Sample records for explicit sensor network

  1. Distributed Sensing and Processing: A Graphical Model Approach

    DTIC Science & Technology

    2005-11-30

    that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs

  2. A Queueing Approach to Optimal Resource Replication in Wireless Sensor Networks

    DTIC Science & Technology

    2009-04-29

    network (an energy- centric approach) or to ensure the proportion of query failures does not exceed a predetermined threshold (a failure- centric ...replication strategies in wireless sensor networks. The model can be used to minimize either the total transmission rate of the network (an energy- centric ...approach) or to ensure the proportion of query failures does not exceed a predetermined threshold (a failure- centric approach). The model explicitly

  3. Decentralized Hypothesis Testing in Energy Harvesting Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Tarighati, Alla; Gross, James; Jalden, Joakim

    2017-09-01

    We consider the problem of decentralized hypothesis testing in a network of energy harvesting sensors, where sensors make noisy observations of a phenomenon and send quantized information about the phenomenon towards a fusion center. The fusion center makes a decision about the present hypothesis using the aggregate received data during a time interval. We explicitly consider a scenario under which the messages are sent through parallel access channels towards the fusion center. To avoid limited lifetime issues, we assume each sensor is capable of harvesting all the energy it needs for the communication from the environment. Each sensor has an energy buffer (battery) to save its harvested energy for use in other time intervals. Our key contribution is to formulate the problem of decentralized detection in a sensor network with energy harvesting devices. Our analysis is based on a queuing-theoretic model for the battery and we propose a sensor decision design method by considering long term energy management at the sensors. We show how the performance of the system changes for different battery capacities. We then numerically show how our findings can be used in the design of sensor networks with energy harvesting sensors.

  4. Self-localization of wireless sensor networks using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Ertin, Emre; Priddy, Kevin L.

    2005-03-01

    Recently there has been a renewed interest in the notion of deploying large numbers of networked sensors for applications ranging from environmental monitoring to surveillance. In a typical scenario a number of sensors are distributed in a region of interest. Each sensor is equipped with sensing, processing and communication capabilities. The information gathered from the sensors can be used to detect, track and classify objects of interest. For a number of locations the sensors location is crucial in interpreting the data collected from those sensors. Scalability requirements dictate sensor nodes that are inexpensive devices without a dedicated localization hardware such as GPS. Therefore the network has to rely on information collected within the network to self-localize. In the literature a number of algorithms has been proposed for network localization which uses measurements informative of range, angle, proximity between nodes. Recent work by Patwari and Hero relies on sensor data without explicit range estimates. The assumption is that the correlation structure in the data is a monotone function of the intersensor distances. In this paper we propose a new method based on unsupervised learning techniques to extract location information from the sensor data itself. We consider a grid consisting of virtual nodes and try to fit grid in the actual sensor network data using the method of self organizing maps. Then known sensor network geometry can be used to rotate and scale the grid to a global coordinate system. Finally, we illustrate how the virtual nodes location information can be used to track a target.

  5. Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution

    PubMed Central

    Yue, Bo; Wang, Shuang; Liang, Xuefeng; Jiao, Licheng; Xu, Caijin

    2016-01-01

    The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception. PMID:26927114

  6. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  7. Lag compensation of optical fibers or thermocouples to achieve waveform fidelity in dynamic gas pyrometry

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1991-01-01

    Fidelity of waveform reproduction requires constant amplitude ratio and constant time lag of a temperature sensor's indication, at all frequencies of interest. However, heat-transfer type sensors usually cannot satisfy these requirements. Equations for the actual indication of a thermocouple and an optical-fiber pyrometer are given explicitly, in terms of sensor and flowing-gas properties. A practical, realistic design of each type of sensor behaves like a first-order system with amplitude-ratio attenuation inversely proportional to frequency when the frequency exceeds the corner frequency. Only at much higher frequencies does the amplitude-ratio attenuation for the optical fiber sensor become inversely proportional to the square root of the frequency. Design options for improving the frequency response are discussed. On-line electrical lag compensation, using a linear amplifier and a passive compensation network, can extend the corner frequency of the thermocouple 100-fold or more; a similar passive network can be used for the optical-fiber sensor. Design details for these networks are presented.

  8. Belief Function Based Decision Fusion for Decentralized Target Classification in Wireless Sensor Networks

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang

    2015-01-01

    Decision fusion in sensor networks enables sensors to improve classification accuracy while reducing the energy consumption and bandwidth demand for data transmission. In this paper, we focus on the decentralized multi-class classification fusion problem in wireless sensor networks (WSNs) and a new simple but effective decision fusion rule based on belief function theory is proposed. Unlike existing belief function based decision fusion schemes, the proposed approach is compatible with any type of classifier because the basic belief assignments (BBAs) of each sensor are constructed on the basis of the classifier’s training output confusion matrix and real-time observations. We also derive explicit global BBA in the fusion center under Dempster’s combinational rule, making the decision making operation in the fusion center greatly simplified. Also, sending the whole BBA structure to the fusion center is avoided. Experimental results demonstrate that the proposed fusion rule has better performance in fusion accuracy compared with the naïve Bayes rule and weighted majority voting rule. PMID:26295399

  9. General visual robot controller networks via artificial evolution

    NASA Astrophysics Data System (ADS)

    Cliff, David; Harvey, Inman; Husbands, Philip

    1993-08-01

    We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.

  10. Explicit Context Matching in Content-Based Publish/Subscribe Systems

    PubMed Central

    Vavassori, Sergio; Soriano, Javier; Lizcano, David; Jiménez, Miguel

    2013-01-01

    Although context could be exploited to improve performance, elasticity and adaptation in most distributed systems that adopt the publish/subscribe (P/S) communication model, only a few researchers have focused on the area of context-aware matching in P/S systems and have explored its implications in domains with highly dynamic context like wireless sensor networks (WSNs) and IoT-enabled applications. Most adopted P/S models are context agnostic or do not differentiate context from the other application data. In this article, we present a novel context-aware P/S model. SilboPS manages context explicitly, focusing on the minimization of network overhead in domains with recurrent context changes related, for example, to mobile ad hoc networks (MANETs). Our approach represents a solution that helps to efficiently share and use sensor data coming from ubiquitous WSNs across a plethora of applications intent on using these data to build context awareness. Specifically, we empirically demonstrate that decoupling a subscription from the changing context in which it is produced and leveraging contextual scoping in the filtering process notably reduces (un)subscription cost per node, while improving the global performance/throughput of the network of brokers without altering the cost of SIENA-like topology changes. PMID:23529118

  11. An Efficient Location Verification Scheme for Static Wireless Sensor Networks.

    PubMed

    Kim, In-Hwan; Kim, Bo-Sung; Song, JooSeok

    2017-01-24

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.

  12. An Efficient Location Verification Scheme for Static Wireless Sensor Networks

    PubMed Central

    Kim, In-hwan; Kim, Bo-sung; Song, JooSeok

    2017-01-01

    In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors. PMID:28125007

  13. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.

    PubMed

    Ordóñez, Francisco Javier; Roggen, Daniel

    2016-01-18

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters' influence on performance to provide insights about their optimisation.

  14. Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.

  15. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios.

    PubMed

    Moreno-Salinas, David; Pascoal, Antonio; Aranda, Joaquin

    2013-08-12

    In this paper, we address the problem of determining the optimal geometric configuration of an acoustic sensor network that will maximize the angle-related information available for underwater target positioning. In the set-up adopted, a set of autonomous vehicles carries a network of acoustic units that measure the elevation and azimuth angles between a target and each of the receivers on board the vehicles. It is assumed that the angle measurements are corrupted by white Gaussian noise, the variance of which is distance-dependent. Using tools from estimation theory, the problem is converted into that of minimizing, by proper choice of the sensor positions, the trace of the inverse of the Fisher Information Matrix (also called the Cramer-Rao Bound matrix) to determine the sensor configuration that yields the minimum possible covariance of any unbiased target estimator. It is shown that the optimal configuration of the sensors depends explicitly on the intensity of the measurement noise, the constraints imposed on the sensor configuration, the target depth and the probabilistic distribution that defines the prior uncertainty in the target position. Simulation examples illustrate the key results derived.

  16. Location estimation in wireless sensor networks using spring-relaxation technique.

    PubMed

    Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M

    2010-01-01

    Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.

  17. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

    PubMed Central

    Ordóñez, Francisco Javier; Roggen, Daniel

    2016-01-01

    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation. PMID:26797612

  18. Cacades: A reliable dissemination protocol for data collection sensor network

    USGS Publications Warehouse

    Peng, Y.; Song, W.; Huang, R.; Xu, M.; Shirazi, B.; LaHusen, R.; Pei, G.

    2009-01-01

    In this paper, we propose a fast and reliable data dissemination protocol Cascades to disseminate data from the sink(base station) to all or a subset of nodes in a data collection sensor network. Cascades makes use of the parentmonitor-children analogy to ensure reliable dissemination. Each node monitors whether or not its children have received the broadcast messages through snooping children's rebroadcasts or waiting for explicit ACKs. If a node detects a gap in its message sequences, it can fetch the missing messages from its neighbours reactively. Cascades also considers many practical issues for field deployment, such as dynamic topology, link/node failure, etc.. It therefore guarantees that a disseminated message from the sink will reach all intended receivers and the dissemination is terminated in a short time period. Notice that, all existing dissemination protocols either do not guarantee reliability or do not terminate [1, 2], which does not meet the requirement of real-time command control. We conducted experiment evaluations in both TOSSIM simulator and a sensor network testbed to compare Cascades with those existing dissemination protocols in TinyOS sensor networks, which show that Cascades achieves a higher degree of reliability, lower communication cost, and less delivery delay. ??2009 IEEE.

  19. Metadata behind the Interoperability of Wireless Sensor Networks

    PubMed Central

    Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso

    2009-01-01

    Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability. PMID:22412330

  20. Metadata behind the Interoperability of Wireless Sensor Networks.

    PubMed

    Ballari, Daniela; Wachowicz, Monica; Callejo, Miguel Angel Manso

    2009-01-01

    Wireless Sensor Networks (WSNs) produce changes of status that are frequent, dynamic and unpredictable, and cannot be represented using a linear cause-effect approach. Consequently, a new approach is needed to handle these changes in order to support dynamic interoperability. Our approach is to introduce the notion of context as an explicit representation of changes of a WSN status inferred from metadata elements, which in turn, leads towards a decision-making process about how to maintain dynamic interoperability. This paper describes the developed context model to represent and reason over different WSN status based on four types of contexts, which have been identified as sensing, node, network and organisational contexts. The reasoning has been addressed by developing contextualising and bridges rules. As a result, we were able to demonstrate how contextualising rules have been used to reason on changes of WSN status as a first step towards maintaining dynamic interoperability.

  1. GLEON: An Example of Next Generation Network Biogeoscience

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Hanson, P. C.

    2014-12-01

    When we think of sensor networks, we often focus on hardware development and deployments and the resulting data and synthesis. Yet, for networks that cross institutional boundaries, such as distributed federations of observatories, people are the critical network resource. They establish the linkages and enable access to and interpretation of the data. In the Global Lake Ecological Observatory Network (GLEON), we found that careful integration of three networks --people, hardware, and data--was essential to providing an effective research environment. Accomplishing this integration is not trivial and requires a shared vision among members, explicit attention to the emerging tenets of the science of team science, and training of scientists at all career stages. In GLEON these efforts have resulted in scientific inferences covering new scales, crossing broad ecosystem gradients, and capturing important environmental events. Network-level capital has been increased by the deployment of instrumented buoys, the creation of new data sets and publicly available models, and new ways to synthesize and analyze high frequency data. The formation of international teams of scientists is essential to these goals. Our approach unites a diverse membership in GLEON-style team science, with emphasis on training and engagement of graduate students while creating knowledge. Examples of the bottom-up scientific output from GLEON include creating and confronting models using high frequency data from sensor networks; interpreting output from biological sensors (e.g., algal pigment sensors) as predictors for water quality indices such as water clarity; and understanding the relationship between occasional, highly noxious algal blooms and fluorometric measurements of pigments from sensor networks. Numerical simulation models are not adequate for predicting highly skewed distributions of phytoplankton in eutrophic lakes, suggesting that our fundamental understanding of phytoplankton population dynamics needs modification as do our models, both of which can be improved with the use of high frequency data.

  2. Identification of Hot Moments and Hot Spots for Real-Time Adaptive Control of Multi-scale Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wietsma, T.; Minsker, B. S.

    2012-12-01

    Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling efficiency during hot moments as identified using heuristic approach.

  3. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  4. Event-Based Variance-Constrained ${\\mathcal {H}}_{\\infty }$ Filtering for Stochastic Parameter Systems Over Sensor Networks With Successive Missing Measurements.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2018-03-01

    This paper is concerned with the distributed filtering problem for a class of discrete time-varying stochastic parameter systems with error variance constraints over a sensor network where the sensor outputs are subject to successive missing measurements. The phenomenon of the successive missing measurements for each sensor is modeled via a sequence of mutually independent random variables obeying the Bernoulli binary distribution law. To reduce the frequency of unnecessary data transmission and alleviate the communication burden, an event-triggered mechanism is introduced for the sensor node such that only some vitally important data is transmitted to its neighboring sensors when specific events occur. The objective of the problem addressed is to design a time-varying filter such that both the requirements and the variance constraints are guaranteed over a given finite-horizon against the random parameter matrices, successive missing measurements, and stochastic noises. By recurring to stochastic analysis techniques, sufficient conditions are established to ensure the existence of the time-varying filters whose gain matrices are then explicitly characterized in term of the solutions to a series of recursive matrix inequalities. A numerical simulation example is provided to illustrate the effectiveness of the developed event-triggered distributed filter design strategy.

  5. Exploiting node mobility for energy optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    El-Moukaddem, Fatme Mohammad

    Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.

  6. The Solar Spectrum: An Atmospheric Remote Sensing Perspective

    NASA Technical Reports Server (NTRS)

    Toon, Geoff

    2013-01-01

    The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.

  7. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG.

    PubMed

    Jin, Wenquan; Kim, Do Hyeun

    2018-02-20

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  8. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    PubMed Central

    Kim, Do Hyeun

    2018-01-01

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system. PMID:29461493

  9. Low-complex energy-aware image communication in visual sensor networks

    NASA Astrophysics Data System (ADS)

    Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran

    2013-10-01

    A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.

  10. From Field Notes to Data Portal - A Scalable Data QA/QC Framework for Tower Networks: Progress and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Sturtevant, C.; Hackley, S.; Lee, R.; Holling, G.; Bonarrigo, S.

    2017-12-01

    Quality assurance and control (QA/QC) is one of the most important yet challenging aspects of producing research-quality data. Data quality issues are multi-faceted, including sensor malfunctions, unmet theoretical assumptions, and measurement interference from humans or the natural environment. Tower networks such as Ameriflux, ICOS, and NEON continue to grow in size and sophistication, yet tools for robust, efficient, scalable QA/QC have lagged. Quality control remains a largely manual process heavily relying on visual inspection of data. In addition, notes of measurement interference are often recorded on paper without an explicit pathway to data flagging. As such, an increase in network size requires a near-proportional increase in personnel devoted to QA/QC, quickly stressing the human resources available. We present a scalable QA/QC framework in development for NEON that combines the efficiency and standardization of automated checks with the power and flexibility of human review. This framework includes fast-response monitoring of sensor health, a mobile application for electronically recording maintenance activities, traditional point-based automated quality flagging, and continuous monitoring of quality outcomes and longer-term holistic evaluations. This framework maintains the traceability of quality information along the entirety of the data generation pipeline, and explicitly links field reports of measurement interference to quality flagging. Preliminary results show that data quality can be effectively monitored and managed for a multitude of sites with a small group of QA/QC staff. Several components of this framework are open-source, including a R-Shiny application for efficiently monitoring, synthesizing, and investigating data quality issues.

  11. Using In-Situ Optical Sensors to Understand the Biogeochemistry of Dissolved Organic Matter Across a Stream Network

    NASA Astrophysics Data System (ADS)

    Wymore, Adam S.; Potter, Jody; Rodríguez-Cardona, Bianca; McDowell, William H.

    2018-04-01

    The advent of high-frequency in situ optical sensors provides new opportunities to study the biogeochemistry of dissolved organic matter (DOM) in aquatic ecosystems. We used fDOM (fluorescent dissolved organic matter) to examine the spatial and temporal variability in dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) across a heterogeneous stream network that varies in NO3- concentration. Across the ten study streams fDOM explained twice the variability in the concentration of DOC (r2 = 0.82) compared to DON (r2 = 0.39), which suggests that the N-rich fraction of DOM is either more variable in its sources or more bioreactive than the more stable C-rich fraction. Among sites, DON molar fluorescence was approximately 3x more variable than DOC molar fluorescence and was correlated with changes in inorganic N, indicating that DON is both more variable in composition as well as highly responsive to changes in inorganic N. Laboratory results also indicate that the fDOM sensors we used perform as well as the excitation-emission wavelength pair generally referred to as the "tryptophan-like" peak when measured under laboratory conditions. However, since neither the field sensor not the laboratory measurements explained a large percentage of variation in DON concentrations, challenges still remain for monitoring the ambient pool of dissolved organic nitrogen. Sensor networks provide new insights into the potential reactivity of DOM and the variability in DOC and DON biogeochemistry across sites. These insights are needed to build spatially explicit models describing organic matter dynamics and water quality.

  12. Constrained off-line synthesis approach of model predictive control for networked control systems with network-induced delays.

    PubMed

    Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng

    2015-03-01

    This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Application of Deep Learning of Multi-Temporal SENTINEL-1 Images for the Classification of Coastal Vegetation Zone of the Danube Delta

    NASA Astrophysics Data System (ADS)

    Niculescu, S.; Ienco, D.; Hanganu, J.

    2018-04-01

    Land cover is a fundamental variable for regional planning, as well as for the study and understanding of the environment. This work propose a multi-temporal approach relying on a fusion of radar multi-sensor data and information collected by the latest sensor (Sentinel-1) with a view to obtaining better results than traditional image processing techniques. The Danube Delta is the site for this work. The spatial approach relies on new spatial analysis technologies and methodologies: Deep Learning of multi-temporal Sentinel-1. We propose a deep learning network for image classification which exploits the multi-temporal characteristic of Sentinel-1 data. The model we employ is a Gated Recurrent Unit (GRU) Network, a recurrent neural network that explicitly takes into account the time dimension via a gated mechanism to perform the final prediction. The main quality of the GRU network is its ability to consider only the important part of the information coming from the temporal data discarding the irrelevant information via a forgetting mechanism. We propose to use such network structure to classify a series of images Sentinel-1 (20 Sentinel-1 images acquired between 9.10.2014 and 01.04.2016). The results are compared with results of the classification of Random Forest.

  14. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks

    PubMed Central

    Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-01-01

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546

  15. From field notes to data portal - An operational QA/QC framework for tower networks

    NASA Astrophysics Data System (ADS)

    Sturtevant, C.; Hackley, S.; Meehan, T.; Roberti, J. A.; Holling, G.; Bonarrigo, S.

    2016-12-01

    Quality assurance and control (QA/QC) is one of the most important yet challenging aspects of producing research-quality data. This is especially so for environmental sensor networks collecting numerous high-frequency measurement streams at distributed sites. Here, the quality issues are multi-faceted, including sensor malfunctions, unmet theoretical assumptions, and measurement interference from the natural environment. To complicate matters, there are often multiple personnel managing different sites or different steps in the data flow. For large, centrally managed sensor networks such as NEON, the separation of field and processing duties is in the extreme. Tower networks such as Ameriflux, ICOS, and NEON continue to grow in size and sophistication, yet tools for robust, efficient, scalable QA/QC have lagged. Quality control remains a largely manual process relying on visual inspection of the data. In addition, notes of observed measurement interference or visible problems are often recorded on paper without an explicit pathway to data flagging during processing. As such, an increase in network size requires a near-proportional increase in personnel devoted to QA/QC, quickly stressing the human resources available. There is a need for a scalable, operational QA/QC framework that combines the efficiency and standardization of automated tests with the power and flexibility of visual checks, and includes an efficient communication pathway from field personnel to data processors to end users. Here we propose such a framework and an accompanying set of tools in development, including a mobile application template for recording tower maintenance and an R/shiny application for efficiently monitoring and synthesizing data quality issues. This framework seeks to incorporate lessons learned from the Ameriflux community and provide tools to aid continued network advancements.

  16. Particle Filtering for Model-Based Anomaly Detection in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Solano, Wanda; Banerjee, Bikramjit; Kraemer, Landon

    2012-01-01

    A novel technique has been developed for anomaly detection of rocket engine test stand (RETS) data. The objective was to develop a system that postprocesses a csv file containing the sensor readings and activities (time-series) from a rocket engine test, and detects any anomalies that might have occurred during the test. The output consists of the names of the sensors that show anomalous behavior, and the start and end time of each anomaly. In order to reduce the involvement of domain experts significantly, several data-driven approaches have been proposed where models are automatically acquired from the data, thus bypassing the cost and effort of building system models. Many supervised learning methods can efficiently learn operational and fault models, given large amounts of both nominal and fault data. However, for domains such as RETS data, the amount of anomalous data that is actually available is relatively small, making most supervised learning methods rather ineffective, and in general met with limited success in anomaly detection. The fundamental problem with existing approaches is that they assume that the data are iid, i.e., independent and identically distributed, which is violated in typical RETS data. None of these techniques naturally exploit the temporal information inherent in time series data from the sensor networks. There are correlations among the sensor readings, not only at the same time, but also across time. However, these approaches have not explicitly identified and exploited such correlations. Given these limitations of model-free methods, there has been renewed interest in model-based methods, specifically graphical methods that explicitly reason temporally. The Gaussian Mixture Model (GMM) in a Linear Dynamic System approach assumes that the multi-dimensional test data is a mixture of multi-variate Gaussians, and fits a given number of Gaussian clusters with the help of the wellknown Expectation Maximization (EM) algorithm. The parameters thus learned are used for calculating the joint distribution of the observations. However, this GMM assumption is essentially an approximation and signals the potential viability of non-parametric density estimators. This is the key idea underlying the new approach.

