Acceptable kappa level was set to .60. We observed 163 expressions of negative emotions. In general, the physician responses to patients' cues and concerns did not include follow up or exploration. Concerns more often than cues led to lack of emotional exploration. When patients expressed negative emotions or cues to such, hospital physicians tended to move away from emotional communication, particularly if the emotion was expressed as an explicit concern. Medical training should enable physicians' to explore the patients' emotions in situations where it will improve the medical treatment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
House, J Daniel
2005-12-01
A recent study (1) of undergraduate students in a precalculus course indicated that they expressed slightly positive attitudes toward mathematics. It is important, however, to examine relationships between students' initial attitudes and achievement outcomes. The present purpose was to assess the relationship between self-beliefs and mathematics achievement for a large national sample of students from the TIMSS 1999 international sample (eighth graders) from Japan. Several significant relationships between mathematics beliefs and test scores were noted. In addition, the overall multiple regression equation that assessed the joint significance of the complete set of self-belief variables was significant (F7.65 = 159.48, p < .001) and explained 20.6% of the variance in mathematics achievement test scores.
NASA Astrophysics Data System (ADS)
Sumarsih; Budiyono; Indriati, D.
2018-04-01
This research aims to understand the students’ weaknesses in mathematical reasoning ability in junior secondary school. A set of multiple choice tests were used to measure this ability involve components mathematical communication, basic skills, connection, and logical thinking. A total of 259 respondents were determined by stratified cluster random sampling. Data were analyzed using one-way Anova test with Fobs = 109.5760 and F = 3.0000. The results show that students’ ability from schools with high National Exam in mathematics category was the best and followed by medium and low category. Mathematical connection is the most difficult component performed by students. In addition, most students also have difficulty in expressing ideas and developing logical arguments.