  17. Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks

    PubMed Central

    Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang

    2016-01-01

    This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541

  18. Sensor network based solar forecasting using a local vector autoregressive ridge framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.; Yoo, S.; Heiser, J.

    2016-04-04

    The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations duemore » to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.« less

  19. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  20. The Shale Hills Critical Zone Observatory for Embedded Sensing and Simulation

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Davis, K.; Kane, T.; Boyer, E.

    2009-04-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real-time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models deployed and coordinated at a testbed within the Penn State Experimental Forest. The NSF-funded CZO is designed to observe the detailed space and time complexities of the water and energy cycle for a watershed and ultimately the river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. (PIHM; http://sourceforge.net/projects/pihmmodel/; http://sourceforge.net/projects/pihmgis/ ) The CZO sensor and simulation system is being developed to have the following elements: 1) extensive, spatially-distributed smart sensor networks to gather intensive soil, geologic, hydrologic, geochemical and isotopic data; 2) spatially-explicit multiphysics models/solutions of the land-subsurface-vegetation-atmosphere system; and 3) parallel/distributed, adaptive algorithms for rapidly simulating the states of the watershed at high resolution, and 4) signal processing tools for data mining and parameter estimation. The prototype proposed sensor array and simulation system proposed is demonstrated with preliminary results from our first year.

  1. On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor.

    PubMed

    Kim, Woosuk; Kim, Myunggyu

    2018-03-19

    In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing) verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.

  2. Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels.

    PubMed

    Mueller, Amy V; Hemond, Harold F

    2013-12-15

    A novel artificial neural network (ANN) architecture is proposed which explicitly incorporates a priori system knowledge, i.e., relationships between output signals, while preserving the unconstrained non-linear function estimator characteristics of the traditional ANN. A method is provided for architecture layout, disabling training on a subset of neurons, and encoding system knowledge into the neuron structure. The novel architecture is applied to raw readings from a chemical sensor multi-probe (electric tongue), comprised of off-the-shelf ion selective electrodes (ISEs), to estimate individual ion concentrations in solutions at environmentally relevant concentrations and containing environmentally representative ion mixtures. Conductivity measurements and the concept of charge balance are incorporated into the ANN structure, resulting in (1) removal of estimation bias typically seen with use of ISEs in mixtures of unknown composition and (2) improvement of signal estimation by an order of magnitude or more for both major and minor constituents relative to use of ISEs as stand-alone sensors and error reduction by 30-50% relative to use of standard ANN models. This method is suggested as an alternative to parameterization of traditional models (e.g., Nikolsky-Eisenman), for which parameters are strongly dependent on both analyte concentration and temperature, and to standard ANN models which have no mechanism for incorporation of system knowledge. Network architecture and weighting are presented for the base case where the dot product can be used to relate ion concentrations to both conductivity and charge balance as well as for an extension to log-normalized data where the model can no longer be represented in this manner. While parameterization in this case study is analyte-dependent, the architecture is generalizable, allowing application of this method to other environmental problems for which mathematical constraints can be explicitly stated. © 2013 Elsevier B.V. All rights reserved.

  3. Augmenting Trust Establishment in Dynamic Systems with Social Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagesse, Brent J; Kumar, Mohan; Venkatesh, Svetha

    2010-01-01

    Social networking has recently flourished in popularity through the use of social websites. Pervasive computing resources have allowed people stay well-connected to each other through access to social networking resources. We take the position that utilizing information produced by relationships within social networks can assist in the establishment of trust for other pervasive computing applications. Furthermore, we describe how such a system can augment a sensor infrastructure used for event observation with information from mobile sensors (ie, mobile phones with cameras) controlled by potentially untrusted third parties. Pervasive computing systems are invisible systems, oriented around the user. As a result,more » many future pervasive systems are likely to include a social aspect to the system. The social communities that are developed in these systems can augment existing trust mechanisms with information about pre-trusted entities or entities to initially consider when beginning to establish trust. An example of such a system is the Collaborative Virtual Observation (CoVO) system fuses sensor information from disaparate sources in soft real-time to recreate a scene that provides observation of an event that has recently transpired. To accomplish this, CoVO must efficently access services whilst protecting the data from corruption from unknown remote nodes. CoVO combines dynamic service composition with virtual observation to utilize existing infrastructure with third party services available in the environment. Since these services are not under the control of the system, they may be unreliable or malicious. When an event of interest occurs, the given infrastructure (bus cameras, etc.) may not sufficiently cover the necessary information (be it in space, time, or sensor type). To enhance observation of the event, infrastructure is augmented with information from sensors in the environment that the infrastructure does not control. These sensors may be unreliable, uncooperative, or even malicious. Additionally, to execute queries in soft real-time, processing must be distributed to available systems in the environment. We propose to use information from social networks to satisfy these requirements. In this paper, we present our position that knowledge gained from social activities can be used to augment trust mechanisms in pervasive computing. The system uses social behavior of nodes to predict a subset that it wants to query for information. In this context, social behavior such as transit patterns and schedules (which can be used to determine if a queried node is likely to be reliable) or known relationships, such as a phone's address book, that can be used to determine networks of nodes that may also be able to assist in retrieving information. Neither implicit nor explicit relationships necessarily imply that the user trusts an entity, but rather will provide a starting place for establishing trust. The proposed framework utilizes social network information to assist in trust establishment when third-party sensors are used for sensing events.« less

  4. Distributed Prognostics and Health Management with a Wireless Network Architecture

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the prognostics task is over, and after appropriate actions have been taken, all CEs return to their original default configuration. Wireless technology-based implementation would ensure more flexibility in terms of sensor placement. It would also allow more sensors to be deployed because the overhead related to weights of wired systems is not present. Distributed architectures are furthermore generally robust with regard to recovery from node failures.

  5. Real-time method for establishing a detection map for a network of sensors

    DOEpatents

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  6. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  7. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  8. Performance Evaluation of a Prototyped Wireless Ground Sensor Network

    DTIC Science & Technology

    2005-03-01

    the network was capable of dynamic adaptation to failure and degradation. 14. SUBJECT TERMS: Wireless Sensor Network , Unmanned Sensor, Unattended...2 H. WIRELESS SENSOR NETWORKS .................................................................... 3...zation, and network traffic. The evaluated scenarios included outdoor, urban and indoor environments. The characteristics of wireless sensor networks , types

  9. Sensor Authentication in Collaborating Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielefeldt, Jake Uriah

    2014-11-01

    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator O i of Sensor Network S imore » to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.« less

  10. An efficient management system for wireless sensor networks.

    PubMed

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  11. MATE: Machine Learning for Adaptive Calibration Template Detection

    PubMed Central

    Donné, Simon; De Vylder, Jonas; Goossens, Bart; Philips, Wilfried

    2016-01-01

    The problem of camera calibration is two-fold. On the one hand, the parameters are estimated from known correspondences between the captured image and the real world. On the other, these correspondences themselves—typically in the form of chessboard corners—need to be found. Many distinct approaches for this feature template extraction are available, often of large computational and/or implementational complexity. We exploit the generalized nature of deep learning networks to detect checkerboard corners: our proposed method is a convolutional neural network (CNN) trained on a large set of example chessboard images, which generalizes several existing solutions. The network is trained explicitly against noisy inputs, as well as inputs with large degrees of lens distortion. The trained network that we evaluate is as accurate as existing techniques while offering improved execution time and increased adaptability to specific situations with little effort. The proposed method is not only robust against the types of degradation present in the training set (lens distortions, and large amounts of sensor noise), but also to perspective deformations, e.g., resulting from multi-camera set-ups. PMID:27827920

  12. Hybrid architecture for building secure sensor networks

    NASA Astrophysics Data System (ADS)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  13. Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks

    DTIC Science & Technology

    2014-03-31

    Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks M.M. Asadi H. Mahboubi A...2014 Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks Contract Report # AMBUSH.1.1 Contract...pi j /= 0. The sensor network considered in this work is composed of underwater sensors , which use acoustic waves for

  14. Cooperative UAV-Based Communications Backbone for Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs aremore » used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.« less

  15. The Shale Hills Sensorium for Embedded Sensors, Simulation, & Visualization: A Prototype for Land-Vegetation-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Duffy, C.

    2008-12-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.

  16. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    PubMed

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  17. A Risk Based Approach to Limit the Effects of Covert Channels for Internet Sensor Data Aggregators for Sensor Privacy

    NASA Astrophysics Data System (ADS)

    Viecco, Camilo H.; Camp, L. Jean

    Effective defense against Internet threats requires data on global real time network status. Internet sensor networks provide such real time network data. However, an organization that participates in a sensor network risks providing a covert channel to attackers if that organization’s sensor can be identified. While there is benefit for every party when any individual participates in such sensor deployments, there are perverse incentives against individual participation. As a result, Internet sensor networks currently provide limited data. Ensuring anonymity of individual sensors can decrease the risk of participating in a sensor network without limiting data provision.

  18. Time Synchronization in Wireless Sensor Networks

    DTIC Science & Technology

    2003-01-01

    University of California Los Angeles Time Synchronization in Wireless Sensor Networks A dissertation submitted in partial satisfaction of the...4. TITLE AND SUBTITLE Time Synchronization in Wireless Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...1 1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Time Synchronization in Sensor Networks

  19. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.

    PubMed

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-02-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.

  20. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System

    PubMed Central

    Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit

    2017-01-01

    Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148

  1. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    PubMed Central

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  2. Dependable Wireless Sensor Networks for Prognostics and Health Management: A Survey

    DTIC Science & Technology

    2014-10-02

    sensor network has many advantages. First of all, the absence of wires gives sensor networks the ability to cover a large scale surveillance area...system/component health state. Usually, this information is gathered through independent sensors or a wired network of sensors. The use of a wireless

  3. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  4. Multipath routing in wireless sensor networks: survey and research challenges.

    PubMed

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  5. Wireless Sensor Networks for Detection of IED Emplacement

    DTIC Science & Technology

    2009-06-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but

  6. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.

    PubMed

    Zhang, Qingguo; Fok, Mable P

    2017-01-09

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.

  7. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

    PubMed Central

    Zhang, Qingguo; Fok, Mable P.

    2017-01-01

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches. PMID:28075365

  8. Key Exchange Trust Evaluation in Peer-to-Peer Sensor Networks With Unconditionally Secure Key Exchange

    NASA Astrophysics Data System (ADS)

    Gonzalez, Elias; Kish, Laszlo B.

    2016-03-01

    As the utilization of sensor networks continue to increase, the importance of security becomes more profound. Many industries depend on sensor networks for critical tasks, and a malicious entity can potentially cause catastrophic damage. We propose a new key exchange trust evaluation for peer-to-peer sensor networks, where part of the network has unconditionally secure key exchange. For a given sensor, the higher the portion of channels with unconditionally secure key exchange the higher the trust value. We give a brief introduction to unconditionally secured key exchange concepts and mention current trust measures in sensor networks. We demonstrate the new key exchange trust measure on a hypothetical sensor network using both wired and wireless communication channels.

  9. Open Source Radiation Hardened by Design Technology

    NASA Technical Reports Server (NTRS)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  10. Three-dimensional ocean sensor networks: A survey

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Liu, Yingjian; Guo, Zhongwen

    2012-12-01

    The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research, oceanography, ocean monitoring, offshore exploration, and defense or homeland security. Ocean sensor networks are generally formed with various ocean sensors, autonomous underwater vehicles, surface stations, and research vessels. To make ocean sensor network applications viable, efficient communication among all devices and components is crucial. Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional (3D) ocean spaces, new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks. In this paper, we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks, with focuses on deployment, localization, topology design, and position-based routing in 3D ocean spaces.

  11. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  12. A comparative study of wireless sensor networks and their routing protocols.

    PubMed

    Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit

    2010-01-01

    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.

  13. Socio-inspired ICT. Towards a socially grounded society-ICT symbiosis

    NASA Astrophysics Data System (ADS)

    Ferscha, A.; Farrahi, K.; van den Hoven, J.; Hales, D.; Nowak, A.; Lukowicz, P.; Helbing, D.

    2012-11-01

    Modern ICT (Information and Communication Technology) has developed a vision where the "computer" is no longer associated with the concept of a single device or a network of devices, but rather the entirety of situated services originating in a digital world, which are perceived through the physical world. It is observed that services with explicit user input and output are becoming to be replaced by a computing landscape sensing the physical world via a huge variety of sensors, and controlling it via a plethora of actuators. The nature and appearance of computing devices is changing to be hidden in the fabric of everyday life, invisibly networked, and omnipresent, with applications greatly being based on the notions of context and knowledge. Interaction with such globe spanning, modern ICT systems will presumably be more implicit, at the periphery of human attention, rather than explicit, i.e. at the focus of human attention.Socio-inspired ICT assumes that future, globe scale ICT systems should be viewed as social systems. Such a view challenges research to identify and formalize the principles of interaction and adaptation in social systems, so as to be able to ground future ICT systems on those principles. This position paper therefore is concerned with the intersection of social behaviour and modern ICT, creating or recreating social conventions and social contexts through the use of pervasive, globe-spanning, omnipresent and participative ICT.

  14. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  15. Development and Implementation of Low-Cost Mobile Sensor Platforms Within a Wireless Sensor Network

    DTIC Science & Technology

    2010-09-01

    WIRELESS SENSOR NETWORK by Michael Jay Tozzi September 2010 Thesis Advisor: Rachel Goshorn Second Reader: Duane Davis Approved for...Platforms Within a Wireless Sensor Network 6. AUTHOR(S) Tozzi, Michael Jay 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...IMPLEMENTATION OF LOW-COST MOBILE SENSOR PLATFORMS WITHIN A WIRELESS SENSOR NETWORK Michael Jay Tozzi Lieutenant, United States Navy B.S., United

  16. Engineering of Sensor Network Structure for Dependable Fusion

    DTIC Science & Technology

    2014-08-15

    Lossy Wireless Sensor Networks , IEEE/ACM Transactions on Networking , (04 2013): 0. doi: 10.1109/TNET.2013.2256795 Soumik Sarkar, Kushal Mukherjee...Phoha, Bharat B. Madan, Asok Ray. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks , Journal of Parallel and Distributed...Deadline Constraints, IEEE Transactions on Automatic Control special issue on Wireless Sensor and Actuator Networks , (01 2011): 1. doi: Eric Keller

  17. Distributed sensor coordination for advanced energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumer, Kagan

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less

  18. Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing

    PubMed Central

    Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong

    2018-01-01

    The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination. PMID:29565313

  19. Explicit Content Caching at Mobile Edge Networks with Cross-Layer Sensing.

    PubMed

    Chen, Lingyu; Su, Youxing; Luo, Wenbin; Hong, Xuemin; Shi, Jianghong

    2018-03-22

    The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination.

  20. A feedback-based secure path approach for wireless sensor network data collection.

    PubMed

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  1. Linking Simulation with Formal Verification and Modeling of Wireless Sensor Network in TLA+

    NASA Astrophysics Data System (ADS)

    Martyna, Jerzy

    In this paper, we present the results of the simulation of a wireless sensor network based on the flooding technique and SPIN protocols. The wireless sensor network was specified and verified by means of the TLA+ specification language [1]. For a model of wireless sensor network built this way simulation was carried with the help of specially constructed software tools. The obtained results allow us to predict the behaviour of the wireless sensor network in various topologies and spatial densities. Visualization of the output data enable precise examination of some phenomenas in wireless sensor networks, such as a hidden terminal, etc.

  2. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  3. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    PubMed

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  4. Energy optimization in mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  5. Network Computing for Distributed Underwater Acoustic Sensors

    DTIC Science & Technology

    2014-03-31

    underwater sensor network with mobility. In preparation. [3] EvoLogics (2013), Underwater Acoustic Modems, (Product Information Guide... Wireless Communications, 9(9), 2934–2944. [21] Pompili, D. and Akyildiz, I. (2010), A multimedia cross-layer protocol for underwater acoustic sensor networks ... Network Computing for Distributed Underwater Acoustic Sensors M. Barbeau E. Kranakis

  6. Capacity Building for Research and Education in GIS/GPS Technology and Systems

    DTIC Science & Technology

    2015-05-20

    In multi- sensor area Wireless Sensor Networking (WSN) fields will be explored. As a step forward the research to be conducted in WSN field is to...Agriculture Using Technology for Crops Scouting in Agriculture Application of Technology in Precision Agriculture Wireless Sensor Network (WSN) in...Cooperative Engagement Capability Range based algorithms for Wireless Sensor Network Self-configurable Wireless Sensor Network Energy Efficient Wireless

  7. Demonstration of a roving-host wireless sensor network for rapid assessment monitoring of structural health

    NASA Astrophysics Data System (ADS)

    Mascarenas, David D. L.; Flynn, Eric; Lin, Kaisen; Farinholt, Kevin; Park, Gyuhae; Gupta, Rajesh; Todd, Michael; Farrar, Charles

    2008-03-01

    A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing means to supply power to the sensor nodes in a cost-effective manner. In this work an initial test of a roving-host wireless sensor network was performed on a bridge near Truth or Consequences, NM in August of 2007. The roving-host wireless sensor network features a radio controlled helicopter responsible for wirelessly delivering energy to sensor nodes on an "as-needed" basis. In addition, the helicopter also serves as a central data repository and processing center for the information collected by the sensor network. The sensor nodes used on the bridge were developed for measuring the peak displacement of the bridge, as well as measuring the preload of some of the bolted joints in the bridge. These sensors and sensor nodes were specifically designed to be able to operate from energy supplied wirelessly from the helicopter. The ultimate goal of this research is to ease the requirement for battery power supplies in wireless sensor networks.

  8. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    PubMed Central

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  9. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    PubMed

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  10. Implicit and explicit social mentalizing: dual processes driven by a shared neural network

    PubMed Central

    Van Overwalle, Frank; Vandekerckhove, Marie

    2013-01-01

    Recent social neuroscientific evidence indicates that implicit and explicit inferences on the mind of another person (i.e., intentions, attributions or traits), are subserved by a shared mentalizing network. Under both implicit and explicit instructions, ERP studies reveal that early inferences occur at about the same time, and fMRI studies demonstrate an overlap in core mentalizing areas, including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC). These results suggest a rapid shared implicit intuition followed by a slower explicit verification processes (as revealed by additional brain activation during explicit vs. implicit inferences). These data provide support for a default-adjustment dual-process framework of social mentalizing. PMID:24062663

  11. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  12. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651

  13. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  14. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE PAGES

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less

  15. Wireless Sensor Network Applications for the Combat Air Forces

    DTIC Science & Technology

    2006-06-13

    WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT...Government. AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS FOR THE COMBAT AIR FORCES GRADUATE RESEARCH PROJECT Presented to the...Major, USAF June 2006 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/IC4/ENG/06-05 WIRELESS SENSOR NETWORK APPLICATIONS

  16. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    PubMed Central

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424

  17. Smart border: ad-hoc wireless sensor networks for border surveillance

    NASA Astrophysics Data System (ADS)

    He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser

    2011-06-01

    Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.

  18. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  19. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  20. IJA: an efficient algorithm for query processing in sensor networks.

    PubMed

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.

  1. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    PubMed Central

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375

  2. Zone-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455

  3. Zone-Based Routing Protocol for Wireless Sensor Networks.

    PubMed

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.

  4. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  5. Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.

    PubMed

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  6. Objectively Optimized Observation Direction System Providing Situational Awareness for a Sensor Web

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Lary, D. J.

    2010-12-01

    There is great utility in having a flexible and automated objective observation direction system for the decadal survey missions and beyond. Such a system allows us to optimize the observations made by suite of sensors to address specific goals from long term monitoring to rapid response. We have developed such a prototype using a network of communicating software elements to control a heterogeneous network of sensor systems, which can have multiple modes and flexible viewing geometries. Our system makes sensor systems intelligent and situationally aware. Together they form a sensor web of multiple sensors working together and capable of automated target selection, i.e. the sensors “know” where they are, what they are able to observe, what targets and with what priorities they should observe. This system is implemented in three components. The first component is a Sensor Web simulator. The Sensor Web simulator describes the capabilities and locations of each sensor as a function of time, whether they are orbital, sub-orbital, or ground based. The simulator has been implemented using AGIs Satellite Tool Kit (STK). STK makes it easy to analyze and visualize optimal solutions for complex space scenarios, and perform complex analysis of land, sea, air, space assets, and shares results in one integrated solution. The second component is target scheduler that was implemented with STK Scheduler. STK Scheduler is powered by a scheduling engine that finds better solutions in a shorter amount of time than traditional heuristic algorithms. The global search algorithm within this engine is based on neural network technology that is capable of finding solutions to larger and more complex problems and maximizing the value of limited resources. The third component is a modeling and data assimilation system. It provides situational awareness by supplying the time evolution of uncertainty and information content metrics that are used to tell us what we need to observe and the priority we should give to the observations. A prototype of this component was implemented with AutoChem. AutoChem is NASA release software constituting an automatic code generation, symbolic differentiator, analysis, documentation, and web site creation tool for atmospheric chemical modeling and data assimilation. Its model is explicit and uses an adaptive time-step, error monitoring time integration scheme for stiff systems of equations. AutoChem was the first model to ever have the facility to perform 4D-Var data assimilation and Kalman filter. The project developed a control system with three main accomplishments. First, fully multivariate observational and theoretical information with associated uncertainties was combined using a full Kalman filter data assimilation system. Second, an optimal distribution of the computations and of data queries was achieved by utilizing high performance computers/load balancing and a set of automatically mirrored databases. Third, inter-instrument bias correction was performed using machine learning. The PI for this project was Dr. David Lary of the UMBC Joint Center for Earth Systems Technology at NASA/Goddard Space Flight Center.

  7. Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.

  8. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    PubMed

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  9. LinkMind: link optimization in swarming mobile sensor networks.

    PubMed

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  10. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    PubMed Central

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation. PMID:22164070

  11. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  12. Open-WiSe: a solar powered wireless sensor network platform.

    PubMed

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  13. Bluetooth-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  14. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    PubMed Central

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343

  15. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    PubMed

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  16. Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks

    DTIC Science & Technology

    2013-12-01

    writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...thesis writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE TACTICAL NETWORK LOAD BALANCING IN MULTI-GATEWAY WIRELESS SENSOR NETWORKS 5

  17. Web-Based Interface for Command and Control of Network Sensors

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.

    2010-01-01

    This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events

  18. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    PubMed Central

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  19. Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985

    NASA Technical Reports Server (NTRS)

    Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)

    1986-01-01

    The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.

  20. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  1. Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks

    DTIC Science & Technology

    2007-06-01

    sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless

  2. Sinkhole Avoidance Routing in Wireless Sensor Networks

    DTIC Science & Technology

    2011-05-09

    sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless

  3. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    PubMed Central

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  4. SoilNet - A hybrid underground wireless sensor network for near real-time monitoring of hydrological processes

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Huisman, S.; Rosenbaum, U.; Wuethen, A.; Vereecken, H.

    2009-04-01

    Wireless sensor network technology allows near real-time monitoring of soil properties with a high spatial and temporal resolution for observing hydrological processes in small watersheds. The novel wireless sensor network SoilNet uses the low-cost ZigBee radio network for communication and a hybrid topology with a mixture of underground end devices each wired to several soil sensors and aboveground router devices. The SoilNet sensor network consists of soil water content, salinity and temperature sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. the occurrence of precipitation. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. Simultaneously, we have also developed a data management and visualisation system. Recently, a small forest catchment Wüstebach (27 ha) was instrumented with 50 end devices and more than 400 soil sensors in the frame of the TERENO-RUR hydrological observatory. We will present first results of this large sensor network both in terms of spatial-temporal variations in soil water content and the performance of the sensor network (e.g. network stability and power use).

  5. Awareness-based game-theoretic space resource management

    NASA Astrophysics Data System (ADS)

    Chen, Genshe; Chen, Huimin; Pham, Khanh; Blasch, Erik; Cruz, Jose B., Jr.

    2009-05-01

    Over recent decades, the space environment becomes more complex with a significant increase in space debris and a greater density of spacecraft, which poses great difficulties to efficient and reliable space operations. In this paper we present a Hierarchical Sensor Management (HSM) method to space operations by (a) accommodating awareness modeling and updating and (b) collaborative search and tracking space objects. The basic approach is described as follows. Firstly, partition the relevant region of interest into district cells. Second, initialize and model the dynamics of each cell with awareness and object covariance according to prior information. Secondly, explicitly assign sensing resources to objects with user specified requirements. Note that when an object has intelligent response to the sensing event, the sensor assigned to observe an intelligent object may switch from time-to-time between a strong, active signal mode and a passive mode to maximize the total amount of information to be obtained over a multi-step time horizon and avoid risks. Thirdly, if all explicitly specified requirements are satisfied and there are still more sensing resources available, we assign the additional sensing resources to objects without explicitly specified requirements via an information based approach. Finally, sensor scheduling is applied to each sensor-object or sensor-cell pair according to the object type. We demonstrate our method with realistic space resources management scenario using NASA's General Mission Analysis Tool (GMAT) for space object search and track with multiple space borne observers.

  6. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  7. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  8. Wireless Sensor Network Radio Power Management and Simulation Models

    DTIC Science & Technology

    2010-01-01

    The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1

  9. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  10. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  11. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  12. Research Trends in Wireless Visual Sensor Networks When Exploiting Prioritization

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2015-01-01

    The development of wireless sensor networks for control and monitoring functions has created a vibrant investigation scenario, where many critical topics, such as communication efficiency and energy consumption, have been investigated in the past few years. However, when sensors are endowed with low-power cameras for visual monitoring, a new scope of challenges is raised, demanding new research efforts. In this context, the resource-constrained nature of sensor nodes has demanded the use of prioritization approaches as a practical mechanism to lower the transmission burden of visual data over wireless sensor networks. Many works in recent years have considered local-level prioritization parameters to enhance the overall performance of those networks, but global-level policies can potentially achieve better results in terms of visual monitoring efficiency. In this paper, we make a broad review of some recent works on priority-based optimizations in wireless visual sensor networks. Moreover, we envisage some research trends when exploiting prioritization, potentially fostering the development of promising optimizations for wireless sensor networks composed of visual sensors. PMID:25599425

  13. DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.

    PubMed

    Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang

    2018-05-25

    Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.

  14. Bluetooth Roaming for Sensor Network System in Clinical Environment.

    PubMed

    Kuroda, Tomohiro; Noma, Haruo; Takase, Kazuhiko; Sasaki, Shigeto; Takemura, Tadamasa

    2015-01-01

    A sensor network is key infrastructure for advancing a hospital information system (HIS). The authors proposed a method to provide roaming functionality for Bluetooth to realize a Bluetooth-based sensor network, which is suitable to connect clinical devices. The proposed method makes the average response time of a Bluetooth connection less than one second by making the master device repeat the inquiry process endlessly and modifies parameters of the inquiry process. The authors applied the developed sensor network for daily clinical activities in an university hospital, and confirmed the stabilitya and effectiveness of the sensor network. As Bluetooth becomes a quite common wireless interface for medical devices, the proposed protocol that realizes Bluetooth-based sensor network enables HIS to equip various clinical devices and, consequently, lets information and communication technologies advance clinical services.

  15. Dual-Tree Complex Wavelet Transform and Image Block Residual-Based Multi-Focus Image Fusion in Visual Sensor Networks

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878

  16. Dual-tree complex wavelet transform and image block residual-based multi-focus image fusion in visual sensor networks.

    PubMed

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-11-26

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.

  17. Integrating legacy medical data sensors in a wireless network infrastucture.

    PubMed

    Dembeyiotis, S; Konnis, G; Koutsouris, D

    2005-01-01

    In the process of developing a wireless networking solution to provide effective field-deployable communications and telemetry support for rescuers during major natural disasters, we are faced with the task of interfacing the multitude of medical and other legacy data collection sensors to the network grid. In this paper, we detail a number of solutions, with particular attention given to the issue of data security. The chosen implementation allows for sensor control and management from remote network locations, while the sensors can wirelessly transmit their data to nearby network nodes securely, utilizing the latest commercially available cryptography solutions. Initial testing validates the design choices, while the network-enabled sensors are being integrated in the overall wireless network security framework.

  18. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    PubMed Central

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  19. Watchdog Sensor Network with Multi-Stage RF Signal Identification and Cooperative Intrusion Detection

    DTIC Science & Technology

    2012-03-01

    detection and physical layer authentication in mobile Ad Hoc networks and wireless sensor networks (WSNs) have been investigated. Résume Le rapport...IEEE 802.16 d and e (WiMAX); (b) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s (c) Sensor networks based on IEEE 802.15.4: Wireless USB, Bluetooth... sensor network are investigated for standard compatible wireless signals. The proposed signal existence detection and identification process consists

  20. Source Localization Using Wireless Sensor Networks

    DTIC Science & Technology

    2006-06-01

    performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter...indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.

  1. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  2. Geographically distributed environmental sensor system

    DOEpatents

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  3. LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network

    NASA Astrophysics Data System (ADS)

    Cha, Daehyun; Hwang, Chansik

    Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.

  4. Probabilistic QoS Analysis In Wireless Sensor Networks

    DTIC Science & Technology

    2012-04-01

    and A.O. Fapojuwo. TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks . IEEE Trans. on Mobile...Research Computer Science and Engineering, Department of 5-1-2012 Probabilistic QoS Analysis in Wireless Sensor Networks Yunbo Wang University of...Wang, Yunbo, "Probabilistic QoS Analysis in Wireless Sensor Networks " (2012). Computer Science and Engineering: Theses, Dissertations, and Student

  5. RF Characteristics of Mica-Z Wireless Sensor Network Motes

    DTIC Science & Technology

    2006-03-01

    MICA-Z WIRELESS SENSOR NETWORK MOTES by Swee Jin Koh March 2006 Thesis Advisor: Gurminder Singh Thesis Co-Advisor: John C...Mica-Z Wireless Sensor Network Motes 6. AUTHOR(S) : Swee Jin Koh 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...ad-hoc deployment. 15. NUMBER OF PAGES 83 14. SUBJECT TERMS: Wireless Sensor Network 16. PRICE CODE 17. SECURITY CLASSIFICATION OF

  6. Path Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks

    DTIC Science & Technology

    2006-09-01

    AND PACKET TRANSLATION FOR UAV SURVEILLANCE IN SUPPORT OF WIRELESS SENSOR NETWORKS by Stephen Schall September 2006 Thesis Advisor...Calculation and Packet Translation for UAV Surveillance in Support of Wireless Sensor Networks 6. AUTHOR(S) Stephen Schall 5. FUNDING NUMBERS 7...200 words) Wireless Sensor Networks (WSNs) are a relatively new technology with many potential applications, including military and

  7. Wireless Sensor Network With Geolocation

    DTIC Science & Technology

    2006-11-01

    WIRELESS SENSOR NETWORK WITH GEOLOCATION James Silverstrim and Roderick Passmore Innovative Wireless Technologies Forest, VA 24551 Dr...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Wireless Sensor Network With Geolocation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Locationing in distributed ad-hoc wireless sensor networks ”, IEEE ICASSP, May 2001. D. W. Hanson, Fundamentals of Two-Way Time Transfer by Satellite

  8. Performance Evaluation of a Routing Protocol in Wireless Sensor Network

    DTIC Science & Technology

    2005-12-01

    OF A ROUTING PROTOCOL IN WIRELESS SENSOR NETWORKS by Cheng Kiat Amos, Teo December 2005 Thesis Advisors: Gurminder Singh John C...Evaluation of a Routing Protocol in Wireless Sensor Network 6. AUTHOR(S) Cheng Kiat Amos, Teo 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S...need to be strategically positioned and have topologies engineered. As such, recent research into wireless sensor networks has attracted great

  9. Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation Conditions

    DTIC Science & Technology

    2009-03-01

    IN WIRELESS SENSOR NETWORKS WITH RANDOMLY DISTRIBUTED ELEMENTS UNDER MULTIPATH PROPAGATION CONDITIONS by Georgios Tsivgoulis March 2009...COVERED Engineer’s Thesis 4. TITLE Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation...the non-line-of-sight information. 15. NUMBER OF PAGES 111 14. SUBJECT TERMS Wireless Sensor Network , Direction of Arrival, DOA, Random

  10. Networked sensors for the combat forces

    NASA Astrophysics Data System (ADS)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.

  11. Underwater Sensor Network Redeployment Algorithm Based on Wolf Search

    PubMed Central

    Jiang, Peng; Feng, Yang; Wu, Feng

    2016-01-01

    This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659

  12. Design of a sensor network for structural health monitoring of a full-scale composite horizontal tail

    NASA Astrophysics Data System (ADS)

    Gao, Dongyue; Wang, Yishou; Wu, Zhanjun; Rahim, Gorgin; Bai, Shengbao

    2014-05-01

    The detection capability of a given structural health monitoring (SHM) system strongly depends on its sensor network placement. In order to minimize the number of sensors while maximizing the detection capability, optimal design of the PZT sensor network placement is necessary for structural health monitoring (SHM) of a full-scale composite horizontal tail. In this study, the sensor network optimization was simplified as a problem of determining the sensor array placement between stiffeners to achieve the desired the coverage rate. First, an analysis of the structural layout and load distribution of a composite horizontal tail was performed. The constraint conditions of the optimal design were presented. Then, the SHM algorithm of the composite horizontal tail under static load was proposed. Based on the given SHM algorithm, a sensor network was designed for the full-scale composite horizontal tail structure. Effective profiles of cross-stiffener paths (CRPs) and uncross-stiffener paths (URPs) were estimated by a Lamb wave propagation experiment in a multi-stiffener composite specimen. Based on the coverage rate and the redundancy requirements, a seven-sensor array-network was chosen as the optimal sensor network for each airfoil. Finally, a preliminary SHM experiment was performed on a typical composite aircraft structure component. The reliability of the SHM result for a composite horizontal tail structure under static load was validated. In the result, the red zone represented the delamination damage. The detection capability of the optimized sensor network was verified by SHM of a full-scale composite horizontal tail; all the diagnosis results were obtained in two minutes. The result showed that all the damage in the monitoring region was covered by the sensor network.

  13. Active Self-Testing Noise Measurement Sensors for Large-Scale Environmental Sensor Networks

    PubMed Central

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-01-01

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10. PMID:24351634

  14. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  15. Wireless Cooperative Networks: Self-Configuration and Optimization

    DTIC Science & Technology

    2011-09-09

    TERMS wireless sensor networks , wireless cooperative networks, resource optimization, ultra-wideband, localization, ranging 16. SECURITY...Communications We consider two prevalent relay protocols for wireless sensor networks : decode-and-forward (DF) and amplify-and-forward (AF). To... sensor networks where each node may have its own sensing data to transmit, since they can maximally conserve energy while helping others as relays

  16. A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop.

    PubMed

    Zhang, Lifu; Zhang, Heng

    2016-03-26

    Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas.

  17. Autonomous distributed self-organization for mobile wireless sensor networks.

    PubMed

    Wen, Chih-Yu; Tang, Hung-Kai

    2009-01-01

    This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  18. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications

    NASA Astrophysics Data System (ADS)

    Forcier, Bob

    2003-09-01

    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  19. A novel proposal of GPON-oriented fiber grating sensing data digitalization system for remote sensing network

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian

    2016-05-01

    A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.

  20. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    DTIC Science & Technology

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  1. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    PubMed

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  2. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  3. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  4. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    PubMed

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-04-12

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  5. A Survey on Virtualization of Wireless Sensor Networks

    PubMed Central

    Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  6. A survey on virtualization of Wireless Sensor Networks.

    PubMed

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  7. A low cost strategy to monitor the expansion and contraction of the flowing stream network in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan

    2017-04-01

    Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.

  8. Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks

    PubMed Central

    Srie Vidhya Janani, E.; Ganesh Kumar, P.

    2015-01-01

    The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417

  9. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents

    PubMed Central

    Wu, Chunxue; Wu, Wenliang; Wan, Caihua

    2017-01-01

    Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications. PMID:29099793

  10. Implicit and Explicit Learning Mechanisms Meet in Monkey Prefrontal Cortex.

    PubMed

    Chafee, Matthew V; Crowe, David A

    2017-10-11

    In this issue, Loonis et al. (2017) provide the first description of unique synchrony patterns differentiating implicit and explicit forms of learning in monkey prefrontal networks. Their results have broad implications for how prefrontal networks integrate the two learning mechanisms to control behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. TinyOS-based quality of service management in wireless sensor networks

    USGS Publications Warehouse

    Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.

    2009-01-01

    Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.

  12. Reputation-Based Internet Protocol Security: A Multilayer Security Framework for Mobile Ad Hoc Networks

    DTIC Science & Technology

    2010-09-01

    secure ad-hoc networks of mobile sensors deployed in a hostile environment . These sensors are normally small 86 and resource...Communications Magazine, 51, 2008. 45. Kumar, S.A. “Classification and Review of Security Schemes in Mobile Comput- ing”. Wireless Sensor Network , 2010... Networks ”. Wireless /Mobile Network Security , 2008. 85. Xiao, Y. “Accountability for Wireless LANs, Ad Hoc Networks , and Wireless

  13. SOUNET: Self-Organized Underwater Wireless Sensor Network.

    PubMed

    Kim, Hee-Won; Cho, Ho-Shin

    2017-02-02

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  14. SOUNET: Self-Organized Underwater Wireless Sensor Network

    PubMed Central

    Kim, Hee-won; Cho, Ho-Shin

    2017-01-01

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the time-varying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment. PMID:28157164

  15. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor. Image processing at the sensor node level may also be required for applications in security, asset management and process control. Due to the data bandwidth requirements posed on the network by video sensors, new networking protocols or video extensions to existing standards (e.g. Zigbee) are required. To this end, Avaak has designed and implemented an ultra-low power networking protocol designed to carry large volumes of data through the network. The low power wireless sensor nodes that will be discussed include a chemical sensor integrated with a CMOS digital camera, a controller, a DSP processor and a radio communication transceiver, which enables relaying of an alarm or image message, to a central station. In addition to the communications, identification is very desirable; hence location awareness will be later incorporated to the system in the form of Time-Of-Arrival triangulation, via wide band signaling. While the wireless imaging kernel already exists specific applications for surveillance and chemical detection are under development by Avaak, as part of a co-founded program from ONR and DARPA. Avaak is also designing vision networks for commercial applications - some of which are undergoing initial field tests.

  16. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications

    PubMed Central

    Kim, Changhwa; Shin, DongHyun

    2017-01-01

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage human life or property, depending on their application areas. In this paper, we propose a framework to reduce sensor data loss during communication failures and we present a formal approach to the Selection by Minimum Error and Pattern (SMEP) method that plays the most important role for the reduction in sensor data loss under the proposed framework. The SMEP method is compared with other methods to validate its effectiveness through experiments using real-field sensor data sets. Moreover, based on our experimental results and performance comparisons, the SMEP method has been validated to be better than others in terms of the average sensor data value error rate caused by sensor data loss. PMID:28498312

  17. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications.

    PubMed

    Kim, Changhwa; Shin, DongHyun

    2017-05-12

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage human life or property, depending on their application areas. In this paper, we propose a framework to reduce sensor data loss during communication failures and we present a formal approach to the Selection by Minimum Error and Pattern (SMEP) method that plays the most important role for the reduction in sensor data loss under the proposed framework. The SMEP method is compared with other methods to validate its effectiveness through experiments using real-field sensor data sets. Moreover, based on our experimental results and performance comparisons, the SMEP method has been validated to be better than others in terms of the average sensor data value error rate caused by sensor data loss.

  18. Wireless Sensor Networks: Monitoring and Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  19. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method.

    PubMed

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting.

  20. Detecting and Preventing Sybil Attacks in Wireless Sensor Networks Using Message Authentication and Passing Method

    PubMed Central

    Dhamodharan, Udaya Suriya Raj Kumar; Vayanaperumal, Rajamani

    2015-01-01

    Wireless sensor networks are highly indispensable for securing network protection. Highly critical attacks of various kinds have been documented in wireless sensor network till now by many researchers. The Sybil attack is a massive destructive attack against the sensor network where numerous genuine identities with forged identities are used for getting an illegal entry into a network. Discerning the Sybil attack, sinkhole, and wormhole attack while multicasting is a tremendous job in wireless sensor network. Basically a Sybil attack means a node which pretends its identity to other nodes. Communication to an illegal node results in data loss and becomes dangerous in the network. The existing method Random Password Comparison has only a scheme which just verifies the node identities by analyzing the neighbors. A survey was done on a Sybil attack with the objective of resolving this problem. The survey has proposed a combined CAM-PVM (compare and match-position verification method) with MAP (message authentication and passing) for detecting, eliminating, and eventually preventing the entry of Sybil nodes in the network. We propose a scheme of assuring security for wireless sensor network, to deal with attacks of these kinds in unicasting and multicasting. PMID:26236773

  1. Topology Optimization for Energy Management in Underwater Sensor Networks

    DTIC Science & Technology

    2015-02-01

    1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  2. Connectivity, Coverage and Placement in Wireless Sensor Networks

    PubMed Central

    Li, Ji; Andrew, Lachlan L.H.; Foh, Chuan Heng; Zukerman, Moshe; Chen, Hsiao-Hwa

    2009-01-01

    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes. PMID:22408474

  3. IBE-Lite: a lightweight identity-based cryptography for body sensor networks.

    PubMed

    Tan, Chiu C; Wang, Haodong; Zhong, Sheng; Li, Qun

    2009-11-01

    A body sensor network (BSN) is a network of sensors deployed on a person's body for health care monitoring. Since the sensors collect personal medical data, security and privacy are important components in a BSN. In this paper, we developed IBE-Lite, a lightweight identity-based encryption suitable for sensors in a BSN. We present protocols based on IBE-Lite that balance security and privacy with accessibility and perform evaluation using experiments conducted on commercially available sensors.

  4. A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop

    PubMed Central

    Zhang, Lifu; Zhang, Heng

    2016-01-01

    Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas. PMID:27023559

  5. Smart fabrics: integrating fiber optic sensors and information networks.

    PubMed

    El-Sherif, Mahmoud

    2004-01-01

    "Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.

  6. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  7. Effect of Field Spread on Resting-State Magneto Encephalography Functional Network Analysis: A Computational Modeling Study.

    PubMed

    Silva Pereira, Silvana; Hindriks, Rikkert; Mühlberg, Stefanie; Maris, Eric; van Ede, Freek; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo

    2017-11-01

    A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.

  8. CMOS: Efficient Clustered Data Monitoring in Sensor Networks

    PubMed Central

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique. PMID:24459444

  9. CMOS: efficient clustered data monitoring in sensor networks.

    PubMed

    Min, Jun-Ki

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.

  10. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  11. Development and Evaluation of a City-Wide Wireless Weather Sensor Network

    ERIC Educational Resources Information Center

    Chang, Ben; Wang, Hsue-Yie; Peng, Tian-Yin; Hsu, Ying-Shao

    2010-01-01

    This project analyzed the effectiveness of a city-wide wireless weather sensor network, the Taipei Weather Science Learning Network (TWIN), in facilitating elementary and junior high students' study of weather science. The network, composed of sixty school-based weather sensor nodes and a centralized weather data archive server, provides students…

  12. Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks

    PubMed Central

    Pei, Sen; Tang, Shaoting; Zheng, Zhiming

    2015-01-01

    Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans’ physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks), we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods. PMID:25950181

  13. Resilient Sensor Networks with Spatiotemporal Interpolation of Missing Sensors: An Example of Space Weather Forecasting by Multiple Satellites

    PubMed Central

    Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru

    2016-01-01

    This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons. PMID:27092508

  14. Information Fusion in Ad hoc Wireless Sensor Networks for Aircraft Health Monitoring

    NASA Astrophysics Data System (ADS)

    Fragoulis, Nikos; Tsagaris, Vassilis; Anastassopoulos, Vassilis

    In this paper the use of an ad hoc wireless sensor network for implementing a structural health monitoring system is discussed. The network is consisted of sensors deployed throughout the aircraft. These sensors being in the form of a microelectronic chip and consisted of sensing, data processing and communicating components could be easily embedded in any mechanical aircraft component. The established sensor network, due to its ad hoc nature is easily scalable, allowing adding or removing any number of sensors. The position of the sensor nodes need not necessarily to be engineered or predetermined, giving this way the ability to be deployed in inaccessible points. Information collected from various sensors of different modalities throughout the aircraft is then fused in order to provide a more comprehensive image of the aircraft structural health. Sensor level fusion along with decision quality information is used, in order to enhance detection performance.

  15. Resilient Sensor Networks with Spatiotemporal Interpolation of Missing Sensors: An Example of Space Weather Forecasting by Multiple Satellites.

    PubMed

    Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru

    2016-04-15

    This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons.

  16. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  17. Data aggregation in wireless sensor networks using the SOAP protocol

    NASA Astrophysics Data System (ADS)

    Al-Yasiri, A.; Sunley, A.

    2007-07-01

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  18. Wireless Networks under a Backoff Attack: A Game Theoretical Perspective.

    PubMed

    Parras, Juan; Zazo, Santiago

    2018-01-30

    We study a wireless sensor network using CSMA/CA in the MAC layer under a backoff attack: some of the sensors of the network are malicious and deviate from the defined contention mechanism. We use Bianchi's network model to study the impact of the malicious sensors on the total network throughput, showing that it causes the throughput to be unfairly distributed among sensors. We model this conflict using game theory tools, where each sensor is a player. We obtain analytical solutions and propose an algorithm, based on Regret Matching, to learn the equilibrium of the game with an arbitrary number of players. Our approach is validated via simulations, showing that our theoretical predictions adjust to reality.

  19. Integrated Sensor Architecture (ISA) for Live Virtual Constructive (LVC) Environments

    DTIC Science & Technology

    2014-03-01

    connect, publish their needs and capabilities, and interact with other systems even on disadvantaged networks. Within the ISA project, three levels of...constructive, disadvantaged network, sensor 1. INTRODUCTION In 2003 the Networked Sensors for the Future Force (NSFF) Advanced Technology Demonstration...While this combination is less optimal over disadvantaged networks, and we do not recommend it there, TCP and TLS perform adequately over networks with

  20. An ontology for sensor networks

    NASA Astrophysics Data System (ADS)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility ontologies can be easily attached when instantiating the ontology for any particular sensors in a domain. After a review of previous work on the specification of sensors, the group is developing the ontology in conjunction with use case development. Part of the difficulty of such work is that relevant concepts from for example OGC standards and other ontologies must be identified and aligned and also placed in a consistent and logically correct way into the ontology. In terms of alignment with OGC's SWE, the ontology is intended to be able to model concepts from SensorML and O&M. Similar to SensorML and O&M, the ontology is based around concepts of systems, processes, and observations. It supports the description of the physical and processing structure of sensors. Sensors are not constrained to physical sensing devices: rather a sensor is anything that can estimate or calculate the value of a phenomenon, so a device or computational process or combination could play the role of a sensor. The representation of a sensor in the ontology links together what is measured (the domain phenomena), the sensor's physical and other properties and its functions and processing. Parts of the ontology are well aligned with SensorML and O&M, but parts are not, and the group is working to understand how differences from (and alignment with) the OGC standards affect the application of the ontology.

  1. Energy-aware scheduling of surveillance in wireless multimedia sensor networks.

    PubMed

    Wang, Xue; Wang, Sheng; Ma, Junjie; Sun, Xinyao

    2010-01-01

    Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity.

  2. Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks

    PubMed Central

    Moya, José M.; Vallejo, Juan Carlos; Fraga, David; Araujo, Álvaro; Villanueva, Daniel; de Goyeneche, Juan-Mariano

    2009-01-01

    Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios. PMID:22412345

  3. Modelling the Energy Efficient Sensor Nodes for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Dahiya, R.; Arora, A. K.; Singh, V. R.

    2015-09-01

    Energy is an important requirement of wireless sensor networks for better performance. A widely employed energy-saving technique is to place nodes in sleep mode, corresponding to low-power consumption as well as to reduce operational capabilities. In this paper, Markov model of a sensor network is developed. The node is considered to enter a sleep mode. This model is used to investigate the system performance in terms of energy consumption, network capacity and data delivery delay.

  4. Distributed Localization of Active Transmitters in a Wireless Sensor Network

    DTIC Science & Technology

    2012-03-01

    Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Oba L. Vincent, 2nd Lieutenant, USAF AFIT/GE/ENG/12-41 DEPARTMENT...protection in the United States. AFIT/GE/ENG/12-41 Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Presented to the...Transmitters in a Wireless Sensor Network Oba L. Vincent, B.S.E.E. 2nd Lieutenant, USAF Approved: /signed/ 29 Feb 2012 Maj. Mark D. Silvius, Ph.D. (Chairman

  5. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    PubMed Central

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-01-01

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639

  6. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-11-06

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  7. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-01-01

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971

  8. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  9. Real-Time Adaptation of Decision Thresholds in Sensor Networks for Detection of Moving Targets (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    target kinematics for multiple sensor detections is referred to as the track - before - detect strategy, and is commonly adopted in multi-sensor surveillance...of moving targets. Wettergren [4] presented an application of track - before - detect strategies to undersea distributed sensor networks. In de- signing...the deployment of a distributed passive sensor network that employs this track - before - detect procedure, it is impera- tive that the placement of

  10. ADAPTable Sensor Systems Phase 2. Topic 2: Reusable Core Software. Distributed Synchronization Software for the Sensor Nodes

    DTIC Science & Technology

    2015-03-01

    Wireless Sensor Network Using Unreliable GPS Signals Daniel R. Fuhrmann*, Joshua Stomberg§, Saeid Nooshabadi*§ Dustin McIntire†, William Merill... wireless sensor network , when the timing jitter is subject to a empirically determined bimodal non-Gaussian distribution. Specifically, we 1) estimate the...over a nominal 19.2 MHz frequency with an adjustment made every four hours. Index Terms— clock synchronization, GPS, wireless sensor networks , Kalman

  11. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  12. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  13. The resilient hybrid fiber sensor network with self-healing function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shibo, E-mail: Shibo-Xu@tju.edu.cn; Liu, Tiegen; Ge, Chunfeng

    This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working inmore » FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.« less

  14. SATware: A Semantic Approach for Building Sentient Spaces

    NASA Astrophysics Data System (ADS)

    Massaguer, Daniel; Mehrotra, Sharad; Vaisenberg, Ronen; Venkatasubramanian, Nalini

    This chapter describes the architecture of a semantic-based middleware environment for building sensor-driven sentient spaces. The proposed middleware explicitly models sentient space semantics (i.e., entities, spaces, activities) and supports mechanisms to map sensor observations to the state of the sentient space. We argue how such a semantic approach provides a powerful programming environment for building sensor spaces. In addition, the approach provides natural ways to exploit semantics for variety of purposes including scheduling under resource constraints and sensor recalibration.

  15. Optimization of Self-Directed Target Coverage in Wireless Multimedia Sensor Network

    PubMed Central

    Yang, Yang; Wang, Yufei; Pi, Dechang; Wang, Ruchuan

    2014-01-01

    Video and image sensors in wireless multimedia sensor networks (WMSNs) have directed view and limited sensing angle. So the methods to solve target coverage problem for traditional sensor networks, which use circle sensing model, are not suitable for WMSNs. Based on the FoV (field of view) sensing model and FoV disk model proposed, how expected multimedia sensor covers the target is defined by the deflection angle between target and the sensor's current orientation and the distance between target and the sensor. Then target coverage optimization algorithms based on expected coverage value are presented for single-sensor single-target, multisensor single-target, and single-sensor multitargets problems distinguishingly. Selecting the orientation that sensor rotated to cover every target falling in the FoV disk of that sensor for candidate orientations and using genetic algorithm to multisensor multitargets problem, which has NP-complete complexity, then result in the approximated minimum subset of sensors which covers all the targets in networks. Simulation results show the algorithm's performance and the effect of number of targets on the resulting subset. PMID:25136667

  16. Research on trust calculation of wireless sensor networks based on time segmentation

    NASA Astrophysics Data System (ADS)

    Su, Yaoxin; Gao, Xiufeng; Qiao, Wenxin

    2017-05-01

    Because the wireless sensor network is different from the traditional network characteristics, it is easy to accept the intrusion from the compromise node. The trust mechanism is the most effective way to defend against internal attacks. Aiming at the shortcomings of the existing trust mechanism, a method of calculating the trust of wireless sensor networks based on time segmentation is proposed. It improves the security of the network and extends the life of the network

  17. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    PubMed

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree-Based', 'Cross-Layer', 'Opportunistic', and 'Medium Access Control'. We, then, provide a full description of the statistical analysis of each category in relation to all papers, current hybrid protocols, and the type of simulators used in each paper. Next, we analyze the distribution of papers in each category during various years. Moreover, for each category, the advantages and disadvantages as well as the number of issued papers in different years are given. We also analyze the type of layer and deployment of mathematical models or algorithmic techniques in each category. Finally, after introducing certain important protocols for each category, the goals, advantages, and disadvantages of the protocols are discussed and compared with each other.

  18. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    PubMed

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  19. A spectral profile multiplexed FBG sensor network with application to strain measurement in a Kevlar woven fabric

    NASA Astrophysics Data System (ADS)

    Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara

    2017-04-01

    A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.

  20. Sensor networks in the low lands.

    PubMed

    Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W; Bijwaard, Dennis J A; Havinga, Paul J M

    2010-01-01

    This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation.

  1. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    DTIC Science & Technology

    2005-07-09

    This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased

  2. Implementing Remote Image Capture/Control in a Wireless Sensor Network Utilizing the IEEE 802.15.4 Standard

    DTIC Science & Technology

    2009-09-01

    with the flexibility provided by a wireless sensor network , could provide such enhancements. The objective of this research was to explore the...feasibility of remote management and control of a low-power/low-cost wireless sensor network by implementing a point-to-point wireless network utilizing IEEE

  3. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information.

    PubMed

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-10-27

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.

  4. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information

    PubMed Central

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-01-01

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794

  5. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    DTIC Science & Technology

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  6. Traffic Profiling in Wireless Sensor Networks

    DTIC Science & Technology

    2006-12-01

    components, that can be used for traffic profiling and monitoring of a wireless sensor network . The work demostrates how the IDS should capture and...observed and analyzed. Finally, initial indications from basic analysis of wireless sensor network traffic demonstrated a high degree of self-similarity.

  7. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    PubMed

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  8. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods

    NASA Astrophysics Data System (ADS)

    Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.

    2018-05-01

    This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.

  9. Mountainous Ecosystem Sensor Array (MESA): a mesh sensor network for climate change research in remote mountainous environments

    NASA Astrophysics Data System (ADS)

    Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.

    2013-12-01

    Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.

  10. Rapid-response Sensor Networks Leveraging Open Standards and the Internet of Things

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Lieberman, J. E.; Lewis, L.; Botts, M.; Liang, S.

    2016-12-01

    New sensor technologies provide an unparalleled capability to collect large numbers of diverse observations about the world around us. Networks of such sensors are especially effective for capturing and analyzing unexpected, fast moving events if they can be deployed with a minimum of time, effort, and cost. A rapid-response sensing and processing capability is extremely important in quickly unfolding events not only to collect data for future research.but also to support response efforts that may be needed by providing up-to-date knowledge of the situation. A recent pilot activity coordinated by the Open Geospatial Consortium combined Sensor Web Enablement (SWE) standards with Internet of Things (IoT) practices to understand better how to set up rapid-response sensor networks in comparable event situations involving accidents or disasters. The networks included weather and environmental sensors, georeferenced UAV and PTZ imagery collectors, and observations from "citizen sensors", as well as virtual observations generated by predictive models. A key feature of each "SWE-IoT" network was one or more Sensor Hubs that connected local, often proprietary sensor device protocols to a common set of standard SWE data types and standard Web interfaces on an IP-based internetwork. This IoT approach provided direct, common, interoperable access to all sensor readings from anywhere on the internetwork of sensors, Hubs, and applications. Sensor Hubs also supported an automated discovery protocol in which activated Hubs registered themselves with a canonical catalog service. As each sensor (wireless or wired) was activated within range of an authorized Hub, it registered itself with that Hub, which in turn registered the sensor and its capabilities with the catalog. Sensor Hub functions were implemented in a range of component types, from personal devices such as smartphones and Raspberry Pi's to full cloud-based sensor services platforms. Connected into a network "constellation" the Hubs also enabled reliable exchange and persistence of sensor data in constrained communications environments. Pilot results are being documented in public OGC engineering reports and are feeding into improved standards to support SWE-IoT networks for a range of domains and applications.

  11. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  12. Wireless Networks under a Backoff Attack: A Game Theoretical Perspective

    PubMed Central

    Zazo, Santiago

    2018-01-01

    We study a wireless sensor network using CSMA/CA in the MAC layer under a backoff attack: some of the sensors of the network are malicious and deviate from the defined contention mechanism. We use Bianchi’s network model to study the impact of the malicious sensors on the total network throughput, showing that it causes the throughput to be unfairly distributed among sensors. We model this conflict using game theory tools, where each sensor is a player. We obtain analytical solutions and propose an algorithm, based on Regret Matching, to learn the equilibrium of the game with an arbitrary number of players. Our approach is validated via simulations, showing that our theoretical predictions adjust to reality. PMID:29385752

  13. An Expert System And Simulation Approach For Sensor Management & Control In A Distributed Surveillance Network

    NASA Astrophysics Data System (ADS)

    Leon, Barbara D.; Heller, Paul R.

    1987-05-01

    A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.

  14. Implementing TCP/IP and a socket interface as a server in a message-passing operating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hipp, E.; Wiltzius, D.

    1990-03-01

    The UNICOS 4.3BSD network code and socket transport interface are the basis of an explicit network server for NLTSS, a message passing operating system on the Cray YMP. A BSD socket user library provides access to the network server using an RPC mechanism. The advantages of this server methodology are its modularity and extensibility to migrate to future protocol suites (e.g. OSI) and transport interfaces. In addition, the network server is implemented in an explicit multi-tasking environment to take advantage of the Cray YMP multi-processor platform. 19 refs., 5 figs.

  15. Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network

    NASA Astrophysics Data System (ADS)

    Dhaya, R.; Sadasivam, V.; Kanthavel, R.

    2012-12-01

    Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.

  16. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  17. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  18. On computer vision in wireless sensor networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nina M.; Ko, Teresa H.

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an imagemore » capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.« less

  19. Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.

    PubMed

    Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin

    2017-09-13

    Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.

  20. Snapshot Imaging Spectrometry in the Visible and Long Wave Infrared

    NASA Astrophysics Data System (ADS)

    Maione, Bryan David

    Imaging spectrometry is an optical technique in which the spectral content of an object is measured at each location in space. The main advantage of this modality is that it enables characterization beyond what is possible with a conventional camera, since spectral information is generally related to the chemical composition of the object. Due to this, imaging spectrometers are often capable of detecting targets that are either morphologically inconsistent, or even under resolved. A specific class of imaging spectrometer, known as a snapshot system, seeks to measure all spatial and spectral information simultaneously, thereby rectifying artifacts associated with scanning designs, and enabling the measurement of temporally dynamic scenes. Snapshot designs are the focus of this dissertation. Three designs for snapshot imaging spectrometers are developed, each providing novel contributions to the field of imaging spectrometry. In chapter 2, the first spatially heterodyned snapshot imaging spectrometer is modeled and experimentally validated. Spatial heterodyning is a technique commonly implemented in non-imaging Fourier transform spectrometry. For Fourier transform imaging spectrometers, spatial heterodyning improves the spectral resolution trade space. Additionally, in this chapter a unique neural network based spectral calibration is developed and determined to be an improvement beyond Fourier and linear operator based techniques. Leveraging spatial heterodyning as developed in chapter 2, in chapter 3, a high spectral resolution snapshot Fourier transform imaging spectrometer, based on a Savart plate interferometer, is developed and experimentally validated. The sensor presented in this chapter is the highest spectral resolution sensor in its class. High spectral resolution enables the sensor to discriminate narrowly spaced spectral lines. The capabilities of neural networks in imaging spectrometry are further explored in this chapter. Neural networks are used to perform single target detection on raw instrument data, thereby eliminating the need for an explicit spectral calibration step. As an extension of the results in chapter 2, neural networks are once again demonstrated to be an improvement when compared to linear operator based detection. In chapter 4 a non-interferometric design is developed for the long wave infrared (wavelengths spanning 8-12 microns). The imaging spectrometer developed in this chapter is a multi-aperture filtered microbolometer. Since the detector is uncooled, the presented design is ultra-compact and low power. Additionally, cost effective polymer absorption filters are used in lieu of interference filters. Since, each measurement of the system is spectrally multiplexed, an SNR advantage is realized. A theoretical model for the filtered design is developed, and the performance of the sensor for detecting liquid contaminants is investigated. Similar to past chapters, neural networks are used and achieve false detection rates of less than 1%. Lastly, this dissertation is concluded with a discussion on future work and potential impact of these devices.

  1. Maritime In Situ Sensing Inter-Operable Networks (MISSION)

    DTIC Science & Technology

    2013-09-30

    creating acoustic communications (acomms) technologies enabling underwater sensor networks and distributed systems. Figure 1. Project MISSION...Marn, S. Ramp, F. Bahr, “Implementation of an Underwater Wireless Sensor Network in San Francisco Bay,” Proc. 10th International Mine Warfare...NILUS – An Underwater Acoustic Sensor Network Demonstrator System,” Proc. 10th International Mine Warfare Technology Symposium, Monterey, CA, May 7

  2. Wireless sensor network for monitoring soil moisture and weather conditions

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  3. Experimental study of thin film sensor networks for wind turbine blade damage detection

    NASA Astrophysics Data System (ADS)

    Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.

    2017-02-01

    Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.

  4. Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.

  5. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez Aviles, Camila A.; Rao, Nageswara S.

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventionalmore » majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.« less

  6. In-network processing of joins in wireless sensor networks.

    PubMed

    Kang, Hyunchul

    2013-03-11

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified.

  7. In-Network Processing of Joins in Wireless Sensor Networks

    PubMed Central

    Kang, Hyunchul

    2013-01-01

    The join or correlated filtering of sensor readings is one of the fundamental query operations in wireless sensor networks (WSNs). Although the join in centralized or distributed databases is a well-researched problem, join processing in WSNs has quite different characteristics and is much more difficult to perform due to the lack of statistics on sensor readings and the resource constraints of sensor nodes. Since data transmission is orders of magnitude more costly than processing at a sensor node, in-network processing of joins is essential. In this paper, the state-of-the-art techniques for join implementation in WSNs are surveyed. The requirements and challenges, join types, and components of join implementation are described. The open issues for further research are identified. PMID:23478603

  8. Secure Sensor Semantic Web and Information Fusion

    DTIC Science & Technology

    2014-06-25

    data acquired and transmitted by wireless sensor networks (WSNs). In a WSN, due to a need for robustness of monitoring and low cost of the nodes...3 S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor networks : A comprehensive overview...Elisa Bertino, and Somesh Jha: Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. To appear in

  9. SCODE: A Secure Coordination-Based Data Dissemination to Mobile Sinks in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hung, Lexuan; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    For many sensor network applications such as military, homeland security, it is necessary for users (sinks) to access sensor networks while they are moving. However, sink mobility brings new challenges to secure routing in large-scale sensor networks. Mobile sinks have to constantly propagate their current location to all nodes, and these nodes need to exchange messages with each other so that the sensor network can establish and maintain a secure multi-hop path between a source node and a mobile sink. This causes significant computation and communication overhead for sensor nodes. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. In this paper, we propose a secure and energy-efficient data dissemination protocol — Secure COodination-based Data dissEmination (SCODE) — for mobile sinks in sensor networks. We take advantages of coordination networks (grid structure) based on Geographical Adaptive Fidelity (GAF) protocol to construct a secure and efficient routing path between sources and sinks. Our security analysis demonstrates that the proposed protocol can defend against common attacks in sensor network routing such as replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Our performance evaluation both in mathematical analysis and simulation shows that the SCODE significantly reduces communication overhead and energy consumption while the latency is similar compared with the existing routing protocols, and it always delivers more than 90 percentage of packets successfully.

  10. An adaptive distributed data aggregation based on RCPC for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hua, Guogang; Chen, Chang Wen

    2006-05-01

    One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks

  11. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  12. Transitioning mine warfare to network-centric sensor analysis: future PMA technologies & capabilities

    NASA Astrophysics Data System (ADS)

    Stack, J. R.; Guthrie, R. S.; Cramer, M. A.

    2009-05-01

    The purpose of this paper is to outline the requisite technologies and enabling capabilities for network-centric sensor data analysis within the mine warfare community. The focus includes both automated processing and the traditional humancentric post-mission analysis (PMA) of tactical and environmental sensor data. This is motivated by first examining the high-level network-centric guidance and noting the breakdown in the process of distilling actionable requirements from this guidance. Examples are provided that illustrate the intuitive and substantial capability improvement resulting from processing sensor data jointly in a network-centric fashion. Several candidate technologies are introduced including the ability to fully process multi-sensor data given only partial overlap in sensor coverage and the ability to incorporate target identification information in stride. Finally the critical enabling capabilities are outlined including open architecture, open business, and a concept of operations. This ability to process multi-sensor data in a network-centric fashion is a core enabler of the Navy's vision and will become a necessity with the increasing number of manned and unmanned sensor systems and the requirement for their simultaneous use.

  13. A controllable sensor management algorithm capable of learning

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.; Veeramacheneni, Kalyan K.

    2005-03-01

    Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.

  14. Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration

    PubMed Central

    Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul

    2015-01-01

    This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392

  15. Authentication and Key Establishment in Dynamic Wireless Sensor Networks

    PubMed Central

    Qiu, Ying; Zhou, Jianying; Baek, Joonsang; Lopez, Javier

    2010-01-01

    When a sensor node roams within a very large and distributed wireless sensor network, which consists of numerous sensor nodes, its routing path and neighborhood keep changing. In order to provide a high level of security in this environment, the moving sensor node needs to be authenticated to new neighboring nodes and a key established for secure communication. The paper proposes an efficient and scalable protocol to establish and update the authentication key in a dynamic wireless sensor network environment. The protocol guarantees that two sensor nodes share at least one key with probability 1 (100%) with less memory and energy cost, while not causing considerable communication overhead. PMID:22319321

  16. Fieldservers and Sensor Service Grid as Real-time Monitoring Infrastructure for Ubiquitous Sensor Networks

    PubMed Central

    Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi

    2009-01-01

    The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018

  17. Sensor Networks in the Low Lands

    PubMed Central

    Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W.; Bijwaard, Dennis J. A.; Havinga, Paul J. M.

    2010-01-01

    This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation. PMID:22163669

  18. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    PubMed

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  19. Shipboard Wireless Sensor Networks Utilizing Zigbee Technology

    DTIC Science & Technology

    2006-09-01

    This thesis studies the feasibility of utilizing Zigbee standard devices to create a shipboard wireless sensor network . Two primary methods were used...the research effort would be a completely wireless sensor network which would result in a net savings in man hours required to maintain and monitor

  20. Wireless sensor network for irrigation application in cotton

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  1. Wireless sensor network effectively controls center pivot irrigation of sorghum

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  2. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  3. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    NASA Astrophysics Data System (ADS)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  4. A Distributed Prognostic Health Management Architecture

    NASA Technical Reports Server (NTRS)

    Bhaskar, Saha; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This paper introduces a generic distributed prognostic health management (PHM) architecture with specific application to the electrical power systems domain. Current state-of-the-art PHM systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to loss of functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become unsuitable for successful deployment, and efficient distributed architectures are required. A distributed architecture though, is not effective unless there is an algorithmic framework to take advantage of its unique abilities. The health management paradigm envisaged here incorporates a heterogeneous set of system components monitored by a varied suite of sensors and a particle filtering (PF) framework that has the power and the flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in order to explicitly represent and manage uncertainties; however, typically the complexity of the prognostic routine is higher than the computational power of one computational element ( CE). Individual CEs run diagnostic routines until the system variable being monitored crosses beyond a nominal threshold, upon which it coordinates with other networked CEs to run the prognostic routine in a distributed fashion. Implementation results from a network of distributed embedded devices monitoring a prototypical aircraft electrical power system are presented, where the CEs are Sun Microsystems Small Programmable Object Technology (SPOT) devices.

  5. An efficient and reliable geographic routing protocol based on partial network coding for underwater sensor networks.

    PubMed

    Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying

    2015-05-28

    Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.

  6. Autonomous chemical and biological miniature wireless-sensor

    NASA Astrophysics Data System (ADS)

    Goldberg, Bar-Giora

    2005-05-01

    The presentation discusses a new concept and a paradigm shift in biological, chemical and explosive sensor system design and deployment. From large, heavy, centralized and expensive systems to distributed wireless sensor networks utilizing miniature platforms (nodes) that are lightweight, low cost and wirelessly connected. These new systems are possible due to the emergence and convergence of new innovative radio, imaging, networking and sensor technologies. Miniature integrated radio-sensor networks, is a technology whose time has come. These network systems are based on large numbers of distributed low cost and short-range wireless platforms that sense and process their environment and communicate data thru a network to a command center. The recent emergence of chemical and explosive sensor technology based on silicon nanostructures, coupled with the fast evolution of low-cost CMOS imagers, low power DSP engines and integrated radio chips, has created an opportunity to realize the vision of autonomous wireless networks. These threat detection networks will perform sophisticated analysis at the sensor node and convey alarm information up the command chain. Sensor networks of this type are expected to revolutionize the ability to detect and locate biological, chemical, or explosive threats. The ability to distribute large numbers of low-cost sensors over large areas enables these devices to be close to the targeted threats and therefore improve detection efficiencies and enable rapid counter responses. These sensor networks will be used for homeland security, shipping container monitoring, and other applications such as laboratory medical analysis, drug discovery, automotive, environmental and/or in-vivo monitoring. Avaak"s system concept is to image a chromatic biological, chemical and/or explosive sensor utilizing a digital imager, analyze the images and distribute alarm or image data wirelessly through the network. All the imaging, processing and communications would take place within the miniature, low cost distributed sensor platforms. This concept however presents a significant challenge due to a combination and convergence of required new technologies, as mentioned above. Passive biological and chemical sensors with very high sensitivity and which require no assaying are in development using a technique to optically and chemically encode silicon wafers with tailored nanostructures. The silicon wafer is patterned with nano-structures designed to change colors ad patterns when exposed to the target analytes (TICs, TIMs, VOC). A small video camera detects the color and pattern changes on the sensor. To determine if an alarm condition is present, an on board DSP processor, using specialized image processing algorithms and statistical analysis, determines if color gradient changes occurred on the sensor array. These sensors can detect several agents simultaneously. This system is currently under development by Avaak, with funding from DARPA through an SBIR grant.

  7. SensorKit: An End-to-End Solution for Environmental Sensor Networking

    NASA Astrophysics Data System (ADS)

    Silva, F.; Graham, E.; Deschon, A.; Lam, Y.; Goldman, J.; Wroclawski, J.; Kaiser, W.; Benzel, T.

    2008-12-01

    Modern day sensor network technology has shown great promise to transform environmental data collection. However, despite the promise, these systems have remained the purview of the engineers and computer scientists who design them rather than a useful tool for the environmental scientists who need them. SensorKit is conceived of as a way to make wireless sensor networks accessible to The People: it is an advanced, powerful tool for sensor data collection that does not require advanced technological know-how. We are aiming to make wireless sensor networks for environmental science as simple as setting up a standard home computer network by providing simple, tested configurations of commercially-available hardware, free and easy-to-use software, and step-by-step tutorials. We designed and built SensorKit using a simplicity-through-sophistication approach, supplying users a powerful sensor to database end-to-end system with a simple and intuitive user interface. Our objective in building SensorKit was to make the prospect of using environmental sensor networks as simple as possible. We built SensorKit from off the shelf hardware components, using the Compact RIO platform from National Instruments for data acquisition due to its modular architecture and flexibility to support a large number of sensor types. In SensorKit, we support various types of analog, digital and networked sensors. Our modular software architecture allows us to abstract sensor details and provide users a common way to acquire data and to command different types of sensors. SensorKit is built on top of the Sensor Processing and Acquisition Network (SPAN), a modular framework for acquiring data in the field, moving it reliably to the scientist institution, and storing it in an easily-accessible database. SPAN allows real-time access to the data in the field by providing various options for long haul communication, such as cellular and satellite links. Our system also features reliable data storage and transmission, using a custody transfer mechanism that ensures data is retained until successful delivery to the scientist can be confirmed. The ability for the scientist to communicate in real-time with the sensor network in the field enables remote sensor reconfiguration and system health and status monitoring. We use a spiral approach of design, test, deploy and revise, and, by going to the field frequently and getting feedback from field scientists, we have been able to include additional functionality that is useful to the scientist while ensuring SensorKit remains intuitive to operate. Users can configure, control, and monitor SensorKit using a number of tools we have developed. An intuitive user interface running on a desktop or laptop allows scientists to setup the system, add and configure sensors, and specify when and how the data will be collected. We also have a mobile version of our interface that runs on a PDA and lets scientists calibrate sensors and "tune" the system while in the field, allowing for data validation before leaving the field and returning to the research lab. SensorKit also features SensorBase, an intuitive user interface built on top of a standard SQL database, which allows scientists to store and share their data with other researchers. SensorKit has been used for diverse scientific applications and deployed throughout the world: from studying mercury cycling in rice paddies in China, to ecological research in the neotropical rainforests of Costa Rica, to monitoring the contamination of salt lakes in Argentina.

  8. A Hardware-Supported Algorithm for Self-Managed and Choreographed Task Execution in Sensor Networks.

    PubMed

    Bordel, Borja; Miguel, Carlos; Alcarria, Ramón; Robles, Tomás

    2018-03-07

    Nowadays, sensor networks are composed of a great number of tiny resource-constraint nodes, whose management is increasingly more complex. In fact, although collaborative or choreographic task execution schemes are which fit in the most perfect way with the nature of sensor networks, they are rarely implemented because of the high resource consumption of these algorithms (especially if networks include many resource-constrained devices). On the contrary, hierarchical networks are usually designed, in whose cusp it is included a heavy orchestrator with a remarkable processing power, being able to implement any necessary management solution. However, although this orchestration approach solves most practical management problems of sensor networks, a great amount of the operation time is wasted while nodes request the orchestrator to address a conflict and they obtain the required instructions to operate. Therefore, in this paper it is proposed a new mechanism for self-managed and choreographed task execution in sensor networks. The proposed solution considers only a lightweight gateway instead of traditional heavy orchestrators and a hardware-supported algorithm, which consume a negligible amount of resources in sensor nodes. The gateway avoids the congestion of the entire sensor network and the hardware-supported algorithm enables a choreographed task execution scheme, so no particular node is overloaded. The performance of the proposed solution is evaluated through numerical and electronic ModelSim-based simulations.

  9. A Hardware-Supported Algorithm for Self-Managed and Choreographed Task Execution in Sensor Networks

    PubMed Central

    2018-01-01

    Nowadays, sensor networks are composed of a great number of tiny resource-constraint nodes, whose management is increasingly more complex. In fact, although collaborative or choreographic task execution schemes are which fit in the most perfect way with the nature of sensor networks, they are rarely implemented because of the high resource consumption of these algorithms (especially if networks include many resource-constrained devices). On the contrary, hierarchical networks are usually designed, in whose cusp it is included a heavy orchestrator with a remarkable processing power, being able to implement any necessary management solution. However, although this orchestration approach solves most practical management problems of sensor networks, a great amount of the operation time is wasted while nodes request the orchestrator to address a conflict and they obtain the required instructions to operate. Therefore, in this paper it is proposed a new mechanism for self-managed and choreographed task execution in sensor networks. The proposed solution considers only a lightweight gateway instead of traditional heavy orchestrators and a hardware-supported algorithm, which consume a negligible amount of resources in sensor nodes. The gateway avoids the congestion of the entire sensor network and the hardware-supported algorithm enables a choreographed task execution scheme, so no particular node is overloaded. The performance of the proposed solution is evaluated through numerical and electronic ModelSim-based simulations. PMID:29518986

  10. Traffic Adaptive Energy Efficient and Low Latency Medium Access Control for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yadav, Rajesh; Varma, Shirshu; Malaviya, N.

    2008-05-01

    Medium access control for wireless sensor networks has been a very active research area in the recent years. The traditional wireless medium access control protocol such as IEEE 802.11 is not suitable for the sensor network application because these are battery powered. The recharging of these sensor nodes is expensive and also not possible. The most of the literature in the medium access for the sensor network focuses on the energy efficiency. The proposed MAC protocol solves the energy inefficiency caused by idle listening, control packet overhead and overhearing taking nodes latency into consideration based on the network traffic. Simulation experiments have been performed to demonstrate the effectiveness of the proposed approach. The validation of the simulation results of the proposed MAC has been done by comparing it with the analytical model. This protocol has been simulated in Network Simulator ns-2.

  11. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  12. An energy-efficient data gathering protocol in large wireless sensor network

    NASA Astrophysics Data System (ADS)

    Wang, Yamin; Zhang, Ruihua; Tao, Shizhong

    2006-11-01

    Wireless sensor network consisting of a large number of small sensors with low-power transceiver can be an effective tool for gathering data in a variety of environment. The collected data must be transmitted to the base station for further processing. Since a network consists of sensors with limited battery energy, the method for data gathering and routing must be energy efficient in order to prolong the lifetime of the network. In this paper, we presented an energy-efficient data gathering protocol in wireless sensor network. The new protocol used data fusion technology clusters nodes into groups and builds a chain among the cluster heads according to a hybrid of the residual energy and distance to the base station. Results in stochastic geometry are used to derive the optimum parameter of our algorithm that minimizes the total energy spent in the network. Simulation results show performance superiority of the new protocol.

  13. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security.

    PubMed

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-12-04

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  14. Networking Sensors for Information Dominance - Joint Signal Processing and Communication Design

    DTIC Science & Technology

    2012-01-01

    2012 4. TITLE AND SUBTITLE NETWORKING SENSORS FOR INFORMATION DOMINANCE - JOINT SIGNAL PROCESSING AND COMMUNICATION DESIGN, Final Report for FA9550...Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 Public A AFRL-OSR-VA-TR-2012-0729 NETWORKING SENSORS FOR INFORMATION DOMINANCE - JOINT

  15. Applying Sensor Networks to Evaluate Air Pollutant Emissions from Fugitive and Area Sources

    EPA Science Inventory

    This is a presentation to be given at Duke University's Wireless Intelligent Sensor Network workshop on June 5, 2013. The presentation discusses the evaluation of a low cost carbon monoxide sensor network applied at a recent forest fire study and also evaluated against a referen...

  16. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  17. Performance of a wireless sensor network for crop monitoring and irrigation control

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  18. Social Network Analysis and Its Applications in Wireless Sensor and Vehicular Networks

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Alexis; Katsaros, Dimitrios; Manolopoulos, Yannis

    Ever since the introduction of wireless sensor networks in the research and development agenda, the corresponding community has been eager to harness the endless possibilities that this new technology has to offer. These micro sensor nodes, whose capabilities have skyrocketed over the last couple of years, have allowed for a wide range of applications to be created; applications that not so long ago would seem impossible, impractical and time-consuming. It would only be logical to expect that researchers from other fields would take an interest in sensor networks, hence expanding the already wide variety of algorithms, theoretical proofs and applications that existed beforehand. Social Network Analysis is one such field, which has instigated a paradigm shift in the way we view sensor nodes.

  19. Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks

    PubMed Central

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789

  20. Simple random sampling-based probe station selection for fault detection in wireless sensor networks.

    PubMed

    Huang, Rimao; Qiu, Xuesong; Rui, Lanlan

    2011-01-01

    Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.

  1. Implementation Of Secure 6LoWPAN Communications For Tactical Wireless Sensor Networks

    DTIC Science & Technology

    2016-09-01

    wireless sensor networks (WSN) consist of power -constrained devices spread throughout a region-of-interest to provide data extraction in real time...1  A.  LOW POWER WIRELESS SENSOR NETWORKS ............................1  B.  INTRODUCTION TO...communication protocol for low power wireless personal area networks Since the IEEE 802.15.4 standard only defines the first two layers of the Open

  2. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections

    DTIC Science & Technology

    2015-06-01

    tamper. 55  Size: 3 ½ x 3 ½ x 1 ¾ inches.  Wireless RF networked communications.  Built in seismic, acoustic , magnetic, and PIR sensors ...Marine Corps VHF Very High Frequency WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I want...that allow digital wireless RF communications from each sensor interfaced into a variety of network architectures to relay critical data to a final

  3. Low-power secure body area network for vital sensors toward IEEE802.15.6.

    PubMed

    Kuroda, Masahiro; Qiu, Shuye; Tochikubo, Osamu

    2009-01-01

    Many healthcare/medical services have started using personal area networks, such as Bluetooth and ZigBee; these networks consist of various types of vital sensors. These works focus on generalized functions for sensor networks that expect enough battery capacity and low-power CPU/RF (Radio Frequency) modules, but less attention to easy-to-use privacy protection. In this paper, we propose a commercially-deployable secure body area network (S-BAN) with reduced computational burden on a real sensor that has limited RAM/ROM sizes and CPU/RF power consumption under a light-weight battery. Our proposed S-BAN provides vital data ordering among sensors that are involved in an S-BAN and also provides low-power networking with zero-administration security by automatic private key generation. We design and implement the power-efficient media access control (MAC) with resource-constraint security in sensors. Then, we evaluate the power efficiency of the S-BAN consisting of small sensors, such as an accessory type ECG and ring-type SpO2. The evaluation of power efficiency of the S-BAN using real sensors convinces us in deploying S-BAN and will also help us in providing feedbacks to the IEEE802.15.6 MAC, which will be the standard for BANs.

  4. A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing

    PubMed Central

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. PMID:22163948

  5. A wireless sensor network for vineyard monitoring that uses image processing.

    PubMed

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis.

  6. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuators and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  7. Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuator and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.

  8. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge

    PubMed Central

    Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    2008-01-01

    For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully. PMID:27873956

  9. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    USGS Publications Warehouse

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  10. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge.

    PubMed

    Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    2008-12-03

    For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODE plus . It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODE plus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.

  11. Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset

    NASA Astrophysics Data System (ADS)

    Choi, Seung Sik

    This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.

  12. Wireless sensor networks for heritage object deformation detection and tracking algorithm.

    PubMed

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-10-31

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  13. Simulating Operation of a Complex Sensor Network

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Clare, Loren; Woo, Simon

    2008-01-01

    Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.

  14. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    PubMed Central

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-01-01

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458

  15. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    PubMed Central

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-01-01

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941

  16. Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515

  17. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman

    2016-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290

  18. Routing protocols in wireless sensor networks.

    PubMed

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks.

  19. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.

    PubMed

    Salim, Shelly; Moh, Sangman

    2016-06-30

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  20. On securing wireless sensor network--novel authentication scheme against DOS attacks.

    PubMed

    Raja, K Nirmal; Beno, M Marsaline

    2014-10-01

    Wireless sensor networks are generally deployed for collecting data from various environments. Several applications specific sensor network cryptography algorithms have been proposed in research. However WSN's has many constrictions, including low computation capability, less memory, limited energy resources, vulnerability to physical capture, which enforce unique security challenges needs to make a lot of improvements. This paper presents a novel security mechanism and algorithm for wireless sensor network security and also an application of this algorithm. The proposed scheme is given to strong authentication against Denial of Service Attacks (DOS). The scheme is simulated using network simulator2 (NS2). Then this scheme is analyzed based on the network packet delivery ratio and found that throughput has improved.

  1. QPA-CLIPS: A language and representation for process control

    NASA Technical Reports Server (NTRS)

    Freund, Thomas G.

    1994-01-01

    QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.

  2. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less

  3. Ubiquitous virtual private network: a solution for WSN seamless integration.

    PubMed

    Villa, David; Moya, Francisco; Villanueva, Félix Jesús; Aceña, Óscar; López, Juan Carlos

    2014-01-06

    Sensor networks are becoming an essential part of ubiquitous systems and applications. However, there are no well-defined protocols or mechanisms to access the sensor network from the enterprise information system. We consider this issue as a heterogeneous network interconnection problem, and as a result, the same concepts may be applied. Specifically, we propose the use of object-oriented middlewares to provide a virtual private network in which all involved elements (sensor nodes or computer applications) will be able to communicate as if all of them were in a single and uniform network.

  4. Design and simulation of sensor networks for tracking Wifi users in outdoor urban environments

    NASA Astrophysics Data System (ADS)

    Thron, Christopher; Tran, Khoi; Smith, Douglas; Benincasa, Daniel

    2017-05-01

    We present a proof-of-concept investigation into the use of sensor networks for tracking of WiFi users in outdoor urban environments. Sensors are fixed, and are capable of measuring signal power from users' WiFi devices. We derive a maximum likelihood estimate for user location based on instantaneous sensor power measurements. The algorithm takes into account the effects of power control, and is self-calibrating in that the signal power model used by the location algorithm is adjusted and improved as part of the operation of the network. Simulation results to verify the system's performance are presented. The simulation scenario is based on a 1.5 km2 area of lower Manhattan, The self-calibration mechanism was verified for initial rms (root mean square) errors of up to 12 dB in the channel power estimates: rms errors were reduced by over 60% in 300 track-hours, in systems with limited power control. Under typical operating conditions with (without) power control, location rms errors are about 8.5 (5) meters with 90% accuracy within 9 (13) meters, for both pedestrian and vehicular users. The distance error distributions for smaller distances (<30 m) are well-approximated by an exponential distribution, while the distributions for large distance errors have fat tails. The issue of optimal sensor placement in the sensor network is also addressed. We specify a linear programming algorithm for determining sensor placement for networks with reduced number of sensors. In our test case, the algorithm produces a network with 18.5% fewer sensors with comparable accuracy estimation performance. Finally, we discuss future research directions for improving the accuracy and capabilities of sensor network systems in urban environments.

  5. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    PubMed

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  6. Developing a robust wireless sensor network structure for environmental sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network by simulating the failure of an individual node and investigating the effect and the self-healing ability of the stressed network. The resulting sensor network can survive temporary service interruption from a small subset of signal repeaters and sensor stations. The robustness and the resilient of the network performance ensure the integrity of the dataset and the real-time transmissibility during harsh conditions.

  7. Routing Protocols to Minimize the Number of Route Disconnections for Communication in Mobile Ad Hoc Networks

    DTIC Science & Technology

    2009-09-01

    Wireless Sensor Network (WSN) Simulator Research Personnel: Dr. Ali Abu-El Humos Task No. Task Current Status 1 Literature review and problem definition...networks.com/ [2] S. Dulman, P. Havinga, "A Simulation Template for Wireless Sensor Networks ," Supplement of the Sixth International Symposium on Autonomous... Sensor Network (WSN) Simulator 76 I Breakdown of the Research Activity to Tasks 76 II Description of the Tasks 76 Task 1 Literature Review and

  8. Minimum energy information fusion in sensor networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G

    1999-05-11

    In this paper we consider how to organize the sharing of information in a distributed network of sensors and data processors so as to provide explanations for sensor readings with minimal expenditure of energy. We point out that the Minimum Description Length principle provides an approach to information fusion that is more naturally suited to energy minimization than traditional Bayesian approaches. In addition we show that for networks consisting of a large number of identical sensors Kohonen self-organization provides an exact solution to the problem of combing the sensor outputs into minimal description length explanations.

  9. Retraction notice to: "The Application of Symmetric Key Cryptographic Algorithms in Wireless Sensor Networks"

    NASA Astrophysics Data System (ADS)

    Si, Lingling; Ji, Zhigang; Wang, Zhihui

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Publisher. The authors have plagiarized a paper that had already appeared in "Queen's 25th Biennial Symposium on Communications", page 168-172, print ISBN 978-1-4244-5709-0. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  10. The Evaluation of Rekeying Protocols Within the Hubenko Architecture as Applied to Wireless Sensor Networks

    DTIC Science & Technology

    2009-03-01

    SENSOR NETWORKS THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and...hierarchical, and Secure Lock within a wireless sensor network (WSN) under the Hubenko architecture. Using a Matlab computer simulation, the impact of the...rekeying protocol should be applied given particular network parameters, such as WSN size. 10 1.3 Experimental Approach A computer simulation in

  11. Measuring NO, NO2, CO2 and O3 with low-cost sensors

    NASA Astrophysics Data System (ADS)

    Müller, Michael; Graf, Peter; Hüglin, Christoph

    2017-04-01

    Inexpensive sensors measuring ambient gas concentrations can be integrated in sensor units forming dense sensor networks. The utilized sensors have to be sufficiently accurate as the value of such networks directly depends on the information they provide. Thus, thorough testing of sensors before bringing them into service and the application of effective strategies for performance monitoring and adjustments during service are key elements for operating the low-cost sensors that are currently available on the market. We integrated several types of low-cost sensors into sensor units (Alphasense NO2 B4/B42F/B43F, Alphasense NO B4, SensAir CO2 LP8, Aeroqual O3 SM50), run them in the field next to instruments of air quality monitoring stations and performed tests in the laboratory. The poster summarizes our findings regarding the achieved sensor accuracy, methods to improve sensor performance as well as strategies to monitor the current state of the sensor (drifts, sensitivity) within a sensor network.

  12. Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network

    USDA-ARS?s Scientific Manuscript database

    A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity and snow depth. The network consisted of 10 sensor clusters, each with 10 measurement no...

  13. A Wireless Platform for Energy Efficient Building Control Retrofits

    DTIC Science & Technology

    2012-08-01

    University of Illinois at Urbana Champaign UTRC United Technologies Research Center VFD variable frequency drive WSN wireless sensor network ...demonstration area. .............................................................. 16 Table 4. Cost model for wireless sensor network ...buildings with MPC-based whole-building optimal control and (2) reduction in first costs achievable with a wireless sensor network (WSN)-based

  14. On Spatially Explicit Models of Cholera Epidemics: Hydrologic controls, environmental drivers, human-mediated transmissions (Invited)

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.

    2010-12-01

    A recently proposed model for cholera epidemics is examined. The model accounts for local communities of susceptibles and infectives in a spatially explicit arrangement of nodes linked by networks having different topologies. The vehicle of infection (Vibrio cholerae) is transported through the network links which are thought of as hydrological connections among susceptible communities. The mathematical tools used are borrowed from general schemes of reactive transport on river networks acting as the environmental matrix for the circulation and mixing of water-borne pathogens. The results of a large-scale application to the Kwa Zulu (Natal) epidemics of 2001-2002 will be discussed. Useful theoretical results derived in the spatially-explicit context will also be reviewed (like e.g. the exact derivation of the speed of propagation for traveling fronts of epidemics on regular lattices endowed with uniform population density). Network effects will be discussed. The analysis of the limit case of uniformly distributed population density proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. To that extent, it is shown that the ratio between spreading and disease outbreak timescales proves the crucial parameter. The relevance of our results lies in the major differences potentially arising between the predictions of spatially explicit models and traditional compartmental models of the SIR-like type. Our results suggest that in many cases of real-life epidemiological interest timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of compartmental models. Finally, a view on further developments includes: hydrologically improved aquatic reservoir models for pathogens; human mobility patterns affecting disease propagation; double-peak emergence and seasonality in the spatially explicit epidemic context.

  15. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    PubMed Central

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network. PMID:27754405

  16. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks.

    PubMed

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-10-14

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  17. Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2006-05-01

    A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the algorithms from flat topologies to two-tier hierarchies of sensor nodes are presented. Results from a few simulations of the proposed algorithms are compared to the published results of other approaches to sensor network self-organization in common scenarios. The estimated network lifetime and extent under static resource allocations are computed.

  18. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  19. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  20. Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.

    PubMed

    Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei

    2017-01-13

    WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.

  1. An Advanced Sensor Network Design For Subglacial Sensing

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.; Elsaify, A.; Zou, G.; Padhy, P.; Riddoch, A.

    2006-12-01

    In the Glacsweb project a sensor network has been designed to take sensor measurements inside glaciers and send the data back to a web server autonomously. A wide range of experience was gained in the deployment of the earlier systems and this has been used to develop new hardware and software to better meet the needs of glaciologists using the data from the system. The system was reduced in size, new sensors (compass, light sensor) were added and the radio communications system completely changed. The new 173MHz radio system was designed with an antenna tuned to work in ice and a new network algorithm written to provide better data security. Probes can communicate data through each other (ad-hoc network) and store many months of data in a large buffer to cope with long term communications failures. New sensors include a light reflection measurement in order to provide data on the surrounding material. This paper will discuss the design decisions, the effectiveness of the final system and generic outcomes of use to sensor network designers deploying in difficult environments.

  2. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    PubMed Central

    Lin, Kai; Wang, Di; Hu, Long

    2016-01-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302

  3. Performance Evaluation Modeling of Network Sensors

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Jennings, Esther H.; Gao, Jay L.

    2003-01-01

    Substantial benefits are promised by operating many spatially separated sensors collectively. Such systems are envisioned to consist of sensor nodes that are connected by a communications network. A simulation tool is being developed to evaluate the performance of networked sensor systems, incorporating such metrics as target detection probabilities, false alarms rates, and classification confusion probabilities. The tool will be used to determine configuration impacts associated with such aspects as spatial laydown, and mixture of different types of sensors (acoustic, seismic, imaging, magnetic, RF, etc.), and fusion architecture. The QualNet discrete-event simulation environment serves as the underlying basis for model development and execution. This platform is recognized for its capabilities in efficiently simulating networking among mobile entities that communicate via wireless media. We are extending QualNet's communications modeling constructs to capture the sensing aspects of multi-target sensing (analogous to multiple access communications), unimodal multi-sensing (broadcast), and multi-modal sensing (multiple channels and correlated transmissions). Methods are also being developed for modeling the sensor signal sources (transmitters), signal propagation through the media, and sensors (receivers) that are consistent with the discrete event paradigm needed for performance determination of sensor network systems. This work is supported under the Microsensors Technical Area of the Army Research Laboratory (ARL) Advanced Sensors Collaborative Technology Alliance.

  4. Dimensions and dynamics of citizen observatories: The case of online amateur weather networks

    NASA Astrophysics Data System (ADS)

    Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter

    2016-04-01

    Crowd-sourced environmental observations are being increasingly considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public (so-called citizen science) and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated citizen observatories as one of the oldest and most widely practiced citizen science activities. The objective of this paper is to introduce a conceptual framework that enables a systematic review of different dimensions of these mushrooming/expanding networks. These dimensions include the geographic scope and types of network participants; the network's establishment mechanism, revenue stream(s) and existing communication paradigm; efforts required by citizens and support offered by platform providers; and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run these networks, sustainability of the platforms, data ownership and level of transparency of each network. This framework is then utilized to perform a critical and normative review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) There are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks. (2) The revenue stream(s) of online amateur weather networks is one of the least discussed but most important dimensions that is crucial for the sustainability of these networks. (3) Although all of the networks included in this study have one or more explicit pattern of two-way communications, there is no sign (yet) of interactive information exchange among the triangle of weather observers, data aggregators and policy makers. KEYWORDS Citizen Science, Citizen Observatories, ICT-enabled citizen participation, online amateur weather networks

  5. Explicit integration with GPU acceleration for large kinetic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Benjamin; Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830; Belt, Andrew

    2015-12-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems inmore » various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less

  6. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Analysis of security and threat of underwater wireless sensor network topology

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Wei, Zhiqiang; Cong, Yanping; Jia, Dongning

    2012-04-01

    Underwater wireless sensor networks (UWSNs) are a subclass of wireless sensor networks. Underwater sensor deployment is a significant challenge due to the characteristics of UWSNs and underwater environment. Recent researches for UWSNs deployment mostly focus on the maintenance of network connectivity and maximum communication coverage. However, the broadcast nature of the transmission medium incurs various types of security attacks. This paper studies the security issues and threats of UWSNs topology. Based on the cluster-based topology, an underwater cluster-based security scheme (U-CBSS) is presented to defend against these attacks. and safety.

  8. Analytical transport network theory to guide the design of 3-D microstructural networks in energy materials: Part 1. Flow without reactions

    NASA Astrophysics Data System (ADS)

    Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.

    2017-12-01

    We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.

  9. Bio-mimic optimization strategies in wireless sensor networks: a survey.

    PubMed

    Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2013-12-24

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.

  10. Assessing the Performance of a Network of Low Cost Particulate Matter Sensors Deployed in Sacramento, California

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. D.; Brown, S. G.; McCarthy, M. C.

    2017-12-01

    A new generation of low cost air quality sensors have the potential to provide valuable information on the spatial-temporal variability of air pollution - if the measurements have sufficient quality. This study examined the performance of a particulate matter sensor model, the AirBeam (HabitatMap Inc., Brooklyn, NY), over a three month period in the urban environment of Sacramento, California. Nineteen AirBeam sensors were deployed at a regulatory air monitoring site collocated with meteorology measurements and as a local network over an 80 km2 domain in Sacramento, CA. This study presents the methodology to evaluate the precision, accuracy, and reliability of the sensors over a range of meteorological and aerosol conditions. The sensors demonstrated a robust degree of precision during collocated measurement periods (R2 = 0.98 - 0.99) and a moderate degree of correlation against a Beta Attenuation Monitor PM2.5 monitor (R2 0.6). A normalization correction is applied during the study period so that each AirBeam sensor in the network reports a comparable value. The role of the meteorological environment on the accuracy of the sensor measurements is investigated, along with the possibility of improving the measurements through a meteorology weighted correction. The data quality of the network of sensors is examined, and the spatial variability of particulate matter through the study domain derived from the sensor network is presented.

  11. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    PubMed Central

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-01-01

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123

  12. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    PubMed

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  13. Faulty node detection in wireless sensor networks using a recurrent neural network

    NASA Astrophysics Data System (ADS)

    Atiga, Jamila; Mbarki, Nour Elhouda; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    The wireless sensor networks (WSN) consist of a set of sensors that are more and more used in surveillance applications on a large scale in different areas: military, Environment, Health ... etc. Despite the minimization and the reduction of the manufacturing costs of the sensors, they can operate in places difficult to access without the possibility of reloading of battery, they generally have limited resources in terms of power of emission, of processing capacity, data storage and energy. These sensors can be used in a hostile environment, such as, for example, on a field of battle, in the presence of fires, floods, earthquakes. In these environments the sensors can fail, even in a normal operation. It is therefore necessary to develop algorithms tolerant and detection of defects of the nodes for the network of sensor without wires, therefore, the faults of the sensor can reduce the quality of the surveillance if they are not detected. The values that are measured by the sensors are used to estimate the state of the monitored area. We used the Non-linear Auto- Regressive with eXogeneous (NARX), the recursive architecture of the neural network, to predict the state of a node of a sensor from the previous values described by the functions of time series. The experimental results have verified that the prediction of the State is enhanced by our proposed model.

  14. Event Detection in Aerospace Systems using Centralized Sensor Networks: A Comparative Study of Several Methodologies

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Sauvageon, Julien; Agogino, Alice M.; Tumer, Irem Y.

    2006-01-01

    Recent advances in micro electromechanical systems technology, digital electronics, and wireless communications have enabled development of low-cost, low-power, multifunctional miniature smart sensors. These sensors can be deployed throughout a region in an aerospace vehicle to build a network for measurement, detection and surveillance applications. Event detection using such centralized sensor networks is often regarded as one of the most promising health management technologies in aerospace applications where timely detection of local anomalies has a great impact on the safety of the mission. In this paper, we propose to conduct a qualitative comparison of several local event detection algorithms for centralized redundant sensor networks. The algorithms are compared with respect to their ability to locate and evaluate an event in the presence of noise and sensor failures for various node geometries and densities.

  15. MicroSensors Systems: detection of a dismounted threat

    NASA Astrophysics Data System (ADS)

    Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian

    2005-05-01

    The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.

  16. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    PubMed

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  17. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    PubMed

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  18. Automated general temperature correction method for dielectric soil moisture sensors

    NASA Astrophysics Data System (ADS)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.

  19. An open and reconfigurable wireless sensor network for pervasive health monitoring.

    PubMed

    Triantafyllidis, A; Koutkias, V; Chouvarda, I; Maglaveras, N

    2008-01-01

    Sensor networks constitute the backbone for the construction of personalized monitoring systems. Up to now, several sensor networks have been proposed for diverse pervasive healthcare applications, which are however characterized by a significant lack of open architectures, resulting in closed, non-interoperable and difficult to extend solutions. In this context, we propose an open and reconfigurable wireless sensor network (WSN) for pervasive health monitoring, with particular emphasis in its easy extension with additional sensors and functionality by incorporating embedded intelligence mechanisms. We consider a generic WSN architecture comprised of diverse sensor nodes (with communication and processing capabilities) and a mobile base unit (MBU) operating as the gateway between the sensors and the medical personnel, formulating this way a body area network (BAN). The primary focus of this work is on the intra-BAN data communication issues, adopting SensorML as the data representation mean, including the encoding of the monitoring patterns and the functionality of the sensor network. In our prototype implementation two sensor nodes are emulated; one for heart rate monitoring and the other for blood glucose observations, while the MBU corresponds to a personal digital assistant (PDA) device. Java 2 Micro Edition (J2ME) is used to implement both the sensor nodes and the MBU components. Intra-BAN wireless communication relies on the Blue-tooth protocol. Via an adaptive user interface in the MBU, health professionals may specify the monitoring parameters of the WSN and define the monitoring patterns of interest in terms of rules. This work constitutes an essential step towards the construction of open, extensible, inter-operable and intelligent WSNs for pervasive health monitoring.

  20. Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan

    2007-01-01

    Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).

  1. In-network Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection

    NASA Astrophysics Data System (ADS)

    Albano, Michele; Gao, Jie

    In a sensor network of n nodes in which k of them have sensed interesting data, we perform in-network erasure coding such that each node stores a linear combination of all the network data with random coefficients. This scheme greatly improves data resilience to node failures: as long as there are k nodes that survive an attack, all the data produced in the sensor network can be recovered with high probability. The in-network coding storage scheme also improves data collection rate by mobile mules and allows for easy scheduling of data mules.

  2. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  3. Ubiquitous Virtual Private Network: A Solution for WSN Seamless Integration

    PubMed Central

    Villa, David; Moya, Francisco; Villanueva, Félix Jesús; Aceña, Óscar; López, Juan Carlos

    2014-01-01

    Sensor networks are becoming an essential part of ubiquitous systems and applications. However, there are no well-defined protocols or mechanisms to access the sensor network from the enterprise information system. We consider this issue as a heterogeneous network interconnection problem, and as a result, the same concepts may be applied. Specifically, we propose the use of object-oriented middlewares to provide a virtual private network in which all involved elements (sensor nodes or computer applications) will be able to communicate as if all of them were in a single and uniform network. PMID:24399154

  4. Test Plan of the Anticipatory Wirelss Sensor Network for the Critical Energy Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Rentel

    2006-09-01

    The test plan for the performance of the Anticipatory Wireless Sensor Network (A-WSN) is presented. The results of the test campaigns will be obtained after actual measurements are taken in the field with the Wireless Sensor Network developed by The Innovation Center-Eaton Corp., and the Anticipatory algorithms developed by ORNL.

  5. Development of a Three Dimensional Wireless Sensor Network for Terrain-Climate Research in Remote Mountainous Environments

    NASA Astrophysics Data System (ADS)

    Kavanagh, K.; Davis, A.; Gessler, P.; Hess, H.; Holden, Z.; Link, T. E.; Newingham, B. A.; Smith, A. M.; Robinson, P.

    2011-12-01

    Developing sensor networks that are robust enough to perform in the world's remote regions is critical since these regions serve as important benchmarks compared to human-dominated areas. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. We aim to overcome these challenges by developing a three-dimensional sensor network arrayed across a topoclimatic gradient (1100-1800 meters) in a wilderness area in central Idaho. Development of this sensor array builds upon advances in sensing, networking, and power supply technologies coupled with experiences of the multidisciplinary investigators in conducting research in remote mountainous locations. The proposed gradient monitoring network will provide near real-time data from a three-dimensional (3-D) array of sensors measuring biophysical parameters used in ecosystem process models. The network will monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, tree stem growth and leaf wetness at time intervals ranging from seconds to days. The long-term goal of this project is to realize a transformative integration of smart sensor networks adaptively communicating data in real-time to ultimately achieve a 3-D visualization of ecosystem processes within remote mountainous regions. Process models will be the interface between the visualization platforms and the sensor network. This will allow us to better predict how non-human dominated terrestrial and aquatic ecosystems function and respond to climate dynamics. Access to the data will be ensured as part of the Northwest Knowledge Network being developed at the University of Idaho, through ongoing Idaho NSF-funded cyber infrastructure initiatives, and existing data management systems funded by NSF, such as the CUAHSI Hydrologic Information System (HIS). These efforts will enhance cross-disciplinary understanding of natural and anthropogenic influences on ecosystem function and ultimately inform decision-making.

  6. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  7. Cross-Layer Algorithms for QoS Enhancement in Wireless Multimedia Sensor Networks

    NASA Astrophysics Data System (ADS)

    Saxena, Navrati; Roy, Abhishek; Shin, Jitae

    A lot of emerging applications like advanced telemedicine and surveillance systems, demand sensors to deliver multimedia content with precise level of QoS enhancement. Minimizing energy in sensor networks has been a much explored research area but guaranteeing QoS over sensor networks still remains an open issue. In this letter we propose a cross-layer approach combining Network and MAC layers, for QoS enhancement in wireless multimedia sensor networks. In the network layer a statistical estimate of sensory QoS parameters is performed and a nearoptimal genetic algorithmic solution is proposed to solve the NP-complete QoS-routing problem. On the other hand the objective of the proposed MAC algorithm is to perform the QoS-based packet classification and automatic adaptation of the contention window. Simulation results demonstrate that the proposed protocol is capable of providing lower delay and better throughput, at the cost of reasonable energy consumption, in comparison with other existing sensory QoS protocols.

  8. Peer-to-peer model for the area coverage and cooperative control of mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Tan, Jindong; Xi, Ning

    2004-09-01

    This paper presents a novel model and distributed algorithms for the cooperation and redeployment of mobile sensor networks. A mobile sensor network composes of a collection of wireless connected mobile robots equipped with a variety of sensors. In such a sensor network, each mobile node has sensing, computation, communication, and locomotion capabilities. The locomotion ability enhances the autonomous deployment of the system. The system can be rapidly deployed to hostile environment, inaccessible terrains or disaster relief operations. The mobile sensor network is essentially a cooperative multiple robot system. This paper first presents a peer-to-peer model to define the relationship between neighboring communicating robots. Delaunay Triangulation and Voronoi diagrams are used to define the geometrical relationship between sensor nodes. This distributed model allows formal analysis for the fusion of spatio-temporal sensory information of the network. Based on the distributed model, this paper discusses a fault tolerant algorithm for autonomous self-deployment of the mobile robots. The algorithm considers the environment constraints, the presence of obstacles and the nonholonomic constraints of the robots. The distributed algorithm enables the system to reconfigure itself such that the area covered by the system can be enlarged. Simulation results have shown the effectiveness of the distributed model and deployment algorithms.

  9. A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.

    PubMed

    Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi

    2017-09-21

    Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.

  10. Network resiliency through memory health monitoring and proactive management

    DOEpatents

    Andrade Costa, Carlos H.; Cher, Chen-Yong; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2017-11-21

    A method for managing a network queue memory includes receiving sensor information about the network queue memory, predicting a memory failure in the network queue memory based on the sensor information, and outputting a notification through a plurality of nodes forming a network and using the network queue memory, the notification configuring communications between the nodes.

  11. Development of inferential sensors for real-time quality control of water-level data for the Everglades Depth Estimation Network

    USGS Publications Warehouse

    Daamen, Ruby C.; Edwin A. Roehl, Jr.; Conrads, Paul

    2010-01-01

    A technology often used for industrial applications is “inferential sensor.” Rather than installing a redundant sensor to measure a process, such as an additional waterlevel gage, an inferential sensor, or virtual sensor, is developed that estimates the processes measured by the physical sensor. The advantage of an inferential sensor is that it provides a redundant signal to the sensor in the field but without exposure to environmental threats. In the event that a gage does malfunction, the inferential sensor provides an estimate for the period of missing data. The inferential sensor also can be used in the quality assurance and quality control of the data. Inferential sensors for gages in the EDEN network are currently (2010) under development. The inferential sensors will be automated so that the real-time EDEN data will continuously be compared to the inferential sensor signal and digital reports of the status of the real-time data will be sent periodically to the appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.

  12. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  13. A uniform energy consumption algorithm for wireless sensor and actuator networks based on dynamic polling point selection.

    PubMed

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2013-12-19

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation.

  14. Sentient networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G.

    1998-03-01

    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A bettermore » idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.« less

  15. Open architecture of smart sensor suites

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  16. [Advances in sensor node and wireless communication technology of body sensor network].

    PubMed

    Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang

    2012-06-01

    With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.

  17. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks

    PubMed Central

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  18. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    PubMed

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  19. A wireless medical monitoring over a heterogeneous sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai

    2007-01-01

    This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.

  20. A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security

    PubMed Central

    Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif

    2008-01-01

    This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks. PMID:27873963

  1. SNM-DAT: Simulation of a heterogeneous network for nuclear border security

    NASA Astrophysics Data System (ADS)

    Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.

    2007-08-01

    We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.

  2. Operating systems and network protocols for wireless sensor networks.

    PubMed

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  3. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by sensors and their on-board processes. The two primary research areas for this project are (1) the on-board processing and communications framework itself, and (2) data mining algorithms targeted to the needs and constraints of the on-board environment. The team is leveraging its experience in on-board processing, data mining, custom data processing, and sensor network design. Several unique UAH-developed technologies are employed in the AODP project, including EVE, an EnVironmEnt for on-board processing, and the data mining tools included in the Algorithm Development and Mining (ADaM) toolkit.

  4. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks.

    PubMed

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-07-03

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions.

  5. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks

    PubMed Central

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-01-01

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions. PMID:26151211

  6. Planning and Scheduling for Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory resources and to reduce the costs of communication. Planning and scheduling is generally a heavy consumer of time, memory and energy resources. This means careful thought must be given to how much planning and scheduling should be done on the sensors themselves, and how much to do elsewhere. The difficulty of planning and scheduling is exacerbated when reasoning about uncertainty. More time, memory and energy is needed to solve such problems, leading either to more expensive sensors, or suboptimal plans. For example, scientifically interesting events may happen at random times, making it difficult to ensure that sufficient resources are availanble. Since uncertainty is usually lowest in proximity to the sensors themselves, this argues for planning and scheduling onboard the sensors. However, cost minimization dictates sensors be kept as simple as possible, reducing the amount of planning and scheduling they can do themselves. Furthermore, coordinating each sensor's independent plans can be difficult. In the full presentation, we will critically review the planning and scheduling systems used by previously fielded sensor networks. We do so primarily from the perspective of the computational sciences, with a focus on taming computational complexity when operating sensor networks. The case studies are derived from sensor networks based on UAVs, satellites, and planetary rovers. Planning and scheduling considerations include multi-sensor coordination, optimizing science value, onboard power management, onboard memory, planning movement actions to acquire data, and managing communications.These case studies offer lessons for future designs of environmental sensor networks.

  7. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo

    2016-01-01

    A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio. PMID:27187414

  8. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  9. Coverage in Heterogeneous Sensor Networks

    DTIC Science & Technology

    2006-01-01

    and S. Banerjee, “Node Placement for Connected Coverage in Sensor Networks,” in Proceedings of WiOpt ’03, March 2003. [10] F. Koushanfar, S...Meguerdichian, M. Potkonjak, and M. Srivastava, Cov- erage Problems in Wireless Ad-Hoc Sensor Networks, in Proceedings of the IEEE INFOCOM 01, March 2001, pp...Coverage and Connectivity of Ad Hoc Networks in Presence of Channel Randomness,” in Proceedings of the IEEE INFOCOM 05, March 2005, pp. 491–502. [16] S

  10. Cluster-based single-sink wireless sensor networks and passive optical network converged network incorporating sideband modulation schemes

    NASA Astrophysics Data System (ADS)

    Kumar, Love; Sharma, Vishal; Singh, Amarpal

    2018-02-01

    Wireless sensor networks have tremendous applications, such as civil, military, and environmental monitoring. In most of the applications, sensor data are required to be propagated over the internet/core networks, which result in backhaul setback. Subsequently, there is a necessity to backhaul the sensed information of such networks together with prolonging of the transmission link. Passive optical network (PON) is next-generation access technology emerging as a potential candidate for convergence of the sensed data to the core system. Earlier, the work with single-optical line terminal-PON was demonstrated and investigated merely analytically. This work is an attempt to demonstrate a practical model of a bidirectional single-sink wireless sensor network-PON converged network in which the collected data from cluster heads are transmitted over PON networks. Further, modeled converged structure has been investigated under the influence of double, single, and tandem sideband modulation schemes incorporating a corresponding phase-delay to the sensor data entities that have been overlooked in the past. The outcome illustrates the successful fusion of the sensor data entities over PON with acceptable bit error rate and signal to noise ratio serving as a potential development in the sphere of such converged networks. It has also been revealed that the data entities treated with tandem side band modulation scheme help in improving the performance of the converged structure. Additionally, analysis for uplink transmission reported with queue theory in terms of time cycle, average time delay, data packet generation, and bandwidth utilization. An analytical analysis of proposed converged network shows that average time delay for data packet transmission is less as compared with time cycle delay.

  11. Ubiquitous Sensor Networking for Development (USN4D): an application to pollution monitoring.

    PubMed

    Bagula, Antoine; Zennaro, Marco; Inggs, Gordon; Scott, Simon; Gascon, David

    2012-01-01

    This paper presents a new Ubiquitous Sensor Network (USN) Architecture to be used in developing countries and reveals its usefulness by highlighting some of its key features. In complement to a previous ITU proposal, our architecture referred to as "Ubiquitous Sensor Network for Development (USN4D)" integrates in its layers features such as opportunistic data dissemination, long distance deployment and localisation of information to meet the requirements of the developing world. Besides describing some of the most important requirements for the sensor equipment to be used in a USN4D setting, we present the main features and experiments conducted using the "WaspNet" as one of the wireless sensor deployment platforms that meets these requirements. Furthermore, building upon "WaspNet" platform, we present an application to Air pollution Monitoring in the city of Cape Town, in South Africa as one of the first steps towards building community wireless sensor networks (CSN) in the developing world using off-the-shelf sensor equipment.

  12. Ubiquitous Sensor Networking for Development (USN4D): An Application to Pollution Monitoring

    PubMed Central

    Bagula, Antoine; Zennaro, Marco; Inggs, Gordon; Scott, Simon; Gascon, David

    2012-01-01

    This paper presents a new Ubiquitous Sensor Network (USN) Architecture to be used in developing countries and reveals its usefulness by highlighting some of its key features. In complement to a previous ITU proposal, our architecture referred to as “Ubiquitous Sensor Network for Development (USN4D)” integrates in its layers features such as opportunistic data dissemination, long distance deployment and localisation of information to meet the requirements of the developing world. Besides describing some of the most important requirements for the sensor equipment to be used in a USN4D setting, we present the main features and experiments conducted using the “WaspNet” as one of the wireless sensor deployment platforms that meets these requirements. Furthermore, building upon “WaspNet” platform, we present an application to Air pollution Monitoring in the city of Cape Town, in South Africa as one of the first steps towards building community wireless sensor networks (CSN) in the developing world using off-the-shelf sensor equipment. PMID:22368476

  13. A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks

    PubMed Central

    Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan

    2014-01-01

    Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747

  14. Design of Operation Parameters to Resolve Two Targets using Proximity Sensors

    DTIC Science & Technology

    2010-07-01

    network,” in MOBIHOC, EPF Lausanne, Switzerland, 2002. [12] V. Cevher and L. Kaplan, “Acoustic sensor net- work design for position estimation,” ACM Trans- actions on Sensor Networks, vol. 4, 2009.

  15. Distributed Wavelet Transform for Irregular Sensor Network Grids

    DTIC Science & Technology

    2005-01-01

    implement it in a multi-hop, wireless sensor network ; and illustrate with several simulations. The new transform performs on par with conventional wavelet methods in a head-to-head comparison on a regular grid of sensor nodes.

  16. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  17. Low Complexity Track Initialization and Fusion for Multi-Modal Sensor Networks

    DTIC Science & Technology

    2012-11-08

    feature was demonstrated via the simulations. Aerospace 2011work further documents our investigation of multiple target tracking filters in...bounds that determine how well a sensor network can resolve and localize multiple targets as a function of the operating parameters such as sensor...probability density (PHD) filter for binary measurements using proximity sensors. 15. SUBJECT TERMS proximity sensors, PHD filter, multiple

  18. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    NASA Astrophysics Data System (ADS)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  19. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    PubMed

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  20. Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.

    PubMed

    Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan

    2015-11-01

    Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.

    PubMed

    Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani

    2012-01-01

    Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

  2. An Embedded Sensor Node Microcontroller with Crypto-Processors.

    PubMed

    Panić, Goran; Stecklina, Oliver; Stamenković, Zoran

    2016-04-27

    Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed.

  3. An Embedded Sensor Node Microcontroller with Crypto-Processors

    PubMed Central

    Panić, Goran; Stecklina, Oliver; Stamenković, Zoran

    2016-01-01

    Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed. PMID:27128925

  4. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  5. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  6. Estimating stochastic noise using in situ measurements from a linear wavefront slope sensor.

    PubMed

    Bharmal, Nazim Ali; Reeves, Andrew P

    2016-01-15

    It is shown how the solenoidal component of noise from the measurements of a wavefront slope sensor can be utilized to estimate the total noise: specifically, the ensemble noise variance. It is well known that solenoidal noise is orthogonal to the reconstruction of the wavefront under conditions of low scintillation (absence of wavefront vortices). Therefore, it can be retrieved even with a nonzero slope signal present. By explicitly estimating the solenoidal noise from an ensemble of slopes, it can be retrieved for any wavefront sensor configuration. Furthermore, the ensemble variance is demonstrated to be related to the total noise variance via a straightforward relationship. This relationship is revealed via the method of the explicit estimation: it consists of a small, heuristic set of four constants that do not depend on the underlying statistics of the incoming wavefront. These constants seem to apply to all situations-data from a laboratory experiment as well as many configurations of numerical simulation-so the method is concluded to be generic.

  7. Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey

    PubMed Central

    Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2014-01-01

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702

  8. Explicit integration with GPU acceleration for large kinetic networks

    DOE PAGES

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; ...

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies thatmore » important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less

  9. Time Synchronization/Stamping Method with Visible Light Communication and Energy Harvesting Methods for Wireless Sensor Network Inside Ariane 5 Vehicle Equipment Bay

    NASA Astrophysics Data System (ADS)

    Kesuma, Hendra; Niederkleine, Kris; Schmale, Sebastian; Ahobala, Tejas; Paul, Steffen; Sebald, Johannes

    2016-08-01

    In this work we design and implement efficient time synchronization/stamping method for Wireless Sensor Network inside the Vehicle Equipment Bay (VEB) of the ARIANE 5. The sensor nodes in the network do not require real time clock (RTC) hardware to store and stamp each measurement data performed by the sensors. There will be only the measurement sequence information, previous time (clock) information, measurement data and its related data protocol information sent back to the Access Point (AP). This lead to less data transmission, less energy and less time required by the sensor nodes to operate and also leads to longer battery life time. The Visible Light Communication (VLC) is used, to provide energy, to synchronize time and to deliver the commands to the sensor nodes in the network. By employing star network topology, a part of solar cell as receiver, the conventional receiver (RF/Infrared) is neglected to reduce amount of hardware and energy consumption. The infrared transmitter on the sensor node is deployed to minimize the electromagnetic interference in the launcher and does not require a complicated circuit in comparison to a RF transmitter.

  10. An energy-efficient and compact clustering scheme with temporary support nodes for cognitive radio sensor networks.

    PubMed

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-08-11

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.

  11. An Energy-Efficient and Compact Clustering Scheme with Temporary Support Nodes for Cognitive Radio Sensor Networks

    PubMed Central

    Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong

    2014-01-01

    A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905

  12. Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks

    PubMed Central

    Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei

    2017-01-01

    WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator’s mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost. PMID:28098748

  13. Autonomous management of a recursive area hierarchy for large scale wireless sensor networks using multiple parents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan Vee; Delgado-Frias, Jose

    Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less

  14. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    PubMed

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  15. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    PubMed Central

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique. PMID:29278405

  16. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  17. Mobile robotic sensors for perimeter detection and tracking.

    PubMed

    Clark, Justin; Fierro, Rafael

    2007-02-01

    Mobile robot/sensor networks have emerged as tools for environmental monitoring, search and rescue, exploration and mapping, evaluation of civil infrastructure, and military operations. These networks consist of many sensors each equipped with embedded processors, wireless communication, and motion capabilities. This paper describes a cooperative mobile robot network capable of detecting and tracking a perimeter defined by a certain substance (e.g., a chemical spill) in the environment. Specifically, the contributions of this paper are twofold: (i) a library of simple reactive motion control algorithms and (ii) a coordination mechanism for effectively carrying out perimeter-sensing missions. The decentralized nature of the methodology implemented could potentially allow the network to scale to many sensors and to reconfigure when adding/deleting sensors. Extensive simulation results and experiments verify the validity of the proposed cooperative control scheme.

  18. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks

    PubMed Central

    Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962

  19. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Cheng, Wenchi; Zhang, Hailin

    2017-01-01

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509

  20. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    PubMed

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  1. Community Air Sensor Network (CAIRSENSE) project ...

    EPA Pesticide Factsheets

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, -0.25 to 0.76, -0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r 0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorihm to im

  2. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor (based on plastic optical fiber). Data transmitted directly to server where the early warning algorithms monitor the water level variations in real time. Both sensor nodes use power harvesting techniques in order to extend their battery life as much as possible. [1] Yick J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292-2330. [2] Garcia, M.; Bri, D.; Boronat, F.; Lloret, J. A new neighbor selection strategy for group-based wireless sensor networks, In The Fourth International Conference on Networking and Services (ICNS 2008), Gosier, Guadalupe, March 16-21, 2008.

  3. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.

  4. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of PAN configuration, providing the appropriate response for maintaining overall sensor system function, even when sensor modules fail or the WSN is reconfigured. The session will present the architecture and technical feasibility of creating fault-tolerant WSNs for aerospace applications based on our application of the technology to a Structural Health Monitoring testbed. The interim results of WSN development and testing including our software architecture for intelligent sensor management will be discussed in the context of the specific tradeoffs required for effective use. Initial certification measurement techniques and test results gauging WSN susceptibility to Radio Frequency interference are introduced as key challenges for technology adoption. A candidate Developmental and Flight Instrumentation implementation using intelligent sensor networks for wind tunnel and flight tests is developed as a guide to understanding key aspects of the aerospace vehicle design, test and operations life cycle.

  5. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    PubMed Central

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606

  6. Location-aware dynamic session-key management for grid-based Wireless Sensor Networks.

    PubMed

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths.

  7. Self organization of wireless sensor networks using ultra-wideband radios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowla, Farid U; Nekoogar, Franak; Spiridon, Alex

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  8. Teaching the Geoweb: Interdisciplinary Undergraduate Research in Wireless Sensor Networks, Web Mapping, and Geospatial Data Management

    ERIC Educational Resources Information Center

    Abernathy, David

    2011-01-01

    This article addresses an effort to incorporate wireless sensor networks and the emerging tools of the Geoweb into undergraduate teaching and research at a small liberal arts college. The primary goal of the research was to identify the hardware, software, and skill sets needed to deploy a local sensor network, collect data, and transmit that data…

  9. On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels

    DTIC Science & Technology

    2013-12-01

    Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks

  10. Bidirectional QoS support for novelty detection applications based on hierarchical wireless sensor network model

    NASA Astrophysics Data System (ADS)

    Edwards, Mark; Hu, Fei; Kumar, Sunil

    2004-10-01

    The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report events, the most important QoS parameters should include sensing data packet transmission reliability, lifetime extension degree from sensor sleeping control, event detection latency, congestion reduction level through removal of redundant sensing data. In this paper, we will focus on the following bi-directional QoS topics: (1) Downstream (sink-to-sensor) QoS: Reliable data query command forwarding to particular sensor(s). In other words, we do not want to lose the query command packets; (2) Upstream (sensor-to-sink) QoS: transmission of sensed data with priority control. The more interested data that can help in novelty detection should be transmitted on an optimal path with higher reliability. We propose the use of Differentiated Data Collection. Due to the large-scale nature and resource constraints of typical wireless sensor networks, such as limited energy, small memory (typically RAM < 4K bytes) and short communication range, the above problems become even more challenging. Besides QoS support issue, we will also describe our low-energy Sensing Data Transmission network Architecture. Our research results show the scalability and energy-efficiency of our proposed WSN QoS schemes.

  11. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  12. Ultra-wideband radar sensors and networks

    DOEpatents

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  13. Monitoring of physiological parameters from multiple patients using wireless sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Khan, Jamil Y

    2008-10-01

    This paper presents a wireless sensor network system that has the capability to monitor physiological parameters from multiple patient bodies. The system uses the Medical Implant Communication Service band between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication.

  14. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  15. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  16. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  17. Teaching Structured Design of Network Algorithms in Enhanced Versions of SQL

    ERIC Educational Resources Information Center

    de Brock, Bert

    2004-01-01

    From time to time developers of (database) applications will encounter, explicitly or implicitly, structures such as trees, graphs, and networks. Such applications can, for instance, relate to bills of material, organization charts, networks of (rail)roads, networks of conduit pipes (e.g., plumbing, electricity), telecom networks, and data…

  18. Towards benchmarking citizen observatories: Features and functioning of online amateur weather networks.

    PubMed

    Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter

    2017-05-15

    Crowd-sourced environmental observations are increasingly being considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated observatories that are rooted in one of the oldest and most widely practiced citizen science activities, namely amateur weather observation. The objective of this paper is to introduce a conceptual framework that enables a systematic review of the features and functioning of these expanding networks. This is done by considering distinct dimensions, namely the geographic scope and types of participants, the network's establishment mechanism, revenue stream(s), existing communication paradigm, efforts required by data sharers, support offered by platform providers, and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run the networks, and their sustainability. This framework is then utilized to perform a critical review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) there are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks; (2) the revenue stream(s) of online amateur weather networks is one of the least discussed but arguably most important dimensions that is crucial for the sustainability of these networks; and (3) all of the networks included in this study have one or more explicit modes of bi-directional communication, however, this is limited to feedback mechanisms that are mainly designed to educate the data sharers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The benefits of soft sensor and multi-rate control for the implementation of Wireless Networked Control Systems.

    PubMed

    Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V

    2014-12-18

    Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.

  20. Hybrid Radio Frequency/Free-Space Optics (RF/FSO) Wireless Sensor Network: Security Concerns and Protective Measures

    NASA Astrophysics Data System (ADS)

    Banerjee, Koushik; Sharma, Hemant; Sengupta, Anasuya

    Wireless sensor networks (WSNs) are ad hoc wireless networks that are written off as spread out structure and ad hoc deployment. Sensor networks have all the rudimentary features of ad hoc networks but to altered points—for instance, considerably lesser movement and far more energy necessities. Commonly used technology for communication is radio frequency (RF) communications. Free-space optics (FSO) is relatively new technology which has the prospective to deliver remarkable increases in network lifetime of WSN. Hybrid RF/FSO communications has been suggested to decrease power consumption by a single sensor node. It is observed that security plays a very important role for either RF WSN or hybrid RF/FSO WSN as those are vulnerable to numerous threats. In this paper, various possible attacks in RF/FSO WSN are discussed and aimed to propose some way out from those attacks.

  1. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  2. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    PubMed Central

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-01-01

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919

  3. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios.

    PubMed

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-11-17

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  4. Study on the effect of sink moving trajectory on wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.

  5. Smart Sensor Network for Aircraft Corrosion Monitoring

    DTIC Science & Technology

    2010-02-01

    Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM)  Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and

  6. A Uniform Energy Consumption Algorithm for Wireless Sensor and Actuator Networks Based on Dynamic Polling Point Selection

    PubMed Central

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2014-01-01

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455

  7. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    PubMed

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  8. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  9. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    PubMed Central

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  10. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    PubMed

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  11. A Gossip-based Energy Efficient Protocol for Robust In-network Aggregation in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Fauji, Shantanu

    We consider the problem of energy efficient and fault tolerant in--network aggregation for wireless sensor networks (WSNs). In-network aggregation is the process of aggregation while collecting data from sensors to the base station. This process should be energy efficient due to the limited energy at the sensors and tolerant to the high failure rates common in sensor networks. Tree based in--network aggregation protocols, although energy efficient, are not robust to network failures. Multipath routing protocols are robust to failures to a certain degree but are not energy efficient due to the overhead in the maintenance of multiple paths. We propose a new protocol for in-network aggregation in WSNs, which is energy efficient, achieves high lifetime, and is robust to the changes in the network topology. Our protocol, gossip--based protocol for in-network aggregation (GPIA) is based on the spreading of information via gossip. GPIA is not only adaptive to failures and changes in the network topology, but is also energy efficient. Energy efficiency of GPIA comes from all the nodes being capable of selective message reception and detecting convergence of the aggregation early. We experimentally show that GPIA provides significant improvement over some other competitors like the Ridesharing, Synopsis Diffusion and the pure version of gossip. GPIA shows ten fold, five fold and two fold improvement over the pure gossip, the synopsis diffusion and Ridesharing protocols in terms of network lifetime, respectively. Further, GPIA retains gossip's robustness to failures and improves upon the accuracy of synopsis diffusion and Ridesharing.

  12. RETRACTED: The Application of Symmetric Key Cryptographic Algorithms in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Si, Lingling; Ji, Zhigang; Wang, Zhihui

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Publisher. The authors have plagiarized a paper that had already appeared in "Queen's 25th Biennial Symposium on Communications", page 168-172, print ISBN 978-1-4244-5709-0, http://dx.doi.org/10.1109/BSC.2010.5472979. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  13. Data dissemination using gossiping in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Medidi, Muralidhar; Ding, Jin; Medidi, Sirisha

    2005-06-01

    Disseminating data among sensors is a fundamental operation in energy-constrained wireless sensor networks. We present a gossip-based adaptive protocol for data dissemination to improve energy efficiency of this operation. To overcome the data implosion problems associated with dissemination operation, our protocol uses meta-data to name the data using high-level data descriptors and negotiation to eliminate redundant transmissions of duplicate data in the network. Further, we adapt the gossiping with data aggregation possibilities in sensor networks. We simulated our data dissemination protocol, and compared it to the SPIN protocol. We find that our protocol improves on the energy consumption by about 20% over others, while improving significantly over the data dissemination rate of gossiping.

  14. Radioactive source localization in urban environments with sensor networks and the Internet of Things

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Clair J.

    The use of radiation detectors as an element in the so-called “Internet of Things” has recently become viable with the available of low-cost, mobile radiation sensors capable of streaming geo-referenced data. New methods for fusing the data from multiple sensors on such a network is presented. The traditional simple and ordinary Kriging methods present a challenge for such a network since the assumption of a constant mean is not valid in this application. In conclusion, a variety of Kalman filters are introduced in an attempt to solve the problem associated with this variable and unknown mean. Results are presented onmore » a deployed sensor network.« less

  15. Radioactive source localization in urban environments with sensor networks and the Internet of Things

    DOE PAGES

    Sullivan, Clair J.

    2016-01-01

    The use of radiation detectors as an element in the so-called “Internet of Things” has recently become viable with the available of low-cost, mobile radiation sensors capable of streaming geo-referenced data. New methods for fusing the data from multiple sensors on such a network is presented. The traditional simple and ordinary Kriging methods present a challenge for such a network since the assumption of a constant mean is not valid in this application. In conclusion, a variety of Kalman filters are introduced in an attempt to solve the problem associated with this variable and unknown mean. Results are presented onmore » a deployed sensor network.« less

  16. Multi-phenomenology Observation Network Evaluation Tool'' (MONET)

    NASA Astrophysics Data System (ADS)

    Oltrogge, D.; North, P.; Vallado, D.

    2014-09-01

    Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.

  17. SEnviro: a sensorized platform proposal using open hardware and open standards.

    PubMed

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-03-06

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.

  18. SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards

    PubMed Central

    Trilles, Sergio; Luján, Alejandro; Belmonte, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín; Huerta, Joaquín

    2015-01-01

    The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and the Web of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented. PMID:25756864

  19. Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering

    PubMed Central

    Almeida, Fernando R.; Brayner, Angelo; Rodrigues, Joel J. P. C.; Maia, Jose E. Bessa

    2017-01-01

    An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering. To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE). PMID:28590450

  20. Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering.

    PubMed

    Almeida, Fernando R; Brayner, Angelo; Rodrigues, Joel J P C; Maia, Jose E Bessa

    2017-06-07

    An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering . To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE).

  1. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey

    PubMed Central

    Ndiaye, Musa; Hancke, Gerhard P.; Abu-Mahfouz, Adnan M.

    2017-01-01

    Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN) provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management. PMID:28471390

  2. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    PubMed Central

    She, Ji; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819

  3. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey.

    PubMed

    Ndiaye, Musa; Hancke, Gerhard P; Abu-Mahfouz, Adnan M

    2017-05-04

    Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN) provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

  4. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    PubMed

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  5. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    PubMed Central

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-01-01

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015

  6. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    PubMed Central

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510

  7. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  8. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    PubMed Central

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895

  9. Air Pollution Monitoring and Mining Based on Sensor Grid in London.

    PubMed

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-06-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  10. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  11. CPAC: Energy-Efficient Data Collection through Adaptive Selection of Compression Algorithms for Sensor Networks

    PubMed Central

    Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon

    2014-01-01

    We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763

  12. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE PAGES

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...

    2017-06-06

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  13. Ultra-low power wireless sensing for long-term structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie

    2011-04-01

    Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

  14. Design, Implementation and Case Study of WISEMAN: WIreless Sensors Employing Mobile AgeNts

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, Sergio; Chen, Min; Leung, Victor C. M.

    We describe the practical implementation of Wiseman: our proposed scheme for running mobile agents in Wireless Sensor Networks. Wiseman’s architecture derives from a much earlier agent system originally conceived for distributed process coordination in wired networks. Given the memory constraints associated with small sensor devices, we revised the architecture of the original agent system to make it applicable to this type of networks. Agents are programmed as compact text scripts that are interpreted at the sensor nodes. Wiseman is currently implemented in TinyOS ver. 1, its binary image occupies 19Kbytes of ROM memory, and it occupies 3Kbytes of RAM to operate. We describe the rationale behind Wiseman’s interpreter architecture and unique programming features that can help reduce packet overhead in sensor networks. In addition, we gauge the proposed system’s efficiency in terms of task duration with different network topologies through a case study that involves an early-fire-detection application in a fictitious forest setting.

  15. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  16. Wireless sensor placement for structural monitoring using information-fusing firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan

    2017-10-01

    Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.

  17. Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Chayoung; Ahn, Jinho

    In sensor networks, there are lots of overlapped multicast groups because of many subscribers, associated with their potentially varying specific interests, querying every event to sensors/publishers. And gossip based communication protocols are promising as one of potential solutions providing scalability in P(Publish)/ S(Subscribe) paradigm in sensor networks. Moreover, despite the importance of both guaranteeing message delivery order and supporting overlapped multicast groups in sensor or P2P networks, there exist little research works on development of gossip-based protocols to satisfy all these requirements. In this paper, we present two versions of causally ordered delivery guaranteeing protocols for overlapped multicast groups. The one is based on sensor-broker as delegates and the other is based on local views and delegates representing subscriber subgroups. In the sensor-broker based protocol, sensor-broker might lead to make overlapped multicast networks organized by subscriber's interests. The message delivery order has been guaranteed consistently and all multicast messages are delivered to overlapped subscribers using gossip based protocols by sensor-broker. Therefore, these features of the sensor-broker based protocol might be significantly scalable rather than those of the protocols by hierarchical membership list of dedicated groups like traditional committee protocols. And the subscriber-delegate based protocol is much stronger rather than fully decentralized protocols guaranteeing causally ordered delivery based on only local views because the message delivery order has been guaranteed consistently by all corresponding members of the groups including delegates. Therefore, this feature of the subscriber-delegate protocol is a hybrid approach improving the inherent scalability of multicast nature by gossip-based technique in all communications.

  18. Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks

    PubMed Central

    Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram

    2016-01-01

    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results. PMID:27658194

  19. Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations

    DTIC Science & Technology

    2011-03-01

    leveraging public wireless communication networks for UAV-based sensor networks with respect to existing constraints and user requirements...Detection with an Autonomous Micro UAV Mesh Network . In the near future police departments, fire brigades and other homeland security ...UAV-based sensor networks with respect to existing constraints and user requirements. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  20. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  1. Performance evaluation of complete data transfer of physical layer according to IEEE 802.15.4 standard

    NASA Astrophysics Data System (ADS)

    Raju, Kota Solomon; Merugu, Naresh Babu; Neetu, Babu, E. Ram

    2016-03-01

    ZigBee is well-accepted industrial standard for wireless sensor networks based on IEEE 802.15.4 standard. Wireless Sensor Networks is the major concern of communication these days. These Wireless Sensor Networks investigate the properties of networks of small battery-powered sensors with wireless communication. The communication between any two wireless nodes of wireless sensor networks is carried out through a protocol stack. This protocol stack has been designed by different vendors in various ways. Every custom vendor possesses his own protocol stack and algorithms especially at the MAC layer. But, many applications require modifications in their algorithms at various layers as per their requirements, especially energy efficient protocols at MAC layer that are simulated in Wireless sensor Network Simulators which are not being tested in real time systems because vendors do not allow the programmability of each layer in their protocol stack. This problem can be quoted as Vendor-Interoperability. The solution is to develop the programmable protocol stack where we can design our own application as required. As a part of the task first we tried implementing physical layer and transmission of data using physical layer. This paper describes about the transmission of the total number of bytes of Frame according to the IEEE 802.15.4 standard using Physical Layer.

  2. Fast decision algorithms in low-power embedded processors for quality-of-service based connectivity of mobile sensors in heterogeneous wireless sensor networks.

    PubMed

    Jaraíz-Simón, María D; Gómez-Pulido, Juan A; Vega-Rodríguez, Miguel A; Sánchez-Pérez, Juan M

    2012-01-01

    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  3. Distributed processing method for arbitrary view generation in camera sensor network

    NASA Astrophysics Data System (ADS)

    Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki

    2003-05-01

    Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.

  4. Energy-efficient algorithm for broadcasting in ad hoc wireless sensor networks.

    PubMed

    Xiong, Naixue; Huang, Xingbo; Cheng, Hongju; Wan, Zheng

    2013-04-12

    Broadcasting is a common and basic operation used to support various network protocols in wireless networks. To achieve energy-efficient broadcasting is especially important for ad hoc wireless sensor networks because sensors are generally powered by batteries with limited lifetimes. Energy consumption for broadcast operations can be reduced by minimizing the number of relay nodes based on the observation that data transmission processes consume more energy than data reception processes in the sensor nodes, and how to improve the network lifetime is always an interesting issue in sensor network research. The minimum-energy broadcast problem is then equivalent to the problem of finding the minimum Connected Dominating Set (CDS) for a connected graph that is proved NP-complete. In this paper, we introduce an Efficient Minimum CDS algorithm (EMCDS) with help of a proposed ordered sequence list. EMCDS does not concern itself with node energy and broadcast operations might fail if relay nodes are out of energy. Next we have proposed a Minimum Energy-consumption Broadcast Scheme (MEBS) with a modified version of EMCDS, and aimed at providing an efficient scheduling scheme with maximized network lifetime. The simulation results show that the proposed EMCDS algorithm can find smaller CDS compared with related works, and the MEBS can help to increase the network lifetime by efficiently balancing energy among nodes in the networks.

  5. Importance of network density of nanotube: Effect on nitrogen dioxide gas sensing by solid state resistive sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.

    2016-04-13

    Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair ofmore » interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.« less

  6. Nanotechnology enabled sensors and wireless sensing networks

    NASA Astrophysics Data System (ADS)

    Tsui, Ray; Zhang, Ruth; Mastroianni, Sal; Díaz Aguilar, Alvaro; Forzani, Erica; Tao, Nongjian

    2009-05-01

    The capabilities of future mobile communication devices will extend beyond merely transmitting and receiving voice, data, and video information. For example, first responders such as firefighters and emergency workers will wear environmentally- aware devices that will warn them of combustible and toxic gases as well as communicate that information wirelessly to the Command and Control Center. Similar sensor systems could alert warfighters of the presence of explosives or biological weapons. These systems can function either in the form of an individual stand-alone detector or part of a wireless sensor network. Novel sensors whose functionality is enhanced via nanotechnology will play a key role in realizing such systems. Such sensors are important because of their high sensitivity, low power consumption, and small size. This talk will provide an overview of some of the advances made in sensors through the use of nanotechnology, including those that make use of carbon nanotubes and nanoparticles. Their applicability in mobile sensing and wireless sensor networks for use in national security and public safety will be described. Other technical challenges associated with the development of such systems and networks will also be discussed.

  7. Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.

    PubMed

    Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing

    2006-08-01

    This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.

  8. Hopfield neural network and optical fiber sensor as intelligent heart rate monitor

    NASA Astrophysics Data System (ADS)

    Mutter, Kussay Nugamesh

    2018-01-01

    This paper presents a design and fabrication of an intelligent fiber-optic sensor used for examining and monitoring heart rate activity. It is found in the literature that the use of fiber sensors as heart rate sensor is widely studied. However, the use of smart sensors based on Hopfield neural networks is very low. In this work, the sensor is a three fibers without cladding of about 1 cm, fed by laser light of 1550 nm of wavelength. The sensing portions are mounted with a micro sensitive diaphragm to transfer the pulse pressure on the left radial wrist. The influenced light intensity will be detected by a three photodetectors as inputs into the Hopfield neural network algorithm. The latter is a singlelayer auto-associative memory structure with a same input and output layers. The prior training weights are stored in the net memory for the standard recorded normal heart rate signals. The sensors' heads work on the reflection intensity basis. The novelty here is that the sensor uses a pulse pressure and Hopfield neural network in an integrity approach. The results showed a significant output measurements of heart rate and counting with a plausible error rate.

  9. A survey on sensor coverage and visual data capturing/processing/transmission in wireless visual sensor networks.

    PubMed

    Yap, Florence G H; Yen, Hong-Hsu

    2014-02-20

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.

  10. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks

    PubMed Central

    Yap, Florence G. H.; Yen, Hong-Hsu

    2014-01-01

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs. PMID:24561401

  11. Community Seismic Network (CSN)

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.

    2011-12-01

    The CSN is a network of low-cost accelerometers deployed in the Pasadena, CA region. It is a prototype network with the goal of demonstrating the importance of dense measurements in determining the rapid lateral variations in ground motion due to earthquakes. The main product of the CSN is a map of peak ground produced within seconds of significant local earthquakes that can be used as a proxy for damage. Examples of this are shown using data from a temporary network in Long Beach, CA. Dense measurements in buildings are also being used to determine the state of health of structures. In addition to fixed sensors, portable sensors such as smart phones are also used in the network. The CSN has necessitated several changes in the standard design of a seismic network. The first is that the data collection and processing is done in the "cloud" (Google cloud in this case) for robustness and the ability to handle large impulsive loads (earthquakes). Second, the database is highly de-normalized (i.e. station locations are part of waveform and event-detection meta data) because of the mobile nature of the sensors. Third, since the sensors are hosted and/or owned by individuals, the privacy of the data is very important. The location of fixed sensors is displayed on maps as sensor counts in block-wide cells, and mobile sensors are shown in a similar way, with the additional requirement to inhibit tracking that at least two must be present in a particular cell before any are shown. The raw waveform data are only released to users outside of the network after a felt earthquake.

  12. Communications for unattended sensor networks

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  13. Real-time synchronization of wireless sensor network by 1-PPS signal

    NASA Astrophysics Data System (ADS)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  14. Wireless Sensors and Networks for Advanced Energy Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J.E.

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less

  15. Experimental damage detection of wind turbine blade using thin film sensor array

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha

    2017-04-01

    Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.

  16. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  17. Time-optimum packet scheduling for many-to-one routing in wireless sensor networks

    USGS Publications Warehouse

    Song, W.-Z.; Yuan, F.; LaHusen, R.; Shirazi, B.

    2007-01-01

    This paper studies the wireless sensor networks (WSN) application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs [image omitted], N(u0)-1) time slots, assuming each node reports one unit of data in each round. Here [image omitted] is the total number of sensors, while [image omitted] denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet-scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also mitigated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle.

  18. A New Path-Constrained Rendezvous Planning Approach for Large-Scale Event-Driven Wireless Sensor Networks.

    PubMed

    Vajdi, Ahmadreza; Zhang, Gongxuan; Zhou, Junlong; Wei, Tongquan; Wang, Yongli; Wang, Tianshu

    2018-05-04

    We study the problem of employing a mobile-sink into a large-scale Event-Driven Wireless Sensor Networks (EWSNs) for the purpose of data harvesting from sensor-nodes. Generally, this employment improves the main weakness of WSNs that is about energy-consumption in battery-driven sensor-nodes. The main motivation of our work is to address challenges which are related to a network’s topology by adopting a mobile-sink that moves in a predefined trajectory in the environment. Since, in this fashion, it is not possible to gather data from sensor-nodes individually, we adopt the approach of defining some of the sensor-nodes as Rendezvous Points (RPs) in the network. We argue that RP-planning in this case is a tradeoff between minimizing the number of RPs while decreasing the number of hops for a sensor-node that needs data transformation to the related RP which leads to minimizing average energy consumption in the network. We address the problem by formulating the challenges and expectations as a Mixed Integer Linear Programming (MILP). Henceforth, by proving the NP-hardness of the problem, we propose three effective and distributed heuristics for RP-planning, identifying sojourn locations, and constructing routing trees. Finally, experimental results prove the effectiveness of our approach.

  19. A Networked Sensor System for the Analysis of Plot-Scale Hydrology.

    PubMed

    Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W; Navarro, Miguel; Li, Yimei; Slater, Thomas A; Liang, Yao; Liang, Xu

    2017-03-20

    This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.

  20. A Networked Sensor System for the Analysis of Plot-Scale Hydrology

    PubMed Central

    Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W.; Navarro, Miguel; Li, Yimei; Slater, Thomas A.; Liang, Yao; Liang, Xu

    2017-01-01

    This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments. PMID:28335534

  1. TinyONet: A Cache-Based Sensor Network Bridge Enabling Sensing Data Reusability and Customized Wireless Sensor Network Services

    PubMed Central

    Jung, Eui-Hyun; Park, Yong-Jin

    2008-01-01

    In recent years, a few protocol bridge research projects have been announced to enable a seamless integration of Wireless Sensor Networks (WSNs) with the TCP/IP network. These studies have ensured the transparent end-to-end communication between two network sides in the node-centric manner. Researchers expect this integration will trigger the development of various application domains. However, prior research projects have not fully explored some essential features for WSNs, especially the reusability of sensing data and the data-centric communication. To resolve these issues, we suggested a new protocol bridge system named TinyONet. In TinyONet, virtual sensors play roles as virtual counterparts of physical sensors and they dynamically group to make a functional entity, Slice. Instead of direct interaction with individual physical sensors, each sensor application uses its own WSN service provided by Slices. If a new kind of service is required in TinyONet, the corresponding function can be dynamically added at runtime. Beside the data-centric communication, it also supports the node-centric communication and the synchronous access. In order to show the effectiveness of the system, we implemented TinyONet on an embedded Linux machine and evaluated it with several experimental scenarios. PMID:27873968

  2. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.

    PubMed

    Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan

    2018-02-02

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.

  3. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management

    PubMed Central

    2018-01-01

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884

  4. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  5. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    DOT National Transportation Integrated Search

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  6. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    NASA Astrophysics Data System (ADS)

    Guo, T. H.; Musgrave, J.

    1992-11-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.

  7. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Musgrave, J.

    1992-01-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.

  8. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    PubMed Central

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  9. Ubiquitous healthcare computing with SEnsor Grid Enhancement with Data Management System (SEGEDMA).

    PubMed

    Preve, Nikolaos

    2011-12-01

    Wireless Sensor Network (WSN) can be deployed to monitor the health of patients suffering from critical diseases. Also a wireless network consisting of biomedical sensors can be implanted into the patient's body and can monitor the patients' conditions. These sensor devices, apart from having an enormous capability of collecting data from their physical surroundings, are also resource constraint in nature with a limited processing and communication ability. Therefore we have to integrate them with the Grid technology in order to process and store the collected data by the sensor nodes. In this paper, we proposed the SEnsor Grid Enhancement Data Management system, called SEGEDMA ensuring the integration of different network technologies and the continuous data access to system users. The main contribution of this work is to achieve the interoperability of both technologies through a novel network architecture ensuring also the interoperability of Open Geospatial Consortium (OGC) and HL7 standards. According to the results, SEGEDMA can be applied successfully in a decentralized healthcare environment.

  10. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines.

    PubMed

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-28

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.

  11. Bioinspired principles for large-scale networked sensor systems: an overview.

    PubMed

    Jacobsen, Rune Hylsberg; Zhang, Qi; Toftegaard, Thomas Skjødeberg

    2011-01-01

    Biology has often been used as a source of inspiration in computer science and engineering. Bioinspired principles have found their way into network node design and research due to the appealing analogies between biological systems and large networks of small sensors. This paper provides an overview of bioinspired principles and methods such as swarm intelligence, natural time synchronization, artificial immune system and intercellular information exchange applicable for sensor network design. Bioinspired principles and methods are discussed in the context of routing, clustering, time synchronization, optimal node deployment, localization and security and privacy.

  12. Calibration of a shock wave position sensor using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    1993-01-01

    This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.

  13. An efficient and secure certificateless authentication protocol for healthcare system on wireless medical sensor networks.

    PubMed

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks.

  14. Wireless Sensor Networks for Ambient Assisted Living

    PubMed Central

    Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe

    2013-01-01

    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665

  15. An Efficient and Secure Certificateless Authentication Protocol for Healthcare System on Wireless Medical Sensor Networks

    PubMed Central

    Guo, Rui; Wen, Qiaoyan; Jin, Zhengping; Zhang, Hua

    2013-01-01

    Sensor networks have opened up new opportunities in healthcare systems, which can transmit patient's condition to health professional's hand-held devices in time. The patient's physiological signals are very sensitive and the networks are extremely vulnerable to many attacks. It must be ensured that patient's privacy is not exposed to unauthorized entities. Therefore, the control of access to healthcare systems has become a crucial challenge. An efficient and secure authentication protocol will thus be needed in wireless medical sensor networks. In this paper, we propose a certificateless authentication scheme without bilinear pairing while providing patient anonymity. Compared with other related protocols, the proposed scheme needs less computation and communication cost and preserves stronger security. Our performance evaluations show that this protocol is more practical for healthcare system in wireless medical sensor networks. PMID:23710147

  16. Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.

    2011-01-01

    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.

  17. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    PubMed

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  18. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  19. A Secure Scheme for Distributed Consensus Estimation against Data Falsification in Heterogeneous Wireless Sensor Networks.

    PubMed

    Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping

    2016-02-19

    Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.

  20. A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.

    2009-01-01

    A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185

Top